Science.gov

Sample records for 5a synthetic zeolite

  1. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  2. Metal immobilization in soils using synthetic zeolites.

    PubMed

    Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca.

  3. Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems

    SciTech Connect

    Tanaka, M.; Takayama, S.; Sano, S.

    2015-03-15

    The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process of zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)

  4. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  5. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  6. USE OF SYNTHETIC ZEOLITES FOR ARSENATE REMOVAL FROM POLLUTANT WATER

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water below the current and proposed EPA MCL has been examined...

  7. Producing a synthetic zeolite from secondary coal fly ash.

    PubMed

    Zhou, Chunyu; Yan, Chunjie; Zhou, Qi; Wang, Hongquan; Luo, Wenjun

    2016-11-01

    Secondary coal fly ash is known as a by-product produced by the extracting alumina industry from high-alumina fly ash, which is always considered to be solid waste. Zeolitization of secondary coal fly ash offers an opportunity to create value-added products from this industrial solid waste. The influence of synthesis parameters on zeolite NaA such as alkalinity, the molar ratio of SiO2/Al2O3, crystallization time and temperature was investigated in this paper. It was found that the types of synthetic zeolites produced were to be highly dependent on the conditions of the crystallization process. Calcium ion exchange capacity and whiteness measurements revealed that the synthesized product meets the standard for being used as detergent, indicating a promising use as a builder in detergent, ion-exchangers or selective adsorbents. Yield of up to a maximum of 1.54 g/g of ash was produced for zeolite NaA from the secondary coal fly ash residue. This result presents a potential use of the secondary coal fly ash to obtain a high value-added product by a cheap and alternative zeolitization procedure.

  8. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  9. UTILITY OF SYNTHETIC ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolites like ZSM-5, Ferrierite, Beta and Faujasite Y have been used to remove i...

  10. The safety of synthetic zeolites used in detergents.

    PubMed

    Fruijtier-Pölloth, Claudia

    2009-01-01

    Synthetic zeolites are replacing phosphates as builders in laundry detergents; workers and consumers may, therefore, increasingly be exposed to these materials and it is important to assess their safety. This article puts mechanistic, toxicological and exposure data into context for a safety assessment. Zeolites are hygroscopic compounds with ion-exchanging properties. They may partially decompose under acidic conditions such as in the stomach releasing sodium ions, silicic acid and aluminum salts. The intact molecule is not bioavailable after oral intake or exposure through the dermal and inhalational routes. Under current conditions of manufacture and use, no systemic toxicity is to be expected from neither the intact molecule nor the degradation products; a significant effect on the bioavailability of other compounds is not likely. Zeolites may cause local irritation. It is, therefore, important to minimise occupational exposure. The co-operation of detergent manufacturers with the manufacturers of washing machines is necessary to find the right balance between environmental aspects such as energy and water savings and the occurrence of detergent residues on textiles due to insufficient rinsing.

  11. Mineral resource of the month: natural and synthetic zeolites

    USGS Publications Warehouse

    Virta, Robert L.

    2008-01-01

    Volcanic rocks containing natural zeolites — hydrated aluminosilicate minerals that contain alkaline and alkaline-earth metals — have been mined worldwide for more than 1,000 years for use as cements and building stone. For centuries, people thought natural zeolites occurred only in small amounts inside cavities of volcanic rock. But in the 1950s and early 1960s, large zeolite deposits were discovered in volcanic tuffs in the western United States and in marine tuffs in Italy and Japan. And since then, similar deposits have been found around the world, from Hungary to Cuba to New Zealand. The discovery of these larger deposits made commercial mining of natural zeolite possible.

  12. Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs

    PubMed Central

    Khodaverdi, Elham; Honarmandi, Reza; Alibolandi, Mona; Baygi, Roxana Rafatpanah; Hadizadeh, Farzin; Zohuri, Gholamhossein

    2014-01-01

    Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM) was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF) and simulated intestine fluid (SIF), respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs. PMID:24967062

  13. Adsorption of aqueous Zn(II) species on synthetic zeolites

    NASA Astrophysics Data System (ADS)

    Badillo-Almaraz, Véronica; Trocellier, Patrick; Dávila-Rangel, Ignacio

    2003-09-01

    To supply a good quality drinkable water tends to become a strategic task in both developed and under development countries in the world due to the number of potential contamination sources. One of the major problems is derived from the presence of heavy toxic metals like zinc or lead resulting from industrial activities. Zeolites are known as very efficient mineral substrates for fixing aqueous ionic species through their wide range of channels present in the crystalline structure and due to their strong surface reactivity. MicroPIXE coupled with microRBS (3.05 MeV 4He + ions) have been used to quantify the incorporation of zinc within two commercial zeolites containing alkali elements (zeolite X and clinoptilolite) in the concentration range of: 0.0002-0.05 M at neutral pH. At the beginning of the interaction between zeolite and Zn(II) solution, the adsorption process exhibits a direct proportionality between the content of zinc fixed on the mineral substrate and the aqueous concentration up to 0.01 M. Beyond this point a saturation effect seems to occur, indicating the strong decrease of available adsorption sites. Sodium or potassium ions are probably exchanged with Zn(II) ions during this process. The compared behaviour of the two zeolites is then discussed in terms of kinetic effects based on ionic radius values. A co-adsorption test carried on with a 50-50% Zn(II) 0.001 M-Pb(II) 0.001 M solution shows that lead does not occupy the same sites as zinc because the content of zinc fixed on the zeolite sample exactly corresponds to the result obtained with a pure 0.001 M Zn(II) solution. All these data clearly showed that zeolite surface reactivity is greatly influenced by the mineral cage-like structure and particularly the presence of pockets, spaces and channels.

  14. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites.

    PubMed

    Reháková, Mária; Fortunová, Lubica; Bastl, Zdeněk; Nagyová, Stanislava; Dolinská, Silvia; Jorík, Vladimír; Jóna, Eugen

    2011-02-15

    Zeoadsorbents on the basis of copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) have been studied taking into account their environmental application in removing harmful pyridine (py) from liquid and gas phase. Sorption of pyridine by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN, X-ray photoelectron spectroscopy, X-ray powder diffractometry, FTIR spectroscopy, thermal analysis (TG, DTA and DTG) and analysis of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(py)(x)ZSM5, Cu-CT and Cu-(py)(x)CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine) clearly confirmed their different thermal properties as well as the sorption of pyridine. In the zeolitic pyridine containing samples the main part of the pyridine release process occurs at considerably higher temperatures than is the boiling point of pyridine, which proves strong bond and irreversibility of py-zeolite interaction. FTIR spectra of Cu-(py)(x)zeolite samples showed well resolved bands of pyridine. The results of thermal analysis and FTIR spectroscopy are in a good agreement with the results of other used methods.

  15. Experimental study on the adsorptive-distillation for dehydration of ethanol-water mixture using natural and synthetic zeolites

    NASA Astrophysics Data System (ADS)

    Megawati, Wicaksono, D.; Abdullah, M. S.

    2017-03-01

    This research studied adsorptive-distillation (AD) for dehydration of ethanol-water mixture using natural and synthetic zeolites as adsorbent for ethanol purification. Especially, the effect of purification time is recorded and studied to evaluate performance of designed AD equipment. This AD was performed in a batch condition using boiling flask covered with heating mantle and it was maintained at 78°C temperature and 1 atm pressure. The initial ethanol volume was 300 mL with 93.8% v/v concentration. The synthetic zeolite type used was zeolite 3A. The flowed vapour was condensed using water as a cooling medium. Every 5 minutes of time duration the samples were collected until the vapour could not be condensed in that condition and then be analyzed its concentration using Gas-Chromatography. Experiment shows that the designed AD equipment could increase ethanol concentration at first 5 minutes with highest ethanol concentration achieved using synthetic zeolite (97.47% v/v). However, ethanol concentration from AD process using natural zeolite only reached 96.5% v/v. Thus, synthetic zeolite as adsorbent could pass azeotropic point, but natural zeolite fail. The ratio of adsorbed water per adsorbent for natural and synthetic zeolites are about 0.023 and 0.056 gwater/gads, respectively, at 50 minutes of time. Finally, synthetic zeolite (at 55 minutes the value of C/C0 is about 0.85 and the average outlet water concentration is 4.70 mole/L) as adsorbent for AD of ethanol water is better than natural zeolite (at 55 minutes the value of C/C0 is about 0.63 and the average outlet water concentration is 6.43 mole/L).

  16. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Li, Zheng; Niu, Qian; Ma, Jiutong; Jia, Qiong

    2015-10-01

    A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  17. CR-100 synthetic zeolite adsorption characteristics toward Northern Banat groundwater ammonia.

    PubMed

    Tomić, Željko; Kukučka, Miroslav; Stojanović, Nikoleta Kukučka; Kukučka, Andrej; Jokić, Aleksandar

    2016-10-14

    The adsorption characteristics of synthetic zeolite CR-100 in a fixed-bed system using continuous flow of groundwater containing elevated ammonia concentration were examined. The possibilities for adsorbent mass calculation throughout mass transfer zone using novel mathematical approach as well as zeolite adsorption capacity at every sampling point in time or effluent volume were determined. The investigated adsorption process consisted of three clearly separated steps indicated to sorption kinetics. The first step was characterized by decrease and small changes in effluent ammonia concentration vs. experiment time and quantity of adsorbed ammonia per mass unit of zeolite. The consequences of this phenomenon were showed in the plots of the Freundlich and the Langmuir isotherm models through a better linear correlation according as graphical points contingent to the first step were not accounted. The Temkin and the Dubinin-Radushkevich isotherm models showed the opposite tendency with better fitting for overall measurements. According to the obtained isotherms parameter data, the investigated process was found to be multilayer physicochemical adsorption, and also that synthetic zeolite CR-100 is a promising material for removal of ammonia from Northern Banat groundwater with an ammonia removal efficiency of 90%.

  18. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    SciTech Connect

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.

  19. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  20. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; ...

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  1. Calcium Solubility In Zeolite Synthetic-Apatite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, R.; Ming, D. W.

    1999-01-01

    Life support systems at a lunar or martian outpost will require the ability to produce food growing in 1) treated lunar or martian regolith; 2) a synthetic soil, or 3) some combination of both. Zeoponic soil, composed of NH4 (-) and K-exchanged clinoptilolite (Cp) and synthetic apatite (Ap), can provide slow-release fertilization via dissolution and ion-exchange. Equilibrium studies indicate that KNH4, P, and Mg are available to plants at sufficient levels, however, Ca is deficient. Ca availability can be increased by adding a second Ca-bearing mineral: calcite (Cal); dolomite (Dol); or wollastonite (Wol). Additions of Cal, Dol, and Wol systematically change the concentrations of Ca and P in solution. Cal has the greatest effect, Dol the least, and Wol is intermediate.

  2. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  3. Effect of coke in the equilibrium and kinetics of sorption on 5A molecular sieve zeolites

    SciTech Connect

    Silva, J.A.C.; Mata, V.G.; Dias, M.M.; Lopes, J.C.B.; Rodrigues, A.E.

    2000-04-01

    Porosimetric, gravimetric, zero length column (ZLC), and fixed-bed studies on coked pellets of 5A molecular sieve zeolites were performed. From porosimetric studies it seems that the coke is located in the microporous structure of 5A zeolite or any layers covering all crystals. The gravimetric studies between 473 and 573 K using n-pentane as a probe molecule show that Henry's constants in coked pellets are much smaller than those in fresh ones. The kinetics of sorption measured by the ZLC technique is also significantly modified. The results show that the system changes from a macropore control resistance with the reciprocal of time constant D{sub p}/R{sub p}{sup 2}(1 + K) on the order of 0.002--0.02 x{sup {minus}1} in fresh pellets to a micropore control resistance system with reciprocal time constant D{sub c}/r{sub c}{sup 2} 1 order of magnitude lower in coked pellets. The effect of temperature on the behavior of a fixed bed is also shown. A simple mathematical model with equilibrium and diffusivity parameters obtained from independent experiments predicts with good accuracy all fixed-bed adsorption and desorption runs.

  4. Zeolites

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

  5. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A.

    PubMed

    El-Kamash, A M; Zaki, A A; El Geleel, M Abed

    2005-12-09

    The sorptive removal of zinc and cadmium ions from aqueous solutions using synthetic zeolite A was investigated. Experiments were carried out as a function of solute concentration and temperature (298-333 K). Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the sorption process. Various parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. Equilibrium sorption data were analyzed using Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Of the model tested, both Freundlich and D-R isotherm expressions were found to give better fit to the experimental equilibrium data compared to Langmuir model. The mean free energy is in all cases in the range corresponding to the ion exchange type of sorption. The results indicated that synthetic zeolite A can be used as an efficient ion exchange material for the removal of zinc and cadmium ions from industrial and radioactive wastewaters.

  6. Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated waters.

    PubMed

    Cama, Jordi; Ayora, Carles; Querol, Xavier; Ganor, Jiwchar

    2005-07-01

    The effect of pH on the dissolution kinetics of NaP1 zeolite, which was produced from the alkaline treatment of coal fly ash and may be used for decontamination of acid mine waters, is studied. The sample contains considerable amounts of accessory phases that partly dissolve during the experiment. Therefore, the dissolution rate was estimated during a stage in which the Al/Si ratio was equal to that of NaP1 (0.6). The release rate of these elements is controlled by the dissolution of the zeolite itself during this stage. The dissolution rate of NaP1 slows down with increasing pH in the acidic range, becomes constant at an intermediate pH, and increases with increasing pH in the basic range. The observed changes in rates were described using a rate law based on a surface speciation model. Using this rate law, we calculated the half-life of NaP1 to be about 2 years at near neutral pH and less than 10 days at pH below 3. For the utilization of NaP1 in the treatment of wastewaters or acid mine waters, these short half-lives bear two implications: (1) The treated waters must be kept at near neutral pH, and NaP1 should be added periodically to the treated waters in order to compensate for zeolite loss. (2) In water treatment applications that require a relatively short reaction time, the zeolite removed from the effluents should be kept dry in order to avoid its decomposition and the consequent release of the adsorbed metal to the environment.

  7. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment.

  8. Effect of oral drenching with zinc oxide or synthetic zeolite A on total blood calcium in dairy cows.

    PubMed

    Jørgensen, R J; Hansen, T; Jensen, M L; Thilsing-Hansen, T

    2001-03-01

    Danish Holstein dairy cows in late lactation and milked in the morning only were used as a model for dry pregnant cows to determine the effect of oral drenching with zeolite A and zinc oxide, respectively, on total serum calcium. Ten cows were assigned randomly to two groups of five cows each, given either synthetic zeolite A (group A) or zinc oxide (group B). Blood samples were drawn daily at 10 a.m. and 10 p.m. during the whole experiment, and total serum calcium was determined. Daily fluctuations in blood calcium were recorded, with morning values being consistently lower than evening values. Oral drenching with a single dose of zinc oxide of 100 mg/kg of body weight as well as with zeolite in doses of 500 g of zeolite/cow twice a day for 2.5 d was reflected in serum calcium levels. In the group given zeolite A, there was a depression in evening values of total serum calcium although the difference did not reach statistical significance. It was followed by an increase above baseline level ("overshooting"). This was interpreted as a response from the calcium homeostatic mechanisms. In the group given a single dose of zinc oxide, a decrease in total serum calcium occurred. This decrease was not followed by overshooting, indicating that the single treatment with zinc oxide did not stimulate the calcium homeostatic mechanisms. The perspective of this first attempt to reduce dry cow ration calcium availability may be seen in relation to difficulties in formulating dry cows rations from home grown forage sufficiently low in calcium to elicit a hypocalcemia protective response at calving.

  9. Effect of synthetic conditions on the adsorption properties of the resulting offretite-type zeolite

    NASA Astrophysics Data System (ADS)

    Gorshunova, K. K.; Travkina, O. S.; Kapustin, G. I.; Kustov, L. M.; Pavlov, M. L.; Kutepov, B. I.

    2015-05-01

    The effect of the nature of the silicon-containing component of the reaction mixture and that of the crystallization conditions on characteristics of the resulting offretite-type zeolite powder, including its degree of crystallinity, particle-size distribution, and adsorption properties with respect to toluene, cyclohexane, n-hexane, and water molecules, are considered. The thermal desorption of toluene from cationic forms of the offretite-type zeolite is reported. The K-forms of this zeolite can retain adsorbed toluene up to 300-400°C.

  10. ZK-5: a CO₂-selective zeolite with high working capacity at ambient temperature and pressure.

    PubMed

    Liu, Qingling; Pham, Trong; Porosoff, Marc D; Lobo, Raul F

    2012-11-01

    The increased carbon dioxide concentration in the atmosphere caused by combustion of fossil fuels has been a leading contributor to global climate change. The adsorption-driven pressure or vacuum swing (PSA/VSA) processes are promising as affordable means for the capture and separation of CO₂. Herein, an 8-membered-ring zeolite ZK-5 (Framework Type Code: KFI) exchanged with different cations (H⁺, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺) was synthesized as novel CO₂ adsorbent. The samples were characterized by SEM, energy-dispersive X-ray spectroscopy (EDAX), XRD, and gas adsorption (CO₂ and N₂). The Toth adsorption model was used to describe the CO₂ adsorption isotherms, and the isosteric heats of adsorption were calculated. CO₂ capture adsorbent evaluation criteria such as working capacity, regenerability and CO₂/N₂ selectivity were applied to evaluate the zeolite adsorbents for PSA/VSA applications. The in situ FTIR CO₂ adsorption spectra show that physisorption accounts for the largest fraction of the total CO₂ adsorbed. The CO₂ adsorption analysis shows that Mg-ZK-5 is the most promising adsorbent for PSA applications with the highest working capacity (ΔN(CO₂)=2.05 mmol g⁻¹), excellent selectivity (α(CO₂/N₂)=121), and low isosteric heat. Li-, Na- and K-ZK-5 with good working capacity (ΔN(CO₂)=1.55-2.16 mmol g⁻¹) and excellent selectivity (α(CO₂/N₂)=103-128) are promising CO₂ adsorbents for the VSA working region.

  11. Abu Zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt

    NASA Astrophysics Data System (ADS)

    Farrag, Abd El Hay Ali; Abdel Moghny, Th.; Mohamed, Atef Mohamed Gad; Saleem, Saleem Sayed; Fathy, Mahmoud

    2016-06-01

    Groundwater in Upper Egypt especially in Assiut Governorate is considered the second source of fresh water and used for drinking, agriculture, domestic and industrial purposes. Unfortunately, it is characterized by high concentrations of iron and manganese ions. The study aimed at synthesizing zeolite-4A from kaolinite for removing the excess iron and manganese ions from Assiut Governorate groundwater wells. Therefor, the kaolinite was hydrothermally treated through the metakaolinization and zeolitization processes to produce crystalline zeolite-4A. The chemical composition of crystalline zeolite-4A and its morphology were then characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Then the column experiments were conducted to study the performance of crystalline salt-4A as ion exchange and investigate their operating parameters and regeneration conditions. Thomas and Yoon-Nelson models were applied to predict adsorption capacity and the time required for 50 % breakthrough curves. The effects of initial concentrations of 600 and 1000 mg L-1 for Fe2+ and Mn2+, feed flow rate of 10-30 ml/min, and height range of 0.4-1.5 cm on the breakthrough behavior of the adsorption system were determined. The obtained results indicated that the synthesized zeolite-A4 can remove iron and manganese ions from groundwater to the permissible limit according to the standards drinking water law.

  12. Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite.

    PubMed

    Belviso, Claudia; Cavalcante, Francesco; Di Gennaro, Spartaco; Lettino, Antonio; Palma, Achille; Ragone, Pietro; Fiore, Saverio

    2014-05-01

    A number of water purification processes have been developed in recent years based on the utilisation of low-cost materials with high pollutant removal efficiency. Among these materials, fly ash and zeolite synthesised from fly ash are two examples of high-efficiency adsorbents. Column absorption tests were performed in order to compare the manganese sorption behaviour of an Italian coal fly ash and zeolite synthesised from it. Different masses of both materials (10-60 g) were exposed to solutions containing a total metal concentration of 10 mg/L. Batch adsorption studies were also conducted to determine the effect of time on the removal on Mn sequestration. The results indicate that both materials are effective for the removal of Mn from aqueous solution by precipitation due to the high pH of the solid/liquid mixtures. However, the leaching tests reveal that the amount of Mn removed from the fly ash was greater than that leached from the zeolite, thereby indicating that the metal is partially sequestrated by zeolite.

  13. Removal of carbon monoxide. Physical adsorption on natural and synthetic zeolites

    NASA Technical Reports Server (NTRS)

    Alfani, F.; Greco, G., Jr.; Iroio, G.

    1982-01-01

    The utilization of natural zeolite materials in the elimination of polluting gases is investigated. Carbon monoxide pollution is emphasized because its concentration may reach dangerous levels in places such as vehicle tunnels, underground parking lots, etc. The elimination of carbon monoxide is also of interest in some industrial processes relating to the production of pure gases.

  14. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  15. Simultaneous/Selective Detection of Dopamine and Ascorbic Acid at Synthetic Zeolite-Modified/Graphite-Epoxy Composite Macro/Quasi-Microelectrodes

    PubMed Central

    Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica

    2013-01-01

    The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications. PMID:23736851

  16. Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3.

    PubMed

    Park, Man; Kim, Jong Su; Choi, Choong Lyeal; Kim, Jang-Eok; Heo, Nam Ho; Komarneni, Sridhar; Choi, Jyung

    2005-08-18

    Zeolites can accommodate a considerable amount of occluded salt such as NH4NO3, which can serve as a good source of slow-release plant nutrient. This study evaluates the kinetics of ion release from NH4NO3-occluded Na-P1 (N-NaP) using a simulated soil solution and deionized water as leaching solutions. The patterns of ion releases were examined as a function of leaching time under both static and continuous-flow conditions for more than one month. Releases of both NH4+ and NO3- from N-NaP were found to be slow and steady under both the above conditions. The soil solution affected the release of NH4+ and NO3- differently, while deionized water released nearly the same equivalents of these ions. This clearly indicates that ion release from salt-occluded zeolite involves two different reactions, cation exchange and dissolution. The kinetics of ion release from occluded NH4NO3 under static condition was best described by the standard Elovich model while the power function model best expressed these under continuous-flow condition. The initial ion release patterns under both conditions exhibited considerable deviation from the simulated models, probably as a result of the presence of hydrated occluded NH4NO3. Flow condition and the presence of electrolytes in leaching solution affected the release kinetics significantly. Release of occluded NH4NO3 was delayed by the presence of the NH4NO3 coated on zeolite crystals. These results indicate that the ion release property of occluded salt could be predicted and controlled. This study clearly shows that NH4NO3-occluded zeolites could be developed as slow release fertilizers.

  17. Effects of feeding synthetic zeolite A and sodium bicarbonate on milk production, nutrient digestion, and rate of digesta passage in dairy cows.

    PubMed

    Johnson, M A; Sweeney, T F; Muller, L D

    1988-04-01

    Four rumen-cannulated Holstein cows were fed synthetic zeolite A and NaHCO3 to evaluate their affect on milk production, nutrient digestibility, rumen fermentation, and rate of digesta passage. Treatments were allocated in a 2 x 2 factorial arrangement within a 4 x 4 Latin-square design. Treatments consisted of control; 1.0% NaHCO3; 2.0% zeolite; and 1.0% NaHCO3 plus 2.0% zeolite. A total mixed ration with 50:50 concentrate to forage (80% corn silage, 20% haylage) DM was fed. Intake of DM was lower for cows receiving zeolite (18.7 vs. 20.7 kg/d). Decreases were noted in daily milk (26.3 vs. 28.9 kg/d). 4% FCM (23.6 vs. 25.6 kg/d); milk fat yield (.86 vs. .93 kg/d); milk protein yield (.85 vs. .95 kg/d); and milk protein percent (3.21 vs. 3.34) with zeolite. Digestibilities of DM, organic matter, and crude protein were also decreased by zeolite but ADF digestion was unaffected. Rumen pH was increased, ruminal propionate decreased, and acetate:propionate ratio increased by zeolite. All other VFA plus rumen NH3 were not affected by treatment. Decreases due to zeolite were observed in liquid fractional rate of passage and liquid flow rate when measured by Cr-EDTA in the feces. No treatment differences were found in fractional rate of passage of feed particles. Addition of NaHCO3 had no significant effects.

  18. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites.

    PubMed

    Ríos, C A; Williams, C D; Roberts, C L

    2008-08-15

    Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations, resulting from the microbial oxidation of pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The generation of AMD and release of dissolved heavy metals is an important concern facing the mining industry. The present study aimed at evaluating the use of low-cost sorbents like coal fly ash, natural clinker and synthetic zeolites to clean-up AMD generated at the Parys Mountain copper-lead-zinc deposit, Anglesey (North Wales), and to remove heavy metals and ammonium from AMD. pH played a very important role in the sorption/removal of the contaminants and a higher adsorbent ratio in the treatment of AMD promoted the increase of the pH, particularly using natural clinker-based faujasite (7.70-9.43) and the reduction of metal concentration. Na-phillipsite showed a lower efficiency as compared to that of faujasite. Selectivity of faujasite for metal removal was, in decreasing order, Fe>As>Pb>Zn>Cu>Ni>Cr. Based on these results, the use of these materials has the potential to provide improved methods for the treatment of AMD.

  19. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  20. Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A.

    PubMed

    Saha, Dipendu; Bao, Zongbi; Jia, Feng; Deng, Shuguang

    2010-03-01

    Adsorption equilibrium and kinetics of CO(2), CH(4), N(2)O, and N(2) on two newly discovered adsorbents, metal-organic frameworks MOF-5 and MOF-177 and one traditional adsorbent, zeolite 5A were determined to assess their efficacy for CO(2), CH(4), and N(2)O removal from air and separation of CO(2) from CH(4) in pressure swing adsorption processes. Adsorption equilibrium and kinetics data for CO(2), CH(4), N(2)O, and N(2) on all three adsorbents were measured volumetrically at 298K and gas pressures up to 800 Torr. Adsorption equilibrium capacities of CO(2) and CH(4) on all three adsorbents were determined gravimetrically at 298 K and elevated pressures (14 bar for CO(2) and 100 bar for CH(4)). The Henry's law and Langmuir adsorption equilibrium models were applied to correlate the adsorption isotherms, and a classical micropore diffusion model was used to analyze the adsorption kinetic data. The adsorption equilibrium selectivity was calculated from the ratio of Henry's constants, and the adsorbent selection parameter for pressure swing adsorption processes were determined by combining the equilibrium selectivity and working capacity ratio. Based on the selectivity and adsorbent selection parameter results, zeolite 5A is a better adsorbent for removing CO(2) and N(2)O from air and separation of CO(2) from CH(4), whereas MOF-177 is the adsorbent of choice for removing CH(4) from air. However, both MOF adsorbents have larger adsorption capacities for CO(2) and CH(4) than zeolite 5A at elevated pressures, suggesting MOF-5 and MOF-177 are better adsorbents for CO(2) and CH(4) storage. The CH(4) adsorption capacity of 22 wt.% on MOF-177 at 298K and 100 bar is probably the largest adsorption uptake of CH(4) on any dry adsorbents. The average diffusivity of CO(2), CH(4) and N(2)O in MOF-5 and MOF-177 is in the order of 10(-9) m(2)/s, as compared to 10(-11) m(2)/s for CO(2), CH(4) and N(2)O in zeolite 5A. The effects of gas pressure on diffusivity for different adsorabte

  1. Die chemische Fixierung von Kryptonisotopen in Zeolith 5 A — Voraussetzung für die Messung von 25 keV Neutroneneinfang- querschnitten mit der Aktivierungstechnik/ The Chemical Fixation of Kr Isotopes in Zeolite 5 A.- Prerequisite for the Determination of 25 keV Neutron Capture Cross Sections with the Activation Method

    NASA Astrophysics Data System (ADS)

    Penzhorn, R.-D.; Walter, G.; Beer, H.

    1983-07-01

    By chemical fixation of Kr in zeolite 5 A adequate samples can be obtained to determine the capture cross section of reactions such as 84 Kr (n, γ) 85Krm and 86Kr (n, γ) 87Kr. The employed zeolite loading was of the order 52-66 [cm3 STP Kr/g zeolite]. The capture cross section of the reaction 84Kr(n, γ) 85Krm was determined at thermal and 25 keV neutron energy. The value obtained at 25 keV is of relevance to the stellar nucleosynthesis of heavy elements.

  2. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  3. Zeolites: Exploring Molecular Channels

    ScienceCinema

    Arslan, Ilke; Derewinski, Mirek

    2016-07-12

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  4. Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels.

    PubMed

    Vellingiri, Kowsalya; Kim, Ki-Hyun; Kwon, Eilhann E; Deep, Akash; Jo, Sang-Hee; Szulejko, Jan E

    2016-01-15

    The sorptive removal properties of a synthetic A4 zeolite were evaluated against sulfur dioxide (SO2) and four reference reduced sulfur compounds (RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethyl sulfide (DMS, (CH3)2S), and dimethyl disulfide (DMDS, CH3SSCH3). To this end, a sorbent bed of untreated (as-received) A4 zeolite was loaded with gaseous standards at four concentration levels (10-100 part-per-billion (ppb (v/v)) at four different volumes (0.1, 0.2, 0.5, and 1 L increments) in both increasing (IO: 0.1-1.0 L) and decreasing volume order (DO: 1.0 to 0.1 L). Morphological properties were characterized by PXRD, FTIR, and BET analysis. The removal efficiency of SO2 decreased from 100% for all concentrations at 0.1 L (initial sample volume) to ∼82% (100 ppb) or ∼96% (10 ppb) at 3.6 L. In contrast, removal efficiency of RSC was near 100% at small loading volumes but then fell sharply, irrespective of concentration (10-100 ppb) (e.g., 32% (DMS) to 52% (H2S) at 100 ppb). The adsorption capacity of zeolite, if expressed in terms of solid-gas partition coefficient (e.g., similar to the Henry's law constant (mmol kg(-1) Pa(-1))), showed moderate variabilities with the standard concentration levels and S compound types such as the minimum of 2.03 for CH3SH (at 20 ppb) to the maximum of 13.9 for SO2 (at 10 ppb). It clearly demonstrated a notable distinction in the removal efficiency of A4 zeolite among the different S species in a mixture with enhanced removal efficiency of SO2 compared to the RSCs.

  5. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  6. EPR Study of Cr5+ and Cu2+ in Some Zeolites Introduced by Solid- and Liquid-State Reactions

    NASA Astrophysics Data System (ADS)

    Köksal, Fevzi; Ucun, Fatih; Kartal, İbrahim

    1996-04-01

    This study reports on the EPR of Cr5+ and Cu2+ ions, introduced by solid- and liquid-state reactions with the synthetic zeolites 3A, 4A and 5A, and the natural zeolite clinoptilolite. Cr3+ was oxidized to Cr5+ in the samples, the coordination around Cr5+ being square pyramidal. Super-hyperfine (shf) interaction of Cr5+ with 27Al nucleus was observed in both solid-and liquid-state-introduced 5A zeolite, whereas this shf could not be observed for the solid-state introduced 4A zeolite. The liquid-state Cr-introduced 4A zeolite needed a heat treatment at 473 K for ½ h for the appearance of shfs. Furthermore, it has been found that the coordination structure around the Cu2+ is square pyramidal in solid-state introduced samples, whereas it is octahedral in the liquid-state introduced ones.

  7. Zealous zeolites

    SciTech Connect

    Hairston, D.W.

    1996-07-01

    Zeolites have made significant inroads in fluid cracking catalysts for gasoline and have pushed phosphates out of laundry detergents. But these crystalline aluminosilicate structures are just beginning to make their mark in chemical processes and environmental applications. Ideally suited for work as molecular sieves and catalysts, zeolites sport uniform surface pores and channels that are receptive only to molecules of a specific size and shape. This high selectivity makes zeolites a good alterative to some of the conventional products used for chemical reaction and filtration. One of the most potentially lucrative markets for zeolites is chemical catalyst replacements for liquid acids, such as hydrofluoric acid and sulfuric acid, and aluminum chloride in a number of alkylation and acrylation reactions. Zeolites are also being considered for oligomerization,isomerization, amination and condensation processes for the manufacture of chemical intermediates. The paper discusses the market and manufacturers of zeolites, justifying the cost of converting to zeolite catalysts, and natural zeolites.

  8. Novel granular materials with microcrystalline active surfaces: waste water treatment applications of zeolite/vermiculite composites.

    PubMed

    Johnson, Christopher D; Worrall, Fred

    2007-05-01

    The application of zeolites as adsorbents for waste water management is limited by the facts that only synthetic zeolites have sufficient capacity and only natural zeolites can be manufactured in practical sizes for application, i.e. synthetic zeolites have too small a grain size to be used and natural zeolites have low adsorption capacities. This study seeks to resolve this problem by the manufacture of synthetic zeolites upon an expanded lamella matrix (vermiculite). The synthesized composite was tested to show whether it combined the useful properties of both natural and synthetic zeolites. The study compared: hydraulic conductivity, adsorption capacity and rate of attainment of equilibrium of the synthetic composite in comparison to both a natural and a synthetic zeolite. The results demonstrate that the vermiculite-based composite shows the same hydraulic properties as a natural clinoptilolite with similar grain size (2-5mm), however, the rate of adsorption and maximum coverage were improved by a factor of 4.

  9. Zeolitic Boron Imidazolate Frameworks**

    PubMed Central

    Zhang, Jian; Wu, Tao; Zhou, Cong; Chen, Shumei; Feng, Pingyun; Bu, Xianhui

    2009-01-01

    From porous AlPO4 to porous BIFs Reported here are a family of crystalline materials based on boron imidazolate frameworks (BIFs). It is demonstrated that the synthetic method, which is based on the crosslinking of various pre-synthesized boron imidazolates by monovalent cations (Li+ and Cu+), is capable of generating a large variety of open frameworks ranging from the 4-connected zeolitic sodalite type to the 3-connected chiral (10,3)-a type. PMID:19241428

  10. Oil palm waste and synthetic zeolite: an alternative soil-less growth substrate for lettuce production as a waste management practice.

    PubMed

    Jayasinghe, Guttila Y; Tokashiki, Yoshihiro; Kitou, Makato; Kinjo, Kazutoshi

    2008-12-01

    A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP were the highest, which showed increased values compared with that of PL by 11.56, 9.77, 3.48, 17.35 and 16.53%, respectively. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP showed increased percentages compared with that of PE by 12.12, 11.37, 3.74, 23.66 and 17.50%, respectively. In addition, the growth and yield parameters of lettuce grown in the 1 : 3 mixing ratio and the OP did not show any significant difference with PL and PE but differed from the 1 : 10 mixing ratio. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to

  11. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  12. Active synthetic soil

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Inventor); Henninger, Donald L. (Inventor); Allen, Earl R. (Inventor); Golden, Dadigamuwage C. (Inventor)

    1995-01-01

    A synthetic soil/fertilizer for horticultural application having all the agronutrients essential for plant growth is disclosed. The soil comprises a synthetic apatite fertilizer having sulfur, magnesium, and micronutrients dispersed in a calcium phosphate matrix, a zeolite cation exchange medium saturated with a charge of potassium and nitrogen cations, and an optional pH buffer. Moisture dissolves the apatite and mobilizes the nutrient elements from the apatite matrix and the zeolite charge sites.

  13. An EPR Study on VO2+ and Mn2+ Ions in Some Zeolites

    NASA Astrophysics Data System (ADS)

    Ucun, F.; Köksal, F.

    1996-02-01

    The electron paramagnetic resonance (EPR) of hydrated VOSO4 ·3H2O and MnCl2 · 2H2O, adsorbed on the synthetic zeolites 3A, 4A, 5A and 13X of pore diameters 0.3, 0.4, 0.5, and 1.0 nm, respectively, and the natural zeolites heulandite and clinoptilolite was investigated. The spectra indicated that the coordination structures are VO(H2O)52+ and Mn(H2O)62+ , and that their EPR line widths vary with the pore diameters and the surface areas of the zeolites. The spectra of VO(H2O)52+ in natural zeolites at room temperature display an isotropic behavior and therefore indicate that the water ligands are mobile. The EPR spin Hamiltonian parameters, the molecule orbital constant ß2*2 , and the Fermi contact term Keff were determined and are discussed. The spectra of Mn(H2O)62+ for narrow-pore zeolites indicate the existence of mobile and immobile water, whereas for wide-pore and natural zeolites they indicated the existence of only mobile water. The obtained Mn(H2O)62+ spectra are discussed.

  14. A synthetic codon-optimized hepatitis C virus nonstructural 5A DNA vaccine primes polyfunctional CD8+ T cell responses in wild-type and NS5A-transgenic mice.

    PubMed

    Holmström, Fredrik; Pasetto, Anna; Nähr, Veronica; Brass, Anette; Kriegs, Malte; Hildt, Eberhard; Broderick, Kate E; Chen, Margaret; Ahlén, Gustaf; Frelin, Lars

    2013-02-01

    The hepatitis C virus (HCV) nonstructural (NS) 5A protein has been shown to promote viral persistence by interfering with both innate and adaptive immunity. At the same time, the HCV NS5A protein has been suggested as a target for antiviral therapy. In this study, we performed a detailed characterization of HCV NS5A immunogenicity in wild-type (wt) and immune tolerant HCV NS5A-transgenic (Tg) C57BL/6J mice. We evaluated how efficiently HCV NS5A-based genetic vaccines could activate strong T cell responses. Truncated and full-length wt and synthetic codon-optimized NS5A genotype 1b genes were cloned into eukaryotic expression plasmids, and the immunogenicity was determined after i.m. immunization in combination with in vivo electroporation. The NS5A-based genetic vaccines primed high Ab levels, with IgG titers of >10(4) postimmunization. With respect to CD8(+) T cell responses, the coNS5A gene primed more potent IFN-γ-producing and lytic cytotoxic T cells in wt mice compared with NS5A-Tg mice. In addition, high frequencies of NS5A-specific CD8(+) T cells were found in wt mice after a single immunization. To test the functionality of the CTL responses, the ability to inhibit growth of NS5A-expressing tumor cells in vivo was analyzed after immunization. A single dose of coNS5A primed tumor-inhibiting responses in both wt and NS5A-Tg mice. Finally, immunization with the coNS5A gene primed polyfunctional NS5A-specific CD8(+) T cell responses. Thus, the coNS5A gene is a promising therapeutic vaccine candidate for chronic HCV infections.

  15. Synthesis and testing of nanosized zeolite Y

    NASA Astrophysics Data System (ADS)

    Karami, Davood

    This work focuses on the synthesis and testing of nanosized zeolite Y. The synthesis formulations of faujasite-type structure of zeolite Y prepared in nanosized form are described. The synthetic zeolite Y is the most widely employed for the preparation of fluid catalytic cracking (FCC) catalysts. The synthesis of zeolite Y is very complicated process. The mean particle size of zeolite Y is 1800 nm. The major challenge of this work involved reducing this average particle size to less than 500 nm. The preliminary experiments were conducted to obtain the pure zeolite Y using the soluble silicates as a silica source. This was achieved by applying the experimental design approach to study the effects of many parameters. The ageing time turned out to be the most significant variable affecting product purity. Based on the preliminary results, a detailed investigation was carried out to determine the effects of silica-alumina precursor preparations on zeolite Y synthesis. Aluminosilicate precursors were prepared by gelling and precipitation of soluble silicate. The as-prepared precursors were used for the hydrothermal synthesis of zeolite Y. The procedure of the precipitation of soluble silicate yielded pure zeolite Y at the conventional synthesis conditions. The extent of purity of zeolite Y depends on the surface areas of aluminosilicate precursors. A novel approach to zeolite Y synthesis was employed for the preparation of the pure nanosized zeolite Y. This was achieved by applying the method of impregnation of precipitated silica. This novel method of impregnation for zeolite Y preparation allows eliminating the vigorous agitation step required for the preparation of a homogeneous silica solution, thereby simplifying the synthesis of zeolite Y in one single vessel. In case of the synthesis of nanosized zeolite Y, the effect of varying the organic templates on the formation of nanosized particles of zeolite Y was investigated, while all other reaction parameters were

  16. Synthesis of ‘unfeasible’ zeolites

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wheatley, Paul S.; Navarro, Marta; Roth, Wieslaw J.; Položij, Miroslav; Mayoral, Alvaro; Eliášová, Pavla; Nachtigall, Petr; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum—why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such ‘unfeasible’ zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.

  17. [What a physician should know about zeolites].

    PubMed

    Boranić, M

    2000-01-01

    Zeolites are natural and synthetic hydrated crystalline aluminosilicates endowed with absorptive and ion exchange properties. They have found numerous and multifarous applications--in industry as catalysts and absorbents, in water sanitation for the removal of ammonia and heavy metals, in agriculture as fertilizers, and in animal husbandry as the absorbents of excreted material and as food additives. Medical applications have included the use in filtration systems for anesthesia or dialysis and as the contrast materials in NMR imaging. Recently, zeolite powders for external use have found application as deodorants, antimycotic agents and wound dressings. Peroral use of encapsulated zeolite powders enriched with vitamins, oligoelements or other ingredients has been claimed to exert beneficial medical effects. Ingestion of zeolites may be considered analogous to the clay eating (geophagia), considered in traditional medicine as a remedy for various illnesses. Being amphoteric, zeolites are partly soluble in acid or alkaline media, but within the physiological pH range the solubility is generally low. Minimal amounts of free aluminium or silicium from the ingested zeolites are resorbed from the gut. The bulk of ingested zeolite probably remains undissolved in the gut. In view of the ion exchange properties, zeolites may be expected to change the ionic content, pH and buffering capacity of the gastrointestinal secretions and to affect the transport through the intestinal epithelium. In addition, zeolites could affect the bacterial flora and the resorption of bacterial products, vitamins and oligoelements. The contact of zeolite particles with gastrointestinal mucosa may elicit the secretion of cytokines with local and systemic actions. Reactive silicium ions might react with biomolecules of the intestinal epithelium, and if resorbed, do so in other cells. Mutagenic and carcinogenic effects of zeolite particles have been described, resembling such effects of asbestos

  18. Zeolitic materials with hierarchical porous structures.

    PubMed

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented.

  19. [Effects of natural zeolite-clinoptilollite on processes of removal of Cs-137 from the rat body].

    PubMed

    Krasnopërova, A P; Lonin, A Iu

    1999-01-01

    The selectivity of natural and synthetic zeolites to 137Cs in experiments in vitro has been investigated. The influence of natural zeolite-clinoptilolite on the dynamics of withdrawal of 137Cs from rats' organism was estimated.

  20. Applications of natural zeolites on agriculture and food production.

    PubMed

    Eroglu, Nazife; Emekci, Mevlut; Athanassiou, Christos

    2017-03-14

    Zeolites are crystalline hydrated aluminosilicates with remarkable physical and chemical properties including losing and receiving water in a reverse way, adsorbing molecules that act as molecular sieves, and replacing their constituent cations without structural change. Commercial production of natural zeolites has accelerated during last fifty years. The Structure Commission of the International Zeolite Association recorded more than 200 zeolites which currently include more than 40 naturally occurring zeolites. Recent findings supported their role in stored-pest management as inert dust applications, pesticide and fertilizer carriers, soil amendments, animal feed additives, mycotoxin binders and food packaging materials. There are many advantages of inert dust application including low cost, non-neurotoxic action, low mammalian toxicity and safety for human consumption. Latest consumer trends and government protocols have shifted toward organic origin materials to replace synthetic chemical products. In the current review, we summarized most of the main uses of zeolites in food and agruculture, with specific paradigms that illustrate their important role.

  1. Zeolite-Based Organic Synthesis (ZeoBOS) of Acortatarin A: First Total Synthesis Based on Native and Metal-Doped Zeolite-Catalyzed Steps.

    PubMed

    Wimmer, Eric; Borghèse, Sophie; Blanc, Aurélien; Bénéteau, Valérie; Pale, Patrick

    2017-01-31

    Similarly to polymer-supported assisted synthesis (PSAS), organic synthesis could be envisaged being performed by using zeolites, native or metal-doped, as heterogeneous catalysts. To illustrate this unprecedented Zeolite-Based Organic Synthesis (ZeoBOS), the total synthesis of acortatarin A was achieved through a novel strategy and using five out of eleven synthetic steps catalyzed by H- or metal-doped zeolites as catalysts. Notably, the formation of an yne-pyrrole intermediate with a copper-doped zeolite and the spiroketalization of an alkyne diol with a silver-doped zeolite have been developed as key steps of the synthesis.

  2. Towards a sustainable manufacture of hierarchical zeolites.

    PubMed

    Verboekend, Danny; Pérez-Ramírez, Javier

    2014-03-01

    Hierarchical zeolites have been established as a superior type of aluminosilicate catalysts compared to their conventional (purely microporous) counterparts. An impressive array of bottom-up and top-down approaches has been developed during the last decade to design and subsequently exploit these exciting materials catalytically. However, the sustainability of the developed synthetic methods has rarely been addressed. This paper highlights important criteria to ensure the ecological and economic viability of the manufacture of hierarchical zeolites. Moreover, by using base leaching as a promising case study, we verify a variety of approaches to increase reactor productivity, recycle waste streams, prevent the combustion of organic compounds, and minimize separation efforts. By reducing their synthetic footprint, hierarchical zeolites are positioned as an integral part of sustainable chemistry.

  3. MERCURY SEPARATION FROM POLLUTANT WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water has been examined at room temperature. Experiments have...

  4. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters.

    PubMed

    Moreno, N; Querol, X; Ayora, C; Pereira, C F; Janssen-Jurkovicová, M

    2001-09-01

    Two pilot plant products containing 65 and 45% NaP1 zeolite were obtained from two Spanish coal fly ashes (Narcea and Teruel Power Station, respectively). The zeolitic product obtained showed a cation exchange capacity (CEC) of 2.7 and 2.0 mequiv/g, respectively. Decontamination tests of three acid mine waters from southwestern Spain were carried out using the zeolite derived from fly ash and commercial synthetic zeolite. The results demonstrate that the zeolitic material could be employed for heavy metal uptake in the water purification process. Doses of 5-30 g of zeolite/L have been applied according on the zeolite species and the heavy metal levels. Moreover, the application of zeolites increases the pH. This causes metal-bearing solid phases to precipitate and enhances the efficiency of the decontamination process.

  5. Synthesis strategies in the search for hierarchical zeolites.

    PubMed

    Serrano, D P; Escola, J M; Pizarro, P

    2013-05-07

    Great interest has arisen in the past years in the development of hierarchical zeolites, having at least two levels of porosities. Hierarchical zeolites show an enhanced accessibility, leading to improved catalytic activity in reactions suffering from steric and/or diffusional limitations. Moreover, the secondary porosity offers an ideal space for the deposition of additional active phases and for functionalization with organic moieties. However, the secondary surface represents a discontinuity of the crystalline framework, with a low connectivity and a high concentration of silanols. Consequently, hierarchical zeolites exhibit a less "zeolitic behaviour" than conventional ones in terms of acidity, hydrophobic/hydrophilic character, confinement effects, shape-selectivity and hydrothermal stability. Nevertheless, this secondary surface is far from being amorphous, which provides hierarchical zeolites with a set of novel features. A wide variety of innovative strategies have been developed for generating a secondary porosity in zeolites. In the present review, the different synthetic routes leading to hierarchical zeolites have been classified into five categories: removal of framework atoms, surfactant-assisted procedures, hard-templating, zeolitization of preformed solids and organosilane-based methods. Significant advances have been achieved recently in several of these alternatives. These include desilication, due to its versatility, dual templating with polyquaternary ammonium surfactants and framework reorganization by treatment with surfactant-containing basic solutions. In the last two cases, the materials so prepared show both mesoscopic ordering and zeolitic lattice planes. Likewise, interesting results have been obtained with the incorporation of different types of organosilanes into the zeolite crystallization gels, taking advantage of their high affinity for silicate and aluminosilicate species. Crystallization of organofunctionalized species favours the

  6. Zeolite catalysis: technology

    SciTech Connect

    Heinemann, H.

    1980-07-01

    Zeolites have been used as catalysts in industry since the early nineteen sixties. The great majority of commercial applications employ one of three zeolite types: zeolite Y; Mordenite; ZSM-5. By far the largest use of zeolites is in catalytic cracking, and to a lesser extent in hydrocracking. This paper reviews the rapid development of zeolite catalysis and its application in industries such as: the production of gasoline by catalytic cracking of petroleum; isomerization of C/sub 5/ and C/sub 6/ paraffin hydrocarbons; alkylation of aromatics with olefins; xylene isomerization; and conversion of methanol to gasoline.

  7. BTEX removal from aqueous solutions by HDTMA-modified Y zeolite.

    PubMed

    Vidal, Carla B; Raulino, Giselle S C; Barros, Allen L; Lima, Ari C A; Ribeiro, Jefferson P; Pires, Marçal J R; Nascimento, Ronaldo F

    2012-12-15

    Various technologies have been used for the treatment and remediation of areas contaminated by BTEX (benzene, toluene, ethylbenzene and xylenes), which are organic compounds that are of particular concern due to their toxicity. Potential applications of synthetic zeolites for environmental fieldwork have also been reported worldwide. In this work, a hexadecyltrimethyl ammonium (HDTMA) surfactant-modified synthetic zeolite was investigated for its efficiency in removing BTEX from aqueous solutions. Three surfactant-modified zeolites were synthesized, with amounts of surfactant corresponding to 50%, 100%, and 200% of the total cation-exchange capacity (CEC) of the synthetic zeolite Y. The results of the BTEX adsorption experiments onto both synthetic zeolite and surfactant-modified zeolites (SMZ) showed that the SMZ-100 (zeolite modified with surfactant levels at 100% of CEC) was the most efficient modified zeolite for BTEX removal. Kinetics studies indicated that the multicomponent adsorption equilibrium was reached within 6 h and followed pseudo-second-order kinetics. The Langmuir, Freundlich, Redlich-Peterson and Temkin models were used to evaluate the BTEX adsorption capacity by SMZ-100. The Temkin model was found to be suitable for all BTEX compounds in a multicomponent system. Regeneration cycles of the modified zeolite were also performed, and the results showed that the adsorbent could be used efficiently in as many as four adsorption cycles, except for benzene.

  8. Protection by clinoptilolite or zeolite NaA against cadmium-induced anemia in growing swine.

    PubMed

    Pond, W G; Yen, J T

    1983-07-01

    Weanling Landrace X Yorkshire swine were fed a basal diet or a diet containing 3% clinoptilolite (a natural zeolite) with or without 150 ppm CdCl2 or 3% zeolite NaA (a synthetic zeolite) with or without 150 ppm CdCl2 for 31 days. Hematocrit and hemoglobin were depressed significantly in animals fed Cd in the absence of zeolites, but not in their presence. Liver Cd concentration was increased dramatically by added dietary Cd but was significantly lower in animals fed clinoptilolite with Cd than in those fed Cd alone (11.4 vs 16.5 ppm). Liver Fe and Zn were decreased by dietary Cd; liver Fe was not affected significantly by clinoptilolite or zeolite NaA, but liver Zn was increased by zeolite NaA. Kidney dry matter, Zn, and Cd concentrations were increased by dietary Cd; neither clinoptilolite nor zeolite NaA affected kidney Cd concentration. Zeolite NaA increased kidney dry matter both in the presence and in the absence of dietary Cd. Plasma urea-N, K, Na, and Mg were unaffected by Cd or by either zeolite. The data illustrate the different effects of dietary clinoptilolite compared with zeolite NaA on blood plasma, liver, and kidney concentrations of minerals and provide evidence that both zeolites offer some protection against Cd-induced Fe-deficiency anemia; the magnitude of this protection and the effects of each zeolite on tissue concentrations of Cd and other materials need further quantification.

  9. Achievement of Bulky Homochirality in Zeolitic Imidazolate-Related Frameworks.

    PubMed

    Wang, Fei; Tang, Yu-Huan; Zhang, Jian

    2015-12-07

    Before this work, adding chiral C centers into zeolitic imidazolate frameworks (ZIFs) has never been realized. Presented here are the first examples on achieving bulky homochirality in ZIF systems, and three homochiral zeolitic imidazolate-related frameworks with sodalite and dia topologies are successfully synthesized by employing enantiopure imidazolate derivatives. The results open a new blueprint on the synthetic design of homochiral ZIFs for future applications.

  10. Zeolite membranes from kaolin

    SciTech Connect

    Karle, B.G.; Brinker, C.J. |; Phillips, M.L.F.

    1996-07-01

    Zeolite films are sought as components of molecular sieve membranes. Different routes used to prepare zeolite composite membranes include growing zeolite layers from gels on porous supports, depositing oriented zeolites on supports, and dispersing zeolites in polymeric membranes. In most cases, it is very difficult to control and avoid the formation of cracks and/or pinholes. The approach to membrane synthesis is based on hydrothermally converting films of layered aluminosilicates into zeolite films. The authors have demonstrated this concept by preparing zeolite A membranes on alumina supports from kaolin films. The authors have optimized the process parameters not only for desired bulk properties, but also for preparing thin (ca. 5 {micro}m), continuous zeolite A films. Scanning electron microscopy shows highly intergrown zeolite A crystals over most of the surface area of the membrane, but gas permeation experiments indicate existence of mesoporous defects and/or intercrystalline gaps. It has been demonstrated that the thickness of the final zeolite A membrane can be controlled by limiting the amount of precursor kaolin present in the membrane.

  11. Antibacterial activity of heavy metal-loaded natural zeolite.

    PubMed

    Hrenovic, Jasna; Milenkovic, Jelena; Ivankovic, Tomislav; Rajic, Nevenka

    2012-01-30

    The antibacterial activity of natural zeolitized tuffs containing 2.60wt.% Cu(2+), 1.47 Zn(2+) or 0.52 Ni(2+) were tested. Antibacterial activities of the zeolites against Escherichia coli and Staphylococcus aureus were tested after 1h and 24h of exposure to 1g of the zeolite in 100mL of three different media, namely Luria Bertani, synthetic wastewater and secondary effluent wastewater. The antibacterial activities of the zeolites in Luria Bertani medium were significantly lower than those in the other media and negatively correlated with the chemical oxygen demand of the media. The Ni-loaded zeolite showed high leaching of Ni(2+) (3.44-9.13wt.% of the Ni(2+) loaded) and weak antibacterial activity in the effluent water. Since Cu-loaded zeolite did not leach Cu(2+) and the leaching of Zn(2+) from Zn-loaded zeolite was low (1.07-1.61wt.% of the Zn(2+) loaded), the strong antibacterial activity classified the Cu- and Zn-loaded zeolite as promising antibacterial materials for disinfection of secondary effluent water.

  12. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms.

    PubMed

    Yao, Aijun; Wang, Yani; Ling, Xiaodan; Chen, Zhe; Tang, Yetao; Qiu, Hao; Ying, Rongrong; Qiu, Rongliang

    2017-04-01

    Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM-EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84-94 % and 38-87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169-1412 % and 436-731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM-EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L(-1) AsO4(2-) or Cd(2+), ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd(2+) as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM

  13. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  14. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  15. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite.

    PubMed

    Shi, Wei-yu; Shao, Hong-bo; Li, Hua; Shao, Ming-an; Du, Sheng

    2009-10-15

    Hazardous heavy metal pollution of soils is an increasingly urgent problem all over the world. The zeolite as a natural amendment has been studied extensively for the remediation of hazardous heavy metal-polluted soils with recycling. But its theory and application dose are not fully clear. This paper reviews the related aspects of theory and application progress for the remediation of hazardous heavy metal-polluted soils by natural zeolite, with special emphasis on single/co-remediation. Based on the comments on hazardous heavy metal behavior characteristics in leaching and rhizosphere and remediation with zeolite for heavy metal-polluted soils, it indicated that the research of rhizosphere should be strengthened. Theory of remediation with natural zeolite could make breakthroughs due to the investigation on synthetic zeolite. Co-remediation with natural zeolite may be applied and studied with more prospect and sustainable recycling.

  16. Understanding Mechanism and Designing Strategies for Sustainable Synthesis of Zeolites: A Personal Story.

    PubMed

    Wang, Yeqing; Xiao, Feng-Shou

    2016-06-01

    Zeolites with intricate micropores have been widely studied for a long time as an important class of porous materials in different areas of industrial processes such as gas adsorption and separation, ion exchange, and shape-selective catalysis. However, their industrial syntheses are not sustainable, and normally require the presence of expensive organic templates and a large amount of solvents such as water. The presence of organic templates not only increases zeolite cost but also produces harmful gases during the removal of these templates by calcination, while the use of solvents significantly increases the amount of polluted water. This Personal Account briefly summarizes recent sustainable routes for the synthesis of zeolites in our group according to our understanding of the synthetic mechanism, and mainly focuses on the organotemplate-free synthesis of zeolites in the presence of zeolite seeds, the design of environmentally friendly templates, and solvent-free synthesis of zeolites.

  17. Zeolites for reforming catalysts

    SciTech Connect

    Kao, J.L.; Nadler, M.; Potter, M.J.; Martir, R.V.

    1991-01-22

    This patent describes a reforming catalyst exhibiting enhanced selectivity, activity, and activity maintenance. It comprises: zeolite crystals having a pH within the range of 9.4 to 10.0, wherein the pH is determined by measuring pH of supernatent liquid from a mixture of one part of the zeolite crystals with ten parts of dionized water by weight, and comprising exchangeable cations and at least one catalytically active metal selected from the group consisting of Group VII of the Periodic Table of Elements, tin and germanium. This patten also describes a process for treating zeolite to have a pH within a range effective in imparting enhanced activity, selectivity and activity maintenance to catalysts loaded onto the zeolite. The process comprising washing zeolite with an aqueous liquid in a manner so as to result with zeolite having a pH within the pH range of 9.4 to 10.0. The PH of supernatent liquid from a mixture of one part of the zeolite crystals with ten parts of dionized water by weight.

  18. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  19. ZEOLITE CHARACTERIZATION TESTING

    SciTech Connect

    Jacobs, W; Herbert Nigg, H

    2007-09-13

    The Savannah River Site isolates tritium from its process streams for eventual recycling. This is done by catalyzing the formation of tritiated water (from process streams) and then sorbing that water on a 3A zeolite (molsieve) bed. The tritium is recovered by regenerating the saturated bed into a Mg-based water cracking unit. The process described has been in use for about 15 years. Recently chloride stress corrosion cracking (SCC) was noted in the system piping. This has resulted in the need to replace the corroded piping and associated molecular sieve beds. The source of chlorine has been debated and one possible source is the zeolite itself. Since new materials are being purchased for recently fabricated beds, a more comprehensive analysis protocol for characterizing zeolite has been developed. Tests on archived samples indicate the potential for mobile chloride species to be generated in the zeolite beds.

  20. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  1. Flexibility of zeolite frameworks

    NASA Astrophysics Data System (ADS)

    Kapko, Vitaliy; Treacy, Michael; Thorpe, Michael

    2009-03-01

    Zeolites are an important class of industrial catalysts because of their large internal surfaces and molecular-sieving properties. Recent geometric simulations (1) show that almost all of the known zeolites can exist without distortion of their tetrahedra within some range of densities, which we call the flexibility window. Within this window, the framework accommodates density changes by rotations about the shared tetrahedral corners. We argue that the presence of a flexibility window can be used as a topological criterion to select potential candidates for synthesis from millions of hypothetical structures. We also investigate the exceptions to the rule, as well as the shape of the flexibility window and the symmetric properties of zeolites inside it. (1) A. Sartbaeva, S.A. Wells, M.M.J. Treacy and M.F. Thorpe The flexibility window in zeolites, Nature Materials 5, 962-965 (2006); I. Rivin, commentary 931-932.

  2. Zeolite A imidazolate frameworks

    NASA Astrophysics Data System (ADS)

    Hayashi, Hideki; Côté, Adrien P.; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M.

    2007-07-01

    Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and β-cages for FAU, α- and β-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated.

  3. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  4. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

    2013-07-09

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  5. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

    2012-11-20

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  6. Preparation of functionalized zeolitic frameworks

    SciTech Connect

    Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

    2014-08-19

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  7. Removal of heavy metals from mine waters by natural zeolites

    SciTech Connect

    Ulla Wingenfelder; Carsten Hansen; Gerhard Furrer; Rainer Schulin

    2005-06-15

    The study investigated the removal of Fe, Pb, Cd, and Zn from synthetic mine waters by a natural zeolite. The emphasis was given to the zeolite's behavior toward a few cations in competition with each other. Pb was removed efficiently from neutral as well as from acidic solutions, whereas the uptake of Zn and Cd decreased with low pH and high iron concentrations. With increasing Ca concentrations in solution, elimination of Zn and Cd became poorer while removal of Pb remained virtually unchanged. The zeolite was stable in acidic solutions. Disintegration was only observed below pH 2.0. Forward- and back-titration of synthetic acidic mine water were carried out in the presence and absence of zeolite to simulate the effects of a pH increase by addition of neutralizing agents and a re-acidification which can be caused by subsequent mixing with acidic water. The pH increase during neutralization causes precipitation of hydrous ferric oxides and decreased dissolved metal concentrations. Zeolite addition further diminished Pb concentrations but did not have an effect on Zn and Cd concentrations in solution. During re-acidification of the solution, remobilization of Pb was weaker in the presence than in the absence of zeolite. No substantial differences were observed for Fe, Cd, and Zn immobilization. The immobilization of the metals during pH increase and the subsequent remobilization caused by re-acidification can be well described by a geochemical equilibrium speciation model that accounts for metal complexation at hydrous ferric oxides, for ion exchange on the zeolite surfaces, as well as for dissolution and precipitation processes. 42 refs., 5 figs., 3 tabs.

  8. Rapid synthesis of beta zeolites

    DOEpatents

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  9. Advances in principal factors influencing carbon dioxide adsorption on zeolites

    PubMed Central

    Bonenfant, Danielle; Kharoune, Mourad; Niquette, Patrick; Mimeault, Murielle; Hausler, Robert

    2008-01-01

    We report the advances in the principal structural and experimental factors that might influence the carbon dioxide (CO2) adsorption on natural and synthetic zeolites. The CO2 adsorption is principally govern by the inclusion of exchangeable cations (countercations) within the cavities of zeolites, which induce basicity and an electric field, two key parameters for CO2 adsorption. More specifically, these two parameters vary with diverse factors including the nature, distribution and number of exchangeable cations. The structure of framework also determines CO2 adsorption on zeolites by influencing the basicity and electric field in their cavities. In fact, the basicity and electric field usually vary inversely with the Si/Al ratio. Furthermore, the CO2 adsorption might be limited by the size of pores within zeolites and by the carbonates formation during the CO2 chemisorption. The polarity of molecules adsorbed on zeolites represents a very important factor that influences their interaction with the electric field. The adsorbates that have the most great quadrupole moment such as the CO2, might interact strongly with the electric field of zeolites and this favors their adsorption. The pressure, temperature and presence of water seem to be the most important experimental conditions that influence the adsorption of CO2. The CO2 adsorption increases with the gas phase pressure and decreases with the rise of temperature. The presence of water significantly decreases adsorption capacity of cationic zeolites by decreasing strength and heterogeneity of the electric field and by favoring the formation of bicarbonates. The optimization of the zeolites structural characteristics and the experimental conditions might enhance substantially their CO2 adsorption capacity and thereby might give rise to the excellent adsorbents that may be used to capturing the industrial emissions of CO2. PMID:27877925

  10. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  11. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  12. Biogas cleaning and upgrading with natural zeolites from tuffs.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process.

  13. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  14. Zeolites and Catalysis

    DTIC Science & Technology

    1999-12-15

    financial together as shown in the top line of Fig. 1, the market size (not in terms of tonnage) with an cubo-octahedron, also referred to as a sodalite ...various zeolite structures derive. If This review will cover the basic principles of sodalite units are connected via their hexagonal faces zeolite... Sodalite Unit 0.57 nm x’.1nm ZS - 0 .56 nm --- x 0.53 nm Si0 4 /2 - or -~ ~ IZSM-50.5n A10 dra - Silicalite-1 x 0.51 nm Tetrahedra X Pentasil Unit 0.45 nmx

  15. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  16. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment.

    PubMed

    Cardoso, Ariela M; Horn, Martha B; Ferret, Lizete S; Azevedo, Carla M N; Pires, Marçal

    2015-04-28

    Several researchers have reported zeolite synthesis using coal ash for a wide range of applications. However, little attention has been given to green processes, including moderate synthesis conditions, using waste as raw material and effluent reuse or reduction. In this study, Brazilian coal fly ashes were used for integrated synthesis of zeolites 4A and Na-P1 by two different routes and under moderate operating conditions (temperature and pressure). Both procedures produced zeolites with similar conversions (zeolite 4A at 82% purity and zeolite Na-P1 at 57-61%) and high CEC values (zeolites 4A: 4.5meqCa(2+)g(-1) and zeolites Na-P1: 2.6-2.8meqNH4(+)g(-1)). However, process 1 generated less effluent for the zeolite mass produced (7mLg(-1)), with low residual Si and Al levels and 74% of the Si available in the coal fly ash incorporated into the zeolite, while only 55% is used in process 2. For use as a builder in detergents, synthetic zeolite 4A exhibited conformity parameters equal to or greater than those of the commercial zeolite adopted as reference. Treatment of swine wastewater with zeolite Na-P1 resulted in a high removal capacity for total ammoniacal nitrogen (31mgg(-1)).

  17. Ultrasonic and conventional synthesis of NaA zeolite from rice husk ash

    NASA Astrophysics Data System (ADS)

    Farías, T.; de Ménorval, LC; Picazo, O.; Jordán, R.

    2017-01-01

    In the present work, a simple synthetic route for the production of single phase NaA zeolite is demonstrated. Rice husk ash (RHA) as alternative silica source was employed for the synthesis by conventional hydrothermal and non-conventional ultrasound methods. The zeolite was also synthesized using commercially available silicate for comparison. The effect of the reaction time (2, 4 and 6 h) at a fixed temperature of 70 °C was investigated. The elemental, structural and morphological characterization of the ashes and the synthesized zeolites was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TG/DSC).

  18. Maximizing ammonium nitrogen removal from solution using different zeolites.

    PubMed

    Penn, Chad J; Warren, Jason G; Smith, Savannah

    2010-01-01

    Zeolite minerals are ideal for removing ammonium nitrogen (NH4(+)-N) from animal wastes, leachates, and industrial effluents. The objectives of this study were to compare NH4+ removal and kinetics among several commercially available zeolites under various conditions and determine if calorimetry could provide information regarding kinetics of NH4+ removal. Ammonium sorption onto potassium (K) saturated zeolites was compared using synthetic vs. natural swine effluent and with either traditional batch-shaken system or a "tea bag" approach in which zeolites were contained in a mesh sack and suspended in a solution of swine effluent. Ammonium sorption was measured at four retention times using a flow-through system, and the resulting heat response was measured using isothermal calorimetry. Ammonium removal was not significantly different in synthetic vs. natural swine effluent. Ammonium removal was lower in batch-stirred compared to batch-shaken systems, suggesting that diffusion between particles was rate-limiting in the former system. Flow-through cells possessing contact times > 100 s displayed greater NH4+ sorption than batch systems, suggesting that maintaining high NH4+ concentration in solution, removal of exchange products, and sufficient reaction time are critical to maximizing NH4+ removal by zeolites. Within 100 s after NH4+ addition, endothermic heat responses indicated that NH4(+)-K+ exchange had peaked; this was followed by significant heat rate reduction for 50 min. This confirmed findings of an initial fast NH4(+)-K+ exchange followed by a slower one and suggests the 100-s period of rapid reaction is an indicator of the minimum flow through retention time required to optimize NH4+ sorption to zeolites used in this study.

  19. Ion exchangers in radioactive waste management: natural Iranian zeolites.

    PubMed

    Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K

    2006-01-01

    Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.

  20. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  1. Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates.

    PubMed Central

    Fach, Estelle; Waldman, W James; Williams, Marshall; Long, John; Meister, Richard K; Dutta, Prabir K

    2002-01-01

    Environmental and/or occupational exposure to minerals, metals, and fibers can cause lung diseases that may develop years after exposure to the agents. The presence of toxic fibers such as asbestos in the environment plus the continuing development of new mineral or vitreous fibers requires a better understanding of the specific physical and chemical features of fibers/particles responsible for bioactivity. Toward that goal, we have tested aluminosilicate zeolites to establish biological and chemical structure-function correlations. Zeolites have known crystal structure, are subject to experimental manipulation, and can be synthesized and controlled to produce particles of selected size and shape. Naturally occurring zeolites include forms whose biological activity is reported to range from highly pathogenic (erionite) to essentially benign (mordenite). Thus, we used naturally occurring erionite and mordenite as well as an extensively studied synthetic zeolite based on faujasite (zeolite Y). Bioactivity was evaluated using lung macrophages of rat origin (cell line NR8383). Our objective was to quantitatively determine the biological response upon interaction of the test particulates/fibers with lung macrophages and to evaluate the efficacy of surface iron on the zeolites to promote the Fenton reaction. The biological assessment included measurement of the reactive oxygen species by flow cytometry and chemiluminescence techniques upon phagocytosis of the minerals. The chemical assessment included measuring the hydroxyl radicals generated from hydrogen peroxide by iron bound to the zeolite particles and fibers (Fenton reaction). Chromatography as well as absorption spectroscopy were used to quantitate the hydroxyl radicals. We found that upon exposure to the same mass of a specific type of particulate, the oxidative burst increased with decreasing particle size, but remained relatively independent of zeolite composition. On the other hand, the Fenton reaction

  2. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability

    NASA Astrophysics Data System (ADS)

    Tavolaro, Palmira; Catalano, Silvia; Martino, Guglielmo; Tavolaro, Adalgisa

    2016-09-01

    The design, preparation and selection of inorganic materials useful as functional scaffolds for cell adhesion is a complex question based both on the understanding of the chemical behavior of the materials and individual cells, and on their interactions. Pure zeolite membranes formed from synthetic crystals offer chemically-capable being modulated silanolic surfaces that are amenable to adhesion and growth of fibroblasts. We report the facile preparation of reusable, very longlasting, biocompatible, easily sterilized synthetic scaffolds in a zeolite membrane configuration, which are very stable in aqueous media (apart from ionic strength and pH values), able to adsorb pollutant species and to confine undesired toxic ions (present in culture media). This may ultimately lead to the development of cell supports for economic antibiotic-free culture media.

  3. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  4. Removal of methylene blue by two zeolites prepared from naturally occurring Egyptian kaolin as cost effective technique

    NASA Astrophysics Data System (ADS)

    Jamil, Tarek S.; Abdel Ghafar, Hany H.; Ibrahim, Hanan S.; Abd El-Maksoud, Islam H.

    2011-10-01

    The optimum condition as well as adsorption behavior of two zeolite types prepared from Egyptian kaolin (namely, zeolite A and zeolite X) with methylene blue (MB) are demonstrated in this study. This will be a step to remove such dyes from textile as well as dying industries. MB removal was investigated using synthetic solutions at initial concentrations 15 mg/L of MB at constant temperature and pH (25 ± 0.1 °C and 7.5 ± 0.2) respectively. The removal efficiency was determined at different contact times and different zeolite doses. The optimum contact times for the removal of MB were 60 min and 75 min for zeolite X and zeolite A, respectively. 0.6 g was the optimum dose for removal of MB with both zeolite types. The batch method has been employed, using MB concentration in solution ranging from 2 to 25 mg /L. The percentage removal and distribution coefficients ( Kd) were determined for the adsorption system as a function of sorbate concentration. The isothermal models investigated in this study show that adsorption ratios of MB on both zeolites match to Langmuir and Freundlich equation adding to that every equation constant has been calculated. According to the equilibrium studies, adsorption of zeolite X in higher concentrations is much better than that of zeolite A. Dublin-Kaganer-Radushkevich (DKR) shows physisorption endothermic adsorption process for both zeolites and also linear correlation of Redlich-Peterson and Tekman isothermal models were proved. These results show that zeolites prepared from naturally abundant Egyptian kaolin hold great potential to remove dying materials such as MB from wastewater. This will encourage using such low cost technique in removal of dyes from industrial wastewater.

  5. Zeolite membrane application in hydrocarbon processing

    SciTech Connect

    Suzuki, H.

    1988-06-01

    Zeolites are of great importance in hydrocarbon processing either as adsorbents or catalysts. This paper presents a research since 1973 about the transformation of zeolite into membrane zeolite, that dramatically contributes to the free world of peace and prosperity. Commercial and organic membranes are of two categories: anisotropic membrane, e.g. cellulose acetate, and composite membrane, e.g. plasma {und in}-{und situ} polymerization on polysulfone support. Zeolite membrane belongs to the latter category, zeolite {und in}-{und situ} hydrothermalization on porous glass. Basically zeolite membrane is consisted of three groups: (1) eight-oxygen ring window, zeolite A, (2) ten-oxygen ring window, Pentasil, and (3) twelve-oxygen ring window, Faujasite. The technology of zeolite membrane synthesis and subsequent treatment is almost transferred from the one applied to powder zeolites. Zeolite membrane is expected to play a major role in the field of hydrocarbon processing, that is, PSA, Distillation/Extraction, and Catalytic Reactions.

  6. Potential of sustainable hierarchical zeolites in the valorization of α-pinene.

    PubMed

    Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F

    2015-04-13

    In the valorization of α-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of α-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential.

  7. Understanding the dissolution of zeolites.

    PubMed

    Hartman, Ryan L; Fogler, H Scott

    2007-05-08

    Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum

  8. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  9. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications.

    PubMed

    Ivanova, Irina I; Knyazeva, Elena E

    2013-05-07

    The review covers the recent developments in the field of novel micro-mesoporous materials obtained by zeolite recrystallization. The materials are classified into three distinctly different groups depending on the degree of recrystallization: (i) coated mesoporous zeolites (RZEO-1); (ii) micro-mesoporous nanocomposites (RZEO-2); and (iii) mesoporous materials with zeolitic fragments in the walls (RZEO-3). The first part of the review is focused on the analysis of the synthetic strategies leading to different types of recrystallized materials. In the second part, a comprehensive view on their structure, texture and porosity in connection with acidic and diffusion properties is given. The last part is devoted to the catalytic applications of recrystallized materials. The advantages and disadvantages with respect to pure micro- and mesoporous molecular sieves and other hierarchical zeolites are critically analyzed and the future opportunities and perspectives are discussed.

  10. Effect of the Si/Al ratio and of the zeolite structure on the performance of dealuminated zeolites for the reforming of hydrocarbon mixtures

    SciTech Connect

    Smirniotis, P.G.; Zhang, W.

    1996-09-01

    Various 12-membered ring pore zeolites were employed for the reforming of synthetic hydrocarbon mixtures which simulate industrial naphthas. All the zeolites were dealuminated to various extents. It was found that, under the present conditions over the samples which are slightly dealuminated, bimolecular-condensation reactions followed by recracking are responsible for the relatively large selectivities of C{sub 4} paraffins. The monomolecular cracking (via pentacoordinated carbonium ions) of the latter hydrocarbons is responsible for the large generation of CH{sub 4} from the cracking of C{sub 4} paraffins. When the Si/Al ratio increases, the selectivity of methane passes through a steep minimum, while those of C{sub 3}, C{sub 4}, and C{sub 5} pass through a maximum. It was also found that the zeolite pore structure is a very important factor for the time on stream activity of zeolite-based catalysts. Zeolites with reduced aluminum content and pore structures, which do not favor the formation of coke precursors in their cavities, can lead to very promising catalysts for acid-catalyzed reactions. From this study a 12-membered ring pore zeolite, which demonstrates minimal coke deactivation, was identified.

  11. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix.

  12. Laser control of zeolite nucleation.

    PubMed

    Navarro, Marta; Mayoral, Alvaro; Mateo, Ester; Lahoz, Ruth; de la Fuente, Germán F; Coronas, Joaquín

    2012-02-01

    Precursor solutions for the synthesis of zeolites are irradiated by means of a Nd-YAG laser. These solutions are subsequently submitted to a hydrothermal treatment and the results analyzed by X-ray diffraction and electron microscopy. Laser irradiation promotes the formation of silica nanoparticles that nucleate into zeolite (silicalite-1), following a hydrothermal treatment. The average crystal size (in the 0.6-3.6 μm range) of the zeolite exponentially decreases as a function of laser irradiation time. In addition, a longer irradiation time results in a narrower crystal size distribution.

  13. Purification of metal electroplating waste waters using zeolites.

    PubMed

    Alvarez-Ayuso, E; García-Sánchez, A; Querol, X

    2003-12-01

    The sorption behaviour of natural (clinoptilolite) and synthetic (NaP1) zeolites has been studied with respect to Cr(III), Ni(II), Zn(II), Cu(II) and Cd(II) in order to consider its application to purify metal finishing waste waters. The batch method has been employed using metal concentrations in solution ranged from 10 to 200 mg/l and solid/liquid ratios ranged from 2.5 to 10 g/l. The Langmuir model was found to describe well all sorption processes, allowing to establish metal sorption sequences from which the main retention mechanism involved for each metal has been inferred. Synthetic zeolite exhibited about 10 times greater sorption capacities (b(Cr)=0.838 mmol/g, b(Ni)=0.342 mmol/g, b(Zn)=0.499 mmol/g, b(Cu)=0.795 mmol/g, b(Cd)=0.452 mmol/g) than natural zeolite (b(Cr)=0.079 mmol/g, b(Ni)=0.034 mmol/g, b(Zn)=0.053 mmol/g, b(Cu)=0.093 mmol/g, b(Cd)=0.041 mmol/g), appearing, therefore, as most suitable to perform metal waste water purification processes. This mineral showed the same high sorption capacity values when used in the purification of metal electroplating waste waters.

  14. Zeolite micropattern for biological applications.

    PubMed

    Sun, Wenqing; Lam, Koon Fung; Wong, Ling Wai; Yeung, King Lun

    2005-10-21

    A facile method was established using composition-gradient pattern on zeolite surface to guide the deposition and formation of chemical and biomolecular patterns with features as small as five microns.

  15. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  16. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  17. Template-free nanosized faujasite-type zeolites

    NASA Astrophysics Data System (ADS)

    Awala, Hussein; Gilson, Jean-Pierre; Retoux, Richard; Boullay, Philippe; Goupil, Jean-Michel; Valtchev, Valentin; Mintova, Svetlana

    2015-04-01

    Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm3 g-1) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

  18. Application of zeolites for radium removal from mine water.

    PubMed

    Chałupnik, Stanisław; Franus, Wojciech; Wysocka, Małgorzata; Gzyl, Grzegorz

    2013-11-01

    For removal of radium from saline waters in Upper Silesian mines, several methods of purification have been developed. The most efficient one is based on application of barium chloride, which was implemented in full technical scale in two Polish coal mines several years ago. Very good results of purification have been achieved-the removal efficiency exceeding 95% of the initial activity. Another possibility for the removal of different ions from salty waters and brines is the application of zeolites. We found that technique as a very promising method for removal of not only radium isotopes from mine waters but also other ions (barium, iron, manganese). Treatment of several various water samples has been done to assess the removal efficiency for natural radionuclides. Preliminary results show very good effects for radium isotopes as well as for barium ions. In the paper, a short description of laboratory results of the purification of mine waters with application of synthetic zeolites is presented.

  19. Synthesis and characterization of zeolites prepared from industrial fly ash.

    PubMed

    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata

    2014-09-01

    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol · dm(-3) NaOH + 0.4 dm(3) of 3 mol · dm(-3) NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2) · g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2) · g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq · g(-1), Na-P1 at 0.72 meq · g(-1), and sodalite at 0.56 meq · g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination.

  20. Adsorption properties of zeolites synthesized from coal fly ash for Cu (II).

    PubMed

    Song, Huiping; Cheng, Huaigang; Zhang, Zepeng; Cheng, Fangqin

    2014-09-01

    This study explored the hydrothermal synthesis of zeolites in a homogeneous reactor using coal fly ash (CFA) as a raw material via a two-step method at normal pressure. Fourier transform infrared spectroscopy and X-ray powder diffraction analysis showed that the synthetic products has the basic structural unit of microporous zeolite molecular sieves, and consiste of zeolite 4A and zeolite X. The ability of zeolites synthesized from CFAto adsorb Cu(ll) was studied. The optimal conditions for adsorption were as follows: pH 5 and dosage of modified CFA 4g l(-1). The isothermal adsorption of zeolites of Cu(ll) showed that the maximum adsorption quantity ranged from 69.44 (at 20 degrees C) to 140.85 mg g(-1) (at 50 degrees C). Adsorption kinetics analysis showed that chemical adsorption was the rate-controlling step. Apparent activation energy data, however, showed that the process of adsorption of Cu(II) had the features of physical adsorption. Thus, the adsorption process included both chemical and physical adsorption.

  1. The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents.

    PubMed

    Damjanović, Ljiljana; Rakić, Vesna; Rac, Vladislav; Stošić, Dušan; Auroux, Aline

    2010-12-15

    This work reports results on phenol adsorption from aqueous solutions on synthetic BEA (β) and MFI (ZSM-5) zeolites, studied by heat-flow microcalorimetry. For the sake of comparison, the adsorption was performed on activated carbon, a solid customarily used for removal of phenol from water. The obtained values of heats evolved during phenol adsorption indicate the heterogeneity of active sites present on the investigated systems for the adsorption of phenol. In addition, the amounts of adsorbed pollutant were determined and presented in the form of adsorption isotherms, which were interpreted using Langmuir, Freundlich, Dubinin-Astakov and Sips' equations. The latter was found to express high level of agreement with experimental data. The results obtained in this work reveal that the adsorption of phenol on zeolites depends on both Si/Al ratio and on the pore size. Hydrophobic zeolites that possess higher contents of Si show higher affinities for phenol adsorption. Among investigated zeolites, zeolite β possesses the highest capacity for adsorption of phenol. The possibility of regeneration of used adsorbents was investigated by thermal desorption technique. It has been shown that in the case of β zeolite the majority of adsorbed phenol is easily released in the low temperature region.

  2. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite.

    PubMed

    Wang, Yifei; Lin, Feng

    2009-07-30

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100g respectively, which are greatly higher than that of the natural zeolite (97 meq/100g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca(2+)>K(+)>Mg(2+).

  3. The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments.

    PubMed

    Ates, Ayten; Hardacre, Christopher

    2012-04-15

    Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5M NH(4)NO(3)) and acid leaching using 1M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH(3)-TPD and TGA. Ion-exchange with NH(4)(+) of natural zeolites results in the exchange of the Na(+) and Ca(2+) cations and the partial exchange of the Fe(3+) and Mg(2+) cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation.

  4. Zeolite in horizontal permeable reactive barriers for artificial groundwater recharge

    NASA Astrophysics Data System (ADS)

    Leal, María; Martínez-Hernández, Virtudes; Lillo, Javier; Meffe, Raffaella; de Bustamante, Irene

    2013-04-01

    The Spanish Water Reuse Royal Decree 1620/2007 considers groundwater recharge as a feasible use of reclaimed water. To achieve the water quality established in the above-mentioned legislation, a tertiary wastewater treatment is required. In this context, the infiltration of effluents generated by secondary wastewater treatments through a Horizontal Permeable Reactive Barrier (HPRB) may represent a suitable regeneration technology. Some nutrients (phosphate and ammonium) and some Pharmaceutical and Personal Care Products (PPCPs) are not fully removed in conventional wastewater treatment plants. To avoid groundwater contamination when effluents of wastewater treatments plants are used in artificial recharge activities, these contaminants have to be removed. Due to its sorption capacities, zeolite is among the most used reactive materials in Permeable Reactive Barrier (PRB). Therefore, the main goal of this study is to evaluate the zeolite retention effectiveness of nutrients and PPCPs occurring in treated wastewater. Batch sorption experiments using synthetic wastewater (SWW) and zeolite were performed. A 1:4 zeolite/SWW ratio was selected due to the high sorption capacity of the reactive material.The assays were carried out by triplicate. All the bottles containing the SWW-zeolite mixture were placed on a mechanical shaker during 24 hours at 140 rpm and 25 °C. Ammonium and phosphate, as main nutrients, and a group of PPCPs were selected as compounds to be tested during the experiments. Nutrients were analyzed by ion chromatography. For PPCPs determination, Solid Phase Extraction (SPE) was applied before their analysis by liquid chromatography-mass spectrometry time of flight (LC-MS/ TOF). The experimental data were fitted to linearized Langmuir and Freundlich isotherm equations to obtain sorption parameters. In general, Freundlich model shows a greater capability of reproducing experimental data. To our knowledge, sorption of the investigated compounds on zeolite

  5. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity.

    PubMed

    Schwieger, Wilhelm; Machoke, Albert Gonche; Weissenberger, Tobias; Inayat, Amer; Selvam, Thangaraj; Klumpp, Michael; Inayat, Alexandra

    2016-06-13

    'Hierarchy' is a property which can be attributed to a manifold of different immaterial systems, such as ideas, items and organisations or material ones like biological systems within living organisms or artificial, man-made constructions. The property 'hierarchy' is mainly characterised by a certain ordering of individual elements relative to each other, often in combination with a certain degree of branching. Especially mass-flow related systems in the natural environment feature special hierarchically branched patterns. This review is a survey into the world of hierarchical systems with special focus on hierarchically porous zeolite materials. A classification of hierarchical porosity is proposed based on the flow distribution pattern within the respective pore systems. In addition, this review might serve as a toolbox providing several synthetic and post-synthetic strategies to prepare zeolitic or zeolite containing material with tailored hierarchical porosity. Very often, such strategies with their underlying principles were developed for improving the performance of the final materials in different technical applications like adsorptive or catalytic processes. In the present review, besides on the hierarchically porous all-zeolite material, special focus is laid on the preparation of zeolitic composite materials with hierarchical porosity capable to face the demands of industrial application.

  6. Influence of starting zeolite on synthesis of RUT type zeolite by interzeolite conversion method

    NASA Astrophysics Data System (ADS)

    Itakura, Masaya; Ota, Kai; Shibata, Shohei; Inoue, Takayuki; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

    2011-01-01

    In this study, hydrothermal conversions of *BEA and FAU type zeolites using various structure-directing agents were carried out. Highly crystalline and pure RUT type zeolites were obtained from both zeolites in the presence of tetramethylammonium hydroxide. There were no major differences between the characteristics of the RUT type zeolites obtained from the two starting zeolites. However, the Si/Al ratio and the crystallization rate of the RUT type zeolites were strongly dependent on both the framework structure and the Si/Al ratio of the starting zeolite. That is, the crystallization rate of the RUT type zeolite from the *BEA type zeolite did not depend on the Si/Al ratio of the starting *BEA type zeolite, whereas the crystallization rate of the RUT type zeolite from the FAU type zeolite was dependent on the Si/Al ratio of the starting FAU type zeolite. This suggests that the chemical structure and the concentration of locally ordered aluminosilicate species produced by the decomposition/dissolution of the starting zeolite can be altered by changing the framework structure of the zeolite.

  7. Gas-phase adsorption in dealuminated natural clinoptilolite and liquid-phase adsorption in commercial DAY zeolite and modified ammonium Y zeolite

    NASA Astrophysics Data System (ADS)

    Costa Hernandez, Alba Nydia

    The adsorption of Carbon Dioxide (CO2) is a very important tool for the material characterization. On the other hand, in separation and recovery technology, the adsorption of the CO2 is important to reduce the concentration of this gas considered as one of the greenhouse gases. Natural zeolites, particularly clinoptilolite, are widely applied to eliminate some pollutants from the environment. One of the goals of this research is to study the structure, composition and morphology of one natural clinoptilolite dealuminated with ammonium hexafluorosilicate (AHFi) and with orthophosphoric acid (H3PO4). Each modified sample was characterized using X-ray Diffraction (XRD), Carbon Dioxide adsorption at 0° C, Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDAX). In addition, the surface chemistry of the modified clinoptilolites was analyzed with Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). The adsorption measurements were also used to study of the interaction of CO2 molecule within the adsorption space of these modified clinoptilolites. It was concluded that one of the modified clinoptilolites, (CSW-HFSi-0.1M), showed a great quality as adsorbent and as catalytic comparable to commercial synthetic zeolites. As far as we know, the modification of clinoptilolite with HFSi to improve their adsorption properties had not been previously attempted. In the second part of this dissertation, the dynamic adsorption of three isomers of nitrophenols using as adsorbent a commercial DAY zeolite was investigated. Also, the dynamic adsorption of methanol in a less hydrophobic zeolite, Ammonium Y Zeolite was investigated. The obtained breakthrough curves showed that the commercial DAY zeolite could be a suitable adsorbent to the liquid-phase adsorption of the phenolic compounds. Notwithstanding the modified ammonium Y zeolite had a low Si/Al ratio (less hydrophobic) than commercial DAY zeolite; this

  8. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  9. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  10. Zeolite membranes: microstructure characterization and permeation mechanisms.

    PubMed

    Yu, Miao; Noble, Richard D; Falconer, John L

    2011-11-15

    Since their first synthesis in the 1940s, zeolites have found wide applications in catalysis, ion-exchange, and adsorption. Although the uniform, molecular-size pores of zeolites and their excellent thermal and chemical stability suggest that zeolites could be an ideal membrane material, continuous polycrystalline zeolite layers for separations were first prepared in the 1990s. Initial attempts to grow continuous zeolite layers on porous supports by in situ hydrothermal synthesis have resulted in membranes with the potential to separate molecules based on differences in molecular size and adsorption strength. Since then, further synthesis efforts have led to the preparation of many types of zeolite membranes and better quality membranes. However, the microstructure features of these membranes, such as defect size, number, and distribution as well as structure flexibility were poorly understood, and the fundamental mechanisms of permeation (adsorption and diffusion), especially for mixtures, were not clear. These gaps in understanding have hindered the design and control of separation processes using zeolite membranes. In this Account, we describe our efforts to characterize microstructures of zeolite membranes and to understand the fundamental adsorption and diffusion behavior of permeating solutes. This Account will focus on the MFI membranes which have been the most widely used but will also present results on other types of zeolite membranes. Using permeation, x-ray diffraction, and optical measurements, we found that the zeolite membrane structures are flexible. The size of defects changed due to adsorption and with variations in temperature. These changes in defect sizes can significantly affect the permeation properties of the membranes. We designed methods to measure mixture adsorption in zeolite crystals from the liquid phase, pure component adsorption in zeolite membranes, and diffusion through zeolite membranes. We hope that better understanding can lead

  11. New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features

    NASA Astrophysics Data System (ADS)

    Muir, Barbara; Matusik, Jakub; Bajda, Tomasz

    2016-01-01

    The area of zeolites' application could be expanded by utilizing their surfaces. Zeolites are frequently modified to increase their hydrophobicity and to generate the negative charge of the surface. The main objective of the study was to investigate and compare the features of natural clinoptilolite and synthetic zeolite Na-P1 modified by selected surfactants involving quaternary ammonium salts. The FTIR study indicates that with increasing carbon chain length in the surfactant attached to the zeolites surface the molecules adopt a more disordered structure. FTIR was also used to determine the efficiency of surface modification. Thermal analysis revealed that the presence of surfactant results in additional exothermic effects associated with the breaking of electrostatic bonds between zeolites and surfactants. The mass losses are in line with ECEC and CHN data. The textural study indicates that the synthetic zeolite Na-P1 has better sorption properties than natural clinoptilolite. The modification process always reduces the SBET and porosity of the material. With an increasing carbon chain length of surfactants all the texture parameters decrease.

  12. Chemical interactions in multimetal/zeolite catalysts

    SciTech Connect

    Sachtler, W.M.H.

    1992-12-21

    Research is proposed on two groups of zeolite based catalysts that contain two transition elements. In one group both metals are fully reduced, in the other group one element is left as a positive ion; it can act as a chemical anchor'', or as a catalyst promoter for the reduced metal. The objective is to explore the potential of such materials for designing superior catalysts for synthesis and conversion of hydrocarbons and other energy carriers. ENDOR, EXAFS, CO-FTIR and TPD will be used to identify the interaction of Mn[sup 2+] ions with Rh[sub n] particles in the same zeolite cage. EXAFS at the Kedge of Fe and Pd, FTIR and Moessbauer spectroscopy will be used to characterize Fe ions and alloyed Fe atoms in PdFe/NaHY. The catalysts will be probed with CO hydrogenation and conversion of hydrocarbons. Methods Which proved successful in our study of Y supported bimetal systems will be applied to identify the state of Pt and Cu in ZSM-5, a catalyst system holding large promise for NO abatement, even in the presence of oxygen.

  13. Parameters influencing zeolite incorporation in PDMS membranes

    SciTech Connect

    Vankelecom, I.F.J.; Scheppers, E.; Heus, R.; Uytterhoeven, J.B. )

    1994-11-24

    The incorporation of several types of zeolite in PDMS membranes is studied, by measuring the tensile strength, xylene sorption, and density of the membranes. The zeolite is shown to be involved in the cross-linking of the membrane. The interaction between the PDMS matrix and the zeolites results in reinforced membranes in the case of zeolite Y. The parameters influencing the dispersion of the zeolite in the membrane are investigated, as well as several aspects of the preparation method. Finally, the idea of cross-linking is applied to explain the results of water/ethanol pervaporation. 25 refs., 9 figs., 4 tabs.

  14. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports.

    PubMed

    Ge, Qinqin; Wang, Zhengbao; Yan, Yushan

    2009-12-02

    We report a new strategy: use of polymer-zeolite composite hollow fibers as supports. Zeolite membranes with high performance (flux = 8.0-9.0 kg m(-2) h(-1), alpha >10 000) can be synthesized directly on polymer-zeolite composite hollow fiber supports by a single in situ hydrothermal crystallization. The zeolite crystals imbedded in the polymer hollow fiber serve as seeds for the zeolite membrane growth, and they also "anchor" the zeolite membrane to the support to increase the adhesion of the zeolite membrane. Therefore, a separate and often complex seeding process can be omitted. A very uniform crystal distribution can be obtained easily, so continuous zeolite membranes can be prepared with high reproducibility. These composite hollow fibers can be produced simply by blending zeolite crystals into the polymer feed before the hollow fiber extrusion and thus are expected to be inexpensive.

  15. Arsenate removal from water by an alumina-modified zeolite recovered from fly ash.

    PubMed

    Qiu, Wei; Zheng, Ying

    2007-09-30

    A cancrinite-type zeolite was synthesized from Class C fly ash by molten-salt method. The product (ZFA) was used as the adsorbent for the arsenate removal from water. The adsorption equilibriums of arsenate are investigated on various adsorbents. ZFA showed a higher adsorption capacity (5.1 mg g(-1)) than activated carbon (4.0 mg g(-1)), silica gel (0.46 mg g(-1)), zeolite NaY (1.4 mg g(-1)), and zeolite 5A (4.1 mg g(-1)). The relatively higher adsorption capacity of ZFA than zeolite NaY and 5A was attributed to the low Si/Al ratio and the mesoporous secondary pore structure of ZFA. However, it was found that the adsorption capacity of zeolites were generally lower than activated alumina (16.6 mg g(-1)), which is ascribed to the small pores in zeolite frameworks. The adsorption capacity of ZFA was significantly improved after loaded by alumina via a wet-impregnation method. The modified ZFA (ZFA-Al(50)) with the optimum alumina loading showed an adsorption capacity of 34.5 mg g(-1), which was 2.1 times higher than activated alumina. The Toxicity Characteristic Leaching Procedure (TCLP) leachability tests indicated that the spent ZFA and alumina-modified ZFA complied with the EPA regulations for safe disposal.

  16. Experimental comparison of adsorption characteristics of silica gel and zeolite in moist air

    NASA Astrophysics Data System (ADS)

    Xin, F.; Yuan, Z. X.; Wang, W. C.; Du, C. X.

    2017-02-01

    In this work, the macro adsorption characteristic of water vapor by the allochroic silica gel and the zeolite 5A and ZSM-5 were investigated experimentally. BET analysis method presented the difference of the porosity, the micro pore volume, and the specific surface area of the material. The dynamic and the equilibrium characteristics of the sample were measured thermo-gravimetrically in the moist air. In general, the ZSM-5 zeolite showed an inferior feature of the adsorption speed and the equilibrium concentration to the others. By comparison to the result of SAPO-34 zeolite in the open literature, the 5A zeolite showed some superiorities of the adsorption. The equilibrium concentration of the ZSM-5 zeolite was higher than that of the SAPO-34 calcined in the nitrogen, whereas it was lower than that calcined in the air. The adsorption isotherm was correlated and the relation of the isotherm to the microstructure of the material was discussed. With more mesopore volume involved, the zeolite presented an S-shaped isotherm in contrast to the exponential isotherm of the silica gel. In addition, the significance of the S-shaped isotherm for the application in adsorption heat pump has also been addressed.

  17. Nanocrystalline Zeolite Y: Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Taufiqurrahmi, Niken; Rahman Mohamed, Abdul; Bhatia, Subhash

    2011-02-01

    Nanocrystalline zeolite has received significant attention in the catalysis community. Zeolites with a crystal size smaller than 100 nm are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. Zeolite FAU type Y is one of the most studied framework of all zeolites, and has been used as catalysts for number of reactions in the refinery and petrochemical industry. The present paper covers the synthesis of nanocrystalline zeolite Y under hydrothermal conditions from clear synthesis mixtures. The crystal size of zeolite Y is influenced by temperature, aging time, alkalinity, and water content. The synthesized Y is characterized by X-ray diffraction (XRD), Fourier Transmission Infrared Sprectroscopy (FTIR), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM) and Nitrogen Adsorption.

  18. Enhanced selectivity of zeolites by controlled carbon deposition

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  19. Synthesis of highly selective zeolite topology molecular sieve for adsorption of benzene gas

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Chen, Yunlin; Zhang, Baoping; Zu, Zhinan

    2013-02-01

    Shangdong fly ash (SFA), Fangshan fly ash (FFA) and Heilongjiang fly ash (HFA) were selected as the raw materials to be used for synthesis of highly selective zeolite topology molecular sieve. Twice foaming method was studied in terms of synthetic zeolite. The experimental products were characterized by means of X-ray fluorescence (XRF), scanning electron microscope (SEM), X-ray diffraction (XRD), and automated surface area & pore size analyser. The results indicated that 10 M NaOH was chosen as modification experiment condition to process SFA. Crystallization temperature and time were 140 °C and 8 h, respectively. Zeolite topology molecular sieve was prepared with Si/Al molar ratio of 7.9, and its adsorption ratio of benzene gas was up to 66.51%.

  20. La roca magica: Uses of natural zeolites in agriculture and industry

    PubMed Central

    Mumpton, Frederick A.

    1999-01-01

    For nearly 200 years since their discovery in 1756, geologists considered the zeolite minerals to occur as fairly large crystals in the vugs and cavities of basalts and other traprock formations. Here, they were prized by mineral collectors, but their small abundance and polymineralic nature defied commercial exploitation. As the synthetic zeolite (molecular sieve) business began to take hold in the late 1950s, huge beds of zeolite-rich sediments, formed by the alteration of volcanic ash (glass) in lake and marine waters, were discovered in the western United States and elsewhere in the world. These beds were found to contain as much as 95% of a single zeolite; they were generally flat-lying and easily mined by surface methods. The properties of these low-cost natural materials mimicked those of many of their synthetic counterparts, and considerable effort has made since that time to develop applications for them based on their unique adsorption, cation-exchange, dehydration–rehydration, and catalytic properties. Natural zeolites (i.e., those found in volcanogenic sedimentary rocks) have been and are being used as building stone, as lightweight aggregate and pozzolans in cements and concretes, as filler in paper, in the take-up of Cs and Sr from nuclear waste and fallout, as soil amendments in agronomy and horticulture, in the removal of ammonia from municipal, industrial, and agricultural waste and drinking waters, as energy exchangers in solar refrigerators, as dietary supplements in animal diets, as consumer deodorizers, in pet litters, in taking up ammonia from animal manures, and as ammonia filters in kidney-dialysis units. From their use in construction during Roman times, to their role as hydroponic (zeoponic) substrate for growing plants on space missions, to their recent success in the healing of cuts and wounds, natural zeolites are now considered to be full-fledged mineral commodities, the use of which promise to expand even more in the future. PMID

  1. La roca magica: uses of natural zeolites in agriculture and industry.

    PubMed

    Mumpton, F A

    1999-03-30

    For nearly 200 years since their discovery in 1756, geologists considered the zeolite minerals to occur as fairly large crystals in the vugs and cavities of basalts and other traprock formations. Here, they were prized by mineral collectors, but their small abundance and polymineralic nature defied commercial exploitation. As the synthetic zeolite (molecular sieve) business began to take hold in the late 1950s, huge beds of zeolite-rich sediments, formed by the alteration of volcanic ash (glass) in lake and marine waters, were discovered in the western United States and elsewhere in the world. These beds were found to contain as much as 95% of a single zeolite; they were generally flat-lying and easily mined by surface methods. The properties of these low-cost natural materials mimicked those of many of their synthetic counterparts, and considerable effort has made since that time to develop applications for them based on their unique adsorption, cation-exchange, dehydration-rehydration, and catalytic properties. Natural zeolites (i.e., those found in volcanogenic sedimentary rocks) have been and are being used as building stone, as lightweight aggregate and pozzolans in cements and concretes, as filler in paper, in the take-up of Cs and Sr from nuclear waste and fallout, as soil amendments in agronomy and horticulture, in the removal of ammonia from municipal, industrial, and agricultural waste and drinking waters, as energy exchangers in solar refrigerators, as dietary supplements in animal diets, as consumer deodorizers, in pet litters, in taking up ammonia from animal manures, and as ammonia filters in kidney-dialysis units. From their use in construction during Roman times, to their role as hydroponic (zeoponic) substrate for growing plants on space missions, to their recent success in the healing of cuts and wounds, natural zeolites are now considered to be full-fledged mineral commodities, the use of which promise to expand even more in the future.

  2. Changes in the Vibrational Spectra of Zeolites Due to Sorption of Heavy Metal Cations

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.; Barczyk, K.; Bajda, T.; Kozanecki, M.

    2013-11-01

    This work presents the results of spectroscopic (MIR and Raman) studies of zeolite structures after immobilization of heavy metal cations from aqueous solutions. The sorption of Ag+, Cu2+, Cd2+, Pb2+, Zn2+, and Cr3+ ions has been conducted on zeolites belonging to different structural groups, i.e., sodium forms of natural chabazite, mordenite, ferrierite, and clinoptilolite, as well as on synthetic zeolite Y. Systematic changes in intensities and positions of the bands corresponding to the characteristic ring vibrations have been observed in the measured spectra. The most visible changes are observed in the FT-IR spectra of the samples in the range of 850-450 cm-1, and in the Raman spectra in the range of 600-250 cm-1. Depending on the zeolite structure, the bands, which can be regarded as a kind of indicator of ion exchange, were indentifi ed. For example, in the case of IR spectra, these bands are at 766, 703, 648, 578, and 506 cm-1 for zeolite Y, at 733 and 560 cm-1 for mordenite, at 675 cm-1 for clinoptilolite, etc. The degree of changes depends on both the type of cation and its concentration in the initial solution. This is connected with the way of binding of metal ions to the zeolite aluminosilicate framework, i.e., a proportion of the ion exchange and chemisorption in the process. Cations mainly undergoing ion exchange, such as Cd2+ or Pb2+, have the greatest impact on the character of the spectra. On the other hand, Cr3+ ions practically do not modify the spectra of zeolites. Results of IR and Raman spectroscopic studies have been compared with those obtained by atomic absorption spectroscopy (AAS), from which the proportion of ion exchange to chemisorption in the process and the effective cation exchange capacity of the individual samples have been estimated.

  3. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  4. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research.

  5. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  6. Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites.

    PubMed

    Figueiredo, Hugo; Quintelas, Cristina

    2014-06-15

    This review aims to present a global view of the efforts conducted to convert zeolites into efficient supports for the removal of heavy metal oxyanions. Despite lacking affinity for these species, due to inherent charge repulsion between zeolite framework and anionic species, zeolites have still received considerable attention from the scientific community, since their versatility allowed tailoring them to answer specific requirements. Different processes for the removal and recovery of toxic metals based on zeolites have been presented. These processes resort to modification of the zeolite surface to allow direct adsorption of oxyanions, or by combination with reducing agents for oxyanions that allow ion-exchange with the converted species by the zeolite itself. In order to testify zeolite versatility, as well as covering the wide array of physicochemical constraints that oxyanions offer, chromium and arsenic oxyanions were selected as model compounds for a review of treatment/remediation strategies, based on zeolite modification.

  7. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds

    NASA Astrophysics Data System (ADS)

    Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru

    2016-12-01

    The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future.

  8. Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions.

    PubMed

    Sprynskyy, Myroslav; Lebedynets, Mariya; Terzyk, Artur P; Kowalczyk, Piotr; Namieśnik, Jacek; Buszewski, Bogusław

    2005-04-15

    The scope of this study is ammonium-ion uptake from synthetic aqueous solutions onto raw and pretreated forms of the natural zeolite Transcarpathian clinoptilolite under dynamic conditions. Hydrogen ions displaced exchangeable cations on the clinoptilolite in distilled water (sodium ions) and hydrochloric acid (sodium, potassium, and calcium ions) and destroyed the zeolite framework structure in the last case. Ammonium uptake onto the zeolite occurs by exchange with Na(+), Ca(2+), and K(+) ions. Although Na(+) ions were observed to be more easily exchanged for both hydrogen and ammonium ions, the role of Ca(2+) ions increased with zeolite saturation by NH(+)(4) ions. The maximum sorption capacity of the clinoptilolite toward NH(+)(4) ions, estimated under dynamic conditions, is significantly higher than that measured under static conditions; proximity of the values of a distribution coefficient and a retardation factor for different conditions (215-265 dm(3)/kg and 979-1107, respectively) allows us to use these parameters to model ammonium uptake onto the clinoptilolite. Slowing down or interruption in filtration resulted in the improvement of ammonium sorption properties of the zeolite. The ammonium removal improves with use of the finer fractions of the clinoptilolite up to 0.35 mm. A recycling study results confirmed the importance of external diffusion for ammonium sorption by the clinoptilolite. Preliminary treatment of the sorbent confirmed the predominant importance of the ion-exchange mechanism. The advantage of prior NaCl treatment of the clinoptilolite in improvement of ammonium removal over the other techniques was shown.

  9. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite.

    PubMed

    Greer, Heather; Wheatley, Paul S; Ashbrook, Sharon E; Morris, Russell E; Zhou, Wuzong

    2009-12-16

    Microstructural analysis of the early stage crystal growth of zeolite A in hydrothermal synthetic conditions revealed a revised crystal growth route from surface to core in the presence of the biopolymer chitosan. The mechanism of this extraordinary crystal growth route is discussed. In the first stage, the precursor and biopolymer aggregated into amorphous spherical particles. Crystallization occurred on the surface of these spheres, forming the typical cubic morphology associated with zeolite A with a very thin crystalline cubic shell and an amorphous core. With a surface-to-core extension of crystallization, sodalite nanoplates were crystallized within the amorphous cores of these zeolite A cubes, most likely due to an increase of pressure. These sodalite nanoplates increased in size, breaking the cubic shells of zeolite A in the process, leading to the phase transformation from zeolite A to sodalite via an Ostwald ripening process. Characterization of specimens was performed using scanning electron microscopy and transmission electron microscopy, supported by other techniques including X-ray diffraction, solid-state NMR, and N(2) adsorption/desorption.

  10. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds

    PubMed Central

    Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823

  11. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment.

    PubMed

    Wang, Shaobin; Li, Huiting; Xie, Sujuan; Liu, Shenglin; Xu, Longya

    2006-09-01

    Natural zeolite and synthetic zeolite, MCM-22, were employed as effective adsorbents for a basic dye, methylene blue, removal from wastewater. Two methods, Fenton oxidation and high temperature combustion, have been used for regeneration of used materials. It is found that MCM-22 exhibits equilibrium adsorption at 1.7 x 10(-4) mol g(-1), much higher than the adsorption of natural zeolite (5 x 10(-5) mol g(-1)) at initial dye concentration of 2.7 x 10(-5)M and 30 degrees C. Solution pH will affect the adsorption behaviour of MCM-22. Higher solution pH results in higher adsorption capacity. The regenerated adsorbents show different capacity depending on regeneration technique. Physical regeneration by high temperature combustion will be better than chemical regeneration using Fenton oxidation in producing effective adsorbents. Regeneration of MCM-22 by high temperature treatment can make the adsorbent exhibit comparable or superior adsorption capacity as compared to the fresh sample depending on the temperature and time. The optimal temperature and time will be 540 degrees C and 1h. The Fenton oxidation will recover 60% adsorption capacity. For natural zeolite, regeneration can not fully recover the adsorption capacity with the two techniques and the regenerated natural zeolites by the two techniques are similar, showing 60% adsorption capacity of fresh sample. Kinetic studies indicate that the adsorption follows pseudo-second-order kinetics.

  12. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    PubMed

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions.

  13. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    PubMed Central

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions. PMID:27413787

  14. High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx.

    PubMed

    Martín, Nuria; Moliner, Manuel; Corma, Avelino

    2015-06-21

    The synthesis of chabazite with high solid yields is achieved by the rational combination of directing effects of a source of Si and Al coming from USY zeolites and the inexpensive tetraethylammonium. Moreover, Cu-CHA materials prepared by post-synthetic and "one-pot" methodologies show high activity and stability for SCR of NOx.

  15. Mesoporosity--a new dimension for zeolites.

    PubMed

    Möller, Karin; Bein, Thomas

    2013-05-07

    Frameworks of precisely defined pores with diameters matching the size of small molecules endow crystalline zeolites with valuable size- and shape-selectivity. Being important selective adsorbers and separators, zeolites are also indispensable as solid acids in size-selective catalysis. However, despite being extremely beneficial, micropores impose restrictions on the mass transport of reactants, especially when bulky molecules are involved. The prospect to boost the catalytic power of zeolites and to extend their applications into new areas has prompted numerous efforts to synthesize mesoporous zeolitic materials that combine diffusional pathways on two different size scales. Our tutorial review will introduce the reader to this exciting recent development in zeolite science. We will give a general overview of the diverse strategies on how to implement a secondary pore system in zeolites. We will distinguish top-down from bottom-up and template-assisted from 'template-free' procedures. Advantages and limitations of the different methods will also be addressed.

  16. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  17. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption

    PubMed Central

    Markou, Giorgos; Depraetere, Orily; Vandamme, Dries; Muylaert, Koenraad

    2015-01-01

    In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15–1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%–20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control. PMID:25690037

  18. Cultivation of Chlorella vulgaris and Arthrospira platensis with recovered phosphorus from wastewater by means of zeolite sorption.

    PubMed

    Markou, Giorgos; Depraetere, Orily; Vandamme, Dries; Muylaert, Koenraad

    2015-02-16

    In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15-1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%-20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control.

  19. A short introduction to the new principle of binding ration calcium with sodium zeolite.

    PubMed

    Jørgensen, R J; Bjerrum, M J; Classen, H; Thilsing-Hansen, T

    2003-01-01

    This paper summarise the development of the new principle of preventing parturient hypocalcaemia by reducing the bioavailability of ration calcium with calcium binders, based on the idea that a negative calcium balance would stimulate natural defence mechanisms against threatening hypocalcaemia. Synthetic sodium zeolite was selected as a first choice among the many calcium binders available commercially, such as polyphosphates, citrate, EDTA and it derivatives. Testing was done on non-pregnant rumen fistulated cows in the first place, followed by cows in late lactation. Encouraged by the tendencies seen in these animals, the final proof of concept was done on pregnant dry cows fed a supplement of synthetic sodium zeolite A from 4 weeks before expected calving until calving. By analysis of blood calcium levels, this supplementation was shown to have a stabilizing effect during the critical period shortly after calving.

  20. FT-IR Spectroscopic Study of 1,3-Diaminopropane Adsorbed on Type A, X and Y Zeolites

    NASA Astrophysics Data System (ADS)

    Öztürk, Nuri; Bahçeli, Semiha

    2006-08-01

    The IR spectra of 1,3-diaminopropane adsorbed on NaA (type 4A), CaA (type 5A), NaX (type 13X) and NaY zeolites are reported. From the IR spectral data it can easily be stated that the characteristic NH vibration bands of aliphatic amine groups play an important role in the adsorptions of 1,3-diaminopropane on the mentioned zeolites.

  1. SYNTHETIC OIL,

    DTIC Science & Technology

    The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

  2. Selenium clusters in zeolites -- theory.

    NASA Astrophysics Data System (ADS)

    Demkov, Alex; Sankey, Otto

    1997-03-01

    We investigate theoretically atomic geometries, energetics and electronic properties of Se clusters in cages and channels of the zeolites Linde A and cancrinite, and compare them with the properties of the bulk Se phases. Such regular 3D arrays of nanosize clusters supported by a host crystalline matrix are known as supralattices (A.A. Demkov, and O.F. Sankey, Chem. Mater. 8), 1793 (1996). Host zeolite frameworks are transparent, and the presence of Se gives rise to electronic cluster-like states in the energy gap region of the host material. We find that the encapsulation causes structural changes in the cluster geometry which alter its electronic structure, we call this a ``pressure'' effect. In addition, the quantum confinement further changes these states upon the encapsulation. We discuss the relative importance of these two effects, and compare our calculations with the recent experimental work ( Y. Nozue, et al.), J. Phys.: Condens. Matter. 2, 5209 (1990).

  3. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  4. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  5. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  6. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  7. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  8. Equilibrium CO2 adsorption on zeolite 13X prepared from natural clays

    NASA Astrophysics Data System (ADS)

    Garshasbi, Vahid; Jahangiri, Mansour; Anbia, Mansoor

    2017-01-01

    Zeolite 13X was successfully synthesized by hydrothermal treatment using natural clays extracted from Iranian resources. The preliminary natural materials and the final zeolite 13X samples were characterized by X-ray Diffraction (XRD), Fourier-Transfer Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM) and N2 adsorption-desorption isotherm. The effects of various factors such as NaOH addition amount and aging time on the crystalline products were studied during the synthesis process. The optimum conditions related to the synthesis of zeolite 13X were set. Accordingly, NaOH concentration was equal to 4 M. It was further crystallized at 65 °C for 72 h after its homogenization by agitation at room temperature for 120 h. In this study, the zeolite 13X prepared from natural kaolin (13X-K) showed a high BET surface area of 591 m2/g with higher micropore volume (0.250 cm3/g) than other materials. Adsorption equilibrium isotherms of CO2 were investigated using a static, volumetric method. In addition, pressures for the pure component data extended up to 20 bar. The adsorption equilibrium data of CO2 was fitted to Langmuir, Freundlich, Lamgmuir-Freundlich, Toth and BET isotherm models. It was found that the Langmuir-Freundlich model was more suitable than other models for CO2 description. The results showed that the synthetic zeolite has higher equilibrium selectivity for CO2. Also, the CO2 uptake by zeolite 13X-K was equal to 6.9 mmol/g.

  9. Cooperative Assembly of 3-Ring-Based Zeolite-Type Metal-Organic Frameworks and Johnson-Type Dodecahedra

    PubMed Central

    Zheng, Shou-Tian; Zuo, Fan; Wu, Tao; Irfanoglu, Burcin; Chou, Chengtsung; Nieto, Ruben A.; Feng, Pingyun

    2015-01-01

    Two birds with one stone One synthetic strategy led to the preparation of both 3-ring-based zeolite-type metal-organic frameworks (NPO-type) and Johnson-type metal-organic polyhedra. The strategy is based on the cooperative assembly of 4-connected indium nodes with two symmetry-complementary ligands (one serves to generate 3-rings and the other crosslinks 3-rings). Photocatalytic H2 production experiments demonstrated these NPO-zeolite compounds behave as semiconductors and exhibit photocatalytic activity for the generation of dihydrogen from water under ultraviolet irradiation. PMID:21328654

  10. The Zeolite Deposit of Hekimhan in the Malatya Basin

    NASA Astrophysics Data System (ADS)

    Önal, Mehmet; Depci, Tolga; Ceylan, Cigdem; Kizilkaya, Nilgun

    2016-10-01

    Zeolite deposits in the Malatya Basin which is formed of the Yüksekova Group were investigated in the present study. The zeolites were occurred in the two layers: the lower zeolite layer and the upper zeolite layer of the Sankiz Formation of Campanian-Maastrichtian age within the flysch like sediments at Hekimhan in the northern part of the Malatya Basin. Characterization studies of the zeolite samples were done by XRF, XRD and SEM images and the results showed that the main structures of the zeolites were clinoptilolite-(Cs), heulandite and calcite and the geological occurrences of zeolite is in marine environments.

  11. Aspects of physiological effects of sodium zeolite A supplementation in dry, non-pregnant dairy cows fed grass silage.

    PubMed

    Enemark, J M; Frandsen, A M; Thilsing-Hansen, T; Jørgensen, R J

    2003-01-01

    The objective of the present study was to monitor serum and urine biochemical changes in dairy cows during and after oral administration of a synthetic sodium aluminium-silicate (zeolite A). A prospective longitudinal study involving four non-pregnant and non-lactating cows was chosen. Cows were randomly allocated to either a control or experimental group. The period of observation was three weeks. During the first week (period 1) cows were maintained on basic ration for the purpose of recording baseline values. During the second week (period 2) control cows were fed a basic diet (grass silage), while cows in the experimental group were fed the basic diet and supplemented with 1 kg zeolite pellets once daily. During the third week (period 3) both groups were fed the basic ration only and observed for any persistent effects after zeolite withdraw. Daily sampling included blood and urine. Selected physiological parameters were compared between groups during period 2 and 3, whereas mean values from period 1, 2 and 3 were compared within the groups. Zeolite supplementation revealed a significant influence on calcium homeostasis. A slight decrease in serum Ca and in renal excretion of calcium was observed in the experimental group at initiation of supplementation, whereas an increment in these parameters was recorded after withdrawal of zeolite supplementation. It is assumed, that zeolite caused a reduction in the availability of dietary calcium during supplementation, which possibly elicited an activation of calcium mobilisation. The influence of zeolite on calcium homeostasis was not evident from monitoring serum concentration of calcium regulating hormones (PTH, 1,25(OH)2D3, 25(OH)VitD) or renal excretion of markers of bone resorption. Enhanced active intestinal calcium absorption and bone resorption was therefore considered insignificant in the calcium mobilisation under the conditions of this experiment. The origin of the increased amount of Ca, which was observed

  12. Salt-thermal zeolitization of fly ash.

    PubMed

    Choi, C L; Park, M; Lee, D H; Kim, I E; Park, B Y; Choi, J

    2001-07-01

    The molten-salt method has been recently proposed as a new approach to zeolitization of fly ash. Unlike the hydrothermal method, this method employs salt mixtures as the reaction medium without any addition of water. In this study, systematic investigation has been conducted on zeolitization of fly ash in a NaOH-NaNO3 system in order to elucidate the mechanism of zeolite formation and to achieve its optimization. Zeolitization of fly ash was conducted by thermally treating a powder mixture of fly ash, NaOH, and NaNO3. Zeolitization of fly ash took place above 200 degrees C, a temperature lower than the melting points of salt and base in the NaOH-NaNO3 system. However, it was uncertain whether the reactions took place in a local molten state or in a solid state. Therefore, the proposed method is renamed the "salt-thermal" method rather than the "molten-salt" method. Mainly because of difficulty in mobility of components in salt mixtures, zeolitization seems to occur within a local reaction system. In situ rearrangement of activated components seems to lead to zeolite formation. Particle growth, rather than crystal growth through agglomeration, resulted in no distinct morphologies of zeolite phases. Following are the optimal zeolitization conditions of the salt-thermal method: temperature, 250-350 degrees C; time, 3-12 h; weight ratio of NaOH/NaNO3, 0.3-0.5; weight ratio of NaNO3/fly ash, 0.7-1.4. Therefore, it is clear from this work that the salt-thermal method could be applied to massive zeolitization of fly ash as a new alternative method for recycling this waste.

  13. MFI-type (ZSM-5) zeolite-filled TiO2 nanotubes for enhanced photocatalytic activity.

    PubMed

    Paramasivam, I; Avhale, A; Inayat, A; Bösmann, A; Schmuki, P; Schwieger, W

    2009-06-03

    The present work demonstrates enhanced photocatalytic activity for zeolite-filled TiO2 nanotubes. ZSM-5 zeolite nanocrystals were grown on and into a TiO2 nanotubular skeleton (TiNT/ZSM-5) by multi-step hydrothermal synthesis consisting of in situ seeding and multiple in situ crystallization (MISC). The resulting zeolite nanocrystals were in the range of a few nanometers and they adhere well to the nanotubular inner walls. After crystallization, the photocatalytic activity of this zeolite-filled nanotube catalyst system was compared with neat anatase TiO2 nanotube (TiNT) and with calcined ZSM-5 powder. The results show for TiNT/ZSM-5 a highly enhanced efficiency for the decomposition of acetophenone (used as an aromatic model organic pollutant).

  14. A top-down methodology for ultrafast tuning of nanosized zeolites.

    PubMed

    Liu, Zhendong; Nomura, Naoki; Nishioka, Daisuke; Hotta, Yuusuke; Matsuo, Takeshi; Oshima, Kazunori; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Kohara, Shinji; Takewaki, Takahiko; Okubo, Tatsuya; Wakihara, Toru

    2015-08-14

    We herein present a top-down methodology to prepare nanosized zeolites with tunable size by combining post-synthesis milling and fast recrystallization of several minutes (10 min for SSZ-13 and 5 min for AlPO4-5). A continuous-flow recrystallization process is demonstrated to further enhance the overall product efficiency.

  15. Synthetic multicellularity.

    PubMed

    Maharbiz, Michel M

    2012-12-01

    The ability to synthesize biological constructs on the scale of the organisms we observe unaided is probably one of the more outlandish, yet recurring, dreams humans have had since they began to modify genes. This review brings together recent developments in synthetic biology, cell and developmental biology, computation, and technological development to provide context and direction for the engineering of rudimentary, autonomous multicellular ensembles.

  16. Synthetic DNA

    PubMed Central

    O’ Driscoll, Aisling; Sleator, Roy D.

    2013-01-01

    With world wide data predicted to exceed 40 trillion gigabytes by 2020, big data storage is a very real and escalating problem. Herein, we discuss the utility of synthetic DNA as a robust and eco-friendly archival data storage solution of the future. PMID:23514938

  17. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  18. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  19. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.

    PubMed

    Dapsens, Pierre Y; Mondelli, Cecilia; Pérez-Ramírez, Javier

    2013-05-01

    Desilication of commercial MFI-type (ZSM-5) zeolites in solutions of alkali metal hydroxides is demonstrated to generate highly selective heterogeneous catalysts for the aqueous-phase isomerization of biobased dihydroxyacetone (DHA) to lactic acid (LA). The best hierarchical ZSM-5 sample attains a LA selectivity exceeding 90 %, which is comparable to that of the state-of-the-art catalyst (i.e., the Sn-beta zeolite); this optimized hierarchical catalyst is recyclable over three runs. The Lewis acid sites, which are created through desilication along with the introduction of mesoporosity, are shown to play a crucial role in the formation of the desired product; these cannot be achieved by using other post-synthetic methods, such as steaming or impregnation of aluminum species. Desilication of other metallosilicates, such as Ga-MFI, also leads to high LA selectivity. In the presence of a soluble aluminum source, such as aluminum nitrate, alkaline-assisted alumination can introduce these unique Lewis acid centers in all-silica MFI zeolites. These findings highlight the potential of zeolites in the field of biomass-to-chemical conversion, and expand the applicability of desilication for the generation of selective catalytic centers.

  20. Adsorptive process design for the separation of hexane isomers using zeolites.

    PubMed

    Luna-Triguero, A; Gómez-Álvarez, P; Calero, S

    2017-02-15

    The product of catalytic isomerization is a mixture of linear and branched hydrocarbons that are in thermodynamic equilibrium, and their separation becomes necessary in the petrochemical industry. Zeolite 5A is usually industrially used to sieve alkane isomers, but its pore size allows only the separation of linear alkanes from the monobranched and dibranched alkanes by a kinetic mechanism. A more efficient approach to improve the average research octane number would be to adsorptively separate the di-methyl alkanes as products and recycle both the linear and mono-methyl alkanes to the isomerization reactor. Since the microscopic processes of adsorbates in zeolites are generally difficult or impossible to determine by experiments, especially in the case of mixtures, molecular simulation represents an attractive alternative. In this computational study, we propose a conceptual separation process for hexane isomers consisting of several adsorptive steps. Different zeolite topologies were examined for their ability to conduct this separation based on adsorption equilibrium and kinetics.

  1. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks.

    PubMed

    Phan, Anh; Doonan, Christian J; Uribe-Romo, Fernando J; Knobler, Carolyn B; O'Keeffe, Michael; Yaghi, Omar M

    2010-01-19

    Zeolites are one of humanity's most important synthetic products. These aluminosilicate-based materials represent a large segment of the global economy. Indeed, the value of zeolites used in petroleum refining as catalysts and in detergents as water softeners is estimated at $350 billion per year. A major current goal in zeolite chemistry is to create a structure in which metal ions and functionalizable organic units make up an integral part of the framework. Such a structure, by virtue of the flexibility with which metal ions and organic moieties can be varied, is viewed as a key to further improving zeolite properties and accessing new applications. Recently, it was recognized that the Si-O-Si preferred angle in zeolites (145 degrees ) is coincident with that of the bridging angle in the M-Im-M fragment (where M is Zn or Co and Im is imidazolate), and therefore it should be possible to make new zeolitic imidazolate frameworks (ZIFs) with topologies based on those of tetrahedral zeolites. This idea was successful and proved to be quite fruitful; within the last 5 years over 90 new ZIF structures have been reported. The recent application of high-throughput synthesis and characterization of ZIFs has expanded this structure space significantly: it is now possible to make ZIFs with topologies previously unknown in zeolites, in addition to mimicking known structures. In this Account, we describe the general preparation of crystalline ZIFs, discussing the methods that have been developed to create and analyze the variety of materials afforded. We include a comprehensive list of all known ZIFs, including structure, topology, and pore metrics. We also examine how complexity might be introduced into new structures, highlighting how link-link interactions might be exploited to effect particular cage sizes, create polarity variations between pores, or adjust framework robustness, for example. The chemical and thermal stability of ZIFs permit many applications, such as the

  2. Zeolites on Mars: Prospects for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

    1985-01-01

    The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

  3. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Sineva, L. V.; Asalieva, E. Yu; Mordkovich, V. Z.

    2015-11-01

    The review deals with the specifics of the Fischer-Tropsch synthesis for the one-stage syncrude production from CO and H2 in the presence of cobalt-zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer-Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer-Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references.

  4. Effect of metal loading processes on the stability and thermal transformation of Co{sup 2+}- and Cu{sup 2+}-zeolite Y prepared from Egyptian kaolin

    SciTech Connect

    EL-Mekkawi, Doaa M. Selim, Mohamed M.

    2012-07-15

    This paper aims to assess the effect of the transition metals (TM) loading procedure on the incorporation of Co{sup 2+} and Cu{sup 2+} in zeolite Y, and their relevance to stability of the zeolite, particularly with respect to the thermal transformation to the spinel phases. In this work, zeolite Y prepared from Egyptian kaolin was used. XRF, XRD, TEM, UV/visible absorption measurements, and atomic absorption analyses in addition to the visual observations are recorded. XRF has been used to investigate the materials composition. TEM and XRD indicate the presence of nanoparticle spinel upon the calcination of the TM-zeolites at 1000 Degree-Sign C. In addition to spinel particles, XRD shows the formation of metal oxides, SiO{sub 2} and alumino-silicate phases. According to the transition metal and the cation loading process, different phases were detected. UV/visible absorption measurements and the visual observations are used to determine the experimental condition of the highest spinel content. It has been noticed that the experimental conditions of the metal sorption processes greatly affect the phase transformation. Stability and thermal transformation of zeolite depend on the initial concentration of the transition cation solutions and the number of loading cycles. - Highlights: Black-Right-Pointing-Pointer We study the effects of loading procedure in the incorporation of TM in zeolite Y. Black-Right-Pointing-Pointer Synthetic zeolite Y prepared from Egyptian kaolin has been used. Black-Right-Pointing-Pointer The type of TM affects the stability and thermal transformation of zeolite. Black-Right-Pointing-Pointer Loading processes affect the stability and thermal transformation of zeolite.

  5. Ammonia removal from wastewaters using natural Australian zeolite. 1: Characterization of the zeolite

    SciTech Connect

    Cooney, E.L.; Booker, N.A.; Shallcross, D.C.; Stevens, G.W.

    1999-09-01

    This study considered the potential of a natural Australian zeolite, clinoptilolite, to remove ammonium from water. Ammonium-exchange capacity and rates of adsorption are critical to the assessment of the feasibility of the zeolite for application to continuous wastewater treatment. A laboratory study was undertaken, using pure solutions, to investigate the equilibria and kinetic characteristics of ammonium exchange in the zeolite. Binary equilibrium experiments provided information on the adsorption characteristics of the zeolite in terms of ammonia capacity at varying solution concentrations. These experiments also revealed that the highest ammonium removal efficiency was achieved when the zeolite`s exchange sites were converted to the sodium form. Multicomponent equilibrium experiments were carried out to determine the effects of competing cations on the ammonium-exchange capacity of the zeolite. The laboratory study indicated the zeolite`s selectivity for ammonium ions over other cations typically present in sewage (calcium, magnesium, and potassium), and provided information relevant to the design and operation of a continuous process.

  6. Copper-Exchanged Zeolite L Traps Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Seshan, Panchalam K.

    1991-01-01

    Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

  7. Preparation and characterization of zeolitic membrane

    SciTech Connect

    Shuanshi Fan; Chunhua Li; Jinqu Wang

    1994-12-31

    Zeolites with less than 10 {angstrom} pores are desirable membrane materials, due to their crystallinity, resistance to high temperature, and chemical inertness. Although several works have been done on them, zeolitic membranes have not been developed so perfect at present. In this paper, the authors reported the preparation and some properties of an asymmetric zeolitic membrane synthesized by hydrothermal process on the intermediate layer which was made on a porous ceramic support, meanwhile the results of separation of ethanol-water mixture on pervaporation were discussed.

  8. Quantification of 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5), a newly synthetized P-glycoprotein inducer/activator, in biological samples: method development and validation.

    PubMed

    Ferreira, Ana Filipa; Ponte, Filipa; Silva, Renata; Rocha-Pereira, Carolina; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remião, Fernando

    2017-02-01

    A simple, rapid and economical method was developed and validated for the analysis and quantification of 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5), a P-glycoprotein inducer/activator, in biological samples, using reverse-phase high-performance liquid chromatography (HPLC). A C18 column and a mobile phase composed of methanol-water (90/10, v/v) with 1% (v/v) triethylamine, at a flow rate of 1 mL/min, were used for chromatographic separation. TX5 standards (0.5-150 μm) were prepared in human serum. Methanol was used for TX5 extraction and serum protein precipitation. After filtration, samples were injected into the HPLC apparatus and TX5 was quantified by a conventional UV detector at 255 nm. The TX5 retention time was 13 min in this isocratic system. The method was validated according to ICH guidelines for specificity/selectivity, linearity, accuracy, precision, limits of detection and quantification (LOD and LOQ) and recovery. The method was proved to be selective, as there were no interferences of endogenous compounds with the same retention time of TX5. Also, the developed method was linear (r(2)  ≥ 0.99) for TX5 concentrations between 0.5 and 150 μm and the LOD and LOQ were 0.08 and 0.23 μm, respectively. The results indicated that the reported method could meet the requirements for TX5 analysis in the trace amounts expected to be present in biological samples.

  9. Tetraethylenepentamine embedded zeolite A for carbon dioxide adsorption.

    PubMed

    Kim, Young-Ki; Mo, Yong-Hwan; Lee, Jun; You, Hyo-Sang; Yi, Chang-Keun; Park, Young Cheol; Park, Sang-Eon

    2013-04-01

    Tetraethylenepentamine (TEPA) embedded zeolite A crystals were synthesized by using TEPA and the preformed zeolite A precursor under the microwave irradiation. The presence of TEPA in zeolite A crystal was confirmed by TG analysis and FTIR, Raman spectra. The CO2 adsorptive behavior of TEPA embedded zeolite A samples was investigated by CO2 isotherms measured at 25 degrees C comparing with zeolite A. The optimum CO2 sorption capacity was found in the case of 7.5% TEPA embedded zeolite A, which showed 3.75 mmol g(-1) where as the zeolite A showed less CO2 adsorption capacity of 2.88 mmol g(-1). The adsorption capacity of TEPA embedded Zeolite A was sustained up to 90% during 4 cycles of temperature swing adsorption (TSA) from 40 degrees C to 140 degrees C, indicating that the TEPA embedded Zeolite A was found to be useful as one of the application to solid amine adsorbent for CO2.

  10. Synthetic chromosomes.

    PubMed

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes.

  11. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...lubricants for use at both low and high temperatures, because of their desirable combinations of properties and potentially good availability. Adipic ...azelaic, and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols

  12. Factors affecting drug adsorption on beta zeolites.

    PubMed

    Pasti, Luisa; Sarti, Elena; Cavazzini, Alberto; Marchetti, Nicola; Dondi, Francesco; Martucci, Annalisa

    2013-05-01

    The adsorption behaviour of three commonly used drugs, namely ketoprofen, hydrochlorothiazide and atenolol, from diluted aqueous solutions on beta zeolites with different SiO2/Al2O3 ratio (i.e. 25, 38 and 360) was investigated by changing the ionic strength and the pH, before and after thermal treatment of the adsorbents. The selective adsorption of drugs was confirmed by thermogravimetry and X-ray diffraction. The adsorption capacity of beta zeolites was strongly dependent on both the solution pH and the alumina content of the adsorbent. Such a remarkable difference was interpreted as a function of the interactions between drug molecules and zeolite surface functional groups. Atenolol was readily adsorbed on the less hydrophobic zeolite, under pH conditions in which electrostatic interactions were predominant. On the other hand, ketoprofen adsorption was mainly driven by hydrophobic interactions. For undissociated molecules the adsorption capability increased with the increase of hydrophobicity.

  13. Synthesis and characterization of nitrogen substituted zeolites

    NASA Astrophysics Data System (ADS)

    Dogan, Fulya

    The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in

  14. Zeolitic catalytic conversion of alochols to hydrocarbons

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2017-01-03

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  15. Thermodynamic modeling of natural zeolite stability

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1997-06-01

    Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.

  16. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge.

    PubMed

    Tada, Chika; Yang, Yingnan; Hanaoka, Toshiaki; Sonoda, Akinari; Ooi, Kenta; Sawayama, Shigeki

    2005-03-01

    The effect of an inorganic additive on the methane production from NH(4+)-rich organic sludge during anaerobic digestion was investigated using different kinds of inorganic adsorbent zeolites (mordenite, clinoptilolite, zeolite 3A, zeolite 4A), clay mineral (vermiculite), and manganese oxides (hollandite, birnessite). The additions of inorganic materials resulted in significant NH4+ removals from the natural organic sludge ([NH4+]=1, 150 mg N/l), except for the H-type zeolite 3A and birnessite. However, an enhanced methane production was only achieved using natural mordenite. Natural mordenite also enhanced the methane production from the sludge with a markedly high NH4+ concentration (4500 mg N/l) during anaerobic digestion. Chemical analyses of the sludge after the digestion showed considerable increases in the Ca2+ and Mg2+ concentrations in the presence of natural mordenite, but not with synthetic zeolite 3A. The effect of Ca2+ or Mg2+ addition on the methane production was studied using Na(+)-exchanges mordenite and Ca2+ or Mg(2+)-enriched sludge. The simultaneous addition of Ca2+ ions and Na(+)-exchanged mordenite enhanced the methane production; the amount of produced methane was about three times greater than that using only the Na(+)-exchanged mordenite. In addition, comparing the methane production by the addition of natural mordenite or Ca2+ ions, the methane production with natural mordenite was about 1.7 times higher than that with only Ca2+ ions. The addition of 5% and 10% natural mordenite were suitable condition for obtaining a high methane production. These results indicated that the Ca2+ ions, which are released from natural mordenite by a Ca2+/NH4+ exchange, enhanced the methane production of the organic waste at a high NH4+ concentration. Natural mordenite has a synergistic effect on the Ca2+ supply as well on the NH4+ removal during anaerobic digestion, which is effective for the mitigation of NH4+ inhibition against methane production.

  17. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof

    PubMed Central

    Shao, Hua

    2010-01-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by 29Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m2/g) and zeolite end members (8.9 - 40 m2/g), as well as their unique mixed phase composites (124 - 329 m2/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils. PMID:21709774

  18. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof.

    PubMed

    Shao, Hua; Pinnavaia, Thomas J

    2010-09-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.

  19. Synthetic wisdom.

    PubMed

    Kitcher, Philip

    2016-11-01

    Wisdom is a special kind of virtue. It is not to be identified with any outstanding cognitive ability-like having a prodigious memory or knowing a lot. Rather it consists in seeing what is most important and most valuable, either within a particular domain or in life as a whole. In the life of a wise person, that insight should be accompanied by traits of character, enabling the person to pursue what is seen as valuable. Viewing wisdom as a capacity for synthetic understanding, I argue for the need for philosophy, even at a time when all of us have much to learn from the sciences.

  20. Effect of different glasses in glass bonded zeolite

    SciTech Connect

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-05-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing.

  1. The zeolite deposits of Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hall, A.; Hein, J.R.

    1996-01-01

    Zeolites are present in altered pyroclastic rocks at many localities in Greece, and large deposits of potential economic interest are present in three areas: (1) the Evros region of the province of Thrace in the north-eastern part of the Greek mainland; (2) the islands of Kimolos and Poliegos in the western Aegean; and (3) the island of Samos in the eastern Aegean Sea. The deposits in Thrace are of Eocene-Oligocene age and are rich in heulandite and/or clinoptilolite. Those of Kimolos and Poliegos are mainly Quaternary and are rich in mordenite. Those of Samos are Miocene, and are rich in clinoptilolite and/or analcime. The deposits in Thrace are believed to have formed in an open hydrological system by the action of meteoric water, and those of the western Aegean islands in a similar way but under conditions of high heat flow, whereas the deposits in Samos were formed in a saline-alkaline lake.

  2. Synthetic chloroplasts

    SciTech Connect

    Calvin, M.

    1980-06-01

    The principal function of the chloroplast is to capture solar quanta and to store them in some stable form. We are in the process of trying to construct a totally synthetic system that would simulate some of the reactions of the two photosystems which occur in natural chloroplasts. Toward this end, we have demonstrated a number of the reactions required in separated systems. We have shown that it is possible to transfer electrons across an insulating membrane barrier with a surfactant photosensitizer. Others have shown, and we have confirmed, that it is possible to collect the two electrons necessary for the generation of molecular hydrogen on a heterogeneous catalyst suspended in water and similarly to collect the four holes on another heterogeneous catalyst suspended in water for the generation of molecular oxygen. A synthesis of some of these molecular catalysts for both these purposes is underway, with some partial success. When these partial reactions are assembled in a system, the resulting synthetic chloroplasts will not resemble the natural entity in detailed construction as they will contain no protein.

  3. Methylene blue removal from contaminated waters using O3, natural zeolite, and O3/zeolite.

    PubMed

    Valdés, H; Tardón, R F; Zaror, C A

    2009-01-01

    This paper compares experimental results on methylene blue (MB) removal systems based on ozone oxidation, zeolite adsorption, and simultaneous adsorption-oxidation using ozone in the presence of natural zeolite. The effect of pH (2-8), and the presence of radical scavengers (sodium acetate) on process rates and removal efficiencies are assessed at laboratory scale. The experimental system consisted of a 1 L differential circular flow reactor and an ozone generator rated at 5 g O3/h. Results show that ozone oxidation combined with zeolite adsorption increases the overall MB oxidation rate with respect to ozonation process and zeolite adsorption. In presence of free radical scavenger, only a 25% of reduction on MB removal rate are observed in the simultaneous treatment, as compared with 70% when ozonation treatment is used, suggesting that MB oxidation reactions take mainly place on the zeolite surface.

  4. Elastic and structural properties of zeolites: Sodalite and dehydrated zeolite A

    SciTech Connect

    Kim, S.; Keskar, N.R.; McCormick, A.V.; Chelikowsky, J.R.; Davis, H.T.

    1995-06-01

    A pairwise interatomic potential has been used to investigate elastic and structural properties of two cubic zeolites: sodalite and dehydrated zeolite A. Constant volume energy minimization has been used to determine the variation of lattice constants and atomic coordinates with pressure. The calculated structures of sodalite and dehydrated zeolite A obtained at zero pressure are in reasonably good agreement with the available experimental values. We find that the structures at zero pressure are largely determined by the Coulomb potential. The pressure dependence of bond lengths and bond angles show that both sodalite and dehydrated zeolite A are easily deformed by bending the Si--O--Al angles. As expected for a less dense crystal, the dehydrated zeolite A is softer than the sodalite. We have also obtained the equation of state of these materials.

  5. Nanocrystalline zeolite beta and zeolite Y as catalysts in used palm oil cracking for the production of biofuel

    NASA Astrophysics Data System (ADS)

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-08-01

    Nanocrystalline zeolites with crystal size smaller than 100 nm are potential replacement for conventional zeolite catalysts due to their unique characteristics and advantages. In this study, the synthesis of nanocrystalline zeolite Y (FAU) and nanocrystalline zeolite beta (BEA) under hydrothermal conditions is reported. The effect of crystal size on the physico-chemical characteristics of the zeolite, Y (FAU), and beta (BEA) is reported. The properties of nanocrystalline zeolites Y and Beta with crystal size around 50 nm are compared with the microcrystalline zeolite Y and microcrystalline zeolite beta, respectively. The performance of the nanocrystalline zeolite as a catalyst was investigated in the cracking of used palm oil for the production of biofuel. The nanocrystalline zeolite catalytic activity was compared with the activity of microcrystalline zeolite in order to study the effect of crystal size on the catalytic activity. Both nanocrystalline zeolites gave better performance in terms of conversion of used palm oil as well as selectivity for the formation of gasoline fraction. The increase in surface area and improved accessibility of the reactant in nanocrystalline zeolites enhanced the cracking activity as well as the desired product selectivity.

  6. Zeolites US market to reach $1 billion by 2000

    SciTech Connect

    Morris, G.D.L.

    1997-02-05

    This article describes the growth of the U.S. market for zeolites, specifically sodium aluminosilicate. The largest application for zeolites is for petrochemical and petroleum catalysts; however, detergents are also a specific application addressed in the article.

  7. 11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT OF CLOCK GAUGING TOTAL ZEOLITE INFLUENT IN MILLIONS OF GALLONS PER DAY. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  8. Synthetic Brainbows

    PubMed Central

    Wan, Y.; Otsuna, H.; Hansen, C.

    2014-01-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists. PMID:25018576

  9. Synthetic Botany.

    PubMed

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-02-28

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits.

  10. Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals

    NASA Astrophysics Data System (ADS)

    Yashiki, Ayako; Honda, Koutaro; Fujimoto, Ayumi; Shibata, Shohei; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

    2011-06-01

    Hydrothermal conversion of Faujasite-type (FAU) zeolite into Levynite (LEV) zeolite without the use of an organic structure-directing agent (OSDA) was successfully achieved in the presence of non-calcined seed crystals. The interzeolite conversion depended strongly upon the alkalinity (OH -/SiO 2) of the starting gel, the Si/Al ratio of the starting FAU zeolite and the type of alkaline metal employed. Successful conversion of FAU zeolites into pure LEV zeolite was achieved only for FAU zeolites with Si/Al ratios in the range of 19-26, under highly alkaline conditions (OH -/SiO 2=0.6) by using NaOH as an alkali source. Although the yield of LEV zeolite prepared by this method was lower (18-26%) than that of the conventional hydrothermal synthesis with the use of SDA, the obtained LEV zeolite exhibited a unique core/shell structure.

  11. Levitation effect in zeolites: Quasielastic neutron scattering and molecular dynamics study of pentane isomers in zeolite NaY.

    PubMed

    Borah, Bhaskar J; Jobic, H; Yashonath, S

    2010-04-14

    We report the quasielastic neutron scattering (QENS) and molecular dynamics (MD) investigations into diffusion of pentane isomers in zeolite NaY. The molecular cross section perpendicular to the long molecular axis varies for the three isomers while the mass and the isomer-zeolite interaction remains essentially unchanged. Both QENS and MD results show that the branched isomers neopentane and isopentane have higher self-diffusivities as compared with n-pentane at 300 K in NaY zeolite. This result provides direct experimental evidence for the existence of nonmonotonic, anomalous dependence of self-diffusivity on molecular diameter known as the levitation effect. The energetic barrier at the bottleneck derived from MD simulations exists for n-pentane which lies in the linear regime while no such barrier is seen for neopentane which is located clearly in the anomalous regime. Activation energy is in the order E(a)(n-pentane)>E(a)(isopentane)>E(a)(neopentane) consistent with the predictions of the levitation effect. In the liquid phase, it is seen that D(n-pentane)>D(isopentane)>D(neopentane) and E(a)(n-pentane)5 A(-1) suggesting a slowing down of motion around the 12-ring window, the bottleneck for diffusion. Finally, the result that the branched isomer has a higher diffusivity as compared with the linear analog is at variation from what is normally seen.

  12. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  13. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    PubMed

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  14. Zeolites as catalysts in oil refining.

    PubMed

    Primo, Ana; Garcia, Hermenegildo

    2014-11-21

    Oil is nowadays the main energy source and this prevalent position most probably will continue in the next decades. This situation is largely due to the degree of maturity that has been achieved in oil refining and petrochemistry as a consequence of the large effort in research and innovation. The remarkable efficiency of oil refining is largely based on the use of zeolites as catalysts. The use of zeolites as catalysts in refining and petrochemistry has been considered as one of the major accomplishments in the chemistry of the XXth century. In this tutorial review, the introductory part describes the main features of zeolites in connection with their use as solid acids. The main body of the review describes important refining processes in which zeolites are used including light naphtha isomerization, olefin alkylation, reforming, cracking and hydrocracking. The final section contains our view on future developments in the field such as the increase in the quality of the transportation fuels and the coprocessing of increasing percentage of biofuels together with oil streams. This review is intended to provide the rudiments of zeolite science applied to refining catalysis.

  15. Controlling chemistry with cations: photochemistry within zeolites.

    PubMed

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J

    2003-08-21

    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  16. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  17. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  18. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  19. Catalytic reforming with improved zeolite catalysts

    SciTech Connect

    Chu, Y.F.

    1990-05-22

    This patent describes a method for reforming a naphtha. It comprises contacting the naphtha with a noble metal/alkali metal-containing zeolite naphtha reforming catalyst the catalyst containing from about 0.1--1.0 wt % of the noble metal and an amount of the alkali metal which exceeds the cationic exchange capacity of the zeolite, a pressure of from about 0 to about 2000 psig, a temperature of about 750{degrees} F. to about 1200{degrees} F., a hydrogen to hydrocarbon molar ratio of about 0.1 to 1 to about 15 to 1 and a weight hourly spaced velocity of about 0.5 to about 20, whereby naphtha reforming activity of the catalyst is enhanced by the zeolite resulting in significantly improved C{sub 4}{sup +} gasoline yields.

  20. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  1. Synthesis of silver nanoclusters on zeolite substrates

    NASA Astrophysics Data System (ADS)

    Posada, Y.

    2009-06-01

    Silver nanoclusters were synthesized by reducing silver nitrate with ethylene glycol at 160 °C in the presence of zeolite. A one-pot procedure has rendered uniform size distributions of quasispherical silver clusters of average sizes of 100-200 nm synthesized on the surfaces of cubiclike zeolite substrates of ˜1 μm side. Bulk material microanalysis measurements showed samples with silver mass percentages of 20%-38%. Surface atomic composition analysis found silver concentrations of 3.1%-5.7%, zeolite compounds and nontraces of nitrogen were measured. The binding energy for the Ag 3d5/2 core electrons was shifted to higher energies at 368.6 eV compared to that of metallic silver. Herein, is presented a cost-effective technique for producing a narrow size distribution of silver nanocomposites with great potential for optoelectronics, catalysis, and nanobiotechnological applications.

  2. Adsorption of CO2 by alginate immobilized zeolite beads

    NASA Astrophysics Data System (ADS)

    Suratman, A.; Kunarti, E. S.; Aprilita, N. H.; Pamurtya, I. C.

    2017-03-01

    Immobilized zeolit in alginate beads for adsorption of CO2 was developed. Alginate immobilized zeolit beads was generated by dropping the mixture of Na-alginate and zeolite solution into Ca2+ solution. The adsorption efficacy such as the influence of contact time, mass of zeolite, flowrate of CO2, and mass of adsorbent was evaluated. The adsorption of CO2 onto alginate immobilized zeolit beads was investigated by performing both equilibrium and kinetic batch test. Bead was characterized by FTIR and SEM. Alginate immobilized zeolit beads demonstrated significantly higher sorption efficacy compared to plain alginate beads and zeolite with 0.25 mmol CO2 adsorbed /g adsorbent. Optimum condition was achieved with mass composition of alginate:zeolite (3:1), flowrate 50 mL/min for 20 minutes. The alginate immobilized zeolit beads showed that adsorption of CO2 followed Freundlich isotherm and pseudo second order kinetic model. Adsorption of CO2 onto alginate immobilized zeolite beads is a physisorption with adsorption energy of 6.37 kJ/mol. This results indicates that the alginate immobilized zeolit beads can be used as promising adsorbents for CO2.

  3. Natural zeolite reactivity towards ozone: the role of compensating cations.

    PubMed

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A

    2012-08-15

    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  4. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method.

  5. Utilization of Natural Zeolite and Perlite as Landfill Liners for in Situ Leachate Treatment in Landfills

    PubMed Central

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-01-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%). PMID:22754458

  6. Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills.

    PubMed

    Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri

    2012-05-01

    The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO(3)-N), ammonium-nitrogen (NH(4)-N), phosphate (PO(4)), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO(3), NH(4), PO(4), COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO(3), PO(4) and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH(4) (1.5%).

  7. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields.

  8. Novel Synthesis Method of Micronized Ti-Zeolite Na-A and Cytotoxic Activity of Its Silver Exchanged Form

    PubMed Central

    Youssef, H. F.; Hegazy, W. H.; Abo-almaged, H. H.; El-Bassyouni, G. T.

    2015-01-01

    The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. The in vitro cytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug. PMID:25705142

  9. Treatment of radioactive liquid waste (Co-60) by sorption on Zeolite Na-A prepared from Iraqi kaolin.

    PubMed

    Mustafa, Yasmen A; Zaiter, Maysoon J

    2011-11-30

    Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985.

  10. Adsorptive removal and photocatalytic decomposition of sulfamethazine in secondary effluent using TiO2-zeolite composites.

    PubMed

    Ito, Misaki; Fukahori, Shuji; Fujiwara, Taku

    2014-01-01

    We investigated the adsorption and decomposition of sulfamethazine (SMT), which is used as a synthetic antibacterial agent and discharged into environmental water, using high-silica Y-type zeolite (HSZ-385), titanium dioxide (TiO2), and TiO2-zeolite composites. By using ultrapure water and secondary effluent as solvents, we prepared SMT solutions (10 μg/L and 10 mg/L) and used them for adsorption and photocatalytic decomposition experiments. When HSZ-385 was used as an adsorbent, rapid adsorption of SMT in the secondary effluent was confirmed, and the adsorption reached equilibrium within 10 min. The photocatalytic decomposition rate using TiO2 in the secondary effluent was lower than that in ultrapure water, and we clarified the inhibitory effect of ions and organic matter contained in the secondary effluent on the reaction. We synthesized TiO2-zeolite composites and applied them to the removal of SMT. During the treatment of 10 μg/L SMT in the secondary effluent using the composites, 76% and more than 99% of the SMT were decomposed within 2 and 4 h by photocatalysis. The SMT was selectively adsorbed onto high-silica Y-type zeolite in the composites. Resultantly, the inhibitory effect of the coexisting materials was reduced, and the composites could remove SMT more effectively compared with TiO2 alone in the secondary effluent.

  11. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination.

    PubMed

    Zaitan, Hicham; Manero, Marie Hélène; Valdés, Héctor

    2016-03-01

    In this study, a hydrophobic synthetic zeolite, namely ZSM-5 is chosen as an adsorbent/catalyst for toluene removal. Experimental results showed that toluene adsorption onto ZSM-5 was favourable, following a Langmuir adsorption isotherm model. ZSM-5 zeolite was regenerated using gaseous ozone at low temperature. Adsorbed toluene was oxidised, releasing mainly CO2 and H2O. Traces of oxidation by-products such as acetic acid and acetaldehyde were formed and remained adsorbed after the oxidativate regeneration with ozone. After four successive cycles of adsorption/ozonation, the adsorption efficiency was not affected (92%-99%). These results showed that volatile organic compound (VOC) removal by adsorption onto ZSM-5 zeolite followed by ozone regeneration could be used as a promising hybrid process for the control of VOC emissions in terms of efficiency.

  12. The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites.

    PubMed

    Somerset, V S; Petrik, L F; White, R A; Klink, M J; Key, D; Iwuoha, E

    2004-09-08

    The use and application of synthetic zeolites for ion exchange, adsorption and catalysis has shown enormous potential in industry. In this study, X-ray fluorescence (XRF) analysis was used to determine Si and Al in fly ash (FA) precipitates. The Si and Al contents of the fly ash precipitates were used as indices for the alkaline hydrothermal conversion of the fly ash compounds into zeolites. Precipitates were collected by using a co-disposal reaction wherein fly ash is reacted with acid mine drainage (AMD). These co-disposal precipitates were then analysed by XRF spectrometry for quantitative determination of SiO(2) and Al(2)O(3). The [SiO(2)]/[Al(2)O(3)] ratio obtained in the precipitates range from 1.4 to 2.5. The [SiO(2)]/[Al(2)O(3)] ratio was used to predict whether the fly ash precipitates could successfully be converted to faujasite zeolitic material by the synthetic method of [J. Haz. Mat. B 77 (2000) 123]. If the [SiO(2)]/[Al(2)O(3)] ratio is higher than 1.5 in the fly ash precipitates, it favours the formation of faujasite. The zeolite synthesis included an alkaline hydrothermal conversion of the co-disposal precipitates, followed by aging for 8h and crystallization at 100 degrees C. Different factors were investigated during the synthesis of zeolite to ascertain their influence on the end product. The factors included the amount of water in the starting material, composition of fly ash related starting material and the FA:NaOH ratio used for fusing the starting material. The mineralogical and physical analysis of the zeolitic material produced was performed by X-ray diffraction (XRD) and nitrogen Brunauer-Emmett-Teller (N(2) BET) surface analysis. Scanning electron microscopy (SEM) was used to determine the morphology of the zeolites, while inductively coupled mass spectrometry (ICP-MS), Fourier transformed infrared spectrometry (FT-IR) and Cation exchange capacity (CEC) [Report to Water Research Commission, RSA (2003) 15] techniques were used for

  13. The effect of the zeolite clinoptilolite on serum chemistry and hematopoiesis in mice.

    PubMed

    Martin-Kleiner, I; Flegar-Mestric, Z; Zadro, R; Breljak, D; Stanovic Janda, S; Stojkovic, R; Marusic, M; Radacic, M; Boranic, M

    2001-07-01

    Zeolites are natural or synthetic crystalline alumosilicates with ion exchanging properties. Supplied in fodder, they promote biomass production and animal health. Our aim was to assess the effects of the natural zeolite, clinoptilolite, on hematopoiesis, serum electrolytes and essential biochemical indicators of kidney and liver function in mice. Two preparations differing in particle size were tested: a powderized form obtained by countercurrent mechanical treatment of the clinoptilolite (MTCp) and normally ground clinoptilolite (NGCp). Young adult mice were supplied with food containing 12.5, 25 or 50% clinoptilolite powder. Control animals received the same food ration without the clinoptilolite. After 10, 20, 30 and 40 days, six animals from each group were exsanguinated to obtain blood for hematological and serum for biochemical measurements as well as to collect femoral bone marrow for determination of hematopoietic activity. Clinoptilolite ingestion was well tolerated, as judged by comparable body masses of treated and control animals. A 20% increase of the potassium level was detected in mice receiving the zeolite-rich diet, without other changes in serum chemistry. Erythrocyte, hemoglobin and platelet levels in peripheral blood were not materially affected. NGCp caused leukocytosis, with concomitant decline of the GM-CFU content in the bone marrow, which was attributed to intestinal irritation by rough zeolite particles. The mechanically treated clinoptilolite preparation caused similar, albeit less pronounced, changes. In a limited experiment, mice having transplanted mammary carcinoma in the terminal stage showed increased potassium and decreased sodium and chloride levels, severe anemia and leukocytosis, decreased bone marrow cellularity and diminished content of hematopoietic progenitor cells in the marrow. The clinoptilolite preparations ameliorated the sodium and chloride decline, whereas the effects on hematopoiesis were erratic.

  14. ARSENIC SEPARATION FROM WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water. The presence of arsenic in water supplies has been linked to arsenical dermatosis and skin cancer . Zeolites are well known for their ion exchange capacities. In the present work, the potential use of a variety of ...

  15. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  16. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  17. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  18. Framework Al zoning in zeolite ECR-1.

    PubMed

    Shin, Jiho; Ahn, Nak Ho; Cho, Sung June; Ren, Limin; Xiao, Feng-Shou; Hong, Suk Bong

    2014-02-25

    Rietveld analyses of the synchrotron X-ray diffraction data for various cation forms of zeolite ECR-1 have demonstrated framework Al zoning, which parallels the alternation of Al-rich maz and Al-poor mor layers. This can be further supported by notable differences in the average bond valence of its 10 crystallographically distinct tetrahedral sites.

  19. The Determination of Zeolite Sorption Properties

    NASA Astrophysics Data System (ADS)

    Tishin, A. A.; Laguntsov, N. I.; Kurchatov, I. M.

    The installation and the measurement data procedure were established for the sorbent characteristics determination. Sorption isotherms of the three gases (nitrogen, oxygen and carbon dioxide) are obtained on the industrial zeolites NaX, NaX-BKO and NaA in a pressure range (0;7) bar.

  20. Silver clusters and chemistry in zeolites

    SciTech Connect

    Sun, T.; Seff, K. . Dept. of Chemistry)

    1994-06-01

    The spectroscopic work done on silver clusters trapped in solid noble gas matrices at low temperature has been extensively reviewed by Ozin, and Henglein has done the same for photochemical studies of colloidal silver particles in solution. This article will review the chemistry of silver in zeolite hosts, including the synthesis and structures of silver clusters. 127 refs.

  1. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    NASA Astrophysics Data System (ADS)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  2. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

    2014-02-22

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  3. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-07

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water.

  4. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  5. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-11-30

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  6. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  7. CO2 SEPARATIONS USING ZEOLITE MEMBRANES

    SciTech Connect

    Richard D. Noble; John L. Falconer

    2001-06-30

    Zeolite and other inorganic molecular sieve membranes have shown potential for separations based on molecular size and shape because of their small pore sized, typically less than 1 nm, and their narrow pore size distribution. The high thermal and chemical stability of these inorganic crystals make them ideal materials for use in high temperature applications such as catalytic membrane reactors. Most of the progress with zeolite membranes has been with MFI zeolites prepared on porous disks and tubes. The MFI zeolite is a medium pore size structure having nearly circular pores with diameters between .53 and .56 nm. Separation experiments through MFI membranes indicate that competitive adsorption separates light gas mixtures. Light gas selectivities are typically small, however, owing to small differences in adsorption strengths and their small sizes relative to the MFI pore opening. Furthermore, competitive adsorption does not work well at high temperature where zeolite membranes are stable and have potential application. Separation by differences in size has a greater potential to work at high temperature than competitive adsorption, but pores smaller than those in MFI zeolites are required. Therefore, some studies focused on the synthesis of a small, 8-membered-pore structures such as zeolite A (0.41-nm pore diameter) and SAPO-34, a chabazite (about .4-nm pore diameter with about 1.4 nm cages) analog. The small pore size of the zeolite A and SAPO-34 structures made the separation of smaller molecules by differences in size possible. Zeolite MFI and SAPO-34 membranes were prepared on the inside surface of porous alumina tubes by hydrothermal synthesis, and single gas and binary mixture permeances were measured to characterize the membrane's performance. A mathematical diffusion model was developed to determine the relative quantities of zeolite and non-zeolite pores in different membranes by modeling the permeation date of CO{sub 2}. This model expresses the total

  8. Efficiency of basalt zeolite and Cuban zeolite to adsorb ammonia released from poultry litter.

    PubMed

    Nuernberg, Giselle B; Moreira, Marcelo A; Ernani, Paulo R; Almeida, Jaime A; Maciel, Tais M

    2016-12-01

    Confined poultry production is an important livestock activity, which generates large amounts of waste associated with the potential for environmental pollution and ammonia (NH3) emissions. The release of ammonia negatively affects poultry production and decreases the N content of wastes that could be used as soil fertilizers. The objective of this study was to evaluate a low-cost, simple and rapid method to simulate ammonia emissions from poultry litter as well as to quantify the reduction in the ammonia emissions to the environment employing two adsorbent zeolites, a commercial Cuban zeolite (CZ) and a ground basalt Brazilian rock containing zeolite (BZ). The experiments were conducted in a laboratory, in 2012-2013. The zeolites were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), physical adsorption of N2 (BET) and scanning electron microscopy (SEM). Ammonia released from poultry litter and its simulation from NH4OH solution presented similar capture rates of 7.99 × 10(-5) and 7.35 × 10(-5) mg/h, respectively. Both zeolites contain SiO2 and Al2O3 as major constituents, with contents of 84% and 12% in the CZ, and 51% and 12% in the BZ, respectively, besides heulandite groups. Their BET surface areas were 89.4 and 11.3 m(2) g(-1), respectively, and the two zeolites had similar surface morphologies. The zeolites successfully adsorbed the ammonia released, but CZ was more efficient than BZ, since to capture all of the ammonia 5 g of CZ and 20 g of BZ were required. This difference is due to higher values for the superficial area, porosity, CEC and acid site strength of CZ relatively to BZ. The proposed methodology was shown to be an efficient method to simulate and quantify the ammonia released from poultry litter.

  9. Zeolite catalysis in conversion of cellulosics. Annual report

    SciTech Connect

    Tsao, G.T.

    1994-02-01

    The authors have studied the kinetics of oxylose/xylulose isomerization in significant detail over a variety of zeolites and obtained the pseudo-first order reaction rate constants. The authors have found that HY zeolite is still the best material and zeolites are more selective than homogeneous acid catalysts where decomposition of the sugar compounds is much faster. They have completed, as described in the Year 2 Work Plan, the study of cellobiose hydrolysis with an ion exchange resin. The kinetics of the solid-catalyzed reaction is qualitatively similar to that for catalysis by homogeneous acids. The planned program of NMR studies has revealed the dynamics of sugar molecules within the zeolite cavities. Two chemisorbed and a physisorbed state have been identified in HY zeolite. A new state, accounting for as much as a half of the sugar, has been found in ZSM-5 zeolite.

  10. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    NASA Astrophysics Data System (ADS)

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-08-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations.

  11. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  12. 3D-Printed Zeolite Monoliths for CO2 Removal from Enclosed Environments.

    PubMed

    Thakkar, Harshul; Eastman, Stephen; Hajari, Amit; Rownaghi, Ali A; Knox, James C; Rezaei, Fateme

    2016-10-04

    Structured adsorbents, especially in the form of monolithic contactors, offer an excellent gas-solid contacting strategy for the development of practical and scalable CO2 capture technologies. In this study, the fabrication of three-dimensional (3D)-printed 13X and 5A zeolite monoliths with novel structures and their use in CO2 removal from air are reported. The physical and structural properties of these printed monoliths are evaluated and compared with their powder counterparts. Our results indicate that 3D-printed monoliths with zeolite loadings as high as 90 wt % exhibit adsorption uptake that is comparable to that of powder sorbents. The adsorption capacities of 5A and 13X monoliths were found to be 1.59 and 1.60 mmol/g, respectively, using 5000 ppm (0.5%) CO2 in nitrogen at room temperature. The dynamic CO2/N2 breakthrough experiments show relatively fast dynamics for monolithic structures. In addition, the printed zeolite monoliths show reasonably good mechanical stability that can eventually prevent attrition and dusting issues commonly encountered in traditional pellets and beads packing systems. The 3D printing technique offers an alternative, cost-effective, and facile approach to fabricate structured adsorbents with tunable structural, chemical, and mechanical properties for use in gas separation processes.

  13. Large zeolites - Why and how to grow in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.

    1991-01-01

    The growth of zeolite crystals which are considered to be the most valuable catalytic and adsorbent materials of the chemical processing industry are discussed. It is proposed to use triethanolamine as a nucleation control agent to control the time release of Al in a zeolite A solution and to increase the average and maximum crystal size by 25-50 times. Large zeolites could be utilized to make membranes for reactors/separators which will substantially increase their efficiency.

  14. Microwave assisted crystallization of zeolite A from dense gels

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, Lucio; Proverbio, Edoardo

    2003-01-01

    Pure zeolite NaA has been obtained, in a total processing time of 1 h, by exposing the reaction mixture to a microwave electromagnetic field under atmospheric pressure. The strong effect of microwave radiation has been used to progressively reduce the water content in the formulation, up to 86.9 mol%, with a 30% (in weight) yield in dried product. SEM images of microwave-produced zeolite have shown peculiar morphological differences from the zeolite obtained by conventional synthesis.

  15. Zeolite (clinoptilolite) as feed additive to reduce manure mineral content.

    PubMed

    Leung, S; Barrington, S; Wan, Y; Zhao, X; El-Husseini, B

    2007-12-01

    Clinoptilolite (a species of zeolite) as grower hog feed additive can potentially improve nutrient ingestion and lower manure nutrient levels. A first objective was to establish the optimal particle size of the zeolite powder, as a fine size increases the adsorption surface while a coarse size can facilitate handling. The second objective tested the effect of feeding zeolite on manure nutrient levels. For the first objective, three zeolite powders (250-500 microm; 50-250 microm, and 50-500 microm) were exposed to an NH(4)(+) solution under a pH of either 7.0 or 2.0. The resulting solutions were tested for cation exchange. A commercial zeolite was also tested for the pH of 2.0 to evaluate zeolite stability. At 0%, 5% and 10% humidity, the same three particle size powders were subjected to shear tests to determine the zeolite's angle of friction. For the second objective using metabolic cages, female hogs were subjected to one of four rations (a control and three with zeolite) while collecting and analyzing their manures. For the first objective, the coarse particle zeolite performed best, adsorbing 158 and 123 Cmol(+)/kg of NH(4)(+) under neutral and acid pH, respectively, and releasing an equivalent amount of minerals only under neutral pH. The commercial zeolite with less clinoptilolite released more Al, Fe, Cu and Pb, showing less stability. The high internal angle of friction of zeolite did not vary with particle size and moisture, indicating funnel flow under gravity. For the second objective, hogs fed a zeolite diet produced manure with 15% and 22% less N and P, respectively, and demonstrated a better feed conversion, although not statistically significant (P>0.05). These results show that there is some potential in using high quality clinoptilolite in the ration of grower hogs.

  16. Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite.

    PubMed

    Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M; Ruiz-Martínez, Javier; Hensen, Emiel J M

    2016-02-21

    The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts demonstrate enhanced diffusion through micropores at the grain boundaries of nanocrystals running through the zeolite particles. Fluoride-assisted SSZ-13 synthesis is a cheap and scalable approach to optimize the performance of MTO zeolite catalysts.

  17. Catalytic Oxidation by Transition Metal Ions in Zeolites.

    DTIC Science & Technology

    1984-09-28

    nmber) Zeolite, Oxidation Catalysis, Molybdenum Zeolite, Cobalt Zeolite, Oxygen Adduct, Cobalt-Oxygen Complexes, Epoxidation _j-J AVIATRACr .1kisa...and substrate ligands. Molybdenum-Y seolites were effective catalysts for the epoxidation of propylene using tert-butyl hydroperoxide as the source...of oxygen. They exhibited high selectivity to the epoxide , and initially were quite active. The activity, *I 0 OF, , , , , ,, , , UNCLASSIFIED -4 1 0 1

  18. Peculiarities of the dielectric response of natural zeolite composites prepared by using zeolite and silicon powders

    NASA Astrophysics Data System (ADS)

    Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Lebedeva, N. N.; Salamov, B. G.

    2016-03-01

    We present the real and imaginary part of the dielectric permittivity of natural zeolite composites prepared by using zeolite and silicon powders. The dielectric response (DR) dependences on the frequency (3-300 GHz) of electric field and different Si concentrations (5-33%) are non-monotonic and a maximum peak is observed. This peak position is practically independent on the frequency and its maximum is observed in zeolite composites which included 9% of the Si-powder. Also the maximum peak is decreased by about an order of magnitude when frequency increases from 500 Hz to 5 kHz. Addition of the conductive Si-particles to zeolite-powder leads to two opposite effects. Firstly, the movement of electrons in the Si-particles provides increase of DR. Secondly, cations which leaving from zeolite pores can be neutralized by the particles of Si in the intercrystalline-space. Such a peculiar mechanism for recombination of Si electrons and cations from pores leads to a reduction of DR for large silicon concentrations. Due to the fact that the contribution of free carriers in the decreasing of the DR as the frequency increases, it is consistent with the suggestion that the maximum peak decreases with increasing frequency.

  19. Zeolites are effective ROS-scavengers in vitro.

    PubMed

    Pellegrino, Perrine; Mallet, Bernard; Delliaux, Stéphane; Jammes, Yves; Guieu, Regis; Schäf, Oliver

    2011-07-08

    We report on the use of zeolites to limit the effects of reactive oxygen species (ROS) on human albumin under in vitro conditions. Zeolites of different structure type, channel size, channel polarity, and charge-compensating cation were screened for the elimination of ROS, notably HO(·), resulting from the Fenton reaction. A test based on ischemia-modified albumin (IMA) was used as a marker to monitor the activity of HO(·) after co-exposure of human serum to these zeolites. Two commercial zeolites, faujasite (FAU 13×, channel opening 0.74×0.74 nm with Na(+) as charge-compensating cation) and ferrierite (FER, channel opening 0.54×0.42 nm with H(+) as charge-compensating cation), were found to reduce IMA formation by more than 65% due to removal of HO(·) relative to reference values. It was established that partial ion exchange of the zeolites' respective charge-compensating cation vs. Fe(3+) implicated in the Fenton reaction plays a major role in HO(·) deactivation process. Moreover, our results show that no saturation of the respective zeolite active sites occurred. This is possible only when ROS are actively converted to water molecules within the zeolite void system, which generates H(+) ion transport. Because zeolites cannot be administered in blood, their use in medicine should be limited to extra corporeal circuits. Zeolites could be of use during cardiopulmonary bypass or hemodialysis procedures.

  20. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  1. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  2. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  3. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  4. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  5. Solution exchange corrosion testing with the glass-zeolite ceramic waste form in demineralized water at 90{degree}C.

    SciTech Connect

    Simpson, L. J.

    1998-05-19

    A ceramic waste form of glass-bonded zeolite is being developed for the long-term disposition of fission products and transuranic elements in wastes from the U.S. Department of Energy's spent nuclear fuel conditioning activities. Solution exchange corrosion tests were performed on the ceramic waste form and its potential base constituents of glass, zeolite 5A, and sodalite as part of an effort to qualify the ceramic waste form for acceptance into the Civilian Radioactive Waste Management System. Solution exchange tests were performed at 90 C by replacing 80 to 90% of the leachate with fresh demineralized water after set time intervals. The results from these tests provide information about corrosion mechanisms and the ability of the ceramic waste form and its constituent materials to retain waste components. The results from solution exchange tests indicate that radionuclides will be preferentially retained in the zeolites without the glass matrix and in the ceramic waste form, with respect to cations like Li, K, and Na. Release results have been compared for simulated waste from candidate ceramic waste forms with zeolite 5A and its constituent materials to determine the corrosion behavior of each component.

  6. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks

    SciTech Connect

    Phan, Anh; Doonan, Christian J.; Uribe-Romo, Fernando J.; Knobler, Carolyn B.; O’Keeffe, Michael; Yaghi, Omar M.

    2010-01-19

    Zeolites are one of humanity’s most important synthetic products. These aluminosilicate-based materials represent a large segment of the global economy. Indeed, the value of zeolites used in petroleum refining as catalysts and in detergents as water softeners is estimated at $350 billion per year. A major current goal in zeolite chemistry is to create a structure in which metal ions and functionalizable organic units make up an integral part of the framework. Such a structure, by virtue of the flexibility with which metal ions and organic moieties can be varied, is viewed as a key to further improving zeolite properties and accessing new applications. Recently, it was recognized that the Si-O-Si preferred angle in zeolites (145°) is coincident with that of the bridging angle in the M-Im-M fragment (where M is Zn or Co and Im is imidazolate), and therefore it should be possible to make new zeolitic imidazolate frameworks (ZIFs) with topologies based on those of tetrahedral zeolites. This idea was successful and proved to be quite fruitful; within the last 5 years over 90 new ZIF structures have been reported. The recent application of high-throughput synthesis and characterization of ZIFs has expanded this structure space significantly: it is now possible to make ZIFs with topologies previously unknown in zeolites, in addition to mimicking known structures. In this Account, we describe the general preparation of crystalline ZIFs, discussing the methods that have been developed to create and analyze the variety of materials afforded. We include a comprehensive list of all known ZIFs, including structure, topology, and pore metrics. We also examine how complexity might be introduced into new structures, highlighting how link-link interactions might be exploited to effect particular cage sizes, create polarity variations between pores, or adjust framework robustness, for example. The chemical and thermal stability of ZIFs permit many applications, such as the

  7. Synthetic biology, inspired by synthetic chemistry.

    PubMed

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell.

  8. Electrical Response of PEDOT-PSS/FAU Zeolite Composites toward SO2: Controlling the Adsorption Properties of FAU Zeolite

    NASA Astrophysics Data System (ADS)

    Chanthaanont, Pojjawan; Sirivat, Anuvat

    2012-02-01

    In our work, we propose to combine a conductive polymer, Poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT-PSS), with FAU zeolites to investigate the potential of the composites for use as SO2 sensing materials.Composites with PEDOT-PSS as a matrix containing faujasite zeolites of various cation types (divalent transition metal ions: Fe^2+, Co^2+, Ni^2+ and Cu^2+), were fabricated to investigate the effect of the cation type of the faujasite zeolites on the electrical conductivity response when exposed to SO2. The composite was tested through repeated sensing and recovery processes to investigate the reversibility and reproducibility. During the recovery process, the electrical conductivity of the composites were recovered, which proves that the sensing characteristics are repeatable. Responses and the interaction mechanism of the conductive polymer/zeolite composites were investigated. The composite with 20% (v/v) of zeolite content gives the highest sensitivity. The electrical conductivity responses of PEDOT-PSS/Zeolite composites can be altered due to the available adsorption sites for gas molecules. The addition of zeolites to the pristine PEDOT-PSS improved the electrical conductivity sensitivity of the composites by enhancing the interaction between PEDOT-PSS and SO2. The type of cation in the zeolite pores effected the sensitivity of the composites, depending on the acidity of the ion-exchanged zeolites.

  9. Preparation of zeolite ANA crystal from zeolite Y by in situ solid phase iso-structure transformation.

    PubMed

    Wang, Yi; Li, Xuguang; Xue, Zhiyuan; Dai, Linsen; Xie, Songhai; Li, Quanzhi

    2010-05-06

    A new method has been explored to synthesize zeolite ANA crystals with regular icositetrahedron in aqueous media via transformation of zeolite Y under the conditions of low temperature, short reaction time, and without organic template. The products are perfect, almost 100% crystals. The samples prepared at different crystallization stages are measured by XRD, TEM, and SEM to investigate the transformation mechanism from zeolite Y to zeolite ANA. It has been demonstrated for the first time that the mechanism of forming a zeolite ANA polycrystal with sphere or shell morphologies is the in situ solid phase iso-structure transformation (Is-SPIST) of zeolite Y. The Is-SPIST mechanism is also supported by the results of steam-induced crystallization experiments and other assistant means, including the same Si/Al ratio, the same weight, the same particle size, and the same morphology before and after transformation of zeolite Y to zeolite ANA. It is also observed that a spherical or shell ANA polycrystal is constructed via the reconstruction from its exterior to interior, to form an ANA single crystal with a solid or hollow icositetrahedron. The main driving force of the reconstruction is considered to be the grain boundary energy existing between polycrystalline grains. This process also obeys the mechanism of in situ solid phase reconstruction (Is-SPR). Furthermore, the size and morphology of the zeolite ANA single crystal can be modified by surfactants.

  10. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  11. Olefins from methanol by modified zeolites

    SciTech Connect

    Inui, T.; Takegami, Y.

    1982-11-01

    Compares the effects of modified catalysts (ZSM-34 and ZSM-5 class zeolites) on methanol conversion to olefins (MTO) with regard to olefin selectivity and cost. Presents tables with prices of olefins in the US and Japan; comparison of methanol-cracking with naphtha cracking; methanol conversion data for Type-1, Type-II and reference catalysts; hydrocarbon distribution from MTO processes; and speculative economics for MTO processes of Concept-1 and 2. Diagrams the proposed MTO process scheme. Scanning electron micrographs of the zeolite catalysts are shown. Graphs indicate the change of ethylene prices in the US since 1978 and forecast ethylene prices in several countries. Concludes that the prices of ethylene for both MTO processes examined compare favorably with products of conventional processes.

  12. New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite).

    PubMed

    Nakane, T; Gomyo, H; Sasaki, I; Kimoto, Y; Hanzawa, N; Teshima, Y; Namba, T

    2006-08-01

    The causative substances for axillary osmidrosis, which are often found in apocrine sweat, are the decomposed/denatured products of short-chain fatty acid and other biological metabolite compounds produced by axillary-resident bacteria. Conventional underarm deodorants suppress the process of odour production mostly by the following mechanism: (1) suppression of perspiration, (2) reduction in numbers of resident bacteria, (3) deodorization and (4) masking. The most important and effective method to reduce odour is to suppress the growth of resident bacteria with antimicrobials, which have several drawbacks, especially in their safety aspect. To solve these problems, we focused on Ag-zeolite (silver-exchanged zeolite) that hold stable Ag, an inorganic bactericidal agent, in its structure, and therefore, poses less risk in safety. Its bactericidal effect on skin-resident bacteria was found to be excellent and comparable with that of triclosan, a most frequently used organic antimicrobial in this product category. The dose-response study of Ag-zeolite powder spray (0-40 w/w%) using 39 volunteers revealed that 5-40 w/w% Ag-zeolite could show a sufficient antimicrobial effect against skin-resident bacteria. The comparison study using 0.2 w/w% triclosan as the control and 10 w/w% Ag-zeolite indicated that: (1) one application of the powder spray containing 10 w/w% Ag-zeolite could show a sufficient antimicrobial effect against the resident bacteria and its effect continued for 24 h, (2) a powder spray containing 0.2 w/w% triclosan was unable to show a sufficient antimicrobial effect, and (3) no adverse event was observed. These studies show that Ag-zeolite has a superior antimicrobial ability that is rarely found in conventional antimicrobials used in deodorant products and a strong antiaxillary odour deodorant ability because of its long-lasting effect. During clinical study, patch tests with humans and other clinical studies of this product showed no adverse events

  13. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

  14. [SYNTHETIC PEPTIDE VACCINES].

    PubMed

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  15. In Situ SAXS/WAXS of Zeolite Microwave Synthesis: NaY, NaA, and Beta Zeolites

    SciTech Connect

    Panzarella,B.; Tompsett, G.; Conner, W.; Jones, K.

    2007-01-01

    A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

  16. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites.

    PubMed

    Panzarella, Bernard; Tompsett, Geoffrey; Conner, William C; Jones, Keith

    2007-02-19

    A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

  17. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading.

  18. [From synthetic biology to synthetic humankind].

    PubMed

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed.

  19. Alkaline cations directing the transformation of FAU zeolites into five different framework types.

    PubMed

    Van Tendeloo, Leen; Gobechiya, Elena; Breynaert, Eric; Martens, Johan A; Kirschhock, Christine E A

    2013-12-28

    Exposure of faujasite zeolites to different alkali hydroxide solutions readily yields zeolites with ABW, CHA, MER and ANA topologies. In NaOH faujasite persisted. Aside from new opportunities for zeolite synthesis, this reveals that a suitable aluminosilicate connectivity in the source material significantly facilitates zeolite crystallization.

  20. Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon.

    USGS Publications Warehouse

    Keith, T.E.C.; Staples, L.W.

    1985-01-01

    Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence. Although the zeolite assemblages are similar to those found in other major zeolite occurrences in basaltic pillow lavas, regional zoning of the zeolite assemblages is not apparent. The formation of the different assemblages is discussed.-D.F.B.

  1. Silanization-Based Zeolite Crystallization: Participation Degree and Pathway.

    PubMed

    Yan, Yueer; Azhati, Arepati; Guo, Xiao; Zhang, Yahong; Tang, Yi

    2015-08-17

    A clear and deep understanding of zeolite crystallization with the addition of organosilane is desirable for the reasonable design and preparation of hierarchical zeolites. Herein, the effects of different organosilanes on zeolite crystallization were systematically studied. It was found that organosilane plays the role of an inhibitor in the silanization-based zeolite preparation, and this inhibition effect was determined by its participation degree. An organosilane with a high participation degree can result in the prolongation of nucleation and growth periods of zeolite as well as the variation of product properties. More importantly, a dynamic participation pathway of organosilane is proposed, that is, the growth of zeolite is accompanied by the continuous removal of organosilane, leading to an increase of product crystallinity as well as the decrease of mesoporosity. This study gives a new insight into the role that organosilane plays in zeolite crystallization, which will help to direct the rational selection of organosilane and design of crystallization condition for the optimal synthesis of hierarchical zeolites.

  2. Zeolites in the Pine Ridge Indian Reservation, South Dakota

    USGS Publications Warehouse

    Raymond, William H.; Bush, Alfred L.; Gude, Arthur J.

    1982-01-01

    Zeolites of possible commercial value occur in the Brule Formation of Oligocene age and the Sharps Formation (Harksen, 1961) of Miocene age which crop out in a wide area in the northern part of the Pine Ridge Indian Reservation. The thickness of the zeolite-bearing Interval and the extent of areas within the Interval which contain significant amounts of zeolites are far greater than was expected prior to this investigation. The shape of the zeolite-bearing Interval is tabular and the dimensions of Its exposure are roughly 10 ml x 200 mi x 150 ft (16 km x 160 km x 45 m) thick. Within the study area, there are tracts in which the zeolite resource potential is significant (see pl. 2). This report is intended to inform the Oglala Sioux Tribe of some of the most promising zeolite occurrences. Initial steps can then be taken by the Tribe toward possible development of the resources, should they wish to do so. The data contained herein identify areas of high zeolite potential, but are not adequate to establish economic value for the deposits. If development is recommended by the tribal government, we suggest that the tribal government contact companies involved in research and production of natural zeolites and provide them with the data in this report.

  3. Crewmember working on the mid deck Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

  4. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  5. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  6. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  7. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  8. Preferential orientations of structure directing agents in zeolites.

    PubMed

    Dib, Eddy; Gimenez, Antoine; Mineva, Tzonka; Alonso, Bruno

    2015-10-14

    The local structure of as-synthesised silicalite-1 zeolites is modified using asymmetric R(Pr)3N(+) structure directing agents. Using multi-nuclear NMR ((1)H, (13)C, (14)N, (19)F, (29)Si), we show for the first time the ability of these cations to adopt preferential orientations at the zeolite channels' crossing.

  9. FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES

    EPA Science Inventory

    Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

  10. Size-controlled synthesis of Fe2O3 and Fe3O4 nanoparticles onto zeolite by means of a modified activated-coprecipitation method: effect of the HCl concentration during the activation

    NASA Astrophysics Data System (ADS)

    Mendoza-Bello, S.; Morales-Luckie, Raúl A.; Flores-Santos, L.; Hinestroza, Juan P.; Sanchez-Mendieta, Víctor

    2012-11-01

    Synthetic sodium type A zeolite bearing Fe2O3 and Fe3O4 nanoparticles composites have been prepared by means of a coprecipitation method with two different activation methodologies, one using Sn and the other using Sn/Pd nanoparticles as activators. Sn activation generates hematite nanoparticles while Sn/Pd produces magnetite nanoparticles. Amount of HCl used during the activation of the zeolite with SnCl2 showed a correlation between the stannous activating species and the particle size. Both Sn and Sn-Pd activated nanocomposites show nearly narrow size distributions but only those iron oxides obtained with Sn-Pd showed supermagnetism.

  11. Fly ash based zeolitic pigments for application in anticorrosive paints

    NASA Astrophysics Data System (ADS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  12. Potential and actual uses of zeolites in crop protection.

    PubMed

    De Smedt, Caroline; Someus, Edward; Spanoghe, Pieter

    2015-10-01

    In this review, it is demonstrated that zeolites have a potential to be used as crop protection agents. Similarly to kaolin, zeolites can be applied as particle films against pests and diseases. Their honeycomb framework, together with their carbon dioxide sorption capacity and their heat stress reduction capacity, makes them suitable as a leaf coating product. Furthermore, their water sorption capacity and their smaller particle sizes make them effective against fungal diseases and insect pests. Finally, these properties also ensure that zeolites can act as carriers of different active substances, which makes it possible to use zeolites for slow-release applications. Based on the literature, a general overview is provided of the different basic properties of zeolites as promising products in crop protection.

  13. Modified zeolite-based catalyst for effective extinction hydrocracking

    SciTech Connect

    Yan, T.Y. )

    1989-10-01

    The shape selectivity of zeolites makes them generally ineffective for extinction hydrocracking of polycyclic aromatic feeds. To overcome this problem, the zeolite can be modified with an amorphous cracking component to form a composite catalyst. This composite catalyst will be effective for extinction hydrocracking and retain the superior performance characteristics of a zeolite catalyst at the same time because the zeolite and the amorphous components of the catalyst operate complementarily. To illustrate this principle, NiW/REX-NiW/SiO/sub 2/Al/sub 2/O/sub 3/ composite catalyst was tested in the pilot plant. It was active, low in aging rate, resistant to nitrogen poisoning and high in selectivities for naphthas. The aged catalyst could be oxidatively regenerated to fully recover the activity and the product selectivities. This composite catalyst was superior to both individual (zeolite and amorphous) components for extinction hydrocracking. Catalysts similar to this have been used commercially for many years.

  14. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    PubMed Central

    Vernimmen, Jarian; Cool, Pegie

    2011-01-01

    Summary In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i) the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii) the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials. PMID:22259762

  15. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  16. Preparation of a versatile bifunctional zeolite for targeted imaging applications.

    PubMed

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K; Larsen, Sarah

    2011-03-15

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1)-catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 ((68)Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile "clickable" zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities.

  17. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    PubMed

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  18. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity.

  19. Probing zeolites with organic molecules: Supercages of X and Y zeolites are superpolar

    SciTech Connect

    Uppili, S.; Thomas, K.J.; Crompton, E.M.; Ramamurthy, V.

    2000-01-11

    Supercages of Li{sup +}- and Na{sup +}-exchanged X and Y zeolites are much more polar than even water. The extent of polarity depends on the nature and the number of cations present within a supercage. The polarity of Li{sup +}- and Na{sup +}-exchanged X and Y zeolites decreases in the presence of water. In presence of water the contribution of cations toward polarity is much smaller than water itself. In this study polarity has been monitored with organic probe molecules, Nile red, pyrene 1-carboxaldehyde and coumarin-500. A connection between polarity and electric field within a cage has also been established. Since the supercages are much more polar than all organic solvents, they can be characterized as superpolar. Because of this one may be able to achieve excited-state switching of carbonyl compounds within a zeolite while such may not be possible in organic solvents. The n{pi}*-{pi}{pi}* state switching of acetophenones is easily achieved within a zeolite while such does not occur in polar solvent methanol-ethanol mixture.

  20. Influence of NaA Zeolite Crystal Expansion/Contraction on Zeolite Membrane Separations

    SciTech Connect

    Sorenson, Stephanie G; Payzant, E Andrew; Gibbons, Will T; Soydas, Belma; Kita, Hidetoshi; Noble, Richard D; Falconer, John L.

    2011-01-01

    In-situ powder XRD measurements showed that the NaA zeolite unit cell contracts and expands upon adsorption, and these changes in zeolite crystal size correlate with permeation changes through NaA zeolite membranes. These membranes had high pervaporation selectivities, even though gas permeation was mainly through defects, as indicated by Knudsen selectivities for gases. At 300 K and a thermodynamic activity of 0.03, water contracted the NaA crystals by 0.22 vol%, and this contraction increased the helium flux through two NaA membranes by approximately 80%. Crystal contraction also increased the fluxes of i-butane during vapor permeation and i-propanol (IPA) during pervaporation (~ 0.03 wt% water). At activities above 0.07, water expanded NaA crystals and correspondingly decreased the membrane fluxes of helium, i-butane, and IPA. Similarly, methanol contracted NaA crystals by 0.05 vol% at an activity of 0.02, and this contraction slightly increased the helium and i-butane fluxes through a NaA membrane. Above an activity of 0.06, methanol expanded the crystals, and the fluxes of helium and i-butane through a NaA membrane decreased. The adsorbate-induced changes explain some pervaporation behavior reported by others, and they indicate that crystal expansion and contraction may increase or decrease zeolite NaA membrane selectivity by changing the defect sizes.

  1. Tabulation and evaluation of ion exchange data on smectites, certain zeolites and basalt

    SciTech Connect

    Benson, L.V.

    1980-05-01

    An extensive search of the literature has been made for ion exchange data on smectites, certain zeolites and basalt. The data are in the form of thermodynamic equilibrium constants, corrected selectivity coefficients, and distribution coefficients. Room temperature alkali and alkaline earth metal cation ion exchange data for smectites are extensive. Correlation between the exchange free energies of alkali metal cations on Camp Berteau montmorillonite values with their Debeye-Hueckel parameter was found. Significant differences in values of exchange constants for the same reaction on different smectites were noted. While this in part may be attributable to differences in experimental procedures, much of the variance is probably due to differences in charge densities and the effective field strengths of the smectites. Differences in field strength are related to the type and amount of substitution on intercrystalline octahedral and tetrahedral sites. Data on smectites suggest that cation exchange selectivities are very strong functions of temperature. Experiments on the exchange properties of clinoptilolite and mordenite have been generally confined to alkali and alkaline earth cations although data for certain transition metal ions are also available for synthetic mordenite. The temperature dependences of zeolite exchange selectivities remain largely unknown. Distribution coefficients for groundwater-basalt systems have been measured for a variety of elements at temperatures up to 150/sup 0/C. Steady state concentrations are often never achieved either from the sorption or the desorption side. Classical models of ion exchange have been applied successfully to zeolite and smectite exchange reactions. The sorption behavior of a basalt is better treated with models of the interface which take surface ionization and complexation into account.

  2. Evaluation of the removal of Strontium-90 from groundwater using a zeolite rich-rock permeable treatment wall

    NASA Astrophysics Data System (ADS)

    Seneca, S. M.; Rabideau, A. J.; Bandilla, K.

    2010-12-01

    Experimental and modeling studies are in progress to evaluate the long-term performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Multiple column tests were performed at the University at Buffalo and on-site West Valley Environmental Services; columns were supplied with synthetic groundwater referenced to anticipate field conditions and radioactive groundwater on-site WVES. The primary focus in this work is on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+); the data obtained from the column studies is used to support the robust estimation of zeolite cation exchange parameters. This research will produce a five-solute cation exchange model describing the removal efficiency of the zeolite, using the various column tests to calibrate and validate the geochemical transport model. The field-scale transport model provides flexibility to explore design parameters and potential variations in groundwater geochemistry to investigate the long-term performance of a full scale treatment wall at the Western New York nuclear facility.

  3. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-12-31

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  4. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-01-01

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  5. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    PubMed

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance.

  6. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  7. Electron trapping in polar-solvated zeolites.

    PubMed

    Ellison, Eric H

    2005-11-03

    Of current interest in our laboratory is the nature of photoinduced processes in the cavities of zeolites completely submerged in polar solvents, or polar-solvated zeolites (PSZ). The present study addresses the nature of electron trapping in PSZ with emphasis on the zeolites NaX and NaY. Free electrons were generated by two-photon, pulsed-laser excitation of either pyrene or naphthalene included in zeolite cavities. Trapped electrons were monitored by diffuse transmittance, transient absorption spectroscopy at visible wavelengths. In anhydrous alcohols, electron trapping by Na(4)(4+) ion clusters was observed in both NaX and NaY. The resulting trapped electrons decayed over the course of tens of milliseconds. No evidence for alcohol-solvated electrons was found. More varied results were observed in solvents containing water. In NaX submerged in CH(3)OH containing 5% or higher water, species having microsecond lifetimes characteristic of solvated electrons were observed. By contrast, a 2 h exposure of NaY to 95/5 CH(3)OH/H(2)O had no effect on electron trapping relative to anhydrous CH(3)OH. The difference between NaX and NaY was explained by how fast water migrates into the sodalite cage. Prolonged exposure to water at room temperature or exposure to water at elevated temperatures was necessary to place water in the sodalite cages of NaY and deactivate Na(4)(4+) as an electron trap. Additional studies in NaY revealed that solvent clusters eventually become lower energy traps than Na(4)(4+) as the water content in methanol increases. In acetonitrile-water mixtures, electron trapping by Na(4)(4+) was eliminated and no equivalent species characteristic of solvated electrons in methanol-water mixtures was observed. This result was explained by the formation of low energy solvated electrons which cannot be observed in the visible region of the spectrum. Measurements of the rate of O(2) quenching in anhydrous solvents revealed rate constants for the quenching of ion

  8. Growth of large zeolite crystals in space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

    1988-01-01

    Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

  9. Hydrogen storage in Chabazite zeolite frameworks.

    PubMed

    Regli, Laura; Zecchina, Adriano; Vitillo, Jenny G; Cocina, Donato; Spoto, Giuseppe; Lamberti, Carlo; Lillerud, Karl P; Olsbye, Unni; Bordiga, Silvia

    2005-09-07

    We have recently highlighted that H-SSZ-13, a highly siliceous zeolite (Si/Al = 11.6) with a chabazitic framework, is the most efficient zeolitic material for hydrogen storage [A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjørgen and K. P. Lillerud, J. Am. Chem. Soc., 2005, 127, 6361]. The aim of this new study is thus to clarify both the role played by the acidic strength and by the density of the polarizing centers hosted in the same framework topology in the increase of the adsorptive capabilities of the chabazitic materials towards H2. To achieve this goal, the volumetric experiments of H2 uptake (performed at 77 K) and the transmission IR experiment of H2 adsorption at 15 K have been performed on H-SSZ-13, H-SAPO-34 (the isostructural silico-aluminophosphate material with the same Brønsted site density) and H-CHA (the standard chabazite zeolite: Si/Al = 2.1) materials. We have found that a H2 uptake improvement has been obtained by increasing the acidic strength of the Brønsted sites (moving from H-SAPO-34 to H-SSZ-13). Conversely, the important increase of the Brønsted sites density (moving from H-SSZ-13 to H-CHA) has played a negative role. This unexpected behavior has been explained as follows. The additional Brønsted sites are in mutual interaction via H-bonds inside the small cages of the chabazitic framework and for most of them the energetic cost needed to displace the adjacent OH ligand is higher than the adsorption enthalpy of the OH...H2 adduct. From our work it can be concluded that proton exchanged chabazitic frameworks represent, among zeolites, the most efficient materials for hydrogen storage. We have shown that a proper balance between available space (volume accessible to hydrogen), high contact surface, and specific interaction with strong and isolated polarizing centers are the necessary characteristics requested to design better materials for molecular H2 storage.

  10. Imperfect wetting of hydrogen in zeolite

    SciTech Connect

    Sullivan, N.S.; Rall, M.

    1995-11-01

    We have considered the theoretical dependencies of the amount of supercooling of liquid hydrogen as a function of pore size for constrained geometries in order to compare the different mechanisms for supercooling that can be observed: notably the inhibition of nucleation in small geometries and the use of surfaces for which there is imperfect wetting. Analysis of the dependence of the observed supercooling reported elsewhere for molecular hydrogen and hydrogen deuteride on the pore size in zeolites supports the view that imperfect wetting occurs for small pores that have rough surfaces and dimension less than approximately 10{angstrom}.

  11. FT-IR Spectroscopic Study of 1,5-Pentanedithiol and 1,6-Hexanedithiol Adsorbed on NaA, CaA and NaY Zeolites

    NASA Astrophysics Data System (ADS)

    Öztürk, Nuri; Çırak, Çağrı; Bahçeli, Semiha

    2005-09-01

    The adsorption of 1,5-pentanedithiol (1,5-PDT) and 1,6-hexanedithiol (1,6-HDT) in liquid phases on NaA (or 4A-type), CaA (or 5A-type) and NaY zeolites has been studied by using infrared spectroscopy. From the IR spectra it is found that the peak positions of the symmetric as well as the antisymmetric modes of the methylene (CH2) groups are observed at almost the same band values for the title dithiolates adsorbed on the A-type and NaY zeolites. On the other hand, the weak SH stretching vibration, observed for all samples, can be attributed to the sulphure atoms of 1,5-PDT and 1,6-HDT coordinatively adsorbed on cationic sites of the zeolites.

  12. Natural zeolite permeable treatment wall for removing Sr-90 from groundwater.

    PubMed

    Seneca, Shannon M; Rabideau, Alan J

    2013-02-05

    Experimental and modeling studies were completed to investigate the potential performance of a sorbing permeable treatment wall (PTW) comprised of natural zeolite for removal of strontium-90 (Sr-90) from groundwater at the West Valley Demonstration Project (WVDP) near Buffalo, NY. Multiple column tests were performed at the University at Buffalo (UB) and WVDP for periods ranging from 6 months to 2 years; UB columns were supplied with synthetic groundwater referenced to anticipated field conditions, while radioactive groundwater obtained on site was used for the WVDP columns. The primary focus was on quantifying the competitive cation reactions among five cations (Na(+), K(+), Ca(2+), Mg(2+), Sr(2+)) and Sr-90 with data obtained from the column studies used to estimate Gaines-Thomas (GT) selectivity coefficients. The resulting six-solute transport model provided flexibility to explore the influence of PTW parameters on long-term PTW performance, including variations in Sr-90 concentrations and groundwater geochemistry. The natural zeolite PTW is a viable method for in situ removal of Sr-90 from groundwater and potentially applicable to other sites contaminated by Sr-90.

  13. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  14. Radiolytic preparation of nanosized Pt particles in sodium zeolite A

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, R.; Kapoor, S.; Kulshreshtha, S. K.

    2002-04-01

    Nanosized platinum metal particles in zeolite NaA have been prepared by four different methods, namely, (I) γ-radiolysis of zeolite A sample exchanged with [Pt(NH 3) 4] 2+, (II) γ-radiolysis of precursor gel containing Pt 2+ ions followed by hydrothermal crystallisation to form zeolite A, (III) hydrogen reduction of Pt 2+ ions containing precursor gel followed by hydrothermal crystallisation and (IV) impregnation of zeolite A with H 2PtCl 6 solution followed by reduction at 200 °C in hydrogen flow. The size of Pt metal particles has been evaluated from X-ray line broadening and TEM and is found to be in the range of 5-15 nm for samples II, III and IV. Based on catalytic activity of these samples for hydrogenation of ethylene and cyclohexene, it is inferred that for sample I, Pt metal particles are confined to the pores of zeolite A. Unlike this, the Pt metal particles are randomly distributed in the zeolite matrix for samples II and III. For sample IV, the Pt metal particles are present over the surface of zeolite A.

  15. Synthesis of zeolite phases from combustion by-products.

    PubMed

    Pimraksa, Kedsarin; Chindaprasirt, Prinya; Setthaya, Naruemon

    2010-12-01

    Synthesis of zeolites from combustion by-products, including fly ash, bottom ash and rice husk ash, was studied. A molar ratio of SiO2/Al2O3 of 1.5 was used for the syntheses. Refluxing and hydrothermal methods were also used for synthesis for comparison. The reaction temperatures of refluxing and hydrothermal methods were 100 degrees C and 130 degrees C, respectively. Sodalite, phillipsite-K, and zeolite P1 with analcime were obtained when fly ash, bottom ash and rice husk ash were used as starting materials, respectively. With rice husk ash as a starting material, zeolite P1 was produced. This result had advantages over previous studies as there was no prior activation required for the synthesis. The concentrations and types of alkaline used in the synthesis also determined the zeolite type. The different zeolites obtained from three systems were measured for specific surface area and pore size by using BET and Hg-porosimetry, respectively. Ammonium exchange capacities of the synthesised powders containing zeolites, sodalite, zeolite P1 and phillipsite-K were 38.5, 65.0 and 154.7 meq 100 g(-1), respectively.

  16. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  17. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  18. Synthetic cathinone abuse

    PubMed Central

    Capriola, Michael

    2013-01-01

    The abuse of synthetic cathinones, widely known as bath salts, has been increasing since the mid-2000s. These substances are derivatives of the naturally occurring compound cathinone, which is the primary psychoactive component of khat. The toxicity of synthetic cathinones includes significant sympathomimetic effects, as well as psychosis, agitation, aggression, and sometimes violent and bizarre behavior. Mephedrone and methylenedioxypyrovalerone are currently the predominantly abused synthetic cathinones. PMID:23869180

  19. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg(2+) ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, (27)Al/(29)Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2(nd) law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  20. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps

    PubMed Central

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K.; Ong, Ta-Chung; Keeler, Eric G.; Kim, Hyunho; McKay, Ian S.; Griffin, Robert G.; Wang, Evelyn N.

    2014-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, 27Al/29Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick’s 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  1. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    SciTech Connect

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  2. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  3. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  4. Ion exchange of ammonium in natural and synthesized zeolites.

    PubMed

    Wang, Yifei; Lin, Feng; Pang, Wenqin

    2008-12-30

    In this study, zeolite Na-P and Na-Y was prepared by hydrothermal treatment of the Chinese natural clinoptilolite with NaOH. The ion exchange of NH4+ into the three zeolites in the temperature range of 288-333K was also investigated, and the thermodynamic parameters were calculated. The selectivity sequence for NH4+ entering the sodium form of the three materials was Na-clinoptilolite>Na-Y>Na-P, as indicated by values of DeltaG degrees . The results demonstrated that the Si/Al molar ratio of zeolites determined the selectivity for NH4+.

  5. Method of preparing sodalite from chloride salt occluded zeolite

    SciTech Connect

    Lewis, Michele A.; Pereira, Candido

    1997-01-01

    A method for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000.degree. K. to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  6. Method of preparing sodalite from chloride salt occluded zeolite

    DOEpatents

    Lewis, M.A.; Pereira, C.

    1997-03-18

    A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  7. Method of preparing sodalite from chloride salt occluded zeolite A

    SciTech Connect

    Lewis, M.A.; Pereira, C.

    1995-12-31

    A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistance sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1,000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  8. Zeolite-filled PDMS membranes. 1. Sorption of halogenated hydrocarbons

    SciTech Connect

    Vankelecom, I.F.J.; Dotermont, C.; Morobe, M.; Uytterhoeven, J.B.; Vandecasteele, C.

    1997-03-20

    Aiming at a more thorough understanding of the influence of zeolite fillers in PDMS membranes on the pervaporation of chlorinated hydrocarbons from aqueous solutions, the sorption aspect of this separation process was studied. Firstly, the sorption of water and five different chlorinated hydrocarbons was investigated in the zeolite and the polymer separately. Secondly, the composite system was considered and conclusions were drawn concerning interactions at the zeolite-polymer interphase. Finally, the sorption results obtained on the self-synthesized membranes were compared with measurements on commercially available PDMS membranes (GFT). 23 refs., 11 figs., 3 tabs.

  9. Solvent-free synthesis of zeolites from solid raw materials.

    PubMed

    Ren, Limin; Wu, Qinming; Yang, Chengguang; Zhu, Longfeng; Li, Caijin; Zhang, Pengling; Zhang, Haiyan; Meng, Xiangju; Xiao, Feng-Shou

    2012-09-19

    As important industrial materials, microporous zeolites are necessarily synthesized in the presence of solvents such as in hydrothermal, solvothermal, and ionothermal routes. We demonstrate here a simple and generalized solvent-free route for synthesizing various types of zeolites by mixing, grinding, and heating solid raw materials. Compared with conventional hydrothermal route, the avoidance of solvents in the synthesis not only significantly reduces the waste production, but also greatly increases the yield of zeolite products. In addition, the use of starting solid raw materials remarkably enhances the synthesis efficiency and reduces the use of raw materials, energy, and costs.

  10. Evaluation of natural zeolite as microorganism support medium in nitrifying batch reactors: influence of zeolite particle size.

    PubMed

    Mery, C; Guerrero, L; Alonso-Gutiérrez, J; Figueroa, M; Lema, J M; Montalvo, S; Borja, R

    2012-01-01

    An evaluation of natural zeolite as a microorganism carrier in nitrifying reactors operated in batch mode was carried out. Specifically, the influence of zeolite particle sizes of 0.5, 1.0 and 2.0 mm in diameter on microorganism adherence to zeolite, ammonium adsorption capacity and the identification of microbial populations were assessed. The greatest amount of total biomass adhered was observed for a zeolite particle size of 1 mm (0.289 g) which was achieved on the 12th day of operation. The highest ammonium adsorption capacity was observed for a zeolite particle size of 0.5 mm, which was 64% and 31% higher than that observed for particle sizes of 1.0 and 2.0 mm, respectively. The maximum de-sorption values were also found for a zeolite particle size of 0.5 mm, although when equilibrium was reached the ammonium concentrations were similar to those observed for a zeolite particle size of 1.0 mm. It was also found that the experimental data on ammonium adsorption fitted very well to the Freundlich isotherm for the three particle sizes studied. Finally, the nitrifying reactors showed similar microbial populations independently of the particle size used as microorganism carrier. The dominant bacterial community was Gammaproteobacteria making up 80% of the total population found. Betaproteobacteria were also identified and made up 12% approx. of the total population. Ammonium Oxidant Betaproteobacteria and Nitrobacter were also detected.

  11. Gallium Zeolites for Light Paraffin Aromatization

    SciTech Connect

    Price, G.L.; Dooley, K.M.

    1999-02-10

    The primary original goal of this project was to investigate the active state of gallium-containing MFI catalysts for light paraffin aromatization, in particular the state of gallium in the active material. Our original hypothesis was that the most active and selective materials were those which contained gallium zeolitic cations, and that previously reported conditions for the activation of gallium-containing catalysts served to create these active centers. We believed that in high silica materials such as MFI, ion-exchange is most effectively accomplished with metals in their 1+ oxidation state, both because of the sparsity of the anionic ion-exchange sites associated with the zeolite, and because the large hydration shells associated with aqueous 3+ cations hinder transport. Metals such as Ga which commonly exist in higher oxidation states need to be reduced to promote ion-exchange and this is the reason that reduction of gallium-containing catalysts for light paraffin aromatization often yields a dramatic enhancement in catalytic activity. We have effectively combined reduction with ion-exchange and we term this combined process ''reductive solid-state ion-exchange''. Our hypothesis has largely been proven true, and a number of the papers we have published directly address this hypothesis.

  12. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  13. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  14. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment.

    PubMed

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2005-01-01

    Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

  15. Synthesis and characterization of nanocrystalline mordenite, high silica zeolite RHO, and copper faujasite

    NASA Astrophysics Data System (ADS)

    Hincapie Palacio, Beatriz Omaira

    Mordenite is a zeolite that has been used as a selective adsorbent and as a catalyst. In reactions where the diffusion of reagents into the pore system is the rate-determining step, nanoparticles of the catalyst improve the reaction rate. Mordenite with a crystal diameter smaller than 100 nm has been prepared by the modification of different synthetic parameters such as the source of aluminum, the presence of seeds, the use of low temperatures (150°C vs. 170°C), longer crystallization times (24 h vs. 96 h), and different silica to alumina ratios (10--30). The decrease in the crystal diameter of the prepared mordenite was monitored by the application of the Scherrer equation that relates the broadness of the X-ray diffraction peaks to crystal sizes. Zeolite RHO with an initial silica to alumina ratio (SAR) higher than 20 has been prepared. EDTA, citric acid, and tartaric acid have been used as complexing agents in the synthesis of zeolite RHO. Crystallization time increases (from 48 h to 900 h) with increasing the silica to alumina ratios (SAR) of the initial gel (SAR: 10.8 to 30) and by adding complexing agents. Complexing agents favor the formation of small crystals (0.8 mum) with increased silica to alumina ratio (final SAR: 4.5 vs. 4.0 without complexing agents). The products were characterized by XRD, FESEM, EDX, FTIR, and in-situ XRD. Copper containing faujasite has been successfully prepared for the first time using a direct synthesis method. Ammonium hydroxide was used to form a copper complex that was later mixed with the reacting gel. Crystallization took place at 85°C for 11 days. The copper containing faujasite obtained was characterized by XRD, FESEM, EDX, EPR, FTIR, TPR, and BET. According to the XRD pattern only FAU type zeolite was obtained. According to TPR experiments, the reduction temperature for Cu2+ ions present in Cu-FAU prepared by direct synthesis was 70 K higher than for Cu-FAU prepared by ion-exchange. This difference can be due to the

  16. Adsorption of divalent lead ions by zeolites and activated carbon: effects of pH, temperature, and ionic strength.

    PubMed

    Payne, Kelly B; Abdel-Fattah, Tarek M

    2004-01-01

    Lead alloy bullets used at the 2600 military small arm ranges and 9000 nonmilitary outdoor shooting ranges in the United States are a source of mobilized lead ions under conditions of low pH, significant changes in ionic strength, changes in the reduction oxidation potential (redox), and through binding metal ions to soil organic matter. Once mobile, these lead ions can contaminate adjacent soil and water. Batch adsorption kinetic and isotherm studies were conducted to compare and evaluate different types of adsorbents for lead ion removal from aqueous media. The effects on lead ion absorption from pH changes, competing ions, and temperature increases were also investigated. Adsorbent materials such as activated carbon and naturally occurring zeolites (clinoptilolite and chabazite) were selected because of their relative low cost and because the zeolites are potential point-of-use materials for mitigating wastewater runoff. Molecular sieves, Faujasite (13X) and Linde type A (5A) were selected because they provide a basis for comparison with previous studies and represent well-characterized materials. The relative rate for lead ion adsorption was: 13X > chabazite > clinoptilolite > 5A > activated carbon. Modeling lead ion adsorption by these adsorbents using the Langmuir and Freundlich isotherm expressions determined the adsorbents' capacity for lead ion removal from aqueous media. 13X, 5A, and activated carbon best fit the Langmuir isotherm expression; chabazite and clinoptilolite best fit the Freundlich isotherm. Applications of chabazite would require pH values between 4 and 11, clinoptilolite between 3 and 11, while activated carbon would operate at a pH above 7. Ionic competition reduced lead ion removal by the zeolites, but enhanced activated carbon performance. Increasing temperature improved adsorption performance for the zeolites; activated carbon lead ion adsorption was temperature independent.

  17. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  18. Molecular Chemistry in a Zeolite: Genesis of a Zeolite Y-Supported Ruthenium Complex Catalyst

    SciTech Connect

    Ogino, I.; Gates, B.C.

    2009-05-22

    Dealuminated zeolite Y was used as a crystalline support for a mononuclear ruthenium complex synthesized from cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2}. Infrared (IR) and extended X-ray absorption fine structure spectra indicated that the surface species were mononuclear ruthenium complexes, Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+}, tightly bonded to the surface by two Ru-O bonds at Al{sup 3+} sites of the zeolite. The maximum loading of the anchored ruthenium complexes was one complex per two Al{sup 3+} sites; at higher loadings, some of the cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2} was physisorbed. In the presence of ethylene and H{sub 2}, the surface-bound species entered into a catalytic cycle for ethylene dimerization and operated stably. IR data showed that at the start of the catalytic reaction, the acac ligand of the Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+} species was dissociated and captured by an Al{sup 3+} site. Ethylene dimerization proceeded 600 times faster with a cofeed of ethylene and H{sub 2} than without H{sub 2}. These results provide evidence of the importance of the cooperation of the Al{sup 3+} sites in the zeolite and the H{sub 2} in the feed for the genesis of the catalytically active species. The results presented here demonstrate the usefulness of dealuminated zeolite Y as a nearly uniform support that allows precise synthesis of supported catalysts and detailed elucidation of their structures.

  19. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions.

    PubMed

    Gounder, Rajamani; Iglesia, Enrique

    2013-05-04

    chemical composition, thus enabling voids of a given size and shape to provide the "right fit" for a given elementary step, defined as that which minimizes Gibbs free energies of activation. Tighter confinement is preferred at low temperatures because enthalpic gains prevail over concomitant entropic losses, while looser fits are favored at high temperatures because entropy gains offset losses in enthalpic stabilization. Confinement and solvation by van der Waals forces are not directly involved in the making or breaking of strong chemical bonds; yet, they confer remarkable diversity to zeolites, in spite of their structural rigidity and their common aluminosilicate composition. A single zeolite can itself contain a range of local void environments, each with distinct reactivity and selectivity; as a result, varying the distribution of protons among these locations within a given framework or modifying a given location by partial occlusion of the void space can extend the range of catalytic opportunities for zeolites. Taken together with theoretical tools that accurately describe van der Waals interactions between zeolite voids and confined guests and with synthetic protocols that place protons or space-filling moieties at specific locations, these concepts promise to broaden the significant impact and catalytic diversity already shown by microporous solids.

  20. Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier

    2016-12-14

    Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture.

  1. Solid state NMR of porous materials : zeolites and related materials.

    PubMed

    Koller, Hubert; Weiss, Mark

    2012-01-01

    Solid state NMR spectroscopy applied to the science of crystalline micro- and mesoporous silica materials over the past 10 years is reviewed. A survey is provided of framework structure and connectivity analyses from chemical shift effects of various elements in zeolites including heteroatom substitutions, framework defects and pentacoordinated silicon for zeolites containing fluoride ions. New developments in the field of NMR crystallography are included. Spatial host-guest ordering and confinement effects of zeolite-sorbate complexes are outlined, with special emphasis on NMR applications utilizing the heteronuclear dipolar interaction. The characterization of zeolite acid sites and in situ NMR on catalytic conversions is also included. Finally, the motion of extra-framework cations is investigated in two tutorial cases of sodium hopping in sodalite and cancrinite.

  2. Hydrogen Adsorption in Zeolite Studied with Sievert and Thermogravimetric Methods

    NASA Astrophysics Data System (ADS)

    Lesnicenoks, P.; Sivars, A.; Grinberga, L.; Kleperis, J.

    2012-08-01

    Natural clinoptilolite (mixture from clinoptilolite, quartz and muscovite) is activated with palladium and tested for hydrogen adsorption capability at temperatures RT - 200°C. Thermogravimetric and volumetric methods showed that zeolite activated with palladium (1.25%wt) shows markedly high hydrogen adsorption capacity - up to 3 wt%. Lower amount of adsorbed hydrogen (~1.5 wt%) was found for raw zeolite and activated with higher amount of palladium sample. Hypothesis is proposed that the heating of zeolite in argon atmosphere forms and activates the pore structure in zeolite material, where hydrogen encapsulation (trapping) is believed to occur when cooling down to room temperature. An effect of catalyst (Pd) on hydrogen sorption capability is explained by spillover phenomena were less-porous fractions of natural clinoptilolite sample (quartz and muscovite) are involved.

  3. Zeolite - A Natural Filter Material for Lead Polluted Water

    NASA Astrophysics Data System (ADS)

    Neamţu, Corina Ioana; Pică, Elena Maria; Rusu, Tiberiu

    2014-11-01

    Reducing the concentration of lead ions in a wastewater using zeolite has proven to be a successful water treatement method, all over the world. Putting the two media (solid and liquid) in contact in static conditions had good results regarding the concentration of the filtered solution, the pH and the electric conductivity, depending on the values of certain parameters such as the amount of the zeolite, volume of the solution or interaction time. The present study highlights the zeolite ability to retain the lead ions from a solution, in dynamic interaction conditions between the two environments, in a short interaction time. The results confirmed the effectiveness of ion exchange water treatment method in the conditions set, emphasizing once again the properties of the filter material - the zeolite

  4. Comparative study of the removal of coke from protonic zeolites

    SciTech Connect

    Gnep, N.S.; Roger, P.; Magnoux, P.; Guisnet, M.

    1993-12-31

    The transformation of methanol was carried out at 400{degrees}C on four protonic zeolites: USHY (framework Si/Al ratio equal to 5), HZSM5 (Si/Al = 45), two mordenites HMOR (Si/Al = 7.5) and HMORDA (Si/Al = 80) prepared by dealumination of HMOR through hydrothermal and acid treatments. The composition of coke determined through the method developed in the authors` laboratory depended slightly on the zeolite. The amount of coke removed for the zeolites through oxidative treatment was determined as function of the temperature and for various coke contents. The rate of coke removal depended slightly on the coke content and on the coke composition by very much on the zeolite. In particular the coke of HMORDA and of HZSM5 was eliminated at high temperature only.

  5. CO2 capture using zeolite 13X prepared from bentonite

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2014-02-01

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N2-adsorption-desorption measurements, and scanning electron microscopy. The CO2 capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m2/g with a high micropore volume (0.30 cm3/g), and exhibited high CO2 capture capacity (211 mg/g) and selectivity to N2 (CO2/N2 = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO2 adsorption-desorption recycling performance at both 25 and 200 °C.

  6. Reactivity of isobutane on zeolites: a first principles study.

    PubMed

    Zheng, Xiaobo; Blowers, Paul

    2006-02-23

    In this work, ab initio and density functional theory methods are used to study isobutane protolytic cracking, primary hydrogen exchange, tertiary hydrogen exchange, and dehydrogenation reactions catalyzed by zeolites. The reactants, products, and transition-state structures are optimized at the B3LYP/6-31G* level, and the final energies are calculated using the CBS-QB3 composite energy method. The computed activation barriers are 52.3 kcal/mol for cracking, 29.4 kcal/mol for primary hydrogen exchange, 29.9 kcal/mol for tertiary hydrogen exchange, and 59.4 kcal/mol for dehydrogenation. The zeolite acidity effects on the reaction barriers are also investigated by changing the cluster terminal Si-H bond lengths. The analytical expressions between activation barriers and zeolite deprotonation energies for each reaction are proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts.

  7. The stability of copper oxo species in zeolite frameworks

    SciTech Connect

    Vilella, Laia; Studt, Felix

    2016-03-07

    Cu-exchanged zeolites are promising heterogeneous catalysts, as they provide a confined environment to carry out highly selective reactions. Furthermore, the knowledge of how the zeolite framework and the location of Al atoms therein affect the adsorption of copper species is still not well understood. In this work, DFT was used to investigate the adsorption of potential Cu oxo active species suggested in the literature [Cu(η2-O2), Cu(µ-O)Cu, and Cu2O2] into zeolites with different pore sizes and shapes (AFI, CHA, TON, MOR, and MFI). The calculations revealed that both monomeric and dimeric Cu oxo species bind strongly to the O atoms of the lattice. For the monometallic species similar adsorption energies are obtained with the different zeolite frameworks, whereas an optimum Al–Al distance is required for the dimeric species.

  8. The stability of copper oxo species in zeolite frameworks

    DOE PAGES

    Vilella, Laia; Studt, Felix

    2016-03-07

    Cu-exchanged zeolites are promising heterogeneous catalysts, as they provide a confined environment to carry out highly selective reactions. Furthermore, the knowledge of how the zeolite framework and the location of Al atoms therein affect the adsorption of copper species is still not well understood. In this work, DFT was used to investigate the adsorption of potential Cu oxo active species suggested in the literature [Cu(η2-O2), Cu(µ-O)Cu, and Cu2O2] into zeolites with different pore sizes and shapes (AFI, CHA, TON, MOR, and MFI). The calculations revealed that both monomeric and dimeric Cu oxo species bind strongly to the O atoms ofmore » the lattice. For the monometallic species similar adsorption energies are obtained with the different zeolite frameworks, whereas an optimum Al–Al distance is required for the dimeric species.« less

  9. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  10. Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone.

    PubMed

    Zhang, Yongjun; Mancke, Raoul Georg; Sabelfeld, Marina; Geißen, Sven-Uwe

    2014-04-30

    A FAU-type zeolite was studied as an adsorbent to remove 2,4,6-trichlorophenol (TCP), a frequently detected recalcitrant pollutant in water bodies. Both adsorption isotherm and kinetics were studied with TCP concentrations from 10 to 100mg/L. It was observed that TCP was effectively adsorbed onto the zeolite with a high adsorption capacity and a high kinetic rate. Freundlich model and pseudo-second-order kinetics were successfully applied to describe the experimental data. The influence of solution pH was also studied. Furthermore, ozone was applied to regenerate the loaded zeolite. It was found that an effective adsorption of TCP was kept for at least 8 cycles of adsorption and regeneration. The ozonation also increased the BET specific surface of zeolite by over 60% and consequently enhanced the adsorption capacity.

  11. "Ab initio" synthesis of zeolites for preestablished catalytic reactions.

    PubMed

    Gallego, Eva María; Portilla, M Teresa; Paris, Cecilia; León-Escamilla, Alejandro; Boronat, Mercedes; Moliner, Manuel; Corma, Avelino

    2017-03-10

    Unlike homogeneous catalysts that are often designed for particular reactions, zeolites are heterogeneous catalysts that are explored and optimized in a heuristic fashion. We present a methodology for synthesizing active and selective zeolites by using organic structure-directing agents that mimic the transition state (TS) of preestablished reactions to be catalyzed. In these zeolites, the pores and cavities could be generated approaching a molecular-recognition pattern. For disproportionation of toluene and isomerization of ethylbenzene into xylenes, the TSs are larger than the reaction products. Zeolite ITQ-27 showed high disproportionation activity, and ITQ-64 showed high selectivity for the desired para and ortho isomers. For the case of a product and TS of similar size, we synthesized a catalyst, MIT-1, for the isomerization of endo-dicyclopentane into adamantane.

  12. Metal Oxide/Zeolite Combination Absorbs H2S

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1989-01-01

    Mixed copper and molybdenum oxides supported in pores of zeolite found to remove H2S from mixture of gases rich in hydrogen and steam, at temperatures from 256 to 538 degree C. Absorber of H2S needed to clean up gas streams from fuel processors that incorporate high-temperature steam reformers or hydrodesulfurizing units. Zeolites chosen as supporting materials because of their high porosity, rigidity, alumina content, and variety of both composition and form.

  13. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  14. Cationic Zinc-Cadmium Alloy Clusters in Zeolite A

    SciTech Connect

    Readman,J.; Gameson, I.; Hriljac, J.; Anderson, P.

    2007-01-01

    Rietveld analysis of synchrotron powder X-ray diffraction data obtained from the product of the reaction of cadmium vapor with dehydrated zinc-exchanged zeolite A (LTA structure type) indicates the formation of cationic zinc-cadmium alloy clusters. The clusters are located in approximately 40% of the sodalite cages; the remaining 60% of the cages contain divalent zinc ions coordinated both to the oxygen atoms of the zeolite framework and to residual extra framework oxygen.

  15. Characterization of Chemical Properties, Unit Cell Parameters and Particle Size Distribution of Three Zeolite Reference Materials: RM 8850 - Zeolite Y, RM 8851 - Zeolite A and RM 8852 - Ammonium ZSM-5 Zeolite

    SciTech Connect

    Turner,S.; Sieber, J.; Vetter, T.; Zeisler, R.; Marlow, A.; Moreno-Ramirez, M.; Davis, M.; Kennedy, G.; Borghard, W.; et al

    2008-01-01

    Zeolites have important industrial applications including use as catalysts, molecular sieves and ion exchange materials. In this study, three zeolite materials have been characterized by the National Institute of Standards and Technology (NIST) as reference materials (RMs): zeolite Y (RM 8850), zeolite A (RM 8851) and ZSM-5 zeolite (RM 8852). They have been characterized by a variety of chemical and physical measurement methods: X-ray fluorescence (XRF), gravimetry, instrumental neutron activation analysis (INAA), nuclear magnetic resonance (NMR), calorimetry, synchrotron X-ray diffraction, neutron diffraction, laser light extinction, laser light scattering, electric sensing zone, X-ray sedimentation, scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and optical microscopy. The chemical homogeneity of the materials has been characterized. Reference values are given for the major components (major elements, loss on ignition [LOI] and loss on fusion [LOF]), trace elements and Si/Al and Na/Al ratios. Information values are given for enthalpies of formation, unit cell parameters, particle size distributions, refractive indices and variation of mass with variation in relative humidity (RH). Comparisons are made to literature unit cell parameters. The RMs are expected to provide a basis for intercomparison studies of these zeolite materials.

  16. Optical appearance of copper clusters and nanoparticles in zeolites

    NASA Astrophysics Data System (ADS)

    Petranovskii, Vitalii P.; Gurin, Valerij S.; Machorro, Roberto; Abbaspur, Alireza

    2004-08-01

    Copper incorporation into zeolites by the ion-exchange from Cu(II) solutions followed by different heat treatments results in a production of a number of species. Redistribution among different sites after dehydration, spontaneous and forced reduction, cluster and particle aggregation, etc. can occur, and a final copper state depends on type of zeolite, SiO2/Al2O3 molar ratio and processing conditions. Various species where observed: copper ions Cu2+ and Cu+, small particles and clusters Cun. We concentrate on the appearance of small copper clusters feasible in zeolites with size of cavities those match the cluster size. The clusters were simulated with ab initio quantum chemical calculations in the range of sizes 5 < n < 10 those are probable within zeolites cavities. Experimental data available on optical absorption of the reduced copper in the three types of zeolites can argue on the occurrence of the clusters stabilized within channels under mild reduction conditions while the larger copper nanoparticles appear under the harder reduction. The model calculation proposes some few-atomic copper clusters (Cun) as the candidates to fit the zeolite cavities with correspondence of the calculated absorption bands with the experimental spectra.

  17. Zeolite synthesis from fly ash and cement kiln dust

    SciTech Connect

    Grutzeck, M.W.

    1996-12-31

    Zeolites added to portland cement paste normally undergo a pozzolanic reaction. However, if the composition of the cement is modified by blending it with fly ash, the calcium silicate hydrate (C-S-H) that forms has a low CaO/SiO{sub 2} ratio which allows it to coexist with a zeolite. In fact, if one adds alkali to the system, it then becomes possible to nucleate and grow a zeolitic phase with C-S-H. Normally zeolites that form from fly ash and NaOH include NaP-1 and analcime. But when the fly ash and NaOH are mixed with cement kiln dust, cancrinite-like phases and tobermorite form instead. This implies that a zeolite-containing monolith could be produced that would exhibit both the cation-exchange and adsorptive properties of zeolites while retaining the characteristic strength and ease of use attributable to cement based materials. These composites show promise as a new class of inexpensive cation exchange and/or chemical adsorbents that can be used for large scale applications.

  18. Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit

    USGS Publications Warehouse

    Levy, S.S.; O'Neil, J.R.

    1989-01-01

    The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.

  19. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.

    PubMed

    Bährle, Christian; Custodis, Victoria; Jeschke, Gunnar; van Bokhoven, Jeroen A; Vogel, Frédéric

    2016-09-08

    Lignin from lignocellulosic biomass is a promising source of energy, fuels, and chemicals. The conversion of the polymeric lignin to fuels and chemicals can be achieved by catalytic and noncatalytic pyrolysis. The influence of nonporous silica and zeolite catalysts, such as silicalite, HZSM5, and HUSY, on the radical and volatile product formation during lignin pyrolysis was studied by in situ high-temperature electron paramagnetic resonance spectroscopy (HTEPR) as well as GC-MS. Higher radical concentrations were observed in the samples containing zeolite compared to the sample containing only lignin, which suggests that there is a stabilizing effect by the inorganic surfaces on the formed radical fragments. This effect was observed for nonporous silica as well as for HUSY, HZSM5, and silicalite zeolite catalysts. However, the effect is far larger for the zeolites owing to their higher specific surface area. The zeolites also showed an effect on the volatile product yield and the product distribution within the volatile phase. Although silicalite showed no effect on the product selectivity, the acidic zeolites such as HZSM5 or HUSY increased the formation of deoxygenated products such as benzene, toluene, xylene (BTX), and naphthalene.

  20. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  1. Nanosized zeolites as a perspective material for conductometric biosensors creation

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  2. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles.

  3. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  4. Catalytic test reactions for the evaluation of hierarchical zeolites.

    PubMed

    Hartmann, Martin; Machoke, Albert Gonche; Schwieger, Wilhelm

    2016-06-13

    Hierarchical zeolites have received increasing attention in the last decade due to their outstanding catalytic performance. Several types of hierarchical zeolites can be prepared by a large number of different techniques. Hierarchical zeolites combine the intrinsic catalytic properties of conventional zeolites and the facilitated access and transport in the additional meso- or macropore system. In this tutorial review, we discuss several test reactions that have been explored to show the benefit of the hierarchical pore system with respect to their suitability to prove the positive effects of hierarchical porous zeolites. It is important to note that positive effects on activity, stability and less frequently selectivity observed for hierarchically structured catalysts not necessarily are only a consequence of the additional meso- or macropores but also the number, strength and location of active sites as well as defects and impurities. With regard to these aspects, the test reaction has to be chosen carefully and potential changes in the chemistry of the catalyst have to be considered as well. In addition to the determination of conversion, yield and selectivity, we will show that the calculation of the activation energy and the determination of the Thiele modulus and the effectiveness factor are good indicators of the presence or absence of diffusion limitations in hierarchical zeolites compared to their parent materials.

  5. An analysis of commerical zeolite catalysts by multinuclear NMR

    SciTech Connect

    Flanagan, L.

    1990-09-21

    This work involves studying two commercial hydrocracking catalysts by solid state multinuclear NMR silicon 29 and aluminum 27 with the goal of developing a method of determining the fraction zeolite in the catalysts. The zeolite fraction is known to be one of the faujasite zeolites type X or Y. The clay matrix of the catalyst is assumed to be kaolinite. Fresh, air-exposed commercial hydrocracking catalysts were provided by Phillips Petroleum. Sample 33351-86 was known to be a physical mixture of a Y zeolite and a clay matrix. The other catalyst, 33351-20, was composed of a faujasite zeolite grown within a clay matrix. Both were suspected of being about 20 wt % zeolite. Nothing is known about the state of pretreatment or cation exchange. A portion of each catalyst was calcined in a porcelain crucible in air at 500{degree}C for two hours with a hour heating ramp preceding and a two hour cooling ramp following calcination. 64 refs., 21 figs., 8 tabs.

  6. Activity of titania and zeolite samples dosed with triethylamine

    SciTech Connect

    Baker, Caitlin; Gole, James L.; Brauer, Jonathan; Graham, Samuel; Hu, Jianzhi; Kenvin, Jeff; D'Amico, Andrew D.; White, Mark G.

    2016-01-01

    Certain properties of titania and the ammonium- and proton-form of Y zeolites (silica/alumina ratio of 5.2) were explored before and after treatment by triethylamine (TEA). The effect of the triethylamine upon the physical and chemical properties of both titania and the zeolite were characterized by physical and chemical adsorption methods. BET surface area data showed enhanced surface area of the TEA-treated nanotitania over the untreated nanotitania whereas the TEA-treated zeolite showed a considerable decrease in surface area compared to the untreated zeolite. TPD of the TEA-treated Y zeolite showed that weakly adsorbed TEA left the surface between 150 and 300 oC; strongly adsorbed TEA decomposed to ethylene and ammonia at higher temperatures. XPS, IR, and Raman spectroscopies, powder XRD, and 27Al MAS-NMR spectroscopy were used to further characterize the changes introduced by in-situ nitridation. Pre-adsorbed triethylamine decorated acid sites so as to neutralize these sites for the reaction of methanol to dimethylether. Carbon monoxide and ormaldehyde, products of the methanol probe reaction, were observed-- suggesting that basic sites are present in this treated zeolite and titania.

  7. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite.

    PubMed

    Purna Chandra Rao, G; Satyaveni, S; Ramesh, A; Seshaiah, K; Murthy, K S N; Choudary, N V

    2006-11-01

    The sorption and desorption of cadmium and zinc on zeolite 4A, zeolite 13X and bentonite has been studied using batch sorption studies. Parameters such as equilibrium time, effect of pH and sorbent dose were studied. The sorbents exhibited good sorption potential for cadmium and zinc with a peak value at pH 6.0 and 6.5, respectively. The sorption followed the Freundlich sorption model. More than 70% sorption occurred within 20 min and equilibrium was attained at around 90 min for the three sorbents. The metals sorption by zeolite 4A was higher than that by zeolite 13X and bentonite. The desorption studies were carried out using NaCl solution and the effect of NaCl concentration on desorption was also studied. Maximum desorption of 76% for cadmium and 80% for zinc occurred with 10% NaCl.

  8. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    PubMed Central

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-01-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3. PMID:25791958

  9. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    NASA Astrophysics Data System (ADS)

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-03-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3.

  10. Preparation and gas permeabilities of zeolite membranes

    SciTech Connect

    Jinqu Wang; Yongfeng Wang; Shuanshi Fan

    1994-12-31

    Zeolites with less than 10 {angstrom} pore are desirable membrane materials, due to their crystallinity, resistance to high temperature, and chemical inertness. A variety of new membranous materials were synthesized composed of a continuous intergrowth of 5-50 micrometer type A, X, Y, or ZSM-5 crystals. The membranes were crystallized under hydrothermal conditions at 90 to 220{degrees}C on the external surface of a porous ceramics. The reagents used were aluminum sulphate, water glass (20.1 wt% SiO{sub 2}, 6.09 wt% Na{sub 2}O, 73.8 wt% water), sodium hydroxide, sulphuric acid, deionized water and templating agents. The molar composition was: 0.1-0.5 Na{sub 2}O:1 SiO{sub 2}:0.04-0.05 Al{sub 2}O{sub 3}:20-60H{sub 2}O.

  11. Cobalt sites in zeolites FAU - IR investigations

    NASA Astrophysics Data System (ADS)

    Góra-Marek, Kinga; Mrowiec, Halina; Walas, Stanisław

    2009-04-01

    The properties of Co 2+ in zeolites CoX and CoY and their interaction with CO, NO, and propene were followed. The IR experiments of CO and NO informed on the electron acceptor properties of Co 2+ sites and the influence of framework composition and of geometry of Co 2+ environment on the properties of Co 2+. It has been found, that the activation of CO and NO is realized mostly by π back donation, on the other hand, the activation of C dbnd C double bond in propene is realized by π donation. The strength of molecules to Co 2+ bonding was followed in desorption experiments. It has been found, that σ donation in the case of CO and π donation has more important impact to the strength of molecule to Co 2+ bonding.

  12. Synthetic biological networks

    NASA Astrophysics Data System (ADS)

    Archer, Eric; Süel, Gürol M.

    2013-09-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics.

  13. Simultaneous existence of defects and mesopores in nanosized ZSM-5 zeolite studied by positron annihilation and X-ray diffraction spectroscopies

    NASA Astrophysics Data System (ADS)

    Anh Tuyen, L.; Quang Hung, N.; Chi Cuong, L.; Duy Khiem, D.; Trong Phuc, P.; Ly Nguyen, L.; Ngoc Hue, N. T.; Thi Hue, P.; Van Phuc, D.

    2017-02-01

    Crystallization, formation, and accumulation of defects and mesopores in the ZSM-5 zeolite samples, which are synthesized from the gel composition of 1.2Na2O 0.1Al2O3 0.8 tetra-propylammonium hydroxide (TPAOH) 6SiO2 400H2O at a temperature of 140 degree Celsius (°C) in 10, 15, and 18 h, are studied by using the Positron annihilation lifetime (PALS) and X-ray diffraction (XRD) spectroscopies. The XRD is used for investigating the crystalline concentration and nano-crystal size of ZSM-5 during the crystallizing process, whereas the PALS is performed in order to determine the presence of templates, defects, and mesopores in the zeolite samples. The latter are calcined in air during 1, 2, and 3 h at a temperature of 600 °C before being measured. The results obtained indicate that there exist clusters of small crystals in the early crystalline stages of the samples. The size of these crystals increases with time and reaches approximately 100 nm after 18 h of reaction. In addition, the template (TPAOH) is found to exist not only in the channels inside the framework but also in the mesopores outside it. Finally, by analyzing the Positron lifetime spectra, we have found for the first time the simultaneous existence of defects and mesopores, which are formatted and accumulated during the crystallization of ZSM-5. Those important results contribute significantly to our understanding of the internal structure of the synthetic zeolite ZSM-5 as well as the synthetic processes for producing zeolites with special features.

  14. What Are Synthetic Cannabinoids?

    MedlinePlus

    ... Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Prescription Drugs & Cold ... they are related to chemicals found in the marijuana plant. Because of this similarity, synthetic cannabinoids are ...

  15. Preparation of zeolite NaA for CO2 capture from nickel laterite residue

    NASA Astrophysics Data System (ADS)

    Du, Tao; Liu, Li-ying; Xiao, Penny; Che, Shuai; Wang, He-ming

    2014-08-01

    Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.

  16. Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals.

    PubMed

    Wang, Chunfeng; Li, Jiansheng; Sun, Xia; Wang, Lianjun; Sun, Xiuyun

    2009-01-01

    The pure-form zeolites (A and X) were synthesized by applying a two-stage method during hydrothermal treatment of fly ash prepared initial Cu and Zn gel. The difference of adsorption capacity of both synthesized zeolites was assessed using Cu and Zn as target heavy metal ions. It was found that adsorption capacity of zeolite A showed much higher value than that of zeolite X. Thus, attention was focused on investigating the removal performance of heavy metal ions in aqueous solution on zeolite A, comparing with zeolite HS (hydroxyl-solidate) prepared from the residual fly ash (after synthesis of pure-form zeolite A from fly ash) and a commercial grade zeolite A. Batch method was used to study the influential parameters of the adsorption process. The equilibrium data were well fitted by the Langmuir model. The removal mechanism of metal ions followed adsorption and ion exchange processes. Attempts were also made to recover heavy metal ions and regenerate adsorbents.

  17. BTX abatement using Chilean natural zeolite: the role of Brønsted acid sites.

    PubMed

    Alejandro, S; Valdés, H; Manero, M-H; Zaror, C A

    2012-01-01

    In wastewater treatment facilities, air quality is not only affected by conventional unpleasant odour compounds; toxic volatile organic compounds (VOCs) are also found. In this study, the adsorptive capacity of Chilean natural zeolite toward VOC removal was evaluated. Moreover, the influence of zeolite chemical surface properties on VOC elimination was also investigated. Three modified zeolite samples were prepared from a natural Chilean zeolite (53% clinoptilolite, 40% mordenite and 7% quartz). Natural and modified zeolite samples were characterised by nitrogen adsorption at 77 K, elemental analyses and X-ray fluorescence (XRF). Chemical modifications of natural zeolite showed the important role of Brønsted acid sites on the abatement of VOCs. The presence of humidity has a negative effect on zeolite adsorption capacity. Natural zeolites could be an interesting option for benzene, toluene and xylene vapour emission abatement.

  18. Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Prinzel, L.J.; Kramer, L.J.

    2009-01-01

    A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.

  19. Anisotropic compression of a synthetic potassium aluminogermanate zeolite with gismondine topology

    SciTech Connect

    Jang, Y.N.; Kao, C.; Vogt, T.; Lee, Y.

    2010-08-01

    Compression behavior of a potassium aluminogermanate with a gismondine framework topology (K-AlGe-GIS) was studied using in-situ high-pressure synchrotron X-ray powder diffraction. In contrast to the potassium gallosilicate analogue (K-GaSi-GIS), no elastic anomaly due to pressure-induced hydration and/or cation relocation was observed in K-AlGe-GIS. The Birch-Murnaghan fit to the pressure-volume data results in a bulk modulus of B{sub 0} = 31(1) GPa. The derived linear-axial compressibilities (i.e., {beta}{sub a} = 0.0065(5) GPa{sup -1}, {beta}{sub b} = 0.0196(4) GPa{sup -1}, {beta}{sub c} = 0.0081(7) GPa{sup -1}) indicate that the b-axis, normal to the 8-ring channels, is about three times more compressible than the a and c axes, parallel to the elliptical 8-ring channels. As a consequence a gradual flattening of the so-called 'double crankshaft' structural building units of the gismondine framework is observed. In K-AlGe-GIS, this flattening occurs almost linear with pressure, whereas it is nonlinear in the GaSi-analogue due to structural changes of the water-cation assembly under hydrostatic pressures.

  20. Molecular interactions of alcohols with zeolite BEA and MOR frameworks.

    PubMed

    Stückenschneider, Kai; Merz, Juliane; Schembecker, Gerhard

    2013-12-01

    Zeolites can adsorb small organic molecules such as alcohols from a fermentation broth. Also in the zeolite-catalyzed conversion of alcohols to biofuels, biochemicals, or gasoline, adsorption is the first step. Several studies have investigated the adsorption of alcohols in different zeolites experimentally, but computational investigations in this field have mostly been restricted to zeolite MFI. In this study, the adsorption of C1-C4 alcohols in BEA and MOR was investigated using density functional theory (DFT). Calculated adsorption geometries and the corresponding energies of the designed cluster models were comparable to periodic calculations, and the adsorption energies were in the same range as the corresponding computational and experimental values reported in the literature for zeolite MFI. Thus, BEA and MOR may be good adsorption materials for alcohols in the field of downstream processing and catalysis. Aside from the DFT calculations, adsorption isotherms were determined experimentally in this study from aqueous solutions. For BEA, the adsorption of significant amounts of alcohol from aqueous solution was observed experimentally. In contrast, MOR was loaded with only a very small amount of alcohol. Although differences were found between the affinities obtained from gas-phase DFT calculations and those observed experimentally in aqueous solution, the computational data presented here represent molecular level information on the geometries and energies of C1-C4 alcohols adsorbed in zeolites BEA and MOR. This knowledge should prove very useful in the design of zeolite materials intended for use in adsorption and catalytic processes, as it allows adsorption behavior to be predicted via judiciously designed computational models.

  1. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  2. Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Smoot, Alison L.; Lindquist, David A.

    1997-01-01

    Presents experiments that introduce students to the myriad properties of zeolites using the sodium form of zeolite A (Na-A) from laundry detergent. Experiments include extracting Na-A from detergent, water softening properties, desiccant properties, ion-exchange properties, and Zeolite HA as a dehydration catalyst. (JRH)

  3. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores.

    PubMed

    Machoke, Albert G; Beltrán, Ana M; Inayat, Alexandra; Winter, Benjamin; Weissenberger, Tobias; Kruse, Nadine; Güttel, Robert; Spiecker, Erdmann; Schwieger, Wilhelm

    2015-02-01

    Zeolite crystals with an embedded and interconnected macropore system are prepared by using mesoporous silica particles as a silica source and as a sacrificial macroporogen. These novel hierarchical zeolite crystals are expected to reduce diffusion limitations in all zeolite-catalyzed reactions, especially in the transformation of larger molecules like in the catalytic cracking of polymers and the conversion of biomass.

  4. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  5. [Sorption characteristics of natural zeolite (clinoptilolite) in biological material in vitro].

    PubMed

    Vrzgula, L; Seidel, H

    1989-09-01

    The zeolite (clinoptilolite) sorption of arsenic, cadmium, and lead ions from rumen fluid and abomasum juice was investigated in laboratory conditions. Zeolite was found to sorb 91% of lead and 45% of cadmium from rumen fluid in 24 hours. The sorption effectiveness was even higher from abomasum juice where zeolite sorbed 98% lead in 24 hours.

  6. The Synthetic Cannabinoids Phenomenon.

    PubMed

    Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

    2016-01-01

    « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

  7. Adsorptive removal of sulfonamide antibiotics in livestock urine using the high-silica zeolite HSZ-385.

    PubMed

    Fukahori, S; Fujiwara, T; Funamizu, N; Matsukawa, K; Ito, R

    2013-01-01

    The adsorptive removal of seven sulfonamide antibiotics using the high-silica zeolite HSZ-385 from distilled water, synthetic urine and real porcine urine was investigated. The pH greatly affected the adsorption efficiency, and the amounts of all sulfonamide antibiotics adsorbed on HSZ-385 decreased at alkaline conditions compared with that at neutral conditions. During storage, the pH and ammonium-ion concentration increased with urea hydrolysis for porcine urine. We clarified that the adsorption efficiency of sulfonamides in synthetic urine was equivalent to that in distilled water, suggesting that adsorption behavior was not affected by coexistent ions. HSZ-385 could adsorb sulfonamide antibiotics in real porcine urine even though the non-purgeable organic carbon concentration of porcine urine was 4-7 g/L and was two orders of magnitude higher than those of sulfonamides (10 mg/L each). Moreover, the adsorption of sulfonamides reached equilibrium within 15 min, suggesting that HSZ-385 is a promising adsorbent for removing sulfonamides from porcine urine.

  8. Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances

    PubMed Central

    Li, Xin-Gang; Liu, Cheng; Sun, Jian; Xian, Hui; Tan, Yi-Sheng; Jiang, Zheng; Taguchi, Akira; Inoue, Mitsuhiro; Yoneyama, Yoshiharu; Abe, Takayuki; Tsubaki, Noritatsu

    2013-01-01

    To substitute for petroleum, Fischer-Tropsch synthesis (FTS) is an environmentally benign process to produce synthetic diesel (n-paraffin) from syngas. Industrially, the synthetic gasoline (iso-paraffin) can be produced with a FTS process followed by isomerization and hydrocracking processes over solid-acid catalysts. Herein, we demonstrate a cobalt nano-catalyst synthesized by physical-sputtering method that the metallic cobalt nano-particles homogeneously disperse on the H-ZSM5 zeolite support with weak Metal-Support Interactions (MSI). This catalyst performed the high gasoline-range iso-paraffin productivity through the combined FTS, isomerization and hydrocracking reactions. The weak MSI results in the easy reducibility of the cobalt nano-particles; the high cobalt dispersion accelerates n-paraffin diffusion to the neighboring acidic sites on the H-ZSM5 support for isomerization and hydrocracking. Both factors guarantee its high CO conversion and iso-paraffin selectivity. This physical-sputtering technique to synthesize the supported metallic nano-catalyst is a promising way to solve the critical problems caused by strong MSI for various processes. PMID:24085106

  9. Copper removal using bio-inspired polydopamine coated natural zeolites.

    PubMed

    Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

    2014-05-30

    Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base.

  10. [Adsorption of phenol chemicals by surfactant-modified zeolites].

    PubMed

    Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

    2012-12-01

    Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.

  11. Efficient capture of pathogens with a zeolite matrix.

    PubMed

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L

    2013-07-01

    We show that a peptide linker sequence expressed as part of a fusion with protein G from Streptococcus binds to natural zeolite giving a complex to which a suitable antibody shows affinity binding. As a consequence, addition of the CRY104 antibody specific for an external surface epitope of Cryptosporidium allows the capture of this protozoan pathogen at high efficiency with the advantage of rapid concentration from water samples. The natural zeolite with the specific antibody attached was incorporated into a single and double zeolite column system. The results reported here show that it is possible to capture Cryptosporidium oocysts with outstanding efficiency (>90 %) from water and water incorporating QC-MUD using a size-sorted natural zeolite. The natural zeolite matrix not only allows for high flow rates but also for flexibility of column design and volume of water for sample collection. The system is versatile and it is possible to prepare columns with more than one specific surface antibody to allow the capture of one or two pathogens simultaneously.

  12. Cadmium adsorption on vermiculite, zeolite and pumice: batch experimental studies.

    PubMed

    Panuccio, Maria Rosaria; Sorgonà, Agostino; Rizzo, Marcella; Cacco, Giovanni

    2009-01-01

    Batch experiments were performed to evaluate the combined effects of ionic activity, pH, and contact time on the cadmium sorption in three different minerals, vermiculite, zeolite, and pumice, commonly employed as substrata in nurseries and recently considered for their potential use in remediation methods. The extent of cadmium sorption was vermiculite>zeolite>pumice, as shown by the Langmuir and Freundlich parameters, and it was highly dependent on mineral characteristics. The percentage of cadmium sorption in zeolite and vermiculite did not depend on cadmium concentration, while in pumice this percentage was positively correlated to the initial cadmium concentration. At low cadmium concentrations (30-120 microM), the metal sorbed on zeolite was mainly present in the nonexchangeable form (70%) at levels much higher than those found for vermiculite and pumice. The primary variable responsible for determination of cadmium mobility in these minerals was confirmed to be pH. The ionic concentrations of Hoagland nutrient solution were significantly modified by both pH and mineral composition, while the presence of cadmium caused no changes. With vermiculite and zeolite, the time-course of cadmium sorption was related to mineral composition to a greater extent than to cadmium concentration. While with pumice, the percentage of cadmium sorbed after 6 weeks was lower than with the other two minerals, and it was inversely correlated to the initial cadmium concentration.

  13. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  14. A high acid mesoporous USY zeolite prepared by alumination

    NASA Astrophysics Data System (ADS)

    Ma, Jinghong; Kang, Yuhong; Ma, Ning; Hao, Wenming; Wang, Yan; Li, Ruifeng

    2013-01-01

    A high-acidity HUSY zeolite with mesoporous structure was prepared by alumination with a dilute aqueous NaAlO2 solution and characterized by XRD, N2 adsorption, IR framework vibration and 29Si MAS NMR methods. The results indicated the extra-framework aluminum was reinserted into the tetrahedral framework through isomorphic substitution of framework Si (0Al) sites by Al ions, whereas the crystal and micropore structure were unaltered. FTIR spectra of hydroxyl vibrations and pyridine adsorbed on realuminated zeolites showed that the number of Brønsted acid sites and strong Lewis acid sites increased whereas weak Lewis acid sites decreased twice. The mesoporous structure composed of inter-and intra-crystalline pores in the aluminated HUSY increased the external surface area of the zeolite, improving accessibility of molecules to the active sites and enhancing its catalytic ability. The realuminated HUSY zeolite supported with Ru catalyst exhibited a higher catalytic activity for benzene hydrogenation than the parent HUSY zeolite; the reaction rate in comparison to the mesozeolite increased by 5.5 times.

  15. Evaluation of confinement effects in zeolites under Henry's adsorption regime

    NASA Astrophysics Data System (ADS)

    Pera-Titus, Marc; Llorens, Joan

    2010-06-01

    This paper provides a detailed thermodynamic analysis of gas/vapour adsorption in zeolites at low pressures. At these conditions, we show first that Henry's isotherm can be conveniently rewritten using the thermodynamic isotherm model developed in a previous study [J. Llorens, M. Pera-Titus, Description of gas adsorption on microporous materials: evaluation of energy heterogeneity, J. Colloid Interface Sci. 331, 2009, 302-311], linking the integral free energy of adsorption relative to saturation, Ψ/ RT, expressed as a Kiselev integral, with the variable Z = 1/-ln( Π), being Π the relative pressure. Relevant information about sorbate confinement effects in zeolites can be inferred using strong sorbates under Henry's adsorption regime using the thermodynamic formulation provided here. The confining level of zeolites can be characterized by a parameter ( m1), whose value depends on the zeolite framework, but remains essentially unchanged with the sorbate probe molecule and temperature. We illustrate the application of these concepts using a collection of MFI and MTW-type zeolites as model systems.

  16. Differential Synthetic Aperture Ladar

    SciTech Connect

    Stappaerts, E A; Scharlemann, E

    2005-02-07

    We report a differential synthetic aperture ladar (DSAL) concept that relaxes platform and laser requirements compared to conventional SAL. Line-of-sight translation/vibration constraints are reduced by several orders of magnitude, while laser frequency stability is typically relaxed by an order of magnitude. The technique is most advantageous for shorter laser wavelengths, ultraviolet to mid-infrared. Analytical and modeling results, including the effect of speckle and atmospheric turbulence, are presented. Synthetic aperture ladars are of growing interest, and several theoretical and experimental papers have been published on the subject. Compared to RF synthetic aperture radar (SAR), platform/ladar motion and transmitter bandwidth constraints are especially demanding at optical wavelengths. For mid-IR and shorter wavelengths, deviations from a linear trajectory along the synthetic aperture length have to be submicron, or their magnitude must be measured to that precision for compensation. The laser coherence time has to be the synthetic aperture transit time, or transmitter phase has to be recorded and a correction applied on detection.

  17. Synthetic carbon precursor materials

    SciTech Connect

    Frame, B.J.

    1986-03-01

    Synthetic carbon precursor systems offer advantages over natural petroleum and coal-tar pitch precursors in that they can reproducibly provide a material with a known and uniform composition. They also permit controlled modifications of the derived carbon's properties through variations in the precursor's properties and processing conditions. Extensive research efforts at Oak Ridge have been directed toward the production and characterization of synthetic carbon precursors and the correlations that exist between carbon precursor properties and the properties of the ultimate carbon. This report describes how synthetic carbon precursors can be used to tailor and develop reproducible carbon structures for advanced materials applications. The potential and capability for performing carbon material development at Oak Ridge is also described.

  18. Gamma synthetic hydrographs

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-05-01

    The two-parameter Gamma distribution is presented as a basis for synthetic hydrographs with a review of existing applications and non-feasible applications are identified. Several approaches for fitting this function to practical boundary condition parameters are identified and presented in a unified treatment. They are especially designed for use on small programmable calculators since the synthetic hydrograph is extremely sensitive to the Gamma distribution parameters. Nomographs would give large errors in the fit for small errors in the boundary condition parameters. Although non-dimensionalization of the synthetic hydrograph is possible with the Gamma distribution, it is shown to be unnecessary. Current uses of "standard" non-dimensional hydrographs are shown to be in error.

  19. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route

    PubMed Central

    Tong, Mingquan; Zhang, Daliang; Fan, Weibin; Xu, Jun; Zhu, Liangkui; Guo, Wen; Yan, Wenfu; Yu, Jihong; Qiu, Shilun; Wang, Jianguo; Deng, Feng; Xu, Ruren

    2015-01-01

    Chiral zeolitic materials with intrinsically chiral frameworks are highly desired because they can combine both shape selectivity and enantioselectivity. In the field of zeolite, the synthesis of chiral polymorph A of zeolite Beta or chiral polymorph A-enriched zeolite Beta is one of the biggest challenges. We demonstrate here a generalized extremely concentrated fluoride route for the synthesis of chiral polymorph A-enriched zeolite Beta in the presence of five achiral organic structure-directing agents. The polymorph A-enriched Ti-Beta shows a higher enantioselectivity for the asymmetric epoxidation of alkenes than the normal Ti-Beta. PMID:26096214

  20. Space charge suppression induced by deep traps in polyethylene/zeolite nanocomposite

    NASA Astrophysics Data System (ADS)

    Han, Bai; Wang, Xuan; Sun, Zhi; Yang, Jiaming; Lei, Qingquan

    2013-01-01

    NaY zeolite nanoparticles doped in low-density polyethylene (LDPE) is investigated. The zeolite nanoparticles are uniformly distributed in LDPE. Space charge distribution from pulsed electro-acoustic method and trap level from thermally stimulated current test are obtained. The results indicate that zeolite doping enormously suppresses space charge accumulation and reduces the conduction current by importing abundant deep traps. It can be explained that the zeolite nanoparticles increase the interface regions and introduce small size cavity traps from the porous surface of zeolite. The deep traps greatly weaken impurity ionization and carrier mobility, and raise potential barrier for charge injection.

  1. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route.

    PubMed

    Tong, Mingquan; Zhang, Daliang; Fan, Weibin; Xu, Jun; Zhu, Liangkui; Guo, Wen; Yan, Wenfu; Yu, Jihong; Qiu, Shilun; Wang, Jianguo; Deng, Feng; Xu, Ruren

    2015-06-22

    Chiral zeolitic materials with intrinsically chiral frameworks are highly desired because they can combine both shape selectivity and enantioselectivity. In the field of zeolite, the synthesis of chiral polymorph A of zeolite Beta or chiral polymorph A-enriched zeolite Beta is one of the biggest challenges. We demonstrate here a generalized extremely concentrated fluoride route for the synthesis of chiral polymorph A-enriched zeolite Beta in the presence of five achiral organic structure-directing agents. The polymorph A-enriched Ti-Beta shows a higher enantioselectivity for the asymmetric epoxidation of alkenes than the normal Ti-Beta.

  2. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  3. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  4. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  5. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  6. The environmental applications of activated carbon/zeolite composite materials.

    PubMed

    Foo, K Y; Hameed, B H

    2011-02-17

    Over the past couple of years, the resurgence of placing an effective and sustainable amendment to combat against the auxiliary industrial entities, remains a highly contested agenda from a global point. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of zeolite composite, a prestigious advanced catalyst which formulates the enhancement of adsorption rate and hydrogen storage capability, has fore fronted to be a new growing branch in the scientific community. Confirming the assertion, this paper presents a state of art review of activated carbon/zeolite composite technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon/zeolite composite represents a potentially viable and powerful tool, leading to the plausible improvement of environmental preservation.

  7. Sonochemical synthesis of zeolite NaP from clinoptilolite.

    PubMed

    Behin, Jamshid; Kazemian, Hossein; Rohani, Sohrab

    2016-01-01

    In the present work, natural clinoptilolite was converted to zeolite NaP using ultrasonic energy, in which the transformation time shortened remarkably. The effect of post-synthesis treatment using conventional hydrothermal was also investigated. The synthesized powders were characterized by XRD, TGA/DTA, SEM, and PSD analysis. The results showed that, increasing the sonication time (energy) has no significant effect on the product's morphology. The crystallinity of the synthesized samples increased slightly with increasing sonication time, but their yield remained relatively unchanged. Furthermore, post-synthesis hydrothermal treatment showed very little influence on properties of the final product. Because the ultrasonic irradiation creates acoustic cavitation cracks on the surface structure of clinoptilolite particulates and increases the concentration of soluble alumino-silicate species, which favors the prevailing super-saturation, crystallization and crystal growth of zeolite NaP happen faster. The particles of zeolite NaP synthesized by ultrasonic irradiation consist of small crystallites of uniform size.

  8. Modeling and Analysis on Pervaporation Separation of Composite Zeolite Membranes

    NASA Astrophysics Data System (ADS)

    Mann, Stewart

    Pervaporation is a membrane separation technology that has had industrial application and which is the subject of ongoing research. Two major factors are important in judging the quality of a membrane: selectivity and permeation flux. Although many types of materials can be used for the separation layer, zeolites will be the material considered in this thesis. A simple mathematical model has been developed to demonstrate the inter-relationships between relative permeation flux, reduced selectivity, and the relative resistance to mass transfer of the support to the zeolite layer. The model was applied to several membranes from our laboratory and to two examples from the literature. The model offers a useful way of conceptualizing membrane performance and facilitates the comparison of different membrane performances. The model predicts the effect of different supports on zeolite supported membrane performance.

  9. The removal of bacteria by modified natural zeolites.

    PubMed

    Milán, Z; de Las Pozas, C; Cruz, M; Borja, R; Sánchez, E; Ilangovan, K; Espinosa, Y; Luna, B

    2001-01-01

    The removal effect of natural and modified zeolites containing different heavy metals (Ni2+, Zn2+, Fe3+ and Cu2+) on pure cultures of Escherichia coli and Staphylococcus aureus in a solid medium was evaluated in this work. These experiments were carried out in a continuous mode treating municipal wastewater. Faecal coliform species and Pseudomonas aeruginosa were identified. The rate constants of heavy metal lixiviation were determined using a first order kinetic model. The removal effect of modified natural zeolites in both a solid medium and in continuous mode showed an increased elimination of the bacterial population. The results established a decreasing order of the removal effect as follows: Cu2+ > Fe3+ > Zn2+ > Ni2+. The best performance of columns was obtained for inlet bacterial concentrations below 10(6) cells/100 ml. Most of the identified bacterial species were affected by copper modified zeolites, although Serratia marcescens presented the highest sensitivity and Klebsiella pneumoniae the greatest resistance.

  10. Computer simulations of benzene in faujasite-type zeolites

    SciTech Connect

    Henson, N.J.; Cheetham, A.K.; Redondo, A.; Levine, S.M.; Newsam, J.M.

    1994-03-01

    The exact nature of the cation-benzene ring interaction is not yet known. In order to remedy this, energy minimization and Monte Carlo methods were used to probe the location and energetics of benzene in sodium zeolite-X and -Y. Sorption energies for the six-ring binding site in each of the zeolite models with the two forcefields (cff91 and cvff) are tabulated as function of Si/Al ratio. Both forcefields predict similar binding sites for each system; however, the final energies are sensitive to form and parameterization of the forcefield. Further work is needed to refine the forcefield for zeolite-sorbate interactions. 5 figs, 21 refs, 2 tabs.

  11. Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites.

    PubMed

    Guan, Huade; Bestland, Erick; Zhu, Chuanyu; Zhu, Honglin; Albertsdottir, Dora; Hutson, John; Simmons, Craig T; Ginic-Markovic, Milena; Tao, Xian; Ellis, Amanda V

    2010-11-15

    Surfactant modified zeolites (SMZs) have the capacity to target various types of water contaminants at relatively low cost and thus are being increasingly considered for use in improving water quality. It is important to know the surfactant loading performance of a zeolite before it is put into application. In this work we compare the loading capacity of a surfactant, hexadecyltrimethylammonium bromide (HDTMA-Br), onto four natural zeolites obtained from specific locations in the USA, Croatia, China, and Australia. The surfactant loading is examined using thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. We then compare the resulting SMZs performance in removing nitrate from water. Results show that TGA is useful to determine the HDTMA loading capacity on natural zeolites. It is also useful to distinguish between a HDTMA bi-layer and a HDTMA mono-layer on the SMZ surface, which has not been previously reported in the literature. TGA results infer that HDTMA (bi-layer) loading decreases in the order of US zeolite>Croatian zeolite>Chinese zeolite>Australian zeolite. This order of loading explains variation in performance of nitrate removal between the four SMZs. The SMZs remove 8-18 times more nitrate than the raw zeolites. SMZs prepared from the selected US and Croatian zeolites were more efficient in nitrate removal than the two zeolites commercially obtained from Australia and China.

  12. Statistical Approach to the Transformation of Fly Ash into Zeolites

    NASA Astrophysics Data System (ADS)

    Derkowski, Arkadiusz; Michalik, Marek

    2007-01-01

    The experimental conversion of F-class fly ash into zeolites is described. The ash, composed mainly of aluminosilicate glass, mullite and quartz, was collected in the Cracow power plant (southern Poland). The experiments involved the heating of fly ash samples in PTFE vessels. Time, temperature and solution composition were the reaction parameters considered in the experiments and in the subsequent modeling. A series of reactions with 0.5, 3 and 5M NaOH solutions (and some with additional 3M NaCl) were carried out at 70°, 100° and 150°C for 12-48 hours under autogenic pressure (not measured) and at a constant ash-to-solution ratio of 33.3 g/l. The following zeolite phases were synthesized: sodalite (SOD structure), hydroxysodalite (SOD), CAN type phases, Na-X (FAU), and NaP1 (GIS). Statistically calculated relationships based on the mineral- and chemical compositions of the reaction products support the conclusion that the type of zeolite phase that crystallizes depends on the concentration of OH- and Cl- in solution and on the temperature of the reaction. The duration of reaction, if on the order of tens of hours, is of less significance. The nature of the zeolite phase that crystalises is controlled by the intensity and selectivity of the substrate dissolution. That dissolution can favour, in sequence, one or other of the components in the substrate, resulting in Si/Al variation in the reaction solutions. Mullite dissolution (decreasing solution Si/Al) characterizes the most advanced reaction stages. The sequence of crystallization of the zeolite phases mirrors the sequential dissolution of substrate components, and the composition of the crystallizing zeolite crystals reflects the changes in the solution Si/Al.

  13. Effect of Pore Structure on Diffusion of Sorbates in Zeolites.

    NASA Astrophysics Data System (ADS)

    Nivarthi, Sriram Satyamurthy

    1995-01-01

    This thesis describes the application of nuclear magnetic resonance (NMR) techniques to measure the dynamics of sorbates in the constrained geometries presented by zeolite molecular sieve micropores. Molecular simulations have been used to further probe the effect of structural modifications of the zeolite on the siting and energetics of the adsorbed phase. The aim of this research effort has been to understand the relationship between the pore structure of the zeolite and the mobility of sorbates. The issues addressed in this research are relevant to the application of zeolites in shape selective catalysis and separations. The self-diffusion of simple probe sorbate molecules like methane and ethylene has been studied in zeolites of varying pore architecture using the pulsed field gradient (PFG) NMR technique. Using NMR inversion recovery measurements, we estimated the rate of intercage hopping of xenon in zeolite NaA and found it to decrease with pore crowding. The effect of dealumination on adsorption and diffusion in mordenite was studied using a combination of experiments and grand canonical Monte Carlo simulations. Experimental studies using methane as sorbate indicated that diffusional constraints were relieved by dealumination. Simulations revealed an octahedral lattice of sorption sites for xenon in mordenite which remained virtually unchanged by dealumination. Diffusion measurements of methane in large crystals of the anisotropic molecular sieve AlPO_4 -5 established the motion of methane to be unidirectional, but not single-file. Finally, we have carried out multicomponent diffusion measurements in large Y and silicalite crystals. Blocking caused by the presence of strongly coadsorbed molecules like benzene and ethylene was found to strongly suppress the diffusion of the relatively mobile methane in NaY. Excellent agreement was found between the experimental diffusivity data and the prediction based on the effective medium approximation to the percolation

  14. Squaraines inside Zeolites: Preparation, Stability, and Photophysical Properties.

    PubMed

    Cano, María Luz; Cozens, Frances L.; Esteves, María A.; Márquez, Francisco; García, Hermenegildo

    1997-10-17

    A series of four symmetrical squaraines (ditoylyl, di-m-xylyl, dianisyl, and diresorcinyl) incorporated inside zeolites Y, mordenite, and ZSM-5 have been obtained by treating squaric acid and the corresponding arene in the presence of acid zeolites. Acid sites and high reaction temperatures (150 degrees C) were found to be crucial for the success of the preparation procedure. Surprisingly, this method failed for the preparation of the squaraine derived from N,N-dimethylaniline, which is known to be readily formed from squaric acid in homogeneous phase without a catalyst. The solid samples containing squaraines were characterized by diffuse reflectance and Raman spectroscopies and by thermogravimetry-differential scanning calorimetry. Among the hosts, mordenite was found to be the most general and convenient zeolite for the preparation of the squaraines, while in the other solids either the organic content adsorbed was comparatively smaller (ZSM-5) or some squaraines were not very stable (Y zeolite for ditolyl and dixylyl squaraines). The absorption spectra of the samples correspond to the J-aggregation state of the squaraines, except for some ZSM-5 samples, where simultaneous observation of the bands due to both monomers and aggregates occurs. Aggregation also changes with the water content of the samples. Treatment of the zeolite-bound diresorcinyl squaraine with basic aqueous solutions leads to remarkable variations in the diffuse reflectance and Raman spectra. These changes in the Raman spectrum of the diresorcinyl squaraine were found to be reversible by basic or acid washings. Laser flash photolysis using the 355- or 532-nm output of a Nd-YAG laser (<10 ns pulses; zeolite host. On the basis of the similarity of the UV-vis absorption spectra obtained in solution, these transients have been identified as the radical cation (HY) and the triplet excited

  15. Novel modified zeolites for energy-efficient hydrocarbon separations.

    SciTech Connect

    Arruebo, Manuel; Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John; Noble, Richard

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  16. Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation

    SciTech Connect

    Sorenson, Stephanie G; Payzant, E Andrew; Noble, Richard D; Falconer, John L.

    2010-01-01

    X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defect sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.

  17. Gold and gold-iron modified zeolites--towards the adsorptive deodourisation.

    PubMed

    Sobczak, Izabela; Pawlowski, Hubert; Chmielewski, Jaroslaw; Ziolek, Maria

    2010-07-15

    Zeolites exhibiting different structures (Y, Beta, and ZSM-5) were modified with gold and iron and applied for odour adsorption from the air containing dibutyl sulphide (Bu(2)S) used as a representative odour producing compound. The structure of the zeolites used determines the rate of adsorption (higher on Y type zeolites and smaller on two other zeolites), whereas hydrophilicity affects the selectivity towards Bu(2)S adsorption increasing in the order: Yzeolite structure, Bu(2)S adsorption selectivity depends on the total acidity of zeolites which increases after iron modification. The texture and surface properties of the modified zeolites were studied by XRD, XPS, UV-vis, TEM, pyridine adsorption and FTIR, test reactions (acetonylacetone cyclisation, isopropanol decomposition).

  18. Effect of different modifications of BEA-zeolites on operational characteristics of conductometric biosensor.

    PubMed

    Kucherenko, I S; Soldatkin, Capital O Cyrillic О; Soy, E; Kirdeciler, K; Öztürk, S; Akata, B; Jaffrezic-Renault, N; Soldatkin, A P; Dzyadevych, S V

    2012-08-01

    Effect of different modifications of zeolite Na(+)-BEA on working characteristics of urease-based conductometric biosensor was studied. As the biosensor sensitive elements were used bioselective membranes based on urease and various zeolites immobilised with bovine serum albumin on the surface of conductometric transducers. Influence of zeolites on sensitivity of urea biosensor was investigated as well as reproducibility of biosensor signal and reproducibility of activity of the bioselective element after different variants of urease immobilisation on the surface of conductometric transducer. The biosensors based on zeolites (NH4(+)-BEA 30 and H(+)-BEA 30) were shown to be the most sensitive. Concentration of these zeolites in the bioselective membrane was optimized. Use of zeolites modified with methyl viologen and silver was ascertained to be of no prospect for urea conductometric biosensors. It was demonstrated that characteristics of urea biosensors can be regulated, varying zeolites modifications and their concentrations in bioselective membranes.

  19. [Biodegradation and adsorption of bio-zeolite on pyridine and quinoline].

    PubMed

    Bai, Yao-Hui; Sun, Qing-Hua; Xing, Rui; Wen, Dong-Hui; Tang, Xiao-Yan

    2010-09-01

    The study was to explore the treatment of pyridine, quinoline and their transformation product, NH(4+) -N, by the biodegradation and adsorption of a natural and a modified bio-zeolites. The experiment results demonstrated that the mixed bacteria on the bio-zeolites, a pyridine-degrading bacterium and a quinoline-degrading bacterium, could degrade pyridine and quinoline simultaneously. The NH(4+) -N transformed from pyridine and quinoline could be adsorbed by the natural and modified zeolites. The adsorption capacity of the modified zeolite was lower than that of the natural zeolite. However, more microorganisms could attach on the surface of the modified zeolite, so the application of the modified bio-zeolite has a better prospect in actual treatment of pyridine and/ or quinoline pollution.

  20. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  1. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    DOEpatents

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  2. Experiments with Zeolites at the Secondary School Level: Experience from The Netherlands

    NASA Astrophysics Data System (ADS)

    Coker, Eric N.; Davis, Pamela J.; Kerkstra, Aonne; van Bekkum, Herman

    1999-10-01

    This article describes a number of experiments that involve zeolites and are suitable for secondary-school chemistry laboratories. The experiments have been introduced successfully into secondary schools in The Netherlands. Zeolites are used in enormous quantities as builders (water softeners) in laundry detergents; they account for 15-30 wt % of most laundry detergents currently on the European market. In a series of experiments, students test the hardness of tap water before and after treatment with some zeolite and perform tests with a range of commercial laundry detergents containing zeolites. Zeolites are also used as catalysts in numerous industrial processes; another experiment described here highlights the use of zeolites as recyclable catalysts in an esterification reaction. A duplicate reaction is carried out in parallel, but using the conventional sulfuric acid catalyst instead of the zeolite. This experiment provides a good example of the benefit of a recyclable, heterogeneous catalyst over the conventional homogeneous one that is discarded as waste material.

  3. Bound zeolite catalyst and process for using the catalyst

    SciTech Connect

    Kao, J.L.; Poeppelmeier, K.R.; Funk, W.G.; Steger, J.J.; Fung, S.C.; Cross, V.R.

    1987-03-10

    A process is described for reforming naphtha. The process comprises (a) contacting the naphtha in the presence of hydrogen at elevated temperatures with a catalyst comprising a binder, a type L zeolite containing exchangeable cations of which at least 75% are selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, calcium and barium, at least one Group VIII noble metal, the particles of which are well dispersed over the surface of the catalyst and at least 90% of the noble metal associated with the zeolite is in the form of particles having a diameter of less than about 7 A; and (b) recovering reformed product.

  4. IR characteristics of alcohol reactivity on HZSM-5 zeolites

    NASA Astrophysics Data System (ADS)

    Bezouhanova, C. P.; Kalvachev, Yu. A.; Lechert, H.

    1992-08-01

    The IR spectra of alcohols (1-butanol, 2-butanol, 1-hexanol, cyclopentanol, cyclohexanol, 3-methylcyclohexanol and benzylalcohol) in contact with HZSM-5 zeolites revealed bands characteristic of three types of adsorbed species. The bands at 3020, 1650 and 1515 cm -1 originate from olefins, obtained after dehydration of the primary and secondary alcohols. The band at 1515 cm -1 was related to perturbed double bonds interacting with the proton acid sites of the zeolite. A band at 1720-1765 cm -1 was assigned to a carbonyl compound obtained by alcohol dehydrogenation.

  5. Zeolites replacing plant fossils in the Denver formation, Lakewood, Colorado.

    USGS Publications Warehouse

    Modreski, P.J.; Verbeek, E.R.; Grout, M.A.

    1984-01-01

    Well-developed crystals of heulandite and stilbite, within fossil wood, occur in sedimentary rocks in Lakewood, Jefferson County. The rocks belong to the Denver formation, a locally fossiliferous deposit of fluvial claystone, siltstone, sandstone and conglomerate, containing some volcanic mudflows (andesitic) of late Cretaceous to Palaeocene age. Altered volcanic glass released Na and Ca into the ground-water and subsequently zeolites were crystallized in the open spaces between grains and within fossil plant structures. Minor pyrite, quartz (jasper), calcite and apatite also occur as replacements of fossil wood. Similar zeolite occurrences in other areas are reviewed.-R.S.M.

  6. Method for encapsulating nanoparticles in a zeolite matrix

    DOEpatents

    Coker, Eric N.

    2007-12-11

    A method for preparing a metal nanocluster composite material. A porous zeolitic material is treated with an aqueous metal compound solution to form a metal ion-exchanged zeolitic material, heated at a temperature ramp rate of less than 2.degree. C./min to an elevated temperature, cooled, contacted with an organic monomer and heating to induce polymerization, and heating the composite material to greater than 350.degree. C. under non-oxidizing conditions to form a metal nanocluster-carbon composite material with nanocluster sizes between approximately 0.6 nm and 10 nm.

  7. Zeolite catalysis in the synthesis of isobutylene from hydrous ethanol

    NASA Astrophysics Data System (ADS)

    Phillips, Cory Bernard

    1999-11-01

    This work deals with the synthesis of isobutylene from a hydrous ethanol feedstock over zeolites. The synthesis is accomplished in three steps: (1) low-temperature direct ethanol conversion to ethylene on H-ZSM-5 zeolite, (2) ethylene conversion to butene products over metal-exchanged zeolites, and (3) butene skeletal rearrangement to isobutylene over FER zeolites. The key to understanding and optimizing each synthesis step lies in the ability to control and regulate the zeolite acidity (Bronsted and Lewis)---both strength and number. Therefore, the continuous temperature programmed amine desorption (CTPAD) technique was further developed to simultaneously count the Bronsted acid sites and quantitatively characterize their strength. The adsorption of ethanol, reaction products, amines, coke and ethanol-derived residue (EDR) were monitored gravimetrically using the highly sensitive, novel Tapered Element Oscillating Microreactor (TEOM) apparatus. The TEOM was also used also in conjunction with CTPAD to characterize Bronsted acidity which is a new application for the instrument. For the first synthesis step, a parallel reaction exists which simultaneously produces diethyl ether and ethylene directly over H-ZSM-5. The reaction rates for each pathway were measured directly using a differential reactor operating at low temperatures (<473 K). Water in the ethanol feed enhances the rate of ethylene formation. A mechanism and kinetic expression are proposed for this reaction over H-ZSM-5, with diethyl-ether desorption and ethylene formation as the rate limiting steps. Heat of adsorption values measured from the independent microcalorimetry work reported in the literature are incorporated into the kinetic analysis which reduces the number of regressed parameters. For the remaining synthesis steps, several zeolite structures (ZSM-5, Y, FER) partially exchanged with Pd, Ti, Ni and Au were prepared and tested. It was determined from this screening study that the zeolites

  8. Biodegradable synthetic bone composites

    SciTech Connect

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  9. Synthetic Bursae for Robots

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    Synthetic bursae are under development for incorporation into robot joints that are actuated by motor-driven cables in a manner similar to that of arthropod joints actuated by muscle-driven tendons. Like natural bursae, the synthetic bursae would serve as cushions and friction reducers. A natural bursa is a thin bladder filled with synovial fluid, which serves to reduce friction and provide a cushion between a bone and a muscle or a tendon. A synthetic bursa would be similar in form and function: It would be, essentially, a compact, soft roller consisting of a bladder filled with a non-Newtonian fluid. The bladder would be constrained to approximately constant volume. The synthetic bursa would cushion an actuator cable against one of the members of a robot joint and would reduce the friction between the cable and the member. Under load, the pressure in the bladder would hold the opposite walls of the bladder apart, making it possible for them to move freely past each other without rubbing.

  10. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  11. Synthetic Cathinones ("Bath Salts")

    MedlinePlus

    ... Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the Brain ... europa.eu/publications/drug-profiles/synthetic-cathinones www.justice.gov/archive/ndic/pubs44/44571/44571p.pdf For ...

  12. Synthetic Confrontation Therapy.

    ERIC Educational Resources Information Center

    Gilliam, Larry

    After initially dispelling predictable fears that his paper might suggest that computers can be equated with man, the author states the problem: what part, if any, might computers play in counseling. Specifically, the possibilities for therapeutic synthetic (artificial) counseling encounters are discussed. Two propositions are significant: (1) the…

  13. Adaptive synthetic vision

    NASA Astrophysics Data System (ADS)

    Julier, Simon J.; Brown, Dennis; Livingston, Mark A.; Thomas, Justin

    2006-05-01

    Through their ability to safely collect video and imagery from remote and potentially dangerous locations, UAVs have already transformed the battlespace. The effectiveness of this information can be greatly enhanced through synthetic vision. Given knowledge of the extrinsic and intrinsic parameters of the camera, synthetic vision superimposes spatially-registered computer graphics over the video feed from the UAV. This technique can be used to show many types of data such as landmarks, air corridors, and the locations of friendly and enemy forces. However, the effectiveness of a synthetic vision system strongly depends on the accuracy of the registration - if the graphics are poorly aligned with the real world they can be confusing, annoying, and even misleading. In this paper, we describe an adaptive approach to synthetic vision that modifies the way in which information is displayed depending upon the registration error. We describe an integrated software architecture that has two main components. The first component automatically calculates registration error based on information about the uncertainty in the camera parameters. The second component uses this information to modify, aggregate, and label annotations to make their interpretation as clear as possible. We demonstrate the use of this approach on some sample datasets.

  14. Synthetic hydrophilic polymers

    NASA Astrophysics Data System (ADS)

    Rajasekharan Pillai, V. N.; Mutter, Manfred

    1981-11-01

    Synthetic hydrophilic polymers find promising applications in pharmacology, biotechnology and chemistry. The biocompatibility, biodegradability and pharmacological activity of these polymers depend much on their hydrophilic nature. This article summarizes the recent developments in the utilization of the different classes of these hydrophilic polymers as pharmacologically active agents, for enzyme modification and as catalysts and supports for chemical reactions.

  15. Synthetic Vision Workshop 2

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J. (Compiler)

    1999-01-01

    The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

  16. Adsorption of unsaturated hydrocarbons on zeolites: the effects of the zeolite framework on adsorption properties of ethylene

    NASA Astrophysics Data System (ADS)

    Limtrakul, Jumras; Nanok, Tanin; Jungsuttiwong, Siriporn; Khongpracha, Pipat; Truong, Thanh N.

    2001-11-01

    The adsorption properties of ethylene on H-Faujasite (H-FAU) and H-ZSM-5 zeolites have been investigated by both the cluster and embedded cluster approaches at the MP2 and B3LYP levels of theory using the 6-31G(d, p) basis set. The effects of the Madelung potential were found to be important. The calculated MP2 adsorption energy of -13.55 kcal/mol for the [C 2H 4]/H-ZSM-5 complex is larger than that of -8.2 kcal/mol for the [C 2H 4]/H-FAU complex. This is consistent with the experimental observation that the ZSM-5 is more acidic than that of FAU zeolite. The adsorption energy for the [C 2H 4]/H-FAU complex is comparable with the experimental estimate of about -9 kcal/mol for ethylene adsorbed on the H-FAU zeolite.

  17. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  18. Synthetic plant defense elicitors

    PubMed Central

    Bektas, Yasemin; Eulgem, Thomas

    2015-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection. PMID:25674095

  19. Synthetic plant defense elicitors.

    PubMed

    Bektas, Yasemin; Eulgem, Thomas

    2014-01-01

    To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug-like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  20. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected

  1. Influence of the food to microorganisms (F/M) ratio and temperature on batch anaerobic digestion processes with and without zeolite addition.

    PubMed

    Montalvo, S; Gonzalez, P; Mena, C; Guerrero, L; Borja, R

    2012-01-01

    The main objective of this work was to evaluate the influence of the food to microorganisms (F/M) ratio and temperature on batch anaerobic digestion processes carried out with and without zeolite addition as a microbial carrier. Three laboratory-scale experimental runs were conducted using a synthetic substrate with a COD:N:P ratio of 500:5:1. The first run (I) was conducted at a constant temperature of 27°C, increasing the F/M ratio from 0.21 to 0.40 (g COD/g VSS). During the second run (II) the temperature and the F/M ratio increased from 27°C to 37°C and from 0.21 to 0.40, respectively. Finally, in the third experimental run (III) the F/M ratio achieved high values (1.92 and 1.30) either by varying the substrate concentration at a constant biomass concentration or by increasing the biomass concentration at a constant substrate concentration. Higher biomass growth rate, COD removal and methane production were found in the reactors with zeolite, especially at the highest F/M assayed during the first run. The highest ammonium removals were also achieved at the highest F/M ratio (0.40) in the reactors with zeolite. Within the range studied (25°C-37°C) in the reactors with zeolite operating at 37°C, the second run demonstrated the low influence of temperature on substrate consumption and ammonia removal, with 93% and 70% of COD and ammonia removal efficiencies, respectively. The third run corroborated the results previously obtained and fit the experimental results to simple kinetic models, the Monod model being the most adequate for predicting the behavior of the systems studied. The maximum specific microorganism growth rate (μ(max)) values for the reactors with zeolite were almost twice as high as those obtained for the reactors without zeolite for similar F/M ratios.

  2. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of

  3. NOVEL SYNTHETIC METHOD FOR NARROW DISTRIBUTED COLLOIDAL SILICALITE

    EPA Science Inventory

    Preparation of zeolites is important for a variety of applications such as microelectronics, separation agents, ion exchange, catalysis, adsorbents, nanocomposites and zeolite membranes. Silicalite-1 is a crystalline, microporous polymorph of silicon dioxide with the MFI framewo...

  4. EXPEDITIOUS SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes will be described for the synthesis of a variety of industrially significant compounds and intermediates namely, enamines, nitroalkenes, enones, oxidized sulfur compounds and ionic liquids. This solvent-free synthetic methodolo...

  5. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  6. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    DOEpatents

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  7. Reforming naphtha with boron-containing large-pore zeolites

    SciTech Connect

    Zones, S.I.; Holtermann, D.L.; Rainis, A.

    1992-05-19

    This patent describes a catalytic reforming process. It comprises contacting a hydrocarbonaceous feedstream under catalytic reforming conditions with a composition comprising larger-pore borosilicate zeolites having a pore size greater than 6 and less than 8 angstroms containing less that 1000 parts per million aluminum.

  8. Synthesis and Properties of Nano Zeolitic Imidazolate Frameworks

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; Dohnalkova, Alice; Wang, Chong M.; Liu, Jun; Exarhos, Gregory J.

    2010-07-21

    Nano sized zeolitic imidazolate frameworks [nZIF-8] with excellent chemical and thermal stability has been synthesized at room temperature by simple mixing of 2-methylimidazole and zinc nitrate hexahydrate in methanol/ 1% high molecular weight poly(diallyldimethylammonium chloride) solution for 24 hrs

  9. Ultrasonic waves induce rapid zeolite synthesis in a seawater solution.

    PubMed

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2013-01-01

    The synthesis of zeolites from fly ash was performed through a low-temperature hydrothermal process with seawater. Compared with the results obtained using the same hydrothermal method but in the absence of sonication, the application of an ultrasonic pre-treatment to the conventional hydrothermal process with seawater reduces the crystallization temperature below that observed when hydrothermal synthesis is performed using distilled water.

  10. Zeolite formation from coal fly ash and its adsorption potential.

    PubMed

    Ruen-ngam, Duangkamol; Rungsuk, Doungmanee; Apiratikul, Ronbanchob; Pavasant, Prasert

    2009-10-01

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m2/g. Optimal crystallization temperature and time were 90 degrees C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%.

  11. ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES

    EPA Science Inventory

    Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

  12. Conductivity in zeolite-polymer composite membranes for PEMFCs

    NASA Astrophysics Data System (ADS)

    Sancho, T.; Soler, J.; Pina, M. P.

    Structured materials, such as zeolites can be candidates to be used as electrolytes in proton exchange membrane fuel cells (PEMFC) to substitute polymeric membranes, taking advantage of their higher chemical and thermal stability and their specific adsorption properties. The possibility to work at temperatures of nearly 150 °C would make easy the selection of the fuel, decreasing the influence of CO in the catalyst poisoning, and it would also improve the kinetics of the electrochemical reactions involved. In this work, four zeolites and related materials have been studied: mordenite, NaA zeolite, umbite and ETS-10. In special, the influence of relative humidity and temperature have been carefully explored. A conductivity cell was designed and built to measure in cross direction, by using the electrochemical impedance spectroscopy. The experimental system was validated using Nafion ® as a reference material by comparing the results with bibliography data. Samples were prepared by pressing the zeolite powders, with size of 1 μm on average, using polymer PVDF (10 wt.%) as a binder. The results here obtained, in spite of not reaching the absolute values of the Nafion ® ones, show a lower effect of the dehydration phenomenon on the conduction performance in the temperature range studied (from room temperature to 150 °C). This increase of the operation temperature range would give important advantages to the PEMFC. ETS-10 sample shows the best behaviour with respect to conductivity exhibiting an activation energy value comparable with reported for Nafion ® membrane.

  13. Simulation of methane adsorption on A-zeolites

    NASA Astrophysics Data System (ADS)

    Woestyn, A. M.; Mentasty, L.; Riccardo, J. L.; Zgrablich, G.

    1996-07-01

    A Monte Carlo simulation has been performed to study adsorption of CH4 on zeolites and the result are here presented for NaA and CaNaA zeolites. The adsorption isotherms of CH4 and the radial distribution of the adsorbed molecules have been obtained at four different temperatures in the pressure range 0 to 5 Mpa. The potential energy of adsorption has been calculated and the energy profile of a CH4 molecule along different axes in the zeolite cavity are discussed. High density storage of natural gas is essential for the efficient use of this gas as an alternative transportation fuel. One of the promising storage technologies is the adsorbed natural gas (ANG), in which the gas is adsorbed on highly microporous solids like zeolites or actived carbons. Structural as well as chemical properties of the porous adsorbents influence strongly the adsorption phenomenon, therefore, both experimental as theorical investigation are still necessary to select better solids for specific applications.

  14. NQRS Data for Zeolite 13X (Subst. No. 2513)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for Zeolite 13X (Subst. No. 2513)

  15. Characterization of natural zeolite clinoptilolite for sorption of contaminants

    NASA Astrophysics Data System (ADS)

    Xingu-Contreras, E.; García-Rosales, G.; García-Sosa, I.; Cabral-Prieto, A.; Solache-Ríos, M.

    2015-06-01

    The nanoparticles technology has received considerable attention for its potential applications in groundwater treatment for the removal of various pollutants as Cadmium. In this work, iron boride nanoparticles were synthesized in pure form and in presence of homo-ionized zeolite clinoptilolite, as support material. These materials were used for removing Cd (II) from aqueous solutions containing 10, 50, 100, 150, 200, 250, 300 and 400 mg/L. The characterization of these materials was made by using X-ray Diffraction, Scanning Electron Microscopy and Mössbauer Spectroscopy. Pure iron boride particles show a broad X-ray diffraction peak centered at 45∘ (2 𝜃), inferring the presence of nanocrystals of Fe2B as identified from Mössbauer Spectroscopy. The size of these Fe2B particles was within the range of 50 and 120 nm. The maximum sorption capacities for Cd (II) of iron boride particles and supported iron boride particles in homo-ionized zeolitic material were nearly 100 %. For homo-ionized zeolite and homo-ionized zeolite plus sodium borohydride was ≥ 95 %.

  16. Martian zeolites as a source of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Simon, Jean-Marc; Bellat, Jean-Pierre; Schmidt, Frédéric; Bouley, Sylvain; Chassefière, Eric; Sautter, Violaine; Quesnel, Yoann; Picaud, Sylvain; Lectez, Sébastien

    2016-11-01

    The origin of the martian methane is still poorly understood. A plausible explanation is that methane could have been produced either by hydrothermal alteration of basaltic crust or by serpentinization of ultramafic rocks producing hydrogen and reducing crustal carbon into methane. Once formed, methane storage on Mars is commonly associated with the presence of hidden clathrate reservoirs. Here, we alternatively suggest that chabazite and clinoptilolite, which belong to the family of zeolites, may form a plausible storage reservoir of methane in the martian subsurface. Because of the existence of many volcanic terrains, zeolites are expected to be widespread on Mars and their Global Equivalent Layer may range up to more than ∼1 km, according to the most optimistic estimates. If the martian methane present in chabazite and clinoptilolite is directly sourced from an abiotic source in the subsurface, the destabilization of a localized layer of a few millimeters per year may be sufficient to explain the current observations. The sporadic release of methane from these zeolites requires that they also remained isolated from the atmosphere during its evolution. The methane release over the ages could be due to several mechanisms such as impacts, seismic activity or erosion. If the methane outgassing from excavated chabazite and/or clinoptilolite prevails on Mars, then the presence of these zeolites around Gale Crater could explain the variation of methane level observed by Mars Science Laboratory.

  17. Electrochemical regeneration of zeolites and the removal of ammonia.

    PubMed

    Lei, Xiaohui; Li, Miao; Zhang, Zhenya; Feng, Chuanping; Bai, Wei; Sugiura, Norio

    2009-09-30

    The electrochemical regeneration of zeolites was investigated with the objective of removing ammonia from water harmlessly and reusing the regeneration solution in an undivided electrochemical cell assembled with a Ti/IrO(2)-Pt anode and a Cu/Zn cathode. Zeolites could be completely regenerated through the electrochemical method in this study. With NaCl as a supporting electrolyte, the conversion rate of ammonia adsorbed by the zeolites into nitrogen gas was more that 96%, while the conversion rate to nitrate was less than 4%; no ammonia or nitrite was detected in the solution after electrolysis. The surface of the cathode appeared to be rougher after electrolysis than before. More nitrate was produced when the amount of NaCl was raised or when the current density was increased to the range of 20-60 mA/cm(2). The regeneration solution can be repeatedly reused over a long period of time with the proper amount of NaCl added to the solution. Even after the solution was reused for five times, it could still completely regenerate the zeolites, saving both water resources and the chemical reagent.

  18. Synthesis of mesoporous zeolite single crystals with cheap porogens

    NASA Astrophysics Data System (ADS)

    Tao, Haixiang; Li, Changlin; Ren, Jiawen; Wang, Yanqin; Lu, Guanzhong

    2011-07-01

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance ( 27Al MAS NMR), temperature-programmed desorption of ammonia (NH 3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites.

  19. DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE

    EPA Science Inventory


    An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...

  20. Zeolite formation from coal fly ash and its adsorption potential

    SciTech Connect

    Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant

    2009-10-15

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

  1. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles.

    PubMed

    Mielby, Jerrik; Abildstrøm, Jacob Oskar; Wang, Feng; Kasama, Takeshi; Weidenthaler, Claudia; Kegnaes, Søren

    2014-11-10

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high activity and selectivity for the catalytic gas-phase oxidation of ethanol are demonstrated. The zeolites are modified by a recrystallization process, which creates intraparticle voids and mesopores that facilitate the formation of small and disperse nanoparticles upon simple impregnation. The individual zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98 % selectivity toward acetaldehyde at 200 °C, which (under the given reaction conditions) corresponds to 606 mol acetaldehyde/mol Au hour(-1) .

  2. High-pressure alchemy on a small-pore zeolite

    NASA Astrophysics Data System (ADS)

    Lee, Y.

    2011-12-01

    While an ever-expanding variety of zeolites with a wide range of framework topology is available, it is desirable to have a way to tailor the chemistry of the zeolitic nanopores for a given framework topology via controlling both the coordination-inclusion chemistry and framework distortion/relaxation. This is, however, subjected to the ability of a zeolitic nanopore to allow the redistribution of cations-water assembly and/or insertion of foreign molecules into the pores and channels. Small-pore zeolites such as natrolite (Na16Al16Si24O80x16H2O), however, have been known to show very limited capacity for any changes in the confinement chemistry. We have recently shown that various cation-exchanged natrolites can be prepared under modest conditions from natural sodium natrolite and exhibit cation-dependent volume expansions by up to 18.5% via converting the elliptical channels into progressively circular ones. Here, we show that pressure can be used as a unique and clean tool to further manipulate the chemistry of the natrolite nanopores. Our recent crystallographic and spectroscopic studies of pressure-insertion of foreign molecules, trivalent-cation exchange under pressure, and pressure-induced inversion of cation-water coordination and pore geometry in various cation-exchanged natrolites will be presented.

  3. Studying Zeolite Catalysts with a 2D Model System

    ScienceCinema

    Boscoboinik, Anibal

    2016-12-14

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  4. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  5. Multipolar correlations between reactants in crystalline and semiamorphous zeolites

    SciTech Connect

    Mandeville, J.B.; Golub, J.; Kozak, J.J.

    1988-03-24

    The authors study the role of multipolar correlations in influencing the efficiency of reaction between a fixed target molecule and a diffusing coreactant in zeolites that exhibit both crystalline and semiamorphous structures. They focus on zeolite A and construct a geometrical model whose framework structure and attendant channel patterns have the same topology as the 26-hedral cavities of type I of this aluminosilicate. They consider reaction partners interacting via (attractiverepulsive) ion-ion, angle-averaged ion-dipole, and angle-averaged dipole-dipole potentials V(r), and by coupling the theory of finite Markov processes with a lattice version of the Debye-Smoluchowski theory of encounter-controlled reactions, they quantify the differences in the diffusion-controlled rate constant k/sub D/ for reactions taking place in crystalline regions of finite extent (rafts) versus those occurring in crystalline regions surrounded by an amorphous aluminosilicate structure. Calculations based on the model introduced in this paper suggest that much of the marked cation-exchange activity and catalytic activity of fully crystalline zeolites is already captured by semiamorphous zeolites containing raft structures having the spatial extent of those found in recent experimental work by Thomas and Bursill

  6. Simulation of methane adsorption on A-zeolites

    SciTech Connect

    Woestyn, A.M.; Mentasty, L.; Riccardo, J.L.; Zgrablich, G.

    1996-07-01

    A Monte Carlo simulation has been performed to study adsorption of CH{sub 4} on zeolites and the result are here presented for NaA and CaNaA zeolites. The adsorption isotherms of CH{sub 4} and the radial distribution of the adsorbed molecules have been obtained at four different temperatures in the pressure range 0 to 5 Mpa. The potential energy of adsorption has been calculated and the energy profile of a CH{sub 4} molecule along different axes in the zeolite cavity are discussed. High density storage of natural gas is essential for the efficient use of this gas as an alternative transportation fuel. One of the promising storage technologies is the adsorbed natural gas (ANG), in which the gas is adsorbed on highly microporous solids like zeolites or actived carbons. Structural as well as chemical properties of the porous adsorbents influence strongly the adsorption phenomenon, therefore, both experimental as theorical investigation are still necessary to select better solids for specific applications. {copyright} {ital 1996 American Institute of Physics.}

  7. Synthetic Porphyrins and Metalloporphyrins

    DTIC Science & Technology

    1976-12-10

    last type of complexes to be considered are the sterically hindered macrocycles . Examples of this class of complexes exe the capped" or "crow henhe...group IV metalloporphyrins, phthalocyanines and correspond- log Ru"l and Reol complexes induce smaller shifts than the lanthanides (about 8 ppm vs 25...ROLE W1r ROLE wTr ROLE Wt * ~Synthe tic Porphyrins Synthetic lMetalloporphyrinsj tetrapyrrole macrocycles "Inatural" porphyrins * j meso

  8. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites.

  9. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation.

    PubMed

    Gonzalez-Olmos, Rafael; Kopinke, Frank-Dieter; Mackenzie, Katrin; Georgi, Anett

    2013-03-05

    Several zeolites were evaluated as adsorbents for the removal of MTBE from water in a screening process. It was observed that the SiO2/Al2O3 molar ratio is a decisive factor for the adsorption properties, at least in the case of ZSM5 zeolites. ZSM5 zeolites with SiO2/Al2O3 ratios >200 were found to provide the best sorption properties for MTBE. To design a combined sorption/reaction method, regeneration of the loaded zeolites by selected advanced oxidation processes (AOP) was studied: (1) Fenton treatment using H2O2 with dissolved iron salts and (2) heterogeneous Fenton-like oxidation with Fe immobilized on the zeolites. The first was ineffective in regenerating loaded zeolites. However, heterogeneous catalysis using Fe species immobilized on the zeolite by liquid ion exchange was markedly more effective. Although these hydrophobic zeolites have a low ion exchange capacity, resulting in iron loadings of ≤ 0.09 wt %, it was possible to obtain sufficiently active catalysts. Hydrophobic Fe-zeolites can therefore be regarded as promising materials for the removal of MTBE from water, since they allow the combination of efficient adsorption and oxidative degradation of MTBE by H2O2. In contrast to the homogeneous catalysis by dissolved iron ions, these heterogeneous catalysts work at near-neutral pH and can be easily reused. Fe-zeolites as adsorbents/catalysts showed a good stability in both batch and column experiments.

  10. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  11. Facile synthesis of hollow zeolite microspheres through dissolution–recrystallization procedure in the presence of organosilanes

    SciTech Connect

    Tao, Haixiang; Ren, Jiawen; Liu, Xiaohui; Wang, Yanqin; Lu, Guanzhong

    2013-04-15

    Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride.

  12. Synthetic Biological Engineering of Photosynthesis

    DTIC Science & Technology

    2015-11-16

    SECURITY CLASSIFICATION OF: The overall goal of the grant is to create a synthetic biology platform based on solar energy that can be used on a local...Research Triangle Park, NC 27709-2211 Synthetic biology , photosynthesis, solar energy, biofuels REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...Synthetic Biological Engineering of Photosynthesis Report Title The overall goal of the grant is to create a synthetic biology platform based on solar

  13. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  14. Synthetic biology in plastids.

    PubMed

    Scharff, Lars B; Bock, Ralph

    2014-06-01

    Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.

  15. Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash.

    PubMed

    Hui, K S; Chao, C Y H

    2008-10-01

    The performance of multimetal-(Cu, Cr, Zn, Ni, and Co)-ion-exchanged zeolite A prepared from both a commercial-grade sample and one produced from coal fly ash in methane emissions abatement was evaluated in this study. The ion-exchange process was used to load the metal ions in zeolite A samples. The methane conversion efficiency by the samples was studied under various parameters including the amount of metal loading (7.3-19.4 wt%), reaction temperature (25-500 degrees C), space velocity (8400-41 900 h(-1)), and methane concentration (0.5-3.2 vol %). At 500 degrees C, the original commercial-grade zeolite A catalyzed 3% of the methane only, whereas the addition of different percentages of metals in the sample enhanced the methane conversion efficiency by 40-85%. Greater methane conversion was observed by increasing the percentage of metals added to the zeolite even though the BET surface area of the zeolite consequently decreased. Higher percentage methane conversion over the multi-ion-exchanged samples was observed at lower space velocities indicating the importance of the mass diffusion of reactants and products in the zeolite. Compared to the multi-ion-exchanged zeolite A prepared from the commercial-grade zeolite, the one produced from coal fly ash demonstrated similar performances in methane emissions abatement, showing the potential use of this low cost recycled material in gaseous pollutant treatment.

  16. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  17. Applications of Synthetic Aperture Radar (SAR) to UXO Delineation

    DTIC Science & Technology

    2004-05-01

    Synthetic Aperture Radar ( SAR ) to UXO Delineation May 2004 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Applications of Synthetic Aperture Radar ( SAR ) to UXO Delineation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 39 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified

  18. Composting domestic sewage sludge with natural zeolites in a rotary drum reactor.

    PubMed

    Villaseñor, J; Rodríguez, L; Fernández, F J

    2011-01-01

    This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (<1 mg/kg). Thus, the final compost could be applied directly to soil, or metal-polluted zeolites could be separated from the compost prior to application. The different options have been discussed.

  19. Preparation of zeolite A and faujasite membranes from a clear solution

    SciTech Connect

    Kumakiri, Izumi; Yamaguchi, Takeo; Nakao, Shinichi

    1999-12-01

    Zeolite A and faujasite- (FAU-)type zeolite membranes were prepared under identical conditions from solutions of the same composition, with the only difference being the seed crystal used. The zeolite A membrane was formed on a substrate seeded with zeolite A crystals, while the FAU membrane was formed with zeolite Y seeds. The induction period of clear solution was used to prevent the influence of precipitated crystals that will eventually form in the clear solution and to keep the composition of the synthesis solution constant. Zeolite crystals increased in size with synthesis time and formed a continuous membrane on a porous substrate. Selectivity in a liquid mixture separation by pervaporation increased as crystals grew, indicating a decrease in intercrystalline region size.

  20. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes.

    PubMed

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  1. Supercritical fluid removal of hydrocarbons adsorbed on wide pore zeolite catalysts

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch

    2005-06-01

    The effect of zeolite pore structure on coke removal by supercritical fluid regeneration (SFR) was studied on a series of wide pore zeolite catalysts, which included acidic Y, beta, L, and mordenite zeolites. Catalyst samples were deactivated under liquid phase isobutane/butene alkylation reaction conditions and treated under flowing supercritical isobutane for 60 min. The chemical nature of the species remaining on the catalyst surface before and after SFR was analyzed by temperature-programmed oxidation (TPO), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and ultraviolet-visible (UV-Vis) spectroscopy. Zeolite pore structure played an important role not only in hydrocarbon deposition during alkylation but also in hydrocarbon transformation and removal during SFR. During SFR, the formation of unsaturated cyclic or polycyclic compounds, which likely affects catalyst long-term activity after cyclic alkylation/SFR treatments, was hindered on beta zeolites and favored on catalysts containing periodic expansions or cages, such as Y and L zeolites.

  2. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    PubMed Central

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen

    2016-01-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098

  3. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  4. Heterogeneities of the nanostructure of platinum/zeolite y catalysts revealed by electron tomography.

    PubMed

    Zečević, Jovana; van der Eerden, Ad M J; Friedrich, Heiner; de Jongh, Petra E; de Jong, Krijn P

    2013-04-23

    To develop structure-performance relationships for important catalysts, a detailed characterization of their morphology is essential. Using electron tomography, we determined in three dimensions the structure of Pt/zeolite Y bifunctional catalysts. Optimum experimental conditions enabled for the first time high-resolution 3D imaging of Pt particles as small as 1 nm located inside zeolite micropores. Semiautomated image analysis of 3D reconstructions provided an efficient study of numbers, size distributions, and interparticle distances of thousands of Pt particles within individual zeolite crystals. Upon extending this approach to a number of zeolite crystals of one batch of Pt/zeolite Y catalyst, heterogeneities were revealed. The Pt loading, an important parameter for catalyst performance, varied between zeolite crystals up to a factor of 35. This discovery calls for re-evaluation of catalyst preparation methods and suggests potential for lowering the nominal loading with noble metals.

  5. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    PubMed

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-07

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.

  6. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    SciTech Connect

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-02-02

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst.

  7. Studies of zeolite-based artificial photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu

    Two ruthenium polypyridyl compounds of structural formula [(bpy) 2RuL]2+ (RuL) and [(bpy)2RuLDQ]4+ (RuLDQ) (where bpy = bipyridine, L = trans-1,2-bis-4-(4'-methyl)-2,2'-bipyridyl) ethane, LDQ = 1-[4-(4'-methyl)-2,2'-bipyridyl)]-2-[4-(4'-N,N'-tetramethylene-2,2'-bipyridinium)] ethene) were synthesized and purified. From pH titrations, it was found that the Ru complex was a stronger base (pKa* = 6) in the excited state than in the ground state (pKa = 4). Photolysis of the RuL complex in solutions at pH 7 and 12 led to formation of species with increased emission quantum yields, ˜55 nm blue-shift of the emission maximum to 625 nm and disappearance of the absorption band at 330 nm, the latter arising from the olefinic bond of the L ligand. Photoproducts formed at neutral pH have been analyzed. It was found that the major product was a dimer of RuL, dimerizing around the double bond. Photoreactions did not occur in the dark or in the aprotic solvent acetonitrile. We proposed that a Ru(III) radical intermediate was formed by photoinduced excited-state electron and proton transfer, which initiated the dimerization. The radical intermediate also underwent photochemical degradative reductions. Below pH 4, the emission quenching was proposed to arise via protonation of the monoprotonated RuLH + followed by electron transfer to the viologen-type moiety created by protonation. The products of photodegradation at pH > 12 were different from those of pH 7, but the mechanism of the degradation at pH > 12 was not elucidated. RuLDQ was stable under visible irradiation. We examined nanocrystalline zeolite as a host for light absorbing sensitizers (electron donors) and electron acceptors. Nanocrystalline zeolite Y (NanoY) with uniform particle size, pure phase was prepared. NanoY was obtained by periodically removing nanocrystals from the mother liquor and recycling the unused reagents. The nanoparicles were characterized by XRD and TEM. Optically clear colloidal solutions of Nano

  8. Synthetic passive margin stratigraphy

    SciTech Connect

    Turcotte, D.L.; Kenyon, P.M.

    1984-06-01

    Synthetic stratigraphic cross sections are derived mathematically for a variety of simple conditions. The variables considered in the mathematical model include variations in sea level, rate of tectonic subsidence, rate of sedimentation, and rate of erosion. Derived stratigraphic relationships include unconformities, correlative conformities and disconformities, coastal onlap, coastal toplap, erosional truncation, pinch-out, and sigmoidal progradational clinoforms. An important conclusion is that the rate of erosion is a dominant variable in determining the type of stratigraphic section observed. The proposed approach may provide the basis for either a forward or inverse modeling of seismic stratigraphic sections.

  9. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content.

  10. Development of natural zeolites for their use in water-treatment systems.

    PubMed

    Margeta, K; Vojnović, B; Zabukovec Logar, N

    2011-06-01

    This paper gives an overview of research and patents concerning the use of natural zeolites in water-treatment systems in the last ten years. Furthermore, nanocomposite materials made of natural zeolites and organic and polymeric materials are also mentioned as an effective solution in water treatment. An additional emphasis is put on a variety of possibilities for further application of natural zeolite materials for environment protection and preservation.

  11. Analysis Si/Al ratio in zeolites type FAU by laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Contreras, W. A.; Cabanzo, R.; Mejía-Ospino, E.

    2011-01-01

    In this work, Laser Induced Breakdown Spectroscopy (LIBS) is used to determine the Si/Al ratio of Zeolite type Y. The catalytic activity of zeolite is strongly dependent of the Si/Al ratio. We have used Si lines in the spectral region between 245-265 nm to determine temperature of the plasma generated on pelletized sample of zeolite, and stoichiometry relation between Si and Al.

  12. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-02

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries.

  13. Fiber ring laser interrogated zeolite-coated singlemode-multimode-singlemode structure for trace chemical detection.

    PubMed

    Lan, X; Huang, J; Han, Q; Wei, T; Gao, Z; Jiang, H; Dong, J; Xiao, H

    2012-06-01

    Zeolite thin films were synthesized on the claddingless multimode portion of a singlemode-multimode-singlemode (SMS) fiber structure to construct a chemical vapor sensor. The zeolite-coated SMS structure was inserted into a fiber ring amplifier to produce a laser line. Combining the strong molecular adsorption capability of the nanoporous zeolite and the high signal-to-noise ratio of the fiber laser, the device was demonstrated for chemical vapor sensing with a low detection limit.

  14. Removal of Ca2+ and Zn2+ from aqueous solutions by zeolites NaP and KP.

    PubMed

    Yusof, Alias Mohd; Malek, Nik Ahmad Nizam Nik; Kamaruzaman, Nurul Asyikin; Adil, Muhammad

    2010-01-01

    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).

  15. Synthesis and characterization of various zeolites and study of dynamic adsorption of dimethyl methyl phosphate over them

    SciTech Connect

    Khanday, Waheed Ahmad; Majid, Sheikh Abdul; Chandra Shekar, S.; Tomar, Radha

    2013-11-15

    Graphical abstract: Thermal desorption pattern of DMMP over various zeolites (a) 1st desorption and (b) 2nd desorption. - Highlights: • Synthesis of Zeolite-A, MCM-22, Zeolite-X and Erionite by hydrothermal method. • Zeolites were characterized by using XRD, FTIR, BET, NH{sub 3}-TPD, SEM and EDS techniques. • Dynamic adsorption of DMMP on zeolites was carried out using TPD plus chemisorption system. • Thermal desorption of DMMP on zeolites was carried using the same system. - Abstract: Zeolite-A, MCM-22, Zeolite-X and Erionite were synthesized successfully under hydrothermal conditions and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Brunauer–Emmett–Teller (BET) surface area analysis and thermal programmed desorption (TPD). Dynamic adsorption of dimethyl methyl phosphate (DMMP) was carried out on these zeolites. Zeolite-X having high surface area among all four zeolites shows highest adsorption capacity followed by Erionite and MCM-22 where as Zeolite-A shows the least. For all zeolites adsorption was found to be high initially and it then decreases with increase in injected volume. Then desorption pattern was analyzed which shows two types of peaks, sharp peak representing desorption of physisorbed DMMP and a broad peak representing desorption of strongly chemisorbed DMMP.

  16. Determination of Surface Energy of Natural Zeolite by Inverse Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Bilgiç, Ceyda; Karakehya, Naile

    2016-10-01

    In this study, surface energy of natural zeolite was investigated using inverse gas chromatography (IGC). Purified zeolite was prepared from natural zeolite applying decantation and centrifugation process together. For IGC studies, retention time of n-octane, n-nonane and n-decane were measured at infinite dilution conditions, between 250 and 280 °C. Dispersive component of the surface energy (γd S)of purified zeolite was calculated. γd S values calculated using Schultz et al methods decrease with temperature.

  17. Pressure-induced increase of ionic conduction of water-treated NaA zeolite

    NASA Astrophysics Data System (ADS)

    Secco, Richard A.; Goryainov, Sergei V.; Huang, Yining

    2005-07-01

    Dehydrated, hydrated and superhydrated NaA zeolites have been studied by impedance spectroscopy with scanning frequency from 1 Hz to 1 MHz at high pressure up to 4.5 GPa. A considerable anomalous increase in electrical conductivity in the range of 0.5-1.1 GPa was observed in superhydrated NaA zeolite containing additional water in the channels. A very high mobility of ions in superhydrated zeolite may be associated with the liquid-like state of the water-cation stuffing of zeolite channels.

  18. Use of zeolites in the capture of charged particles from plasma

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Il; Lee, Seong Eui; Kim, Sun Ho; Cho, Kwan Hyun; Choi, Kyung Cheol

    2008-08-01

    The zeolites NaA and 13X were introduced to a coplanar discharge cell to investigate the behavior of charged particles from plasma. The zeolite crystals were attached to the surface without blocking their nanopores. The memory margin related to the accumulated charged particles on the surface indicated that the zeolites absorb charged particles. This phenomenon was also observed at the displacement and discharge current plots. Zeolites with a different window size cause abnormally high displacement and a saturation phenomenon of discharge currents. Note in particular that NaA seems to not only absorb charged particles but also capture gas molecules.

  19. Studies on the solid-state ion exchange of nickel ions into zeolites using DRS technique

    NASA Astrophysics Data System (ADS)

    Zanjanchi, M. A.; Ebrahimian, A.

    2004-05-01

    The coordination of Ni 2+ ions in the dehydrated nickel-exchanged zeolites was investigated from the analysis of diffuse reflectance spectra. Solid-state ion exchange method was used to prepare nickel-containing mordenite, Y, L and mazzite zeolites. In the dehydrated mordenite and zeolite Y, nickel cations are presented in both forms of tetrahedral and distorted tetrahedral symmetries. The relative amount of tetrahedral and distorted tetrahedral nickel species are related to the heating temperature and heating time used for calcinations. In the dehydrated zeolite L and mazzite, Ni 2+ ions are mainly in the distorted octahedral symmetries.

  20. Ammonium removal from groundwater using a zeolite permeable reactive barrier: a pilot-scale demonstration.

    PubMed

    Li, Shengpin; Huang, Guoxin; Kong, Xiangke; Yang, Yingzhao; Liu, Fei; Hou, Guohua; Chen, Honghan

    2014-01-01

    In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH(4)(+)-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH(4)(+)-N was microbially oxidized to nitrate. Any remaining NH(4)(+)-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH(4)(+)-N was consistently removed, and approximately 40% of the influent NH(4)(+)-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH(4)(+)-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH(4)(+)-N removal.