Science.gov

Sample records for 5c aliphatic glucosinolates

  1. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

    PubMed

    Beekwilder, Jules; van Leeuwen, Wessel; van Dam, Nicole M; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W; Schipper, Bert; Verbocht, Hans; de Vos, Ric C H; Morandini, Piero; Aarts, Mark G M; Bovy, Arnaud

    2008-04-30

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.

  2. The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis

    PubMed Central

    van Dam, Nicole M.; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W.; Schipper, Bert; Verbocht, Hans; de Vos, Ric C. H.; Morandini, Piero; Aarts, Mark G. M.; Bovy, Arnaud

    2008-01-01

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants. PMID:18446225

  3. Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots.

    PubMed

    Tong, Yu; Gabriel-Neumann, Elke; Ngwene, Benard; Krumbein, Angelika; George, Eckhard; Platz, Stefanie; Rohn, Sascha; Schreiner, Monika

    2014-01-01

    The decrease of water availability is leading to an urgent demand to reduce the plants' water supply. This study evaluates the effect of topsoil drying, combined with varying sulfur (S) supply on glucosinolates in Brassica juncea in order to reveal whether a partial root drying may already lead to a drought-induced glucosinolate increase promoted by an enhanced S supply. Without decreasing biomass, topsoil drying initiated an increase in aliphatic glucosinolates in leaves and in topsoil dried roots supported by increased S supply. Simultaneously, abscisic acid was determined, particularly in dehydrated roots, associated with an increased abscisic acid concentration in leaves under topsoil drying. This indicates that the dehydrated roots were the direct interface for the plants' stress response and that the drought-induced accumulation of aliphatic glucosinolates is related to abscisic acid formation. Indole and aromatic glucosinolates decreased, suggesting that these glucosinolates are less involved in the plants' response to drought.

  4. Two Novel Flavin-Containing Monooxygenases Involved in Biosynthesis of Aliphatic Glucosinolates

    PubMed Central

    Kong, Wenwen; Li, Jing; Yu, Qingyue; Cang, Wei; Xu, Rui; Wang, Yang; Ji, Wei

    2016-01-01

    Glucosinolates, a class of secondary metabolites from cruciferous plants, are derived from amino acids and have diverse biological activities, such as in biotic defense, depending on their side chain modification. The first structural modification step in the synthesis of aliphatic (methionine-derived) glucosinolates—S-oxygenation of methylthioalkyl glucosinolates to methylsulfinylalkyl glucosinolates—was found to be catalyzed by five flavin-containing monooxygenases (FMOs), FMOGS-OX1-5. Here, we report two additional FMOGS-OX enzymes, FMOGS-OX6, and FMOGS-OX7, encoded by At1g12130 and At1g12160, respectively. The overexpression of both FMOGS-OX6 and FMOGS-OX7 decreased the ratio of methylthioalkyl glucosinolates to the sum of methylthioalkyl and methylsulfinylalkyl glucosinolates, suggesting that the introduction of the two genes converted methylthioalkyl glucosinolates into methylsulfinylalkyl glucosinolates. Analysis of expression pattern revealed that the spatial expression of the two genes is quite similar and partially overlapped with the other FMOGS-OX genes, which are primarily expressed in vascular tissue. We further analyzed the responsive expression pattern of all the seven FMOGS-OX genes to exogenous treatment with abscisic acid, 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid (JA), salicylic acid, indole-3-acetic acid (IAA), and low and high temperatures. Although these genes showed same tendency toward the changing stimulus, the sensitivity of each gene was quite different. The variety in spatial expression among the FMOGS-OX genes while responding to environmental stimulus indicated a complex and finely tuned regulation of glucosinolates modifications. Identification of these two novel FMOGS-OX enzymes will enhance the understanding of glucosinolates modifications and the importance of evolution of these duplicated genes. PMID:27621741

  5. The impact of the absence of aliphatic glucosinolates on water transport under salt stress in Arabidopsis thaliana

    PubMed Central

    Martínez-Ballesta, Mcarmen; Moreno-Fernández, Diego A.; Castejón, Diego; Ochando, Cristina; Morandini, Piero A.; Carvajal, Micaela

    2015-01-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. Exposure to salinity increases the levels of several of these compounds, but their role in abiotic stress response is unclear. The effect of aliphatic glucosinolates on plant water balance and growth under salt stress, involving aquaporins, was investigated by means of Arabidopsis thaliana mutants impaired in aliphatic glucosinolate biosynthesis, which is controlled by two transcription factors: Myb28 and Myb29. The double mutant myb28myb29, completely lacking aliphatic glucosinolates, was compared to wild type Col-0 (WT) and the single mutant myb28. A greater reduction in the hydraulic conductivity of myb28myb29 was observed under salt stress, when compared to the WT and myb28; this correlated with the abundance of both PIP1 and PIP2 aquaporin subfamilies. Also, changes in root architecture in response to salinity were genotype dependent. Treatment with NaCl altered glucosinolates biosynthesis in a similar way in WT and the single mutant and differently in the double mutant. The results indicate that short-chain aliphatic glucosinolates may contribute to water saving under salt stress. PMID:26236322

  6. Arabidopsis thaliana plants with different levels of aliphatic- and indolyl-glucosinolates affect host selection and performance of Bemisia tabaci.

    PubMed

    Markovich, Oshry; Kafle, Dinesh; Elbaz, Moshe; Malitsky, Sergey; Aharoni, Asaph; Schwarzkopf, Alexander; Gershenzon, Jonathan; Morin, Shai

    2013-12-01

    Generalist insects show reduced selectivity when subjected to similar, but not identical, host plant chemical signatures. Here, we produced transgenic Arabidopsis thaliana plants that over-express genes regulating the aliphatic- and indolyl- glucosinolates biosynthetic pathways with either a constitutive (CaMV 35S) or a phloem-specific promoter (AtSUC2). This allowed us to examine how exposure to high levels of aliphatic- or indolyl-glucosinolates in homogenous habitats (leaf cage apparatus containing two wild-type or two transgenic leaves) and heterogeneous habitats (leaf cage apparatus containing one wild-type and one transgenic leaf) affects host selection and performance of Bemsia tabaci, a generalist phloem-feeding insect. Data from homogenous habitats indicated that exposure to A. thaliana plants accumulating high levels of aliphatic- or indolyl-glucosinolates negatively affected the performance of both adult females and nymphs of B. tabaci. Data from heterogeneous habitats indicated that B. tabaci adult females selected for oviposition plants on which their offspring perform better (preference-performance relationship). However, the combinations of wild-type and transgenic plants in heterogeneous habitats increased the period of time until the first choice was made and led to increased movement rate on transgenic plants, and reduced fecundity on wild-type plants. Overall, our findings are consistent with the view that both performance and selectivity of B. tabaci decrease in heterogeneous habitats that contain plants with closely-related chemical signatures.

  7. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    PubMed

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  8. Structure and Mechanism of Isopropylmalate Dehydrogenase from Arabidopsis thaliana: INSIGHTS ON LEUCINE AND ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS.

    PubMed

    Lee, Soon Goo; Nwumeh, Ronald; Jez, Joseph M

    2016-06-24

    Isopropylmalate dehydrogenase (IPMDH) and 3-(2'-methylthio)ethylmalate dehydrogenase catalyze the oxidative decarboxylation of different β-hydroxyacids in the leucine- and methionine-derived glucosinolate biosynthesis pathways, respectively, in plants. Evolution of the glucosinolate biosynthetic enzyme from IPMDH results from a single amino acid substitution that alters substrate specificity. Here, we present the x-ray crystal structures of Arabidopsis thaliana IPMDH2 (AtIPMDH2) in complex with either isopropylmalate and Mg(2+) or NAD(+) These structures reveal conformational changes that occur upon ligand binding and provide insight on the active site of the enzyme. The x-ray structures and kinetic analysis of site-directed mutants are consistent with a chemical mechanism in which Lys-232 activates a water molecule for catalysis. Structural analysis of the AtIPMDH2 K232M mutant and isothermal titration calorimetry supports a key role of Lys-232 in the reaction mechanism. This study suggests that IPMDH-like enzymes in both leucine and glucosinolate biosynthesis pathways use a common mechanism and that members of the β-hydroxyacid reductive decarboxylase family employ different active site features for similar reactions.

  9. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0

    PubMed Central

    Wittstock, Ute; Meier, Kathrin; Dörr, Friederike; Ravindran, Beena M.

    2016-01-01

    One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g., nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs) are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70–80% of the nitrile-forming activity was due to NSP1 and NSP3. Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col-0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system. PMID:27990154

  10. Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa.

    PubMed

    Zhang, Jifang; Liu, Zhiyuan; Liang, Jianli; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2015-10-01

    The glucosinolate biosynthetic gene AOP2 encodes an enzyme that plays a crucial role in catalysing the conversion of beneficial glucosinolates into anti-nutritional ones. In Brassica rapa, three copies of BrAOP2 have been identified, but their function in establishing the glucosinolate content of B. rapa is poorly understood. Here, we used phylogenetic and gene structure analyses to show that BrAOP2 proteins have evolved via a duplication process retaining two highly conserved domains at the N-terminal and C-terminal regions, while the middle part has experienced structural divergence. Heterologous expression and in vitro enzyme assays and Arabidopsis mutant complementation studies showed that all three BrAOP2 genes encode functional BrAOP2 proteins that convert the precursor methylsulfinyl alkyl glucosinolate to the alkenyl form. Site-directed mutagenesis showed that His356, Asp310, and Arg376 residues are required for the catalytic activity of one of the BrAOP2 proteins (BrAOP2.1). Promoter-β-glucuronidase lines revealed that the BrAOP2.3 gene displayed an overlapping but distinct tissue- and cell-specific expression profile compared with that of the BrAOP2.1 and BrAOP2.2 genes. Quantitative real-time reverse transcription-PCR assays demonstrated that BrAOP2.1 showed a slightly different pattern of expression in below-ground tissue at the seedling stage and in the silique at the reproductive stage compared with BrAOP2.2 and BrAOP2.3 genes in B. rapa. Taken together, our results revealed that all three BrAOP2 paralogues are active in B. rapa but have functionally diverged.

  11. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis.

    PubMed

    Baskar, Venkidasamy; Park, Se Won

    2015-07-01

    Glucosinolates (GSL) are one of the major secondary metabolites of the Brassicaceae family. In the present study, we aim at characterizing the multiple paralogs of aliphatic GSL regulators, such as BrMYB28 and BrMYB29 genes in Brassica rapa ssp. pekinensis, by quantitative real-time PCR (qRT-PCR) analysis in different tissues and at various developmental stages. An overlapping gene expression pattern between the BrMYBs as well as their downstream genes (DSGs) was found at different developmental stages. Among the BrMYB28 and BrMYB29 paralogous genes, the BrMYB28.3 and BrMYB29.1 genes were dominantly expressed in most of the developmental stages, compared to the other paralogs of the BrMYB genes. Furthermore, the differential expression pattern of the BrMYBs was observed under various stress treatments. Interestingly, BrMYB28.2 showed the least expression in most developmental stages, while its expression was remarkably high in different stress conditions. More specifically, the BrMYB28.2, BrMYB28.3, and BrMYB29.1 genes were highly responsive to various abiotic and biotic stresses, further indicating their possible role in stress tolerance. Moreover, the in silico cis motif analysis in the upstream regulatory regions of BrMYBs showed the presence of various putative stress-specific motifs, which further indicated their responsiveness to biotic and abiotic stresses. These observations suggest that the dominantly expressed BrMYBs, both in different developmental stages and under various stress treatments (BrMYB28.3 and BrMYB29.1), may be potential candidate genes for altering the GSL level through genetic modification studies in B. rapa ssp. pekinensis.

  12. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation

    PubMed Central

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  13. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    PubMed

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-07-20

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  14. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis.

    PubMed

    Burow, Meike; Zhang, Zhi-Yong; Ober, James A; Lambrix, Virginia M; Wittstock, Ute; Gershenzon, Jonathan; Kliebenstein, Daniel J

    2008-02-01

    Glucosinolates are plant secondary metabolites that act as direct defenses against insect herbivores and various pathogens. Recent analysis has shown that methionine-derived glucosinolates are hydrolyzed/activated into either nitriles or isothiocyanates depending upon the plants genotype at multiple loci. While it has been hypothesized that tryptophan-derived glucosinolates can be a source of indole-acetonitriles, it has not been explicitly shown if the same proteins control nitrile production from tryptophan-derived glucosinolates as from methionine-derived glucosinolates. In this report, we formally test if the proteins involved in controlling aliphatic glucosinolate hydrolysis during tissue disruption can control production of nitriles during indolic glucosinolate hydrolysis. We show that myrosinase is not sufficient for indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate and requires the presence of functional epithospecifier protein in planta and in vitro to produce significant levels of indol-3-acetonitrile. This reaction is also controlled by the Epithiospecifier modifier 1 gene. Thus, like formation of nitriles from aliphatic glucosinolates, indol-3-acetonitrile production following tissue disruption is controlled by multiple loci raising the potential for complex regulation and fine tuning of indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate.

  15. Proteomics and metabolomics of Arabidopsis responses to perturbation of glucosinolate biosynthesis.

    PubMed

    Chen, Ya-zhou; Pang, Qiu-Ying; He, Yan; Zhu, Ning; Branstrom, Isabel; Yan, Xiu-Feng; Chen, Sixue

    2012-09-01

    To understand plant molecular networks of glucosinolate metabolism, perturbation of aliphatic glucosinolate biosynthesis was established using inducible RNA interference (RNAi) in Arabidopsis. Two RNAi lines were chosen for examining global protein and metabolite changes using complementary proteomics and metabolomics approaches. Proteins involved in metabolism including photosynthesis and hormone metabolism, protein binding, energy, stress, and defense showed marked responses to glucosinolate perturbation. In parallel, metabolomics revealed major changes in the levels of amino acids, carbohydrates, peptides, and hormones. The metabolomics data were correlated with the proteomics results and revealed intimate molecular connections between cellular pathways/processes and glucosinolate metabolism. This study has provided an unprecedented view of the molecular networks of glucosinolate metabolism and laid a foundation towards rationale glucosinolate engineering for enhanced defense and quality.

  16. Glucosinolate biosynthesis in Eruca sativa.

    PubMed

    Katsarou, Dimitra; Omirou, Michalis; Liadaki, Kalliopi; Tsikou, Daniela; Delis, Costas; Garagounis, Constantine; Krokida, Afrodite; Zambounis, Antonis; Papadopoulou, Kalliope K

    2016-12-01

    Glucosinolates (GSLs) are a highly important group of secondary metabolites in the Caparalles order, both due to their significance in plant-biome interactions and to their chemoprotective properties. This study identified genes involved in all steps of aliphatic and indolic GSL biosynthesis in Eruca sativa, a cultivated plant closely related to Arabidopsis thaliana with agronomic and nutritional value. The impact of nitrogen (N) and sulfur (S) availability on GSL biosynthetic pathways at a transcriptional level, and on the final GSL content of plant leaf and root tissues, was investigated. N and S supply had a significant and interactive effect on the GSL content of leaves, in a structure-specific and tissue-dependent manner; the metabolites levels were significantly correlated with the relative expression of the genes involved in their biosynthesis. A more complex effect was observed in roots, where aliphatic and indolic GSLs and related biosynthetic genes responded differently to the various nutritional treatments suggesting that nitrogen and sulfur availability are important factors that control plant GSL content at a transcriptional level. The biological activity of extracts derived from these plants grown under the specific nutritional schemes was examined. N and S availability were found to significantly affect the cytotoxicity of E. sativa extracts on human cancer cells, supporting the notion that carefully designed nutritional schemes can promote the accumulation of chemoprotective substances in edible plants.

  17. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group).

    PubMed

    Velasco, Pablo; Cartea, María Elena; Gonzalez, Carmen; Vilar, Marta; Ordas, Amando

    2007-02-07

    Kales (Brassica oleracea acephala group) are important vegetable crops in traditional farming systems in the Iberian Peninsula. They are grown throughout the year to harvest their leaves and flower buds. The glucosinolate content of kales is dependent upon the environmental factors, plant part examined, phenological stage of plant growth, and level of insect damage. The objectives of this study were to evaluate the changes in the total and individual glucosinolate concentrations during plant development and to determine if significant variation of glucosinolate levels can be explained by insect pests attack and other environmental factors in four locations in northwestern Spain. The total glucosinolate concentration in leaves of B. oleracea increased with plant age from seedling to early flowering stages. At that stage, the aliphatic glucosinolate content in leaves of B. oleracea declined drastically over time as the content in the flower buds increased. The highest contents of indolyl glucosinolate (glucobrassicin) and of the aromatic glucosinolate occurred in leaves harvested at the optimum consumption stage while flower buds contained the highest concentration of aliphatic glucosinolates, especially sinigrin. Sinigrin is reported to have anticarcinogenic properties. There appears to be a loss of total and individual glucosinolate concentrations related to pest attack. Leaves damaged by lepidopterous pests contained a lower total glucosinolate content (25.8 micromol g-1 dw) than undamaged leaves (41 micromol g-1 dw). The amounts of sinigrin, glucoiberin, and glucobrassicin were also lowest in insect-damaged leaves. Environmental factors such as soil properties and temperature appear to influence the glucosinolate content in leaves although more research on this subject is needed.

  18. Plant plasma membrane aquaporins in natural vesicles as potential stabilizers and carriers of glucosinolates.

    PubMed

    Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela

    2016-07-01

    Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins.

  19. Glucosinolates profile and antioxidant capacity of Romanian Brassica vegetables obtained by organic and conventional agricultural practices.

    PubMed

    Vicas, Simona I; Teusdea, Alin C; Carbunar, Mihai; Socaci, Sonia A; Socaciu, Carmen

    2013-09-01

    The profile of glucosinolates in relation to the antioxidant capacity of five Brassica vegetables (Broccoli, Cauliflower, Kohlrabi, White and Red Cabbage) grown by organic and conventional agricultural practices in Transylvania region-Romania, were determined and compared. The qualitative and quantitative compositions of glucosinolates were determined by HPLC-PDA technique. The antioxidant capacity was comparatively determined by ABTS, DPPH, FRAP and Folin-Ciocalteu assays. The highest glucosinolates levels were found in the Broccoli samples grown under conventional practices (14.24 μmol/g dry weight), glucoraphanin, glucobrassicin and neo-glucobrassicin being the major components. The total glucosinolates content was similar in Kohlrabi and Cauliflower (4.89 and 4.84 μmol/g dry weight, respectively), the indolyl glucosinolates were predominant in Kohlrabi, while the aliphatic derivatives (sinigrin and glucoiberin) were major in Cauliflower. In Cabbage samples, the aliphatic glucosinolates were predominat against indolyl derivatives, glucoraphanin and glucoiberin being the main ones in Red Cabbage. The principal component analysis was applied to discriminate among conventional and organic samples and demonstrated non-overlaps between these two agricultural practices. Meanwhile it was shown that glucosinolates may represent appropriate molecular markers of Brassica vegetables, their antioxidant capacity being higher in organic crops, without significant differences among different Brassica varieties.

  20. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.

    PubMed

    Vale, A P; Santos, J; Brito, N V; Fernandes, D; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    The glucosinolates content of brassica plants is a distinctive characteristic, representing a healthy advantage as many of these compounds are associated to antioxidant and anti-carcinogenic properties. Brassica sprouts are still an underutilized source of these bioactive compounds. In this work, four varieties of brassica sprouts (red cabbage, broccoli, Galega kale and Penca cabbage), including two local varieties from the North of Portugal, were grown to evaluate the glucosinolate profile and myrosinase activity during the sprouting. Also the influence of light/darkness exposure during sprouting on the glucosinolate content was assessed. Glucosinolate content and myrosinase activity of the sprouts was evaluated by HPLC methods. All sprouts revealed a higher content of aliphatic glucosinolates than of indole glucosinolates, contrary to the profile described for most of brassica mature plants. Galega kale sprouts had the highest glucosinolate content, mainly sinigrin and glucoiberin, which are recognized for their beneficial health effects. Penca cabbage sprouts were particularly richer in glucoraphanin, who was also one of the major compounds in broccoli sprouts. Red cabbage showed a higher content of progoitrin. Regarding myrosinase activity, Galega kale sprouts showed the highest values, revealing that the use of light/dark cycles and a sprouting phase of 7-9 days could be beneficial to preserve the glucosinolate content of this variety.

  1. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    PubMed Central

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  2. Changes of glucosinolates in mixed fresh-cut broccoli and cauliflower florets in modified atmosphere packaging.

    PubMed

    Schreiner, M; Peters, P; Krumbein, A

    2007-10-01

    Glucosinolates of broccoli and cauliflower florets were assessed to determine the effect of modified-atmosphere packaging on postharvest glucosinolate dynamics in mixed florets of Brassica vegetables. Mixed-packaged broccoli and cauliflower florets stored in food trays sealed with 2 different microperforated biaxial-oriented polypropylene films for up to 7 d at 8 degrees C were analyzed. Both applied modified atmospheres (1% O(2)+ 21% CO(2); 8% O(2)+ 14% CO(2)) maintained aliphatic glucosinolates in cauliflower florets, whereas in broccoli florets, the aliphatic glucosinolate concentration decreased slightly in each modified atmosphere. In addition, total indole glucosinolate concentration for both broccoli and cauliflower florets was maintained, and even increased in cauliflower florets at 1% O(2)+ 21% CO(2) due to rising neoglucobrassicin concentration. Thus, to simultaneously maintain glucosinolates and external appearance as well as to prevent off-odor, a modified atmosphere of 1% O(2)+ 21% CO(2) provides a suitable environment for storage of this Brassica floret medley for up to 7 d at 8 degrees C.

  3. Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans.

    PubMed

    Badenes-Perez, Francisco R; Reichelt, Michael; Gershenzon, Jonathan; Heckel, David G

    2013-02-01

    The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is an insect specialized on glucosinolate-containing Brassicaceae that uses glucosinolates in host-plant recognition. We used wild-type and mutants of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) to investigate the interaction between plant glucosinolate and myrosinase content and herbivory by larvae of the generalist Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) and the specialist P. xylostella. We also measured glucosinolate changes as a result of herbivory by these larvae to investigate whether herbivory and glucosinolate induction had an effect on oviposition preference by P. xylostella. Feeding by H. armigera and P. xylostella larvae was 2.1 and 2.5 times less, respectively, on apk1 apk2 plants (with almost no aliphatic glucosinolates) than on wild-type plants. However, there were no differences in feeding by H. armigera and P. xylostella larvae on wild-type, gsm1 (different concentrations of aliphatic glucosinolates compared to wild-type plants), and tgg1 tgg2 plants (lacking major myrosinases). Glucosinolate induction (up to twofold) as a result of herbivory occurred in some cases, depending on both the plant line and the herbivore. For H. armigera, induction, when observed, was noted mostly for indolic glucosinolates, while for P. xylostella, induction was observed in both aliphatic and indolic glucosinolates, but not in all plant lines. For H. armigera, glucosinolate induction, when observed, resulted in an increase of glucosinolate content, while for P. xylostella, induction resulted in both a decrease and an increase in glucosinolate content. Two-choice tests with wild-type and mutant plants were conducted with larvae and ovipositing moths. There were no significant differences in preference of larvae and ovipositing moths between wild-type and gsm1 mutants and between wild-type and tgg1 tgg2 mutants. However, both larvae and ovipositing moths preferred wild-type over apk

  4. Camelina sativa defatted seed meal contains both alkyl sulfinyl glucosinolates and quercetin that synergize bioactivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Camelina sativa L. Crantz is under development as a novel oil-seed crop, yet bioefficacy of camelina phytochemicals is unknown. Defatted camelina seed meal contains two major aliphatic glucosinolates (GSL), glucoarabin (9-(methylsulfinyl)nonylglucosinolate; GSL 9) and glucocamelinin (10-(methylsulfi...

  5. Identification of Metabolic QTLs and Candidate Genes for Glucosinolate Synthesis in Brassica oleracea Leaves, Seeds and Flower Buds

    PubMed Central

    Sotelo, Tamara; Soengas, Pilar; Velasco, Pablo; Rodríguez, Víctor M.; Cartea, María Elena

    2014-01-01

    Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect. PMID:24614913

  6. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds.

    PubMed

    Sotelo, Tamara; Soengas, Pilar; Velasco, Pablo; Rodríguez, Víctor M; Cartea, María Elena

    2014-01-01

    Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds). Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL) content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.

  7. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.

    PubMed

    Yatusevich, Ruslan; Mugford, Sarah G; Matthewman, Colette; Gigolashvili, Tamara; Frerigmann, Henning; Delaney, Sean; Koprivova, Anna; Flügge, Ulf-Ingo; Kopriva, Stanislav

    2010-04-01

    Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.

  8. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses.

    PubMed

    Cacho, N Ivalú; Kliebenstein, Daniel J; Strauss, Sharon Y

    2015-11-01

    We explored macroevolutionary patterns of plant chemical defense in Streptanthus (Brassicaceae), tested for evolutionary escalation of defense, as predicted by Ehrlich and Raven's plant-herbivore coevolutionary arms-race hypothesis, and tested whether species inhabiting low-resource or harsh environments invest more in defense, as predicted by the resource availability hypothesis (RAH). We conducted phylogenetically explicit analyses using glucosinolate profiles, soil nutrient analyses, and microhabitat bareness estimates across 30 species of Streptanthus inhabiting varied environments and soils. We found weak to moderate phylogenetic signal in glucosinolate classes and no signal in total glucosinolate production; a trend toward evolutionary de-escalation in the numbers and diversity of glucosinolates, accompanied by an evolutionary increase in the proportion of aliphatic glucosinolates; some support for the RAH relative to soil macronutrients, but not relative to serpentine soil use; and that the number of glucosinolates increases with microhabitat bareness, which is associated with increased herbivory and drought. Weak phylogenetic signal in chemical defense has been observed in other plant systems. A more holistic approach incorporating other forms of defense might be necessary to confidently reject escalation of defense. That defense increases with microhabitat bareness supports the hypothesis that habitat bareness is an underappreciated selective force on plants in harsh environments.

  9. Metabolic Profiling in Chinese Cabbage (Brassica rapa L. subsp. pekinensis) Cultivars Reveals that Glucosinolate Content Is Correlated with Carotenoid Content.

    PubMed

    Baek, Seung-A; Jung, Young-Ho; Lim, Sun-Hyung; Park, Sang Un; Kim, Jae Kwang

    2016-06-01

    A total of 38 bioactive compounds, including glucosinolates, carotenoids, tocopherols, sterols, and policosanols, were characterized from nine varieties of Chinese cabbage (Brassica rapa L. subsp. pekinensis) to determine their phytochemical diversity and analyze their abundance relationships. The metabolite profiles were evaluated with principal component analysis (PCA), Pearson correlation analysis, and hierarchical clustering analysis (HCA). PCA and HCA identified two distinct varieties of Chinese cabbage (Cheonsangcheonha and Waldongcheonha) with higher levels of glucosinolates and carotenoids. Pairwise comparisons of the 38 metabolites were calculated using Pearson correlation coefficients. The HCA, which used the correlation coefficients, clustered metabolites that are derived from closely related biochemical pathways. Significant correlations were discovered between chlorophyll and carotenoids. Additionally, aliphatic glucosinolate and carotenoid levels were positively correlated. The Cheonsangcheonha and Waldongcheonha varieties appear to be good candidates for breeding because they have high glucosinolate and carotenoid levels.

  10. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3.

    PubMed

    Himanen, Sari J; Nissinen, Anne; Auriola, Seppo; Poppy, Guy M; Stewart, C Neal; Holopainen, Jarmo K; Nerg, Anne-Marja

    2008-01-01

    Glucosinolates are plant secondary compounds involved in direct chemical defence by cruciferous plants against herbivores. The glucosinolate profile can be affected by abiotic and biotic environmental stimuli. We studied changes in glucosinolate patterns in leaves of non-transgenic oilseed rape (Brassica napus ssp. oleifera) under elevated atmospheric CO2 or ozone (O3) concentrations and compared them with those from transgenic for herbivore-resistance (Bacillus thuringiensis Cry1Ac endotoxin), to assess herbivory dynamics. Both elevated CO2 and O3 levels decreased indolic glucosinolate concentrations in transgenic and non-transgenic lines, whereas O3 specifically increased the concentration of an aromatic glucosinolate, 2-phenylethylglucosinolate. The herbivore-inducible indolic glucosinolate response was reduced in elevated O3 whereas elevated CO2 altered the induction dynamics of indolic and aliphatic glucosinolates. Herbivore-resistant Bt plants experienced minimal leaf damage after target herbivore Plutella xylostella feeding, but exhibited comparatively similar increase in glucosinolate concentrations after herbivory as non-transgenic plants, indicating that the endogenous glucosinolate defence was not severely compromised by transgenic modifications. The observed differences in constitutive and inducible glucosinolate concentrations of oilseed rape under elevated atmospheric CO2 and O3 might have implications for plant-herbivore interactions in Brassica crop-ecosystems in future climate scenarios.

  11. Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination.

    PubMed

    Pérez-Balibrea, Santiago; Moreno, Diego A; García-Viguera, Cristina

    2010-10-01

    Sulphur (S) fertilization is essential for primary and secondary metabolism in cruciferous foods. Deficient, suboptimal, or excessive S affects the growth and biosynthesis of secondary metabolites in adult plants. Nevertheless, there is little information regarding the influence of S fertilization on sprouts and seedlings. An experiment was set up to evaluate the effect of S fertilization, supplied as K(2)SO(4) at 0, 15, 30, and 60 mg/L, on the glucosinolate content of broccoli sprouts during the germination course of 3, 6, 9, and 12 d after sowing. Glucosinolate concentration was strongly influenced by germination, causing a rapid increase during the first 3 d after sowing, and decreasing afterwards. The S supply increased aliphatic and total glucosinolate content at the end of the monitored sprouting period. S-treated sprouts, with S(15), S(30), and S(60) at 9 and 12 d after sowing presented enhanced glucosinolate content. Overall, both germination time and S fertilization were key factors in maximizing the bioactive health-promoting phytochemicals of broccoli. Practical Application: Germination with sulphate is a simple and inexpensive way to obtain sprouts that contain much higher levels of glucosinolates (health promoting compounds), than the corresponding florets from the same seeds.

  12. The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluskan herbivores

    PubMed Central

    Bodenhausen, Natacha; Schramm, Katharina; Paetz, Christian; Vassão, Daniel Giddings; Reichelt, Michael; von Knorre, Dietrich; Bergelson, Joy; Erb, Matthias; Gershenzon, Jonathan

    2016-01-01

    Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to mollusks is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluskan herbivores. Treating wounded leaves with the mucus residue (“slime trail”) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defense elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signaling suffered more damage by molluskan herbivores in the laboratory and in the field, demonstrating that JA-mediated defenses protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against mollusks. The presence in mollusk feces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluskan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known anti-herbivore defense pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defense metabolites against nocturnal molluskan herbivores. PMID:24313595

  13. The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores.

    PubMed

    Falk, Kimberly L; Kästner, Julia; Bodenhausen, Natacha; Schramm, Katharina; Paetz, Christian; Vassão, Daniel G; Reichelt, Michael; von Knorre, Dietrich; Bergelson, Joy; Erb, Matthias; Gershenzon, Jonathan; Meldau, Stefan

    2014-03-01

    Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue ('slime trail') of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.

  14. Interaction between plants and bacteria: glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656.

    PubMed

    Schreiner, Monika; Krumbein, Angelika; Ruppel, Silke

    2009-01-01

    For determining interactive plant-bacterial effects between glucosinolates and phyllospheric colonization by a plant growth-promoting strain, Enterobacter radicincitans DSM 16656, in cruciferous vegetables, the extent of bacterial colonization was assessed in 5 cruciferous vegetables (Brassica juncea, Brassica campestris, Brassica oleracea var. capitata, Brassica rapa var. alboglabra, Nasturtium officinale) using a species-specific TaqMan probe and quantitative real-time PCR. Colonization ability of inoculated E. radicincitans in the phyllosphere of these species varied from inability to colonize B. rapa up to a very good colonization rate of B. campestris. In addition to morphological factors and other plant compounds, the colonization rate was affected by different individual aromatic and aliphatic glucosinolates and their concentration, revealing that both plant pathogens and plant growth-promoting bacteria were affected by glucosinolates in their colonization behavior. In contrast, after E. radicincitans inoculation neither the total nor the individual glucosinolate concentrations in the phyllosphere of the 5 cruciferous species were affected, indicating that the nonpathogenic E. radicincitans might cause only poor cell damage by metabolizing plant cell components and does not induce a plant defense response and thus subsequently an increased glucosinolate concentration in the phyllosphere. Moreover, E. radicincitans induced no stimulation of indole glucosinolate biosynthesis by additional bacterial auxin supply.

  15. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.

    PubMed

    Beran, Franziska; Pauchet, Yannick; Kunert, Grit; Reichelt, Michael; Wielsch, Natalie; Vogel, Heiko; Reinecke, Andreas; Svatoš, Aleš; Mewis, Inga; Schmid, Daniela; Ramasamy, Srinivasan; Ulrichs, Christian; Hansson, Bill S; Gershenzon, Jonathan; Heckel, David G

    2014-05-20

    The ability of a specialized herbivore to overcome the chemical defense of a particular plant taxon not only makes it accessible as a food source but may also provide metabolites to be exploited for communication or chemical defense. Phyllotreta flea beetles are adapted to crucifer plants (Brassicales) that are defended by the glucosinolate-myrosinase system, the so-called "mustard-oil bomb." Tissue damage caused by insect feeding brings glucosinolates into contact with the plant enzyme myrosinase, which hydrolyzes them to form toxic compounds, such as isothiocyanates. However, we previously observed that Phyllotreta striolata beetles themselves produce volatile glucosinolate hydrolysis products. Here, we show that P. striolata adults selectively accumulate glucosinolates from their food plants to up to 1.75% of their body weight and express their own myrosinase. By combining proteomics and transcriptomics, a gene responsible for myrosinase activity in P. striolata was identified. The major substrates of the heterologously expressed myrosinase were aliphatic glucosinolates, which were hydrolyzed with at least fourfold higher efficiency than aromatic and indolic glucosinolates, and β-O-glucosides. The identified beetle myrosinase belongs to the glycoside hydrolase family 1 and has up to 76% sequence similarity to other β-glucosidases. Phylogenetic analyses suggest species-specific diversification of this gene family in insects and an independent evolution of the beetle myrosinase from other insect β-glucosidases.

  16. Behavior of glucosinolates in pickling cruciferous vegetables.

    PubMed

    Suzuki, Chise; Ohnishi-Kameyama, Mayumi; Sasaki, Keisuke; Murata, Takashi; Yoshida, Mitsuru

    2006-12-13

    Crucifer species, which include widely consumed vegetables, contain glucosinolates as secondary metabolites. Cruciferous vegetables are consumed in Japan in salt-preserved or pickled form as well as cooked and raw fresh vegetables. In this study, changes in contents of glucosinolates during the pickling process were investigated. 4-Methylthio-3-butenyl glucosinolate, a major glucosinolate in the root of Japanese radish, daikon (Raphanus sativus L.), was detected in pickled products with a short maturation period but not in those with a long maturation period. As a model pickling experiment, fresh watercress (Nasturtium officinale) and blanched watercress were soaked in 3% NaCl solution for 7 days. The results showed that the ratio of indole glucosinolates to total glucosinolates increased during the pickling process, whereas total glucosinolates decreased. Myrosinase digestion of glucosinolates in nozawana (Brassica rapa L.) indicated that indole glucosinolates, especially 4-methoxyglucobrassicin, were relatively resistant to the enzyme. The effect of pickling on glucosinolate content and the possible mechanism are discussed in view of degradation by myrosinase and synthetic reaction in response to salt stress or compression during the pickling process.

  17. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis).

    PubMed

    Kim, Yeon Bok; Li, Xiaohua; Kim, Sun-Ju; Kim, Haeng Hoon; Lee, Jeongyeo; Kim, HyeRan; Park, Sang Un

    2013-07-22

    In this study, we investigated the expression of seven MYB transcription factors (a total of 17 genes that included Dof1.1, IQD1-1, MYB28, MYB29, MYB34, MYB51, and MYB122 and their isoforms) involved in aliphatic and indolic glucosinolate (GSL) biosynthesis and analyzed the aliphatic and indolic GSL content in different organs of Chinese cabbage (Brassica rapassp. Pekinensis). MYB28 and MYB29 expression in the stem was dramatically different when compared with the levels in the other organs. MYB34, MYB122, MYB51, Dof1.1, and IQD1-1 showed very low transcript levels among different organs. HPLC analysis showed that the glucosinolates (GSLs) consisted of five aliphatic GSLs (progoitrin, sinigrin, glucoalyssin, gluconapin, and glucobrassicanapin) and four indolic GSLs (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxygluco-brassicin, and neoglucobrassicin). Aliphatic GSLs exhibited 63.3% of the total GSLs content, followed by aromatic GSL (19.0%), indolic GSLs (10%), and unknown GSLs (7.7%) in different organs of Chinese cabbage. The total GSL content of different parts (ranked in descending order) was as follows: seed > flower > young leaves > stem > root > old leaves. The relationship between GSLs accumulation and expression of GSLs biosynthesis MYB TFs genes in different organs may be helpful to understand the mechanism of MYB TFs regulating GSL biosynthesis in Chinese cabbage.

  18. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway. PMID:27313596

  19. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.

  20. Purification of glucosinolates from Camelina sativa seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Camelina sativa L. Crantz defatted seed press cake contains a number of phytochemicals, including the flavonoid rutin (quercetin 3-O-rutinoside), an acylated quercetin glycoside, and three glucosinolates: glucoarabin (9-(methylsulfinyl)nonyl-glucosinolate) glucocamelinin (10-(methylsulfinyl)decyl-gl...

  1. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress.

    PubMed

    Martínez-Ballesta, Maria del Carmen; Muries, Beatriz; Moreno, Diego Ángel; Dominguez-Perles, Raúl; García-Viguera, Cristina; Carvajal, Micaela

    2014-02-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress. For this purpose, water uptake and its transport through the plasma membrane were determined in plants after NaCl addition, when sinigrin was also supplied. We found higher hydraulic conductance (L0 ) and water permeability (Pf ) and increased abundance of PIP2 aquaporins after the direct administration of sinigrin, showing the ability of the roots to promote cellular water transport across the plasma membrane in spite of the stress conditions imposed. The higher content of the allyl-isothiocyanate and the absence of sinigrin in the plant tissues suggest that the isothiocyanate is related to water balance; in fact, a direct effect of this nitro-sulphate compound on water uptake is proposed. This work provides the first evidence that the addition of a glucosinolate can regulate aquaporins and water transport: this effect and the mechanism(s) involved merit further investigation.

  2. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.).

    PubMed

    Kopsell, Dean A; Barickman, T Casey; Sams, Carl E; McElroy, J Scott

    2007-12-26

    Watercress (Nasturtium officinale R. Br.) is a perennial herb rich in the secondary metabolites of glucosinolates and carotenoids. 2-phenethyl isothiocyanate, the predominate isothiocyanate hydrolysis product in watercress, can reduce carcinogen activation through inhibition of phase I enzymes and induction of phase II enzymes. Sulfur (S) and nitrogen (N) have been shown to influence concentrations of both glucosinolates and carotenoids in a variety of vegetable crops. Our research objectives were to determine how several levels of N and S fertility interact to affect watercress plant tissue biomass production, tissue C/N ratios, concentrations of plant pigments, and glucosinolate concentrations. Watercress was grown using nutrient solution culture under a three by three factorial arrangement, with three S (8, 16, and 32 mg/L) and three N (6, 56, and 106 mg/L) fertility concentrations. Watercress shoot tissue biomass, tissue %N, and tissue C/N ratios were influenced by N but were unaffected by changes in S concentrations or by the interaction of NxS. Tissue pigment concentrations of beta-carotene, lutein, 5,6-epoxylutein, neoxanthin, zeaxanthin, and the chlorophyll pigments responded to changes in N treatment concentrations but were unaffected by S concentrations or through N x S interactions. Watercress tissue concentrations of aromatic, indole, and total glucosinolate concentrations responded to changes in N treatments; whereas aliphatic, aromatic, and total glucosinolates responded to changes in S treatment concentrations. Individual glucosinolates of glucobrassicin, 4-methoxyglucobrassicin, and gluconasturriin responded to N fertility treatments, while gluconapin, glucobrassicin, and gluconasturiin responded to changes in S fertility concentrations. Increases in carotenoid and glucosinolate concentrations through fertility management would be expected to influence the nutritional value of watercress in human diets.

  3. Structural and functional evolution of isopropylmalate dehydrogenases in the leucine and glucosinolate pathways of Arabidopsis thaliana

    SciTech Connect

    He, Yan; Galant, Ashley; Pang, Qiuying; Strul, Johanna M.; Balogun, Sherifat F.; Jez, Joseph M.; Chen, Sixue

    2012-10-24

    The methionine chain-elongation pathway is required for aliphatic glucosinolate biosynthesis in plants and evolved from leucine biosynthesis. In Arabidopsis thaliana, three 3-isopropylmalate dehydrogenases (AtIPMDHs) play key roles in methionine chain-elongation for the synthesis of aliphatic glucosinolates (e.g. AtIPMDH1) and leucine (e.g. AtIPMDH2 and AtIPMDH3). Here we elucidate the molecular basis underlying the metabolic specialization of these enzymes. The 2.25 {angstrom} resolution crystal structure of AtIPMDH2 was solved to provide the first detailed molecular architecture of a plant IPMDH. Modeling of 3-isopropylmalate binding in the AtIPMDH2 active site and sequence comparisons of prokaryotic and eukaryotic IPMDH suggest that substitution of one active site residue may lead to altered substrate specificity and metabolic function. Site-directed mutagenesis of Phe-137 to a leucine in AtIPMDH1 (AtIPMDH1-F137L) reduced activity toward 3-(2'-methylthio)ethylmalate by 200-fold, but enhanced catalytic efficiency with 3-isopropylmalate to levels observed with AtIPMDH2 and AtIPMDH3. Conversely, the AtIPMDH2-L134F and AtIPMDH3-L133F mutants enhanced catalytic efficiency with 3-(2'-methylthio)ethylmalate {approx}100-fold and reduced activity for 3-isopropylmalate. Furthermore, the altered in vivo glucosinolate profile of an Arabidopsis ipmdh1 T-DNA knock-out mutant could be restored to wild-type levels by constructs expressing AtIPMDH1, AtIPMDH2-L134F, or AtIPMDH3-L133F, but not by AtIPMDH1-F137L. These results indicate that a single amino acid substitution results in functional divergence of IPMDH in planta to affect substrate specificity and contributes to the evolution of specialized glucosinolate biosynthesis from the ancestral leucine pathway.

  4. Glucosinolate Accumulation and Related Gene Expression in Pak Choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt) in Response to Insecticide Application.

    PubMed

    Zhu, Biao; Yang, Jing; He, Yong; Zang, Yunxiang; Zhu, Zhujun

    2015-11-11

    Glucosinolates and their breakdown products are well-known for their cancer-chemoprotective functions and biocidal activities against pathogens and generalist herbivores. Insecticides are commonly used in the production of pak choi (Brassica rapa L. ssp. chinensis var. communis [N. Tsen & S.H. Lee] Hanelt). We studied the effects of four commonly used insecticides, namely, β-cypermethrin, acephate, pymetrozine, and imidacloprid, on glucosinolate metabolism in pak choi. All insecticides significantly increased both the transcription of glucosinolate biosynthetic genes and the aliphatic and total glucosinolate accumulations in pak choi. β-Cypermethrin and acephate caused gradual and continuous up-regulation of gene expression from 0.5 to 24 h after treatment, whereas pymetrozine and imidacloprid did so more rapidly, reaching a peak at 1 h and returning to normal at 3 h. Our findings indicate that the four insecticides affect glucosinolate metabolism in pak choi plants to various degrees and suggest that glucosinolates may be involved in plant insecticide metabolism.

  5. A fast and precise method to identify indolic glucosinolates and camalexin in plants by combining mass spectrometric and biological information.

    PubMed

    Zandalinas, Sara Izquierdo; Vives-Peris, Vicente; Gómez-Cadenas, Aurelio; Arbona, Vicent

    2012-09-05

    In this manuscript, a fast and accurate identification and quantitation by mass spectrometry of indolic glucosinolates and camalexin involved in defense in Arabidopsis thaliana are described. Two elicitation systems, inoculation with Botrytis cinerea and treatment with AgNO(3), were used in Col-0 wild-type and mutant genotypes impaired in the biosynthesis of the selected metabolites. Identification of analytes was carried out by nontargeted LC/ESI-QTOF-MS profiling. Confirmation of indolic glucosinolates and camalexin was achieved by their absence in the cyp79B2/B3 and pad3 mutants as well as their respective fragmentation upon collision-induced dissociation. Camalexin accumulation was induced only after AgNO(3) treatment, whereas all indolic glucosinolates were constitutively present. Inoculation with Botrytis did not influence camalexin concentration but caused most aliphatic and indolic glucosinolates contents to decrease. Only the pen 3.1 mutant showed increased indolic glucosinolate levels after Botrytis or AgNO(3) treatments. In addition, profiles of secondary metabolite in nontreated Col-0 and mutant plants were analyzed by means of partial least squares coupled to discriminant analysis (PLS-DA), and differences in the basal levels of indolic glucosinolates and tryptophan between cyp79B2/B3 plants and the rest of genotypes, including Col-0, were found. This probably has to be taken into consideration when comparing stress responses of Col-0 and cyp79B2/B3. The use of mutants carrying alterations in biosynthetic pathways is proposed as a useful strategy to identify secondary metabolites.

  6. Identification of botanical biomarkers in Argentinean Diplotaxis honeys: flavonoids and glucosinolates.

    PubMed

    Truchado, Pilar; Tourn, Elian; Gallez, Lilliana M; Moreno, Diego A; Ferreres, Federico; Tomás-Barberán, Francisco A

    2010-12-22

    To select and establish floral biomarkers of the botanical origin of Diplotaxis tenuifolia honeys, the flavonoids and glucosinolates present in bee-deposited nectar collected from hive combs (unripe honey) and mature honey from the same hives fron which the unripe honey samples were collected were analyzed by LC-UV-PAD-ESI-MS(n). Glycosidic conjugates of the flavonols quercetin, kaempferol, and isorhamnetin were detected and characterized in unripe honey. D. tenuifolia mature honeys contained the aglycones kaempferol, quercetin, and isorhamnetin. The differences between the phenolic profiles of mature honey and freshly deposited honey could be due to hydrolytic enzymatic activities. Aliphatic and indole glucososinolates were analyzed in unripe and mature honeys, this being the first report of the detection and characterization of glucosinolates as honey constituents. Moreover, these honey samples contained different amounts of propolis-derived flavonoid aglycones (1765-3171 μg/100 g) and hydroxycinnamic acid derivatives (29-1514 μg/100 g). Propolis flavonoids were already present in the freshly deposited nectar, showing that the incorporation of these compounds to honey occurs at the early steps of honey production. The flavonoids quercetin, kaempferol, and isorhamnetin and the glucosinolates detected in the samples could be used as complementary biomarkers for the determination of the floral origin of Argentinean Diplotaxis honeys.

  7. Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea

    PubMed Central

    Marino, Daniel; Ariz, Idoia; Lasa, Berta; Santamaría, Enrique; Fernández-Irigoyen, Joaquín; González-Murua, Carmen; Aparicio Tejo, Pedro M.

    2016-01-01

    Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N source and that both TGG1 and TGG2 myrosinases were more abundant under ammonium nutrition, which is generally considered to be a stressful situation. Moreover, Arabidopsis plants displayed glucosinolate accumulation and induced myrosinase activity under ammonium nutrition. Interestingly, these results were also confirmed in the economically important crop broccoli (Brassica oleracea var. italica). Moreover, these metabolic changes were correlated in Arabidopsis with the differential expression of genes from the aliphatic glucosinolate metabolic pathway. This study underlines the importance of nitrogen nutrition and the potential of using ammonium as the N source in order to stimulate glucosinolate metabolism, which may have important applications not only in terms of reducing pesticide use, but also for increasing plants’ nutritional value. PMID:27085186

  8. Dynamics of glucosinolate-myrosinase system during Plutella xylostella interaction to a novel host Lepidium latifolium L.

    PubMed

    Kaur, Tarandeep; Bhat, Rohini; Khajuria, Manu; Vyas, Ruchika; Kumari, Anika; Nadda, Gireesh; Vishwakarma, Ram; Vyas, Dhiraj

    2016-09-01

    Plutella xylostella L. is a notorious pest of cruciferous crops causing worldwide losses of $4-5 billion per year. Developing classical biological control to this pest include an introduction of host plants that act as natural enemies showing deviation from the preference-performance regimen in the evolutionary ecology of plant-insect interactions. The present study was designed to understand the role of glucosinolate-myrosinase system during P. xylostella interactions with a novel host. Adult moth preference and larval performance study were conducted on a novel host Lepidium latifolium L. (LL) that has high sinigrin content and was compared with its laboratory host Arabidopsis thaliana (AT). The glucosinolate-myrosinase system was studied in a time course experiment during larval feeding in choice and no-choice experiments. Adult moths visit and prefers LL over AT for oviposition. Conversely, LL leaves were not preferred and proved detrimental for P. xylostella larvae. Aliphatic and indolic glucosinolates were found to decrease significantly (p≤0.05) in AT during initial 12h of P. xylostella challenge, whereas, they were not affected in LL. Also, MYB transcription factor expression and myrosinase activity in LL do not suggest a typical host response to a specialist insect. This preference-performance mismatch of P. xylostella on LL mediated by glucosinolate pattern suggests that this novel plant could be utilized in P. xylostella management.

  9. Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate

    PubMed Central

    Smallegange, R. C.; Blatt, S. E.; Harvey, J. A.; Agerbirk, N.; Dicke, M.

    2007-01-01

    Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were

  10. Sulfur deficiency–induced repressor proteins optimize glucosinolate biosynthesis in plants

    PubMed Central

    Aarabi, Fayezeh; Kusajima, Miyuki; Tohge, Takayuki; Konishi, Tomokazu; Gigolashvili, Tamara; Takamune, Makiko; Sasazaki, Yoko; Watanabe, Mutsumi; Nakashita, Hideo; Fernie, Alisdair R.; Saito, Kazuki; Takahashi, Hideki; Hubberten, Hans-Michael; Hoefgen, Rainer; Maruyama-Nakashita, Akiko

    2016-01-01

    Glucosinolates (GSLs) in the plant order of the Brassicales are sulfur-rich secondary metabolites that harbor antipathogenic and antiherbivory plant-protective functions and have medicinal properties, such as carcinopreventive and antibiotic activities. Plants repress GSL biosynthesis upon sulfur deficiency (−S); hence, field performance and medicinal quality are impaired by inadequate sulfate supply. The molecular mechanism that links –S to GSL biosynthesis has remained understudied. We report here the identification of the –S marker genes sulfur deficiency induced 1 (SDI1) and SDI2 acting as major repressors controlling GSL biosynthesis in Arabidopsis under –S condition. SDI1 and SDI2 expression negatively correlated with GSL biosynthesis in both transcript and metabolite levels. Principal components analysis of transcriptome data indicated that SDI1 regulates aliphatic GSL biosynthesis as part of –S response. SDI1 was localized to the nucleus and interacted with MYB28, a major transcription factor that promotes aliphatic GSL biosynthesis, in both yeast and plant cells. SDI1 inhibited the transcription of aliphatic GSL biosynthetic genes by maintaining the DNA binding composition in the form of an SDI1-MYB28 complex, leading to down-regulation of GSL biosynthesis and prioritization of sulfate usage for primary metabolites under sulfur-deprived conditions. PMID:27730214

  11. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.

    PubMed

    Yi, Gibum; Lim, Sooyeon; Chae, Won Byoung; Park, Jeong Eun; Park, Hye Rang; Lee, Eun Jin; Huh, Jin Hoe

    2016-01-13

    Radish (Raphanus sativus L.), a root vegetable, is rich in glucosinolates (GLs), which are beneficial secondary metabolites for human health. To investigate the genetic variations in GL content in radish roots and the relationship with other root phenotypes, we analyzed 71 accessions from 23 different countries for GLs using HPLC. The most abundant GL in radish roots was glucoraphasatin, a GL with four-carbon aliphatic side chain. The content of glucoraphasatin represented at least 84.5% of the total GL content. Indolyl GL represented only 3.1% of the total GL at its maximum. The principal component analysis of GL profiles with various root phenotypes showed that four different genotypes exist in the 71 accessions. Although no strong correlation with GL content and root phenotype was observed, the varied GL content levels demonstrate the genetic diversity of GL content, and the amount that GLs could be potentially improved by breeding in radishes.

  12. Glucosinolate variation in leaves of Brassica rapa crops.

    PubMed

    Cartea, María Elena; de Haro, Antonio; Obregón, Sara; Soengas, Pilar; Velasco, Pablo

    2012-09-01

    Total and individual glucosinolate (GSL) content of leaves of vegetable turnip rape (Brassica rapa L. var. rapa) was determined in a set of 45 varieties consisting in early, medium and late types grown at two locations in northwestern Spain. The objectives were to determine the diversity among varieties in GSL content and to relate that variation with earliness and plant habit. Eight GSL were identified, being two aliphatic GSL, gluconapin (84.4 % of the total GSL) and glucobrassicanapin (7.2 % of the total GSL) the most abundant. Indolic and aromatic GSL content were low but also showed significant differences among varieties. Differences in total and individual GSL content were found among varieties, plant habit groups, and earliness groups. Total GSL content ranged from 19 to 37.3 μmol g(-1) dw in early and extra-late groups, respectively, and from 19.5 to 36.3 μmol g(-1) dw for turnips and turnip greens groups, respectively. These differences were consistent to values found for gluconapin content where the turnip group had the highest values (31.8 μmol g(-1) dw) and the turnip top group had the lowest (15.7 μmol g(-1) dw). Two varieties, MBG-BRS0429 and MBG-BRS0550 (from turnip greens and extra-late groups) and MBG-BRS0438 (from turnips and late groups), stood out as they had the highest total GSL content and could be used as a good source of these beneficial bioactive compounds. Elucidation of genetic diversity among crops can provide useful information to assist plant breeders to design improved breeding strategies in order to obtain varieties rich on GSL.

  13. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing

    PubMed Central

    Barba, Francisco J.; Nikmaram, Nooshin; Roohinejad, Shahin; Khelfa, Anissa; Zhu, Zhenzhou; Koubaa, Mohamed

    2016-01-01

    Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized in the gut lumen. When cruciferous are consumed without processing, myrosinase enzyme present in these plants hydrolyzes the glucosinolates in the proximal part of the gastrointestinal tract to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. When cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates transit to the colon where they are hydrolyzed by the intestinal microbiota. Numerous factors, such as storage time, temperature, and atmosphere packaging, along with inactivation processes of myrosinase are influencing the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability. PMID:27579302

  14. Leaf and floral parts feeding by orange tip butterfly larvae depends on larval position but not on glucosinolate profile or nitrogen level.

    PubMed

    Agerbirk, Niels; Chew, Frances S; Olsen, Carl Erik; Jørgensen, Kirsten

    2010-12-01

    In an attempt to identify chemical signals governing the general flower and silique feeding behavior of larvae of the orange tip butterfly, Anthocharis cardamines (L.), we investigated feeding behavior and chemistry of two major host plants: Cardamine pratensis L. and Alliaria petiolata (Bieb.) Cavara & Grande (garlic mustard). Larvae reportedly feed mainly on flowers and siliques rather than leaves in nature, and did so when observed on the original host plants. Behavioral experiments, using detached A. petiolata branches, however, showed that larvae readily accepted leaves and only the final instar showed a tendency for directed movement towards floral parts. To search for semiochemicals that control plant part preference and to assess possible nutritional consequences of floral parts feeding, we determined glucosinolate profiles and total nitrogen levels of floral parts and leaves. There was only moderate difference between glucosinolate profiles of leaves and floral parts within each of two host plant species. In contrast, the profiles of floral parts differed significantly between them. A. petiolata was dominated by 2-propenyl glucosinolate, while C. pratensis was dominated by aromatic glucosinolates and branched aliphatic glucosinolates, with considerable variation among populations. Nitrogen levels tended to be higher in floral parts than in leaves in A. petiolata, but not in C. pratensis, so floral feeding could not generally be attributed to higher N content. With the exception of a tendency of last instar larvae (L5) to move to the apex and ingest flowers and upper stem, we did not find either a plant chemistry basis or larval acceptance/rejection behavior that could explain the usual feeding of floral parts by orange tip larvae of all instars. However, by artificial manipulation of vertical larval position on host plants, we found that the frequency of leaf vs. flower feeding during 24 hr depended significantly on the initial larval position. Hence, we

  15. Glucosinolate Breakdown in Arabidopsis: Mechanism, Regulation and Biological Significance

    PubMed Central

    Wittstock, Ute; Burow, Meike

    2010-01-01

    Glucosinolates are a group of thioglucosides in plants of the Brassicales order. Together with their hydrolytic enzymes, the myrosinases, they constitute the ‘mustard oil bomb’ involved in plant defense. Here we summarize recent studies in Arabidopsis that have provided molecular evidence that the glucosinolate-myrosinase system is much more than a ‘two-component defense system,’ and started to unravel the roles of different glucosinolate breakdown pathways in the context of plant responses to biotic and abiotic stresses. PMID:22303260

  16. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

    PubMed

    Araki, Ryoichi; Hasumi, Akiko; Nishizawa, Osamu Ishizaki; Sasaki, Katsunori; Kuwahara, Ayuko; Sawada, Yuji; Totoki, Yasushi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Li, Yimeng; Saito, Kazuki; Ogawa, Toshiya; Hirai, Masami Yokota

    2013-10-01

    Plants belonging to the Brassicaceae family exhibit species-specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health-promoting properties. Among them, glucoraphanin (aliphatic 4-methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full-length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild-type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale.

  17. Tipping the scales--specifier proteins in glucosinolate hydrolysis.

    PubMed

    Wittstock, Ute; Burow, Meike

    2007-12-01

    Glucosinolates are a group of secondary plant metabolites found in the Brassicales order that are beneficial components of our diet, determine the flavor of a number of vegetables and spices and have been implicated in pest management strategies. These properties, most of the biological activities and the pungent odor and taste associated with glucosinolate-containing plants are due to the products formed from glucosinolates by their hydrolytic enzymes, myrosinases, upon tissue disruption. Specifier proteins impact the outcome of glucosinolate hydrolysis without having hydrolytic activity on glucosinolates themselves. In the presence of specifier proteins, glucosinolate hydrolysis results in nitriles, epithionitriles and organic thiocyanates whose biological functions are currently unknown. In contrast, isothiocyanates formed in the absence of specifier proteins have been demonstrated to possess a variety of biological activities and are thought to protect plants from herbivore and pathogen attack. This review discusses the current knowledge on plant and insect specifier proteins with special emphasis on their biochemical properties and possible mechanisms of action.

  18. Effect of Brassicaceae seed meals with different glucosinolate profiles on Rhizoctonia root rot of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tissues of plants in the family Brassicaceae contain glucosinolates, compounds whose hydrolysis results in the release of various bioactive products including isothiocyanates. The broad spectrum of biological activity of these glucosinolate hydrolysis products has led to the promotion of brassicace...

  19. Effects of glucosinolates and their hydrolysis products on biochemical and performance parameters in broiler chicken diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucosinolates are important bioactive molecules and widely found in Brassicaceae species (cress, brussels sprouts, mustard, broccoli, kale, etc.). Depending on the amount of these vegetables consumed, both positive and negative metabolic effects from glucosinolate metabolites may occur. The aim of ...

  20. Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera.

    PubMed

    Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Müller, Carsten T; Mewis, Inga

    2015-01-01

    Glucosinolates are the characteristic secondary metabolites of plants in the order Brassicales. To date the common DIN extraction 'desulfo glucosinolates' method remains the common procedure for determination and quantification of glucosinolates. However, the desulfation step in the extraction of glucosinolates from Moringa oleifera leaves resulted in complete conversion and degradation of the naturally occurring glucosinolates in this plant. Therefore, a method for extraction of intact Moringa glucosinolates was developed and no conversion and degradation of the different rhamnopyranosyloxy-benzyl glucosinolates was found. Buffered eluents (0.1 M ammonium acetate) were necessary to stabilize 4-α-rhamnopyranosyloxy-benzyl glucosinolate (Rhamno-Benzyl-GS) and acetyl-4-α-rhamnopyranosyloxy-benzyl glucosinolate isomers (Ac-Isomers-GS) during HPLC analysis. Due to the instability of intact Moringa glucosinolates at room temperature and during the purification process of single glucosinolates, influences of different storage (room temperature, frozen, thawing and refreezing) and buffer conditions on glucosinolate conversion were analysed. Conversion and degradations processes were especially determined for the Ac-Isomers-GS III.

  1. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings

    PubMed Central

    Aghajanzadeh, Tahereh; Hawkesford, Malcolm J.; De Kok, Luit J.

    2014-01-01

    Brassica juncea seedlings contained a twofold higher glucosinolate content than B. rapa and these secondary sulfur compounds accounted for up to 30% of the organic sulfur fraction. The glucosinolate content was not affected by H2S and SO2 exposure, demonstrating that these sulfur compounds did not form a sink for excessive atmospheric supplied sulfur. Upon sulfate deprivation, the foliarly absorbed H2S and SO2 replaced sulfate as the sulfur source for growth of B. juncea and B. rapa seedlings. The glucosinolate content was decreased in sulfate-deprived plants, though its proportion of organic sulfur fraction was higher than that of sulfate-sufficient plants, both in absence and presence of H2S and SO2. The significance of myrosinase in the in situ turnover in these secondary sulfur compounds needs to be questioned, since there was no direct co-regulation between the content of glucosinolates and the transcript level and activity of myrosinase. Evidently, glucosinolates cannot be considered as sulfur storage compounds upon exposure to excessive atmospheric sulfur and are unlikely to be involved in the re-distribution of sulfur in B. juncea and B. rapa seedlings upon sulfate deprivation. PMID:25566279

  2. Predatory behavior of Polistes dominulus wasps in response to cardenolides and glucosinolates in Pieris napi caterpillars.

    PubMed

    Rayor, Linda S; Mooney, Larissa J; Renwick, J Alan

    2007-06-01

    To examine how plant allelochemicals in prey affect foraging choices made by generalist predator paper wasps, Polistes dominulus (Vespidae), we compared predation on Pieris napi (Pieridae) caterpillars reared on host plants with different allelochemicals. In naturalistic behavioral choice experiments, free-flying wasps chose between living pierids reared on cabbage (Brassica oleracea), which lacks deterrent allelochemicals, or alternate host plants with potentially deterrent allelochemicals. The alternative host plants were: wormwood mustard, (Erysimum cheiranthoides: Brassicaceae), which contains cardenolides; nasturtium (Tropaeolum majus: Tropaeolaceae) with high concentrations of chlorogenic acid; and black mustard (Brassica nigra: Brassicaceae) with high concentrations of the aliphatic glucosinolate, sinigrin. Although wasps captured equal numbers of caterpillars reared on cabbage and each alternate host plant, they spent significantly longer handling prey from the alternate host plants as they selectively removed the caterpillar's gut, which contained the plant material. This was true even if the caterpillar did not sequester toxins in its tissues, as revealed by high performance liquid chromatography (HPLC) analysis of Erysimum-reared pierids. Because handling time is longer, predators that capture pierids containing non-sequestered allelochemicals experience an overall reduction in foraging rate that may translate into a fitness cost.

  3. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops.

    PubMed

    Bhandari, Shiva Ram; Jo, Jung Su; Lee, Jun Gu

    2015-08-31

    Glucosinolate (GSL) profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot) were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g(-1)) and sprouts (162.19 µmol·g(-1)), whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g(-1)) and roots (73.61 µmol·g(-1)). The lowest GSL concentrations were observed in radish across all tissues examined.

  4. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables

    PubMed Central

    Ishida, Masahiko; Hara, Masakazu; Fukino, Nobuko; Kakizaki, Tomohiro; Morimitsu, Yasujiro

    2014-01-01

    Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates. PMID:24987290

  5. Screening Brassica species for glucosinolate content.

    PubMed

    Antonious, George F; Bomford, Michael; Vincelli, Paul

    2009-03-01

    Glucosinolates (GSLs), a group of compounds found in Brassica plants, are toxic to some soil-borne plant pathogens because of the toxicity of their hydrolysis products, isothiocyanates. Other phytochemicals found in Brassica plants, such as phenols and ascorbic acid, may compliment the activity of GSLs. A survey of Brassica accessions from the national germplasm repository was conducted to identify potential cover crops that could be soil-incorporated for use as biofumigants. Ten Brassica accessions that demonstrated relative cold tolerance, rapid maturity, and superior biomass production were selected. The selected accessions were grown under three climatic conditions (fall greenhouse, winter high tunnel, and spring field) to investigate whether growing conditions affect their GSL, phenol, and ascorbic acid content. The selected accessions included seven accessions of Brassica juncea (Indian mustard), one of Brassica napus (oil seed rape), one of Brassica campestris (field mustard), and one of Eruca sativa (arugula). Separation of GSLs from the selected Brassica accessions was achieved using ion-exchange sephadex in disposable pipette tips. Quantification of total GSLs was based on inactivation of the endogenous thioglucosidase and liberation of the glucose moiety from the GSL molecule by addition of standardized thioglucosidase (myrosinase) and colorimetry. GSL concentration of greenhouse, high tunnel, and field-grown shoots (leaves and stems) averaged 24, 40 and 76 micromoles g(-1) fresh weight, respectively. Accessions of B. juncea generally had the highest GSL content. A comparison of accessions revealed that Ames 8887 of B. juncea contained the greatest GSL concentration, but had the lowest biomass yield and ascorbic acid concentration, in part because phytochemical concentration tended to be negatively correlated with biomass yield. More promising was B. juncea accession 'Pacific Gold' which coupled high biomass yield with above-average GSL production, but

  6. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa.

    PubMed

    Seo, Mi-Suk; Jin, Mina; Chun, Jin-Hyuk; Kim, Sun-Ju; Park, Beom-Seok; Shon, Seong-Han; Kim, Jung Sun

    2016-03-01

    Glucosinolates (GSLs) are secondary metabolites that have anticarcinogenic activity and play defense roles in plants of the Brassicaceae family. MYB28 is known as a transcription factor that regulates aliphatic GSL biosynthesis in Arabidopsis thaliana. Brassicaceae plants have three orthologous copies of AtMYB28 derived from recent genome triplication. These BrMYB28 genes have a high level of sequence homology, with 81-87% similarities in the coding DNA sequence compared to Arabidopsis. Overexpression of three paralogous BrMYB28 genes in transgenic Chinese cabbage increased the total GSL content in all T1 generation plants and in two inbred lines of homozygous T2 plants. The highest total GSL contents were detected in homozygous T2 lines overexpressing BrMYB28.1, which showed an approximate fivefold increase compared to that of nontransgenic plants. The homozygous T2 lines with overexpressed BrMYB28.1 also showed an increased content of aliphatic, indolic, and aromatic GSLs compared to that of nontransgenic plants. Furthermore, all of the three BrMYB28 genes were identified as negative regulators of BrAOP2 and positive regulators of BrGSL-OH in the homozygous T2 lines. These data indicate the regulatory mechanism of GSL biosynthesis in B. rapa is unlike that in A. thaliana. Our results will provide useful information for elucidating the regulatory mechanism of GSL biosynthesis in polyploid plants.

  7. Guided desaturation of unactivated aliphatics

    NASA Astrophysics Data System (ADS)

    Voica, Ana-Florina; Mendoza, Abraham; Gutekunst, Will R.; Fraga, Jorge Otero; Baran, Phil S.

    2012-08-01

    The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without overoxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo are unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system into its unsaturated counterpart could open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This ‘portable desaturase’ (TzoCl) is a bench-stable, commercial entity (Aldrich, catalogue number L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group.

  8. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage.

    PubMed

    Ciska, Ewa; Drabińska, Natalia; Narwojsz, Agnieszka; Honke, Joanna

    2016-07-15

    The aim of the study was to investigate the effect of storage on the contents of glucosinolates (GLS) and their degradation products in a boiled white cabbage. A 24h storage at 4 °C resulted in a decrease in GLS content (20-40%, depending on the cooking time applied) in the edible parts. The most significant losses were observed for sinigrin (20-45%), and the least for glucobrassicin (12-32%). Storage had a diversified effect on GLS breakdown products (indole-3-acetonitrile, indole-3-carbinol, ascorbigen and 3,3'-diindolylmethane released from glucobrassicin and 4-methylsulfinylbutanenitrile released from glucoiberin) in the boiled cabbage. The increase in the content of indole-3-acetonitrile, especially considerable within the first 24h of storage (and a simultaneous decrease in glucobrassicin) clearly indicates that degradation of GLS may occur during storage or cooling to 4 °C.

  9. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  10. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    PubMed

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera.

  11. Engineering of glucosinolate biosynthesis: candidate gene identification and validation.

    PubMed

    Møldrup, Morten E; Salomonsen, Bo; Halkier, Barbara A

    2012-01-01

    The diverse biological roles of glucosinolates as plant defense metabolites and anticancer compounds have spurred a strong interest in their biosynthetic pathways. Since the completion of the Arabidopsis genome, functional genomics approaches have enabled significant progress on the elucidation of glucosinolate biosynthesis, although in planta validation of candidate gene function often is hampered by time-consuming generation of knockout and overexpression lines in Arabidopsis. To better exploit the increasing amount of data available from genomic sequencing, microarray database and RNAseq, time-efficient methods for identification and validation of candidate genes are needed. This chapter covers the methodology we are using for gene discovery in glucosinolate engineering, namely, guilt-by-association-based in silico methods and fast proof-of-function screens by transient expression in Nicotiana benthamiana. Moreover, the lessons learned in the rapid, transient tobacco system are readily translated to our robust, versatile yeast expression platform, where additional genes critical for large-scale microbial production of glucosinolates can be identified. We anticipate that the methodology presented here will be beneficial to elucidate and engineer other plant biosynthetic pathways.

  12. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis.

    PubMed

    Huseby, Stine; Koprivova, Anna; Lee, Bok-Rye; Saha, Shikha; Mithen, Richard; Wold, Anne-Berit; Bengtsson, Gunnar B; Kopriva, Stanislav

    2013-02-01

    Glucosinolates are a major class of sulphur-containing secondary metabolites involved in plant defence against pathogens. Recently many regulatory links between glucosinolate biosynthesis and sulphate assimilation were established. Since sulphate assimilation undergoes diurnal rhythm and is light regulated, this study analysed whether the same is true for glucosinolate biosynthesis. The levels of glucosinolates and glutathione were found to be higher during the day than during the night. This agreed with variation in sulphate uptake as well as activity of the key enzyme of the sulphate assimilation pathway, adenosine 5'-phosphosulphate reductase. Correspondingly, the flux through sulphate assimilation was higher during the day than during the night, with the maximum flux through primary assimilation preceding maximal incorporation into glucosinolates. Prolonged darkness resulted in a strong reduction in glucosinolate content. Re-illumination of such dark-adapted plants induced accumulation of mRNA for many genes of glucosinolate biosynthesis, leading to increased glucosinolate biosynthesis. The light regulation of the glucosinolate synthesis genes as well as many genes of primary sulphate assimilation was controlled at least partly by the LONG HYPOCOTYL5 (HY5) transcription regulator. Thus, glucosinolate biosynthesis is highly co-regulated with sulphate assimilation.

  13. Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey.

    PubMed

    Matthäus, Bertrand; Ozcan, Musa

    2002-12-04

    The content and glucosinolate composition of young shoots and raw flower buds of Capparis spinosa var. spinosa and Capparis ovata Desf. var. canescens at three different sizes (x 13 mm) were investigated by HPLC with UV detection. Samples were harvested in August 2001 in Turkey. Twelve different glucosinolates were identified in the young shoots and buds of both species. Total content of glucosinolates ranged from 6.55 micromol/g (large buds of C. spinosa) to 45.56 micromol/g (young shoots of C. ovata). The main glucosinolate was glucocapperin, which amounted to approximately 90% of the total glucosinolates. In both species the total glucosinolate content varied in dependence on the bud size, whereas a greater variability was given for buds from C. spinosa.

  14. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters.

    PubMed

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven; Jørgensen, Morten Egevang; Olsen, Carl Erik; Andersen, Jonathan Sonne; Seynnaeve, David; Verhoye, Thalia; Fulawka, Rudy; Denolf, Peter; Halkier, Barbara Ann

    2017-03-13

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss-of-function phenotypes into Brassica crops is challenging because Brassica is polyploid. We mutated one of seven and four of 12 GTR orthologs and reduced glucosinolate levels in seeds by 60-70% in two different Brassica species (Brassica rapa and Brassica juncea). Reduction in seed glucosinolates was stably inherited over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed glucosinolate content in other oilseed crops, such as Camelina sativa or Crambe abyssinica.

  15. Determination of glucosinolates in 19 Chinese medicinal plants with spectrophotometry and high-pressure liquid chromatography.

    PubMed

    Hu, Ye; Liang, Hao; Yuan, Qipeng; Hong, Yuancheng

    2010-08-01

    Glucosinolates were evaluated in 19 traditional Chinese medicinal plants involved in seven different families: Brassicaceae, Capparaceae, Euphorbiaceae, Phytolaccaceae, Tropaeolaceae, Caricaceae and Rubiaceae. The total glucosinolate contents were determined by spectrophotometry. Results showed that the high contents of total glucosinolates were found in some herbs of Brassicaceae, Capparaceae and Euphorbiaceae families, while low total glucosinolate contents were observed in two Rubiaceae herbs. In addition, eight glucosinolates (glucoraphanin, glucoraphenin, sinalbin, sinigrin, progoitrin, 4-hydroglucobrassicin, glucoiberin and glucoibervirin) in these herbs were measured using HPLC, and the data showed that individual glucosinolates and their contents varied at different degrees among the distinct species. The highest contents of cancer-protective compounds were found in the seeds of Raphanus sativus L. (glucoraphenin), Sinapis alba (sinalbin) and Phyllanthus emblica L. (sinigrin).

  16. Evolution of specifier proteins in glucosinolate-containing plants

    PubMed Central

    2012-01-01

    Background The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinases get mixed and glucosinolates are broken down to an array of biologically active compounds of which isothiocyanates are toxic to a wide range of organisms. Specifier proteins occur in some, but not all glucosinolate-containing plants and promote the formation of biologically active non-isothiocyanate products upon myrosinase-catalyzed glucosinolate breakdown. Results Based on a phytochemical screening among representatives of the Brassicales order, we selected candidate species for identification of specifier protein cDNAs. We identified ten specifier proteins from a range of species of the Brassicaceae and assigned each of them to one of the three specifier protein types (NSP, nitrile-specifier protein, ESP, epithiospecifier protein, TFP, thiocyanate-forming protein) after heterologous expression in Escherichia coli. Together with nine known specifier proteins and three putative specifier proteins found in databases, we subjected the newly identified specifier proteins to phylogenetic analyses. Specifier proteins formed three major clusters, named AtNSP5-cluster, AtNSP1-cluster, and ESP/TFP cluster. Within the ESP/TFP cluster, specifier proteins grouped according to the Brassicaceae lineage they were identified from. Non-synonymous vs. synonymous substitution rate ratios suggested purifying selection to act on specifier protein genes. Conclusions Among specifier proteins, NSPs represent the ancestral activity. The data support a monophyletic origin of ESPs from NSPs. The split between NSPs and ESPs/TFPs happened before the radiation of the core Brassicaceae. Future analyses have to show if TFP activity evolved from ESPs at least twice independently in different

  17. The Mark 5C VLBI Data System

    NASA Technical Reports Server (NTRS)

    Whitney, Alan; Ruszczyk, Chester; Romney, Jon; Owens, Ken

    2010-01-01

    The Mark 5C disk-based VLBI data system is being developed as the third-generation Mark 5 disk-based system, increasing the sustained data-recording rate capability to 4 Gbps. It is built on the same basic platform as the Mark 5A, Mark 5B and Mark 5B+ systems and will use the same 8-disk modules as earlier Mark 5 systems, although two 8-disk modules will be necessary to support the 4 Gbps rate. Unlike its earlier brethren, which use proprietary data interfaces, the Mark 5C will accept data from a standard 10 Gigabit Ethernet connection and be compatible with the emerging VLBI Data Interchange Format (VDIF) standard. Data sources for the Mark 5C system will be based on new digital backends now being developed, specifically the RDBE in the U.S. and the dBBC in Europe, as well as others. The Mark 5C system is being planned for use with the VLBI2010 system and will also be used by NRAO as part of the VLBA sensitivity upgrade program; it will also be available to the global VLBI community from Conduant. Mark 5C system specification and development is supported by Haystack Observatory, NRAO, and Conduant Corporation. Prototype Mark 5C systems are expected in early 2010.

  18. Chemical defenses (glucosinolates) of native and invasive populations of the range expanding invasive plant Rorippa austriaca.

    PubMed

    Huberty, Martine; Tielbörger, Katja; Harvey, Jeffrey A; Müller, Caroline; Macel, Mirka

    2014-04-01

    Due to global warming, species are expanding their range to higher latitudes. Some range expanding plants have become invasive in their new range. The Evolution of Increased Competitive Ability (EICA) hypothesis and the Shifting Defense Hypothesis (SDH) predict altered selection on plant defenses in the introduced range of invasive plants due to changes in herbivore pressures and communities. Here, we investigated chemical defenses (glucosinolates) of five native and seven invasive populations of the Eurasian invasive range expanding plant, Rorippa austriaca. Further, we studied feeding preferences of a generalist and a specialist herbivore among the populations. We detected eight glucosinolates in the leaves of R. austriaca. 8-Methylsulfinyloctyl glucosinolate was the most abundant glucosinolate in all plants. There were no overall differences between native and invasive plants in concentrations of glucosinolates. However, concentrations among populations within each range differed significantly. Feeding preference between the populations by a generalist herbivore was negatively correlated with glucosinolate concentrations. Feeding by a specialist did not differ between the populations and was not correlated with glucosinolates. Possibly, local differences in herbivore communities within each range may explain the differences in concentrations of glucosinolates among populations. Little support for the predictions of the EICA hypothesis or the SDH was found for the glucosinolate defenses of the studied native and invasive R. austriaca populations.

  19. Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation.

    PubMed

    de Graaf, Rob M; Krosse, Sebastian; Swolfs, Ad E M; te Brinke, Esra; Prill, Nadine; Leimu, Roosa; van Galen, Peter M; Wang, Yanli; Aarts, Mark G M; van Dam, Nicole M

    2015-02-01

    Glucosinolates are secondary plant compounds typically found in members of the Brassicaceae and a few other plant families. Usually each plant species contains a specific subset of the ∼ 130 different glucosinolates identified to date. However, intraspecific variation in glucosinolate profiles is commonly found. Sinalbin (4-hydroxybenzyl glucosinolate) so far has been identified as the main glucosinolate of the heavy metal accumulating plant species Noccaea caerulescens (Brassicaceae). However, a screening of 13 N. caerulescens populations revealed that in 10 populations a structurally related glucosinolate was found as the major component. Based on nuclear magnetic resonance (NMR) and mass spectrometry analyses of the intact glucosinolate as well as of the products formed after enzymatic conversion by sulfatase or myrosinase, this compound was identified as 4-α-rhamnosyloxy benzyl glucosinolate (glucomoringin). So far, glucomoringin had only been reported as the main glucosinolate of Moringa spp. (Moringaceae) which are tropical tree species. There was no apparent relation between the level of soil pollution at the location of origin, and the presence of glucomoringin. The isothiocyanate that is formed after conversion of glucomoringin is a potent antimicrobial and antitumor agent. It has yet to be established whether glucomoringin or its breakdown product have an added benefit to the plant in its natural habitat.

  20. Verticillium Suppression Is Associated with the Glucosinolate Composition of Arabidopsis thaliana Leaves

    PubMed Central

    Witzel, Katja; Hanschen, Franziska S.; Schreiner, Monika; Krumbein, Angelika; Ruppel, Silke; Grosch, Rita

    2013-01-01

    The soil-borne fungal pathogen Verticillium longisporum is able to penetrate the root of a number of plant species and spread systemically via the xylem. Fumigation of Verticillium contaminated soil with Brassica green manure is used as an environmentally friendly method for crop protection. Here we present a study focused on the potential role of glucosinolates and their breakdown products of the model plant Arabidopsis thaliana in suppressing growth of V. longisporum. For this purpose we analysed the glucosinolate composition of the leaves and roots of a set of 19 key accessions of A. thaliana. The effect of volatile glucosinolate hydrolysis products on the in vitro growth of the pathogen was tested by exposing the fungus to hydrated lyophilized plant tissue. Volatiles released from leaf tissue were more effective than from root tissue in suppressing mycelial growth of V. longisporum. The accessions varied in their efficacy, with the most effective suppressing mycelial growth by 90%. An analysis of glucosinolate profiles and their enzymatic degradation products revealed a correlation between fungal growth inhibition and the concentration of alkenyl glucosinolates, particularly 2-propenyl (2Prop) glucosinolate, respectively its hydrolysis products. Exposure of the fungus to purified 2Prop glucosinolate revealed that its suppressive activity was correlated with its concentration. Spiking of 2Prop glucosinolate to leaf material of one of the least effective A. thaliana accessions led to fungal growth suppression. It is suggested that much of the inhibitory effect observed for the tested accessions can be explained by the accumulation of 2Prop glucosinolate. PMID:24039726

  1. Nutrient Supply and Simulated Herbivory Differentially Alter the Metabolite Pools and the Efficacy of the Glucosinolate-Based Defense System in Brassica Species.

    PubMed

    Almuziny, Makhdora; Decker, Charlotte; Wang, Dong; Gerard, Patrick; Tharayil, Nishanth

    2017-02-01

    Environmental stress hinders growth of plants and commonly results in the accumulation of carbon-based defense compounds. However, the dynamics of nitrogen (N)-containing defense compounds are less predictable under environmental stress. The impact of nutrient deficiency on plant defenses that require the metabolic conversion of a less toxic compound to a more potent toxin is even more poorly understood. We evaluated the effects of nitrogen (N) and potassium (K) deficiency and simulated herbivory on the concentration of metabolites including glucosinolates (GSLs), on the conversion of GSLs to more toxic isothiocyanates (ITCs), and on the activity of myrosinase (MYR) in leaves of Brassica juncea and Brassica nigra. Both species contained GSLs, predominantly sinigrin, but also derivatives of glucobrassicin. Compared to the control, N deficiency increased the sinigrin concentration in both species. Methyl jasmonate (MeJA) application increased sinigrin production in B. junceae, whereas in B. nigra MeJA increased sinigrin only under K-deficiency. Compared to the aliphatic-glucosinolates, MeJA application produced a greater compositional change in the profiles of indolic-glucosinolates. In both species the increase in sinigrin content of the tissue was associated with a decrease in its overall nutritive value as assessed by the content of sugars and amino acids. In B. juncea, application of MeJA decreased the conversion of sinigrin to allyl isothiocyanate (AITC) under both N and K deficiency. The potential activity of MYR decreased in both species under N deficiency. The reduced conversion of sinigrin to AITC and the lower activity of MYR suggest that the GSL-ITC defense system might have a limited efficiency in deterring generalist herbivores under environmental stress.

  2. Long-Distance Phloem Transport of Glucosinolates in Arabidopsis1

    PubMed Central

    Chen, Sixue; Petersen, Bent Larsen; Olsen, Carl Erik; Schulz, Alexander; Halkier, Barbara Ann

    2001-01-01

    Glucosinolates are a large group of plant secondary metabolites found mainly in the order Capparales, which includes a large number of economically important Brassica crops and the model plant Arabidopsis. In the present study, several lines of evidence are provided for phloem transport of glucosinolates in Arabidopsis. When radiolabeled p-hydroxybenzylglucosinolate (p-OHBG) and sucrose were co-applied to the tip of detached leaves, both tracers were collected in the phloem exudates at the petioles. Long-distance transport of [14C]p-OHBG was investigated in wild-type and transgenic 35S::CYP79A1 plants, synthesizing high amounts of p-OHBG, which is not a natural constituent of wild-type Arabidopsis. In both wild-type and 35S::CYP79A1 plants, radiolabeled p-OHBG was rapidly transported from the application site into the whole plant and intact p-OHBG was recovered from different tissues. The pattern of distribution of the radioactivity corresponded to that expected for transport of photoassimilates such as sucrose, and was consistent with translocation in phloem following the source-sink relationship. Radiolabeled p-OHBG was shown to accumulate in the seeds of wild-type and 35S::CYP79A1 plants, where p-OHBG had been either exogenously applied or endogenously synthesized from Tyr in the leaves. p-OHBG was found in phloem exudates collected from cut petioles of leaves from both wild-type and 35S::CYP79A1 plants. Phloem exudates were shown to contain intact glucosinolates, and not desulphoglucosinolates, as the transport form. It is concluded that intact glucosinolates are readily loaded into and transported by the phloem. PMID:11553747

  3. BRANCHED-CHAIN AMINOTRANSFERASE4 Is Part of the Chain Elongation Pathway in the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis[W

    PubMed Central

    Schuster, Joachim; Knill, Tanja; Reichelt, Michael; Gershenzon, Jonathan; Binder, Stefan

    2006-01-01

    As part of our analysis of branched-chain amino acid metabolism in plants, we analyzed the function of Arabidopsis thaliana BRANCHED-CHAIN AMINOTRANSFERASE4 (BCAT4). Recombinant BCAT4 showed high efficiency with Met and its derivatives and the corresponding 2-oxo acids, suggesting its participation in the chain elongation pathway of Met-derived glucosinolate biosynthesis. This was substantiated by in vivo analysis of two BCAT4 T-DNA knockout mutants, in which Met-derived aliphatic glucosinolate accumulation is reduced by ∼50%. The increase in free Met and S-methylmethionine levels in these mutants, together with in vitro substrate specificity, strongly implicate BCAT4 in catalysis of the initial deamination of Met to 4-methylthio-2-oxobutyrate. BCAT4 transcription is induced by wounding and is predominantly observed in the phloem. BCAT4 transcript accumulation also follows a diurnal rhythm, and green fluorescent protein tagging experiments and subcellular protein fractions show that BCAT4 is located in the cytosol. The assignment of BCAT4 to the Met chain elongation pathway documents the close evolutionary relationship of this pathway to Leu biosynthesis. In addition to BCAT4, the enzyme methylthioalkylmalate synthase 1 has been recruited for the Met chain elongation pathway from a gene family involved in Leu formation. This suggests that the two pathways have a common evolutionary origin. PMID:17056707

  4. De novo Transcriptome Analysis of Sinapis alba in Revealing the Glucosinolate and Phytochelatin Pathways

    PubMed Central

    Zhang, Xiaohui; Liu, Tongjin; Duan, Mengmeng; Song, Jiangping; Li, Xixiang

    2016-01-01

    Sinapis alba is an important condiment crop and can also be used as a phytoremediation plant. Though it has important economic and agronomic values, sequence data, and the genetic tools are still rare in this plant. In the present study, a de novo transcriptome based on the transcriptions of leaves, stems, and roots was assembled for S. alba for the first time. The transcriptome contains 47,972 unigenes with a mean length of 1185 nt and an N50 of 1672 nt. Among these unigenes, 46,535 (97%) unigenes were annotated by at least one of the following databases: NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology (GO), and Clusters of Orthologous Groups of proteins (COGs). The tissue expression pattern profiles revealed that 3489, 1361, and 8482 unigenes were predominantly expressed in the leaves, stems, and roots of S. alba, respectively. Genes predominantly expressed in the leaf were enriched in photosynthesis- and carbon fixation-related pathways. Genes predominantly expressed in the stem were enriched in not only pathways related to sugar, ether lipid, and amino acid metabolisms but also plant hormone signal transduction and circadian rhythm pathways, while the root-dominant genes were enriched in pathways related to lignin and cellulose syntheses, involved in plant-pathogen interactions, and potentially responsible for heavy metal chelating, and detoxification. Based on this transcriptome, 14,727 simple sequence repeats (SSRs) were identified, and 12,830 pairs of primers were developed for 2522 SSR-containing unigenes. Additionally, the glucosinolate (GSL) and phytochelatin metabolic pathways, which give the characteristic flavor and the heavy metal tolerance of this plant, were intensively analyzed. The genes of aliphatic GSLs pathway were predominantly expressed in roots. The absence of aliphatic GSLs in leaf tissues was due to the shutdown of BCAT4, MAM1, and CYP79F1 expressions. Glutathione was extensively

  5. Production of two volatile glucosinolate hydrolysis compounds in Nasturtium montanum and Cleome chelidonii plant cell cultures.

    PubMed

    Songsak, T; Lockwood, G B

    2004-06-01

    Callus and suspension cultures established from Nasturtium montanum and Cleome chelidonii were shown to produce glucosinolates by analysis of their hydrolysis products. Large increases in two glucosinolate hydrolysis products were noted when cultures were supplemented with L-cysteine and L-methionine, and further increases were produced in N. montanum with l-tryptophan supplementation.

  6. Glucosinolate variation among six cultigens of broccoli grown in five diverse east coast locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broccoli (Brassica oleracea var. italica) consumption has increased in the United States, driven at least partially by recognition that it is highly nutritious and contains high concentrations of glucosinolates (GS). Glucosinolates are secondary metabolites in broccoli that when digested have a det...

  7. Garlic Mustard (Alliaria petiolata) Glucosinolate Content Varies Across a Natural Light Gradient.

    PubMed

    Smith, Lauren M

    2015-05-01

    Garlic mustard is a well-known invader of deciduous forests of North America, yet the influence of environmental factors on garlic mustard allelochemical production is not well understood. Three experiments were conducted to detect interactions between one garlic mustard allelochemical (glucosinolate) production and light availability. First, to detect patterns of glucosinolate production across a natural light gradient, leaves and roots of mature plants and first-year rosettes were sampled in patches ranging from 100 to 2 % of full sun within an Indiana forest. Second, to determine whether genetic variation drives observed correlations between glucosinolate content and light, seed collected across light gradients within six sites was grown in a common garden and glucosinolate production was measured. Finally, to understand whether local adaptation occurred in garlic mustard's response to light, seed collected from defined light environments across six sites was grown under four light treatments. Results of the field sampling showed that mature plants' root glucosinolate content was elevated in high compared to low light. In the common garden experiment, however, there was no correlation between light availability at seed origin and constitutive glucosinolate content. Additionally, in the common light treatments, there was no evidence for local adaptation to light environment. Overall, the results indicate that plasticity in response to light, not genetic variation among plants growing in different light environments, generates correlations between glucosinolate content and light in the field. Since mature garlic mustard populations in high light may exhibit increased glucosinolate content, it makes them potential targets for management.

  8. Transport of defense compounds from source to sink: lessons learned from glucosinolates.

    PubMed

    Jørgensen, Morten Egevang; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2015-08-01

    Plants synthesize a plethora of defense compounds crucial for their survival in a challenging and changing environment. Transport processes are important for shaping the distribution pattern of defense compounds, albeit focus hitherto has been mostly on their biosynthetic pathways. A recent identification of two glucosinolate transporters represents a breakthrough in our understanding of glucosinolate transport in Arabidopsis and has advanced knowledge in transport of defense compounds. In this review, we discuss the role of the glucosinolate transporters in establishing dynamic glucosinolate distribution patterns and source-sink relations. We focus on lessons learned from glucosinolate transport that may apply to transport of other defense compounds and discuss future avenues in the emerging field of defense compound transport.

  9. Diversity of Kale (Brassica oleracea var. sabellica): Glucosinolate Content and Phylogenetic Relationships.

    PubMed

    Hahn, Christoph; Müller, Anja; Kuhnert, Nikolai; Albach, Dirk

    2016-04-27

    Recently, kale has become popular due to nutritive components beneficial for human health. It is an important source of phytochemicals such as glucosinolates that trigger associated cancer-preventive activity. However, nutritional value varies among glucosinolates and among cultivars. Here, we start a systematic determination of the content of five glucosinolates in 25 kale varieties and 11 non-kale Brassica oleracea cultivars by HPLC-DAD-ESI-MS(n) and compare the profiles with results from the analysis of SNPs derived from a KASP genotyping assay. Our results demonstrate that the glucosinolate levels differ markedly among varieties of different origin. Comparison of the phytochemical data with phylogenetic relationships revealed that the common name kale refers to at least three different groups. German, American, and Italian kales differ morphologically and phytochemically. Landraces do not show outstanding glucosinolate levels. Our results demonstrate the diversity of kale and the importance of preserving a broad genepool for future breeding purposes.

  10. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea

    PubMed Central

    Yang, Qingyong; Cheng, Yan; Ma, Ming; Kliebenstein, Daniel J.; Zhou, Yongming

    2015-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies. PMID:26465156

  11. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    PubMed

    Zhang, Yuanyuan; Huai, Dongxin; Yang, Qingyong; Cheng, Yan; Ma, Ming; Kliebenstein, Daniel J; Zhou, Yongming

    2015-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs) are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1), respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  12. Combined effect of Nitrogen, Phosphorus and Potassium fertilizers on the contents of glucosinolates in rocket salad (Eruca sativa Mill.).

    PubMed

    Chun, Jin-Hyuk; Kim, Silbia; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Chung, Doug Young; Kim, Sun-Ju

    2017-02-01

    Nitrogen (N), phosphorous (P) and potassium (K) are the most limiting factors in crop production. N often affects the amino acid composition of protein and in turn its nutritional quality. In Brassica plants, abundant supply of N fertilizer decreases the relative proportion of glucosinolates (GSLs), thus reducing the biological and medical values of the vegetables. Hence effort was made to evaluate the influence of different proportions of nutrient solutions containing N-P-K on the GSL profiles of rocket salad (Eruca sativa Mill.). Fifteen desulpho-(DS) GSLs were isolated and identified using liquid chromatography-mass spectrometry (LC/MS) analysis. Rocket salad plants supplied with lesser amount of N, P or higher concentrations of K showed a typical improvement in total GSL contents. In contrast, total GSL levels were less at higher N supply. Furthermore, with N concentrations above 5 mM and K concentrations less than 2.5 mM, the GSL amounts were on average 13.51 and 13.75 μmol/g dry weight (DW), respectively. Aliphatic GSLs predominated in all concentrations of NPK while indolyl GSLs made up marginally less amount of the total compositions. Five and 2 mM N and P possessed much higher levels of several types of aliphatic GSLs than other concentrations, including glucoerucin, glucoraphanin and dimeric 4-mercaptobutyl GSL. From this perspective, it is contended that supply of less N results in enhancing the metabolic pathway for the synthesis of GSLs in rocket salad.

  13. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  14. Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa.

    PubMed

    Kastell, Anja; Smetanska, Iryna; Ulrichs, Christian; Cai, Zhenzhen; Mewis, Inga

    2013-01-01

    Although some study have established hairy root cultures from brassicaceous plants with glucosinolates (GS) as characteristic secondary metabolite, studies are missing which compare hairy roots with the corresponding mother plants. Therefore, two different plant species-Sinapis alba and Brassica rapa subsp. rapa pygmeae teltoviensis-were transformed with the Agrobacterium rhizogenes strain A4. Aliphatic and indolyl GS were present in B. rapa, exhibiting larger quantities in leaves than in roots. Aromatic p-hydroxybenzyl GS were found particularly in the leaves of S. alba. However, the proportion of indolyl GS increased suddenly in transformed hairy roots of S. alba and B. rapa. Cultivation with the phytohormone kinetin (0.5 mg L(-1)) enhanced GS accumulation in B. rapa hairy roots, however not in S. alba, but 2,4-D (0.4 mg L(-1)) induced de-differentiation of roots in both species and reduced GS levels. GS levels especially of 1-methoxyindol-3ylmethyl GS increased in hairy roots in response to JA, but root growth was inhibited. While 2 weeks of cultivation in 100 to 200 μM JA were determined at optimum for maximum GS yield in S. alba hairy root cultures, 4 weeks of cultivation in 50 to 100 μM JA was the optimum for B. rapa.

  15. Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana.

    PubMed

    Brock, Anita K; Berger, Beatrice; Mewis, Inga; Ruppel, Silke

    2013-04-01

    Plant growth-promoting bacteria (PGPB) affect plant cellular processes in various ways. The endophytic bacterial strain Enterobacter radicincitans DSM 16656 has been shown to improve plant growth and yield in various agricultural and vegetable crops. Besides its ability to fix atmospheric nitrogen, produce phytohormones, and solubilize phosphate compounds, the strain is highly competitive against native endophytic organisms and colonizes the endorhizosphere in high numbers. Here, we show that E. radicincitans inoculation of the noncrop plant Arabidopsis thaliana promotes plant growth. Furthermore, high performance liquid chromatography (HPLC) analysis revealed that bacterial inoculation slightly decreased amounts of aliphatic glucosinolates in plant leaves in a fast-growing stage but increased these compounds in an older phase where growth is mostly completed. This effect seems to correlate with developmental stage and depends on the nitrogen requirement. Additionally, nitrogen deficiency studies with seedlings grown on medium containing different nitrogen concentrations suggest that plant nitrogen demand can influence the intensity of plant growth enhancement by E. radicincitans. This endophyte seems not to activate stress-inducible mitogen-activated protein kinases (MAPKs). Analyzing transcription of the defense-related genes PR1, PR2, PR5, and PDF1.2 by quantitative real time polymerase chain reaction (qPCR) revealed that E. radicincitans DSM 16656 is able to induce priming via salicylic acid (SA) or jasmonate (JA)/ethylene (ET) signaling pathways to protect plants against potential pathogen attack.

  16. Metabolic Engineering of Valine- and Isoleucine-Derived Glucosinolates in Arabidopsis Expressing CYP79D2 from Cassava

    PubMed Central

    Mikkelsen, Michael Dalgaard; Halkier, Barbara Ann

    2003-01-01

    Glucosinolates are amino acid-derived natural products that, upon hydrolysis, typically release isothiocyanates with a wide range of biological activities. Glucosinolates play a role in plant defense as attractants and deterrents against herbivores and pathogens. A key step in glucosinolate biosynthesis is the conversion of amino acids to the corresponding aldoximes, which is catalyzed by cytochromes P450 belonging to the CYP79 family. Expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in Arabidopsis resulted in the production of valine (Val)- and isoleucine-derived glucosinolates not normally found in this ecotype. The transgenic lines showed no morphological phenotype, and the level of endogenous glucosinolates was not affected. The novel glucosinolates were shown to constitute up to 35% of the total glucosinolate content in mature rosette leaves and up to 48% in old leaves. Furthermore, at increased concentrations of these glucosinolates, the proportion of Val-derived glucosinolates decreased. As the isothiocyanates produced from the Val- and isoleucine-derived glucosinolates are volatile, metabolically engineered plants producing these glucosinolates have acquired novel properties with great potential for improvement of resistance to herbivorous insects and for biofumigation. PMID:12586901

  17. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts.

    PubMed

    Avila, Fabricio William; Yang, Yong; Faquin, Valdemar; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2014-12-15

    Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, cauliflower, green cabbage, Chinese cabbage, kale, and Brussels sprouts) were used. We found that Se-biofortified Brassica sprouts all were able to synthesize significant amounts of SeMSCys. Analysis of glucosinolate profiles revealed that each Brassica crop accumulated different types and amounts of glucosinolates. Cauliflower sprouts had high total glucosinolate content. Broccoli sprouts contained high levels of glucoraphanin, a precursor for potent anticancer compound. Although studies have reported an inverse relationship between accumulation of Se and glucosinolates in mature Brassica plants, Se supply generally did not affect glucosinolate accumulation in Brassica sprouts. Thus, Brassica vegetable sprouts can be biofortified with Se for the accumulation of SeMSCys without negative effects on chemopreventive glucosinolate contents.

  18. Efficacy of feeding glucosinolate-extracted crambe meal to broiler chicks.

    PubMed

    Kloss, P; Jeffrey, E; Wallig, M; Tumbleson, M; Parsons, C; Johnson, L; Reuber, M

    1994-10-01

    Glucosinolates and their breakdown products (nitriles) have long been implicated as toxic factors when feeding rapeseed (Brassica napus) meals and crambe (Crambe abyssinica) meals to poultry. Accordingly, various methods have been developed to remove these compounds from the meals to enhance their value as feed supplements. Glucosinolates and nitriles were extracted from commercially processed, defatted crambe meal by washing with water or various solvent-water mixtures: 50% isopropanol, 50% acetone, or 50% ethanol. In addition, crambe seed was extruded and extracted in the laboratory with isopropanol or hexane. Water washing of commercially defatted meal proved to be the most effective method of extraction, removing 95% of the glucosinolates and nitriles. Meals were fed to 7-d-old broiler chicks at 10% of the diet for 14 d. Weight gain decreased (P < .05) in most groups; however a greater decrease (P < .01) was observed in birds fed meals with high glucosinolate content. Feed intake also decreased (P < .05) in most groups; consequently, feed efficiencies were similar for all groups. No changes in serum chemistries, triiodothyronine, thyroxine, or tissue lesions were associated with glucosinolate or nitrile intake. A relationship (P < .05, r = .74) was found between weight gain and glucosinolate intake. No correlation was found between feed intake and meal glucosinolate or nitrile concentrations.

  19. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense.

    PubMed

    Shroff, Rohit; Vergara, Fredd; Muck, Alexander; Svatos, Ales; Gershenzon, Jonathan

    2008-04-22

    The spatial distribution of plant defenses within a leaf may be critical in explaining patterns of herbivory. The generalist lepidopteran larvae, Helicoverpa armigera (the cotton bollworm), avoided the midvein and periphery of Arabidopsis thaliana rosette leaves and fed almost exclusively on the inner lamina. This feeding pattern was attributed to glucosinolates because it was not evident in a myrosinase mutant that lacks the ability to activate glucosinolate defenses by hydrolysis. To measure the spatial distribution of glucosinolates in A. thaliana leaves at a fine scale, we constructed ion intensity maps from MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectra. The major glucosinolates were found to be more abundant in tissues of the midvein and the periphery of the leaf than the inner lamina, patterns that were validated by HPLC analyses of dissected leaves. In addition, there were differences in the proportions of the three major glucosinolates in different leaf regions. Hence, the distribution of glucosinolates within the leaf appears to control the feeding preference of H. armigera larvae. The preferential allocation of glucosinolates to the periphery may play a key role in the defense of leaves by creating a barrier to the feeding of chewing herbivores that frequently approach leaves from the edge.

  20. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense

    PubMed Central

    Shroff, Rohit; Vergara, Fredd; Muck, Alexander; Svatoš, Aleš; Gershenzon, Jonathan

    2008-01-01

    The spatial distribution of plant defenses within a leaf may be critical in explaining patterns of herbivory. The generalist lepidopteran larvae, Helicoverpa armigera (the cotton bollworm), avoided the midvein and periphery of Arabidopsis thaliana rosette leaves and fed almost exclusively on the inner lamina. This feeding pattern was attributed to glucosinolates because it was not evident in a myrosinase mutant that lacks the ability to activate glucosinolate defenses by hydrolysis. To measure the spatial distribution of glucosinolates in A. thaliana leaves at a fine scale, we constructed ion intensity maps from MALDI-TOF (matrix assisted laser desorption/ionization-time of flight) mass spectra. The major glucosinolates were found to be more abundant in tissues of the midvein and the periphery of the leaf than the inner lamina, patterns that were validated by HPLC analyses of dissected leaves. In addition, there were differences in the proportions of the three major glucosinolates in different leaf regions. Hence, the distribution of glucosinolates within the leaf appears to control the feeding preference of H. armigera larvae. The preferential allocation of glucosinolates to the periphery may play a key role in the defense of leaves by creating a barrier to the feeding of chewing herbivores that frequently approach leaves from the edge. PMID:18408160

  1. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica).

    PubMed

    Kim, Sun-Ju; Park, Woo Tae; Uddin, Md Romij; Kim, Yeon Bok; Nam, Sang-Yong; Jho, Kwang Hyun; Park, Sang Un

    2013-02-01

    Here we present previously unreported glucosinolate production by hairy root cultures of broccoli (B. oleracea var. italica). Growth media greatly influenced the growth and glucosinolate content of hairy root cultures of broccoli. Seven glucosinolates, glucoraphanin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were identified by analysis of the broccoli hairy root cultures. Both half and full strength B5 and SH media enabled the highest accumulation of glucosinolates. In most cases, the levels of glucosinolates were higher in SH and BS media. Among the 7 glucosinolates, the accumulation of neoglucobrassicin was very high, irrespective of growth medium. The neoglucobrassicin content was 7.4-fold higher in SH medium than 1/2 MS, in which its level was the lowest. The 1/2 B5 medium supported the production of the highest amounts of glucobrassicin and 4-methoxyglucobrassicin, the levels for which were 36.2- and 7.9- fold higher, respectively, than their lowest content in 1/2 MS medium. The 1/2 SH medium enabled the highest accumulation of glucoraphanin and gluconapin in the broccoli hairy root cultures, whose levels were 1.8- and 4.6-fold higher, respectively, than their lowest content in 1/2 MS medium. Our results suggest that hairy root cultures of broccoli could be a valuable alternative approach for the production of glucosinolate compounds.

  2. Aromatic Glucosinolate Biosynthesis Pathway in Barbarea vulgaris and its Response to Plutella xylostella Infestation

    PubMed Central

    Liu, Tongjin; Zhang, Xiaohui; Yang, Haohui; Agerbirk, Niels; Qiu, Yang; Wang, Haiping; Shen, Di; Song, Jiangping; Li, Xixiang

    2016-01-01

    The inducibility of the glucosinolate resistance mechanism is an energy-saving strategy for plants, but whether induction would still be triggered by glucosinolate-tolerant Plutella xylostella (diamondback moth, DBM) after a plant had evolved a new resistance mechanism (e.g., saponins in Barbara vulgaris) was unknown. In B. vulgaris, aromatic glucosinolates derived from homo-phenylalanine are the dominant glucosinolates, but their biosynthesis pathway was unclear. In this study, we used G-type (pest-resistant) and P-type (pest-susceptible) B. vulgaris to compare glucosinolate levels and the expression profiles of their biosynthesis genes before and after infestation by DBM larvae. Two different stereoisomers of hydroxylated aromatic glucosinolates are dominant in G- and P-type B. vulgaris, respectively, and are induced by DBM. The transcripts of genes in the glucosinolate biosynthesis pathway and their corresponding transcription factors were identified from an Illumina dataset of G- and P-type B. vulgaris. Many genes involved or potentially involved in glucosinolate biosynthesis were induced in both plant types. The expression patterns of six DBM induced genes were validated by quantitative PCR (qPCR), while six long-fragment genes were validated by molecular cloning. The core structure biosynthetic genes showed high sequence similarities between the two genotypes. In contrast, the sequence identity of two apparent side chain modification genes, the SHO gene in the G-type and the RHO in P-type plants, showed only 77.50% identity in coding DNA sequences and 65.48% identity in deduced amino acid sequences. The homology to GS-OH in Arabidopsis, DBM induction of the transcript and a series of qPCR and glucosinolate analyses of G-type, P-type and F1 plants indicated that these genes control the production of S and R isomers of 2-hydroxy-2-phenylethyl glucosinolate. These glucosinolates were significantly induced by P. xylostella larvae in both the susceptiple P

  3. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.).

    PubMed

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-06-01

    The effects of CO(2) enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO(2) concentration was elevated from 350 to 800 microl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO(2) concentration, N concentration, and CO(2)xN interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO(2). However, at 20 mmol N/L, elevated CO(2) had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO(2) concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO(2) concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO(2) condition.

  4. Aliphatic amines in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Jungclaus, G.; Cronin, J. R.; Moore, C. B.; Yuen, G. U.

    1976-01-01

    The paper reports on the determination of aliphatic amines in water extracts of the Murchison meteorite. The amines were analyzed by gas chromatography both as the free amines and as 2,4-dinitrophenyl (DNP) derivatives. The results give evidence for the presence of all of the possible primary aliphatic monoamines (eight) with fewer than five carbon atoms. Two of the seven possible secondary or tertiary aliphatic monoamines were identified. The identified primary amines total 80 nmol per g meteorite, and seem to be chemically or physically trapped in the meteorite. Similarities between the water-extractable amines and amino acids suggest that (1) a simple carbon compound, methane, for example, is the precursor of meteorite amines and amino acids, and (2) both amines and amino acids are extracted from the meteorite both as such and in the form of acid-hydrolyzable derivative or precursor species.

  5. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  6. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate.

    PubMed

    Schreiner, Monika; Krumbein, Angelika; Knorr, Dietrich; Smetanska, Iryna

    2011-02-23

    Elicitation studies with salicylic acid (SA) and methyl jasmonate (MJ) inducing a targeted rhizosecretion of high levels of anticarcinogenic glucosinolates in Brassica rapa ssp. rapa plants were conducted. Elicitor applications not only led to an accumulation of individual indole glucosinolates and the aromatic 2-phenylethyl glucosinolate in the turnip organs but also in turnip root exudates. This indicates an extended systemic response, which comprises the phyllosphere with all aboveground plant organs and the rhizosphere including the belowground root system and also root exudates. Both elicitor applications induced a doubling in 2-phenylethyl glucosinolate in root exudates, whereas application of MJ enhanced rhizosecreted indole glucosinolates up to 4-fold. In addition, the time course study revealed that maximal elicitation was observed on the 10th day of SA and MJ treatment. This study may provide an essential contribution using these glucosinolates as bioactive additives in functional foods and nutraceuticals.

  7. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli.

    PubMed

    Robbins, Rebecca J; Keck, Anna-Sigrid; Banuelos, Gary; Finley, John W

    2005-01-01

    Broccoli is a food often consumed for its potential health-promoting properties. The health benefits of broccoli are partly associated with secondary plant compounds that have bioactivity; glucosinolates and phenolic acids are two of the most abundant and important in broccoli. In an effort to determine how variety, stress, and production conditions affect the production of these bioactive components broccoli was grown in the greenhouse with and without selenium (Se) fertilization, and in the field under conventional or organic farming procedures and with or without water stress. High-performance liquid chromatography/mass spectrometry was used to separate and identify 12 primary phenolic compounds. Variety had a major effect: There was a preponderance of flavonoids in the Majestic variety, but hydroxycinnamic esters were relatively more abundant in the Legacy variety. Organic farming and water stress decreased the overall production of phenolics. Se fertilization increased glucosinolates in general, and sulforaphane in particular, up to a point; above that Se fertilization decreased glucosinolate production. Organic farming and water stress also decreased glucosinolate production. These data show environmental and genetic variation in phenolics and glucosinolates in broccoli, and warn that not all broccoli may contain all health-promoting bioactive components. They further show that selection for one bioactive component (Se) may decrease the content of other bioactive components such as phenolics and glucosinolates.

  8. HPLC-Based Method to Evaluate Kinetics of Glucosinolate Hydrolysis by Sinapis alba Myrosinase1

    PubMed Central

    Vastenhout, Kayla J.; Tornberg, Ruthellen H.; Johnson, Amanda L.; Amolins, Michael W.; Mays, Jared R.

    2014-01-01

    Isothiocyanates (ITCs) are one of several hydrolysis products of glucosinolates, plant secondary metabolites which are substrates for the thioglucohydrolase myrosinase. Recent pursuits toward the development of synthetic, non-natural ITCs have consequently led to an exploration of generating these compounds from non-natural glucosinolate precursors. Evaluation of the myrosinase-dependent conversion of select non-natural glucosinolates to non-natural ITCs cannot be accomplished using established UV-Vis spectroscopic methods. To overcome this limitation, an alternative HPLC-based analytical approach was developed where initial reaction velocities were generated from non-linear reaction progress curves. Validation of this HPLC method was accomplished through parallel evaluation of three glucosinolates with UV-Vis methodology. The results of this study demonstrate that kinetic data is consistent between both analytical methods and that the tested glucosinolates respond similarly to both Michaelis–Menten and specific activity analyses. Consequently, this work resulted in the complete kinetic characterization of three glucosinolates with Sinapis alba myrosinase, with results that were consistent with previous reports. PMID:25068719

  9. The fusion of genomes leads to more options: A comparative investigation on the desulfo-glucosinolate sulfotransferases of Brassica napus and homologous proteins of Arabidopsis thaliana.

    PubMed

    Hirschmann, Felix; Papenbrock, Jutta

    2015-06-01

    Sulfotransferases (SOTs) (EC 2.8.2.-) play a crucial role in the glucosinolate (Gl) biosynthesis, by catalyzing the final step of the core glucosinolate formation. In Arabidopsis thaliana the three desulfo (ds)-Gl SOTs AtSOT16, AtSOT17 and AtSOT18 were previously characterized, showing different affinities to ds-Gls. But can the knowledge about these SOTs be generally transferred to other Gl-synthesizing plants? It was investigated how many SOTs are present in the economically relevant crop plant Brassica napus L., and if it is possible to predict their characteristics by sequence analysis. The recently sequenced B. napus is a hybrid of Brassica rapa and Brassica oleracea. By database research, 71 putative functional BnSOT family members were identified and at least eleven of those are putative ds-Gl SOTs. Besides the homologs of AtSOT16 - 18, phylogenetic analyses revealed new subfamilies of ds-Gl SOTs, which are not present in A. thaliana. Three of the B. napus ds-Gl SOT proteins were expressed and purified, and characterized by determining the substrate affinities to different ds-Gls. Two of them, BnSOT16-a and BnSOT16-b, showed a significantly higher affinity to an indolic ds-Gl, similarly to AtSOT16. Additionally, BnSOT17-a was characterized and showed a higher affinity to long chained aliphatic Gls, similarly to AtSOT17. Identification of homologs to AtSOT18 was less reliable, because putative SOT18 sequences are more heterogeneous and confirmation of similar characteristics was not possible.

  10. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  11. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  12. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  13. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  14. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  15. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  16. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  17. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  18. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted aliphatic amine (generic... Specific Chemical Substances § 721.10199 Substituted aliphatic amine (generic). (a) Chemical substance and... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new...

  19. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  20. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  1. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  2. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  3. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L.

    PubMed

    Zou, Zhongwei; Ishida, Masahiko; Li, Feng; Kakizaki, Tomohiro; Suzuki, Sho; Kitashiba, Hiroyasu; Nishio, Takeshi

    2013-01-01

    SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F(2) populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.

  4. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications

    PubMed Central

    Xu, Jianwen; Feng, Ellva; Song, Jie

    2014-01-01

    Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field. PMID:24994939

  5. Functional Analysis of the Tandem-Duplicated P450 Genes SPS/BUS/CYP79F1 and CYP79F2 in Glucosinolate Biosynthesis and Plant Development by Ds Transposition-Generated Double Mutants1

    PubMed Central

    Tantikanjana, Titima; Mikkelsen, Michael Dalgaard; Hussain, Mumtaz; Halkier, Barbara Ann; Sundaresan, Venkatesan

    2004-01-01

    A significant fraction (approximately 17%) of Arabidopsis genes are members of tandemly repeated families and pose a particular challenge for functional studies. We have used the Ac-Ds transposition system to generate single- and double-knockout mutants of two tandemly duplicated cytochrome P450 genes, SPS/BUS/CYP79F1 and CYP79F2. We have previously described the Arabidopsis supershoot mutants in CYP79F1 that exhibit massive overproliferation of shoots. Here we use a cytokinin-responsive reporter ARR5::uidA and an auxin-responsive reporter DR5::uidA in the sps/cyp79F1 mutant to show that increased levels of cytokinin, but not auxin, correlate well with the expression pattern of the SPS/CYP79F1 gene, supporting the involvement of this gene in cytokinin homeostasis. Further, we isolated Ds gene trap insertions in the CYP79F2 gene, and find these mutants to be defective mainly in the root system, consistent with a root-specific expression pattern. Finally, we generated double mutants in CYP79F1 and CYP79F2 using secondary transpositions, and demonstrate that the phenotypes are additive. Previous biochemical studies have suggested partially redundant functions for SPS/CYP79F1 and CYP79F2 in aliphatic glucosinolate synthesis. Our analysis shows that aliphatic glucosinolate biosynthesis is completely abolished in the double-knockout plants, providing genetic proof for the proposed biochemical functions of these genes. This study also provides further demonstration of how gluconisolate biosynthesis, regarded as secondary metabolism, is intricately linked with hormone homeostatis and hence with plant growth and development. PMID:15194821

  6. Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana.

    PubMed Central

    Kliebenstein, Daniel; Pedersen, Deana; Barker, Bridget; Mitchell-Olds, Thomas

    2002-01-01

    Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses. PMID:12019246

  7. 26 CFR 5c.103-3 - Leases and arbitrage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Leases and arbitrage. 5c.103-3 Section 5c.103-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.103-3 Leases and...

  8. 26 CFR 5c.103-3 - Leases and arbitrage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Leases and arbitrage. 5c.103-3 Section 5c.103-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.103-3 Leases and...

  9. 26 CFR 5c.103-3 - Leases and arbitrage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Leases and arbitrage. 5c.103-3 Section 5c.103-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.103-3 Leases and...

  10. 26 CFR 5c.103-3 - Leases and arbitrage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Leases and arbitrage. 5c.103-3 Section 5c.103-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.103-3 Leases and...

  11. 26 CFR 5c.103-3 - Leases and arbitrage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Leases and arbitrage. 5c.103-3 Section 5c.103-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.103-3 Leases and...

  12. Profiling of Glucosinolates and Flavonoids in Rorippa indica (Linn.) Hiern. (Cruciferae) by UHPLC-PDA-ESI/HRMSn.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An UHPLC-DAD-ESI/HRMSn profiling method was used to identify the glucosinolates and flavonoids of Rorippa montana (Cruciferae), a Chinese herb used to treat cough, diarrhea and rheumatoid arthritis. Thirty three glucosinolates, over 40 flavonol glycosides, and more than 20 other phenolic and common ...

  13. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS.

    PubMed

    Song, Lijiang; Morrison, John J; Botting, Nigel P; Thornalley, Paul J

    2005-12-15

    Dietary glucosinolates are under intensive investigation as precursors of cancer-preventive isothiocyanates. Quantitation of the dose and bioavailability of glucosinolates and isothiocyanates requires a comprehensive analysis of the major dietary glucosinolates, isothiocyanates, and related metabolites. We report a liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) analytical method for the comprehensive analysis of the seven major dietary glucosinolates, related isothiocyanates, and putative amine degradation products. The parent glucosinolates were sinigrin, gluconapin, progoitrin, glucoiberin, glucoraphanin, glucoalyssin, and gluconasturtiin. The LC-MS/MS analysis method for these compounds was developed and validated; a standard addition analysis protocol was used generally to avoid the requirement for stable isotopic standards. Where stable isotopic standards were available, internal standardization with these gave estimates in agreement with those obtained by the standard addition analysis protocol. For glucosinolates, negative ion electrospray LC-MS/MS analysis was performed. Isothiocyanates and amines were prederivatized to the corresponding thiourea and N-acetamides, respectively, and were quantified by positive ion electrospray LC-MS/MS. The limits of detection were 0.5-2 pmol; the recoveries for glucosinolates, isothiocyanates, and amines were 85-90%, 50-85%, and 60-70%, respectively; and the intra- and interbatch coefficients of variation were 1-4% and 3-10%, respectively. These methods provide facile access to comprehensive analytical data on the major dietary glucosinolates and related metabolites to quantify inputs and metabolic formation of these compounds in cancer prevention and related studies.

  14. GLS-Finder: An Automated Data-Mining System for Fast Profiling Glucosinolates and its Application in Brassica Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid computer-aided program for profiling glucosinolates, “GLS-Finder", was developed. GLS-Finder is a Matlab script based expert system that is capable for qualitative and semi-quantitative analysis of glucosinolates in samples using data generated by ultra-high performance liquid chromatograph...

  15. Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species.

    PubMed

    Pedras, M Soledade C; Yaya, Estifanos E

    2014-06-01

    In general, the chemodiversity of phytoalexins, elicited metabolites involved in plant defense mechanisms against microbial pathogens, correlates with the biodiversity of their sources. In this work, the phytoalexins produced by four wild cruciferous species (Brassica tournefortii, Crambe abyssinica (crambe), Diplotaxis tenuifolia (sand rocket), and Diplotaxis tenuisiliqua (wall rocket)) were identified and quantified by HPLC with photodioarray and electrospray mass detectors. In addition, the production of indole glucosinolates, biosynthetic precursors of cruciferous phytoalexins, was evaluated. Tenualexin, (=2-(1,4-dimethoxy-1H-indol-3-yl)acetonitrile), the first cruciferous phytoalexin containing two MeO substituents in the indole ring, was isolated from D. tenuisiliqua, synthesized, and evaluated for antifungal activity. The phytoalexins cyclobrassinin and spirobrassinin were detected in B. tournefortii and C. abyssinica, whereas rutalexin and 4-methoxybrassinin were only found in B. tournefortii. D. tenuifolia, and D. tenuisiliqua produced 2-(1H-indol-3-yl)acetonitriles as phytoalexins. Because tenualexin appears to be one of the broad-range antifungals occurring in crucifers, it is suggested that D. tenuisiliqua may have disease resistance traits important to be incorporated in commercial breeding programs.

  16. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  17. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    PubMed

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease.

  18. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    PubMed Central

    Angelino, Donato; Dosz, Edward B.; Sun, Jianghao; Hoeflinger, Jennifer L.; Van Tassell, Maxwell L.; Chen, Pei; Harnly, James M.; Miller, Michael J.; Jeffery, Elizabeth H.

    2015-01-01

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC. ITC are highly reactive electrophiles, binding reversibly to thiols, but accumulating and causing damage when free thiols are not available. We found that addition of excess thiols released protein-thiol-bound ITC, but that the microbiome supports only poor hydrolysis unless exposed to dietary glucosinolates for a period of days. These findings explain why 3–5 servings a week of brassica vegetables may provide health effects, even if they are cooked. PMID:26500669

  19. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.

    PubMed

    Williams, David J; Critchley, Christa; Pun, Sharon; Chaliha, Mridusmita; O'Hare, Timothy J

    2009-01-01

    Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.

  20. Transcriptome and Metabolome Analyses of Glucosinolates in Two Broccoli Cultivars Following Jasmonate Treatment for the Induction of Glucosinolate Defense to Trichoplusia ni (Hübner)

    PubMed Central

    Ku, Kang-Mo; Becker, Talon M.; Juvik, John A.

    2016-01-01

    Lepidopteran larvae growth is influenced by host plant glucosinolate (GS) concentrations, which are, in turn, influenced by the phytohormone jasmonate (JA). In order to elucidate insect resistance biomarkers to lepidopteran pests, transcriptome and metabolome analyses following JA treatments were conducted with two broccoli cultivars, Green Magic and VI-158, which have differentially induced indole GSs, neoglucobrassicin and glucobrassicin, respectively. To test these two inducible GSs on growth of cabbage looper (Trichoplusia ni), eight neonate cabbage looper larvae were placed onto each of three plants per JA treatments (0, 100, 200, 400 µM) three days after treatment. After five days of feeding, weight of larvae and their survival rate was found to decrease with increasing JA concentrations in both broccoli cultivars. JA-inducible GSs were measured by high performance liquid chromatography. Neoglucobrassicin in Green Magic and glucobrassicin in VI-158 leaves were increased in a dose-dependent manner. One or both of these glucosinolates and/or their hydrolysis products showed significant inverse correlations with larval weight and survival (five days after treatment) while being positively correlated with the number of days to pupation. This implies that these two JA-inducible glucosinolates can influence the growth and survival of cabbage looper larvae. Transcriptome profiling supported the observed changes in glucosinolate and their hydrolysis product concentrations following JA treatments. Several genes related to GS metabolism differentiate the two broccoli cultivars in their pattern of transcriptional response to JA treatments. Indicative of the corresponding change in indole GS concentrations, transcripts of the transcription factor MYB122, core structure biosynthesis genes (CYP79B2, UGT74B1, SUR1, SOT16, SOT17, and SOT18), an indole glucosinolate side chain modification gene (IGMT1), and several glucosinolate hydrolysis genes (TGG1, TGG2, and ESM1) were

  1. Transcriptome and Metabolome Analyses of Glucosinolates in Two Broccoli Cultivars Following Jasmonate Treatment for the Induction of Glucosinolate Defense to Trichoplusia ni (Hübner).

    PubMed

    Ku, Kang-Mo; Becker, Talon M; Juvik, John A

    2016-07-15

    Lepidopteran larvae growth is influenced by host plant glucosinolate (GS) concentrations, which are, in turn, influenced by the phytohormone jasmonate (JA). In order to elucidate insect resistance biomarkers to lepidopteran pests, transcriptome and metabolome analyses following JA treatments were conducted with two broccoli cultivars, Green Magic and VI-158, which have differentially induced indole GSs, neoglucobrassicin and glucobrassicin, respectively. To test these two inducible GSs on growth of cabbage looper (Trichoplusia ni), eight neonate cabbage looper larvae were placed onto each of three plants per JA treatments (0, 100, 200, 400 µM) three days after treatment. After five days of feeding, weight of larvae and their survival rate was found to decrease with increasing JA concentrations in both broccoli cultivars. JA-inducible GSs were measured by high performance liquid chromatography. Neoglucobrassicin in Green Magic and glucobrassicin in VI-158 leaves were increased in a dose-dependent manner. One or both of these glucosinolates and/or their hydrolysis products showed significant inverse correlations with larval weight and survival (five days after treatment) while being positively correlated with the number of days to pupation. This implies that these two JA-inducible glucosinolates can influence the growth and survival of cabbage looper larvae. Transcriptome profiling supported the observed changes in glucosinolate and their hydrolysis product concentrations following JA treatments. Several genes related to GS metabolism differentiate the two broccoli cultivars in their pattern of transcriptional response to JA treatments. Indicative of the corresponding change in indole GS concentrations, transcripts of the transcription factor MYB122, core structure biosynthesis genes (CYP79B2, UGT74B1, SUR1, SOT16, SOT17, and SOT18), an indole glucosinolate side chain modification gene (IGMT1), and several glucosinolate hydrolysis genes (TGG1, TGG2, and ESM1) were

  2. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  3. Aliphatic hydrocarbons of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1990-01-01

    Hydrocarbon fractions from the Murchison meteorite were prepared using benzene-methanol as the extraction solvent, fractionated on silica gel columns, and analyzed using gas chromatography combined with mass spectrometry and IR and NMR techniques. Results indicate that the most abundant aliphatic hydrocarbon components of the Murchison meteorite are C15 to C30 branched-alkyl-substituted mono-, di-, and tricyclic alkanes. It is shown that the n-alkanes, methyl alkanes, and isoprenoid alkanes that are sometimes found in extracts of the Murchison meteorite are terrestrial contaminants.

  4. Glucosinolates in collard greens grown under three soil management practices.

    PubMed

    Antonious, George F

    2015-01-01

    Glucosinolates (GSLs, β-D-thioglucoside-N-hydroxysulfates) are polar compounds present in varying amounts in members of the Brassicaceae family. They suppress soil-borne pests due to the biofumigant properties of the highly toxic isothiocyanates present in Brassica vegetables. The objectives of this investigation were to: (1) assess variation in GSLs concentrations among collard plants grown under three soil management practices: sewage sludge (SS) mixed with native soil, chicken manure (CM) mixed with native soil, and no-mulch (NM) native soil, (2) quantify GSLs concentrations in collard roots, leaves, and stems at harvest for potential use of their crude extracts in plant protection, and (3) assess myrosinase activity in soil amended with CM and SS mixed with native soil. Separation of GSLs was accomplished by adsorption on a DEAE-Sephadex ion exchange resin using disposable pipette tips filled with DEAE, a weak base, with a net positive charge when ionized and exchange anions such as GSLs (hydrophilic plant secondary metabolites). Quantification of total GSLs was based on inactivation of collard endogenous myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase and colorimetric determination of the liberated glucose moiety. Across all treatments, SS and CM increased soil organic matter content from 2.2% in native soil to 4.2 and 6.5%, respectively. GSLs concentrations were significantly greater in collard leaves (30.9 µmoles g(-1) fresh weight) compared to roots and stems (7.8 and 1.2 µmoles g(-1) fresh weight), respectively. Leaves of collard grown in soil amended with SS contained the greatest concentrations of GSLs compared to leaves of plants grown in CM and NM treatments. Accordingly, leaves of collard plants grown in soil amended with SS could play a significant role in sustainable agriculture as alternative tools for soil-borne disease management in conventional and organic agriculture.

  5. Chromosome Conformation Capture Carbon Copy (5C) in Budding Yeast.

    PubMed

    Belton, Jon-Matthew; Dekker, Job

    2015-06-01

    Chromosome conformation capture carbon copy (5C) is a high-throughput method for detecting ligation products of interest in a chromosome conformation capture (3C) library. 5C uses ligation-mediated amplification (LMA) to generate carbon copies of 3C ligation product junctions using single-stranded oligonucleotide probes. This procedure produces a 5C library of short DNA molecules which represent the interactions between the corresponding restriction fragments. The 5C library can be amplified using universal primers containing the Illumina paired-end adaptor sequences for subsequent high-throughput sequencing.

  6. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    PubMed

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  7. OLFACTORY RESPONSES OF BLOWFLIES TO ALIPHATIC ALDEHYDES

    PubMed Central

    Dethier, V. G.

    1954-01-01

    The response of the blowfly Phormia regina to stimulation by aldehydes in the vapor phase has been studied by means of a specially designed olfactometer. The median rejection threshold and the maximum acceptance threshold were selected as criteria of response. For both acceptance and rejection the distribution of thresholds in the population is normal with respect to the logarithm of concentration. When thresholds are expressed as molar concentrations, the values decrease progressively as chain length is increased. There is no attraction beyond decanal and no rejection beyond dodecanal. When thresholds are expressed as activities, most members of the aldehyde series are approximately equally stimulating at rejection and equally stimulating at acceptance. The relationship is most exact over the middle range of chain lengths. There is a tendency for the terminal members to stimulate at higher activities. These relationships are in close agreement with those which were found earlier to apply to the normal aliphatic alcohols. The similarity between the relative actions of the members of the two series suggests that the relation of equal olfactory stimulation at equal thermodynamic activities by homologous aliphatic compounds at least for homologues of intermediate chain length may be of rather general application in olfaction. PMID:13174780

  8. Modification of Leaf Glucosinolate Contents in Brassica oleracea by Divergent Selection and Effect on Expression of Genes Controlling Glucosinolate Pathway

    PubMed Central

    Sotelo, Tamara; Velasco, Pablo; Soengas, Pilar; Rodríguez, Víctor M.; Cartea, María E.

    2016-01-01

    Modification of the content of secondary metabolites opens the possibility of obtaining vegetables enriched in these compounds related to plant defense and human health. We report the first results of a divergent selection for glucosinolate (GSL) content of the three major GSL in leaves: sinigrin (SIN), glucoiberin (GIB), and glucobrassicin (GBS) in order to develop six kale genotypes (Brassica oleracea var. acephala) with high (HSIN, HIGIB, HGBS) and low (LSIN, LGIB, LGBS) content. The aims were to determine if the three divergent selections were successful in leaves, how each divergent selection affected the content of the same GSLs in flower buds and seeds and to determine which genes would be involved in the modification of the content of the three GSL studied. The content of SIN and GIB after three cycles of divergent selection increased 52.5% and 77.68%, and decreased 51.9% and 45.33%, respectively. The divergent selection for GBS content was only successful and significant for decreasing the concentration, with a reduction of 39.04%. Mass selection is an efficient way of modifying the concentration of individual GSLs. Divergent selections realized in leaves had a side effect in the GSL contents of flower buds and seeds due to the novo synthesis in these organs and/or translocation from leaves. The results obtained suggest that modification in the SIN and GIB concentration by selection is related to the GSL-ALK locus. We suggest that this locus could be related with the indirect response found in the GBS concentration. Meantime, variations in the CYP81F2 gene expression could be the responsible of the variations in GBS content. The genotypes obtained in this study can be used as valuable materials for undertaking basic studies about the biological effects of the major GSLs present in kales. PMID:27471510

  9. Modification of Leaf Glucosinolate Contents in Brassica oleracea by Divergent Selection and Effect on Expression of Genes Controlling Glucosinolate Pathway.

    PubMed

    Sotelo, Tamara; Velasco, Pablo; Soengas, Pilar; Rodríguez, Víctor M; Cartea, María E

    2016-01-01

    Modification of the content of secondary metabolites opens the possibility of obtaining vegetables enriched in these compounds related to plant defense and human health. We report the first results of a divergent selection for glucosinolate (GSL) content of the three major GSL in leaves: sinigrin (SIN), glucoiberin (GIB), and glucobrassicin (GBS) in order to develop six kale genotypes (Brassica oleracea var. acephala) with high (HSIN, HIGIB, HGBS) and low (LSIN, LGIB, LGBS) content. The aims were to determine if the three divergent selections were successful in leaves, how each divergent selection affected the content of the same GSLs in flower buds and seeds and to determine which genes would be involved in the modification of the content of the three GSL studied. The content of SIN and GIB after three cycles of divergent selection increased 52.5% and 77.68%, and decreased 51.9% and 45.33%, respectively. The divergent selection for GBS content was only successful and significant for decreasing the concentration, with a reduction of 39.04%. Mass selection is an efficient way of modifying the concentration of individual GSLs. Divergent selections realized in leaves had a side effect in the GSL contents of flower buds and seeds due to the novo synthesis in these organs and/or translocation from leaves. The results obtained suggest that modification in the SIN and GIB concentration by selection is related to the GSL-ALK locus. We suggest that this locus could be related with the indirect response found in the GBS concentration. Meantime, variations in the CYP81F2 gene expression could be the responsible of the variations in GBS content. The genotypes obtained in this study can be used as valuable materials for undertaking basic studies about the biological effects of the major GSLs present in kales.

  10. Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild mustard (Brassica juncea L.), an invasive weed of winter crops in Brazil, was evaluated for glucosinolate content of its plant tissues and nematicidal activity of its dry leaf meal (LM), whole seed meal (WSM) and hexane defatted seed meal (DSM) against Meloidogyne incognita on tomato plants...

  11. Toxicity of Glucosinolates and Their Enzymatic Decomposition Products to Caenorhabditis elegans

    PubMed Central

    Donkin, Steven G.; Eiteman, Mark A.; Williams, Phillip L.

    1995-01-01

    An aquatic 24-hour lethality test using Caenorhabditis elegans was used to assess toxicity of glucosinolates and their enzymatic breakdown products. In the absence of the enzyme thioglucosidase (myrosinase), allyl glucosinolate (sinigrin) was found to be nontoxic at all concentrations tested, while a freeze-dried, dialyzed water extract of Crambe abyssinica containing 26% 2-hydroxyl 3-butenyl glucosinolate (epi-progoitrin) had a 50% lethal concentration (LC₅₀) of 18.5 g/liter. Addition of the enzyme increased the toxicity (LC₅₀ value) of sinigrin to 0.5 g/liter, but the enzyme had no effect on the toxicity of the C. abyssinica extract. Allyl isothiocyanate and allyl cyanide, two possible breakdown products of sinigrin, had an LC₅₀ value of 0.04 g/liter and approximately 3 g/liter, respectively. Liquid chromatographic studies showed that a portion of the sinigrin decomposed into allyl isothiocyanate. The results indicated that allyl isothiocyanate is nearly three orders of magnitude more toxic to C. elegans than the corresponding glncosinolate, suggesting isothiocyanate formation would improve nematode control from application of glucosinolates. PMID:19277288

  12. Suppression of Specific Apple Root Pathogens by Brassica napus Seed Meal Amendment Regardless of Glucosinolate Content.

    PubMed

    Mazzola, M; Granatstein, D M; Elfving, D C; Mullinix, K

    2001-07-01

    ABSTRACT The impact of Brassica napus seed meal on the microbial complex that incites apple replant disease was evaluated in greenhouse trials. Regardless of glucosinolate content, seed meal amendment at a rate of 0.1% (vol/vol) significantly enhanced growth of apple and suppressed apple root infection by Rhizoctonia spp. and Pratylenchus penetrans. High glucosinolate B. napus cv. Dwarf Essex seed meal amendments did not consistently suppress soil populations of Pythium spp. or apple root infection by this pathogen. Application of a low glucosinolate containing B. napus seed meal at a rate of 1.0% (vol/vol) resulted in a significant increase in recovery of Pythium spp. from apple roots, and a corresponding reduction in apple seedling root biomass. When applied at lower rates, B. napus seed meal amendments enhanced populations of fluorescent Pseudomonas spp., but these bacteria were not recovered from soils amended with seed meal at a rate of 2% (vol/vol). Seed meal amendments resulted in increased soil populations of total bacteria and actinomycetes. B. napus cv. Dwarf Essex seed meal amendments were phytotoxic to apple when applied at a rate of 2% (vol/vol), and phytotoxicity was not diminished when planting was delayed for as long as 12 weeks after application. These findings suggest that B. napus seed meal amendments can be a useful tool in the management of apple replant disease and, in the case of Rhizoctonia spp., that disease control operates through mechanisms other than production of glucosinolate hydrolysis products.

  13. Reduction of total glucosinolates in canola meal via thermal treatment and fungal bioprocessing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On a worldwide basis, canola (Brassica napus) meal is second only to soybean meal as a protein source for livestock. A general limitation of Brassica spp. meals is the presence of glucosinolates (GLS). GLS and the enzyme myrosinase are compartmentally stored separately in the plant. Upon disruption ...

  14. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates, as a defense against bacteria, fungi, insects and herbivores including man. Low levels of isothiocyanates trigger a host defense system in mammals that protects them against chronic diseases. Becaus...

  15. Two novel bioactive glucosinolates from Broccoli (Brassica oleracea L. var. italica) florets.

    PubMed

    Survay, Nazneen Shaik; Kumar, Brajesh; Jang, Mi; Yoon, Do-Young; Jung, Yi-Sook; Yang, Deok-Chun; Park, Se Won

    2012-09-01

    Two novel glucosinolates along with one known glucosinolate were isolated from Broccoli (Brassica oleracea L. var. italica) florets. Their structures were established mainly by 1D ((1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, DEPT 135°, HSQC and HMBC), and Tandem MS-MS spectrometric data as 2-mercaptomethyl sulfinyl glucosinolate [(Z)-4-(methylsulfinyl)-N-(sulfooxy)-2-((2'S,3'R,4'S,5'S,6'R)-3',4',5'-trihydroxy-6'(hydroxylmethyl)-2'-mercapto tetrahydro-2H-pyran-2-yl) butane amide] 1, (Z)-1-((2S,5S)-5-hydroxytetra-hydro-2H-pyran-2-ylthio)-2-(1H-indol-3-yl) ethylidene amino sulfate 2 and a known cinnamoyl [6'-O-trans-(4″-hydroxy cinnamoyl)4-(methylsulphinyl)butyl glucosinolate] 3. Compound 1 exhibited scavenging activity against DPPH with an inhibitory concentration IC(50) of 20 mM, whereas compound 3 was a weak antioxidant when compared to the standard quercetin (5 mM) as a positive control. Both the compounds showed a significant and similar antimicrobial activity against Staphylococcus aureus with an IC(50) of <625 μg/mL when compared to antibiotic duricef. Against Salmonella typhimurium the IC(50) of 1 and 3 was determined as <625 μg/mL and <1250 μg/mL, respectively, when compared to ampicillin (IC(50) ≤ 39 μg/mL) as a positive control.

  16. Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey

    NASA Astrophysics Data System (ADS)

    van Geem, Moniek; Harvey, Jeffrey A.; Gols, Rieta

    2014-09-01

    Insect herbivores exhibit various strategies to counter the toxic effects of plant chemical defenses. These strategies include the detoxification, excretion, and sequestration of plant secondary metabolites. The latter strategy is often considered to provide an additional benefit in that it provides herbivores with protection against natural enemies such as predators. Profiles of sequestered chemicals are influenced by the food plants from which these chemicals are derived. We compared the effects of sequestration and nonsequestration of plant secondary metabolites in two specialist herbivores on the development of a generalist predator, Podisus maculiventris. Profiles of glucosinolates, secondary metabolites characteristic for the Brassicaceae, are known to differ considerably both inter- and intraspecifically. Throughout their immature (=nymphal) development, the predator was fed on larval stages of either sequestering (turnip sawfly, Athalia rosae) or nonsequestering (small cabbage white butterfly, Pieris rapae) prey that in turn had been feeding on plants originating from three wild cabbage ( Brassica oleracea) populations that have previously been shown to differ in their glucosinolate profiles. We compared survival, development time, and adult body mass as parameters for bug performance. Our results show that sequestration of glucosinolates by A. rosae only marginally affected the development of P. maculiventris. The effects of plant population on predator performance were variable. We suggest that sequestration of glucosinolates by A. rosae functions not only as a defensive mechanism against some predators, but may also be an alternative way of harmlessly dealing with plant allelochemicals.

  17. Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera.

    PubMed

    Cosme, Marco; Franken, Philipp; Mewis, Inga; Baldermann, Susanne; Wurst, Susanne

    2014-10-01

    Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.

  18. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production.

    PubMed

    Wielanek, Marzena; Królicka, Aleksandra; Bergier, Katarzyna; Gajewska, Ewa; Skłodowska, Maria

    2009-06-01

    Hairy roots of Nasturtium officinale, Barbarea verna and Arabis caucasica with active glucosinolate-myrosinase system were obtained after transformation with Agrobacterium rhizogenes. Hairy roots of N. officinale produced phenylalanine-derived gluconasturtiin and glucotropaeolin (max. 24 and 7 mg g(-1) DW). B. verna and A. caucasica hairy roots produced gluconasturtiin (max. 41 mg g(-1) DW) and methionine-derived glucoiberverin (max. 32 mg g(-1) DW), respectively. Treatment of the roots with amino acid precursors of glucosinolate or/and cysteine biosynthesis increased levels of glucosinolate production, combinations of phenylalanine with cysteine (for gluconasturtiin and glucotropaeolin) and methionine with o-acetylserine (for glucoiberverin) were the most effective.

  19. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses... salt (PMN P-92-1352) is subject to reporting under this section for the significant new uses...

  20. Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions.

    PubMed

    Ruppel, Silke; Krumbein, Angelika; Schreiner, Monika

    2008-08-01

    The plant phyllosphere is intensely colonized by a complex and highly diverse microbial population and shows pronounced plant-species-specific differences. The mechanisms and influencing factors determining whether and in which density microorganisms colonize plant phyllosphere tissues are not yet fully understood. One of the key influencing factors is thought to be phytochemical concentration and composition. Therefore, correlations between various concentrations of individual glucosinolates and carotenoids in four different plant species-Brassica juncea, Brassica campestris, Cichorium endivia, and Spinacea oleracea-and the phyllospheric bacterial population size associated with the aerial parts of the same plants were analyzed. The concentration of various individual glucosinolates and carotenoids were measured using high-performance liquid chromatography. The phyllospheric bacterial population size including both nonculturable and culturable organisms was assessed using quantitative real-time polymerase chain reaction, and the physiological profile of the culturable microbial community was analyzed using the Biolog system. Results show significant differences between plant species in both concentration and composition of secondary metabolites, bacterial population size, and microbial community composition in three consecutively performed experiments. An interesting and underlying trend was that bacterial density was positively correlated to concentrations of beta-carotene in the plant phyllosphere of the four plant species examined. Likewise, the alkenyl glucosinolates, 2-propenyl, 3-butenyl, and 4-pentenyl, concentrations were positively correlated to the bacterial population density, whereas the aromatic glucosinolate 2-phenylethyl showed a negative correlation to the phyllospheric bacterial population size. Thus, we report for the first time the relationship between individual glucosinolate and carotenoid concentrations and the phyllospheric bacterial

  1. Induced production of 1-methoxy-indol-3-ylmethyl glucosinolate by jasmonic acid and methyl jasmonate in sprouts and leaves of pak choi (Brassica rapa ssp. chinensis).

    PubMed

    Wiesner, Melanie; Hanschen, Franziska S; Schreiner, Monika; Glatt, Hansruedi; Zrenner, Rita

    2013-07-18

    Pak choi plants (Brassica rapa ssp. chinensis) were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future.

  2. Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Curran, Jerome

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  3. Structure of pyrrhotite 5C (Fe9S10).

    PubMed

    Elliot, Alexander Dean

    2010-06-01

    The distribution of vacancies throughout the underlying NiAs structure of pyrrhotite 5C was analysed through the application of vacancy avoidance and the closeness condition in conjunction with order-disorder layering. Two crystallographically equivalent structure solutions (chiral enantiomers) were produced consisting of layers containing one vacancy in every eight iron sites broken by a fully occupied layer every fifth iron layer, and best described by monoclinic statistical models. The statistical 5C structures were verified using synchrotron powder diffraction data as well as published electron-diffraction patterns. An order-disorder structure description is proposed for the intermediate pyrrhotites of which pyrrhotite 5C is an end-member.

  4. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  5. Composites of vinyl polystyrylpyridine/bismaleimide-aliphatic ether copolymers

    NASA Technical Reports Server (NTRS)

    Heimbuch, Alvin H.; Rosser, Robert W.; Hsu, Ming-Ta S.

    1989-01-01

    An aliphatic ether bismaleimide was prepared and coreacted with a polyvinylstyrylpyridine (VPSP) oligomer. Studies showed that a controlled ratio of aliphatic to aromatic units in the polymer backbone improved both processibility and interlaminar shear properties for the carbon-fiber composite system. This modified resin was readily soluble in tetrahydrofuran, allowing for better fiber impregnation and thus enhancing adhesive properties and reproducibility. DSC studies have shown a lower cure temperature for the copolymer than for the neat aliphatic bismaleimide, and a glass transition temperature of 260 C, which is more than adequate for most applications. Limited measurements indicated an improvement in toughness (impact resistance).

  6. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea Var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes.

    PubMed

    Pereira, Fernanda Maria Valente; Rosa, Eduardo; Fahey, Jed W; Stephenson, Katherine K; Carvalho, Rosa; Aires, Alfredo

    2002-10-09

    Broccoli inflorescences have been recognized as components of healthy diets on the basis of their high content of fiber, vitamin C, carotenoids, and glucosinolates/isothiocyanates. Broccoli sprouts have been recently shown to have high levels of glucoraphanin (4-methylsulfinylbutyl glucosinolate), the precursor of the chemoprotective isothiocyanate, sulforaphane. This study evaluated the effects of temperature and developmental stage on the glucosinolate content of broccoli sprouts. Seedlings cultivated using a 30/15 degrees C (day/night) temperature regime had significantly higher glucosinolate levels (measured at six consecutive days postemergence) than did sprouts cultivated at lower temperatures (22/15 and 18/12 degrees C; p < 0.001). Both higher (33.1 degrees C) and lower (11.3 degrees C) constant temperatures induced higher glucosinolate levels in sprouts grown to a uniform size. Glucosinolate levels were highest in cotyledons and lowest in roots of sprouts dissected both early and late in the 11 day developmental span investigated. Nongerminated seeds have the highest glucosinolate levels and concordantly greater induction of mammalian phase 2 detoxication enzymes. Levels decline as sprouts germinate and develop, with consistently higher glucosinolate content in younger developmental stages, independent of the temperature regime. Temperature stress or its associated developmental anomalies induce higher glucosinolate levels, specific elevations in glucoraphanin content, and parallel induction of phase 2 chemoprotective enzymes.

  7. Glucosinolates, myrosinase hydrolysis products, and flavonols found in rocket (Eruca sativa and Diplotaxis tenuifolia).

    PubMed

    Bell, Luke; Wagstaff, Carol

    2014-05-21

    Rocket species have been shown to have very high concentrations of glucosinolates and flavonols, which have numerous positive health benefits with regular consumption. This review highlights how breeders and processors of rocket species can utilize genomic and phytochemical research to improve varieties and enhance the nutritive benefits to consumers. Plant breeders are increasingly looking to new technologies such as HPLC, UPLC, LC-MS, and GC-MS to screen populations for their phytochemical content to inform plant selections. This paper collates the research that has been conducted to date in rocket and summarizes all glucosinolate and flavonol compounds identified in the species. The paper emphasizes the importance of the broad screening of populations for phytochemicals and myrosinase degradation products, as well as unique traits that may be found in underutilized gene bank resources. This review also stresses that collaboration with industrial partners is becoming essential for long-term plant breeding goals through research.

  8. Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle.

    PubMed

    Ahuja, Ishita; de Vos, Ric C H; Rohloff, Jens; Stoopen, Geert M; Halle, Kari K; Ahmad, Samina Jam Nazeer; Hoang, Linh; Hall, Robert D; Bones, Atle M

    2016-12-15

    Both physical barriers and reactive phytochemicals represent two important components of a plant's defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers.

  9. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  10. The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences Trichoplusia ni Herbivory

    PubMed Central

    Lambrix, Virginia; Reichelt, Michael; Mitchell-Olds, Thomas; Kliebenstein, Daniel J.; Gershenzon, Jonathan

    2001-01-01

    Glucosinolates are anionic thioglucosides that have become one of the most frequently studied groups of defensive metabolites in plants. When tissue damage occurs, the thioglucoside linkage is hydrolyzed by enzymes known as myrosinases, resulting in the formation of a variety of products that are active against herbivores and pathogens. In an effort to learn more about the molecular genetic and biochemical regulation of glucosinolate hydrolysis product formation, we analyzed leaf samples of 122 Arabidopsis ecotypes. A distinct polymorphism was observed with all ecotypes producing primarily isothiocyanates or primarily nitriles. The ecotypes Columbia (Col) and Landsberg erecta (Ler) differed in their hydrolysis products; therefore, the Col × Ler recombinant inbred lines were used for mapping the genes controlling this polymorphism. The major quantitative trait locus (QTL) affecting nitrile versus isothiocyanate formation was found very close to a gene encoding a homolog of a Brassica napus epithiospecifier protein (ESP), which causes the formation of epithionitriles instead of isothiocyanates during glucosinolate hydrolysis in the seeds of certain Brassicaceae. The heterologously expressed Arabidopsis ESP was able to convert glucosinolates both to epithionitriles and to simple nitriles in the presence of myrosinase, and thus it was more versatile than previously described ESPs. The role of ESP in plant defense is uncertain, because the generalist herbivore Trichoplusia ni (the cabbage looper) was found to feed more readily on nitrile-producing than on isothiocyanate-producing Arabidopsis. However, isothiocyanates are frequently used as recognition cues by specialist herbivores, and so the formation of nitriles instead of isothiocyanates may allow Arabidopsis to be less apparent to specialists. PMID:11752388

  11. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water.

    PubMed

    Rivera-Vega, Loren J; Krosse, Sebastian; de Graaf, Rob M; Garvi, Josef; Garvi-Bode, Renate D; van Dam, Nicole M

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4-7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1-3 (High) and 4-6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs.

  12. Identification and Quantification of Glucosinolates in Kimchi by Liquid Chromatography-Electrospray Tandem Mass Spectrometry

    PubMed Central

    Lee, Mi Jin; Jeong, Min Hee

    2017-01-01

    A novel and simple method for detecting five glucosinolates (glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin, and 4-methoxyglucobrassicin) in kimchi was developed using liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). The chromatographic peaks of the five glucosinolates were successfully identified by comparing their retention times, mass spectra. The mobile phase was composed of A (acetonitrile) and B (water). As for glucosinolate, the relative quantities were found through sinigrin, and five different compounds that have not been previously discovered in kimchi were observed. Monitoring was carried out on the glucosinolate in 20 kimchis distributed in markets, and this study examined the various quality and quantity compositions of the five components. The glucoalyssin content ranged from 0.00 to 7.07 μmol/g of day weight (DW), with an average content of 0.86 μmol/g of DW, whereas the gluconapin content ranged from 0.00 to 5.85 μmol/g of DW, with an average of 1.17 μmol/g of DW. The content of glucobrassicanapin varied between 0.00 and 11.87 μmol/g of DW (average = 3.03 μmol/g of DW), whereas that of glucobrassicin varied between 0.00 and 0.42 μmol/g of DW (average = 0.06 μmol/g of DW). The 4-methoxyglucobrassicin content ranged from 0.12 to 9.36 μmol/g of DW (average = 3.52 μmol/g of DW). A comparison of the contents revealed that, in most cases, the content of 4-methoxyglucobrassicin was the highest. PMID:28298926

  13. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water

    PubMed Central

    Rivera-Vega, Loren J.; Krosse, Sebastian; de Graaf, Rob M.; Garvi, Josef; Garvi-Bode, Renate D.; van Dam, Nicole M.

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4–7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325

  14. Challenges and opportunities in the analysis of raffinose oligosaccharides, pentosans, phytate, and glucosinolates.

    PubMed

    Vinjamoori, D V; Byrum, J R; Hayes, T; Das, P K

    2004-01-01

    In this paper, the status of the analytical technologies for assaying animal antinutritional compounds, such as raffinose oligosaccharides, pentosans, phytic acid, and glucosinolates, is reviewed in terms of selectivity, sensitivity, and sample throughput. The implementation of simplified sample preparation schemes, use of novel separation approaches, and alternate detector technologies are discussed. The challenges and opportunities posed by these assays are highlighted along with the recommendations for best analytical practices.

  15. Silver-Catalyzed Decarboxylative Bromination of Aliphatic Carboxylic Acids.

    PubMed

    Tan, Xinqiang; Song, Tao; Wang, Zhentao; Chen, He; Cui, Lei; Li, Chaozhong

    2017-03-13

    The silver-catalyzed Hunsdiecker bromination of aliphatic carboxylic acids is described. With Ag(Phen)2OTf as the catalyst and dibromoisocyanuric acid as the brominating agent, various aliphatic carboxylic acids underwent decarboxylative bromination to provide the corresponding alkyl bromides under mild conditions. This method not only is efficient and general but also enjoys wide functional group compatibility. An oxidative radical mechanism involving Ag(II) intermediates is proposed.

  16. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  17. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  18. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut.

    PubMed

    Palani, Kalpana; Harbaum-Piayda, Britta; Meske, Diana; Keppler, Julia Katharina; Bockelmann, Wilhelm; Heller, Knut J; Schwarz, Karin

    2016-01-01

    A systematic investigation was carried out on the influence of fermentation on glucosinolates and their degradation products from fresh raw cabbage, throughout fermentation at 20 °C and storage at 4 °C. Glucosinolates were degraded dramatically between Day 2 and 5 of fermentation and by Day 7 there was no detectable amount of glucosinolates left. Fermentation led to formation of potential bioactive compounds ascorbigen (13.0 μmol/100 g FW) and indole-3-carbinol (4.52 μmol/100g FW) with their higher concentrations from Day 5 to Day 9. However, during storage indole-3-carbinol slowly degraded to 0.68 μmol/100 g FW, while ascorbigen was relatively stable from Week 4 until Week 8 at 6.78 μmol/100 g FW. In contrast, the content of indole-3-acetonitrile decreased rapidly during fermentation from 3.6 to 0.14 μmol/100 g FW. The results imply a maximum of health beneficial compounds after fermentation (7-9 days) in contrast to raw cabbage or stored sauerkraut.

  19. Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.

    PubMed

    Qu, Cun-Min; Li, Shi-Meng; Duan, Xiu-Jian; Fan, Jin-Hua; Jia, Le-Dong; Zhao, Hui-Yan; Lu, Kun; Li, Jia-Na; Xu, Xin-Fu; Wang, Rui

    2015-11-18

    Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) array in 520 oilseed rape accessions. A total of 11 peak SNPs significantly associated with GS content were detected in growing seasons of 2013 and 2014 and were located on B. napus chromosomes A08, A09, C03, and C09, respectively. Two associated regions of GS content covered by these markers were further verified, and three B. napus homologous genes involved in the biosynthesis and accumulation of GS were identified. These genes were multigene family members and were distributed on different chromosomes. Moreover, two genes (BnGRT2 and BnMYB28) associated with GS content were validated by the qRT-PCR analysis of their expression profiles. The further identification and functionalization of these genes will provide useful insight into the mechanism underlying GS biosynthesis and allocation in B. napus, and the associated SNPs markers could be helpful for molecular maker-assisted breeding for low seed GS in B. napus.

  20. Enhancement of broccoli indole glucosinolates by methyl jasmonate treatment and effects on prostate carcinogenesis.

    PubMed

    Liu, Ann G; Juvik, John A; Jeffery, Elizabeth H; Berman-Booty, Lisa D; Clinton, Steven K; Erdman, John W

    2014-11-01

    Broccoli is rich in bioactive components, such as sulforaphane and indole-3-carbinol, which may impact cancer risk. The glucosinolate profile of broccoli can be manipulated through treatment with the plant stress hormone methyl jasmonate (MeJA). Our objective was to produce broccoli with enhanced levels of indole glucosinolates and determine its impact on prostate carcinogenesis. Brassica oleracea var. Green Magic was treated with a 250 μM MeJA solution 4 days prior to harvest. MeJA-treated broccoli had significantly increased levels of glucobrassicin, neoglucobrassicin, and gluconasturtiin (P < .05). Male transgenic adenocarcinoma of mouse prostate (TRAMP) mice (n = 99) were randomized into three diet groups at 5-7 weeks of age: AIN-93G control, 10% standard broccoli powder, or 10% MeJA broccoli powder. Diets were fed throughout the study until termination at 20 weeks of age. Hepatic CYP1A was induced with MeJA broccoli powder feeding, indicating biological activity of the indole glucosinolates. Following ∼ 15 weeks on diets, neither of the broccoli treatments significantly altered genitourinary tract weight, pathologic score, or metastasis incidence, indicating that broccoli powder at 10% of the diet was ineffective at reducing prostate carcinogenesis in the TRAMP model. Whereas broccoli powder feeding had no effect in this model of prostate cancer, our work demonstrates the feasibility of employing plant stress hormones exogenously to stimulate changes in phytochemical profiles, an approach that may be useful for optimizing bioactive component patterns in foods for chronic-disease-prevention studies.

  1. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    PubMed

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C H; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  2. Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates.

    PubMed

    Baenas, Nieves; Villaño, Debora; García-Viguera, Cristina; Moreno, Diego A

    2016-08-01

    Elicitation is a cheaper and socially acceptable tool for improving plant food functionality. Our objective was to optimize the treatment doses of the elicitors: methyl jasmonate (MeJA), jasmonic acid (JA) and DL-methionine (MET), in order to find a successful and feasible treatment to produce broccoli and radish sprouts with enhanced levels of health-promoting glucosinolates. Also a priming of seeds as a novel strategy to trigger the glucosinolates content was carried out with water (control), MeJA (250μM), JA (250μM) and MET (10mM) before the elicitor exogenous treatment. The results showed that almost all treatments could enhance effectively the total glucosinolates content in the sprouts, achieving the most significant increases from 34% to 100% of increase in broccoli and from 45% to 118% of increase in radish sprouts after MeJA priming and treatments. Consequently, our work demonstrates the feasibility of using elicitors, such as plant stress hormones, by priming and exogenously, as a way of increase the phytochemical profile of these sprouts to enhance their consumption in the diet.

  3. Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.

    PubMed Central

    Qu, Cun-Min; Li, Shi-Meng; Duan, Xiu-Jian; Fan, Jin-Hua; Jia, Le-Dong; Zhao, Hui-Yan; Lu, Kun; Li, Jia-Na; Xu, Xin-Fu; Wang, Rui

    2015-01-01

    Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) array in 520 oilseed rape accessions. A total of 11 peak SNPs significantly associated with GS content were detected in growing seasons of 2013 and 2014 and were located on B. napus chromosomes A08, A09, C03, and C09, respectively. Two associated regions of GS content covered by these markers were further verified, and three B. napus homologous genes involved in the biosynthesis and accumulation of GS were identified. These genes were multigene family members and were distributed on different chromosomes. Moreover, two genes (BnGRT2 and BnMYB28) associated with GS content were validated by the qRT-PCR analysis of their expression profiles. The further identification and functionalization of these genes will provide useful insight into the mechanism underlying GS biosynthesis and allocation in B. napus, and the associated SNPs markers could be helpful for molecular maker-assisted breeding for low seed GS in B. napus. PMID:26593950

  4. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  5. Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore.

    PubMed

    Pangesti, Nurmi; Reichelt, Michael; van de Mortel, Judith E; Kapsomenou, Eleni; Gershenzon, Jonathan; van Loon, Joop J A; Dicke, Marcel; Pineda, Ana

    2016-12-01

    Beneficial soil microbes can promote plant growth and induce systemic resistance (ISR) in aboveground tissues against pathogens and herbivorous insects. Despite the increasing interest in microbial-ISR against herbivores, the underlying molecular and chemical mechanisms of this phenomenon remain elusive. Using Arabidopsis thaliana and the rhizobacterium Pseudomonas simiae WCS417r (formerly known as P. fluorescens WCS417r), we here evaluate the role of the JA-regulated MYC2-branch and the JA/ET-regulated ORA59-branch in modulating rhizobacteria-ISR to Mamestra brassicae by combining gene transcriptional, phytochemical, and herbivore performance assays. Our data show a consistent negative effect of rhizobacteria-mediated ISR on the performance of M. brassicae. Functional JA- and ET-signaling pathways are required for this effect, as shown by investigating the knock-out mutants dde2-2 and ein2-1. Additionally, whereas herbivory mainly induces the MYC2-branch, rhizobacterial colonization alone or in combination with herbivore infestation induces the ORA59-branch of the JA signaling pathway. Rhizobacterial colonization enhances the synthesis of camalexin and aliphatic glucosinolates (GLS) compared to the control, while it suppresses the herbivore-induced levels of indole GLS. These changes are associated with modulation of the JA-/ET-signaling pathways. Our data show that the colonization of plant roots by rhizobacteria modulates plant-insect interactions by prioritizing the JA/ET-regulated ORA59-branch over the JA-regulated MYC2-branch. This study elucidates how microbial plant symbionts can modulate the plant immune system to mount an effective defense response against herbivorous plant attackers.

  6. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  7. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species.

  8. The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis.

    PubMed

    Burow, Meike; Atwell, Susanna; Francisco, Marta; Kerwin, Rachel E; Halkier, Barbara A; Kliebenstein, Daniel J

    2015-08-01

    Survival in changing and challenging environments requires an organism to efficiently obtain and use its resources. Due to their sessile nature, it is particularly critical for plants to dynamically optimize their metabolism. In plant primary metabolism, metabolic fine-tuning involves feed-back mechanisms whereby the output of a pathway controls its input to generate a precise and robust response to environmental changes. By contrast, few studies have addressed the potential for feed-back regulation of secondary metabolism. In Arabidopsis, accumulation of the defense compounds glucosinolates has previously been linked to genetic variation in the glucosinolate biosynthetic gene AOP2. AOP2 expression can increase the transcript levels of two known regulators (MYB28 and MYB29) of the pathway, suggesting that AOP2 plays a role in positive feed-back regulation controlling glucosinolate biosynthesis. We generated mutants affecting AOP2, MYB28/29, or both. Transcriptome analysis of these mutants identified a so far unrecognized link between AOP2 and jasmonic acid (JA) signaling independent of MYB28 and MYB29. Thus, AOP2 is part of a regulatory feed-back loop linking glucosinolate biosynthesis and JA signaling and thereby allows the glucosinolate pathway to influence JA sensitivity. The discovery of this regulatory feed-back loop provides insight into how plants optimize the use of resources for defensive metabolites.

  9. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography.

    PubMed

    Fahey, Jed W; Wade, Kristina L; Stephenson, Katherine K; Chou, F Edward

    2003-05-09

    Glucosinolates are anionic, hydrophilic plant secondary metabolites which are of particular interest due to their role in the prevention of cancer and other chronic and degenerative diseases. The separation and purification of glucosinolates from a variety of plant sources (e.g. seeds of broccoli, arugula and the horseradish tree), was achieved using high-speed counter-current chromatography (HSCCC). A high-salt, highly polar system containing 1-propanol-acetonitrile-saturated aqueous ammonium sulfate-water (1:0.5:1.2:1), was run on a semi-preparative scale and then transferred directly to preparative scale. Up to 7 g of a concentrated methanolic syrup containing about 10% glucosinolates was loaded on an 850-ml HSCCC column, and good separation and recovery were demonstrated for 4-methylsulfinylbutyl, 3-methylsulfinylpropyl, 4-methylthiobutyl, 2-propenyl and 4-(rhamnopyranosyloxy)benzyl glucosinolates. Multiple injections (5 to 6 times) were performed with well-preserved liquid stationary phase under centrifugal force. Pooled sequential runs with broccoli seed extract yielded about 20 g of its predominant glucosinolate, glucoraphanin, which was produced at > 95% purity and reduced to powdered form.

  10. Insect attraction versus plant defense: young leaves high in glucosinolates stimulate oviposition by a specialist herbivore despite poor larval survival due to high saponin content.

    PubMed

    Badenes-Perez, Francisco R; Gershenzon, Jonathan; Heckel, David G

    2014-01-01

    Glucosinolates are plant secondary metabolites used in plant defense. For insects specialized on Brassicaceae, such as the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), glucosinolates act as "fingerprints" that are essential in host plant recognition. Some plants in the genus Barbarea (Brassicaceae) contain, besides glucosinolates, saponins that act as feeding deterrents for P. xylostella larvae, preventing their survival on the plant. Two-choice oviposition tests were conducted to study the preference of P. xylostella among Barbarea leaves of different size within the same plant. P. xylostella laid more eggs per leaf area on younger leaves compared to older ones. Higher concentrations of glucosinolates and saponins were found in younger leaves than in older ones. In 4-week-old plants, saponins were present in true leaves, while cotyledons contained little or no saponins. When analyzing the whole foliage of the plant, the content of glucosinolates and saponins also varied significantly in comparisons among plants that were 4, 8, and 12 weeks old. In Barbarea plants and leaves of different ages, there was a positive correlation between glucosinolate and saponin levels. This research shows that, in Barbarea plants, ontogenetical changes in glucosinolate and saponin content affect both attraction and resistance to P. xylostella. Co-occurrence of a high content of glucosinolates and saponins in the Barbarea leaves that are most valuable for the plant, but are also the most attractive to P. xylostella, provides protection against this specialist herbivore, which oviposition behavior on Barbarea seems to be an evolutionary mistake.

  11. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations.

    PubMed

    Bennett, Richard N; Carvalho, Rosa; Mellon, Fred A; Eagles, John; Rosa, Eduardo A S

    2007-01-10

    The Brassicaceae rocket species Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) are consumed throughout the world in salads, predominantly the leaves but also the flowers and more recently the sprouts (seedlings). Ontogenic profiling of glucosinolates and flavonoids in plants derived from commercial seed of these species has previously been done, but no studies have been conducted to determine how geographical origin affects glucosinolate composition in rocket species. Seeds from wild E. sativa L. and D. tenuifolia L. from diverse regions of the world were obtained from gene banks and grown under controlled conditions. Sprouts were harvested when they would normally be harvested for consumption, and glucosinolates were extracted and profiled in these accessions. All of the sprouts from Italian E. sativa L. had consistently high total glucosinolate content, with only a few exceptions, and also the highest percentage contents of 4-mercaptobutylglucosinolate. In contrast, sprouts produced from Central and Eastern European seeds had a much higher percentage of 4-methylthiobutylglucosinolate. With a single exception, Tunisia, all sprouts produced from North African seeds had very high 4-methylthiobutylglucosinolate contents. The single sample from China had a high total glucosinolate content and glucosinolate profile that was very similar to the accessions from Uzbekistan and Pakistan. All of the D. tenuifolia L. sprouts had consistently high total glucosinolate contents, and a high percentage of this was 4-mercaptobutylglucosinolate. This glucosinolate variation in levels and profiles of the rockets can be used for genetic studies, selected breeding, and human intervention studies.

  12. Diversified glucosinolate metabolism: biosynthesis of hydrogen cyanide and of the hydroxynitrile glucoside alliarinoside in relation to sinigrin metabolism in Alliaria petiolata

    PubMed Central

    Frisch, Tina; Motawia, Mohammed S.; Olsen, Carl E.; Agerbirk, Niels; Møller, Birger L.; Bjarnholt, Nanna

    2015-01-01

    Alliaria petiolata (garlic mustard, Brassicaceae) contains the glucosinolate sinigrin as well as alliarinoside, a γ-hydroxynitrile glucoside structurally related to cyanogenic glucosides. Sinigrin may defend this plant against a broad range of enemies, while alliarinoside confers resistance to specialized (glucosinolate-adapted) herbivores. Hydroxynitrile glucosides and glucosinolates are two classes of specialized metabolites, which generally do not occur in the same plant species. Administration of [UL-14C]-methionine to excised leaves of A. petiolata showed that both alliarinoside and sinigrin were biosynthesized from methionine. The biosynthesis of alliarinoside was shown not to bifurcate from sinigrin biosynthesis at the oxime level in contrast to the general scheme for hydroxynitrile glucoside biosynthesis. Instead, the aglucon of alliarinoside was formed from metabolism of sinigrin in experiments with crude extracts, suggesting a possible biosynthetic pathway in intact cells. Hence, the alliarinoside pathway may represent a route to hydroxynitrile glucoside biosynthesis resulting from convergent evolution. Metabolite profiling by LC-MS showed no evidence of the presence of cyanogenic glucosides in A. petiolata. However, we detected hydrogen cyanide (HCN) release from sinigrin and added thiocyanate ion and benzyl thiocyanate in A. petiolata indicating an enzymatic pathway from glucosinolates via allyl thiocyanate and indole glucosinolate derived thiocyanate ion to HCN. Alliarinoside biosynthesis and HCN release from glucosinolate-derived metabolites expand the range of glucosinolate-related defenses and can be viewed as a third line of defense, with glucosinolates and thiocyanate forming protein being the first and second lines, respectively. PMID:26583022

  13. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  14. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.

    PubMed

    Qian, Hongmei; Sun, Bo; Miao, Huiying; Cai, Congxi; Xu, Chaojiong; Wang, Qiaomei

    2015-02-01

    The variation of glucosinolates and quinone reductase (QR) activity in fourteen varieties of Chinese kale (Brassica oleracea var. alboglabra Bailey) was investigated in the present study. Results showed that gluconapin (GNA), instead of glucoraphanin (GRA), was the most predominant glucosinolate in all varieties, and QR activity was remarkably positively correlated with the glucoraphanin level. AOP2, a tandem 2-oxoglutarate-dependent dioxygenase, catalyzes the conversion of glucoraphanin to gluconapin in glucosinolate biosynthesis. Here, antisense AOP2 was transformed into Gailan-04, the variety with the highest gluconapin content and ratio of GNA/GRA. The glucoraphanin content and corresponding QR activity were notably increased in transgenic plants, while no significant difference at the level of other main nutritional compounds (total phenolics, vitamin C, carotenoids and chlorophyll) was observed between the transgenic lines and the wide-type plants. Taken together, metabolic engineering is a good practice for improvement of glucoraphanin in Chinese kale.

  15. Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets.

    PubMed

    Cai, Congxi; Miao, Huiying; Qian, Hongmei; Yao, Leishuan; Wang, Bingliang; Wang, Qiaomei

    2016-11-01

    The effects of industrial pre-freezing processing and freezing handling on the contents of glucosinolates and antioxidants (vitamin C, polyphenols, carotenoid and chlorophyll), as well as the antioxidant capacity in broccoli (Brassica oleracea L. var. italica) florets were investigated in the present study. Our results showed that the glucosinolate accumulations were significantly decreased after pre-freezing processing, whereas elevated levels of phenols, carotenoids, chlorophyll, and also antioxidant capacity were observed in frozen broccoli florets. The contents of vitamin C remained constant during above mentioned processing. In conclusion, the current industrial freezing processing method is a good practice for the preservation of main antioxidant nutrients in broccoli florets, although some improvements in pre-freezing processing, such as steam blanching and ice-water cooling, are needed to attenuate the decrease in glucosinolate content.

  16. Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects

    PubMed Central

    Tsao, Rong; Peterson, Chris J; Coats, Joel R

    2002-01-01

    Background Glucosinolate breakdown products are volatile, therefore good candidates for insect fumigants. However, although they are insecticidal, the mode of action of such natural products is not clear. We studied the insecticidal effect of these compounds as fumigants, and monitored the production of carbon dioxide by the insects as a probe to the understanding of their mode of action. Results The fumigation 24-h LC50 against the house fly (Musca domestica L.) of allyl thiocyanate, allyl isothiocyanate, allyl cyanide, and l-cyano-2-hydroxy-3-butene was 0.1, 0.13, 3.66, and 6.2 μg cm-3, respectively; they were 0.55, 1.57, 2.8, and > 19.60 μg cm-3, respectively, against the lesser grain borer (Rhyzopertha dominica Fabricius). The fumigation toxicity of some of the glucosinolate products was very close to or better than that of the commercial insect fumigants such as chloropicrin (LC50: 0.08 and 1.3 μg cm-3 against M. domestica and R. dominica, respectively) and dichlorovos (LC50: < 0.02 and 0.29 μg cm-3 against M. domestica and R. dominica, respectively) in our laboratory tests. Significantly increased CO2 expiration was found in insects exposed to the vapor of allyl isothiocyanate, allyl thiocyanate and allyl isocyanate. Allyl isothiocyanate was also found to increase the CO2 expiration of the American cockroach (Periplaneta americana L.). Conclusions Glucosinolate breakdown products have potential as biodegradable and safe insect fumigants. They may act on the insect respiratory system in their mode of action. PMID:11914158

  17. The selective cytotoxicity of the alkenyl glucosinolate hydrolysis products and their presence in Brassica vegetables.

    PubMed

    Kadir, Nurul H A; David, Rhiannon; Rossiter, John T; Gooderham, Nigel J

    2015-08-06

    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.

  18. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines

    PubMed Central

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L.

    2015-01-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Herein, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins, an important yet unexploited class of abundant feedstock chemicals, into highly enantioenriched α-branched amines (≥ 96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas. PMID:26138973

  19. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  20. Quantification of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves.

    PubMed

    Shroff, Rohit; Schramm, Katharina; Jeschke, Verena; Nemes, Peter; Vertes, Akos; Gershenzon, Jonathan; Svatoš, Aleš

    2015-03-01

    The localization of metabolites on plant surfaces has been problematic because of the limitations of current methodologies. Attempts to localize glucosinolates, the sulfur-rich defense compounds of the order Brassicales, on leaf surfaces have given many contradictory results depending on the method employed. Here we developed a matrix-assisted laser desorption-ionization (MALDI) mass spectrometry protocol to detect surface glucosinolates on Arabidopsis thaliana leaves by applying the MALDI matrix through sublimation. Quantification was accomplished by spotting glucosinolate standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 nmol of total glucosinolate per leaf with about 50 pmol mm(-2) on abaxial (bottom) surfaces and 15-30 times less on adaxial (top) surfaces. Of the major compounds detected, 4-methylsulfinylbutylglucosinolate, indol-3-ylmethylglucosinolate, and 8-methylsulfinyloctylglucosinolate were also major components of the leaf interior, but the second most abundant glucosinolate on the surface, 4-methylthiobutylglucosinolate, was only a trace component of the interior. Distribution on the surface was relatively uniform in contrast to the interior, where glucosinolates were distributed more abundantly in the midrib and periphery than the rest of the leaf. These results were confirmed by two other mass spectrometry-based techniques, laser ablation electrospray ionization and liquid extraction surface analysis. The concentrations of glucosinolates on A. thaliana leaf surfaces were found to be sufficient to attract the specialist feeding lepidopterans Plutella xylostella and Pieris rapae for oviposition. The methods employed here should be easily applied to other plant species and metabolites.

  1. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  2. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  3. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  4. Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.

    2008-08-01

    The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.

  5. Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles

    ERIC Educational Resources Information Center

    Curran, Timothy P.; Mostovoy, Amelia J.; Curran, Margaret E.; Berger, Clara

    2016-01-01

    A facile, discovery-based experiment is described that introduces aliphatic substitution in an introductory undergraduate organic chemistry curriculum. Unlike other discovery-based experiments that examine substitution using two competing nucleophiles with a single electrophile, this experiment compares two isomeric, competing electrophiles…

  6. Suppression of the Ethanol Withdrawal Syndrome by Aliphatic Diols

    DTIC Science & Technology

    1979-06-07

    Two halogenated hydrocarbons , alcohols exert their intoxicating properties through an interac- which are amphiphiles like alcohols and diols, were both...induce a virtually identical spectrum of phatic hydrocarbons could not. The data suggest that short- intoxication signs. Because of their pharmacological...their ability to induce to determine if partitioning into membrasps is an important intoxication since 1) alcohols and aliphatic hydrocarbons with

  7. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  8. Optimized extraction, separation and quantification of twelve intact glucosinolates in broccoli leaves.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José L; Bernal, José

    2014-01-01

    A new method has been developed and validated to determine twelve intact glucosinolates (glucoiberin, GIB; glucoraphanin, GRA; glucoerucin GER; gluconapin, GNA; glucotropaeolin, GTL; glucobrassicin, GBC; gluconasturtiin, GST; glucoalyssin, ALY; 4-hydroxyglucobrassicin, 4-OH; 4-metoxyglucobrassicin, 4ME; neoglucobrassicin, NEO; sinigrin, SIN) in broccoli leaves using liquid chromatography (LC) coupled to diode array (DAD) and electrospray ionization mass spectrometry (ESI-MS) detection. An extraction procedure has also been proposed and optimized by means of statistical analysis (the Box-Behnken design and analysis of variance); this is based on the deactivation of myrosinase using a microwave and heated water. Low limits of detection and quantification were obtained, ranging from 10 to 72 μg/g with DAD and 0.01 to 0.23 μg/g with ESI-MS, and the resulting recovery values ranged from 87% to 106% in all cases. Finally, glucosinolates were analyzed in broccoli leaf samples from six different cultivars (Ramoso calabrese Parthenon, Marathon, Nubia, Naxos and Viola).

  9. Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle

    PubMed Central

    Ahuja, Ishita; de Vos, Ric C. H.; Rohloff, Jens; Stoopen, Geert M.; Halle, Kari K.; Ahmad, Samina Jam Nazeer; Hoang, Linh; Hall, Robert D.; Bones, Atle M.

    2016-01-01

    Both physical barriers and reactive phytochemicals represent two important components of a plant’s defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers. PMID:27976683

  10. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi.

    PubMed

    Sotelo, T; Lema, M; Soengas, P; Cartea, M E; Velasco, P

    2015-01-01

    Glucosinolates (GSLs) are secondary metabolites found in Brassica vegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about their in vitro biocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enriched Brassica crops on suppressing in vitro growth of two bacterial (Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. maculicola) and two fungal (Alternaria brassicae and Sclerotinia scletoriorum) Brassica pathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of different Brassica species, have potential to inhibit pathogen growth and offer new opportunities to study the use of Brassica crops in biofumigation for the control of multiple diseases.

  11. In Vitro Activity of Glucosinolates and Their Degradation Products against Brassica-Pathogenic Bacteria and Fungi

    PubMed Central

    Sotelo, T.; Lema, M.; Soengas, P.; Cartea, M. E.

    2014-01-01

    Glucosinolates (GSLs) are secondary metabolites found in Brassica vegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about their in vitro biocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enriched Brassica crops on suppressing in vitro growth of two bacterial (Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. maculicola) and two fungal (Alternaria brassicae and Sclerotinia scletoriorum) Brassica pathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of different Brassica species, have potential to inhibit pathogen growth and offer new opportunities to study the use of Brassica crops in biofumigation for the control of multiple diseases. PMID:25362058

  12. Isolation of a Microsomal Enzyme System Involved in Glucosinolate Biosynthesis from Seedlings of Tropaeolum majus L.

    PubMed Central

    Du, L.; Halkier, B. A.

    1996-01-01

    An in vitro system that converts phenylalanine to phenylacetaldoxime in the biosynthesis of the glucosinolate glucotropaeolin has been established in seedlings of Tropaeolum majus L. exposed to the combined treatment of jasmonic acid, ethanol, and light. The treatment resulted in a 9-fold induction, compared with untreated, dark-grown seedlings, of de novo biosynthesis measured as incorporation of radioactively labeled phenylalanine into glucotropaeolin. Formation of the inhibitory degradation product benzylisothiocyanate during tissue homogenization was prevented by inactivation of the thioglucosidase myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. This allowed the isolation of a biosynthetically active microsomal preparation from the induced T. majus plant material. The enzyme, which catalyzes the conversion of phenylalanine to the corresponding oxime, was sensitive to cytochrome P450 inhibitors, indicating the involvement of a cytochrome P450 in the biosynthetic pathway. It has previously been shown that the oxime-producing enzyme in the biosynthesis of p-hydroxybenzylglucosinolate in Sinapis alba L. is dependent on cytochrome P450, whereas the oxime-producing enzymes in Brassica species have been suggested to be flavin monooxygenases or peroxidase-type enzymes. The result with T. majus provides additional experimental documentation for a similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glucosides. PMID:12226332

  13. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyaziridinyl ester of an aliphatic... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  14. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyaziridinyl ester of an aliphatic... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  15. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  16. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  17. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  18. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  19. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  20. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  1. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  2. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  3. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  4. Naturally-Occurring Glucosinolates, Glucoraphanin and Glucoerucin, are Antagonists to Aryl Hydrocarbon Receptor as Their Chemopreventive Potency.

    PubMed

    Abdull Razis, Ahmad Faizal; Noor, Noramaliza Mohd

    2015-01-01

    As a cytosolic transcription factor, the aryl hydrocarbon (Ah) receptor is involved in several patho- physiological events leading to immunosuppression and cancer; hence antagonists of the Ah receptor may possess chemoprevention properties. It is known to modulate carcinogen-metabolising enzymes, for instance the CYP1 family of cytochromes P450 and quinone reductase, both important in the biotransformation of many chemical carcinogens via regulating phase I and phase II enzyme systems. Utilising chemically-activated luciferase expression (CALUX) assay it was revealed that intact glucosinolates, glucoraphanin and glucoerucin, isolated from Brassica oleracea L. var. acephala sabellica and Eruca sativa ripe seeds, respectively, are such antagonists. Both glucosinolates were poor ligands for the Ah receptor; however, they effectively antagonised activation of the receptor by the avid ligand benzo[a]pyrene. Indeed, intact glucosinolate glucoraphanin was a more potent antagonist to the receptor than glucoerucin. It can be concluded that both glucosinolates effectively act as antagonists for the Ah receptor, and this may contribute to their established chemoprevention potency.

  5. Glucosinolate-derived compounds as a green manure for controlling Escherichia coli O157:H7 and Salmonella in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants from the Brassica family contain glucosinolate-derived compounds (GDC) which may act as natural antimicrobials in soil. Consequently, Brassica cover crops planted after harvest of the primary crop in the fall, and/or ntercropped during the growing season, could provide benefits derived from...

  6. The Antimicrobial effects of Glucosinolates Hydrolysis compounds on E. Coli O157:H12 into field soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Soil can be a source of pre-harvest contamination of produce by pathogens. Natural antimicrobials such as glucosinolate-hydrolyzed products (GHP) found in Brassicaceae family crops can be used as a green manure to control enteric pathogens in soil. Purpose: The antimicrobial activit...

  7. Impact of selenium supply on se-methylselenocysteine and glucosinolates accumulation in selenium-biofortified brassica sprouts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, ...

  8. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants.

  9. RNA-Seq Analysis of Transcriptome and Glucosinolate Metabolism in Seeds and Sprouts of Broccoli (Brassica oleracea var. italic)

    PubMed Central

    Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing

    2014-01-01

    Background Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10–100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts’ functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. Results A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04–89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20–130 times higher. These results along with the previous reports about these genes’ studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Conclusion Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering

  10. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.

    PubMed

    Müller, Caroline; van Loon, Joop; Ruschioni, Sara; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-10-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate

  11. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues

    PubMed Central

    Wu, Shuanghua; Lei, Jianjun; Chen, Guoju; Chen, Hancai; Cao, Bihao; Chen, Changming

    2017-01-01

    Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues. PMID:28228764

  12. Characteristic single glucosinolates from Moringa oleifera: Induction of detoxifying enzymes and lack of genotoxic activity in various model systems.

    PubMed

    Förster, Nadja; Mewis, Inga; Glatt, Hansruedi; Haack, Michael; Brigelius-Flohé, Regina; Schreiner, Monika; Ulrichs, Christian

    2016-11-09

    Leaves of Moringa oleifera are used by tribes as biological cancer medicine. Scientific investigations with M. oleifera conducted so far have almost exclusively used total plant extracts. Studies on the activity of single compounds are missing. Therefore, the biological effects of the two main aromatic multi-glycosylated glucosinolates of M. oleifera were investigated in the present study. The cytotoxic effects of M. oleifera glucosinolates were identified for HepG2 cells (NRU assay), for V79-MZ cells (HPRT assay, SCE assay), and for two Salmonella typhimurium strains (Ames test). Genotoxic effects of these glucosinolates were not observed (Ames test, HPRT assay, and SCE assay). Reporter gene assays revealed a significant increase in the ARE-dependent promoter activity of NQO1 and GPx2 indicating an activation of the Nrf2 pathway by M. oleifera glucosinolates. Since both enzymes can also be induced via activation of the AhR, plasmids containing promoters of both enzymes mutated in the respective binding sites (pGL3enh-hNQO1-ARE, pGL3enh-hNQO1-XRE, pGL3bas-hGPX2-mutARE, pGL3bas-hGPX2-mutXRE) were transfected. Analyses revealed that the majority of the stimulating effects was mediated by the ARE motif, whereas the XRE motif played only a minor role. The stimulating effects of M. oleifera glucosinolates could be demonstrated both at the transcriptional (reporter gene assay, real time-PCR) and translational levels (enzyme activity) making them interesting compounds for further investigation.

  13. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  14. Lipstick dermatitis due to C18 aliphatic compounds.

    PubMed

    Hayakawa, R; Matsunaga, K; Suzuki, M; Arima, Y; Ohkido, Y

    1987-04-01

    An 18-year-old girl developed cheilitis. She had a past history of lip cream dermatitis, but the cause was not found. Patch tests with 2 lipsticks were strongly positive. Tests with the ingredients were positive to 2 aliphatic compounds, glyceryl diisostearate and diisostearyl malate. Impurities in the materials were suspected as the cause. Analysis by gas chromatography detected 3 chemicals in glyceryl diisostearate and 1 in diisostearyl malate as impurities. Patch testing with the impurities and glyceryl monoisostearate 0.01% pet in glyceryl diisostearate and isostearyl alcohol 0.25% pet in diisostearyl malate were strongly positive. The characteristics common to the 2 chemicals were liquidity at room temperature, branched C18 aliphatic compound and primary alcohol. Chemicals lacking any of the above 3 features did not react.

  15. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  16. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    PubMed Central

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  17. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  18. [Detection of erucic acid and glucosinolate in intact rapeseed by near-infrared diffuse reflectance spectroscopy].

    PubMed

    Riu, Yu-kui; Huang, Kun-lun; Wang, Wei-min; Guo, Jing; Jin, Yin-hua; Luo, Yun-bo

    2006-12-01

    With the rapid development of transgenic food, more and more transgenic food has been pouring into the market, raising great concern about transgenic food' s edible safety. To analyze the content of erucic acid and glucosinolate in transgenic rapeseed and its parents, all the seeds were scanned intact by continuous wave of near infrared diffuse reflectance spectrometry ranging from 12 000 to 4 000 cm(-1) with a resolution of 4 cm(-1) and 64 times of scanning. Bruker OPUS software package was applied for quantification, while the results were compared with the standard methods. The results showed that the method of NIRS was very precise, which proved that infrared diffuse reflectance spectroscopy can be applied to detect the toxins in transgenic food. On the other hand, the results also showed that the content of erucic acid in transgenic rapeseeds is 0. 5-1. 0 times

  19. Conventional and modified hydrodistillation method for the extraction of glucosinolate hydrolytic products: a comparative account.

    PubMed

    Arora, Rohit; Singh, Bikram; Vig, Adarsh Pal; Arora, Saroj

    2016-01-01

    Eruca sativa is extensively used as raw and its oil is also used for cooking due to its exceptional flavour. The volatile nature of the hydrolytic products of glucosinolates makes the extraction difficult. The hydrodistillation method used previously yield very less amount of the extract as well as the absence of stirring in the round bottom flask causes burning of both the crushed seeds and the flask. To overcome these drawbacks, a method has been developed using magnetic stirrer and hot plate. The yield and composition of hydrolytic products in the extract with the modified method was increased along with an increase in the amount of major hydrolytic products as seen by GC-MS. This method thus has immense potential in pharmaceutical industries, due to the ease of extraction and isolation.

  20. Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads

    PubMed Central

    Cavaiuolo, Marina; Ferrante, Antonio

    2014-01-01

    Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human diseases is also highlighted. This review provides an update to all the most recent studies carried out on rocket encouraging the consumption of this leafy vegetable to reduce the risk of contracting cancer and other cardiovascular diseases. PMID:24736897

  1. Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds.

    PubMed

    Ugolini, Luisa; De Nicola, Gina; Palmieri, Sandro

    2008-03-12

    Cruciferous oilseeds are important sources of oil, proteins, and glucosinolates (GLs), potentially available when biorefinery processes are used. The proposed extraction technology is based on the use of reverse micelles (RMs) made with cetyltrimethylammonium bromide (CTAB) dispersed in organic solvent. The physicochemical properties of this extraction system and the good water solubility of many high value compounds, such as GLs and some proteins, permit the simultaneous extraction of oil, and these products from cruciferous oilseed meals. This procedure is based on three main steps: (i) seed conditioning; (ii) solid-liquid extraction by RM solution; and (iii) back-transfer of the RM solution for recovery of the extracted compounds. The method makes it possible to simultaneously extract almost the same amount of oil as with pure organic solvents used in the current extraction plants and more than 90% of soluble proteins and GLs. It is a promising biorefinery technology alternative to traditional oil extraction processes.

  2. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum).

    PubMed

    Malik, Mayank S; Riley, Melissa B; Norsworthy, Jason K; Bridges, William

    2010-03-24

    Wild radish (Raphanus raphanistrum L.) produces glucosinolates (GSL), which are important for its use as a biofumigation or allelopathic plant for weed management. Total GSL concentrations and individual GSLs were quantified in different plant parts at different developmental stages. Eight GSLs were found in various plant tissues but glucoerucin, glucoraphenin, and glucotropaeolin comprised >90% of the total GSLs. All three are degraded to isothiocyanates, which are associated with weed suppression. Maximum GSL concentration (1942.2 micromol/plant) occurred at 50% flowering stage prior to the time of maximum biomass production, when GSL concentration was 1246.65 mumol/plant. Roots contributed <15% of the total GSL. The highest concentration of GSLs was in flowers at flowering stage, but due to the low biomass they contributed only 11.83% to the total GSL. On the basis of these results, wild radish should be incorporated into soil at 50% flowering to provide the most GSLs for weed suppression.

  3. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads.

    PubMed

    Cavaiuolo, Marina; Ferrante, Antonio

    2014-04-14

    Rocket is an important leafy vegetable crop and a good source of antioxidants and anticancer molecules such as glucosinolates and other sulfur compounds. Rocket is also a hyper-accumulator of nitrates which have been considered for long time the main factors that cause gastro-intestinal cancer. In this review, the content of these compounds in rocket tissues and their levels at harvest and during storage are discussed. Moreover, the effect of these compounds in preventing or inducing human diseases is also highlighted. This review provides an update to all the most recent studies carried out on rocket encouraging the consumption of this leafy vegetable to reduce the risk of contracting cancer and other cardiovascular diseases.

  4. Interaction of FAM5C with UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1): Implication of N-glycosylation in FAM5C secretion.

    PubMed

    Terao, Yuya; Fujita, Hidenobu; Horibe, Sayo; Sato, Junya; Minami, Satomi; Kobayashi, Miwako; Matsuoka, Ichiro; Sasaki, Naoto; Satomi-Kobayashi, Seimi; Hirata, Ken-Ichi; Rikitake, Yoshiyuki

    2017-03-27

    N-glycosylation of proteins is important for protein folding and function. We have recently reported that FAM5C/BRINP3 contributes to the tumor necrosis factor-α-induced expression of leukocyte adhesion molecules in vascular endothelial cells (ECs). However, regulatory mechanism of the FAM5C biosynthesis is poorly understood. Co-immunoprecipitation assay revealed the interaction of FAM5C with UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1), a glycoprotein folding-sensor enzyme. FAM5C ectopically expressed in HEK293 cells was localized to the endoplasmic reticulum and co-localized with endogenously expressed UGGT1. Molecular size of FAM5C was reduced by treatment with N-glycosidase F and in FAM5C-expressing cells cultured in the presence of the N-glycosylation inhibitor tunicamycin. FAM5C was secreted by the cells and the secretion of FAM5C was blocked by tunicamycin. Among six potential N-glycosylation sites, the potential site at Asn(168) was not N-glycosylated, and Asn(337), Asn(456), Asn(562), Asn(609), and Asn(641) mutants were poorly secreted by the cells. These results demonstrated that FAM5C is an N-glycosylated protein and N-glycosylation is necessary for the secretion of FAM5C.

  5. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods.

    PubMed

    Franco, P; Spinozzi, S; Pagnotta, E; Lazzeri, L; Ugolini, L; Camborata, C; Roda, A

    2016-01-08

    A new high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of glucosinolates, as glucoraphanin and glucoerucin, and the corresponding isothiocyanates, as sulforaphane and erucin, was developed and applied to quantify these compounds in Eruca sativa defatted seed meals and enriched functional foods. The method involved solvent extraction, separation was achieved in gradient mode using water with 0.5% formic acid and acetonitrile with 0.5% formic acid and using a reverse phase C18 column. The electrospray ion source operated in negative and positive mode for the detection of glucosinolates and isothiocyanates, respectively, and the multiple reaction monitoring (MRM) was selected as acquisition mode. The method was validated following the ICH guidelines. Replicate experiments demonstrated a good accuracy (bias%<10%) and precision (CV%<10%). Detection limits and quantification limits are in the range of 1-400ng/mL for each analytes. Calibration curves were validated on concentration ranges from 0.05 to 50μg/mL. The method proved to be suitable for glucosinolates and isothiocyanates determination both in biomasses and in complex matrices such as food products enriched with glucosinolates, or nutraceutical bakery products. In addition, the developed method was applied to the simultaneous determination of glucosinolates and isothiocyanates in bakery product enriched with glucosinolates, to evaluate their thermal stability after different industrial processes from cultivation phases to consumer processing.

  6. Exogenous methyl jasmonate treatment increases glucosinolate biosynthesis and quinone reductase activity in kale leaf tissue.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties 'Dwarf Blue Curled Vates' and 'Red Winter' in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar 'Red Winter' in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined

  7. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any

  8. A Novel 2-Oxoacid-Dependent Dioxygenase Involved in the Formation of the Goiterogenic 2-Hydroxybut-3-enyl Glucosinolate and Generalist Insect Resistance in Arabidopsis[C][W][OA

    PubMed Central

    Hansen, Bjarne G.; Kerwin, Rachel E.; Ober, James A.; Lambrix, Virginia M.; Mitchell-Olds, Thomas; Gershenzon, Jonathan; Halkier, Barbara A.; Kliebenstein, Daniel J.

    2008-01-01

    Glucosinolates are secondary metabolites found almost exclusively in the order Brassicales. They are synthesized from a variety of amino acids and can have numerous side chain modifications that control biological function. We investigated the biosynthesis of 2-hydroxybut-3-enyl glucosinolate, which has biological activities including toxicity to Caenorhabditis elegans, inhibition of seed germination, induction of goiter disease in mammals, and production of bitter flavors in Brassica vegetable crops. Arabidopsis (Arabidopsis thaliana) accessions contain three different patterns of 2-hydroxybut-3-enyl glucosinolate accumulation (present in leaves and seeds, seeds only, or absent) corresponding to three different alleles at a single locus, GSL-OH. Fine-scale mapping of the GSL-OH locus identified a 2-oxoacid-dependent dioxygenase encoded by At2g25450 required for the formation of both 2R- and 2S-2-hydroxybut-3-enyl glucosinolate from the precursor 3-butenyl glucosinolate precursor. Naturally occurring null mutations and T-DNA insertional mutations in At2g25450 exhibit a complete absence of 2-hydroxybut-3-enyl glucosinolate accumulation. Analysis of herbivory by the generalist lepidopteran Trichoplusia ni showed that production of 2-hydroxybut-3-enyl glucosinolate provides increased resistance. These results show that At2g25450 is necessary for the hydroxylation of but-3-enyl glucosinolate to 2-hydroxybut-3-enyl glucosinolate in planta and that this metabolite increases resistance to generalist herbivory. PMID:18945935

  9. Effects of temperature and photoperiod on sensory quality and contents of glucosinolates, flavonols and vitamin C in broccoli florets.

    PubMed

    Mølmann, Jørgen A B; Steindal, Anne L H; Bengtsson, Gunnar B; Seljåsen, Randi; Lea, Per; Skaret, Josefine; Johansen, Tor J

    2015-04-01

    Broccoli is grown around the world at a wide range of photoperiods and temperatures, which may influence both sensory quality and phytochemical contents. Florets produced in phytotron and at two semi-field sites (70 °N and 58 °N) were examined for effects of contrasting temperatures and photoperiods on sensory quality and contents of glucosinolates, flavonols and vitamin C. Growth conditions associated with high northern latitudes of low temperature and long photoperiods, produced bigger floral buds, and florets with sweeter taste and less colour hue than more southern conditions. The contents of vitamin C did not vary, while the response of individual glucosinolates varied with temperature and day length, and contents of quercetin and kaempferol were lower in phytotron than under semi-field conditions. Thus, our results show that contrasting temperatures and photoperiods influence the sensory quality of broccoli florets, while contents of different bioactive phytochemicals are not influenced in a unidirectional pattern.

  10. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars.

    PubMed

    Tian, Ming; Xu, Xiaoyun; Liu, Yanlong; Xie, Lin; Pan, Siyi

    2016-01-01

    Broccoli sprouts are natural functional foods for cancer prevention because of their high glucosinolate (GSL) content and high selenium (Se) accumulation capacity. The regulation mechanism of Se on GSL metabolism in broccoli sprouts was explored. In particular, the effects of Se treatment (100 μmol/L selenite and selenate) on the Se, sulfur (S), glucosinolate and sulforaphane contents; myrosinase activity and health-promoting compounds (ascorbic acid, anthocyanin, total phenolics and flavonoids) of three, 5 day old, cultivars were investigated. The treatment did not influence the total GSL and ascorbic acid contents; significantly increased the myrosinase activity and sulforaphane, anthocyanin and flavonoids contents; and decreased the total phenolics content. The increase in sulforaphane during early growth can be primarily attributed to the increased myrosinase activity caused by Se treatment. Broccoli sprouts with suitable selenite and selenate concentrations, in the early growth days, could be desirable for improved human health.

  11. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1

    PubMed Central

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2016-01-01

    Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions. PMID:26340317

  12. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1.

    PubMed

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2016-01-01

    Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions.

  13. Effect of post harvest radiation processing and storage on the volatile oil composition and glucosinolate profile of cabbage.

    PubMed

    Banerjee, Aparajita; Variyar, Prasad S; Chatterjee, Suchandra; Sharma, Arun

    2014-05-15

    Effect of radiation processing (0.5-2 kGy) and storage on the volatile oil constituents and glucosinolate profile of cabbage was investigated. Among the volatile oil constituents, an enhancement in trans-hex-2-enal was noted on irradiation that was attributed to the increased liberation of precursor linolenic acid mainly from monogalactosyl diacyl glycerol (MGDG). Irradiation also enhanced sinigrin, the major glucosinolate of cabbage that accounted for the enhanced allyl isothiocyanate (AITC) in the volatile oils of the irradiated vegetable. During storage the content of trans-hex-2-enal increased immediately after irradiation and then returned to the basal value within 24h while the content of sinigrin and AITC increased post irradiation and thereafter remained constant during storage. Our findings on the enhancement in potentially important health promoting compounds such as sinigrin and AITC demonstrates that besides extending shelf life and safety, radiation processing can have an additional advantage in improving the nutritional quality of cabbage.

  14. The influence of collection zone on glucosinolates, polyphenols and flavonoids contents and biological profiles of Capparis sicula ssp. sicula.

    PubMed

    Conforti, F; Marcotullio, M C; Menichini, F; Statti, G A; Vannutelli, L; Burini, G; Menichini, F; Curini, M

    2011-04-01

    This study aimed to evaluate the influence of collection zone on total phenol, flavonoid and glucosinolate contents and antioxidant and anti-inflammatory activities of caper (Capparis sicula ssp. sicula). This species has been characterized through the detection, isolation and quantitative evaluation of chemical markers (polyphenols, flavonoids and glucosinolates). The chemical investigation showed a different composition between the two collection zones. While the total amounts of phenolics and flavonoids of the two samples were quite the same, their high-performance liquid chromatography profiles were very different. In both samples, the most abundant aglycone was quercetin which accounted for 60% of total flavonoids. Nuclear magnetic resonance data analysis allowed the identification of two compounds: 3,5-dicaffeoylquinic and 4,5-dicaffeoylquinic acids which represented 6.67% and 15.94%, respectively, of the total amount of flavonoids in sample 1. In sample 2, these two acids were still present, but their percentages were much less (2.20% and 1.71%, respectively). As far as we know, this is the first report about the presence of dicaffeoylquinic acids in Capparis. With regard to glucosinolate content, sample 1 showed a higher content of glucosinolates. In both samples, glucocapparin was the most abundant compound. Antioxidant activity of the methanolic C. sicula extracts using diphenyl picrylhydrazyl, β-carotene bleaching test and oxygen radical absorbance capacity showed that the sample 2 was more active than 1. As regards the inhibition of NO production, the extracts from sample 2 were more active than those from sample 1.

  15. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal.

    PubMed

    Vig, A P; Walia, A

    2001-07-01

    Solid state fermentation was employed using Rhizopus oligosporus to develop a fermented product from rapeseed meal (RSM). The contents of glucosinolates, thiooxazolidones, phytic acid and crude fibre declined by 43.1%, 34%, 42.4% and 25.5%, respectively, following inoculation with R. oligosporus. Fermentation also increased nitrogen and protein contents of the meal. This study may open a new prospective for a simple and cost effective technique for reduction of toxicants in RSM.

  16. The Gene Controlling the Quantitative Trait Locus EPITHIOSPECIFIER MODIFIER1 Alters Glucosinolate Hydrolysis and Insect Resistance in Arabidopsis[W

    PubMed Central

    Zhang, Zhiyong; Ober, James A.; Kliebenstein, Daniel J.

    2006-01-01

    Glucosinolates are sulfur-rich plant secondary metabolites whose breakdown products have a wide range of biological activities in plant–herbivore and plant–pathogen interactions and anticarcinogenic properties. In Arabidopsis thaliana, hydrolysis by the enzyme, myrosinase, produces bioactive nitriles, epithionitriles, or isothiocyanates depending upon the plant's genotype and the glucosinolate's structure. A major determinant of this structural specificity is the epithiospecifier locus (ESP), whose protein causes the formation of epithionitriles and nitriles. A quantitative trait locus (QTL) on chromosome 3 epistatically affects nitrile formation in combination with ESP; this QTL has been termed EPITHIOSPECIFIER MODIFIER1 (ESM1). We identified a myrosinase-associated protein as the ESM1 QTL in Arabidopsis using map-based cloning with recombinant inbred lines, natural variation transcriptomic analysis, and metabolic profiling. In planta and in vitro analyses with natural ESM1 alleles, ESM1 knockouts, and overexpression lines show that ESM1 represses nitrile formation and favors isothiocyanate production. The glucosinolate hydrolysis profile change influenced by ESM1 is associated with the ability to deter herbivory by Trichoplusia ni. This gene could provide unique approaches toward improving human nutrition. PMID:16679459

  17. Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production.

    PubMed

    Rasmann, Sergio; Chassin, Estelle; Bilat, Julia; Glauser, Gaétan; Reymond, Philippe

    2015-05-01

    The hypothesis that constitutive and inducible plant resistance against herbivores should trade-off because they use the same resources and impose costs to plant fitness has been postulated for a long time. Negative correlations between modes of deployment of resistance and defences have been observed across and within species in common garden experiments. It was therefore tested whether that pattern of resistance across genotypes follows a similar variation in patterns of gene expression and chemical defence production. Using the genetically tractable model Arabidopsis thaliana and different modes of induction, including the generalist herbivore Spodoptera littoralis, the specialist herbivore Pieris brassicae, and jasmonate application, constitutive and inducibility of resistance was measured across seven A. thaliana accessions that were previously selected based on constitutive levels of defence gene expression. According to theory, it was found that modes of resistance traded-off among accessions, particularly against S. littoralis, in which accessions investing in high constitutive resistance did not increase it substantially after attack and vice-versa. Accordingly, the average expression of eight genes involved in glucosinolate production negatively predicted larval growth across the seven accessions. Glucosinolate production and genes related to defence induction on healthy and herbivore-damaged plants were measured next. Surprisingly, only a partial correlation between glucosinolate production, gene expression, and the herbivore resistance results was found. These results suggest that the defence outcome of plants against herbivores goes beyond individual molecules or genes but stands on a complex network of interactions.

  18. Computing the Szeged and PI indices of VC(5)C(7)[p,q] and HC(5)C(7)[p,q] nanotubes.

    PubMed

    Iranmanesh, Ali; Alizadeh, Yaser; Taherkhani, Bahman

    2008-02-01

    In this paper we give a GAP program for computing the Szeged and the PI indices of any graph. Also we compute the Szeged and PI indices of VC(5)C(7) [ p,q] and HC(5)C(7) [ p,q] nanotubes by this program.

  19. Structural studies of aliphatic substituted phthalocyanine-lipid multilayers.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Mills, David; Webster, John R P

    2010-10-05

    A Langmuir-Blodgett film of aliphatic substituted phthalocyanines on a C18 silane supporting layer coupled onto a silicon substrate has been investigated using neutron reflectometry. This multilayer structure is seen as a possible candidate for phthalocyanine-lipid biosensor devices. The results show the suitability of the C18 ligands as an anchoring layer for the phthalocyanines. The scattering length density profiles demonstrate the effectiveness of a lipid monolayer in partitioning the composition of phthalocyanine layers from that of the bulk liquid. The effectiveness of this barrier is a critical factor in the efficiency of such devices.

  20. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Mallavarapu, Megharaj; Naidu, Ravi

    2015-06-01

    Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

  1. 26 CFR 5c.168(f)(8)-3 - Requirements for lessor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... qualified lessor. See § 5c.168(f)(8)-8 for the Federal income tax consequences of such a disqualification... section. See § 5c.168(f)(8)-8 for the Federal income tax consequences where a lease ceases to...

  2. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    PubMed Central

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, P<0.001). Concentrations required to double the specific QR activity (CD values) of I3C was calculated at 230 µM, which is considerably weaker at induction than other isothiocyanates like sulforphane. To confirm relationships between GS hydrolysis products and QR activity, a range of concentrations of MeJA sprays were applied to kale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to

  3. Biotransformation of chlorinated aliphatic compounds by mixed nitrifying cultures

    SciTech Connect

    Wilber, G.G.; Chakkamadathil, S.V.

    1995-12-31

    The ability of pure cultures of nitrifying bacteria, such as Nitrosomonas europaea, to oxidize chlorinated aliphatic compounds has been demonstrated previously in laboratory experiments. In the current study, mixed nitrifying cultures originating from a municipal wastewater plant were also tested for the ability to biotransform chlorinated aliphatic compounds, including trichloroethene (TCE). A number of variables were tested, including the effects of two different concentrations of TCE, the effect of culture density, and the influence of the primary substrate, ammonia, on the initial rate of TCE biotransformation. The primary conclusions of the research include the following. The mixed nitrifying cultures did exhibit the ability to transform TCE, and the initial rate of transformation (before oxygen limitations became significant) was directly proportional to the culture density. In general, the transformation rate of TCE was slightly faster at an initial concentration of 0.1 mg/L than at 1 mg/L. Lastly, high initial ammonia concentrations (300 mg/L) resulted in faster initial rates of TCE transformation than in cultures which started with lower ammonia concentrations.

  4. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase.

    PubMed

    Su, Lingqia; Hong, Ruoyu; Guo, Xiaojie; Wu, Jing; Xia, Yongmei

    2016-09-01

    Short-chain aliphatic esters are commonly used as fruit flavorings in the food industry. In this study, Thermobifida fusca (T. fusca) cutinase was used for the synthesis of aliphatic esters, and the maximum yield of ethyl caproate reached 99.2% at a cutinase concentration of 50U/ml, 40°C, and water content of 0.5%, representing the highest ester yield to date. The cutinase-catalyzed esterification displayed strong tolerance for water content (up to 8%) and acid concentration (up to 0.8M). At substrate concentrations ⩽0.8M, the ester yield remained above 80%. Moreover, ester yields of more than 98% and 95% were achieved for acids of C3-C8 and alcohols of C1-C6, respectively, indicating extensive chain length selectivity of the cutinase. These results demonstrate the superior ability of T. fusca cutinase to catalyze the synthesis of short-chain esters. This study provides the basis for industrial production of short-chain esters using T. fusca cutinase.

  5. Specific glucosinolate analysis reveals variable levels of epimeric glucobarbarins, dietary precursors of 5-phenyloxazolidine-2-thiones, in watercress types with contrasting chromosome numbers.

    PubMed

    Agerbirk, Niels; Olsen, Carl Erik; Cipollini, Don; Ørgaard, Marian; Linde-Laursen, Ib; Chew, Frances S

    2014-10-01

    Watercress obtained in food stores in the United States contained significant levels of epiglucobarbarin [(R)-2-hydroxy-2-phenylethylglucosinolate] and low levels of the 2S-epimer glucobarbarin identified by an HPLC+NMR+MS/MS approach. Typical combined levels were 4-7 μmol/g dry wt. The hydrolysis product, 5-phenyloxazolidine-2-thione (barbarin), was detected at similar levels as the precursor glucosinolates after autolysis of fresh watercress in water. Fragmentation patterns in MS(2) of reference desulfoglucosinolates were side chain specific and suitable for routine identification. Watercress was of two main glucosinolate chemotypes: Material from U.S. food stores had a complex profile including glucobarbarins, gluconasturtiin, indole glucosinolates and high levels (6-28 μmol/g dry wt.) of long-chain methylsulfinylalkyl and methylthioalkyl glucosinolates. Material from European food stores had a simple profile dominated by gluconasturtiin, with low levels of epiglucobarbarin and moderate levels of indole glucosinolates. Some wild U.S. material was similar to the U.S. food store type. Both types were found to be Nasturtium officinale by floral parts morphology. Cytological analysis of one U.S. food store accession indicated that it represented a chromosome-doubled variant within N. officinale. The nutritional consequences and invasive potential of the U.S. food store chemotype are discussed.

  6. Taste and Physiological Responses to Glucosinolates: Seed Predator versus Seed Disperser

    PubMed Central

    Samuni-Blank, Michal; Izhaki, Ido; Gerchman, Yoram; Dearing, M. Denise; Karasov, William H.; Trabelcy, Beny; Edwards, Thea M.; Arad, Zeev

    2014-01-01

    In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus’ fruits diets. Acomys russatus, a predator of Ochradenus’ seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits’ toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs. PMID:25383693

  7. Glucosinolate from leaf of Solanum nigrum L. (Solanaceae) as a new mosquito larvicide.

    PubMed

    Rawani, Anjali; Ghosh, Anupam; Laskar, Subrata; Chandra, Goutam

    2014-12-01

    The present study was carried out to investigate the biocontrol potentiality of active ingredient isolated from ethyl acetate extract of mature leaves of Solanum nigrum L. (Solanaceae) against the larval form of Culex quinquefasciatus Say. Mortality rate at a concentration of 25 mg/L of the active compound was highest (P < 0.05) amongst all tested concentrations. Result of log-probit analysis (at 95% confidence level) revealed that LC₅₀ and LC₉₀ values are inversely proportional to exposure period of bioassay. A clear dose-dependent mortality was observed, as the rate of mortality (Y) was positively correlated with the concentrations of the compound (X); having regression coefficient value close to 1. The compound was found to be ecofriendly as it did not show any adverse effect to the studied nontarget organisms. Chemical characterization of the active ingredient was also carried out by infrared spectroscopic analysis (IR), mass analyses (GC-MS) and carbon-hydrogen-nitrogen-sulphur analyses (CHNS), that revealed the presence of a glucosinolate compound [1-thio-ß-D-glucopyranose-1-[(R)-3-hydroxy-2-ethyl-N-hydroxysulfonyloxy propanimidate] having the molecular formula of C₁₁H₂₁NO₁₀S₂.

  8. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa.

    PubMed

    Kim, Sun-Ju; Kawaharada, Chiami; Jin, Shigeki; Hashimoto, Makoto; Ishii, Gensho; Yamauchi, Hiroaki

    2007-01-01

    The structurally unique glucosinolate (GSL), 4-(cystein-S-yl)butyl GSL, was identified in the leaves of hydroponically-grown rocket salad (Eruca sativa Mill.). Its electrospray ionization mass spectrometry (ESI-MS)/MS spectrum indicated that this unusual GSL had a molecular weight of 414 as a desulfo (DS)-GSL, and a molecular formula of C(14)H(25)N(2)O(8)S(2) based on its negative ion matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) spectrum. For further confirmation, the 4-(cystein-S-yl)butyl DS-GSL was prepared with authentic L-Ser and purified dimeric 4-mercaptobutyl DS-GSL, and its chemical structure then confirmed by ESI-MS/MS data. It is named "glucorucolamine" as a trivial name from its ammonia sensitivity. This unique GSL was found to the greatest extent when rocket salad was grown in a 100% NH4+-N nutrient solution. Despite it clearly seems to reduce the detoxification of excess NH4+ in the leaves of rocket salad, present knowledge about the unique GSL is still far from being sufficient.

  9. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle?

    PubMed

    Collett, Mark G; Stegelmeier, Bryan L; Tapper, Brian A

    2014-07-30

    Turnip (Brassica rapa ssp. rapa) and rape (Brassica napus ssp. biennis) and other brassica forage crops are regarded as "safe" feed for cattle during late summer and fall in the North Island of New Zealand when high Pithomyces chartarum spore counts in pastures frequently lead to sporidesmin toxicity (facial eczema). Sporadic acute severe cases of turnip photosensitization in dairy cows characteristically exhibit high γ-glutamyl transferase and glutamate dehydrogenase serum enzyme activities that mimic those seen in facial eczema. The two diseases can, however, be distinguished by histopathology of the liver, where lesions, in particular those affecting small bile ducts, differ. To date, the hepato-/cholangiotoxic phytochemical causing liver damage in turnip photosensitization in cattle is unknown. Of the hydrolysis products of the various glucosinolate secondary compounds found in high concentrations in turnip and rape, work has shown that nitriles and epithionitriles can be hepatotoxic (and nephro- or pancreatotoxic) in rats. These derivatives include β-hydroxy-thiiranepropanenitrile and 3-hydroxy-4-pentenenitrile from progoitrin; thiiranepropanenitrile and 4-pentenenitrile from gluconapin; thiiranebutanenitrile and 5-hexenenitrile from glucobrassicanapin; phenyl-3-propanenitrile from gluconasturtiin; and indole-3-acetonitrile from glucobrassicin. This perspective explores the possibility of the preferential formation of such derivatives, especially the epithionitriles, in acidic conditions in the bovine rumen, followed by absorption, hepatotoxicity, and secondary photosensitization.

  10. A critical review of the bioavailability of glucosinolates and related compounds.

    PubMed

    Holst, Birgit; Williamson, Gary

    2004-06-01

    Glucosinolates (GLSs) are relatively inert (Z)-N-hydroximinosulfate esters, possessing a sulfur-linked beta-D-glucopyranose moiety and a variable side chain, found almost exclusively in cruciferous vegetables. Following cell disruption, they are hydrolysed by plant myrosinases, forming a group of chemically reactive and biologically active compounds. There is considerable evidence that these breakdown products, when consumed in the diet, may affect the risk of developing chronic diseases. However, in order for any compound to exert an activity in vivo, it is necessary to reach the site of action in an appropriate form and sufficient concentration. Deleterious and toxic effects may be observed at high concentrations: hence, bioavailability is a key factor defining the physiological, beneficial dose window of GLS hydrolysis products (GLS-HPs). For some GLS-HPs, this window can be rather narrow, and therefore is a critical parameter to be considered. In this review we critically evaluate the present state of knowledge on all factors that affect bioavailability of GLS-HPs. This includes liberation from the plant material, absorption from the digestive system, distribution around the body, metabolism and excretion.

  11. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis

    PubMed Central

    Araújo, Wagner L.; Martins, Auxiliadora O.; Fernie, Alisdair R.; Tohge, Takayuki

    2014-01-01

    The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs. PMID:25360142

  12. Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria.

    PubMed

    Saavedra, Maria J; Borges, Anabela; Dias, Carla; Aires, Alfredo; Bennett, Richard N; Rosa, Eduardo S; Simões, Manuel

    2010-05-01

    The purpose of the present study was to evaluate the in vitro antibacterial effects of different classes of important and common dietary phytochemicals (5 simple phenolics - tyrosol, gallic acid, caffeic acid, ferulic acid, and chlorogenic acid; chalcone - phloridzin; flavan-3-ol - (-) epicatechin; seco-iridoid - oleuropein glucoside; 3 glucosinolate hydrolysis products - allylisothiocyanate, benzylisothiocyanate and 2-phenylethylisothiocyanate) against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus. Another objective of this study was to evaluate the effects of dual combinations of streptomycin with the different phytochemicals on antibacterial activity. A disc diffusion assay was used to evaluate the antibacterial activity of the phytochemicals and 3 standard antibiotics (ciprofloxacin, gentamicin and streptomycin) against the four bacteria. The antimicrobial activity of single compounds and dual combinations (streptomycin-phytochemicals) were quantitatively assessed by measuring the inhibitory halos. The results showed that all of the isothiocyanates had significant antimicrobial activities, while the phenolics were much less efficient. No antimicrobial activity was observed with phloridzin. In general P. aeruginosa was the most sensitive microorganism and L. monocytogenes the most resistant. The application of dual combinations demonstrated synergy between streptomycin and gallic acid, ferulic acid, chlorogenic acid, allylisothiocyanate and 2-phenylethylisothiocyanate against the Gram-negative bacteria. In conclusion, phytochemical products and more specifically the isothiocyanates were effective inhibitors of the in vitro growth of the Gram-negative and Gram-positive pathogenic bacteria. Moreover, they can act synergistically with less efficient antibiotics to control bacterial growth.

  13. Verticillium longisporum infection induces organ-specific glucosinolate degradation in Arabidopsis thaliana

    PubMed Central

    Witzel, Katja; Hanschen, Franziska S.; Klopsch, Rebecca; Ruppel, Silke; Schreiner, Monika; Grosch, Rita

    2015-01-01

    The species Verticillium represents a group of highly destructive fungal pathogens, responsible for vascular wilt in a number of crops. The host response to infection by Verticillium longisporum at the level of secondary plant metabolites has not been well explored. Natural variation in the glucosinolate (GLS) composition of four Arabidopsis thaliana accessions was characterized: the accessions Bur-0 and Hi-0 accumulated alkenyl GLS, while 3-hydroxypropyl GLS predominated in Kn-0 and Ler-0. With respect to GLS degradation products, Hi-0 and Kn-0 generated mainly isothiocyanates, whereas Bur-0 released epithionitriles and Ler-0 nitriles. An analysis of the effect on the composition of both GLS and its breakdown products in the leaf and root following the plants’ exposure to V. longisporum revealed a number of organ- and accession-specific alterations. In the less disease susceptible accessions Bur-0 and Ler-0, colonization depressed the accumulation of GLS in the rosette leaves but accentuated it in the roots. In contrast, in the root, the level of GLS breakdown products in three of the four accessions fell, suggestive of their conjugation or binding to a fungal target molecule(s). The plant-pathogen interaction influenced both the organ- and accession-specific formation of GLS degradation products. PMID:26217360

  14. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  15. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  16. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  17. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  18. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  19. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanedioic acid polymer with... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  20. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  1. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  2. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  3. Feasibility study on the use of visible-near-infrared spectroscopy for the screening of individual and total glucosinolate contents in broccoli.

    PubMed

    Hernández-Hierro, José Miguel; Valverde, Juan; Villacreces, Salvador; Reilly, Kim; Gaffney, Michael; González-Miret, Maria Lourdes; Heredia, Francisco José; Downey, Gerard

    2012-08-01

    The potential of visible-near-infrared spectroscopy to determine selected individual and total glucosinolates in broccoli has been evaluated. Modified partial least-squares regression was used to develop quantitative models to predict glucosinolate contents. Both the whole spectrum and different spectral regions were separately evaluated to develop the quantitative models; in all cases the best results were obtained using the near-infrared zone between 2000 and 2498 nm. These models have been externally validated for the screening of glucoraphanin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin, and total glucosinolates contents. In addition, discriminant partial least-squares was used to distinguish between two possible broccoli cultivars and showed a high degree of accuracy. In the case of the qualitative analysis, best results were obtained using the whole spectrum (i.e., 400-2498 nm) with a correct classification rate of 100% in external validation being obtained.

  4. Proposed Method for Estimating Health-Promoting Glucosinolates and Hydrolysis Products in Broccoli (Brassica oleracea var. italica) Using Relative Transcript Abundance.

    PubMed

    Becker, Talon M; Jeffery, Elizabeth H; Juvik, John A

    2017-01-18

    Due to the importance of glucosinolates and their hydrolysis products in human nutrition and plant defense, optimizing the content of these compounds is a frequent breeding objective for Brassica crops. Toward this goal, we investigated the feasibility of using models built from relative transcript abundance data for the prediction of glucosinolate and hydrolysis product concentrations in broccoli. We report that predictive models explaining at least 50% of the variation for a number of glucosinolates and their hydrolysis products can be built for prediction within the same season, but prediction accuracy decreased when using models built from one season's data for prediction of an opposing season. This method of phytochemical profile prediction could potentially allow for lower phytochemical phenotyping costs and larger breeding populations. This, in turn, could improve selection efficiency for phase II induction potential, a type of chemopreventive bioactivity, by allowing for the quick and relatively cheap content estimation of phytochemicals known to influence the trait.

  5. Photopatternable Biodegradable Aliphatic Polyester with Pendent Benzophenone Groups.

    PubMed

    Chen, Dayong; Chang, Chia-Chih; Cooper, Beth; Silvers, Angela; Emrick, Todd; Hayward, Ryan C

    2015-10-12

    Highly efficient photo-cross-linking reactions enable numerous applications in biomaterials. Here, a photopatternable biodegradable aliphatic polyester with benzophenone pendent groups was synthesized by copper-catalyzed alkyne-azide cycloaddition, affording polyesters that undergo UV-induced cross-linking to yield photopatterned films. Using this material, a self-folding multilayer structure containing polyester/hydrogel bilayer hinges was fabricated. Upon swelling of the hydrogel layer, the construct folds into a triangular tube, which subsequently unfolds due to lipase-catalyzed degradation of the polyester layer. The ability to precisely design such degradation-induced structural changes offers potential for biomaterials and medical applications, such as evolving and responsive 2D and 3D tissue engineering scaffolds.

  6. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  7. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  8. Surface Characterization of Aliphatic Polyester -g- Phosphorylcholine Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongfei; Emrick, Todd; Hsu, Shaw L.

    2007-03-01

    In order to control biodegradation behavior of a class of polyesters, hydrophilic functional groups were grafted onto the main chains. Phosphorylcholine (PC) molecules with azide attached at the end were synthesized. Due to their excellent biocompatibility and hydrophilicity, they have been covalently coupled to biodegradable aliphatic polyesters via a ``click'' cycloaddition reaction to produce amphiphilic graft copolymers. A series of copolymers were prepared by varying the molar incorporation of PC groups. Surface properties of the copolymers were examined to further explore their applications in drug delivery systems. Grazing angle reflection infrared spectroscopy was employed to determine segmental orientation at the film surface. XPS was used to verify surface composition. A water adsorption experiment was carried out to determine the water permeation rate. The improvement in hydrophilicity was confirmed by a water contact experiment. Results indicate that the graft copolymers were promising in drug delivery systems.

  9. Localized aliphatic organic material on the surface of Ceres.

    PubMed

    De Sanctis, M C; Ammannito, E; McSween, H Y; Raponi, A; Marchi, S; Capaccioni, F; Capria, M T; Carrozzo, F G; Ciarniello, M; Fonte, S; Formisano, M; Frigeri, A; Giardino, M; Longobardo, A; Magni, G; McFadden, L A; Palomba, E; Pieters, C M; Tosi, F; Zambon, F; Raymond, C A; Russell, C T

    2017-02-17

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  10. Localized aliphatic organic material on the surface of Ceres

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Ammannito, E.; McSween, H. Y.; Raponi, A.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Carrozzo, F. G.; Ciarniello, M.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2017-02-01

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  11. Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils.

    PubMed

    Picard, François; Chaouki, Jamal

    2016-02-01

    This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage.

  12. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  13. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  14. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  15. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens.

    PubMed

    Tierens, K F; Thomma, B P; Brouwer, M; Schmidt, J; Kistner, K; Porzel, A; Mauch-Mani, B; Cammue, B P; Broekaert, W F

    2001-04-01

    Crude aqueous extracts from Arabidopsis leaves were subjected to chromatographic separations, after which the different fractions were monitored for antimicrobial activity using the fungus Neurospora crassa as a test organism. Two major fractions were obtained that appeared to have the same abundance in leaves from untreated plants versus leaves from plants challenge inoculated with the fungus Alternaria brassicicola. One of both major antimicrobial fractions was purified to homogeneity and identified by 1H nuclear magnetic resonance, gas chromatography/electron impact mass spectrometry, and gas chromatography/chemical ionization mass spectrometry as 4-methylsulphinylbutyl isothiocyanate (ITC). This compound has previously been described as a product of myrosinase-mediated breakdown of glucoraphanin, the predominant glucosinolate in Arabidopsis leaves. 4-Methylsulphinylbutyl ITC was found to be inhibitory to a wide range of fungi and bacteria, producing 50% growth inhibition in vitro at concentrations of 28 microM for the most sensitive organism tested (Pseudomonas syringae). A previously identified glucosinolate biosynthesis mutant, gsm1-1, was found to be largely deficient in either of the two major antimicrobial compounds, including 4-methylsulphinylbutyl ITC. The resistance of gsm1-1 was compared with that of wild-type plants after challenge with the fungi A. brassicicola, Plectosphaerella cucumerina, Botrytis cinerea, Fusarium oxysporum, or Peronospora parasitica, or the bacteria Erwinia carotovora or P. syringae. Of the tested pathogens, only F. oxysporum was found to be significantly more aggressive on gsm1-1 than on wild-type plants. Taken together, our data suggest that glucosinolate-derived antimicrobial ITCs can play a role in the protection of Arabidopsis against particular pathogens.

  16. Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala.

    PubMed

    Santolamazza-Carbone, Serena; Velasco, Pablo; Soengas, Pilar; Cartea, María Elena

    2014-03-01

    Quantitative differences in plant defence metabolites, such as glucosinolates, may directly affect herbivore preference and performance, and indirectly affect natural enemy pressure. By assessing insect abundance and leaf damage rate, we studied the responses of insect herbivores to six genotypes of Brassica oleracea var. acephala, selected from the same cultivar for having high or low foliar content of sinigrin, glucoiberin and glucobrassicin. We also investigated whether the natural parasitism rate was affected by glucosinolates. Finally, we assessed the relative importance of plant chemistry (bottom-up control) and natural enemy performance (top-down control) in shaping insect abundance, the ratio of generalist/specialist herbivores and levels of leaf damage. We found that high sinigrin content decreased the abundance of the generalist Mamestra brassicae (Lepidoptera, Noctuidae) and the specialist Plutella xylostella (Lepidoptera, Yponomeutidae), but increased the load of the specialist Eurydema ornatum (Hemiptera, Pentatomidae). Plants with high sinigrin content suffered less leaf injury. The specialist Brevicoryne brassicae (Hemiptera, Aphididae) increased in plants with low glucobrassicin content, whereas the specialists Pieris rapae (Lepidoptera, Pieridae), Aleyrodes brassicae (Hemiptera, Aleyrodidae) and Phyllotreta cruciferae (Coleoptera, Chrysomelidae) were not affected by the plant genotype. Parasitism rates of M. brassicae larvae and E. ornatum eggs were affected by plant genotype. The ratio of generalist/specialist herbivores was positively correlated with parasitism rate. Although both top-down and bottom-up forces were seen to be contributing, the key factor in shaping both herbivore performance and parasitism rate was the glucosinolate concentration, which highlights the impact of bottom-up forces on the trophic cascades in crop habitats.

  17. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae

    PubMed Central

    Borpatragohain, Priyakshee; Rose, Terry J.; King, Graham J.

    2016-01-01

    Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content. PMID:27917185

  18. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  19. Glucosinolates from pak choi and broccoli induce enzymes and inhibit inflammation and colon cancer differently.

    PubMed

    Lippmann, Doris; Lehmann, Carsten; Florian, Simone; Barknowitz, Gitte; Haack, Michael; Mewis, Inga; Wiesner, Melanie; Schreiner, Monika; Glatt, Hansruedi; Brigelius-Flohé, Regina; Kipp, Anna P

    2014-06-01

    High consumption of Brassica vegetables is considered to prevent especially colon carcinogenesis. The content and pattern of glucosinolates (GSLs) can highly vary among different Brassica vegetables and may, thus, affect the outcome of Brassica intervention studies. Therefore, we aimed to feed mice with diets containing plant materials of the Brassica vegetables broccoli and pak choi. Further enrichment of the diets by adding GSL extracts allowed us to analyze the impact of different amounts (GSL-poor versus GSL-rich) and different patterns (broccoli versus pak choi) of GSLs on inflammation and tumor development in a model of inflammation-triggered colon carcinogenesis (AOM/DSS model). Serum albumin adducts were analyzed to confirm the up-take and bioactivation of GSLs after feeding the Brassica diets for four weeks. In agreement with their high glucoraphanin content, broccoli diets induced the formation of sulforaphane-lysine adducts. Levels of 1-methoxyindolyl-3-methyl-histidine adducts derived from neoglucobrassicin were the highest in the GSL-rich pak choi group. In the colon, the GSL-rich broccoli and the GSL-rich pak choi diet up-regulated the expression of different sets of typical Nrf2 target genes like Nqo1, Gstm1, Srxn1, and GPx2. GSL-rich pak choi induced the AhR target gene Cyp1a1 but did not affect Ugt1a1 expression. Both colitis and tumor number were drastically reduced after feeding the GSL-rich pak choi diet while the other three diets had no effect. GSLs can act anti-inflammatory and anti-carcinogenic but both effects depend on the specific amount and pattern of GSLs within a vegetable. Thus, a high Brassica consumption cannot be generally considered to be cancer-preventive.

  20. Glucoraphasatin and glucoraphenin, a redox pair of glucosinolates of brassicaceae, differently affect metabolizing enzymes in rats.

    PubMed

    Barillari, Jessica; Iori, Renato; Broccoli, Massimiliano; Pozzetti, Laura; Canistro, Donatella; Sapone, Andrea; Bonamassa, Barbara; Biagi, Gian Luigi; Paolini, Moreno

    2007-07-11

    Brassica vegetables are an important dietary source of glucosinolates (GLs), whose breakdown products exhibit anticancer activity. The protective properties of Brassicaceae are believed to be due to the inhibition of Phase-I or induction of Phase-II xenobiotic metabolizing enzymes (XMEs), thus enhancing carcinogen clearance. To study whether GLs affect XMEs and the role of their chemical structure, we focused on two alkylthio GLs differing in the oxidation degree of the side chain sulfur. Male Sprague-Dawley rats were supplemented (per oral somministration by gavage) with either glucoraphasatin (4-methylthio-3-butenyl GL; GRH) or glucoraphenin (4-methylsulfinyl-3-butenyl GL; GRE), at 24 or 120 mg/kg body weight in a single or repeated fashion (daily for four consecutive days), and hepatic microsomes were prepared for XME analyses. Both GLs were able to induce XMEs, showing different induction profiles. While the inductive effect was stronger after multiple administration of the higher GRH dosage, the single lower GRE dose was the most effective in boosting cytochrome P-450 (CYP)-associated monooxygenases and the postoxidative metabolism. CYP3A1/2 were the most affected isoforms by GRH treatment, whereas GRE induced mainly CYP1A2 supported oxidase. Glutathione S-transferase increased up to approximately 3.2-fold after a single (lower) GRE dose and UDP-glucuronosyl transferase up to approximately 2-fold after four consecutive (higher) GRH doses. In conclusion, the induction profile of these GLs we found is not in line with the chemopreventive hypothesis. Furthermore, the oxidation degree of the side chain sulfur of GLs seems to exert a crucial role on XME modulation.

  1. Comparative Transcriptome Analyses Reveal a Special Glucosinolate Metabolism Mechanism in Brassica alboglabra Sprouts

    PubMed Central

    Guo, Rongfang; Huang, Zhongkai; Deng, Yanping; Chen, Xiaodong; XuHan, Xu; Lai, Zhongxiong

    2016-01-01

    Brassica sprouts contain abundant phytochemicals, especially glucosinolates (GSs). Various methods have been used to enhance GS content in sprouts. However, the molecular basis of GS metabolism in sprouts remains an open question. Here we employed RNA-seq analysis to compare the transcriptomes of high-GS (JL-08) and low-GS (JL-09) Brassica alboglabra sprouts. Paired-end Illumina RNA-seq reads were generated and mapped to the Brassica oleracea reference genome. The differentially expressed genes were analyzed between JL-08 and JL-09. Among these, 1477 genes were up-regulated and 1239 down-regulated in JL-09 compared with JL-08. Enrichment analysis of these differentially expressed genes showed that the GS biosynthesis had the smallest enrichment factor and the highest Q-value of all metabolic pathways in Kyoto Encyclopedia of Genes and Genomes database, indicating the main metabolic difference between JL-08 and JL-09 is the GS biosynthetic pathway. Thirty-seven genes of the sequenced data were annotated as putatively involved in GS biosynthesis, degradation, and regulation, of which 11 were differentially expressed in JL-08 and JL-09. The expression level of GS degradation enzyme myrosinase in high-GS JL-08 was lower compared with low-GS JL-09. Surprisingly, in high-GS JL-08, the expression levels of GS biosynthesis genes were also lower than those in low-GS JL-09. As the GS contents in sprouts are determined by dynamic equilibrium of seed stored GS mobilization, de novo synthesis, degradation, and extra transport, the result of this study leads us to suggest that efforts to increase GS content should focus on either raising GS content in seeds or decreasing myrosinase activity, rather than improving the expression level of GS biosynthesis genes in sprouts. PMID:27757119

  2. 26 CFR 5c.103-1 - Leases and capital expenditures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Leases and capital expenditures. 5c.103-1 Section 5c.103-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  3. 26 CFR 5c.168(f)(8)-4 - Minimum investment of lessor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 5c.168(f)(8)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... has a minimum at risk investment which, at the time the property is placed in service under the...

  4. 26 CFR 5c.44F-1 - Leases and qualified research expenses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Leases and qualified research expenses. 5c.44F-1 Section 5c.44F-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  5. 26 CFR 5c.103-2 - Leases and industrial development bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Leases and industrial development bonds. 5c.103-2 Section 5c.103-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  6. 26 CFR 5c.168(f)(8)-1 - Special rules for leases.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 5c.168(f)(8)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... allowed accelerated cost recovery system (ACRS) deductions under section 168 and the investment tax...

  7. 26 CFR 5c.103-1 - Leases and capital expenditures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Leases and capital expenditures. 5c.103-1 Section 5c.103-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  8. 26 CFR 5c.168(f)(8)-11 - Consolidated returns. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Consolidated returns. 5c.168(f)(8)-11 Section 5c.168(f)(8)-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  9. 26 CFR 5c.168(f)(8)-3 - Requirements for lessor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 5c.168(f)(8)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... leases it back under a section 168(f)(8) lease. Within 3 months after the property was placed in...

  10. 26 CFR 5c.103-2 - Leases and industrial development bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Leases and industrial development bonds. 5c.103-2 Section 5c.103-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  11. 26 CFR 5c.168(f)(8)-3 - Requirements for lessor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 5c.168(f)(8)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... leases it back under a section 168(f)(8) lease. Within 3 months after the property was placed in...

  12. 26 CFR 5c.168(f)(8)-1 - Special rules for leases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 5c.168(f)(8)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... allowed accelerated cost recovery system (ACRS) deductions under section 168 and the investment tax...

  13. 26 CFR 5c.168(f)(8)-11 - Consolidated returns. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Consolidated returns. 5c.168(f)(8)-11 Section 5c.168(f)(8)-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  14. 26 CFR 5c.168(f)(8)-1 - Special rules for leases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 5c.168(f)(8)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... allowed accelerated cost recovery system (ACRS) deductions under section 168 and the investment tax...

  15. 26 CFR 5c.44F-1 - Leases and qualified research expenses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Leases and qualified research expenses. 5c.44F-1 Section 5c.44F-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  16. 26 CFR 5c.168(f)(8)-4 - Minimum investment of lessor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 5c.168(f)(8)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... has a minimum at risk investment which, at the time the property is placed in service under the...

  17. 26 CFR 5c.168(f)(8)-11 - Consolidated returns. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Consolidated returns. 5c.168(f)(8)-11 Section 5c.168(f)(8)-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  18. 26 CFR 5c.168(f)(8)-3 - Requirements for lessor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 5c.168(f)(8)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... leases it back under a section 168(f)(8) lease. Within 3 months after the property was placed in...

  19. 26 CFR 5c.103-1 - Leases and capital expenditures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Leases and capital expenditures. 5c.103-1 Section 5c.103-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  20. 26 CFR 5c.168(f)(8)-10 - Leases between related parties. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Leases between related parties. 5c.168(f)(8)-10 Section 5c.168(f)(8)-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  1. 26 CFR 5c.44F-1 - Leases and qualified research expenses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Leases and qualified research expenses. 5c.44F-1 Section 5c.44F-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  2. 26 CFR 5c.103-1 - Leases and capital expenditures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Leases and capital expenditures. 5c.103-1 Section 5c.103-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  3. 26 CFR 5c.168(f)(8)-4 - Minimum investment of lessor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 5c.168(f)(8)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... has a minimum at risk investment which, at the time the property is placed in service under the...

  4. 26 CFR 5c.168(f)(8)-3 - Requirements for lessor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 5c.168(f)(8)-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... leases it back under a section 168(f)(8) lease. Within 3 months after the property was placed in...

  5. 26 CFR 5c.44F-1 - Leases and qualified research expenses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Leases and qualified research expenses. 5c.44F-1 Section 5c.44F-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  6. 26 CFR 5c.168(f)(8)-10 - Leases between related parties. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Leases between related parties. 5c.168(f)(8)-10 Section 5c.168(f)(8)-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  7. 26 CFR 5c.168(f)(8)-11 - Consolidated returns. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Consolidated returns. 5c.168(f)(8)-11 Section 5c.168(f)(8)-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  8. 26 CFR 5c.168(f)(8)-10 - Leases between related parties. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Leases between related parties. 5c.168(f)(8)-10 Section 5c.168(f)(8)-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  9. 26 CFR 5c.103-2 - Leases and industrial development bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Leases and industrial development bonds. 5c.103-2 Section 5c.103-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  10. 26 CFR 5c.168(f)(8)-1 - Special rules for leases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 5c.168(f)(8)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... allowed accelerated cost recovery system (ACRS) deductions under section 168 and the investment tax...

  11. 26 CFR 5c.168(f)(8)-10 - Leases between related parties. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Leases between related parties. 5c.168(f)(8)-10 Section 5c.168(f)(8)-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  12. KIF5C S176 Phosphorylation Regulates Microtubule Binding and Transport Efficiency in Mammalian Neurons

    PubMed Central

    Padzik, Artur; Deshpande, Prasannakumar; Hollos, Patrik; Franker, Mariella; Rannikko, Emmy H.; Cai, Dawen; Prus, Piotr; Mågård, Mats; Westerlund, Nina; Verhey, Kristen J.; James, Peter; Hoogenraad, Casper C.; Coffey, Eleanor T.

    2016-01-01

    Increased phosphorylation of the KIF5 anterograde motor is associated with impaired axonal transport and neurodegeneration, but paradoxically also with normal transport, though the details are not fully defined. JNK phosphorylates KIF5C on S176 in the motor domain; a site that we show is phosphorylated in brain. Microtubule pelleting assays demonstrate that phosphomimetic KIF5C(1-560)S176D associates weakly with microtubules compared to KIF5C(1-560)WT. Consistent with this, 50% of KIF5C(1-560)S176D shows diffuse movement in neurons. However, the remaining 50% remains microtubule bound and displays decreased pausing and increased bidirectional movement. The same directionality switching is observed with KIF5C(1-560)WT in the presence of an active JNK chimera, MKK7-JNK. Yet, in cargo trafficking assays where peroxisome cargo is bound, KIF5C(1-560)S176D-GFP-FRB transports normally to microtubule plus ends. We also find that JNK increases the ATP hydrolysis of KIF5C in vitro. These data suggest that phosphorylation of KIF5C-S176 primes the motor to either disengage entirely from microtubule tracks as previously observed in response to stress, or to display improved efficiency. The final outcome may depend on cargo load and motor ensembles. PMID:27013971

  13. 26 CFR 5c.168(f)(8)-10 - Leases between related parties. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Leases between related parties. 5c.168(f)(8)-10 Section 5c.168(f)(8)-10 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  14. 26 CFR 5c.168(f)(8)-5 - Term of lease.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Term of lease. 5c.168(f)(8)-5 Section 5c.168(f)(8)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  15. 26 CFR 5c.168(f)(8)-4 - Minimum investment of lessor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Minimum investment of lessor. 5c.168(f)(8)-4 Section 5c.168(f)(8)-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  16. 26 CFR 5c.168(f)(8)-11 - Consolidated returns. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Consolidated returns. 5c.168(f)(8)-11 Section 5c.168(f)(8)-11 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  17. 26 CFR 5c.44F-1 - Leases and qualified research expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Leases and qualified research expenses. 5c.44F-1 Section 5c.44F-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 §...

  18. 26 CFR 5c.103-1 - Leases and capital expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Leases and capital expenditures. 5c.103-1 Section 5c.103-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME...-1 Leases and capital expenditures. For purposes of section 103(b)(6)(D) and §...

  19. Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides.

    PubMed

    Lau, Yu Heng; de Andrade, Peterson; McKenzie, Grahame J; Venkitaraman, Ashok R; Spring, David R

    2014-12-15

    We investigated linear aliphatic dialkynes as a new structural class of i,i+7 linkers for the double-click stapling of p53-based peptides. The optimal combination of azido amino acids and dialkynyl linker length for MDM2 binding was determined. In a direct comparison between aliphatic and aromatic staple scaffolds, the aliphatic staples resulted in superior binding to MDM2 in vitro and superior p53-activating capability in cells when using a diazidopeptide derived from phage display. This work demonstrates that the nature of the staple scaffold is an important factor that can affect peptide bioactivity in cells.

  20. Profiles of Glucosinolates, Their Hydrolysis Products, and Quinone Reductase Inducing Activity from 39 Arugula (Eruca sativa Mill.) Accessions.

    PubMed

    Ku, Kang-Mo; Kim, Moo Jung; Jeffery, Elizabeth H; Kang, Young-Hwa; Juvik, John A

    2016-08-31

    Glucosinolates, their hydrolysis product concentrations, and the quinone reductase (QR) inducing activity of extracts of leaf tissue were assayed from 39 arugula (Eruca sativa Mill.) accessions. Arugula accessions from Mediterranean countries (n = 16; Egypt, Greece, Italy, Libya, Spain, and Turkey) and Northern Europe (n = 2; Poland and United Kingdom) were higher in glucosinolates and their hydrolysis products, especially glucoraphanin and sulforaphane, compared to those from Asia (n = 13; China, India, and Pakistan) and Middle East Asia (n = 8; Afghanistan, Iran, and Israel). The QR inducing activity was also the highest in Mediterranean and Northern European arugula accessions, possibly due to a significant positive correlation between sulforaphane and QR inducing activity (r = 0.54). No nitrile hydrolysis products were found, suggesting very low or no epithiospecifier protein activity from these arugula accessions. Broad sense heritability (H(2)) was estimated to be 0.91-0.98 for glucoinolates, 0.55-0.83 for their hydrolysis products, and 0.90 for QR inducing activity.

  1. From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis[W][OA

    PubMed Central

    de Kraker, Jan-Willem; Gershenzon, Jonathan

    2011-01-01

    Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilities. Here, we investigated the changes in protein structure that have occurred during the recruitment of IPMS from amino acid to glucosinolate metabolism. The major sequence difference between IPMS and MAM is the absence of 120 amino acids at the C-terminal end of MAM that constitute a regulatory domain for Leu-mediated feedback inhibition. Truncation of this domain in Arabidopsis IPMS2 results in loss of Leu feedback inhibition and quaternary structure, two features common to MAM enzymes, plus an 8.4-fold increase in the kcat/Km for a MAM substrate. Additional exchange of two amino acids in the active site resulted in a MAM-like enzyme that had little residual IPMS activity. Hence, combination of the loss of the regulatory domain and a few additional amino acid exchanges can explain the evolution of MAM from IPMS during its recruitment from primary to secondary metabolism. PMID:21205930

  2. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    PubMed

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  3. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery

    PubMed Central

    Calmes, Benoit; N’Guyen, Guillaume; Dumur, Jérome; Brisach, Carlos A.; Campion, Claire; Iacomi, Béatrice; Pigné, Sandrine; Dias, Eva; Macherel, David; Guillemette, Thomas; Simoneau, Philippe

    2015-01-01

    Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola. PMID:26089832

  4. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    PubMed

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  5. Assessing the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (brassica oleracea L. var. italica) sprouts and florets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se ...

  6. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  7. Aliphatic polyesters for medical imaging and theranostic applications.

    PubMed

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices.

  8. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment

    NASA Astrophysics Data System (ADS)

    Coates, M.; Connell, D. W.; Bodero, J.; Miller, G. J.; Back, R.

    1986-07-01

    This investigation was undertaken to assess the chemical nature, occurrence, and possible origin of petroleum hydrocarbons in the Great Barrier Reef ecosystem. Aliphatic hydrocarbons in surface sediments, water, and a suite of seven species from widely separated coral reefs in the Great Barrier Reef area were analysed by gas chromatography, and by gas chromatography coupled with mass spectrometry. The hydrocarbons found were substantially of biogenic origin. The major components were n-pentadecane, n-heptadecane, pristane and mono-alkenes based on heptadecane, and were believed to originate from benthic algae and phytoplankton. There was no evidence to suggest that lipid content had any influence on hydrocarbon content. Hydrocarbons from the organisms and sediments have characteristic composition patterns which would be altered by the presence of petroleum hydrocarbons. An unresolved complex mixture, usually considered indicative of petroleum contamination, was found in greater than trace amounts only in Holothuria (sea cucumber) and Acropora (coral) from the Capricorn Group, and in some sediment samples from the Capricorn Group and Lizard Island area.

  9. Organochlorine compounds and aliphatic hydrocarbons in Pacific walrus blubber.

    PubMed

    Seagars, D J; Garlich-Miller, J

    2001-01-01

    Blubber samples were collected from 8 male and 19 female Pacific walrus (Odobenus rosmarus divergens) taken during a 1991 joint USA/USSR cruise traveling widely through the Bering Sea. Dieldrin was found at a level similar to that reported 10 years earlier; oxychlordane was found at a slightly higher concentration than reported previously (Taylor et aL, 1989). Heptachlor epoxide was detected for the first time and found at a low concentration. An initial testing for alpha-, beta- and gamma-HCH detected concentrations similar to those in other Bering Sea pinnipeds. Mean summation of PCB was 0.45 microg g(-1) wet weight in males and 0.16 microg g(-1) in females; only one sample was > 1 microg g(-1). Traces of aliphatic hydrocarbons were detected in all sampled animals, only pristane (x = 0.48 microg g(-1)) was found in concentrations > 1 microg g(-1). Small sample sizes, a lack of samples from immature animals, and uniformly low concentrations of contaminants precluded meaningful analysis of age-related effects and regional differences.

  10. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, Marvin I.; Gelbein, Abraham P.

    1984-01-01

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  11. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, M.I.; Gelbein, A.P.

    1984-10-16

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200 to 450 C and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  12. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...

  13. Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The objective of this project is to qualify candidate alternatives to Aliphatic Isocyanate Polyurethane coatings under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  14. Effects of rapeseed-press cake glucosinolates and iodine on the performance, the thyroid gland and the liver vitamin A status of pigs.

    PubMed

    Schöne, F; Tischendorf, F; Leiterer, M; Hartung, H; Bargholz, J

    2001-01-01

    Rapeseed press cake (per kg DM 181 g EE, 341 g CP and 23.3 mmol glucosinolates) was tested in a long-term experiment with a total of sixty pigs (live weight range 24 to 104 kg). The 3 x 2 factorial design consisted of three rapeseed press cake levels (no rapeseed press cake--control, 75 g or 150 g rapeseed press cake per kg diet) each with two iodine dosages (125 or 250 micrograms supplementary iodine per kg diet). Reduced feed intake and depressed weight gain were found in groups receiving 150 g rapeseed press cake per kg diet, which correspond to 3.2 mmol glucosinolates per kg diet. At an inclusion level of 75 g rapeseed-press cake per kg diet no differences in feed intake and growth intensity were recorded in comparison to the rape feed free control. The rapeseed-press cake diet increased the weight of thyroid gland and liver and decreased the serum thyroxine (T4) concentration. Higher iodine dosage increased the serum T4 concentration of pigs receiving 75 g rapeseed press cake per kg diet (= 1.6 mmol glucosinolates per kg diet) to the level of the control group and retarded the enlargement of the thyroid gland. Intake of rapeseed products lowered the iodine content of the thyroid gland, however, there was no significant difference between groups given 1.6 and 3.2 mmol glucosinolates per kg diet. The vitamin A content of the whole liver and the vitamin A serum concentration were not influenced by the diets tested. However, rapeseed press cake and the glucosinolates, respectively, decreased the vitamin A concentration per gram liver due to the organ enlargement and the resulting dilution effect.

  15. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay.

  16. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.

    PubMed

    Stroud, J L; Paton, G I; Semple, K T

    2007-05-01

    Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.

  17. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments from the Neuquen River, Argentine Patagonia.

    PubMed

    Monza, Liliana B; Loewy, Ruth M; Savini, Mónica C; Pechen de d'Angelo, Ana M

    2013-01-01

    Spatial distribution and probable sources of aliphatic and polyaromatic hydrocarbons (AHs, PAHs) were investigated in surface sediments collected along the bank of the Neuquen River, Argentina. Total concentrations of aliphatic hydrocarbons ranged between 0.41 and 125 μg/g dw. Six stations presented low values of resolved aliphatic hydrocarbons and the n-alkane distribution indexes applied suggested a clear biogenic source. These values can be considered the baseline levels of aliphatic hydrocarbons for the river sediments. This constitutes important information for the assessment of future impacts since a strong impulse in the exploitation of shale gas and shale oil in these zones is nowadays undergoing. For the other 11 stations, a mixture of aliphatic hydrocarbons of petrogenic and biogenic origin was observed. The spatial distribution reflects local inputs of these pollutants with a significant increase in concentrations in the lower course, where two major cities are located. The highest values of total aliphatic hydrocarbons were found in this sector which, in turn, was the only one where individual PAHs were detected.

  18. A THEORETICAL STUDY ON THE VIBRATIONAL SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES WITH ALIPHATIC SIDEGROUPS

    SciTech Connect

    Sadjadi, SeyedAbdolreza; Zhang, Yong; Kwok, Sun

    2015-03-01

    The role of aliphatic side groups in the formation of astronomical unidentified infrared emission (UIE) features is investigated by applying the density functional theory to a series of molecules with mixed aliphatic-aromatic structures. The effects of introducing various aliphatic groups to a fixed polycyclic aromatic hydrocarbon (PAH) core (ovalene) are studied. Simulated spectra for each molecule are produced by applying a Drude profile at T = 500 K while the molecule is kept at its electronic ground state. The vibrational normal modes are classified using a semi-quantitative method. This allows us to separate the aromatic and aliphatic vibrations, and therefore provides clues to what types of vibrations are responsible for the emissions bands at different wavelengths. We find that many of the UIE bands are not pure aromatic vibrational bands but may represent coupled vibrational modes. The effects of aliphatic groups on the formation of the 8 μm plateau are quantitatively determined. The vibrational motions of methyl (–CH{sub 3}) and methylene (–CH{sub 2} –) groups can cause the merging of the vibrational bands of the parent PAH and the forming of broad features. These results suggest that aliphatic structures can play an important role in the UIE phenomenon.

  19. THE CARRIERS OF THE INTERSTELLAR UNIDENTIFIED INFRARED EMISSION FEATURES: AROMATIC OR ALIPHATIC?

    SciTech Connect

    Li Aigen; Draine, B. T. E-mail: draine@astro.princeton.edu

    2012-12-01

    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to coal- or kerogen-like organic nanoparticles with a mixed aromatic-aliphatic structure. However, we show in this Letter that this hypothesis is inconsistent with observations. We estimate the aliphatic fraction of the UIE carriers based on the observed intensities of the 3.4 {mu}m and 6.85 {mu}m emission features by attributing them exclusively to aliphatic C-H stretch and aliphatic C-H deformation vibrational modes, respectively. We derive the fraction of carbon atoms in aliphatic form to be <15%. We conclude that the UIE emitters are predominantly aromatic, with aliphatic material at most a minor part of the UIE carriers. The PAH model is consistent with astronomical observations and PAHs dominate the strong UIE bands.

  20. Differential allelic expression in leukoblast from patients with acute myeloid leukemia suggests genetic regulation of CDA, DCK, NT5C2, NT5C3, and TP53.

    PubMed

    Jordheim, L P; Nguyen-Dumont, T; Thomas, X; Dumontet, C; Tavtigian, S V

    2008-12-01

    mRNA expression levels of certain genes have shown predictive value for the outcome of cytarabine-treated AML-patients. We hypothesized that genetic variants play a role in the regulation of the transcription of these genes. We studied leukoblasts from 82 patients with acute myeloid leukemia and observed various extent and frequency of differential allelic expression in the CDA, DCK, NT5C2, NT5C3, and TP53 genes. Our attempts to identify the causative regulatory single nucleotide polymorphisms by a bioinformatics approach did not succeed. However, our results indicate that genetic variations are at least in part responsible for the differences in overall expression levels of these genes.

  1. PPP2R5C Couples Hepatic Glucose and Lipid Homeostasis

    PubMed Central

    Cheng, Yong-Sheng; Seibert, Oksana; Klöting, Nora; Dietrich, Arne; Straßburger, Katrin; Fernández-Veledo, Sonia; Vendrell, Joan J.; Zorzano, Antonio; Blüher, Matthias; Herzig, Stephan; Berriel Diaz, Mauricio; Teleman, Aurelio A.

    2015-01-01

    In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state. PMID:26440364

  2. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    PubMed

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  3. Acid-base thermochemistry of gaseous aliphatic α-aminoacids.

    PubMed

    Bouchoux, Guy; Huang, Sihua; Inda, Bhawani Singh

    2011-01-14

    Acid-base thermochemistry of isolated aliphatic amino acids (denoted AAA): glycine, alanine, valine, leucine, isoleucine and proline has been examined theoretically by quantum chemical computations at the G3MP2B3 level. Conformational analysis on neutral, protonated and deprotonated species has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. Comparison of the G3MP2B3 theoretical proton affinities, PA, and ΔH(acid) with experimental results is shown to be correct if experimental thermochemistry is re-evaluated and adapted to the most recent acidity-basicity scales. From this point of view, a set of evaluated proton affinities of 887, 902, 915, 916, 919 and 941 kJ mol(-1), and a set of evaluated ΔH(acid) of 1433, 1430, 1423, 1423, 1422 and 1426 kJ mol(-1), is proposed for glycine, alanine, valine, leucine, isoleucine and proline, respectively. Correlations with structural parameters (Taft's σ(α) polarizability parameter and molecular size) suggest that polarizability of the side chain is the major origin of the increase in PA and decrease in ΔH(acid) along the homologous series glycine, alanine, valine and leucine/isoleucine. Heats of formation of gaseous species AAA, AAAH(+) and [AAA-H](-) were computed at the G3MP2B3 level. The present study provides previously unavailable Δ(f)H°(298) for the ionized species AAAH(+) and [AAA-H](-). Comparison with Benson's estimate, and correlation with molecular size, show that several experimental Δ(f)H°(298) values of neutral or gaseous AAA might be erroneous.

  4. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    PubMed

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages.

  5. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops

    PubMed Central

    Bell, Luke; Oruna-Concha, Maria Jose; Wagstaff, Carol

    2015-01-01

    Liquid chromatography mass spectrometry (LC–MS) was used to obtain glucosinolate and flavonol content for 35 rocket accessions and commercial varieties. 13 glucosinolates and 11 flavonol compounds were identified. Semi-quantitative methods were used to estimate concentrations of both groups of compounds. Minor glucosinolate composition was found to be different between accessions; concentrations varied significantly. Flavonols showed differentiation between genera, with Diplotaxis accumulating quercetin glucosides and Eruca accumulating kaempferol glucosides. Several compounds were detected in each genus that have only previously been reported in the other. We highlight how knowledge of phytochemical content and concentration can be used to breed new, nutritionally superior varieties. We also demonstrate the effects of controlled environment conditions on the accumulations of glucosinolates and flavonols and explore the reasons for differences with previous studies. We stress the importance of consistent experimental design between research groups to effectively compare and contrast results. PMID:25442630

  6. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC-MS: highlighting the potential for improving nutritional value of rocket crops.

    PubMed

    Bell, Luke; Oruna-Concha, Maria Jose; Wagstaff, Carol

    2015-04-01

    Liquid chromatography mass spectrometry (LC-MS) was used to obtain glucosinolate and flavonol content for 35 rocket accessions and commercial varieties. 13 glucosinolates and 11 flavonol compounds were identified. Semi-quantitative methods were used to estimate concentrations of both groups of compounds. Minor glucosinolate composition was found to be different between accessions; concentrations varied significantly. Flavonols showed differentiation between genera, with Diplotaxis accumulating quercetin glucosides and Eruca accumulating kaempferol glucosides. Several compounds were detected in each genus that have only previously been reported in the other. We highlight how knowledge of phytochemical content and concentration can be used to breed new, nutritionally superior varieties. We also demonstrate the effects of controlled environment conditions on the accumulations of glucosinolates and flavonols and explore the reasons for differences with previous studies. We stress the importance of consistent experimental design between research groups to effectively compare and contrast results.

  7. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min.

  8. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity.

  9. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore.

    PubMed

    Stauber, Einar J; Kuczka, Petrissa; van Ohlen, Maike; Vogt, Birgit; Janowitz, Tim; Piotrowski, Markus; Beuerle, Till; Wittstock, Ute

    2012-01-01

    Plants have evolved a variety of mechanisms for dealing with insect herbivory among which chemical defense through secondary metabolites plays a prominent role. Physiological, behavioural and sensorical adaptations to these chemicals provide herbivores with selective advantages allowing them to diversify within the newly occupied ecological niche. In turn, this may influence the evolution of plant metabolism giving rise to e.g. new chemical defenses. The association of Pierid butterflies and plants of the Brassicales has been cited as an illustrative example of this adaptive process known as 'coevolutionary armsrace'. All plants of the Brassicales are defended by the glucosinolate-myrosinase system to which larvae of cabbage white butterflies and related species are biochemically adapted through a gut nitrile-specifier protein. Here, we provide evidence by metabolite profiling and enzyme assays that metabolism of benzylglucosinolate in Pieris rapae results in release of equimolar amounts of cyanide, a potent inhibitor of cellular respiration. We further demonstrate that P. rapae larvae develop on transgenic Arabidopsis plants with ectopic production of the cyanogenic glucoside dhurrin without ill effects. Metabolite analyses and fumigation experiments indicate that cyanide is detoxified by β-cyanoalanine synthase and rhodanese in the larvae. Based on these results as well as on the facts that benzylglucosinolate was one of the predominant glucosinolates in ancient Brassicales and that ancient Brassicales lack nitrilases involved in alternative pathways, we propose that the ability of Pierid species to safely handle cyanide contributed to the primary host shift from Fabales to Brassicales that occured about 75 million years ago and was followed by Pierid species diversification.

  10. Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum.

    PubMed

    Kuzina, Vera; Nielsen, Jens Kvist; Augustin, Jörg Manfred; Torp, Anna Maria; Bak, Søren; Andersen, Sven Bode

    2011-02-01

    Combined genomics and metabolomics approaches were used to unravel molecular mechanisms behind interactions between winter cress (Barbarea vulgaris) and flea beetle (Phyllotreta nemorum). B. vulgaris comprises two morphologically, biochemically and cytologically deviating types, which differ in flea beetle resistance, saponin and glucosinolate profiles, as well as leaf pubescence. An F2 population generated from a cross between the two B. vulgaris types was used to construct a B. vulgaris genetic map based on 100 AFLP and 31 microsatellite markers. The map was divided into eight linkage groups. QTL (quantitative trait loci) analysis revealed a total of 15 QTL affecting eight traits, including nine QTL for four saponins, two QTL for two glucosinolates, two QTL for hairiness, and two QTL for flea beetle resistance. The two QTL for resistance towards flea beetles in B. vulgaris co-localized with QTL for the four saponins associated with resistance. Furthermore, global QTL analysis of B. vulgaris metabolites identified QTL for a number of flavonoid glycosides and additional saponins from both resistant and susceptible types. The transcriptome of the resistant B. vulgaris type was sequenced by pyrosequencing, and sequences containing microsatellites were identified. Microsatellite types in B. vulgaris were similar to Arabidopsis thaliana but different from Oryza sativa. Comparative analysis between B. vulgaris and A. thaliana revealed a remarkable degree of synteny between a large part of linkage groups 1 and 4 of B. vulgaris harboring the two QTL for flea beetle resistance and Arabidopsis chromosomes 3 and 1. Gene candidates that may underlie QTL for resistance and saponin biosynthesis are discussed.

  11. Indigenous aliphatic amines in the aqueously altered Orgueil meteorite

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; Dworkin, Jason P.; Elsila, Jamie E.

    2015-10-01

    The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon-rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound-specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g-1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent-body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound-specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from -20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C-depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)- and (S)-sec-butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the L-enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec-butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of

  12. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  13. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  14. Mitomycin C binding to poly[d(G-m5C)].

    PubMed Central

    Portugal, J; Sánchez-Baeza, F J

    1995-01-01

    Poly[d(G-m5C)] was modified by reductively activated mitomycin C, an anti-tumour drug, under buffer conditions which are known to favour either the B or the Z conformations of DNA. C.d. and 31P-n.m.r. were used to characterize the poly[d(G-m5C)]-mitomycin cross-linked complexes, as well as the effects on the equilibrium between the B and Z forms of the polynucleotide. Mitomycin C appears to inhibit the B-->Z transition, even in the presence of 3 mM MgCl2, while the Z-form of poly[d(G-m5C)] does not interact significantly with the drug under bifunctionally activating conditions; thus no reversion from the Z-form to the B-form of the polynucleotide can be observed under the salt conditions which are required for the Z-form to exist. PMID:7864808

  15. The glucosinolate-myrosinase system in nasturtium (Tropaeolum majus L.): variability of biochemical parameters and screening for clones feasible for pharmaceutical utilization.

    PubMed

    Kleinwächter, Maik; Schnug, Ewald; Selmar, Dirk

    2008-12-10

    Leaves of Tropaeolum majus L. contain high amounts of the glucosinolate glucotropaeolin. They are used in traditional medicine to treat infections of the urinary tract. When Tropaeolum leaves are consumed, glucotropaeolin is hydrolyzed to yield mustard oils, which are absorbed in the intestine and excreted in the urine, exhibiting their antimicrobial activity. For a corresponding phytopharmacon, a sufficiently high glucotropaeolin concentration is required and any degradation of glucosinolates while drying must be minimized, i.e. the post mortal cleavage by myrosinases, which are activated by ascorbic acid. In extensive screenings, the dominant parameters determining the glucotropaeolin content in the dried leaves were quantified. It turned out that the glucotropaeolin concentration in the dried leaves represented the most suitable screening parameter. The screening of several hundred Tropaeolum plants resulted in the selection of eight high-yield varieties, from which in vitro plants had been generated and propagated as a source for large field trials.

  16. Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.).

    PubMed

    Johansen, Tor J; Hagen, Sidsel F; Bengtsson, Gunnar B; Mølmann, Jørgen A B

    2016-04-01

    Swede is a root vegetable grown under a range of growth conditions that may influence the product quality. The objective of this controlled climate study was to find the effect of growth temperature on sensory quality and the contents of glucosinolates, vitamin C and soluble sugars. High temperature (21 °C) enhanced the intensities of sensory attributes like pungent odour, bitterness, astringency and fibrousness, while low temperature (9 °C) was associated with acidic odour, sweet taste, crispiness and juiciness. Ten glucosinolates were quantified, with progoitrin as the dominant component followed by glucoberteroin, both with highest content at 21 °C. Vitamin C also had its highest content at 21 °C, while the total sugar content was lowest at this temperature. In conclusion, the study demonstrated clear effects of growth temperature on sensory quality and some chemical properties of swede and indicated a good eating quality of swedes grown at low temperatures.

  17. Aliphatic amine responsive organogel system based on a simple naphthalimide derivative.

    PubMed

    Cao, Xinhua; Zhang, Tingting; Gao, Aiping; Li, Keli; Cheng, Qiuli; Song, Lijuan; Zhang, Min

    2014-09-07

    A new gelator 1 based on a simple naphthalimide derivative was synthesized and fully characterized. It was found that the organogel 1 was formed only in a mixed solvent of methanol and H2O (1/1, v/v). The organogel was thoroughly characterized by using various microscopic techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and UV-vis, fluorescence and Fourier transform infrared (FTIR) spectroscopy. Hydrogen bonds were the main driving force for the organogel formation. Interestingly, the organogel 1 exhibited the ability to distinguish aliphatic amines from aromatic amines. The gel state and fluorescence emission intensity were both changed after two minutes after the addition of aliphatic amines. This organogel system could be applied in the detection of aliphatic amine pollutants.

  18. Manganese-catalyzed late-stage aliphatic C-H azidation.

    PubMed

    Huang, Xiongyi; Bergsten, Tova M; Groves, John T

    2015-04-29

    We report a manganese-catalyzed aliphatic C-H azidation reaction that can efficiently convert secondary, tertiary, and benzylic C-H bonds to the corresponding azides. The method utilizes aqueous sodium azide solution as the azide source and can be performed under air. Besides its operational simplicity, the potential of this method for late-stage functionalization has been demonstrated by successful azidation of various bioactive molecules with yields up to 74%, including the important drugs pregabalin, memantine, and the antimalarial artemisinin. Azidation of celestolide with a chiral manganese salen catalyst afforded the azide product in 70% ee, representing a Mn-catalyzed enantioselective aliphatic C-H azidation reaction. Considering the versatile roles of organic azides in modern chemistry and the ubiquity of aliphatic C-H bonds in organic molecules, we envision that this Mn-azidation method will find wide application in organic synthesis, drug discovery, and chemical biology.

  19. Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris Estuarine System, Sergipe, Brazil.

    PubMed

    Barbosa, José Carlos S; Santos, Lukas G G V; Sant'Anna, Mércia V S; Souza, Michel R R; Damasceno, Flaviana C; Alexandre, Marcelo R

    2016-03-15

    The seasonal assessment of anthropogenic activities in the Vaza Barris estuarine river system, located in the Sergipe state, northeastern Brazil, was performed using the aliphatic hydrocarbon distribution. The aliphatic hydrocarbon and isoprenoid (Pristane and Phytane) concentrations ranged between 0.19 μg g(-1) and 8.5 μg g(-1) of dry weight. Data were analyzed using Kruskal-Wallis test, with significance level set at p<0.05, and no seasonality distribution change was observed. The Carbon Preference Index (CPI), associated with n-alkanes/n-C16, Low Molecular Weight/High Molecular Weight ratio (LMW/HMW) and Terrigenous to Aquatic Ratio (TAR) suggested biogenic input of aliphatic hydrocarbons for most samples, with significant contribution of higher plants.

  20. The effect of aliphatic fuel constituents on the biodegradation of polycyclic aromatic hydrocarbons

    SciTech Connect

    Gamerdinger, A.P.

    1995-12-01

    In petroleum-derived waste, n-alkanes are often codeposited with polycyclic aromatic hydrocarbons (PAHs). The impact of aliphatic fuel constituents on the biodegradation of the more toxic PAHs is considered. Biodegradation of naphthalene by a Coryneform bacteria was examined in biphasic, slurry systems containing and aliphatic solvent in addition to the aqueous phase. The effect of solvent hydrophobicity was evaluated by varying the solvent treatment; a homologous series of n-alkanes was used. Relative to an aqueous system (no solvent), the extent of naphthalene degradation was enhanced in the presence of decane, dodecane, and hexadecane. Biodegradation was apparent, but decreased in the presence of octane, and was completely absent in the presence of hexane. The impact of aliphatic constituents on PAH biodegradation is a function of solvent hydrophobicity. The results indicate that the presence of multiple chemical constituents in complex systems modifies bioavailability and biodegradation.

  1. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L.

    PubMed

    Ahuja, Ishita; Borgen, Birgit Hafeld; Hansen, Magnor; Honne, Bjørn Ivar; Müller, Caroline; Rohloff, Jens; Rossiter, John Trevor; Bones, Atle Magnar

    2011-10-01

    Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate-myrosinase system or the 'mustard oil bomb'. The 'mustard oil bomb' which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as 'myrosin cells' and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed.

  2. 26 CFR 5c.168(f)(8)-5 - Term of lease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...)(8)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-5... must at least equal the period prescribed under section 168(c)(2) for the recovery property class...

  3. 26 CFR 5c.168(f)(8)-5 - Term of lease.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...)(8)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-5... must at least equal the period prescribed under section 168(c)(2) for the recovery property class...

  4. 26 CFR 5c.168(f)(8)-5 - Term of lease.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...)(8)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-5... must at least equal the period prescribed under section 168(c)(2) for the recovery property class...

  5. 26 CFR 5c.168(f)(8)-5 - Term of lease.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...)(8)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-5... must at least equal the period prescribed under section 168(c)(2) for the recovery property class...

  6. 26 CFR 5c.168(f)(8)-4 - Minimum investment of lessor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Minimum investment of lessor. 5c.168(f)(8)-4....168(f)(8)-4 Minimum investment of lessor. (a) Minimum investment. Under section 168(f)(8)(B)(ii), an... has a minimum at risk investment which, at the time the property is placed in service under the...

  7. Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia

    PubMed Central

    Meyer, Julia A.; Wang, Jinhua; Hogan, Laura E.; Yang, Jun J.; Dandekar, Smita; Patel, Jay P.; Tang, Zuojian; Zumbo, Paul; Li, Sheng; Zavadil, Jiri; Levine, Ross L.; Cardozo, Timothy; Hunger, Stephen P.; Raetz, Elizabeth A.; Evans, William E.; Morrison, Debra J.; Mason, Christopher E.; Carroll, William L.

    2013-01-01

    Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis despite intensive retreatment, due to intrinsic drug resistance1-2. The biological pathways that mediate resistance are unknown. Here we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten pediatric B lymphoblastic leukemia patients using RNA-sequencing. Transcriptome sequencing identified 20 newly acquired novel non-synonymous mutations not present at initial diagnosis, of which two patients harbored relapse specific mutations in the same gene, NT5C2, a 5′-nucleotidase. Full exon sequencing of NT5C2 was completed in 61 additional relapse specimens, identifying five additional cases. Enzymatic analysis of mutant proteins revealed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analogue therapies. Clinically, all patients who harbored NT5C2 mutations relapsed early, or within 36 months of initial diagnosis (p=0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug resistant clones in ALL. PMID:23377183

  8. 26 CFR 5c.168(f)(8)-1 - Special rules for leases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY TAX ACT OF 1981 § 5c... regard to section 168(f)(8), or, if any party with an economic interest in the property (other than the... economic life and falls within the 5-year ACRS class. Y Corp. is a person meeting the qualifications...

  9. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia.

    PubMed

    Meyer, Julia A; Wang, Jinhua; Hogan, Laura E; Yang, Jun J; Dandekar, Smita; Patel, Jay P; Tang, Zuojian; Zumbo, Paul; Li, Sheng; Zavadil, Jiri; Levine, Ross L; Cardozo, Timothy; Hunger, Stephen P; Raetz, Elizabeth A; Evans, William E; Morrison, Debra J; Mason, Christopher E; Carroll, William L

    2013-03-01

    Relapsed childhood acute lymphoblastic leukemia (ALL) carries a poor prognosis, despite intensive retreatment, owing to intrinsic drug resistance. The biological pathways that mediate resistance are unknown. Here, we report the transcriptome profiles of matched diagnosis and relapse bone marrow specimens from ten individuals with pediatric B-lymphoblastic leukemia using RNA sequencing. Transcriptome sequencing identified 20 newly acquired, novel nonsynonymous mutations not present at initial diagnosis, with 2 individuals harboring relapse-specific mutations in the same gene, NT5C2, encoding a 5'-nucleotidase. Full-exon sequencing of NT5C2 was completed in 61 further relapse specimens, identifying additional mutations in 5 cases. Enzymatic analysis of mutant proteins showed that base substitutions conferred increased enzymatic activity and resistance to treatment with nucleoside analog therapies. Clinically, all individuals who harbored NT5C2 mutations relapsed early, within 36 months of initial diagnosis (P = 0.03). These results suggest that mutations in NT5C2 are associated with the outgrowth of drug-resistant clones in ALL.

  10. 9 CFR 381.221 - Designation of States under paragraph 5(c) of the Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Designation of States under paragraph 5(c) of the Act. 381.221 Section 381.221 Animals and Animal Products FOOD SAFETY AND INSPECTION... Establishments With Operations Which Would Clearly Endanger the Public Health; Disposition of Poultry...

  11. 9 CFR 381.221 - Designation of States under paragraph 5(c) of the Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Designation of States under paragraph 5(c) of the Act. 381.221 Section 381.221 Animals and Animal Products FOOD SAFETY AND INSPECTION... Establishments With Operations Which Would Clearly Endanger the Public Health; Disposition of Poultry...

  12. 9 CFR 381.221 - Designation of States under paragraph 5(c) of the Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Designation of States under paragraph 5(c) of the Act. 381.221 Section 381.221 Animals and Animal Products FOOD SAFETY AND INSPECTION... Establishments With Operations Which Would Clearly Endanger the Public Health; Disposition of Poultry...

  13. 9 CFR 381.221 - Designation of States under paragraph 5(c) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Designation of States under paragraph 5(c) of the Act. 381.221 Section 381.221 Animals and Animal Products FOOD SAFETY AND INSPECTION... Establishments With Operations Which Would Clearly Endanger the Public Health; Disposition of Poultry...

  14. 9 CFR 381.221 - Designation of States under paragraph 5(c) of the Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Designation of States under paragraph 5(c) of the Act. 381.221 Section 381.221 Animals and Animal Products FOOD SAFETY AND INSPECTION... Establishments With Operations Which Would Clearly Endanger the Public Health; Disposition of Poultry...

  15. 26 CFR 5c.103-2 - Leases and industrial development bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Leases and industrial development bonds. 5c.103....103-2 Leases and industrial development bonds. For purposes of section 103(b)(2), the determination of whether an obligation constitutes an industrial development bond shall be made without regard to...

  16. 26 CFR 5c.103-2 - Leases and industrial development bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Leases and industrial development bonds. 5c.103....103-2 Leases and industrial development bonds. For purposes of section 103(b)(2), the determination of whether an obligation constitutes an industrial development bond shall be made without regard to...

  17. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets.

    PubMed

    Ávila, Fabricio William; Faquin, Valdemar; Yang, Yong; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2013-07-03

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.

  18. Folding and self-assembly of aromatic and aliphatic urea oligomers: towards connecting structure and function.

    PubMed

    Fischer, Lucile; Guichard, Gilles

    2010-07-21

    Folding and self-assembly of biomacromolecules has inspired the development of discrete, non-natural oligomers that fold and/or self-assemble in a controlled manner. Though aromatic and aliphatic oligoamides remain unmatched for structural diversity and synthetic versatility, oligomers based on amide bond surrogates, such as urea backbones, also demonstrated a propensity for folding and self-assembly. In this Perspective, we review the advances in the design of oligomeric aromatic and aliphatic urea sequences (essentially N,N'-linked) that fold and/or self-assemble. Whenever applicable, the relationship between structure and function will be highlighted.

  19. An Iminium Salt Organocatalyst for Selective Aliphatic C-H Hydroxylation.

    PubMed

    Wang, Daoyong; Shuler, William G; Pierce, Conor J; Hilinski, Michael K

    2016-08-05

    The first examples of catalysis of aliphatic C-H hydroxylation by an iminium salt are presented. The method allows the selective organocatalytic hydroxylation of unactivated 3° C-H bonds at room temperature using hydrogen peroxide as the terminal oxidant. Hydroxylation of an unactivated 2° C-H bond is also demonstrated. Furthermore, improved functional group compatibility over other catalytic methods is reported in the form of selectivity for aliphatic C-H hydroxylation over alcohol oxidation. On the basis of initial mechanistic studies, an oxaziridinium species is proposed as the active oxidant.

  20. On the aliphatic versus aromatic content of the carriers of the `unidentified' infrared emission features

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Glaser, R.; Li, Aigen; Zhong, J. X.

    2016-10-01

    Although it is generally accepted that the unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, the exact nature of their carriers remains unknown: whether they are free-flying, predominantly aromatic gas-phase molecules, or amorphous solids with a mixed aromatic/aliphatic composition are being debated. Recently, the 3.3 and 3.4 μm features which are commonly respectively attributed to aromatic and aliphatic C-H stretches have been used to place an upper limit of ˜2 per cent on the aliphatic fraction of the UIE carriers (i.e. the number of C atoms in aliphatic chains to that in aromatic rings). Here we further explore the aliphatic versus aromatic content of the UIE carriers by examining the ratio of the observed intensity of the 6.2 μm aromatic C-C feature (I6.2) to that of the 6.85 μm aliphatic C-H deformation feature (I6.85). To derive the intrinsic oscillator strengths of the 6.2 μm stretch (A6.2) and the 6.85 μm deformation (A6.85), we employ density functional theory to compute the vibrational spectra of seven methylated polycyclic aromatic hydrocarbon molecules and their cations. By comparing I6.85/I6.2 with A6.85/A6.2, we derive the fraction of C atoms in methyl(ene) aliphatic form to be at most ˜10 per cent, confirming the earlier finding that the UIE emitters are predominantly aromatic. We have also computed the intrinsic strength of the 7.25 μm feature (A7.25), another aliphatic C-H deformation band. We find that A6.85 appreciably exceeds A7.25. This explains why the 6.85 μm feature is more frequently detected in space than the 7.25 μm feature.

  1. Iron-Catalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source.

    PubMed

    Jian, Wujun; Ge, Liang; Jiao, Yihang; Qian, Bo; Bao, Hongli

    2017-03-20

    Because of the lack of effective alkylating reagents, alkyl etherification of olefins with general alkyl groups has not been previously reported. In this work, a variety of alkyl diacyl peroxides and peresters generated from aliphatic acids have been found to enable the first iron-catalyzed alkyl etherification of olefins with general alkyl groups. Primary, secondary and tertiary aliphatic acids are suitable for this reaction, delivering products with yields up to 97 %. Primary and secondary alcohols react well, affording products in up to 91 % yield.

  2. 26 CFR 5c.168(f)(8)-2 - Election to characterize transaction as a section 168(f)(8) lease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section 168(f)(8) lease. 5c.168(f)(8)-2 Section 5c.168(f)(8)-2 Internal Revenue INTERNAL REVENUE SERVICE... ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-2 Election to characterize transaction as a section 168(f... property was first placed in service, as defined in § 5c.168(f)(8)-6(b)(2)(i) (or prior to November...

  3. 26 CFR 5c.168(f)(8)-2 - Election to characterize transaction as a section 168(f)(8) lease.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section 168(f)(8) lease. 5c.168(f)(8)-2 Section 5c.168(f)(8)-2 Internal Revenue INTERNAL REVENUE SERVICE... ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-2 Election to characterize transaction as a section 168(f... property was first placed in service, as defined in § 5c.168(f)(8)-6(b)(2)(i) (or prior to November...

  4. 26 CFR 5c.168(f)(8)-2 - Election to characterize transaction as a section 168(f)(8) lease.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... section 168(f)(8) lease. 5c.168(f)(8)-2 Section 5c.168(f)(8)-2 Internal Revenue INTERNAL REVENUE SERVICE... ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-2 Election to characterize transaction as a section 168(f... property was first placed in service, as defined in § 5c.168(f)(8)-6(b)(2)(i) (or prior to November...

  5. 26 CFR 5c.168(f)(8)-2 - Election to characterize transaction as a section 168(f)(8) lease.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section 168(f)(8) lease. 5c.168(f)(8)-2 Section 5c.168(f)(8)-2 Internal Revenue INTERNAL REVENUE SERVICE... ECONOMIC RECOVERY TAX ACT OF 1981 § 5c.168(f)(8)-2 Election to characterize transaction as a section 168(f... property was first placed in service, as defined in § 5c.168(f)(8)-6(b)(2)(i) (or prior to November...

  6. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  7. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  8. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  9. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  10. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  11. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  12. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  13. Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes. Successful completion of this project will result in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project.

  14. Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, Javad; Hashemi, Seyed Hossein; Khoshbakht, Korros; Deihimfard, Reza

    2016-11-01

    The analysis of aliphatic hydrocarbons, which are composed of n-alkanes as well as branched and cyclic alkanes, can be used to distinguish between the sources of hydrocarbon contamination. In this study, the concentration of aliphatic hydrocarbons, soil pH, and organic matter in agricultural soils located south of Tehran were monitored. Eighty-three soil samples were taken from two depth ranges of 0-30 and 30-60 cm. The results showed that aliphatic compounds ranged from 0.22-68.11 mg kg(-1) at the top to 0.33-53.18 mg kg(-1) at subsoil. The amount of hydrocarbons increases from the northern parts toward the south, and hydrocarbon pollutants originated from both petroleum and non-petroleum sources. Higher concentrations of aliphatic compounds in the southern parts indicated that, aside from the practice of irrigating with untreated wastewater, leakage from oil refinery storage tanks possibly contributed to soil pollution. The results also showed that several sources have polluted the agricultural soils. It is necessary to develop a new local pollution criterion as a diagnostic index that includes not only hydrocarbons but also other parameters such as heavy metal content in both soil and untreated wastewater, surface runoff, and other irrigation water resources to determine the exact origin of pollution.

  15. SELECTIVE ENUMERATION OF AROMATIC AND ALIPHATIC HYDROCARBON DEGRADING BACTERIA BY A MOST-PROBABLE-NUMBER PROCEDURE

    EPA Science Inventory

    A most-portable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to ...

  16. A case study on the myth of emission from aliphatic amides

    NASA Astrophysics Data System (ADS)

    Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya

    2016-12-01

    For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.

  17. Decrease of aliphatic CHs from diatoms by in situ heating infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Alipour, Leila; Nakashima, Satoru

    2016-04-01

    In situ heating IR microspectroscopy at 260-300°C under air and N2 conditions has been conducted on diatom frustules to examine aliphatic CH losses during heating, simulating their changes with burial-diagenesis. Assuming a reaction model made up of two first-order kinetic relations, reaction rate constants k1 and k2 and activation energies (Ea) were evaluated for aliphatic CHs. The rate constants for loss of aliphatic CHs of diatom frustules under air and N2 flow are much larger, with much smaller activation energies (57-109 kJ/mol: air; 14-44 kJ/mol: N2), than those for conventional hydrocarbon generation reactions from kerogens (170-370 kJ/mol) studied at higher temperatures (350-450°C). The CH decrease rates are somewhat different from the amide I decrease (protein degradation) rates. The obtained results suggest that organic transformation reactions including degradation of aliphatic CHs inside the diatom silica frustules might be quite different from those of kerogens separated from the biological structures.

  18. Catalytic conversion of aliphatic alcohols on carbon nanomaterials: The roles of structure and surface functional groups

    NASA Astrophysics Data System (ADS)

    Tveritinova, E. A.; Zhitnev, Yu. N.; Chernyak, S. A.; Arkhipova, E. A.; Savilov, S. V.; Lunin, V. V.

    2017-03-01

    Carbon nanomaterials with the structure of graphene and different compositions of the surface groups are used as catalysts for the conversion of C2-C4 aliphatic alcohols. The conversions of ethanol, propanol- 1, propanol-2, butanol-1, butanol-2, and tert-butanol on carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are investigated. Oxidized and nonoxidized multiwalled carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are synthesized. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning and transmission electronic microscopies, Brunauer-Emmett-Teller method, derivatographic analyses, and the pulsed microcatalytic method are used to characterize comprehensively the prepared catalysts. It was established that all of the investigated carbon nanomaterials (with the exception of nondoped carbon nanoflakes) are bifunctional catalysts for the conversion of aliphatic alcohols, and promote dehydration reactions with the formation of olefins and dehydrogenation reactions with the formation of aldehydes or ketones. Nanoflakes doped with nitrogen are inert with respect to secondary alcohols and tert-butanol. The role of oxygen-containing and nitrogen-containing surface groups, and of the geometrical structure of the carbon matrix of graphene nanocarbon materials in the catalytic conversion of aliphatic alcohols, is revealed. Characteristics of the conversion of aliphatic alcohols that are associated with their structure are identified.

  19. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). Link to an amendment published at 79 FR 34636, June 18, 2014. (a) Chemical substance and significant new uses...

  20. PRECONCENTRATION OF ALIPHATIC AMINES FROM WATER DETERMINED BY CAPILLARY ELECTROPHORESIS WITH INDIRECT UV DETECTION

    EPA Science Inventory

    Preconcentration methodology based on adsorption chromatographies for enriching aliphatic amines (c1 to C4 substituted primary, secondary, and tertiary) and alkanolamines in water was studied by free zone capillary electrophoresis (CZE)with indirect UV detection. The solid-phase ...

  1. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  2. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  3. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  4. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  5. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  6. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  7. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation.

    PubMed

    Zhao, Cui; Wang, Naixin; Wang, Lin; Huang, Hongliang; Zhang, Rong; Yang, Fan; Xie, Yabo; Ji, Shulan; Li, Jian-Rong

    2014-11-21

    Hybrid membranes composed of porous metal-organic molecule nanocages as fillers embedded in a hyperbranched polymer (Boltorn W3000) were fabricated, which exhibit excellent pervaporation separation performances towards aromatic/aliphatic hydrocarbons. The unique nature of the molecule-based fillers and their good dispersion and compatibility in/with the polymer are responsible for the good membrane properties.

  8. 28. Details for reinforcing L5 C56 span 6. Photographic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Details for reinforcing L5 - C5-6 span 6. Photographic copy of drawing no. B-2-645-2, C.P.R. Algoma District-Thessalon Subdivision, Bridge no. 134.06-International Bridge at Sault Ste. Marie Bridge (from Canadian National Railroad, Sault Ste. Marie, Michigan). Delineator unknown, January 9, 1933. - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  9. Characterization of SSU5C promoter of a rbcS gene from duckweed (Lemna gibba).

    PubMed

    Wang, Youru; Zhang, Yong; Yang, Baoyu; Chen, Shiyun

    2011-04-01

    Photosynthesis-associated nuclear genes are able to respond to multiple environmental and developmental signals. Studies have shown that light signals coordinate with hormone signaling pathways to control photomorphogenesis. A small subunit of ribulose-1,5 bisphosphate carboxylase/oxygenase (rbcS) gene promoter was cloned from duckweed (Lemna gibba). Sequence analysis revealed this promoter is different from the previously reported rbcs promoters and is named SSU5C. Analysis of T1 transgenic tobacco plants with a reporter gene under the control of the SSU5C promoter revealed that this promoter is tissue-specific and is positively regulated by red light. Promoter deletion analysis confirmed a region from position -152 to -49 relative to the start of transcription containing boxes X, Y and Z, and is identified to be critical for phytochrome responses. Further functional analysis of constructs of box-X, Y, Z, which was respectively fused to the basal SSU5C promoter, defined boxes X, Y and Z alone are able to direct phytochrome-regulated expression, indicating that boxes Y and Z are different from those of the SSU5B promoters in L. gibba. This promoter may be used for plant gene expression in a tissue-specific manner.

  10. Exposure of the cat limb to @5C for 5 hours increases capillary permeability

    SciTech Connect

    Zhang, J.X.; Porter, L.P.; Wolf, M.B. )

    1991-03-11

    The authors previous study showed that 1 hr exposure to {approximately}5C temperatures did not decrease the solvent drag reflection coefficient ({sigma}{sub f}) for total plasma proteins in the isolated, constant-flow perfused cat hind limb. The present study determined if 5 hrs of cold exposure could increase permeability (decrease {sigma}{sub f}). {sigma}{sub f} was measured with their IMB method after lowering limb temperature to 3-6C by cooling the perfusing blood and the ambient air. To prevent edema at this low temperature, venous pressure had to be lowered to just above venous collapse and flow to {lt}2 ml/min/100g. 1 hr exposure to {approximately}5C did not reduce {sigma}{sub f} from the 37C control, but 5 hrs of exposure at {approximately}5C significantly reduced {sigma}{sub f} from 0.87 to 0.69. Hence, 5 hrs of perfusion at these low temperatures can cause a non-freezing cold injury with an increase in capillary permeability and edema formation. Also, the edema is enhanced by an increase in capillary hydrostatic pressure secondary to a venous resistance increase.

  11. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL.

    PubMed

    Tzoneva, Gannie; Perez-Garcia, Arianne; Carpenter, Zachary; Khiabanian, Hossein; Tosello, Valeria; Allegretta, Maddalena; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Paganin, Maddalena; Basso, Giuseppe; Hof, Jana; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo

    2013-03-01

    Acute lymphoblastic leukemia (ALL) is an aggressive hematological tumor resulting from the malignant transformation of lymphoid progenitors. Despite intensive chemotherapy, 20% of pediatric patients and over 50% of adult patients with ALL do not achieve a complete remission or relapse after intensified chemotherapy, making disease relapse and resistance to therapy the most substantial challenge in the treatment of this disease. Using whole-exome sequencing, we identify mutations in the cytosolic 5'-nucleotidase II gene (NT5C2), which encodes a 5'-nucleotidase enzyme that is responsible for the inactivation of nucleoside-analog chemotherapy drugs, in 20/103 (19%) relapse T cell ALLs and 1/35 (3%) relapse B-precursor ALLs. NT5C2 mutant proteins show increased nucleotidase activity in vitro and conferred resistance to chemotherapy with 6-mercaptopurine and 6-thioguanine when expressed in ALL lymphoblasts. These results support a prominent role for activating mutations in NT5C2 and increased nucleoside-analog metabolism in disease progression and chemotherapy resistance in ALL.

  12. Speleothem evidence for MIS 5c and 5a sea level above modern level at Bermuda

    NASA Astrophysics Data System (ADS)

    Wainer, Karine A. I.; Rowe, Mark P.; Thomas, Alexander L.; Mason, Andrew J.; Williams, Bruce; Tamisiea, Mark E.; Williams, Felicity H.; Düsterhus, André; Henderson, Gideon M.

    2017-01-01

    The history of sea level in regions impacted by glacio-isostasy provides constraints on past ice-sheet distribution and on the characteristics of deformation of the planet in response to loading. The Western North Atlantic-Caribbean region, and Bermuda in particular, is strongly affected by the glacial forebulge that forms as a result of the Laurentide ice-sheet present during glacial periods. The timing of growth of speleothems, at elevations close to sea level can provide records of minimum relative sea level (RSL). In this study we used U-Th dating to precisely date growth periods of speleothems from Bermuda which were found close to modern-day sea level. Results suggest that RSL at this location was above modern during MIS5e, MIS5c and MIS5a. These data support controversial previous indications that Bermudian RSL was significantly higher than RSL at other locations during MIS 5c and MIS 5a. We confirm that it is possible to explain a wide range of MIS5c-a relative sea levels observed across the Western North Atlantic-Caribbean in glacial isostatic adjustment models, but only with a limited range of mantle deformation constants. This study demonstrates the particular power of Bermuda as a gauge for response of the forebulge to glacial loading, and demonstrates the potential for highstands at this location to be significantly higher than in other regions, helping to explain the high sea levels observed for Bermuda from earlier highstands.

  13. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures.

    PubMed Central

    Chang, H L; Alvarez-Cohen, L

    1996-01-01

    The microbial degradation of chlorinated and nonchlorinated methanes, ethanes, and ethanes by a mixed methane-oxidizing culture grown under chemostat and batch conditions is evaluated and compared with that by two pure methanotrophic strains: CAC1 (isolated from the mixed culture) and Methylosinus trichosporium OB3b. With the exception of 1,1-dichloroethylene, the transformation capacity (Tc) for each chlorinated aliphatic hydrocarbon was generally found to be in inverse proportion to its chlorine content within each aliphatic group (i.e., methanes, ethanes, and ethenes), whereas similar trends were not observed for degradation rate constants. Tc trends were similar for all methane-oxidizing cultures tested. None of the cultures were able to degrade the fully chlorinated aliphatics such as perchloroethylene and carbon tetrachloride. Of the four cultures tested, the chemostat-grown mixed culture exhibited the highest Tc for trichloroethylene, cis-1,2-dichloroethylene, tetrachloroethane, 1,1,1-trichloroethane, and 1,2-dichloroethane, whereas the pure batch-grown OB3b culture exhibited the highest Tc for all other compounds tested. The product toxicity of chlorinated aliphatic hydrocarbons in a mixture containing multiple compounds was cumulative and predictable when using parameters measured from the degradation of individual compounds. The Tc for each chlorinated aliphatic hydrocarbon in a mixture (Tcmix) and the total Tc for the mixture (sigma Tcmix) are functions of the individual Tc, the initial substrate concentration (S0), and the first-order rate constant (k/Ks) of each compound in the mixture, indicating the importance of identifying the properties and compositions of all potentially degradable compounds in a contaminant mixture. PMID:8795228

  14. The toxic effects of benzyl glucosinolate and its hydrolysis product, the biofumigant benzyl isothiocyanate, to Folsomia fimetaria.

    PubMed

    Jensen, John; Styrishave, Bjarne; Gimsing, Anne Louise; Bruun Hansen, Hans Christian

    2010-02-01

    Natural isothiocyanates (ITCs) are toxic to a range of pathogenic soil-living species, including nematodes and fungi, and can thus be used as natural fumigants called biofumigants. Natural isothiocyanates are hydrolysis products of glucosinolates (GSLs) released from plants after cell rupture. The study investigated the toxic effects of benzyl-GSL and its hydrolysis product benzyl-ITC on the springtail Folsomia fimetaria, a beneficial nontarget soil-dwelling micro-arthropod. The soil used was a sandy agricultural soil. Half-lives for benzyl-ITC in the soil depended on the initial soil concentration, ranging from 0.2 h for 67 nmol/g to 13.2 h for 3,351 nmol/g. For benzyl-ITC, the concentration resulting in 50% lethality (LC50) value for F. fimetaria adult mortality was 110 nmol/g (16.4 mg/kg) and the concentration resulting in 50% effect (EC50) value for juvenile production was 65 nmol/g (9.7 mg/kg). Benzyl-GSL proved to be less toxic and consequently an LC50 value for mortality could not be estimated for springtails exposed to benzyl-GSL. For reproduction, an EC50 value was estimated to approximately 690 nmol/g. The study indicates that natural soil concentrations of ITCs may be toxic to beneficial nontarget soil-dwelling arthropods such as springtails.

  15. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health.

    PubMed

    Verkerk, Ruud; Schreiner, Monika; Krumbein, Angelika; Ciska, Ewa; Holst, Birgit; Rowland, Ian; De Schrijver, Remi; Hansen, Magnor; Gerhäuser, Clarissa; Mithen, Richard; Dekker, Matthijs

    2009-09-01

    Glucosinolates (GLSs) are found in Brassica vegetables. Examples of these sources include cabbage, Brussels sprouts, broccoli, cauliflower and various root vegetables (e.g. radish and turnip). A number of epidemiological studies have identified an inverse association between consumption of these vegetables and the risk of colon and rectal cancer. Animal studies have shown changes in enzyme activities and DNA damage resulting from consumption of Brassica vegetables or isothiocyanates, the breakdown products (BDP) of GLSs in the body. Mechanistic studies have begun to identify the ways in which the compounds may exert their protective action but the relevance of these studies to protective effects in the human alimentary tract is as yet unproven. In vitro studies with a number of specific isothiocyanates have suggested mechanisms that might be the basis of their chemoprotective effects. The concentration and composition of the GLSs in different plants, but also within a plant (e.g. in the seeds, roots or leaves), can vary greatly and also changes during plant development. Furthermore, the effects of various factors in the supply chain of Brassica vegetables including breeding, cultivation, storage and processing on intake and bioavailability of GLSs are extensively discussed in this paper.

  16. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.

    PubMed

    Elahi, Nosheen; Duncan, Robert W; Stasolla, Claudio

    2016-03-01

    Over the last few decades, research focusing on canola (Brassica napus L.) seed oil content and composition has expanded. Oil production and accumulation are influenced by genes participating in embryo and seed development. The Arabidopsis LEAFY COTYLEDON1 (LEC1) is a well characterized regulator of embryo development that also enhances the expression of genes involved in fatty acid (FA) synthesis. B. napus lines over-expressing or down-regulating BnLEC1 were successfully generated by Agrobacterium-mediated transformation. The constitutive expression of BnLEC1 in B. napus var. Polo, increased seed oil content by 7-16%, while the down-regulation of BnLEC1 in B. napus var. Topas reduced oil content by 9-12%. Experimental manipulation of BnLEC1 caused transcriptional changes in enzymes participating in sucrose metabolism, glycolysis, and FA biosynthesis, suggesting an enhanced carbon flux towards FA biosynthesis in tissues over-expressing BnLEC1. The increase in oil content induced by BnLEC1 was not accompanied by alterations in FA composition, oil nutritional value or glucosinolate (GLS) levels. Suppression of BnLEC1 reduced seed oil accumulation and elevated the level of GLS possibly through the transcriptional regulation of BnST5a (Sulphotransferase5a), the last GLS biosynthetic enzyme. Collectively, these findings demonstrate that experimental alterations of BnLEC1 expression can be used to influence oil production and quality in B. napus.

  17. Conservation and clade-specific diversification of pathogen-inducible tryptophan and indole glucosinolate metabolism in Arabidopsis thaliana relatives.

    PubMed

    Bednarek, Paweł; Piślewska-Bednarek, Mariola; Ver Loren van Themaat, Emiel; Maddula, Ravi Kumar; Svatoš, Aleš; Schulze-Lefert, Paul

    2011-11-01

    • A hallmark of the innate immune system of plants is the biosynthesis of low-molecular-weight compounds referred to as secondary metabolites. Tryptophan-derived branch pathways contribute to the capacity for chemical defense against microbes in Arabidopsis thaliana. • Here, we investigated phylogenetic patterns of this metabolic pathway in relatives of A. thaliana following inoculation with filamentous fungal pathogens that employ contrasting infection strategies. • The study revealed unexpected phylogenetic conservation of the pathogen-induced indole glucosinolate (IG) metabolic pathway, including a metabolic shift of IG biosynthesis to 4-methoxyindol-3-ylmethylglucosinolate and IG metabolization. By contrast, indole-3-carboxylic acid and camalexin biosyntheses are clade-specific innovations within this metabolic framework. A Capsella rubella accession was found to be devoid of any IG metabolites and to lack orthologs of two A. thaliana genes needed for 4-methoxyindol-3-ylmethylglucosinolate biosynthesis or hydrolysis. However, C. rubella was found to retain the capacity to deposit callose after treatment with the bacterial flagellin-derived epitope flg22 and pre-invasive resistance against a nonadapted powdery mildew fungus. • We conclude that pathogen-inducible IG metabolism in the Brassicaceae is evolutionarily ancient, while other tryptophan-derived branch pathways represent relatively recent manifestations of a plant-pathogen arms race. Moreover, at least one Brassicaceae lineage appears to have evolved IG-independent defense signaling and/or output pathway(s).

  18. Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.).

    PubMed

    Park, Suhyoung; Valan Arasu, Mariadhas; Lee, Min-Ki; Chun, Jin-Hyuk; Seo, Jeong Min; Lee, Sang-Won; Al-Dhabi, Naif Abdullah; Kim, Sun-Ju

    2014-02-15

    We profiled and quantified glucosinolates (GSLs), anthocyanins, free amino acids, and vitamin C metabolites in forty-five lines of green and red cabbages. Analysis of these distinct cabbages revealed the presence of 11 GSLs, 13 anthocyanins, 22 free amino acids, and vitamin C. GSL contents were varied amongst the different lines of cabbage. The total GSL content was mean 10.6 μmol/g DW, and sinigrin was the predominant GSL accounted mean 4.0 μmol/g DW (37.7% of the total) followed by glucoraphanin (1.9) and glucobrassicin (2.4). Amongst the 13 anthocyanins, cyanidin 3-(sinapoyl) diglucoside-5-glucoside levels were the highest. The amounts of total free amino acids in green cabbage lines ranged 365.9 mg/100g fresh weight (FW) to 1089.1mg/100g FW. Vitamin C levels were much higher in red cabbage line (129.9 mg/100g FW). Thus, the amounts of GSLs, anthocyanins, free amino acids, and vitamin C varied widely, and the variations in these compounds between the lines of cabbage were significant.

  19. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense

    PubMed Central

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A.; Lin, Catherine; Kerwin, Rachel E.; Burow, Meike; Kliebenstein, Daniel J.

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis. PMID:27462337

  20. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    PubMed

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  1. Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties.

    PubMed

    Barillari, Jessica; Cervellati, Rinaldo; Paolini, Moreno; Tatibouët, Arnaud; Rollin, Patrick; Iori, Renato

    2005-12-28

    The most promising among glucosinolates (GLs) are those bearing in their aglycon an extra sulfur function, such as glucoraphasatin (4-methylthio-3-butenyl GL; GRH) and glucoraphenin (4-methylsulfinyl-3-butenyl GL; GRE). The GRE/GRH redox couple is typically met among secondary metabolites of Raphanus sativus L. and, whereas GRE prevails in seeds, GRH is the major GL in full-grown roots. During the 10 days of sprouting of R. sativus seeds, the GRE and GRH contents were determined according to the Eurpean Union official method (ISO 9167-1). In comparison to the seeds, the GRE content in sprouts decreased from about 90 to about 12 micromol g(-1) of dry weight (dw), whereas a 25-fold increase--from about 3 to 76 micromol g(-1) of dw--of the GRH content was measured. An efficient pure GRH gram-scale production process from R. sativus (kaiware daikon) sprouts resulted in significant yield improvement of up to 2.2% (dw basis). The reaction of GRH with both H2O2 and ABTS*+ radical cation was investigated. Whereas H2O2 oxidation of GRH readily resulted in complete transformation into GRE, ABTS*+ caused complete decay of the GL. Even though not directly related to its radical scavenging activity, the assessed reducing capacity of GRH suggests that R. sativus sprouts might possess potential for health benefits.

  2. Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism.

    PubMed

    Aubry, Sylvain; Smith-Unna, Richard D; Boursnell, Chris M; Kopriva, Stanislav; Hibberd, Julian M

    2014-05-01

    Leaves of angiosperms are made up of multiple distinct cell types. While the function of mesophyll cells, guard cells, phloem companion cells and sieve elements are clearly described, this is not the case for the bundle sheath (BS). To provide insight into the role of the BS in the C3 species Arabidopsis thaliana, we labelled ribosomes in this cell type with a FLAG tag. We then used immunocapture to isolate these ribosomes, followed by sequencing of resident mRNAs. This showed that 5% of genes showed specific splice forms in the BS, and that 15% of genes were preferentially expressed in these cells. The BS translatome strongly implies that the BS plays specific roles in sulfur transport and metabolism, glucosinolate biosynthesis and trehalose metabolism. Much of the C4 cycle is differentially expressed between the C3 BS and the rest of the leaf. Furthermore, the global patterns of transcript residency on BS ribosomes overlap to a greater extent with cells of the root pericycle than any other cell type. This analysis provides the first insight into the molecular function of this cell type in C3 species, and also identifies characteristics of BS cells that are probably ancestral to both C3 and C4 plants.

  3. Effects of genetic deletion of soluble 5'-nucleotidases NT5C1A and NT5C2 on AMPK activation and nucleotide levels in contracting mouse skeletal muscles.

    PubMed

    Kviklyte, Samanta; Vertommen, Didier; Yerna, Xavier; Andersén, Harriet; Xu, Xiufeng; Gailly, Philippe; Bohlooly-Y, Mohammad; Oscarsson, Jan; Rider, Mark H

    2017-03-21

    AMP-activated protein kinase (AMPK) plays a key role in energy homeostasis and is activated in response to contraction-induced ATP depletion in skeletal muscle via a rise in intracellular AMP/ADP concentrations. AMP can be deaminated by AMP-deaminase to IMP, which is hydrolysed to inosine by cytosolic 5'-nucleotidase-II (NT5C2). AMP can also be hydrolysed to adenosine by cytosolic 5'-nucleotidase-IA (NT5C1A). Previous gene silencing and overexpression studies indicated control of AMPK activation by NT5C enzymes. In the present study using gene knockout mouse models, we investigated effects of NT5C1A and NT5C2 deletion on intracellular adenine nucleotide levels and AMPK activation in electrically stimulated skeletal muscles. Surprisingly, NT5C enzyme knockout did not lead to enhanced AMP or ADP concentrations in response to contraction, with no potentiation of increases in AMPK activity in extensor digitorum longus (EDL) and soleus mouse muscles. Moreover, dual blockade of AMP metabolism in EDL using an AMPD inhibitor combined with NT5C1A deletion did not enhance rises in AMP and ADP or increased AMPK activation by electrical stimulation. The results on muscles from the NT5C knockout mice contradict previous findings where AMP levels and AMPK activity were shown to be modulated by NT5C enzymes.

  4. Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio

    PubMed Central

    Wang, Yu; Li, Feng; Li, Yafei; Chen, Zhongfang

    2016-01-01

    Designing new materials with novel topological properties and reduced dimensionality is always desirable for material innovation. Here we report the design of a two-dimensional material, namely Be5C2 monolayer on the basis of density functional theory computations. In Be5C2 monolayer, each carbon atom binds with five beryllium atoms in almost the same plane, forming a quasi-planar pentacoordinate carbon moiety. Be5C2 monolayer appears to have good stability as revealed by its moderate cohesive energy, positive phonon modes and high melting point. It is the lowest-energy structure with the Be5C2 stoichiometry in two-dimensional space and therefore holds some promise to be realized experimentally. Be5C2 monolayer is a gapless semiconductor with a Dirac-like point in the band structure and also has an unusual negative Poisson's ratio. If synthesized, Be5C2 monolayer may find applications in electronics and mechanics. PMID:27139572

  5. M5C2 carbide precipitates in a high-Cr martensitic steel

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Ji, Bo; Zhou, Xiaoling

    2014-05-01

    The precipitate phases in an advanced 11% Cr martensitic steel, expected to be used at 650 °C, have been investigated to understand the effect of precipitates on the creep-rupture strength of the steel. M23C6 and MX precipitates were dominant phases in this steel. Needle-like precipitates with a typical length of 180 nm and width of 20 nm; and metallic-element compositions of 53-74Fe, 16-26Cr, 3-18Ta, 2-8W, and 2-4Co (at%); were observed mainly within the martensite laths of the normalized-and-tempered steel. The needle-like precipitates have been identified as monoclinic carbide M5C2, which is not known to have been reported previously in high chromium steels, or in heat-resistant steels those have been normalized-and-tempered. This indicates that the formation of M5C2 carbides can occur in heat-resistant steels produced under appropriate tempering conditions, and that this does not require long-term isothermal aging or creep testing, in all cases.

  6. C5-C10 directly bonded tetrodotoxin analogues: possible biosynthetic precursors of tetrodotoxin from newts.

    PubMed

    Kudo, Yuta; Yamashita, Yoko; Mebs, Dietrich; Cho, Yuko; Konoki, Keiichi; Yasumoto, Takeshi; Yotsu-Yamashita, Mari

    2014-12-22

    The identification of novel tetrodotoxin (TTX, 1) analogues would significantly contribute to the elucidation of its biosynthetic pathway. In this study, the first C5-C10 directly bonded TTX analogues, 4,9-anhydro-10-hemiketal-5-deoxyTTX (2) and 4,9-anhydro-8-epi-10-hemiketal-5,6,11-trideoxyTTX (3), were found in the newt Cynops ensicauda popei by using a screening method involving HILIC-LC-MS/MS focused on the fragment ions of TTX analogues, and their structures were elucidated by spectroscopic methods. Compound 2 was detected in a wide range of newt species, and the 2 and TTX contents of 22 newt specimens were correlated (rs =0.88). Based on these results and its structural features, 2 was predicted to serve as a precursor of TTX that would be directly converted into 4,9-anhydroTTX (4) by Baeyer-Villiger-like oxidation or via 4,9-anhydro-5-deoxyTTX formed by cleavage of the C5-C10 bond. The bicyclic carbon skeletons of 2 and 3 suggested a possible monoterpene origin for TTX.

  7. Plants as Biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones

    PubMed Central

    Villarreal-García, Daniel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A.

    2016-01-01

    Broccoli contains high levels of bioactive molecules and is considered a functional food. In this study, postharvest treatments to enhance the concentration of glucosinolates and phenolic compounds were evaluated. Broccoli whole heads were wounded to obtain florets and wounded florets (florets cut into four even pieces) and stored for 24 h at 20 °C with or without exogenous ethylene (ET, 1000 ppm) or methyl jasmonate (MeJA, 250 ppm). Whole heads were used as a control for wounding treatments. Regarding glucosinolate accumulation, ET selectively induced the 4-hydroxylation of glucobrassicin in whole heads, resulting in ∼223% higher 4-hydroxyglucobrassicin than time 0 h samples. Additionally, glucoraphanin was increased by ∼53% in whole heads treated with ET, while neoglucobrassicin was greatly accumulated in wounded florets treated with ET or MeJA, showing increases of ∼193 and ∼286%, respectively. On the other hand, although only whole heads stored without phytohormones showed higher concentrations of phenolic compounds, which was reflected in ∼33, ∼30, and ∼46% higher levels of 1,2,2-trisinapoylgentiobose, 1,2-diferulolylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose, respectively; broccoli florets stored under air control conditions showed enhanced concentrations of 3-O-caffeoylquinic acid, 1,2-disinapoylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose (∼22, ∼185, and ∼65% more, respectively). Furthermore, exogenous ET and MeJA impeded individual phenolics accumulation. Results allowed the elucidation of simple and effective postharvest treatment to enhance the content of individual glucosinolates and phenolic compounds in broccoli. The stressed-broccoli tissue could be subjected to downstream processing in order to extract and purify bioactive molecules with applications in the dietary supplements, agrochemical and cosmetics markets. PMID:26904036

  8. Construction of a genetic linkage map and QTL analysis of erucic acid content and glucosinolate components in yellow mustard (Sinapis alba L.)

    PubMed Central

    2013-01-01

    Background Yellow mustard (Sinapis alba L.) is an important condiment crop for the spice trade in the world. It has lagged behind oilseed Brassica species in molecular marker development and application. Intron length polymorphism (ILP) markers are highly polymorphic, co-dominant and cost-effective. The cross-species applicability of ILP markers from Brassica species and Arabidopsis makes them possible to be used for genetic linkage mapping and further QTL analysis of agronomic traits in yellow mustard. Results A total of 250 ILP and 14 SSR markers were mapped on 12 linkage groups and designated as Sal01-12 in yellow mustard. The constructed map covered a total genetic length of 890.4 cM with an average marker interval of 3.3 cM. The QTL for erucic content co-localized with the fatty acid elongase 1 (FAE1) gene on Sal03. The self-(in)compatibility gene was assigned to Sal08. The 4-hydroxybenzyl, 3-indolylmethyl and 4-hydroxy-3-indolylmethyl glucosinolate contents were each controlled by one major QTL, all of which were located on Sal02. Two QTLs, accounting for the respective 20.4% and 19.2% of the total variation of 2-hydroxy-3-butenyl glucosinolate content, were identified and mapped to Sal02 and Sal11. Comparative synteny analysis revealed that yellow mustard was phylogenetically related to Arabidopsis thaliana and had undergone extensive chromosomal rearrangements during speciation. Conclusion The linkage map based on ILP and SSR markers was constructed and used for QTL analysis of seed quality traits in yellow mustard. The markers tightly linked with the genes for different glucosinolate components will be used for marker-assisted selection and map-based cloning. The ILP markers and linkage map provide useful molecular tools for yellow mustard breeding. PMID:24066707

  9. Application of polymethacrylate resin as stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was carried out. Using dilute sulfuric acid as the eluent, the TSKgel G3000PWXL, resin acted as an advanced stationary phase for these C1-C7 carboxylic acids. Excellent simultaneous separation and symmetrical peaks for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min with 0.25 mM sulfuric acid containing 1 mM 2-methylheptanoic acid at pH 3.3 as the eluent. Using dilute sodium hydroxide as the eluent, the TSKgel G3000PWXL resin also behaved as an advanced stationary phase for these C1-C7 amines. Excellent simultaneous separation and good peaks for these C1-C7 amines were achieved on the TSKgel G3000PWXL column in 60 min with 10 mM sodium hydroxide containing 0.5 mM 1-methylheptylamine at pH 11.9 as the eluent.

  10. Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.

    2007-01-01

    Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.

  11. Quantification of sterols and aliphatic alcohols in Mediterranean stone pine (Pinus pinea L.) populations.

    PubMed

    Nasri, Nizar; Fady, Bruno; Triki, Saïda

    2007-03-21

    Individual components of Pinus pinea L. oil unsaponifiable matter isolated from seven Mediterranean populations were identified and quantified. P. pinea oil unsaponifiable matter contained very high levels of phytosterols (>or=4298 mg kg-1 of total extracted lipids), of which beta-sitosterol was the most abundant (74%). Aliphatic alcohol contents were 1365 mg kg-1 of total extracted lipids, of which octacosanol was the most abundant (41%). Two alcohols (hexacosanol and octacosanol), which are usually absent in common vegetable oils, were described for P. pinea oils. There were almost no differences in the total unsaponifiable matter of the seven Mediterranean populations studied. However, sterol and aliphatic alcohol contents showed some variability, with Tunisian and Moroccan populations showing very different and higher contents.

  12. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology.

    PubMed

    Cameron, Donald J A; Shaver, Michael P

    2011-03-01

    A critical review: the ring-opening polymerization of cyclic esters provides access to an array of biodegradable, bioassimilable and renewable polymeric materials. Building these aliphatic polyester polymers into larger macromolecular frameworks provides further control over polymer characteristics and opens up unique applications. Polymer stars, where multiple arms radiate from a single core molecule, have found particular utility in the areas of drug delivery and nanotechnology. A challenge in this field is in understanding the impact of altering synthetic variables on polymer properties. We review the synthesis and characterization of aliphatic polyester polymer stars, focusing on polymers originating from lactide, ε-caprolactone, glycolide, β-butyrolactone and trimethylene carbonate monomers and their copolymers including coverage of polyester miktoarm star copolymers. These macromolecular materials are further categorized by core molecules, catalysts employed, self-assembly and degradation properties and the resulting fields of application (262 references).

  13. Biodegradation of aliphatic hydrocarbons in the presence of hydroxy cucurbit[6]uril.

    PubMed

    Pasumarthi, Rajesh; Kumar, Vikash; Chandrasekharan, Sivaraman; Ganguly, Anasuya; Banerjee, Mainak; Mutnuri, Srikanth

    2014-11-15

    Aliphatic hydrocarbons are one of the major environmental pollutants with reduced bioavailability. The present study focuses on the effect of hydroxy cucurbit[6]uril on the bioavailability of hydrocarbons. A bacterial consortium was used for biodegradation studies under saline and non-saline conditions. Based on denaturing gradient gel electrophoresis results it was found that the consortium under saline conditions had two different strains. The experiment was conducted in microcosms with tetradecane, hexadecane, octadecane and mixture of the mentioned hydrocarbons as the sole carbon source. The residual hydrocarbon was quantified using gas chromatography every 24h. It was found that biodegradation of tetradecane and hexadecane, as individual carbon source increased in the presence of hydroxy CB[6], probably due to the increase in their bioavailability. In case of octadecane this did not happen. Bioavailability of all three aliphatic hydrocarbons was increased when provided as a mixture to the consortium under saline conditions.

  14. [Synthesis, characterization and fluorescent properties of copper phthalocyanine derivates substituted by aliphatic alcohol].

    PubMed

    Zhang, Liang; Xu, Qing-Feng; Lu, Jian-Mei; Yao, She-Chun

    2007-04-01

    A series of copper phthalocyanine derivatives substituted by aliphatic chain were obtained by the reaction of tetra-formyl chloride copper phthalocyanine and aliphatic alcohol such as n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, n-caprylic alcohol and lauryl alcohol. IR, UV-Vis, elemental analysis and 1H NMR verified the structures and substituting degree. The solubility and the relationship between fluorescence and concentration and substituting group were studied in organic solution. It was confirmed that the solubility in organic solution was improved greatly, the fluorescence did not change in linear according to the concentration and the fluorescence of copper phthalocyanine derivatives substituted by the long alkyl was stronger than that substituted by the relatively short alkyl.

  15. Aliphatic and alicyclic camphor imines as effective inhibitors of influenza virus H1N1.

    PubMed

    Sokolova, Anastasiya S; Yarovaya, Оlga I; Baev, Dmitry S; Shernyukov, Аndrey V; Shtro, Anna A; Zarubaev, Vladimir V; Salakhutdinov, Nariman F

    2017-02-15

    A series of camphor derived imines was synthesised and evaluated in vitro for antiviral activity. Theoretical evaluations of ADME properties were also carried out. Most of these compounds exhibited significant activity against the drug-resistant strains of influenza A virus. Especially, compounds 2 (SI = 632) and 3 (SI = 417) presented high inhibition against influenza subtypes A/Puerto Rico/8/34 and A/California/07/09 of H1N1pdm09. Analysis of the structure-activity relationship showed that the activity was strongly dependent on the length of the aliphatic chain: derivatives with a shorter chain possessed higher activity, while the suppressing action of compounds with long aliphatic chains was lower.

  16. Mild Aliphatic and Benzylic Hydrocarbon C-H Bond Chlorination Using Trichloroisocyanuric Acid.

    PubMed

    Combe, Sascha H; Hosseini, Abolfazl; Parra, Alejandro; Schreiner, Peter R

    2017-03-03

    We present the controlled monochlorination of aliphatic and benzylic hydrocarbons with only 1 equiv of substrate at 25-30 °C using N-hydroxyphthalimide (NHPI) as radical initiator and commercially available trichloroisocyanuric acid (TCCA) as the chlorine source. Catalytic amounts of CBr4 reduced the reaction times considerably due to the formation of chain-carrying ·CBr3 radicals. Benzylic C-H chlorination affords moderate to good yields for arenes carrying electron-withdrawing (50-85%) or weakly electron-donating groups (31-73%); cyclic aliphatic substrates provide low yields (24-38%). The products could be synthesized on a gram scale followed by simple purification via distillation. We report the first direct side-chain chlorination of 3-methylbenzoate affording methyl 3-(chloromethyl)benzoate, which is an important building block for the synthesis of vasodilator taprostene.

  17. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B. )

    1990-04-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  18. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B.

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  19. Coefficients of caffeine distribution in aliphatic alcohol-ammonium sulfate-water systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-11-01

    The extraction of caffeine with aliphatic alcohols C3-C9 from aqueous solutions in the presence of a salting-out agent (ammonium sulfate) is studied. Quantitative characteristics of extraction are calculated: the distribution coefficients ( D) and the degree of recovery ( R, %). Relations are found between log D of caffeine and the length of the hydrocarbon radical in the alcohol molecule, along with certain physicochemical properties of the extragents.

  20. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    SciTech Connect

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-03-17

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  1. SPITZER'S VIEW ON AROMATIC AND ALIPHATIC HYDROCARBON EMISSION IN HERBIG Ae STARS

    SciTech Connect

    Acke, B.; Waters, L. B. F. M.; Bouwman, J.; Juhasz, A.; Henning, Th.; Van den Ancker, M. E.; Meeus, G.; Tielens, A. G. G. M.

    2010-07-20

    The chemistry of astronomical hydrocarbons, responsible for the well-known infrared emission features detected in a wide variety of targets, remains enigmatic. Here we focus on the group of young intermediate-mass Herbig Ae stars. We have analyzed the aliphatic and polycyclic aromatic hydrocarbon (PAH) emission features in the infrared spectra of a sample of 53 Herbig Ae stars, obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We confirm that the PAH-to-stellar luminosity ratio is higher in targets with a flared dust disk. However, a few sources with a flattened dust disk still show relatively strong PAH emission. Since PAH molecules trace the gas disk, this indicates that gas disks may still be flared, while the dust disk has settled due to grain growth. There are indications that the strength of the 11.3 {mu}m feature also depends on dust disk structure, with flattened disks being less bright in this feature. We confirm that the CC bond features at 6.2 and 7.8 {mu}m shift to redder wavelengths with decreasing stellar effective temperature. Moreover, we show that this redshift is accompanied by a relative increase of aliphatic CH emission and a decrease of the aromatic 8.6 {mu}m CH feature strength. Cool stars in our sample are surrounded by hydrocarbons with a high aliphatic/aromatic CH ratio and a low aromatic CH/CC ratio, and vice versa for the hot stars. We conclude that, while the overall hydrocarbon emission strength depends on the dust disk's geometry, the relative differences seen in the IR emission features in disks around Herbig Ae stars are mainly due to chemical differences of the hydrocarbon molecules induced by the stellar UV field. Strong UV flux reduces the aliphatic component and emphasizes the spectral signature of the aromatic molecules in the IR spectra.

  2. [Comparative study of bacterial agmatinase inhibition by derivatives of putrescine and aliphatic monoamines].

    PubMed

    Khramov, V A

    1977-03-01

    Aliphatic monoamines and some putrescine derivatives (10(-3) M) are found to inhibit agmatinase from Proteus vulgaris. Constants and the type of inhibition are determined. Investigation of the temperature effect on the inhibition has revealed an exotermic character of this process. Some thermodinamic parameters of agmatinase-anylamine binding reaction are calculated. 1-Guanidobutane is obtained by means of 1-amidobutane guanidilation, and it is found to be more efficient inhibitor than monoamines.

  3. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  4. Development and validation of a liquid chromatography-tandem mass spectrometry method to determine intact glucosinolates in bee pollen.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José

    2015-09-01

    A new method was developed to determine twelve intact-glucosinolates (GLSs) (glucoiberin, GIB; glucoraphanin, GRA; glucoerucin GER; gluconapin, GNA; glucotropaeolin, GTL; glucobrassicin, GBC; gluconasturtiin, NAS; glucoalyssin, ALY; 4-hydroxyglucobrassicin, 4OH; 4-methoxyglucobrassicin, 4ME; neoglucobrassicin, NEO; sinigrin, SIN) in bee pollen, by means of liquid chromatography tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). An efficient extraction procedure was proposed (average analyte recoveries were between 85% and 96%); this involved a solid-liquid extraction (SLE) with heated water, followed by a solid phase extraction (SPE) with a weak anion exchange (NH2) sorbent. Chromatography was performed on a Gemini(®) C18 analytical column with a mobile phase of formic acid in water (0.5%,v/v) and formic acid in acetonitrile (0.5%,v/v), in gradient elution mode at 1mL/min, resulted in baseline-separated peaks and a run time of 30min. The method was fully validated in terms of selectivity, limits of detection (LOD) and quantification (LOQ), linearity, carry-over effect, reinjection reproducibility, precision and accuracy. A good selectivity, low LODs and LOQs, ranging from 1 to 16μg/kg, wide linear ranges from LOQ to 1000μg/kg, and satisfactory reinjection reproducibility, precision and accuracy with relative standard deviation and relative error values lower than or equal to 9%; meanwhile, results indicates a negligible carry-over effect. The proposed method was applied to analyze intact-GLSs in bee pollen. Nine of the GLSs studied were identified in certain samples analyzed over a wide concentration range (LOQ-2226μg/kg), and significant differences in GLS content were observed among the samples.

  5. Synthesis and cyclic voltammetric studies of diiron complexes, ER2[(η5-C5H4)Fe(L2)Me]2 (E = C, Si, Ge, Sn; R = H, alkyl; L2 = diphosphine] and (η5-C5H5)Fe(L2)ER2Fc [Fc = (η5-C5H4)Fe(η5-C5H5)

    PubMed Central

    Kumar, Mukesh; Cervantes-Lee, Francisco; Pannell, Keith H.; Shao, Jianguo

    2009-01-01

    Summary The cyclic voltammetric studies on ER2[(η5-C5H4)Fe(L2)Me]2 (L2 = dppe; ER2 = CH2 (1a), SiMe2 (2a), GeMe2 (3a), SnMe2 (4a) revealed two well resolved reversible waves [1E1/2 = -0.33 V, 2E1/2 = -0.20 V (for 1a); 1E1/2 = -0.35 V, 2E1/2 = -0.21 V (for 2a);1E1/2 = -0.36 V, 2E1/2 = -0.23 V (for 3a);1E1/2 = -0.36 V, 2E1/2 = -0.22 V (for 4a)] in CH2Cl2 suggesting electronic communication between two iron centers which is seen for the first time in this family of organometallic complexes. The resolution between two reversible waves increases in the order of 1a < 2a < 3a < 4a; however, coordinating solvents such as pyridine, PhCN, DMSO and DMF decreased these interactions attributable to the stabilization of cationic species formed after the first oxidation. UV/Vis spectroelectrochemistry of 1a-4a revealed two distinct absorbance patterns for both redox processes and reflected the stepwise oxidation. Homobimetallic complexes containing ferrocenyl groups, (η5-C5H5)Fe(L2)ER2Fc [ER2 = none, L2 = cis-dppen (5a), ER2 = SiMe2, L2 = cis-dppen (6a), dppm (6b); ER2 = GeMe2, L2 = cis-dppen (7a), dppm (7b); ER2 = SntBu2, L2 = dmpe (8a); Fc = (η5-C5H4)Fe(η54-C5H5)] were prepared and studied in terms of electrochemistry. The cyclic voltammogram of 5a exhibited two well resolved one electron reversible waves at 1E1/2 = -0.21 V and 2E1/2 = 0.58 V corresponding to oxidation of the Fe(P-P) and Fc iron atoms respectively. Other complexes in this series (6a/6b, 7a/7b, 8a) containing direct Fe-E-Fc (E = Si, Ge and Sn) bridging units were not stable under electrochemical conditions and rupture of the Fe-E bonds was observed. PMID:19718238

  6. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra*

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Brunger, Michael J.; Wang, Feng

    2013-11-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations dominate the VOA spectra (i.e., VCD and ROA) > 3000 cm-1 reflecting the side chain structures of the amino acids. Finally the carboxyl and the C(2)H modes of aliphatic amino acids, together with the side chain vibrations, are very active in the VCD/IR and ROA/Raman spectra, which makes such the vibrational spectroscopic methods a very attractive means to study biomolecules.

  7. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  8. Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides.

    PubMed

    Huerta-Angeles, Gloria; Bobek, Martin; Příkopová, Eva; Šmejkalová, Daniela; Velebný, Vladimír

    2014-10-13

    The present work describes a novel and efficient method of synthesis of amphiphilic hyaluronan (HA) by esterification with alkyl fatty acids. These derivatives were synthesized under mild aqueous and well controlled conditions using mixed aliphatic aromatic anhydrides. These anhydrides characterized by the general formula RCOOCOC6H2Cl3 can be easily prepared by the reaction of the corresponding fatty acid (R) with 2,4,6-trichlorobenzoyl chloride (TCBC) in the presence of triethylamine. The aliphatic aromatic anhydrides RCOOCOC6H2Cl3 then react with the polysaccharide and enable the synthesis of aliphatic acid esters of HA in good yields. No hydrolytic degradation of hyaluronic acid could be observed. Parameters controlling the degree of esterification were systematically studied. Fatty acids with different chain lengths can be introduced applying this methodology. The degree of substitution was decreasing with increasing length of hydrophobic chain. The reaction products were fully characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), SEC-MALLS and chromatographic analyses. Although the esterified HA products exhibited aggregation in solution as demonstrated by NMR, microscopy and rheology, they were still water-soluble.

  9. Exploring mild enzymatic sustainable routes for the synthesis of bio-degradable aromatic-aliphatic oligoesters.

    PubMed

    Pellis, Alessandro; Guarneri, Alice; Brandauer, Martin; Acero, Enrique Herrero; Peerlings, Henricus; Gardossi, Lucia; Guebitz, Georg M

    2016-05-01

    The application of Candida antarctica lipase B in enzyme-catalyzed synthesis of aromatic-aliphatic oligoesters is here reported. The aim of the present study is to systematically investigate the most favorable conditions for the enzyme catalyzed synthesis of aromatic-aliphatic oligomers using commercially available monomers. Reaction conditions and enzyme selectivity for polymerization of various commercially available monomers were considered using different inactivated/activated aromatic monomers combined with linear polyols ranging from C2 to C12 . The effect of various reaction solvents in enzymatic polymerization was assessed and toluene allowed to achieve the highest conversions for the reaction of dimethyl isophthalate with 1,4-butanediol and with 1,10-decanediol (88 and 87% monomer conversion respectively). Mw as high as 1512 Da was obtained from the reaction of dimethyl isophthalate with 1,10-decanediol. The obtained oligomers have potential applications as raw materials in personal and home care formulations, for the production of aliphatic-aromatic block co-polymers or can be further functionalized with various moieties for a subsequent photo- or radical polymerization.

  10. The influence of chemical composition of aliphatic-aromatic copolyesters on their properties

    NASA Astrophysics Data System (ADS)

    Wojtczak, Malgorzata; Galeski, Andrzej; Dutkiewicz, Slawomir; Piorkowska, Ewa

    2014-05-01

    The chain microstructure and properties of a series of aliphatic-aromatic copolyesters in a range of compositions from 10 to 100% of aromatic components were studied by examining melting and crystallization behaviors, dynamic mechanical response, morphology, wide- (WAXS) and small-angle X-ray scattering (SAXS), and tensile deformation. Chain microstructure was analyzed by 1H NMR. The results indicate that most of copolyesters used in this study have essentially random distribution of comonomers. Copolyesters with more than 30 mol% of aromatic part crystallize with a crystal structure characteristic for homopolymer poly(butylene terephthalate) (PBT). However, some of the reflections from crystal planes are shifted towards lower diffraction angles as compared to butylene terephthalate homoplymer. The phase transition temperatures decrease with increasing aliphatic content. By means of polarized light microscopy (PLM), small-angle light scattering (SALS) and SAXS, crystallization behavior of a selected aliphatic-aromatic copolyester was further explored. Selected copolyester crystallizes in the form of thin fibrous crystals, few nanometers thick, which is the main factor influencing the depression of its melting temperature.

  11. The influence of chemical composition of aliphatic-aromatic copolyesters on their properties

    SciTech Connect

    Wojtczak, Malgorzata; Galeski, Andrzej; Piorkowska, Ewa; Dutkiewicz, Slawomir

    2014-05-15

    The chain microstructure and properties of a series of aliphatic-aromatic copolyesters in a range of compositions from 10 to 100% of aromatic components were studied by examining melting and crystallization behaviors, dynamic mechanical response, morphology, wide- (WAXS) and small-angle X-ray scattering (SAXS), and tensile deformation. Chain microstructure was analyzed by {sup 1}H NMR. The results indicate that most of copolyesters used in this study have essentially random distribution of comonomers. Copolyesters with more than 30 mol% of aromatic part crystallize with a crystal structure characteristic for homopolymer poly(butylene terephthalate) (PBT). However, some of the reflections from crystal planes are shifted towards lower diffraction angles as compared to butylene terephthalate homoplymer. The phase transition temperatures decrease with increasing aliphatic content. By means of polarized light microscopy (PLM), small-angle light scattering (SALS) and SAXS, crystallization behavior of a selected aliphatic-aromatic copolyester was further explored. Selected copolyester crystallizes in the form of thin fibrous crystals, few nanometers thick, which is the main factor influencing the depression of its melting temperature.

  12. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.

  13. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  14. 26 CFR 5c.168(f)(8)-8 - Loss of section 168(f)(8) protection; recapture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... 5c.168(f)(8)-8 Section 5c.168(f)(8)-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY... and of accelerated cost recovery deductions after a disqualifying event shall be determined...

  15. 26 CFR 5c.168(f)(8)-8 - Loss of section 168(f)(8) protection; recapture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... 5c.168(f)(8)-8 Section 5c.168(f)(8)-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY... and of accelerated cost recovery deductions after a disqualifying event shall be determined...

  16. 26 CFR 5c.168(f)(8)-8 - Loss of section 168(f)(8) protection; recapture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... 5c.168(f)(8)-8 Section 5c.168(f)(8)-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY... and of accelerated cost recovery deductions after a disqualifying event shall be determined...

  17. 26 CFR 5c.168(f)(8)-8 - Loss of section 168(f)(8) protection; recapture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 5c.168(f)(8)-8 Section 5c.168(f)(8)-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE ECONOMIC RECOVERY... and of accelerated cost recovery deductions after a disqualifying event shall be determined...

  18. 26 CFR 5c.168(f)(8)-7 - Reporting of income, deductions and investment tax credit; at risk rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tax credit; at risk rules. 5c.168(f)(8)-7 Section 5c.168(f)(8)-7 Internal Revenue INTERNAL REVENUE... investment tax credit; at risk rules. (a) In general. The fact that the lessor's payments of interest and... property shall be limited to the extent the at risk rules under the investment tax credit provisions...

  19. Three-dimensional shoulder kinematics in individuals with C5-C6 spinal cord injury.

    PubMed

    Acosta, A M; Kirsch, R F; van der Helm, F C

    2001-01-01

    The shoulder kinematics of five able-bodied subjects and those of five arms in three subjects with spinal cord injuries at C5 or C6 levels were measured as the subjects elevated their arms in three different planes: coronal, scapular and sagittal. The range of humeral elevation was significantly reduced in all spinal cord injury (SCI) subjects relative to able-bodied subjects. Over this restricted range of humeral motion, the scapula of SCI subjects tended to be medially rotated, relative to able-bodied subjects, and the protraction and spinal tilt angles of the scapula of the SCI subjects indicated scapular winging. These results are consistent with paralysis or at least with significant weakness of the serratus anterior muscle. If further study confirms this hypothesis, functional neuromuscular stimulation of the serratus anterior muscle via a nerve cuff electrode may be an effective intervention for improving shoulder function in C5-C6 SCI.

  20. Metabolic responses of resting man immersed in 25. 5 C and 33 C water

    SciTech Connect

    Weihl, A.C.; Langworthy, H.C.; Manalaysay, A.R.; Layton, R.P.

    1981-02-01

    This study was undertaken to determine the hormonal responses to disabling hypothermia as a result of cold water immersion. Thermally unprotected male divers trained by the U.S. Navy were subjected to total body immersion in water at 25.5 C and 33 C. Plasma epinephrine, norepinephrine, growth hormone, and cortisol were measured. Other variables monitored included oxygen consumption, carbon dioxide production, minute ventilation, and rectal temperature. Immersion without cold stress caused suppression of plasma epinephrine without affecting plasma norepinephrine. Cold stress combined with immersion caused a significant increase in plasma norepinephrine in the absence of other indicators of a generalized stress reaction. The degree of chilling seen in this study will produce disabling hypothermia within 1-2 h and may be shown initially only by an increase in plasma norepinephrine.

  1. Decomposition of Fe5C2 catalyst particles in carbon nanofibers during TEM observation.

    PubMed

    Blank, Vladimir D; Kulnitskiy, Boris A; Perezhogin, Igor A; Alshevskiy, Yuriy L; Kazennov, Nikita V

    2009-02-01

    The effect of an electron beam on nanoparticles of two Fe carbide catalysts inside a carbon nanofiber was investigated in a transmission electron microscope. Electron beam exposure does not result in significant changes for cementite (θ-Fe3C). However, for Hägg carbide nanoparticles (χ-Fe5C2), explosive decay is observed after exposure for 5-10 s. This produces small particles of cementite and γ-Fe, each covered with a multilayer carbon shell, and significantly modifies the carbon-fiber structure. It is considered that the decomposition of Hägg carbide is mostly due to the damage induced by high-energy electron collisions with the crystal lattice, accompanied by the heating of the particle and by mechanical stress provided by the carbon layers of the nanofiber.

  2. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic beta-dicarbonyl acid model compounds.

    PubMed

    Dickenson, Eric R V; Summers, R Scott; Croué, Jean-Philippe; Gallard, Hervé

    2008-05-01

    While it is known that resorcinol- and phenol-type aromatic structures within natural organic matter (NOM) react during drinking water chlorination to form trihalomethanes (THMs), limited studies have examined aliphatic-type structures as THM and haloacetic acid (HAA) precursors. A suite of aliphatic acid model compounds were chlorinated and brominated separately in controlled laboratory-scale batch experiments. Four and two beta-dicarbonyl acid compounds were found to be important precursors for the formation of THMs (chloroform and bromoform (71-91% mol/mol)), and dihaloacetic acids (DXAAs) (dichloroacetic acid and dibromoacetic acid (5-68% mol/mol)), respectively, after 24 h at pH 8. Based upon adsorbable organic halide formation, THMs and DXAAs, and to a lesser extent mono and trihaloacetic acids, were the majority (> 80%) of the byproducts produced for most of the aliphatic beta-dicarbonyl acid compounds. Aliphatic beta-diketone-acid-type and beta-keto-acid-type structures could be possible fast- and slow-reacting THM precursors, respectively, and aliphatic beta-keto-acid-type structures are possible slow-reacting DXAA precursors. Aliphatic beta-dicarbonyl acid moieties in natural organic matter, particularly in the hydrophilic fraction, could contribute to the significant formation of THMs and DXAAs observed after chlorination of natural waters.

  3. Conformational flexibility in the right-handed and in the left-handed double helices of Na+-d(m5C-G-T-A-m5C-G) studied by IR spectroscopy.

    PubMed

    Taillandier, E; Adam, S; Ridoux, J P; Liquier, J

    1988-06-24

    The X ray diffraction study of a d(m5C-G-A-T-m5C-G) crystals has shown the existence of a 2 conformation while the Raman spectroscopy study of the same fragment in solution showed that then the oligonucleotide adopted a B geometry. Infrared spectroscopy has allowed us to study this sequence in films in a wide range of hydrations and to vary the water content of the sample at different rates. We have thus obtained four I.R. spectra, of the B and 2 conformations respectively at 100% and 98% relative humidities, of another 2 form with a different geometry of the phosphate groups at relative humidities below 98% and in addition a fourth spectrum recorded after a rapid dehydration of the sample which is then blocked in a right-handed form at low R.H. In this case the structure of the phosphodiester chain may be not uniform. The results are discussed by comparison with previously obtained I.R. spectra of poly d(G-C), poly d(A-C). d(G-T), d'm5C-G-A-m5C-G-T-G-C-G) d(m5C-G-C-G-m5C-G) and d(C-G-m5C-G).

  4. Conformational flexibility in the right-handed and in the left-handed double helices of Na+-d(m5C-G-T-A-m5C-G) studied by IR spectroscopy.

    PubMed Central

    Taillandier, E; Adam, S; Ridoux, J P; Liquier, J

    1988-01-01

    The X ray diffraction study of a d(m5C-G-A-T-m5C-G) crystals has shown the existence of a 2 conformation while the Raman spectroscopy study of the same fragment in solution showed that then the oligonucleotide adopted a B geometry. Infrared spectroscopy has allowed us to study this sequence in films in a wide range of hydrations and to vary the water content of the sample at different rates. We have thus obtained four I.R. spectra, of the B and 2 conformations respectively at 100% and 98% relative humidities, of another 2 form with a different geometry of the phosphate groups at relative humidities below 98% and in addition a fourth spectrum recorded after a rapid dehydration of the sample which is then blocked in a right-handed form at low R.H. In this case the structure of the phosphodiester chain may be not uniform. The results are discussed by comparison with previously obtained I.R. spectra of poly d(G-C), poly d(A-C). d(G-T), d'm5C-G-A-m5C-G-T-G-C-G) d(m5C-G-C-G-m5C-G) and d(C-G-m5C-G). PMID:3387241

  5. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    PubMed Central

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables. PMID:28094342

  6. Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. Italica) fertilized with sodium selenate.

    PubMed

    Sepúlveda, Ignacio; Barrientos, Herna; Mahn, Andrea; Moenne, Alejandra

    2013-05-07

    The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC), total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica). Two experimental groups were considered: plants treated with 100 μmol/L sodium selenate (final concentration in the pot) and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  7. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation.

    PubMed

    Imhof, Janet; Huber, Florian; Reichelt, Michael; Gershenzon, Jonathan; Wiegreffe, Christoph; Lächler, Kurt; Binder, Stefan

    2014-01-01

    In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (isopropylmalate isomerase large subunit1), three genes encode small subunits (isopropylmalate isomerase small subunit1 to 3). We have now analyzed small subunit 1 (isopropylmalate isomerase small subunit1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.

  8. Effects of Organic and Waste-Derived Fertilizers on Yield, Nitrogen and Glucosinolate Contents, and Sensory Quality of Broccoli (Brassica oleracea L. var. italica).

    PubMed

    Øvsthus, Ingunn; Breland, Tor Arvid; Hagen, Sidsel Fiskaa; Brandt, Kirsten; Wold, Anne-Berit; Bengtsson, Gunnar B; Seljåsen, Randi

    2015-12-23

    Organic vegetable production attempts to pursue multiple goals concerning influence on environment, production resources, and human health. In areas with limited availability of animal manure, there is a need for considering various off-farm nutrient resources for such production. Different organic and waste-derived fertilizer materials were used for broccoli production at two latitudes (58° and 67°) in Norway during two years. The fertilizer materials were applied at two rates of total N (80 and 170 kg ha(-1)) and compared with mineral fertilizer (170 kg ha(-1)) and no fertilizer. Broccoli yield was strongly influenced by fertilizer materials (algae meal < unfertilized control < sheep manure < extruded shrimp shell < anaerobically digested food waste < mineral fertilizer). Yield, but not glucosinolate content, was linearly correlated with estimated potentially plant-available N. However, extruded shrimp shell and mineral NPK fertilizer gave higher glucosinolate contents than sheep manure and no fertilizer. Sensory attributes were less affected by fertilizer material and plant-available N.

  9. Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds.

    PubMed

    Klaiber, J; Dorn, S; Najar-Rodriguez, A J

    2013-05-01

    Plants growing under elevated CO2 concentration may acclimate by modifying chemical traits. Most studies have focused on the effects of environmental change on plant growth and productivity. Potential effects on chemical traits involved in resistance, and the consequences of such effects on plant-insect interactions, have been largely neglected. Here, we evaluated the performance of two Brassica specialist herbivores from contrasting feeding guilds, the leaf-feeding Pieris brassicae and the phloem-feeding Brevicoryne brassicae, in response to potential CO2-mediated changes in primary and major secondary metabolites (glucosinolates) in Brassica oleracea. Plants were exposed to either ambient (400 ppm) or elevated (800 ppm) CO2 concentrations for 2, 6, or 10 weeks. Elevated CO2 did not affect primary metabolites, but significantly increased glucosinolate content. The performance of both herbivores was significantly reduced under elevated CO2 suggesting that CO2-mediated increases in constitutive defense chemistry could benefit plants. However, plants with up-regulated defenses could also be subjected to intensified herbivory by some specialized herbivores, due to a chemically-mediated phagostimulatory effect, as documented here for P. brassicae larvae. Our results highlight the importance of understanding acclimation and responses of plants to the predicted increases in atmospheric CO2 concentrations and the concomitant effects of these responses on the chemically-mediated interactions between plants and specialized herbivores.

  10. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  11. Snake venoms. The amino-acid sequence of protein S5C4 from Dendroaspis jamesoni kaimosae (Jameson's mamba) venom.

    PubMed

    Joubert, F J; Strydom, A J; Taljaard, N

    1978-06-01

    A major component (S5C4) was purified from Jameson's mamba by gel filtration on Sephadex G-50 and by ion-exchange chromotography on CM-cellulose. Protein S5C4 contains 60 amino acid residues and is cross-linked by four intrachain disulphide bridges. The complete primary structure of the protein has been elucidated. The toxicities, the immunochemical properties, the sequence and the invariant amino acid residues of protein S5C4 resemble subgroup II of the angusticeps-type proteins.

  12. Positive and negative regulatory elements mediating transcription from the Drosophila melanogaster actin 5C distal promoter.

    PubMed Central

    Chung, Y T; Keller, E B

    1990-01-01

    The major cytoskeletal actin gene of Drosophila melanogaster, the actin 5C gene, has two promoters, the distal one of which controls synthesis of actin in a tissue- and developmental stage-specific manner. This very strong promoter has widely been used for expression of heterologous genes in cultured cells. To locate functional regulatory elements in this distal promoter, mutants of the promoter were fused to the bacterial chloramphenicol acetyltransferase gene and assayed for transient expression activity in cultured Drosophila embryonic Schneider line 2 cells. The results showed that the upstream end of the promoter extends to 522 bp from the transcription start site. In addition, there are two remote activating regions about 2 kb upstream. Between -522 and -379 are two regions that exert a strong negative effect. Downstream from these negative regions are at least six positive regions and a TATA element. The strongest positive determinant of the promoter was identified at -320 as AAAATGTG by footprinting and by a replacement experiment. When the relevant region was replaced by a synthetic sequence containing this element in a random context, the transient expression activity was restored. The sequence TGTATG located at -355 was also identified as a positive element by a similar replacement approach. Apparently the very high activity of this promoter is the result of the combined activities of multiple factors. Images PMID:2123290

  13. Binding characteristics and interactive region of 2-phenylpyrazolo[1,5-c]quinazoline with DNA.

    PubMed

    Song, Yonghai; Zhong, Dandan; Luo, Jinhui; Tan, Hongliang; Chen, Shouhui; Li, Ping; Wang, Li; Wang, Tao

    2014-12-01

    The interaction between 2-phenylpyrazolo[1,5-c]quinazoline (PQ) and DNA under physiological conditions was investigated using multi-spectroscopic techniques, atomic force microscopy and gel electrophoresis. The thermodynamic parameters were estimated and were discussed in detail. The results of fluorescence-quenching experiments indicated that the main interactive force between PQ and DNA was a hydrophobic interaction and that it was a static quenching process. Potassium iodide and single-strand (ss)DNA quenching studies, together with circular dichroism spectra implied groove binding of PQ with DNA. Atomic force microscopy and gel electrophoresis experiments suggested that there were no major conformational changes in DNA upon interaction with PQ. In addition, UV/vis absorption titration of DNA bases confirmed that PQ bound with DNA mainly through a minor groove interaction and preferentially interacted with adenine and thymine. We anticipate that this work will provide useful information for the application of quinazoline derivatives in the fields of medicinal and pharmaceutical chemistry.

  14. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea.

    PubMed

    Babot, Esteban D; del Río, José C; Kalum, Lisbeth; Martínez, Angel T; Gutiérrez, Ana

    2013-09-01

    The goal of this study is the selective oxyfunctionalization of aliphatic compounds under mild and environmentally friendly conditions using a low-cost enzymatic biocatalyst. This could be possible taking advantage from a new peroxidase type that catalyzes monooxygenase reactions with H2 O2 as the only cosubstrate (peroxygenase). With this purpose, recombinant peroxygenase, from gene mining in the sequenced genome of Coprinopsis cinerea and heterologous expression using an industrial fungal host, is tested for the first time on aliphatic substrates. The reaction on free and esterified fatty acids and alcohols, and long-chain alkanes was followed by gas chromatography, and the different reaction products were identified by mass spectrometry. Regioselective hydroxylation of saturated/unsaturated fatty acids was observed at the ω-1 and ω-2 positions (only at the ω-2 position in myristoleic acid). Alkyl esters of fatty acids and monoglycerides were also ω-1 or ω-2 hydroxylated, but di- and tri-glycerides were not modified. Fatty alcohols yielded hydroxy derivatives at the ω-1 or ω-2 positions (diols) but also fatty acids and their hydroxy derivatives. Interestingly, the peroxygenase was able to oxyfunctionalize alkanes giving, in addition to alcohols at positions 2 or 3, dihydroxylated derivatives at both sides of the molecule. The predominance of mono- or di-hydroxylated derivatives seems related to the higher or lower proportion of acetone, respectively, in the reaction medium. The recombinant C. cinerea peroxygenase appears as a promising biocatalyst for alkane activation and production of aliphatic oxygenated derivatives, with better properties than the previously reported peroxygenase from Agrocybe aegerita, and advantages related to its recombinant nature for enzyme engineering and industrial production.

  15. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950(exp -1) (3.4 micron), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups m(exp -3) and about 2 to 5 -CH2- groups m(exp -3). These densities are consistent with the strengths of the 2955 and 2925 cm(exp -1) (3.4 micron) band being described by the relations A(sub nu)/tau(sub 2955 cm(exp -1)) = 270 +/- 40 and A(sub nu)/tau(sub 2925 cm(exp -1)) = 250 +/- 40 in the local diffuse ISM.

  16. Increased mean aliphatic lipid chain length in left ventricular hypertrophy secondary to arterial hypertension

    PubMed Central

    Evaristi, Maria Francesca; Caubère, Céline; Harmancey, Romain; Desmoulin, Franck; Peacock, William Frank; Berry, Matthieu; Turkieh, Annie; Barutaut, Manon; Galinier, Michel; Dambrin, Camille; Polidori, Carlo; Miceli, Cristina; Chamontin, Bernard; Koukoui, François; Roncalli, Jerôme; Massabuau, Pierre; Smih, Fatima; Rouet, Philippe

    2016-01-01

    Abstract About 77.9 million (1 in 4) American adults have high blood pressure. High blood pressure is the primary cause of left ventricular hypertrophy (LVH), which represents a strong predictor of future heart failure and cardiovascular mortality. Previous studies have shown an altered metabolic profile in hypertensive patients with LVH. The goal of this study was to identify blood metabolomic LVH biomarkers by 1H NMR to provide novel diagnostic tools for rapid LVH detection in populations of hypertensive individuals. This cross-sectional study included 48 hypertensive patients with LVH matched with 48 hypertensive patients with normal LV size, and 24 healthy controls. Two-dimensional targeted M-mode echocardiography was performed to measure left ventricular mass index. Partial least squares discriminant analysis was used for the multivariate analysis of the 1H NMR spectral data. From the 1H NMR-based metabolomic profiling, signals coming from methylene (–CH2–) and methyl (–CH3) moieties of aliphatic chains from plasma lipids were identified as discriminant variables. The –CH2–/–CH3 ratio, an indicator of the mean length of the aliphatic lipid chains, was significantly higher (P < 0.001) in the LVH group than in the hypertensive group without LVH and controls. Receiver operating characteristic curve showed that a cutoff of 2.34 provided a 52.08% sensitivity and 85.42% specificity for discriminating LVH (AUC = 0.703, P-value < 0.001). We propose the –CH2–/–CH3 ratio from plasma aliphatic lipid chains as a biomarker for the diagnosis of left ventricular remodeling in hypertension. PMID:27861330

  17. Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, pattie

    2011-01-01

    Identifying and selecting alternative materials and technologies that have the potential to reduce the identified HazMats and hazardous air pollutants (HAPs), while incorporating sound corrosion prevention and control technologies, is a complicated task due to the fast pace at which new technologies emerge and rules change. The alternatives are identified through literature searches, electronic database and Internet searches, surveys, and/or personal and professional contacts. Available test data was then compiled on the proposed alternatives to determine if the materials meet the test objectives or if further)laboratory or field-testing will be required. After reviewing technical information documented in the PAR, government representatives, technical representatives from the affected facilities, and other stakeholders involved in the process will select the list of viable alternative coatings for consideration and testing under the project's Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes and Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, both prepared by ITB. Test results will be reported in a Joint Test Report upon completion oftesting. The selection rationale and conclusions are documented in this PAR. A cost benefit analysis will be prepared to quantify the estimated capital and process costs of coating alternatives and cost savings relative to the current coating processes, however, some initial cost data has been included in this PAR. For this coatings project, isocyanates, as found in aliphatic isocyanate polyurethanes, were identified as the target HazMat to be eliminated. Table 1-1 lists the target HazMats, the related process and application, current specifications, and affected programs.

  18. Aliphatic and polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbour and Adjacent Coast, Taiwan.

    PubMed

    Lee, Chon-Lin; Hsieh, Ming-Tsuen; Fang, Meng-Der

    2005-01-01

    Surficial sediment samples collected from Kaohsiung Harbour and its nearby coast were analyzed for aliphatic hydrocarbons and parent polycyclic aromatic hydrocarbons (PAHs). According to our results, the average total concentrations of n-alkanes (n-C12 to C35) and aromatics (15 PAHs) were 4.33 microg g(-1) dry weight (ranged 0.46-22.60) and 0.59 microg g(-1) dry weight (ranged 0.09-1.75), respectively. The highest concentrations of aliphatic and aromatic hydrocarbons were recorded in stations near the estuaries of Qianzhen River and Love River, respectively. Aliphatic hydrocarbons in the samples indicate that there has been significant non-petrogenic, possibly terrestrial, contribution in the sediment of the open coast of Kaohsiung Harbour and that there has been dominant contribution from petrogenic sources in the sediment of the inner harbour. PAHs, detected in the samples, however, indicated a higher pyrolytic contribution in open-coast samples and a higher petrogenic contribution in the inner harbour. Overall, sediment concentrations of total alkanes in this study were comparable to those found in Victoria Harbour, Hong Kong and are higher than those found in Xiamen Harbour, China. Concentrations of total PAHs in inner Kaohsiung Harbour sediments were relatively lower than those found in Victoria Harbour, Hong Kong and Xiamen Harbour, China, but comparable to those found in Hsin-ta Harbour, Taiwan and Incheon Harbour, Korea. In comparison with several effect-based sediment quality guidelines, most PAH concentrations found in samples taken from inner harbour stations exceeded the Threshold Effect Level of Florida indicating a slight possibility of adverse effects.

  19. Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C-H Sites.

    PubMed

    Mbofana, Curren T; Chong, Eugene; Lawniczak, James; Sanford, Melanie S

    2016-09-02

    We report the development of an iron-catalyzed method for the selective oxyfunctionalization of benzylic C(sp(3))-H bonds in aliphatic amine substrates. This transformation is selective for benzylic C-H bonds that are remote (i.e., at least three carbons) from the amine functional group. High site selectivity is achieved by in situ protonation of the amine with trifluoroacetic acid, which deactivates more traditionally reactive C-H sites that are α to nitrogen. The scope and synthetic utility of this method are demonstrated via the synthesis and derivatization of a variety of amine-containing, biologically active molecules.

  20. Electrooxidation of aliphatic alcohols on electrodes consisting of hydrophobicized supports coated with nickel oxides

    SciTech Connect

    Chaenko, N.V.; Kornienko, V.L.; Avrutskaya, I.A.; Fioshin, M.Ya.

    1987-12-01

    Two methods are presented to intensify the electrooxidation of aliphatic alcohols with low water solubility and to simplify end-product separation. One method comprised direct addition of higher nickel oxides to the active material of the electrode to be fabricated; the other involved depositing a layer of higher nickel oxides on a hydrophobicized support consisting of a mixture of a conducting material and the FP-4D hydrophobicizer. Electrolysis was carried out in a diaphragm-free two-compartment cell, one reagent and the other the electrolyte. Results are shown of hexyl alcohol oxidation on various composition supports coated with higher nickel oxides.