Science.gov

Sample records for 5cb liquid crystal

  1. Visible spectroscopy of 5CB/8CB liquid crystals

    NASA Astrophysics Data System (ADS)

    Oltulu, Oral; Cakirtas, Fatih; Yorulmaz, Nuri; Yilmaz, Suleyman

    2016-03-01

    Electro-optical properties of nematic liquid crystals (LCs) have attracted a great deal of research interest and have resulted in a number of practical applications in many areas. In the present study, wavelength dependence of electro-optical properties of two different types of nematic LCs and their binary mixtures are investigated. LCs used in this study are 5CB and 8CB and their mixtures in different proportions. The optical transmittance of the structures has been studied by means of visible spectroscopy by measuring the transmitted light intensity as a function of the wavelength under various driving AC electric field values. Experiments were carried out at the wavelength interval 380-780 nm at a constant temperature of 25 °C in order to see the effect of the applied field alone.

  2. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals

    NASA Astrophysics Data System (ADS)

    Porter, Daniel; Savage, John R.; Cohen, Itai; Spicer, Patrick; Caggioni, Marco

    2012-04-01

    Droplet breakup of many Newtonian fluids is well described by current experiments, theory, and simulations. Breakup in complex fluids where interactions between mesoscopic structural features can affect the flows remains poorly understood and a burgeoning area of research. Here, we report on our investigations of droplet breakup in thermotropic liquid crystals. We investigate breakup in the smectic, nematic, and isotropic phases of 4-cyano 4-octylbiphenyl (8CB) and the nematic and isotropic phases of 4-cyano 4-pentylbiphenyl (5CB). The experiment consists of varying the ambient temperature to control liquid crystalline phase and imaging breakup using a fast video camera at up to 110000 frames/s. We expand on previous work [John R. Savage , Soft Matter1744-683X10.1039/b923069f 6, 892 (2010)] that shows breakup in the smectic phase is symmetric, producing no satellite droplets, and is well described by a similarity solution for a shear-thinning power-law fluid. We show that in the nematic phase the breakup occurs in two stages. In the first stage, the breakup is symmetric and the power-law exponent for the minimum radius dependence on the time left to breakup is 1.25CB in the nematic phases indicate Newtonian behavior that cannot account for the observed breakup dynamics. Finally, in the isotropic phase, the exponents are consistent with theoretical predictions and experiments for Newtonian fluid breakup in the inertial viscous regime.

  3. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.

    PubMed

    Porter, Daniel; Savage, John R; Cohen, Itai; Spicer, Patrick; Caggioni, Marco

    2012-04-01

    Droplet breakup of many Newtonian fluids is well described by current experiments, theory, and simulations. Breakup in complex fluids where interactions between mesoscopic structural features can affect the flows remains poorly understood and a burgeoning area of research. Here, we report on our investigations of droplet breakup in thermotropic liquid crystals. We investigate breakup in the smectic, nematic, and isotropic phases of 4-cyano 4-octylbiphenyl (8CB) and the nematic and isotropic phases of 4-cyano 4-pentylbiphenyl (5CB). The experiment consists of varying the ambient temperature to control liquid crystalline phase and imaging breakup using a fast video camera at up to 110000 frames/s. We expand on previous work [John R. Savage et al., Soft Matter 6, 892 (2010)] that shows breakup in the smectic phase is symmetric, producing no satellite droplets, and is well described by a similarity solution for a shear-thinning power-law fluid. We show that in the nematic phase the breakup occurs in two stages. In the first stage, the breakup is symmetric and the power-law exponent for the minimum radius dependence on the time left to breakup is 1.25CB in the nematic phases indicate Newtonian behavior that cannot account for the observed breakup dynamics. Finally, in the isotropic phase, the exponents are consistent with theoretical predictions and experiments for Newtonian fluid breakup in the inertial viscous regime. PMID:22680486

  4. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    PubMed

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates. PMID:25106504

  5. Simultaneous measurements of molecular forces and electro-optical properties of a confined 5CB liquid crystal film using a surface forces apparatus.

    PubMed

    Kristiansen, Kai; Zeng, Hongbo; Zappone, Bruno; Israelachvili, Jacob N

    2015-04-01

    Using a surface forces apparatus (SFA), we studied the forces associated with the reorientation of molecules of a common nematic thermotropic liquid crystal, 4'-n-pentyl-4-cyanobiphenyl (5CB), confined between two conducting (silver) surfaces and its optical behavior under the influence of electric fields with varying magnitudes and field directions. A transient attractive force was observed due to partial reorientations of the liquid crystal molecules and the flow of free ions, in addition to a stronger constant capacitance attraction between the silver surfaces. At the same time, the optical properties of the liquid crystals were observed perpendicular to the silver surfaces. Observations of shifts and fluctuations of the extraordinary wave of the (multiple beam) interference fringes measure the refractive index of the director component parallel to the surface, which is sensitive to tilt motion (or reorientation) of the liquid crystal molecules that provided details of the anisotropic orientations of the molecules and domains. Any lateral differential refractive index change is easily observed by optical microscopy. The optical microscope imaging showed that the changes in the optical properties are due to convective flow at domain boundaries of the liquid crystal molecules (and possible free ions) between the two charged surfaces. At low electric fields, propagation of domain boundaries was observed, while at higher electric fields, hexagonal patterns of flowing molecules were observed. The interplay of the force measurements and optical observations reveal a complex dynamic behavior of liquid crystals subjected to varying electric fields in confined spaces. PMID:25774432

  6. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    SciTech Connect

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-02-28

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  7. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-02-01

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  8. Confined liquid crystaline 5CB in 2D Thermodynamic Space - Preliminary Dielectric Relaxation Study

    NASA Astrophysics Data System (ADS)

    Pawlus, S.; Osinska, J.; Rzoska, S. J.; Kralj, S.; Cordoyiannis, G.

    Results of preliminary broadband dielectric spectroscopy studies in a wide range of temperatures and pressures range for a mixture of rod-like liquid crystalline 4-cyano-4-pentylalkylbiphenyl (5CB) and hydrophilic silica spheres (Aerosil 300) are shown. Pretransitional anomaly, observed previously in the bulk 5CB, has been found. Temperature dynamics of the mixture was investigated with via the DC conductivity σ, coupled to the reorientational relaxation. The derivative based analysis of electric conductivity showed a clear non-Arrhenius dynamics and indicated the anomalous increase of the fragility strength coefficient on approaching the isotropic-nematic transition. Pressure investigations of the solidification from the nematic phase showed the increase of the transition temperature on pressuring but with unusual increasing of dT NS /dP coefficient.

  9. Hierarchical Organization in Liquid Crystal-in-Liquid Crystal Emulsions

    PubMed Central

    Mushenheim, Peter C.

    2014-01-01

    We report the formation and characterization of hierarchical ordering in systems comprised of micrometer-sized droplets of thermotropic nematic liquid crystals (LCs) dispersed in continuous nematic phases of a lyotropic chromonic LC (disodium cromoglycate (DSCG)). Significantly, we find the orientations of the two LC phases to be coupled, with nematic droplets of 4′-pentyl-4-cyanobiphenyl (5CB) exhibiting a bipolar configuration with an axis of symmetry aligned orthogonal to the far-field director of the DSCG phase. We determine that this coupling of orientations does not result from either anisometric LC droplet shape or interfacial ionic phenomena but rather is consistent with the influence of van der Waals interactions that arise from the anisotropic polarizabilities of nematic 5CB (Δn = + 0.18) and DSCG (Δn = − 0.02) phases. We also find that it is possible to rotate and uniformly align the nematic droplets by using a weak magnetic field (B ∼ 0.3 T). An analysis of the dynamics of relaxation of the orientations of the 5CB droplets following removal of the magnetic field reveals the DSCG and 5CB droplets to be coupled by energies of ∼104kT, consistent with a simple theoretical estimate of the influence of anisotropic van der Waals interactions. We also observed the nematic 5CB droplets to form dimers and larger assemblies mediated by the elasticity of the nematic DSCG. Overall, these results reveal that LC-in-LC emulsions define a new class of hierarchically ordered soft matter in which both thermotropic and lyotropic LCs are coupled in their ordering. PMID:25278032

  10. Hierarchical organization in liquid crystal-in-liquid crystal emulsions.

    PubMed

    Mushenheim, Peter C; Abbott, Nicholas L

    2014-11-21

    We report the formation and characterization of hierarchical ordering in systems comprised of micrometer-sized droplets of thermotropic nematic liquid crystals (LCs) dispersed in continuous nematic phases of a lyotropic chromonic LC (disodium cromoglycate (DSCG)). Significantly, we find the orientations of the two LC phases to be coupled, with nematic droplets of 4'-pentyl-4-cyanobiphenyl (5CB) exhibiting a bipolar configuration with an axis of symmetry aligned orthogonal to the far-field director of the DSCG phase. We determine that this coupling of orientations does not result from either anisometric LC droplet shape or interfacial ionic phenomena but rather is consistent with the influence of van der Waals interactions that arise from the anisotropic polarizabilities of nematic 5CB (Δn = +0.18) and DSCG (Δn = -0.02) phases. We also find that it is possible to rotate and uniformly align the nematic droplets by using a weak magnetic field (B ∼ 0.3 T). An analysis of the dynamics of relaxation of the orientations of the 5CB droplets following removal of the magnetic field reveals the DSCG and 5CB droplets to be coupled by energies of ∼10(4) kT, consistent with a simple theoretical estimate of the influence of anisotropic van der Waals interactions. We also observed the nematic 5CB droplets to form dimers and larger assemblies mediated by the elasticity of the nematic DSCG. Overall, these results reveal that LC-in-LC emulsions define a new class of hierarchically ordered soft matter in which both thermotropic and lyotropic LCs are coupled in their ordering. PMID:25278032

  11. Simulation of a Liquid Crystal at a Polymer Surface

    NASA Astrophysics Data System (ADS)

    Doerr, T. P.; Taylor, P. L.

    2002-03-01

    Atomistic molecular dynamics simulations of anchoring of the liquid crystals 5CB and 8CB at the surface of polyvinyl alcohol have been performed. Simulations were performed with various substrate configurations in order to investigate the microscopic origins of rubbing induced orientation. Multiple initial configurations for the liquid crystal were also used to check dependence on initial conditions. Connection is made with experiments.

  12. Liquid Crystals

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  13. Optically responsive liquid crystal microfibers for display and nondisplay applications

    NASA Astrophysics Data System (ADS)

    Buyuktanir, Ebru A.; West, John L.; Frey, Margaret W.

    2011-03-01

    We demonstrate the fabrication and characterization of optically-tunable and stimuli-responsive electrospun microfibers endowed with liquid crystal (LC) functionality. The highly flexible LC microfibers are electrospun from a solution of 4- pentyl-4'-cyanobiphenyl (5CB) and polylactic acid (PLA) in chloroform/acetone solvent. In the electrospinning process, the low molecular weight 5CB phase-separates and self-assembles to form a planarly aligned nematic core within a PLA shell. Most importantly, the orientation of LC domains and, therefore, the optical properties of the 5CB/PLA fibers can be tuned by application of an external electric field. These properties of LC fibers may, in turn, be utilized to fabricate a variety of photonic textiles, and ultimately may introduce an entirely new manufacturing process where weaving will reach well beyond the roll-to-roll manufacturing envisioned for the currently emerging flexible displays printed on flexible plastic substrates.

  14. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  15. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  16. Polarizability study of nematic liquid crystal 4-cyano-4‧-pentylbiphenyl (5CB) and its nitrogen derivatives

    NASA Astrophysics Data System (ADS)

    Upadhyay, Pranav; Rastogi, Manoj Kumar; Kumar, Devesh

    2015-07-01

    The effect of electric field on the molecular polarizability and HOMO-LUMO gap for 4-cyano-4‧-pentylbiphenyl (1) and its nitrogen derivatives 2-cyano-5-(4-pentylphenyl)pyridine (2), 2-(4-cyanophenyl)-5-pentylpyrimidine (3) and 5-cyano-2-(4-pentylphenyl)pyrimidine (4) has been studied using density functional theory (DFT). The effect on polarizability and HOMO-LUMO gap due to presence of substituent in the molecules is also investigated by comparing results obtained from two different DFT approaches B3LYP and M062X. It was observed that variation of polarizability with change in electric field for all molecules show a common feature that is stabilization of polarizability between two values of electric field (or for a range of electric field). 4-cyano-4‧-pentylbiphenyl (1) polarizes more in comparison to all other derivatives and has widest stability region among all.

  17. Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Manda, R.; Dasari, V.; Sathyanarayana, P.; Rasna, M. V.; Paik, P.; Dhara, Surajit

    2013-09-01

    We report on the preparation and physical characterization of the colloidal suspension of conducting polyaniline (PANI) nanofibres and a nematic liquid crystal (5CB). The ac electrical conductivity anisotropy increases significantly and the rotational viscosity decreases with increasing wt. % of PANI nanofibres, while other physical properties such as birefringence, dielectric anisotropy, splay, and bend elastic constants are changed moderately. The high conductivity anisotropy of liquid crystal nano-composites is very useful for magnetically steered liquid crystal-nanofibre switch.

  18. Suppression of phase transitions in a confined rodlike liquid crystal.

    PubMed

    Grigoriadis, Christos; Duran, Hatice; Steinhart, Martin; Kappl, Michael; Butt, Hans-Jürgen; Floudas, George

    2011-11-22

    The nematic-to-isotropic, crystal-to-nematic, and supercooled liquid-to-glass temperatures are studied in the liquid crystal 4-pentyl-4'-cyanobiphenyl (5CB) confined in self-ordered nanoporous alumina. The nematic-to-isotropic and the crystal-to-nematic transition temperatures are reduced linearly with the inverse pore diameter. The finding that the crystalline phase is completely suppressed in pores having diameters of 35 nm and below yields an estimate of the critical nucleus size. The liquid-to-glass temperature is reduced in confinement as anticipated by the model of rotational diffusion within a cavity. These results provide the pertinent phase diagram for a confined liquid crystal and are of technological relevance for the design of liquid crystal-based devices with tunable optical, thermal, and dielectric properties. PMID:21974835

  19. Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces.

    PubMed

    Wei, Wei-Shao; Gharbi, Mohamed Amine; Lohr, Matthew A; Still, Tim; Gratale, Matthew D; Lubensky, T C; Stebe, Kathleen J; Yodh, A G

    2016-05-25

    We prepare two-dimensional crystalline packings of colloidal particles on surfaces of the nematic liquid crystal (NLC) 5CB, and we investigate the diffusion and vibrational phonon modes of these particles using video microscopy. Short-time particle diffusion at the air-NLC interface is well described by a Stokes-Einstein model with viscosity similar to that of 5CB. Crystal phonon modes, measured by particle displacement covariance techniques, are demonstrated to depend on the elastic constants of 5CB through interparticle forces produced by LC defects that extend from the interface into the underlying bulk material. The displacement correlations permit characterization of transverse and longitudinal sound velocities of the crystal packings, as well as the particle interactions produced by the LC defects. All behaviors are studied in the nematic phase as a function of increasing temperature up to the nematic-isotropic transition. PMID:27109759

  20. Liquid crystal-based proton sensitive glucose biosensor.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2014-02-01

    A transmission electron microscopy (TEM) grid filled with 4-cyno-4-pentylbiphenyl (5CB) on the octadecyltrichloro silane-coated glass in an aqueous medium was developed to construct a glucose biosensor by coating poly(acrylicacid-b-4-cynobiphenyl-4-oxyundecylacrylate) (PAA-b-LCP) at the aqueous/5CB interface and immobilizing glucose oxidase (GOx) covalently to the PAA chains. The glucose was detected from a homeotropic to planar orientational transition of 5CB by polarized optical microscopy under crossed polarizers. The maximum immobilization density of the GOx, 1.3 molecules/nm(2) obtained in this TEM grid cell enabled the detection of glucose at concentrations as low as 0.02 mM with a response time of 10 s. This liquid crystal-based glucose sensor provided a linear response of birefringence of the 5CB to glucose concentrations ranging from 0.05 to 2 mM with a Michaelis-Menten constant (Km) of 0.32 mM. This new and sensitive glucose biosensor has the merits of low production cost and easy detection through the naked eye and might be useful for prescreening the glucose level in the human body. PMID:24432733

  1. Giant soft-memory in liquid crystal-nanocomposites

    NASA Astrophysics Data System (ADS)

    Kempaiah, Ravindra; Liu, Yijing; Nie, Zhihong; Basu, Rajratan

    Here, we report a novel way of introducing giant, non-volatile soft-memory in a nanocomposite comprising of amphiphilic polymer functionalized barium titanate (BaTiO3) nanoparticles and isotropic phase of 5CB liquid crystal. Doping of pure ferroelectric NPs in isotropic phase of 5CB creates nanoscopic domains of highly ordered regions as 5CB molecules arrange themselves around the NPs and we call these regions, pseudonematic domains.Here, mesogens can electromechanically rotate the BaTiO3 NPs within the domain, along the direction of applied electric field. These domains are spatially and thermodynamically locked-in and retain their directional orientation and net polarization even after the applied electric field is switched off. We call this net remnant polarization or hysteresis, `soft memory'. When NPs are functionalized with amphiphilic block copolymers, self-assembly of mesogens occurs at the interface of polymer tethers and nanoparticles via combination of non-covalent coupling and π- π stacking interaction and this results in multi-fold enhancement in the volume of pseudonematic domains and subsequent increase in the soft memory. This work provides new insight into understanding the interaction of nanoparticles, polymers and liquid crystal and potentially lead to the creation of nanoelectrocmehanical (NEMS) storage device using functionalized nanoparticles.

  2. Thermal tunability of photonic bandgaps in liquid crystal filled polymer photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Doudou; Chen, Guoxiang; Wang, Lili

    2016-05-01

    A highly tunable bandgap-guiding polymer photonic crystal fiber is designed by infiltrating the cladding air holes with liquid crystal 5CB. Structural parameter dependence and thermal tunability of the photonic bandgaps, mode properties and confinement losses of the designed fiber are investigated. Bandgaps red shift as the temperature goes up. Average thermal tuning sensitivity of 30.9 nm/°C and 20.6 nm/°C is achieved around room temperature for the first and second photonic bandgap, respectively. Our results provide theoretical references for applications of polymer photonic crystal fiber in sensing and tunable fiber-optic devices.

  3. The effect of CdSe/ZnS quantum dots on the rotational viscosity and charge carrier concentration of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Shcherbinin, D. P.; Konshina, E. A.; Solodkov, D. E.

    2015-08-01

    The addition of CdSe/ZnS quantum dots (QDs) with a core diameter of 3.5 nm at a concentration of 10 wt % leads to a 2.5-fold increase in the dynamic rotational viscosity of a 5CB nematic liquid crystal (NLC). A comparison of the diffusion currents in NLC cells filled with pure 5CB and a suspension with QDs shows evidence of an increase in the concentration of charge carriers in the latter case.

  4. Glucose sensor using liquid-crystal droplets made by microfluidics.

    PubMed

    Kim, Jiyeon; Khan, Mashooq; Park, Soo-Young

    2013-12-26

    Micrometer-sized, 4-cyno-4-pentylbiphenyl (5CB) droplets were developed for glucose detection in an aqueous medium by coating with poly(acrylicacid-b-4-cynobiphenyl-4-oxyundecylacrylate) (PAA-b-LCP) at the 5CB/water interface and covalently immobilizing glucose oxidase (GOx) to the PAA chains. This functionalized liquid-crystal (LC) droplet detected glucose from a radial to bipolar configurational change by polarized optical microscopy under crossed polarizers at concentrations as low as 0.03 mM and response times of ~3 min and showed the selective detection of glucose against galactose. This new and sensitive LC-droplet-based glucose biosensor has the merits of low production cost and easy detection by the naked eye and might be useful for prescreening the glucose level in the human body. PMID:24251831

  5. Structural organization of liquid crystals at liquid crystal-air interface: Synchrotron X-ray reflectivity and computational simulations

    NASA Astrophysics Data System (ADS)

    Sadati, Monirosadat; Ramezani-Dakhel, Hadi; Bu, Wei; Sevgen, Emre; Liang, Zhu; Erol, Cem; Taheri Qazvini, Nader; Rahimi, Mohammad; Lin, Binhua; Roux, Benoit; Schlossman, Mark; de Pablo, Juan J.

    Numerous applications of liquid crystals (LC) rely on control of molecular orientation at an interface. However, little is known about the precise molecular structure of such interfaces. In this work, we have performed synchrotron X-ray reflectivity measurements accompanied by an advanced theoretical and computational analysis to study the structural organization of liquid crystals at the air-liquid crystal interface. The X-ray reflectivity was measured from two nematic (5CB) and smectic (8CB) liquid crystals at several temperatures, in the nematic phase and above the nematic-isotropic transition. Our computational simulations and X-ray reflectivity results indicate that in the case of 8CB nematic phase, incipient bulk smectic fluctuations are pinned at the interface to form temperature-dependent multilayers at the interface. Such layers can extend far from the interface. However, the interface of 5CB in the nematic phase exhibits a relatively small number of layers. These measurements will be extended to the study of the LC-aqueous electrolyte interfaces to understand the effects of electrostatic interactions and external stimuli on the interfacial anchoring energy and LC orientational ordering.

  6. Influence of interface stabilisers and surrounding aqueous phases on nematic liquid crystal shells.

    PubMed

    Noh, JungHyun; Reguengo De Sousa, Kevin; Lagerwall, Jan P F

    2016-01-14

    We investigate the nematic-isotropic (N-I) transition in shells of the liquid crystal 5CB, surrounded by aqueous phases that conventionally are considered to be immiscible with 5CB. The aqueous phases contain either sodium dodecyl sulfate (SDS) or polyvinyl alcohol (PVA) as stabiliser, the former additionally promoting homeotropic director alignment. For all shell configurations we find a depression of the clearing point compared to pure 5CB, indicating that a non-negligible fraction of the constituents of the surrounding phases enter the shell, predominantly water. In hybrid-aligned shells, with planar outer and homeotropic inner boundary (or vice versa), the N-I transition splits into two steps, with a consequent three-step textural transformation. We explain this as a result of the order-enhancing effect of a monolayer of radially aligned SDS molecules adsorbed at the homeotropic interface. PMID:26512764

  7. Liquid crystal polyester thermosets

    SciTech Connect

    Benicewicz, B.C.; Hoyt, A.E.

    1990-01-01

    The present invention relates to the field of curable liquid crystal polyester monomers and to thermoset liquid crystalline polyester compositions prepared therefrom. It is an object of this invention to provide curable liquid crystalline polyester materials. Another object of this invention is to provide a process of preparing curable liquid crystal polyester monomers. Yet another object of this invention is to provide liquid crystalline blends of polyester materials. It is a further object of this invention to provide thermoset liquid crystalline polyester compositions. It is a still further object of this invention to provide thermoset liquid crystalline polyester compositions having a high heat resistance. 1 fig.

  8. Liquid crystal polyester thermosets

    SciTech Connect

    Benicewicz, B.C.; Hoyt, A.E.

    1990-12-31

    The present invention relates to the field of curable liquid crystal polyester monomers and to thermoset liquid crystalline polyester compositions prepared therefrom. It is an object of this invention to provide curable liquid crystalline polyester materials. Another object of this invention is to provide a process of preparing curable liquid crystal polyester monomers. Yet another object of this invention is to provide liquid crystalline blends of polyester materials. It is a further object of this invention to provide thermoset liquid crystalline polyester compositions. It is a still further object of this invention to provide thermoset liquid crystalline polyester compositions having a high heat resistance. 1 fig.

  9. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  10. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  11. Tunable liquid crystal lasers

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.

    Liquid crystal lasers are dye-doped distributed feedback lasing systems. Fabricated by coupling the periodic structure of a liquid crystal medium with a fluorescent dye, the emission from these systems is tunable by controlling the liquid crystal system---be it through electric or thermal field effects, photochemical reactions, mechanical deformations, etc. The laser action arises from an extended interaction time between the radiation field, the laser emission, and the matter field, the periodic liquid crystal medium, at the edge of the photonic band gap. In this thesis, several tunable liquid crystal laser systems are investigated: cholesteric liquid crystals, holographic-polymer dispersed liquid crystals and liquid crystal polarization gratings. The primary focus has been to fabricate systems that are tunable through electrical means, as applications requiring mechanical or thermal changes are often difficult to control. Cholesteric liquid crystal lasers are helical Bragg reflectors, with a band gap for circularly polarized light of equivalent handedness to their helix. These materials were doped with a laser dye and laser emission was observed. The use of an in-plane electric field tends to unwind the helical pitch of the film and in doing so tunable emission was demonstrated for ˜15 nm. Holographic-polymer dispersed liquid crystals (H-PDLCs) are grating structures consisting of alternating layers of polymer and liquid crystal, with different indices of refraction. The application of an electric field index matches these layers and switches off the grating. Thus, laser emission can be switched on and off through the use of an electric field. Spatially tunable H-PDLC lasers were fabricated by creating chirped gratings, formed by divergent beams. The emission was shown to tune ˜5 nm as the pump beam was translated across a 1 inch film. Liquid crystal polarization gratings use photo-patterned alignment layers, through a polarization holography exposure, to

  12. Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts.

    PubMed

    Qi, Hao; Kinkead, Brandy; Marx, Vanessa M; Zhang, Huai R; Hegmann, Torsten

    2009-06-01

    Against the rule: Liquid crystal hosts (5CB and 8CB) are doped with different thiol decorated gold nanoparticles (see figure). The "simple" hexanethiol and dodecanethiol capped nanoparticles (Au1 and Au2) are more compatible to the nematic cyanobiphenyl liquid crystals than nanoparticles capped simultaneously with alkylthiols and a nematic cyanobiphenyl thiol (Au3 and Au4).This study focuses on the miscibility of liquid crystal (LC) decorated gold nanoparticles (NPs) in nematic LCs. To explore if LC functional groups on the gold NP corona improve the compatibility (miscibility) with structurally related LC hosts, we examined mixtures of two LC hosts, 5CB and 8CB, doped at 5 wt % with different types of gold NPs. Four alkanethiol-capped NPs were synthesized; two homogeneously coated with alkanethiols (Au1 with C(6)H(13)SH and Au2 with C(12)H(25)SH), and two that were additionally capped at a different ratio with a mesogenic cyanobiphenyl end-functionalized alkanethiol HS10OCB (C(6)H(13)SH + HS10OCB for Au3 and C(12)H(25)SH + HS10OCB for Au4). Investigating these mixtures in the bulk for settling of the NPs, and in thin films using polarized optical microscopy (POM) between untreated glass slides as well as POM studies and electro-optic tests in planar ITO/polyimide test cells, reveal that the alkanethiol capped NPs Au1 and Au2 are more compatible with the two polar cyanobiphenyl hosts in comparison to the NPs decorated with the cyanobiphenyl moieties. All NPs induce homeotropic alignment in 5CB and 8CB between untreated glass slides, with Au1 and Au2 showing characteristic birefringent stripes, and Au3 and A4 exhibiting clear signs of aggregation. In rubbed polyimide cells, however, Au3 and Au4 fail to induce homeotropic alignment and show clear signs of macroscopic aggregation. PMID:19334026

  13. Langmuir Films of Flexible Polymers Transferred to Aqueous/Liquid Crystal Interfaces Induce Uniform Azimuthal Alignment of the Liquid Crystal

    PubMed Central

    Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.

    2009-01-01

    We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films

  14. Excitability in liquid crystal.

    PubMed

    Coullet, P.; Frisch, T.; Gilli, J. M.; Rica, S.

    1994-09-01

    The spiral waves observed in a liquid crystal submitted to a vertical electric field and a horizontal rotating magnetic field are explained in the framework of a purely mechanical description of the liquid crystal. The originality of the experiment described in this paper is the presence of the vertical electric field which allows us to analyze the spiral waves in the framework of a weakly nonlinear theory. PMID:12780124

  15. Low-temperature phase transformations in 4-cyano-4‧-pentyl-biphenyl (5CB) filled by multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lebovka, N.; Melnyk, V.; Mamunya, Ye.; Klishevich, G.; Goncharuk, A.; Pivovarova, N.

    2013-08-01

    The effects of multiwalled carbon nanotubes (NTs) on low-temperature phase transformations in 5CB were studied by means of differential scanning calorimetry (DSC), low-temperature photoluminescence and measurements of electrical conductivity. The concentration of NTs was varied within 0-1 wt% The experimental data, obtained for pure 5CB by DSC and measurements of photoluminescence in the heating mode, evidenced the presence of two crystallization processes at T≈229 K and T≈262 K, which correspond to C1a→C1b, and C1b→C2 phase transformations. Increase of temperature T from 10 K tо 229 K provoked the red shift of photoluminescence spectral band that was explained by flattening of 5CB molecule conformation. Moreover, the photoluminescence data allow to conclude that crystallization at T≈229 K results in conformation transition to non-planar 5CB structure characteristic to ideal crystal. The non-planar conformations were dominating in nematic phase, i.e., at T>297 K. Electrical conductivity data for 5CB-NT composites revealed supplementary anomaly inside the stable crystalline phase C2, identified earlier in the temperature range 229-296.8 K. It can reflect the influence of phase transformation of 5CB in interfacial layers on the transport of charge carriers between NTs.

  16. Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-06-15

    4-Cyano-4'-pentylbiphenyl (5CB) in a transmission electron microscopy (TEM) grid was developed for glucose detection by coating with a monolayer of mixed polymer brushes using poly(acrylicacid-b-4-cynobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and quaternized poly(4-vinylpyridine-b-4-cynobiphenyl-4'-oxyundecylacrylate) (QP4VP-b-LCP) (LCP stands for liquid crystal polymer) at the 5CB/aqueous interface. The resultant 5CB in TEM grid was functionalized with the PAA and QP4VP brushes, which were strongly anchored by the LCP block. The PAA brush rendered the 5CB/aqueous interface pH-responsive and the QP4VP brush immobilized glucose oxidase (GOx) through electrostatic interactions without the aid of coupling agents. The glucose was detected through a homeotropic-to-planar orientational transition of the 5CB observed through a polarized optical microscope (POM) under crossed polarizers. The optimum immobilization with a 0.78 µM GOx solution on the dual-brush-coated TEM grid enabled glucose detection at concentrations higher than 0.5 mM with response times shorter than 180 s. This TEM grid glucose sensor provided a linear response of birefringence of the 5CB to glucose concentrations ranging from 0.5 to 11 mM with a Michaelis-Menten constant (Km) of 1.67 mM. This new and sensitive glucose biosensor has the advantages of low production cost, simple enzyme immobilization, high enzyme sensitivity and stability, and easy detection with POM, and may be useful for prescreening the glucose level in the human body. PMID:25617751

  17. Peculiarities of electro-optic properties of the ferroelectric particles-liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Ibragimov, T. D.; Imamaliyev, A. R.; Bayramov, G. M.

    2016-04-01

    Influence of ferroelectric barium titanate particles on electro-optic properties of the liquid crystal (LC) 4-cyano-4'-pentylbiphenyl (5CB) with positive dielectric anisotropy and the LC mixture (H37) consisting of 4-methoxybezylidene-4'-butylaniline and 4-ethoxybezylidene-4'-butylaniline with negative dielectric anisotropy was investigated. It was shown that a presence of particles (1 wt%) in 5CB and H37 decreased the clearing temperature from 35.2 °C to 32.4°C and from 61.2°C to 60.1°C, respectively. The threshold voltage of the Freedericksz effect became 0.3 V for the BaTiO3-5CB colloid while the beginning of this effect for the pure 5CB was observed at 2.1 V. The threshold voltage of the Freedericksz effect increased from 2.8 V to up 3.1 V at additive of particles in H37. A rise time of the BaTiO3-5CB colloid improved while a decay time worsened in comparison with the pure 5CB at all applied voltages. The inverse trends were observed for the H37 matrix, namely, a rise time worsened and a decay time improved. Among other things, the pecularities of Williams' domain formation (WDF) were also investigated in the colloid based on the H37 matrix. It was established that the WDF voltage decreased, a rise time increased and a decay time decreased in comparison with the pure H37. Experimental results are explained by appearance of local electric fields near the polarized ferroelectric particles at application of external electric field and an existence of the additional obstacles (particles) for movement of ions.

  18. Pseudo-casimir structural force drives spinodal dewetting in nematic liquid crystals

    PubMed

    Ziherl; Podgornik; Zumer

    2000-02-01

    We analyze theoretically the fluctuation-induced force in thin nematic films subject to competing surface interactions, and we find that the force is attractive at small distances and repulsive otherwise. The results provide a consistent interpretation of a recent study of spinodal dewetting of 5CB on a silicon wafer [F. Vandenbrouck et al., Phys. Rev. Lett. 82, 2693 (1999)], implying that this experiment can be regarded as the first observation of the pseudo-Casimir effect in liquid crystals. PMID:11017485

  19. Bile acid-surfactant interactions at the liquid crystal/aqueous interface.

    PubMed

    He, Sihui; Liang, Wenlang; Cheng, Kung-Lung; Fang, Jiyu; Wu, Shin-Tson

    2014-07-14

    The interaction between bile acids and surfactants at interfaces plays an important role in fat digestion. In this paper, we study the competitive adsorption of cholic acid (CA) at the sodium dodecyl sulfate (SDS)-laden liquid crystal (LC)/aqueous interface formed with cyanobiphenyl (nCB, n = 5-8) and the mixture of 5CB with 4-(4-pentylcyclohexyl)benzonitrile (5PCH). We find that the critical concentration of CA required to displace SDS from the interface linearly decreases from 160 μM to 16 μM by reducing the alkyl chain length of nCB from n = 8 to n = 5 and from 16 μM to 1.5 μM by increasing the 5PCH concentration from 0 wt% to 19 wt% in the 5PCH-5CB binary mixture. Our results clearly demonstrate that the sensitivity of 5PCH-5CB mixtures for monitoring the interaction between CA and SDS at the LC/aqueous interface can be increased by one order of magnitude, compared to 5CB. PMID:24825535

  20. Specific detection of avidin-biotin binding using liquid crystal droplets.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-03-01

    Poly(acrylicacid-b-4-cynobiphenyl-4'-undecylacrylate) (PAA-b-LCP)-functionalized 4-cyano-4'-pentylbiphenyl (5CB) droplets were made by using microfluidic technique. The PAA chains on the 5CB droplets, were biotinylated, and used to specifically detect avidin-biotin binding at the 5CB/aqueous interface. The avidin-biotin binding was characterized by the configurational change (from radial to bipolar) of the 5CB droplets, as observed through a polarized optical microscope. The maximum biotinylation was obtained by injecting a >100 μg/mL biotin aqueous solution, which enabled a limit of detection of 0.5 μg/mL avidin. This droplet biosensor could specifically detect avidin against other proteins such as bovine serum albumin, lysozyme, hemoglobin, and chymotrypsinogen solutions. Avidin detection with 5CBPAA-biotin droplets having high sensitivity, specificity, and stability demonstrates new applications of the functionalized liquid crystal droplets that can detect specific proteins or other analytes through a ligand/receptor model. PMID:25689094

  1. Optical properties of planar nematic liquid crystals samples which are parallel oriented by nanofibers

    NASA Astrophysics Data System (ADS)

    Yusuf, Yusril; Kusumasari, Ervanggis Minggar; Ula, Nur Mufidatul; Jahidah, Khannah; Triyana, Kuwat; Sosiati, Harini; Harsojo

    2016-04-01

    Optical properties of two nematic liquid crystals, i.e., 4-methoxybenzylidene-4-butylaniline (MBBA) and 4-cyano-4'-pentylbiphenyl (5 CB) which are parallel oriented by nanofibers has been successfully performed. Planar samples of liquid crystals were made using polyvinyl alcohol (PVA) nanofiber from electrospinning process. Electrospinning method was modified using copper (Cu) as gap collector. These planar samples area are 15 mm x 25 mm. Optical characteristic of these samples were studied by using optical polarizing microscope. The optical intensity changes by a rotationof crossed polarizers is observed. The sinusoidal intensity change was observedin these samples as such as in the planar sample prepared by the rubbing method.

  2. Thermoelectricity in liquid crystals

    NASA Astrophysics Data System (ADS)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  3. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  4. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  5. Nematic liquid crystal bridges

    NASA Astrophysics Data System (ADS)

    Doss, Susannah; Ellis, Perry; Vallamkondu, Jayalakshmi; Danemiller, Edward; Vernon, Mark; Fernandez-Nieves, Alberto

    We study the effects of confining a nematic liquid crystal between two parallel glass plates with homeotropic boundary conditions for the director at all bounding surfaces. We find that the free surface of the nematic bridge is a surface of constant mean curvature. In addition, by changing the distance between the plates and the contact angle with the glass plates, we transition between loops and hedgehogs that can be either radial or hyperbolic.

  6. Living liquid crystals.

    PubMed

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D; Aranson, Igor S

    2014-01-28

    Collective motion of self-propelled organisms or synthetic particles, often termed "active fluid," has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter--living liquid crystals (LLCs)--that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  7. Living liquid crystals

    PubMed Central

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-01

    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  8. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  9. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  10. Dielectric Anisotropy of Gold Nanoparticle Colloids in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Visco, Angelo; Foust, Jon; Mahmood, Rizwan

    We present electrical and optical studies of hexanethiol-treated gold nanoparticle (GNPs) colloids in 4-cyano-4 '-pentyl-biphenyl (5CB) liquid crystals. Preliminary data analysis suggests an unusual behavior of sudden drop and then rise in the dielectric anisotropy at a critical concentration of 0.0862% by wt. GNPs and a sudden rise and then drop in the nematic to isotropic transition temperature. Above the critical concentration the data level off to within the uncertainty of the experimental errors. This colloidal system will help us to understand the interaction and the effects of nanoparticles on the self-assembly of LC molecules and the manner in which these particles organize in LC. This study is important for further developments in nanotechnology, sharp and fast display panels, and within the medical field.

  11. Giant soft-memory in liquid crystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Kempaiah, Ravindra; Liu, Yijing; Nie, Zhihong; Basu, Rajratan

    2016-02-01

    A hybrid nanocomposite comprising 5CB liquid crystal (LC) and block copolymer (BCP) functionalized barium titanate ferroelectric nanoparticles was prepared. This hybrid system exhibits a giant soft-memory effect that was detected by dielectric hysteresis. Spontaneous polarization of ferroelectric nanoparticles couples synergistically with the radially aligned BCP chains to create nanoscopic domains where LC mesogens can align directionally. Such domains can be rotated electromechanically and locked in space even after the removal of the applied electric field. The resulting non-volatile memory is several times larger than the non-functionalized sample and provides an insight into the role of non-covalent polymer functionalization on enhancing the size of the nanoscopic domains.

  12. Wetting of cholesteric liquid crystals.

    PubMed

    Silvestre, Nuno M; Figueirinhas Pereira, Maria Carolina; Bernardino, Nelson R; Telo da Gama, Margarida M

    2016-02-01

    We investigate theoretically the wetting properties of cholesteric liquid crystals at a planar substrate. If the properties of substrate and of the interface are such that the cholesteric layers are not distorted, the wetting properties are similar to those of a nematic liquid crystal. If, on the other hand, the anchoring conditions force the distortion of the liquid crystal layers the wetting properties are altered, the free cholesteric-isotropic interface is non-planar and there is a layer of topological defects close to the substrate. These deformations can either promote or hinder the wetting of the substrate by a cholesteric, depending on the properties of the cholesteric liquid crystal. PMID:26920516

  13. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    PubMed Central

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-01-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB. PMID:27555475

  14. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide.

    PubMed

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-01-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 (o)C) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB. PMID:27555475

  15. Electrorheological characterization of dispersions in silicone oil of encapsulated liquid crystal 4-n-penthyl-4‧-cyanobiphenyl in polyvinyl alcohol and in silica

    NASA Astrophysics Data System (ADS)

    Brehm, T.; Pereira, G.; Leal, C. R.; Gonçalves, C.; Borges, J. P.; Cidade, M. T.

    2015-03-01

    The electrorheological (ER) effect is known as the change in the apparent viscosity upon the application of an external electric field perpendicular to the flow direction. In this work we present the electrorheological behaviour of suspensions in silicone oil of two different dispersed phases: foams of liquid crystal 4-n-penthyl-4‧-cyanobiphenyl (5CB) encapsulated in polyvinyl alcohol (PVA) and nano/microspheres of 5CB encapsulated in silica. We will present the viscosity curves under the application of an electric field ranging between 0 and 3 kV mm-1. The ER effect was observed for the suspensions of 5CB/PVA but not in the case of 5CB/silica. For the case of the suspensions of 5CB/PVA, the effect of the viscosity of the continuum phase and the concentration of the dispersed phase was analysed, showing that the enhancement of the viscosity of the suspension increases with the concentration, as expected, however the continuum phase viscosity has no significant effect, at least in the investigated viscosity range.

  16. Ordered and disordered colloidal particle monolayers at liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Wei, Wei-Shao; Lohr, Matthew; Gharbi, Mohamed Amine; Stebe, Kathleen; Yodh, A. G.

    2014-03-01

    In this work, we investigate ordered colloidal particle monolayers at the air/liquid-crystal (LC) interface. Specifically, silica microparticles are treated with DMOAP to create homeotropic anchoring of LC mesogens at their surfaces. These particles are then spread on an air-exposed interface of the LC 5CB. Macroscopic ordered patterns of these microparticles form due to long-range interactions between particles that are mediated by elastic deformations of the underlying LC. Different confinement conditions lead to various self-assembled patterns ranging from hexagonal lattices to chain-like dipole formations. Using dark-field video microscopy, we track and analyze the dynamics of the colloidal particles in the hexagonal crystal packing, deriving mean squared displacements, phonon modes and density of states, etc., under several conditions. Further, heating of the nematic LC into its isotropic phase enables us to observe melting dynamics of this unusual quasi-2D crystal. The investigations provide insight into crystalline packings controlled by liquid-crystal mediated colloidal interactions. This work is funded by NSF Grant DMR12-05463, PENN MRSEC Grant DMR11-20901, and NASA Grant NNX08AO0G.

  17. Voxelated liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.; McConney, Michael E.; Wie, Jeong Jae; Tondiglia, Vincent P.; White, Timothy J.

    2015-02-01

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods.

  18. Increasing the rewriting speed of optical rewritable e-paper by selecting proper liquid crystals

    NASA Astrophysics Data System (ADS)

    Geng, Yu; Sun, Jiatong; Anatoli, Murauski; Vladimir, Chigrinov; Kwok Hoi, Sing

    2012-08-01

    The effect of interaction between liquid crystal (LC) and photoalignment material on the speed of optical rewriting process is investigated. The theoretical analysis shows that a smaller frank elastic constant K22 of liquid crystal corresponds to a larger twist angle, which gives rise to a larger rewriting speed. Six different LC cells with the same boundary conditions (one substrate is covered with rubbed polyimide (PI) and the other with photo sensitive rewritable sulfuric dye 1(SD1)) are tested experimentally under the same illumination intensity (450 nm, 80 mW/cm2). The results demonstrate that with a suitable liquid crystal, the LC optical rewriting speed for e-paper application can be obviously improved. For two well known LC materials E7 (K22 is larger) and 5CB (K22 is smaller), they require 11 s and 6 s corresponding to change alignment direction for generating image information.

  19. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  20. Polarised photoselection and molecular dynamics in liquid crystals and proteins

    NASA Astrophysics Data System (ADS)

    Bryant, Jason

    Time resolved fluorescence polarisation studies of probe motion in a liquid crystal and protein matrix are presented. In this work, the dynamics and orientational properties of four common laser dyes (Oxazine 1, Oxazine 4, Rhodamine 6G and Rhodamine B) are determined in the liquid crystal 5CB. These studies provide the first direct measurement of θ and φ diffusion (hitherto unobserved) of molecular probes in a nematic host. A distinct anisotropy in θ and φ motion is observed, θ diffusion dynamics show a conventional Arrhenius temperature dependence in the approach to T NI. In contrast, φ motion is largely temperature independent and shows some evidence of slowing in the vicinity of the phase transition. From constructing the orientational distribution function P(θ), it is revealed that the dyes are aligned in pockets between the flexible tails of the host (θ ~ 38°) and conventional models assuming a cylindrical potential are shown to be non-applicable. These effects are most pronounced in Oxazine 4 whose alignment correlates strongly with that of the alkyl tails in 5CB. Here θ and φ diffusion dynamics are highly anisotropic with the ratio of τ20/τ22 in the region of 5:1. In the approach to TNI τ22 is seen to increase by c.a. 50% whilst τ20 shows a c.a 70% decrease. Measurements of Oxazine 4 motion in the Isotropic phase of 5CB indicate that the dye remains strongly correlated with the liquid crystal. Two diffusion times are observed consistent with restricted rotational diffusion within a more slowly diffusing arrangement (domain) of solvent molecules. The domain motion is seen to exhibit a Landau-de Gennes type temperature dependence whilst probe motion within the domains is seen to be largely temperature independent, similar behaviour having been recently reported for diffusion in pure 5CB. A central portion of the work concerns the development of a wholly new approach to polarised photoselection. A novel 3 beam photoselection technique in which

  1. Shape-responsive actuator from a single layer of a liquid-crystal polymer.

    PubMed

    Kamal, Tahseen; Park, Soo-young

    2014-10-22

    Actuation of various shape changes, including bending, helical twisting, and reversible hinging, has been achieved from a single-layer sheet of poly(1,4-di(4-(3-acryloyloxypropyloxy)benzoyloxy)-2-methylbenzene) [poly(RM257)]. This actuator was developed through photopolymerization of a reactive liquid-crystal (LC) monomer (RM257) mixed with 4-pentyl-4'-cyanobiphenyl (5CB, nematic LC at room temperature) in a planar polyimide-coated LC cell. The UV beam perpendicular to one side of the LC cell produced an asymmetric phase separation between the poly(RM257) network and 5CB that resulted in an asymmetric porous structure along the thickness direction when the 5CB was extracted, in which the UV-exposed surface was pore-free and compact while the opposite surface was highly porous. As a result of this structure, the dry and curled poly(RM257) film exhibits actuation behavior when placed in acetone because of a difference in swelling between the two morphologically different sides, the film UV-exposed and nonexposed sides. The actuation of a three-dimensional tetrahedron (pyramidal) structure is also demonstrated for the first time by using a simple photopatterning technique to selectively control its asymmetric morphology at specific locations. PMID:25243321

  2. Using chemically patterns with different anchoring behavior to control the orientation of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Armas Perez, Julio; Martinez-Gonzalez, Jose Adrian; Xie, Helou; de Pablo, Juan; Nealey, Paul

    2015-03-01

    We present experimental and theoretical study of nematic liquid crystal (5CB) confined to a thin cell between homeotropic anchoring top surface and chemically patterned planar/homeotropic anchoring bottom substrates. The chemically patterned substrate with different dimensions and ~ 4 nm depth topography induce the 5CB to align as the pattern direction as non-degenerate behavior, until the width of the straight line pattern is too wide to confine the 5CB to one direction and back to degenerate behavior. By changing the width of the straight line pattern, a brightness change of the intensity is shown by their corresponding crossed polarizer images. This change is mainly due to a discontinuity of the average angle between the molecules and the surface in function of line width, which is in excellent agreement with the Landan-de Gennes theory when the balance between the elastic deformation in the bulk and orientation of molecules close to the surface is simulated for different pattern dimensions. An elastic free energy transition is also observed from the numerical analysis when the strong planar anchoring for presented experiments is changed to weak. This 3D confinement by chemically patterns and small depth topography offers a new way to generate any geometry pattern controllable non-degenerate orientation, achieving switchable optical properties.

  3. A simple strategy to monitor lipase activity using liquid crystal-based sensors.

    PubMed

    Hu, Qiong-Zheng; Jang, Chang-Hyun

    2012-09-15

    In this study, we developed a simple label-free technique for monitoring the enzymatic activity of lipase using liquid crystal (LC)-based sensors. The optical response of LCs changed from a bright to dark appearance when an aqueous solution of lipase was in contact with a nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), that was doped with glyceryl trioleate, which is a glyceride that can be enzymatically hydrolyzed by lipase. Since the oleic acid released from the enzymatic reaction could spontaneously form a self-assembled monolayer at the aqueous/LC interface due to its amphiphilic property, the orientation of the LCs transited from a planar to homeotropic state, which induced a change in the optical response of the LCs. We did not observe a bright-to-dark shift in the optical appearance of LCs when pure 5CB was immersed into the lipase solution. Moreover, we further confirmed the specificity of the enzymatic reaction by transferring an aqueous buffer solution not containing an analyte, or with bovine serum albumin (BSA) or trypsin onto the interface of aqueous solutions and the glyceryl trioleate-doped 5CB, which did not produce any distinctive contrast in the optical appearance. These results suggest the feasibility of measuring the enzymatic activity of lipase using the LC-based sensing technique. Furthermore, our strategy could also be used for the preparation of a self-assembled monolayer of carboxylates at the aqueous/LC interface. PMID:22967518

  4. Transferability of coarse-grained force field for nCB liquid crystal systems.

    PubMed

    Zhang, Jianguo; Guo, Hongxia

    2014-05-01

    In this paper, the transferability of the coarse-grained (CG) force field originally developed for the liquid crystal (LC) molecule 5CB ( Zhang et al. J. Phys. Chem. B 2012 , 116 , 2075 - 2089 ) was investigated by its homologues 6CB and 8CB molecules. Note that, to construct the 5CB CG force field, we combined the structure-based and thermodynamic quantities-based methods and at the same time attempted to use several fragment molecular systems to derive the CG nonbonded interaction parameters. The resultant 5CB CG force field exhibits a good transferability to some extent. For example, not only the experimental densities, the local packing of atom groups, and the antiparallel arrangements of nearest neighboring molecules, but also the unique LC mesophases as well as the nematic-isotropic phase transition temperatures of 6CB and 8CB were reproduced. Meanwhile, the limitations of this 5CB CG force field were also observed, such as the phase transition from nematic to smectic was postponed to the lower temperature and the resulting smectic phase structure is single-layer-like instead of partially interdigitated bilayer-like as observed in underlying atomistic model. Apparently, more attention should be paid when applying a CG force field to the state point which is quite different from which the force field is explicitly parametrized for. The origin of the above limitations can be potentially traced back to the inherent simplifications and some approximations often adopted in the creation process of CG force field, for example, choosing symmetric CG potentials which do not explicitly include electrostatic interactions and are parametrized by reproducing the target properties of the specific nematic 5CB phase at 300 K and 1 atm, as well as using soft nonbonded potential and excluding torsion barriers. Moreover, although by construction this CG force field could inevitably incorporate both thermodynamic and local structural information on the nematic 5CB phase, the

  5. Influence of Specific Anions on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces

    PubMed Central

    Carlton, Rebecca J.; Ma, C. Derek; Gupta, Jugal K.; Abbott, Nicholas L.

    2012-01-01

    We report that specific anions (of sodium salts) added to aqueous phases at molar concentrations can trigger rapid, orientational ordering transitions in water-immiscible, thermotropic liquid crystals (LCs; e.g., nematic phase of 4′-pentyl-4-cyanobiphenyl, 5CB) contacting the aqueous phases. Anions classified as chaotropic, specifically iodide, perchlorate and thiocyanate, cause 5CB to undergo continuous, concentration-dependent transitions from planar to homeotropic (perpendicular) orientations at LC-aqueous interfaces within 20 s of addition of the anions. In contrast, anions classified as relatively more kosmotropic in nature (fluoride, sulfate, phosphate, acetate, chloride, nitrate, bromide, and chlorate) do not perturb the LC orientation from that observed without added salts (i.e., planar orientation). Surface pressure-area isotherms of Langmuir films of 5CB supported on aqueous salt solutions reveal ion-specific effects ranking in a manner similar to the LC ordering transitions. Specifically, chaotropic salts stabilized monolayers of 5CB to higher surface pressures and areal densities (12.6 mN/m at 27 Å2/molec. for NaClO4) and thus smaller molecular tilt angles (30° from the surface normal for NaClO4) than kosmotropic salts (5.0 mN/m at 38 Å2/molec. with a corresponding tilt angle of 53° for NaCl). These results and others reported herein suggest that anion-specific interactions with 5CB monolayers lead to bulk LC ordering transitions. Support for the proposition that these ion-specific interactions involve the nitrile group was obtained by using a second LC with nitrile groups (E7; ion-specific effects similar to 5CB were observed) and a third LC with fluorine-substituted aromatic groups (TL205; weak dipole and no ion-specific effects were measured). Finally, we also establish that anion-induced orientational transitions in micrometer-thick LC films involve a change in the easy axis of the LC. Overall, these results provide new insights into ionic

  6. Anisotropic Stokes drag and dynamic lift on spheres sedimenting in a nematic liquid crystal.

    PubMed

    Rovner, Joel B; Reich, Daniel H; Leheny, Robert L

    2013-02-19

    The motion of silica spheres with homeotropic anchoring sedimenting within nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) has been studied at low Ericksen number. The magnitude of the spheres' velocity depends on the angle θ between the far-field nematic director and the gravitational force, indicating an anisotropic Stokes drag. When the director is oriented at an oblique angle to the gravitational force, the velocity also acquires a component normal to the force, demonstrating the existence of a lift force generated by the fluid. The magnitude and direction of the velocity as functions of θ quantitatively obey theoretically predicted forms. PMID:23379634

  7. Liquid crystal filled diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jepsen, Mary Lou

    1997-12-01

    Liquid crystal technology is becoming increasingly important for flat displays in electronics, computers and TV. Most liquid crystal displays currently made have as their basic unit, two flat surfaces each coated with a transparent, conductive layer, between which a thin layer of liquid crystals is sandwiched. The work detailed in this dissertation is based on a modification of the basic liquid crystal unit and studies the properties of structures which consist of certain anisotropic liquid crystals confined between a flat substrate and a corrugated one, each substrate being transparent and having a thin trans-parent conductive coating. Without an applied electric field, the refractive indices of the liquid crystal and corrugated substrate do not match, and thus strong diffraction occurs. When an electric field is applied to the device, the liquid crystals are re-oriented so that the refractive indices now match, and the device behaves as a uniform slab of homogeneous material producing no diffraction. Rigorous coupled wave analysis was developed to design the ideal devices and analyze the performance of our experimental ones. 99% diffraction efficiencies in single wavelength polarized illumination are shown to be possible with this class of devices. The best device we fabricated showed a 62% distraction efficiency, as our fabrication process roughened the top surface of the device so that (≃30%) of the incident light was lost to scatter. Several new fabrication processes are proposed to eliminate this scatter problem, and that details of fabrication processes thus far attempted are outlined.

  8. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  9. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  10. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  11. Magnetoactive Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Winkler, Moritz; Kaiser, Andreas; Krause, Simon; Finkelmann, Heino; Schmidt, Annette

    2008-03-01

    Liquid crystal elastomers (LCEs) offer an interesting spectrum of properties, including temperature induced, fully reversible shape changes connected with considerable development of pulling force, and synthetic diversity. In order to take advantage of LCEs for an extended number of viable devices, it is desirable to trigger such shape changes with electromagnetic fields rather than temperature changes. Magnetoactive LCEs are accessible by the incorporation of superparamagnetic Fe3O4 nanoparticles into oriented nematic side-chain LCEs and offer a contactless activation pathway to activate the nematic-to-isotrope transition by local magnetic heating in external fields due to relaxational processes. In magnetomechanical measurements at 300 kHz and 43 kA.m-1, a sample contraction of up to 30 % is observed under field influence, that is fully released when the field is switched off. The load evolved reaches 60 kPa and more. The materials' ability to respond to a contactless electromagnetic stimulus with a well-defined contraction can be of use for various actuator applications.

  12. Adaptive Liquid Crystal Windows

    SciTech Connect

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  13. Thermotropic liquid crystals from biomacromolecules

    PubMed Central

    Liu, Kai; Chen, Dong; Marcozzi, Alessio; Zheng, Lifei; Su, Juanjuan; Pesce, Diego; Zajaczkowski, Wojciech; Kolbe, Anke; Pisula, Wojciech; Müllen, Klaus; Clark, Noel A.; Herrmann, Andreas

    2014-01-01

    Complexation of biomacromolecules (e.g., nucleic acids, proteins, or viruses) with surfactants containing flexible alkyl tails, followed by dehydration, is shown to be a simple generic method for the production of thermotropic liquid crystals. The anhydrous smectic phases that result exhibit biomacromolecular sublayers intercalated between aliphatic hydrocarbon sublayers at or near room temperature. Both this and low transition temperatures to other phases enable the study and application of thermotropic liquid crystal phase behavior without thermal degradation of the biomolecular components. PMID:25512508

  14. Liquid-Crystal Biosensor Based on Nickel-Nanosphere-Induced Homeotropic Alignment for the Amplified Detection of Thrombin.

    PubMed

    Zhao, Dongyu; Peng, Yi; Xu, Lihong; Zhou, Wei; Wang, Qian; Guo, Lin

    2015-10-28

    A new liquid-crystal (LC)-based sensor operated by nickel nanosphere (NiNS)-induced homeotropic alignment for the label-free monitoring of thrombin was reported. When doped with NiNSs, a uniform vertical orientation of 4-cyano-4'-pentylbiphenyl (5CB) was easily obtained. A sandwich system of aptamer/thrombin/aptamer-functionalized gold nanoparticles (AuNPs) was fabricated, and AuNPs-aptamer conjugation caused the disruption of the 5CB orientation, leading to an obvious change of the optical appearance from a dark to a bright response to thrombin concentrations from 0.1 to 100 nM. This design also allowed quantitative detection of the thrombin concentration. This distinctive and sensitive thrombin LC sensor provides a new principle for building LC-sensing systems. PMID:26458050

  15. Chirality Detection Using Nematic Liquid Crystal Droplets on Anisotropic Surfaces.

    PubMed

    Rudquist, Per; Dietrich, Clarissa F; Mark, Andrew G; Giesselmann, Frank

    2016-06-21

    Nematic liquid crystals (NLCs) form helical macroscopic structures through chiral induction when doped with chiral species. We describe a very simple, though highly sensitive method for determination of handedness and pitch of the induced twist in the case of very weak twisting powers of such chiral dopants. A tiny drop-typically less than 10 nL-of the chiral doped NLC is placed on a plate promoting a uniform planar surface anchoring of the liquid crystal director. At the curved NLC-air interface the anchoring is homeotropic and in the sessile droplets we get a locally twisted hybrid director structure with a disclination line extending across the droplet. The configuration of the disclination line (S-like or backwards S-like) reveals the sign of twisting power and extremely large pitch values in the range of 10 mm can easily be measured. We demonstrate the method using the standard NLC 4-cyano-4'-pentylbiphenyl (5CB), weakly doped with the chiral material 2-hydroxy-2-phenylacetic acid (mandelic acid). PMID:27244587

  16. Shape evolution of a single liquid-crystal droplet immersed in an isotropic matrix under transient and steady flow.

    PubMed

    Wu, Youjun; Yu, Wei; Zhou, Chixing; Xu, Yuanze

    2007-04-01

    The morphology evolution of immiscible polymer-liquid crystal systems is quite different from flexible polymer-polymer mixtures due to the anisotropic properties of liquid crystals. The deformation and retraction of a single low molar mass liquid crystal 4'-pentyl-4-biphenylcarbonitrile (5CB) droplet and 4'-octyl-4-biphenylcarbonitrile (8CB) dispersed in polydimethyl-siloxane under two-dimensional linear flow was investigated by a computer-controlled four-roll mill, which is equipped with an optical microscope and a digital camera. The deformation parameter and orientation angle during deformation versus capillary number was obtained and compared with calculations using the Maffettone-Minale (MM) model and the Yu-Zhou liquid-crystal (YZ-LC) model. The MM model can describe the behavior of a Newtonian droplet in another Newtonian matrix whereas the YZ-LC model can describe the behavior of a LC droplet in a Newtonian matrix. The results showed that the deformation and rotation of a LC droplet is more difficult than viscoelastic droplets, possibly because of the resistance of the nematic elastic energy induced by the nematic mesogens deformation and orientation under flow field. Furthermore, the different behavior between flow-aligning 5CB and flow-tumbling 8CB droplets and the influence of droplet size of LC on deformation and retraction were discussed by experiment and calculation; the results reveal that the different size LC droplets show different evolution curves. PMID:17500912

  17. Shape evolution of a single liquid-crystal droplet immersed in an isotropic matrix under transient and steady flow

    NASA Astrophysics Data System (ADS)

    Wu, Youjun; Yu, Wei; Zhou, Chixing; Xu, Yuanze

    2007-04-01

    The morphology evolution of immiscible polymer-liquid crystal systems is quite different from flexible polymer-polymer mixtures due to the anisotropic properties of liquid crystals. The deformation and retraction of a single low molar mass liquid crystal 4' -pentyl-4-biphenylcarbonitrile (5CB) droplet and 4' -octyl-4-biphenylcarbonitrile (8CB) dispersed in polydimethyl-siloxane under two-dimensional linear flow was investigated by a computer-controlled four-roll mill, which is equipped with an optical microscope and a digital camera. The deformation parameter and orientation angle during deformation versus capillary number was obtained and compared with calculations using the Maffettone-Minale (MM) model and the Yu-Zhou liquid-crystal (YZ-LC) model. The MM model can describe the behavior of a Newtonian droplet in another Newtonian matrix whereas the YZ-LC model can describe the behavior of a LC droplet in a Newtonian matrix. The results showed that the deformation and rotation of a LC droplet is more difficult than viscoelastic droplets, possibly because of the resistance of the nematic elastic energy induced by the nematic mesogens deformation and orientation under flow field. Furthermore, the different behavior between flow-aligning 5CB and flow-tumbling 8CB droplets and the influence of droplet size of LC on deformation and retraction were discussed by experiment and calculation; the results reveal that the different size LC droplets show different evolution curves.

  18. Deformations in chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr; Reddy, Kathryn; Bateman, Daniel; Iljin, Andrey

    2014-03-01

    Deformations and their relaxation in chiral liquid crystals are studied experimentally and theoretically in planar geometry for liquid crystalline mixtures of varying viscosities. It is shown by both methods that shear deformation in liquid crystals results in the inclination and extension of cholesteric helix in samples with high viscosity. Stretching deformation results in shrinking cholesteric helix. This leads to a possibility of detecting deformations on a nanometer scale by observing changes in selective reflection spectra. Theoretical model takes into account elastic strain of physical network formed by the entanglements between components of liquid crystalline mixture, viscosity of the matrix and elasticity of the liquid crystalline subsystem. This allows to model mechanical response of the matrix with different viscosities to stretching and shear of various amplitudes. It is shown that relaxation of the cholesteric helix takes much shorter time than mechanical relaxation of the mixtures. The model perfectly agrees with experimental data. The model is compared with theoretical model describing behavior of elastomers.

  19. Liquid crystal nanodroplets in solution

    NASA Astrophysics Data System (ADS)

    Brown, W. Michael; Petersen, Matt K.; Plimpton, Steven J.; Grest, Gary S.

    2009-01-01

    The aggregation of liquid crystal nanodroplets from a homogeneous solution is studied by molecular dynamics simulations. The liquid crystal particles are modeled as elongated ellipsoidal Gay-Berne particles while the solvent is modeled as spherical Lennard-Jones particles. Extending previous studies of Berardi et al. [J. Chem. Phys. 126, 044905 (2007)], we find that liquid crystal nanodroplets are not stable and that after sufficiently long times the nanodroplets always aggregate into a single large droplet. Results describing the droplet shape and orientation for different temperatures and shear rates are presented. The implementation of the Gay-Berne potential for biaxial ellipsoidal particles in a parallel molecular dynamics code is also briefly discussed.

  20. Liquid crystal nanodroplets in solution.

    PubMed

    Brown, W Michael; Petersen, Matt K; Plimpton, Steven J; Grest, Gary S

    2009-01-28

    The aggregation of liquid crystal nanodroplets from a homogeneous solution is studied by molecular dynamics simulations. The liquid crystal particles are modeled as elongated ellipsoidal Gay-Berne particles while the solvent is modeled as spherical Lennard-Jones particles. Extending previous studies of Berardi et al. [J. Chem. Phys. 126, 044905 (2007)], we find that liquid crystal nanodroplets are not stable and that after sufficiently long times the nanodroplets always aggregate into a single large droplet. Results describing the droplet shape and orientation for different temperatures and shear rates are presented. The implementation of the Gay-Berne potential for biaxial ellipsoidal particles in a parallel molecular dynamics code is also briefly discussed. PMID:19191407

  1. Liquid crystal assisted optical fibres.

    PubMed

    Wahle, M; Kitzerow, H-S

    2014-01-13

    Microstructured fibres which consist of a circular step index core and a liquid crystal inclusion running parallel to this core are investigated. The attenuation and electro-optic effects of light coupled into the core are measured. Coupled mode theory is used to study the interaction of core modes with the liquid crystal inclusion. The experimental and theoretical results show that these fibres can exhibit attenuation below 0.16 dB cm(-1) in off-resonant wavelength regions and still have significant electro-optic effects which can lead to a polarisation extinction of 6 dB cm(-1). PMID:24514987

  2. A liquid crystal adaptive lens

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Cleverly, D.

    1981-01-01

    Creation of an electronically controlled liquid crystal lens for use as a focusing mechanism in a multi-element lens system or as an adaptive optical element is analyzed. Varying the index of refraction is shown to be equivalent to the shaping of a solid refracting material. Basic characteristics of liquid crystals, essential for the creation of a lens, are reviewed. The required variation of index of refraction is provided by choosing appropriate electrode voltages. The configuration required for any incoming polarization is given and its theoretical performance in terms of modulation transfer function derived.

  3. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions. PMID:27088310

  4. Photoinduced extrinsic electrical conduction of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Dedov, O. V.; Krivoschekov, V. A.

    1996-05-01

    During recent years the interest in media with strong nonlinear response is growing. These media allow the user to observe different nonlinear optic effects using small intensities of light. It is well known that liquid crystals are rather promising media for this research. This paper is devoted to the experimental research of the photoinduced conduction of a mixture of a nematic liquid crystal and a dye. Dependence of the conduction on the intensity of light was studied for different concentrations of a dye added to the nematic crystal. Also the problem of the optimum type of a dye for observing the photorefractive nonlinearity using Ar+- ion laser was considered. We made the experiments using the following available laser dyes: rhodamine '6G,' rhodamine 'G,' rhodamine 'C' and two ocsasine-type dyes also. The mixture of the nematic crystal 5CB and a dye was placed in a cell of 100 micrometer width, with the plates filmed with the transparent electrodes of SnO2. The dc voltage on the order of magnitude 1 V was applied to decrease the influence of the cell capacity on the conduction measurements of the samples. We used the light of two wavelengths: lambda1 equals 488 nm, lambda2 equals 514.5 nm. The best dyes for these wavelengths were the rhodamine- type dyes. Taking the other two dyes we observed much smaller effect of influence of the laser radiation on conduction of the samples. Maybe the reason was that the pump wavelength of ocsasine dyes is too far way from the wavelength of the radiation used. So the optimum dye must have the wavelength of the pump near to the wavelength used. Using rhodamine 'C' we obtained the dependencies of the induced conduction on laser light intensity for three different concentrations of the dye.

  5. Fast response liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsun

    Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial

  6. Liquid crystals and their interactions with colloidal particles and phospholipid membranes: Molecular simulation studies

    NASA Astrophysics Data System (ADS)

    Kim, Evelina B.

    Experimentally, liquid crystals (LC) can be used as the basis for optical biomolecular sensors that rely on LC ordering. Recently, the use of LC as a reporting medium has been extended to investigations of molecular scale processes at lipid laden aqueous-LC interfaces and at biological cell membranes. In this thesis, we present two related studies where liquid crystals are modelled at different length scales. We examine (a) the behavior of nanoscopic colloidal particles in LC systems, using Monte Carlo (MC) molecular simulations and a mesoscopic dynamic field theory (DyFT); and (b) specific interactions of two types of mesogens with a model phospholipid bilayer, using atomistic molecular dynamics (MD) at the A-nm scale. In (a), we consider colloidal particles suspended in a LC, confined between two walls. We calculate the colloid-substrate and colloid-colloid potentials of mean force (PMF). For the MC simulations, we developed a new technique (ExEDOS or Expanded Ensemble Density Of States) that ensures good sampling of phase space without prior knowledge of the energy landscape of the system. Both results, simulation and DyFT, indicate a repulsive force acting between a colloid and a wall. In contrast, both techniques indicate an overall colloid-colloid attraction and predict a new topology of the disclination lines that arises when the particles approach each other. In (b), we find that mesogens (pentylcyanobiphenyl [5CB] or difluorophenyl-pentylbicyclohexyl [5CF]) preferentially partition from the aqueous phase into a dipalmitoylphosphatidylcholine (DPPC) bilayer. We find highly favorable free energy differences for partitioning (-18kBT for 5CB, -26k BT for 5CF). We also simulated fully hydrated bilayers with embedded 5CB or 5CF at concentrations used in recent experiments (6 mol% and 20 mol%). The presence of mesogens in the bilayer enhances the order of lipid acyl tails and changes the spatial and orientational arrangement of lipid headgroup atoms. A stronger

  7. Copper sulfate: Liquid or crystals?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two separate experiments were conducted to evaluate copper toxicity to channel catfish and free-swimming Ichthyophthirius multifiliis or Ich (the stage of Ich that can be treated); the compounds we used were CuSO4 crystals and a non-chelated liquid CuSO4 product. In 96 hr tests conducted in aquaria...

  8. Liquid-Crystal Optical Correlator

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1989-01-01

    Optical correlator uses commercially-available liquid-crystal television (LCTV) screen as spatial light modulator. Correlations with this device done at video frame rates, making such operations as bar-code recognition possible at reasonable cost. With further development, such correlator useful in automation, robotic vision, and optical image processing.

  9. Experiments with Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Fergason, James L.

    1970-01-01

    Describes laboratory experiments designed to demonstrate (1) the properties of cholesteric liquid crystals, (2) thermal mapping, (3) thermal diffusivity, (4) adiabatic expansion of rubber, and (5) measurement of radiated energy by a point source. Contains all of the information on materials and apparatus needed to perform the experiments.…

  10. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  11. Liquid Crystals: The Phase of the Future.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate; And Others

    1992-01-01

    Liquid crystal displays are currently utilized to convey information via graphic displays. Presents experiments and explanations that employ the concept of liquid crystals to learn concepts related to the various states of matter, electric and magnetic forces, refraction of light, and optics. Discusses applications of liquid crystal technology.…

  12. Quantification of photoinduced order increase in liquid crystals with naphthopyran guests

    NASA Astrophysics Data System (ADS)

    Rumi, Mariacristina; Cazzell, Seth A.; Kosa, Tamas; Sukhomlinova, Ludmila; Taheri, Bahman; White, Timothy J.; Bunning, Timothy J.

    2016-03-01

    Photoinduced order-increasing phase transitions can occur in dye-liquid crystal mixtures when the photoproduct of the excitation of the dye molecules is more compatible with the liquid crystalline medium than the initial dye species. A detailed investigation of the photoinduced changes of the phase behavior and optical properties of mixtures of liquid crystals with naphthopyran guests upon exposure to light at 365 nm is presented here. In these guest-host systems, the nematic-to-isotropic phase transition temperature is increased upon irradiation. We show that the nematic range can be extended up to 2.9 °C by illumination in 5CB (4 -n -pentyl-4'-cyanobiphenyl) liquid crystal mixtures. The order parameter is significantly increased by illumination at all temperatures within the nematic range and the changes are larger at higher concentrations of the guests. In particular, the illuminated guest-host mixtures exhibit order parameters close to those of the neat liquid crystal host at the same temperature relative to the clearing point. An improved understanding of the photophysical processes taking place at the molecular level in these material systems can inform the design of photoresponsive materials and enhance their potential utility in optical or photonic devices.

  13. A random laser made of nematic liquid crystal doped with a laser dye

    NASA Astrophysics Data System (ADS)

    Sznitko, L.; Kaliciak, K.; Adamow, A.; Mysliwiec, J.

    2016-06-01

    We report on random laser emission obtained in 5CB and E7 nematic liquid crystal (LC) mixtures doped with 1% weight to weight ratio of DCM laser dye. The LC cell was used as asymmetric planar waveguide were emission was collected from the edge of the sample. Variable stripe length method was utilized to estimate the gain and the losses coefficients. Both systems have shown the threshold energy fluence in order of several mJ/cm2. In both cases above Fredericks potential, significant increase of emission intensity was observed due to the increase of light scattering on liquid crystalline domains. Moreover the use of fifth order of diffraction grating covered with thin alumina film resulted in strong multimode and directional laser emission.

  14. Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal.

    PubMed

    Basu, Rajratan; Iannacchione, Germano S

    2010-05-01

    We present a detailed study of a dilute suspension of carbon nanotubes (CNTs) in a pentylcyanobiphenyl (5CB) liquid crystal (LC) by probing the dielectric properties as a function of applied ac voltage and frequency. In principle, to minimize the elastic distortion in the nematic matrix, the monodispersed CNTs follow the nematic director without disturbing the director field significantly. A strong anchoring energy due to π-π electron stacking between LC-CNT molecules results in an increase in the dielectric anisotropy for the hybrid system, indicating a significant enhancement in the orientational order parameter. The frequency-dependent dielectric anisotropy for the composite system reveals the intrinsic frequency response of the LC-CNT anchoring mechanism. As a matter of consequence, the extracted value of splay elastic constant suggests that LC-CNT anchoring has an impact on the structural modification of the hybrid LC+CNT system. This strong anchoring energy stabilizes local pseudonematic domains, giving rise to a nonzero dielectric anisotropy in the isotropic phase that also shows an intrinsic frequency response. PMID:20866245

  15. Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Basu, Rajratan; Iannacchione, Germano S.

    2010-05-01

    We present a detailed study of a dilute suspension of carbon nanotubes (CNTs) in a pentylcyanobiphenyl (5CB) liquid crystal (LC) by probing the dielectric properties as a function of applied ac voltage and frequency. In principle, to minimize the elastic distortion in the nematic matrix, the monodispersed CNTs follow the nematic director without disturbing the director field significantly. A strong anchoring energy due to π-π electron stacking between LC-CNT molecules results in an increase in the dielectric anisotropy for the hybrid system, indicating a significant enhancement in the orientational order parameter. The frequency-dependent dielectric anisotropy for the composite system reveals the intrinsic frequency response of the LC-CNT anchoring mechanism. As a matter of consequence, the extracted value of splay elastic constant suggests that LC-CNT anchoring has an impact on the structural modification of the hybrid LC+CNT system. This strong anchoring energy stabilizes local pseudonematic domains, giving rise to a nonzero dielectric anisotropy in the isotropic phase that also shows an intrinsic frequency response.

  16. Liquid crystal light valve structures

    NASA Technical Reports Server (NTRS)

    Koda, N. J. (Inventor)

    1985-01-01

    An improved photosensor film and liquid crystal light valves embodying said film is provided. The photosensor film and liquid crystal light valve is characterized by a significant lower image retention time while maintaining acceptable photosensitivity. The photosensor film is produced by sputter depositing CdS onto an ITO substrate in an atmosphere of argon/H2S gas while maintaining the substrate at a temperature in the range of about 130 C to about 200 C and while introducing nitrogen gas into the system to the extent of not more than about 1% of plasma mixture. Following sputter deposition of the CdS, the film is annealed in an inert gas at temperatures ranging from about 300 C to about 425 C.

  17. Bent core liquid crystal elastomers

    SciTech Connect

    Verduzco, R.; DiMasi, E.; Luchette, P.; Ho Hong, S.; Harden, J.; Palffy-Muhoray, P.; Kilbey II, S.M.; Sprunt, S.; Gleeson, G.T. Jakli, A.

    2010-07-28

    Liquid crystal (LC) elastomers with bent-core side-groups incorporate the properties of bent-core liquid crystals in a flexible and self-supporting polymer network. Bent-core liquid crystal elastomers (BCEs) with uniform alignment were prepared by attaching a reactive bent-core LC to poly(hydrogenmethylsiloxane) and crosslinking with a divinyl crosslinker. Phase behavior studies indicate a nematic phase over a wide temperature range that approaches room temperature, and thermoelastic measurements show that these BCEs can reversibly change their length by more than a factor of two upon heating and cooling. Small-angle X-ray scattering studies reveal multiple, broad low-angle peaks consistent with short-range smectic C order of the bent-core side groups. A comparison of these patterns with predictions of a Landau model for short-range smectic C order shows that the length scale for smectic ordering in BCEs is similar to that seen in pure bent-core LCs. The combination of rubber elasticity and smectic ordering of the bent-core side groups suggests that BCEs may be promising materials for sensing, actuating, and other advanced applications.

  18. Optical trapping in liquid crystals

    NASA Astrophysics Data System (ADS)

    Simoni, F.; Lucchetti, L.; Criante, L.; Bracalente, F.; Aieta, F.

    2010-08-01

    Optical trapping and manipulation of micrometric silica particles dispersed in a nematic liquid crystal is reported. Several kind of samples are considered: homeotropic and planar undoped cells and homeotropic and planar cells doped by a small amount of the azo-dye Methyl-Red. The incident light intensity is over the threshold for optical reorientation of the molecular director. The refractive index of the dispersed particles is lower than the ones of the liquid crystal therefore the usual conditions for laser trapping and manipulation are not fulfilled. Nevertheless optical trapping is possible and is closely related to the optical nonlinearity of the hosting liquid crystal1. Trapping in doped and undoped cells are compared and it is shown that in the first case intensity lower by more than one order of magnitude is required as compared to the one needed in undoped samples. The effect is faster and the structural forces are of longer range. The formation of bubble-gum like defects in doped samples under certain experimental conditions is also reported and discussed.

  19. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  20. Order and conformation of biphenyl in cyanobiphenyl liquid crystals: a combined atomistic molecular dynamics and 1H NMR study.

    PubMed

    Pizzirusso, Antonio; Di Pietro, Maria Enrica; De Luca, Giuseppina; Celebre, Giorgio; Longeri, Marcello; Muccioli, Luca; Zannoni, Claudio

    2014-05-19

    The alignment of biphenyl (2P) in the liquid-crystal phases of 4-n-pentyl-4'-cyanobiphenyl (5CB) and 4-n-octyl-4'-cyanobiphenyl (8CB) is investigated by using a combination of predictive atomistic molecular dynamics (MD) simulations and (1)H liquid-crystal nuclear magnetic resonance (LXNMR) residual dipolar coupling measurements. A detailed comparison and validation of the MD results with LXNMR is provided, showing a good agreement between the simulated and experimental dipolar couplings at the same reduced temperature. MD is then used to examine the location of 2P in the smectic phase, which is unavailable to LXNMR, and 2P is found to be rather uniformly distributed. The combination of MD and NMR spectroscopy provides detailed information about the order, interconnection between orientation and conformation, local positional order, and interactions with the liquid-crystalline solvent. PMID:24692106

  1. Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ryzhkova, A. V.; Škarabot, M.; Muševič, I.

    2015-04-01

    We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluctuations of the nematic liquid crystal, but also with a repulsive force of electric origin. We determined the total electric charge of silanated silica particles in the nematic liquid crystal 5CB by observing the electric-force-driven drift. Surprisingly, the surface electric charge density depends on colloidal size and is ˜4.5 ×10-3C/m2 for 20-nm nanocolloids, and two orders of magnitude lower, i.e., ˜2.3 ×10-5C/m2 , for 1 -μ m colloids. We conclude that electrostatic repulsion between like-charged particles prevents the formation of permanent colloidal assemblies of nanometer size. We also observed strong attraction of 20-nm silica nanoparticles to confining polyimide surfaces and larger clusters, which gradually results in complete expulsion of nanoparticles from the nematic liquid crystal to the surfaces of the confining cell.

  2. Free energy perturbation method for measuring elastic constants of liquid crystals

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet

    There is considerable interest in designing liquid crystals capable of yielding specific morphological responses in confined environments, including capillaries and droplets. The morphology of a liquid crystal is largely dictated by the elastic constants, which are difficult to measure and are only available for a handful of substances. In this work, a first-principles based method is proposed to calculate the Frank elastic constants of nematic liquid crystals directly from atomistic models. These include the standard splay, twist and bend deformations, and the often-ignored but important saddle-splay constant. The proposed method is validated using a well-studied Gay-Berne(3,5,2,1) model; we examine the effects of temperature and system size on the elastic constants in the nematic and smectic phases. We find that our measurements of splay, twist, and bend elastic constants are consistent with previous estimates for the nematic phase. We further outline the implementation of our approach for the saddle-splay elastic constant, and find it to have a value at the limits of the Ericksen inequalities. We then proceed to report results for the elastic constants commonly known liquid crystals namely 4-pentyl-4'-cynobiphenyl (5CB) using atomistic model, and show that the values predicted by our approach are consistent with a subset of the available but limited experimental literature.

  3. Ultraweak azimuthal anchoring of a nematic liquid crystal on a planar orienting photopolymer

    SciTech Connect

    Nespoulous, Mathieu; Blanc, Christophe; Nobili, Maurizio

    2007-10-01

    The search of weak anchoring is an important issue for a whole class of liquid crystal displays. In this paper we present an orienting layer showing unreached weak planar azimuthal anchoring for 4-n-pentyl-4{sup '}-cyanobiphenyl nematic liquid crystal (5CB). Azimuthal extrapolation lengths as large as 80 {mu}m are easily obtained. Our layers are made with the commercial photocurable polymer Norland optical adhesive 60. The anisotropy of the film is induced by the adsorption of oriented liquid crystal molecules under a 2 T magnetic field applied parallel to the surfaces. We use the width of surface {pi}-walls and a high-field electro-optical method to measure, respectively, the azimuthal and the zenithal anchorings. The azimuthal anchoring is extremely sensitive to the ultraviolet (UV) dose and it also depends on the magnetic field application duration. On the opposite, the zenithal anchoring is only slightly sensitive to the preparation parameters. All these results are discussed in terms of the adsorption/desorption mechanisms of the liquid crystal molecules on the polymer layer and of the flexibility of the polymer network.

  4. Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal.

    PubMed

    Ryzhkova, A V; Škarabot, M; Muševič, I

    2015-04-01

    We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluctuations of the nematic liquid crystal, but also with a repulsive force of electric origin. We determined the total electric charge of silanated silica particles in the nematic liquid crystal 5CB by observing the electric-force-driven drift. Surprisingly, the surface electric charge density depends on colloidal size and is ∼4.5×10(-3)C/m(2) for 20-nm nanocolloids, and two orders of magnitude lower, i.e., ∼2.3×10(-5)C/m(2), for 1-μm colloids. We conclude that electrostatic repulsion between like-charged particles prevents the formation of permanent colloidal assemblies of nanometer size. We also observed strong attraction of 20-nm silica nanoparticles to confining polyimide surfaces and larger clusters, which gradually results in complete expulsion of nanoparticles from the nematic liquid crystal to the surfaces of the confining cell. PMID:25974514

  5. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In

  6. Dielectric and electro-optic measurements of nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peterson, Matthew; Georgiev, Georgi; Atherton, Timothy; Cebe, Peggy

    We studied the effects of carbon nanotubes (CNTs) on the dielectric and electro-optic properties of nematic 5CB liquid crystals (LCs). Samples containing 0.01%, 0.10% and 1.00% CNTs by weight were prepared. Anti- parallel rubbed cells with a nominal thickness of 10 μm were prepared using indium tin oxide coated glass cells and a polyimide alignment layer. The capacitance and dissipation factor were measured using an Agilent 4284A precision LCR meter. From these measurements, the complex dielectric permittivity was determined as a function of frequency. Analysis of the low frequency regime (f <1000 Hz) indicates that 5CB samples containing CNTs have a higher conductance than neat samples. The Fréedericksz transition critical voltage was noted by a sharp increase in capacitance after an initial plateau. Numerical simulations of CNT-facilitated switching show that polarization induced on the nanotubes from capacitive effects can significantly reduce the critical voltage in DC electric fields, in agreement with experimental results. Measurements of the critical voltage over a range of frequencies will also be presented. Research was supported by the National Science Foundation, DMR1206010.

  7. Computer simulations of liquid crystals

    NASA Astrophysics Data System (ADS)

    Smondyrev, Alexander M.

    Liquid crystal physics is an exciting interdisciplinary field of research with important practical applications. Their complexity and the presence of strong translational and orientational fluctuations require a computational approach, especially in the studies of nonequlibrium phenomena. In this dissertation we present the results of computer simulation studies of liquid crystals using the molecular dynamics technique. We employed the Gay-Berne phenomenological model of liquid crystals to describe the interaction between the molecules. Both equilibrium and non-equilibrium phenomena were studied. In the first case we studied the flow properties of the liquid crystal system in equilibrium as well as the dynamics of the director. We measured the viscosities of the Gay-Berne model in the nematic and isotropic phases. The temperature-dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity, are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment. The director motion was found to be ballistic at short times and diffusive at longer times. The second class of problems we focused on is the properties of the system which was rapidly quenched to very low temperatures from the nematic phase. We find a glass transition to a metastable phase with nematic order and frozen translational and orientational degrees of freedom. For fast quench rates the local structure is nematic-like, while for slower quench rates smectic order is present as well. Finally, we considered a system in the isotropic phase which is then cooled to temperatures below the isotropic-nematic transition temperature. We expect topological defects to play a central role in the subsequent equilibration of the system. To identify and study these defects we require a simulation of a system with several thousand particles. We present the results of large

  8. Topological defects and self-assembly of cuboidal colloidal particles with sharp edges in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    de Pablo, Juan J.; Sadati, Monirosadat; Armas-Perez, Julio C.; Soni, Vishal; Irvine, William T. M.

    The geometry of colloidal particles defines the topology and self-assembly of colloidal superstructures in nematic liquid crystals. Past research has largely focused on the defects that arise around spherical colloids, and the defect-induced aggregation between them. In this work, we examine experimentally and theoretically, the effect of edge curvature of colloidal particles on their defect configurations and self-assembly in a nematic liquid crystal (5CB). The polarized images of the particles with homeotropic surface anchoring in 5CB show that the presence of sharp edges can reshape completely the defect ring. The defect makes sharp turns and follows the edge of the cube particles, which significantly affects the interaction between particles and their eventual self-assembly. In agreement with our experimental results, our computational studies indicate that the gradual increase of the edges sharpness that occurs as we transition from spheres to cubes, changes the defect structure from a Saturn ring to a twisted ring, which is pinned to the edges of the cube particle. The wide variety of topological defects achievable by changing the curvature could provide new tools to tune colloidal self-assembly.

  9. Electric method for studying reorientation dynamics of the nematic liquid crystal director

    NASA Astrophysics Data System (ADS)

    Shcherbinin, D. P.; Vakulin, D. A.; Konshina, E. A.

    2016-07-01

    A method has been proposed for studying the reorientation dynamics of the nematic liquid crystal (NLC) director using the results of measurements of the electric response of an LC cell. The simulation of the time dependences of the current in an LC cell with a homogeneous orientation is carried out upon variation of the applied voltage, the initial tilt angle of the director, dielectric anisotropy, and the elasticity coefficient, as well as the dynamic viscosity, density, and ion mobility in the NLC. A comparison of the experimental and computational curves of the electric response for NLC 5CB shows their good agreement. The method makes it possible to monitor the steady-state current, the density, and the ion mobility in NLCs.

  10. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    SciTech Connect

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Biradar, A. M.

    2014-04-14

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  11. Anisotropic Stokes Drag and Dynamic Lift on Cylindrical Colloids in a Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Rovner, Joel; Lapointe, Clayton; Reich, Daniel; Leheny, Robert

    2011-03-01

    Unlike isotropic fluids, nematic liquid crystals exhibit a complex assortment of hydrodynamic properties that can strongly depend on the director field and local boundary conditions set by inclusions. To understand further these characteristics, measurements were taken of the Stokes drag on magnetic nanowires suspended in nematic 4-cyano-4'-pentylbiphenyl (5CB). Effective drag viscosities for wires moving perpendicular and parallel to the nematic director were measured and were found to differ by factors of approximately 0.88 to 2.4, depending on the wire orientation and surface anchoring. Additionally, a lift force was observed when wires were forced at an oblique angle to the director resulting in motion divergent from the line of force. The lift was greater for wires with homeotropic anchoring and smaller for wires with longitudinal anchoring, suggesting that the lift force can act as a mechanism for sorting colloidal particles according to their surface chemistry.

  12. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    NASA Astrophysics Data System (ADS)

    Tyagi, Mukta; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Agrawal, V. V.; Biradar, A. M.

    2014-04-01

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  13. Nanoscopic Manipulation and Imaging of Liquid Crystals

    SciTech Connect

    Rosenblatt, Charles S.

    2014-02-04

    This is the final project report. The project’s goals centered on nanoscopic imaging and control of liquid crystals and surfaces. We developed and refined techniques to control liquid crystal orientation at surfaces with resolution as small as 25 nm, we developed an optical imaging technique that we call Optical Nanotomography that allows us to obtain images inside liquid crystal films with resolution of 60 x 60 x 1 nm, and we opened new thrust areas related to chirality and to liquid crystal/colloid composites.

  14. Multifunctional Glassy Liquid Crystal for Photonics

    SciTech Connect

    Chen,S.H.

    2004-11-05

    As an emerging class of photonic materials, morphologically stable glassy liquid crystals, were developed following a versatile molecular design approach. Glassy cholesteric liquid crystals with elevated phase-transition temperatures and capability for selective-wavelength reflection and circular polarization were synthesized via determinstic synthesis strategies. Potential applications of glassy cholesteric liquid crystals include high-performance polarizers, optical notch filters and reflectors, and circularly polarized photoluminescence. A glassy nematic liquid crystal comprising a dithienylethene core was also synthesized for the demonstration of nondestructive rewritable optical memory and photonic switching in the sollid state.

  15. Polymer Crystallization at Curved Liquid/Liquid Interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self

  16. Nanoparticle doping in nematic liquid crystals: distinction between surface and bulk effects by numerical simulations.

    PubMed

    Urbanski, Martin; Mirzaei, Javad; Hegmann, Torsten; Kitzerow, Heinz-S

    2014-05-19

    Doping nematic liquid crystals with small amounts of nanoparticles can significantly alter the electro-optic response of the nematic host. Some of these effects result from nanoparticles influencing the liquid crystal/substrate interface, while other effects are caused by nanoparticles in the bulk. So far, little attention has been paid to the influence of surface interactions on the determination of bulk properties. In the present study, these effects are investigated experimentally and confirmed by numerical simulations. The splay-type Fréedericksz-transition of the nematic liquid crystal 5CB doped with CdSe quantum dots is investigated, as these dispersions are known from earlier studies to affect the initial alignment layers. In comparison, dispersions of chemically and thermally stable silanized gold nanoparticles in the apolar nematic host FELIX-2900-03 are analyzed, which are expected to be bulk-active only. A data fitting routine is presented which allows a distinction between bulk and surface effects of nanoparticle doping. For the quantum dots, an increase of pretilt angle proportional to the doping concentration is found, as well as a slight decrease of the anchoring energy of molecules at the confining substrates. The silanized gold particles show no influence on the boundary conditions up to doping concentrations of 2.5 % (w). For higher concentrations an increase of pretilt angle is reported. PMID:24482304

  17. Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range

    NASA Astrophysics Data System (ADS)

    Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin

    2013-12-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.

  18. Liquid crystal-templated conducting organic polymers

    DOEpatents

    Stupp, Samuel I.; Hulvat, James F.

    2004-01-20

    A method of preparing a conductive polymeric film, includes providing a liquid crystal phase comprising a plurality of hydrophobic cores, the phase on a substrate, introducing a hydrophobic component to the phase, the component a conductive polymer precursor, and applying an electric potential across the liquid crystal phase, the potential sufficient to polymerize the said precursor.

  19. Liquid-Crystal Point-Diffraction Interferometer

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1996-01-01

    Liquid-crystal point-diffraction interferometer (LCPDI) invented to combine flexible control of liquid-crystal phase-shifts with robustness of point-diffraction interferometers. Produces interferograms indicative of shapes of wavefronts of laser beams having passed through or reflected from objects of interest. Interferograms combined in computers to produce phase maps describing wavefronts.

  20. Demonstrations with a Liquid Crystal Shutter

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    The experiments presented show the response of a liquid crystal shutter to applied electric voltages and the delay of the operations. Both properties are important for liquid crystal displays of computers and television sets. Two characteristics of the shutter are determined: (i) the optical transmittance versus applied voltage of various…

  1. Liquid Crystals in Education--The Basics

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2012-01-01

    The introduction of teaching about liquid crystals is discussed from several points of view: the rationale why to teach them, the basics about liquid crystals or what the teacher should teach about them, the fundamental pre-knowledge of students required, the set of experiments accompanying the teaching and the brief report on the already…

  2. Chemical and biological sensing using liquid crystals

    PubMed Central

    Carlton, Rebecca J.; Hunter, Jacob T.; Miller, Daniel S.; Abbasi, Reza; Mushenheim, Peter C.; Tan, Lie Na; Abbott, Nicholas L.

    2014-01-01

    The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical and biological sensors. In this application of liquid crystals, the challenge is to design liquid crystalline systems that undergo changes in organization when perturbed by targeted chemical and biological species of interest. The approaches described below revolve around the design of interfaces that selectively bind targeted species, thus leading to surface-driven changes in the organization of the liquid crystals. Because liquid crystals possess anisotropic optical and dielectric properties, a range of different methods can be used to read out the changes in organization of liquid crystals that are caused by targeted chemical and biological species. This review focuses on principles for liquid crystal-based sensors that provide an optical output. PMID:24795857

  3. Effect of TiO2 nanoparticle doping on the performance of electrically-controlled nematic liquid crystal core waveguide switch

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh; Sinha, Aloka; Shenoy, M. R.

    2015-11-01

    A liquid crystal (LC) core waveguide has been designed and fabricated using nanocolloid of the nematic liquid crystal 5CB, doped with TiO2 nanoparticles, as the core. Nematic liquid crystals doped with small amount of nanoparticles can have significantly altered electro-optic response. The performance of the fabricated LC core waveguide as an optical-switch has been studied, and the experimental result shows that the threshold voltage for switching is reduced from 1 V to 0.25 V due to TiO2 nanoparticle dopant-concentration of 2.0 wt.%. The overall optimal performance of the waveguide switch, in terms of threshold voltage, extinction ratio, and response time, is achieved for a dopant-concentration of 0.5 wt.%.

  4. Liquid Crystal Cells Based on Photovoltaic Substrates

    NASA Astrophysics Data System (ADS)

    Lucchetti, L.; Kushnir, K.; Zaltron, A.; Simoni, F.

    2016-02-01

    Liquid crystal cells with LiNbO3:Fe crystals as substrates, are described. The photovoltaic field generated by the substrates is able to reorient the liquid crystal director thus giving rise to a phase shift on the light propagating through the cell, as in liquid crystal light valves. The process does not require the application of an external electric field, thus being potentially useful for applications requiring a high degree of compactness. An efficient optical switch with a high transmission contrast, based on the described optically-induced electric field, is also proposed.

  5. Analysis of the Influence of the Molecular Volume to Predict Experimental Pressure-Temperature Behavior in the Isotropic-Nematic Phase Transition of PAP, 5CB, MBBA and EBBA

    NASA Astrophysics Data System (ADS)

    García-Sánchez, Eduardo; Mendoza-Huizar, Luis H.; Ramírez-García, Uriel; Sustaita, Ireri A.; Alvarado, Francisco

    2015-04-01

    In this work, we have analyzed the experimental pressure-temperature behavior at the isotropic-nematic phase transition of the liquid crystals PAP, 5CB, MBBA, and EBBA at 1 atm by using the HERSW Convex Peg model in conjunction with the IPCM model. We have calculated the molecular volume values for the hard and attractive cores from theoretical quantum calculations at the PM3, PM6, B3LYP/6-311++G(d,p)//PM6, and M06/6-311++G(d,p)//PM6 levels of theory. The results suggest that the best theoretical prediction of the experimental pressure-temperature behavior is obtained when the molecular volume is evaluated at the DFT level.

  6. Liquid crystal device and method thereof

    SciTech Connect

    Shiyanovskii, Sergij V; Gu, Mingxia; Lavrentovich, Oleg D

    2012-10-23

    The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The "switch-off" phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.

  7. Patterned cholesteric liquid crystal polymer film.

    PubMed

    Hsu, Wei-Liang; Ma, Ji; Myhre, Graham; Balakrishnan, Kaushik; Pau, Stanley

    2013-02-01

    Herein, the ability to create arbitrarily patterned circular polarized optical devices is demonstrated by using cholesteric liquid crystal polymer. Photoalignment with polarized ultraviolet light is utilized to create aligned cholesteric liquid crystal films. Two different methods, thermal annealing and solvent rinse, are utilized for patterning cholesteric liquid crystal films over large areas. The patterned cholesteric liquid crystal films are measured using a Mueller matrix imaging polarimeter, and the polarization properties, including depolarization index, circular diattenuation (CD), and circular retardance are derived. Patterned nonlinearly polarized optical devices can be fabricated with feature sizes as small as 20 μm with a CD of 0.812±0.015. Circular polarizing filters based on polymer cholesteric liquid crystal films have applications in three-dimensional displays, medical imaging, polarimetry, and interferometry. PMID:23456060

  8. Phototropic liquid crystals comprising one component

    NASA Astrophysics Data System (ADS)

    Sobolewska, Anna; Zawada, Joanna; Bartkiewicz, Stanislaw; Galewski, Zbigniew

    2013-09-01

    Phototropic liquid crystals (PtLC), in which the phase transition can be controlled by the light, are a new class of liquid crystal materials possessing number of potential applications, especially in photonic devices. So far a significant majority of PtLC materials has been realized by the doping a classical liquid crystal with a photochromic dye. Here we report PtLCs comprising a single compound. Liquid-crystalline and photochromic properties have been accomplished in alkylo-alkoxy derivatives of azobenzene. Such compounds show a rich polymorphism which can be controlled by the light. The phenomenon of the photochemical phase transition has been investigated by means of holographic grating recording.

  9. Guided-wave liquid-crystal photonics.

    PubMed

    Zografopoulos, D C; Asquini, R; Kriezis, E E; d'Alessandro, A; Beccherelli, R

    2012-10-01

    In this paper we review the state of the art in the field of liquid-crystal tunable guided-wave photonic devices, a unique type of fill-once, molecular-level actuated, optofluidic systems. These have recently attracted significant research interest as potential candidates for low-cost, highly functional photonic elements. We cover a full range of structures, which span from micromachined liquid-crystal on silicon devices to periodic structures and liquid-crystal infiltrated photonic crystal fibers, with focus on key-applications for photonics. Various approaches on the control of the LC molecular orientation are assessed, including electro-, thermo- and all-optical switching. Special attention is paid to practical issues regarding liquid-crystal infiltration, molecular alignment and actuation, low-power operation, as well as their integrability in chip-scale or fiber-based devices. PMID:22842818

  10. Temperature sensing with thermochromic liquid crystals

    NASA Astrophysics Data System (ADS)

    Smith, C. R.; Sabatino, D. R.; Praisner, T. J.

    A review of the most recent developments in the application of thermochromic liquid crystals to fluid flow temperature measurement is presented. The experimental aspects including application, illumination, recording, and calibration of liquid crystals on solid surfaces, as well as in fluid suspensions, are discussed. Because of the anisotropic optical properties of liquid crystals, on-axis lighting/viewing arrangements, combined with in-situ calibration techniques, generally provide the most accurate temperature assessments. However, where on-axis viewing is not possible, calibration techniques can be employed, which reduce the uncertainty associated with off-axis viewing and lighting arrangements. It has been determined that the use of hue definitions that display a linear trend across the color spectrum yield the most accurate correlation with temperature. The uncertainty of both wide-band and narrow-band thermochromic liquid crystal calibration techniques can be increased due to hysteresis effects, which occur when the temperature of the liquid crystals exceeds their maximum activation temperature. Although liquid crystals are commonly used to provide time-mean temperature measurements, techniques are available which allow the monitoring of temporal changes. Selected examples illustrating the use of thermochromic liquid crystals are shown, and a survey of reported temperature measurement uncertainties is presented.

  11. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  12. Properties of the static NMR response of a confined thin nematic film of 5CB-d2 under crossed electric and magnetic fields: theory and experiments.

    PubMed

    Véron, A; Sugimura, A; Luckhurst, G R; Martins, A F

    2012-11-01

    This work describes an investigation of the static (or quasistatic) nuclear magnetic resonance (NMR) response in a nematic liquid crystal confined between two planar conducting plates and subject to a magnetic field and an electric field produced by a difference of voltage applied on the plates. Deuterium NMR spectroscopy of 4-pentyl-d(2)-4'-cyanobiphenyl (5CB-d(2)) under these conditions has revealed a voltage dependent inhomogeneous director distribution for a particular narrow range of voltages and for a fixed magnetic field (that of the spectrometer). In the ideal setup the two plates are assumed to be rigorously parallel, so that a difference of voltage applied on the plates leads to a constant electric field normal to them. When the magnetic field is parallel to the plates (orthogonal geometry) there exists a threshold value of the electric field for which the effect of both fields exactly compensate; moreover, for stronger electric field the director aligns with the electric field while for weaker electric field the director aligns with the magnetic field. If there is a lack of parallelism between the two plates, the electric field becomes inhomogeneous so that it may be larger than the threshold value in some region of the sample and smaller in the remaining part of the sample. In that case the director will adopt essentially two orientations within the sample, namely, parallel or perpendicular to the magnetic field, and the position of the frontier between the two domains depends on the voltage. This feature is clearly shown by deuterium NMR spectra that exhibit a transfer of intensity between two quadrupolar doublets with increase in the applied voltage. The coexistence of two director populations occurs for a range of voltages that depends on the degree of nonparallelism; accordingly, an estimation of this range by NMR yields an experimental estimation of the lack of parallelism. A tiny tilt of the magnetic field (nonorthogonal geometry) entrains a

  13. Properties of the static NMR response of a confined thin nematic film of 5CB-d2 under crossed electric and magnetic fields: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Véron, A.; Sugimura, A.; Luckhurst, G. R.; Martins, A. F.

    2012-11-01

    This work describes an investigation of the static (or quasistatic) nuclear magnetic resonance (NMR) response in a nematic liquid crystal confined between two planar conducting plates and subject to a magnetic field and an electric field produced by a difference of voltage applied on the plates. Deuterium NMR spectroscopy of 4-pentyl-d2-4'-cyanobiphenyl (5CB-d2) under these conditions has revealed a voltage dependent inhomogeneous director distribution for a particular narrow range of voltages and for a fixed magnetic field (that of the spectrometer). In the ideal setup the two plates are assumed to be rigorously parallel, so that a difference of voltage applied on the plates leads to a constant electric field normal to them. When the magnetic field is parallel to the plates (orthogonal geometry) there exists a threshold value of the electric field for which the effect of both fields exactly compensate; moreover, for stronger electric field the director aligns with the electric field while for weaker electric field the director aligns with the magnetic field. If there is a lack of parallelism between the two plates, the electric field becomes inhomogeneous so that it may be larger than the threshold value in some region of the sample and smaller in the remaining part of the sample. In that case the director will adopt essentially two orientations within the sample, namely, parallel or perpendicular to the magnetic field, and the position of the frontier between the two domains depends on the voltage. This feature is clearly shown by deuterium NMR spectra that exhibit a transfer of intensity between two quadrupolar doublets with increase in the applied voltage. The coexistence of two director populations occurs for a range of voltages that depends on the degree of nonparallelism; accordingly, an estimation of this range by NMR yields an experimental estimation of the lack of parallelism. A tiny tilt of the magnetic field (nonorthogonal geometry) entrains a notably

  14. Two distinct crystallization processes in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Tane, Masakazu; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-01

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al2O3 model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al2O3 exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquid does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport.

  15. Two distinct crystallization processes in supercooled liquid.

    PubMed

    Tane, Masakazu; Kimizuka, Hajime; Ichitsubo, Tetsu

    2016-05-21

    Using molecular dynamics simulations we show that two distinct crystallization processes, depending on the temperature at which crystallization occurs, appear in a supercooled liquid. As a model for glass-forming materials, an Al2O3 model system, in which both the glass transition and crystallization from the supercooled liquid can be well reproduced, is employed. Simulations in the framework of an isothermal-isobaric ensemble indicate that the calculated time-temperature-transformation curve for the crystallization to γ(defect spinel)-Al2O3 exhibited a typical nose shape, as experimentally observed in various glass materials. During annealing above the nose temperature, the structure of the supercooled liquid does not change before the crystallization, because of the high atomic mobility (material transport). Thus, the crystallization is governed by the abrupt crystal nucleation, which results in the formation of a stable crystal structure. In contrast, during annealing below the nose temperature, the structure of the supercooled liquid gradually changes before the crystallization, and the formed crystal structure is less stable than that formed above the nose temperature, because of the restricted material transport. PMID:27208956

  16. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects. PMID:26800482

  17. Liquid Crystal Research Shows Deformation By Drying

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These images, from David Weitz's liquid crystal research, show ordered uniform sized droplets (upper left) before they are dried from their solution. After the droplets are dried (upper right), they are viewed with crossed polarizers that show the deformation caused by drying, a process that orients the bipolar structure of the liquid crystal within the droplets. When an electric field is applied to the dried droplets (lower left), and then increased (lower right), the liquid crystal within the droplets switches its alignment, thereby reducing the amount of light that can be scattered by the droplets when a beam is shone through them.

  18. Tactoids of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  19. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  20. Polymer single crystal membrane from liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group-Drexel University Team

    2013-03-01

    Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

  1. Rapid leak detection with liquid crystals

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Ruppe, E. P.

    1978-01-01

    Small leaks in vacuum lines are detected by applying liquid-crystal coating, warming suspected area, and observing color change due to differential cooling by leak jet. Technique is used on inside or outside walls of vacuum-jacketed lines.

  2. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  3. Liquid crystal on subwavelength metal gratings

    SciTech Connect

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V.

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  4. Thermal Conductivity and Liquid Crystal Thermometers.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1993-01-01

    Describes using stock liquid crystal postcards as inexpensive classroom thermometers. Also suggests using these postcards as a good visual temperature indicator for classroom demonstrations such as temperature gradients. One such activity is provided. (MVL)

  5. Multidimensional optics and dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Tang, Shouping

    2007-12-01

    In this dissertation, we present an alternative description of multidimensional optics in liquid crystals and uniaxial media, and a systematical investigation on the dynamic properties of twist nematic devices and ECB devices including flow. We also present our investigation on the backflow and dynamic properties of nematic liquid crystals in modulated electric fields. Based on the understanding to backflow and dynamics of liquid crystals, the dynamics of colloidal particles dispersed in nematic liquid crystals and the flow-induced dynamic optical crosstalk between pixels in nematic liquid crystal devices are also studied. The alternative description of multidimensional optics combines the geometrical optics approximation (GOA) with the beam propagation method (BPM). The general treatment of this approach is developed both theoretically and numerically. The investigation on the dynamic properties of twist nematic devices and ECB devices with consideration of backflow is done experimentally, theoretically and numerically. The calculation results are compared with the experimental results, and the optical responses due to backflow are discussed in detail. The investigation on the backflow and dynamic properties of a nematic liquid crystal in modulated electric fields includes director, flow and the shift of liquid crystal fluid. Especially, an important phenomenon, reverseswitching, is shown in this investigation. The dynamics of colloidal particles dispersed in a nematic cela is studied experimentally and by computer simulation. The polarity of director distortions determines the direction of lift force, and the backflow is responsible for the horizontal translational motion. The optical crosstalk between pixels demonstrates the significance of switching-induce flow in pixilated devices. The electrical switching of a pixel in a twisted nematic device can induce an optical response in neighboring pixels. These phenomena are studied in detail, both experimentally and

  6. Optical vortex arrays from smectic liquid crystals.

    PubMed

    Son, Baeksik; Kim, Sejeong; Kim, Yun Ho; Käläntär, K; Kim, Hwi-Min; Jeong, Hyeon-Su; Choi, Siyoung Q; Shin, Jonghwa; Jung, Hee-Tae; Lee, Yong-Hee

    2014-02-24

    We demonstrate large-area, closely-packed optical vortex arrays using self-assembled defects in smectic liquid crystals. Self-assembled smectic liquid crystals in a three-dimensional torus structure are called focal conic domains. Each FCD, having a micro-scale feature size, produces an optical vortex with consistent topological charge of 2. The spiral profile in the interferometry confirms the formation of an optical vortex, which is predicted by Jones matrix calculations. PMID:24663788

  7. Liquid crystals under the spotlight: light based measurements of electrical and flow properties of liquid crystals

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas P.; Proctor, Matthew B.; Kaczmarek, Malgosia; D'Alessandro, Giampaolo

    2015-09-01

    Optical light modulation in photorefractive liquid crystal cells depends strongly on the relative voltage drop across the photoconductive and liquid crystal layers. This quantity can be estimated using the Voltage Transfer Function, a generalization of the standard cross polarized intensity measurements. Another advantage of this new measurement technique is that we can use it to estimate dynamical parameters of the liquid crystal and of the device, either through simple black-box models or using a full Ericksen-Leslie theory. In this latter case we can obtain estimates of some of the viscosities of the liquid crystal.

  8. Molecular Models of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  9. Biosensing using smectic and cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Popov, Piotr; Mann, Elizabeth; Jakli, Antal

    2015-03-01

    Liquid-crystal-based biosensors utilize liquid crystal alignment's high sensitivity to the presence of lipids and proteins self-assembled at the liquid crystal/aqueous solution interface. The optical response of the bulk liquid crystal to the interface offers inexpensive, easy optical detection of such biologically relevant molecules. Present technique uses nematic liquid crystal phase state that typically has a planar-to-homeotropic response only. Here we show that smectic and cholesteric phase states of liquid crystals can be used as new sensing modes that can provide additional information or improve the characteristics of a potential biosensor device. Smectic-A phase extends the detection range both toward the lower and higher concentration. Cholesteric phase (nematic with a chiral dopant) may be sensitive to the chirality of biological surface-active molecules such as phospholipids. Additionally, the ``finger-print'' texture of a cholesteric phase may show the differences between biomolecule homologues, thus providing a promising way of distinguishing between subtle differences of hydrocarbon chain or head-group size and structure.

  10. The Effect of Dissolved Side-Group Polymers on Pattern Dynamics in Nematic Liquid Crystals in a Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pashkovsky, E. E.; Stille, W.; Strobl, G.; Talebi, D.

    1997-05-01

    Patterns formed by inversion walls in nematic layers exposed to a rotating magnetic field were studied. Dilute solutions of a mesogenic side group polymethacrylate in a low molecular weight liquid crystal (5CB) were used in comparison with the pure solvent. As found in a previous work, in this system the intensity of backflow (fluid flow induced by director rotation) can be controlled by the polymer concentration due to a specific increase of shear viscosity coefficients. In the synchronous regime of director rotation no significant effects of backflow on the dynamics of the walls are observed. Dynamic solitons known from the synchronous regime were also found at asynchronous rotation, when soliton lattices are formed by continuous nucleation. Here comparison with theory for given values of the lattice period shows soliton currents significantly reduced by backflow. Two of the three additional pattern forming states exclusively found at asynchronous rotation were completely suppressed in solutions with sufficient polymer concentration. The third of these states is affected by backflow in the growth rate of its patterns. Numerical calculations were performed to explain behavior of the patterns in the asynchronous state. For pure 5CB a quantitative comparison with the experiment was possible.

  11. Liquid crystal-gated-organic field-effect transistors with in-plane drain-source-gate electrode structure.

    PubMed

    Seo, Jooyeok; Nam, Sungho; Jeong, Jaehoon; Lee, Chulyeon; Kim, Hwajeong; Kim, Youngkyoo

    2015-01-14

    We report planar liquid crystal-gated-organic field-effect transistors (LC-g-OFETs) with a simple in-plane drain-source-gate electrode structure, which can be cost-effectively prepared by typical photolithography/etching processes. The LC-g-OFET devices were fabricated by forming the LC layer (4-cyano-4'-pentylbiphenyl, 5CB) on top of the channel layer (poly(3-hexylthiophene), P3HT) that was spin-coated on the patterned indium-tin oxide (ITO)-coated glass substrates. The LC-g-OFET devices showed p-type transistor characteristics, while a current saturation behavior in the output curves was achieved for the 50-150 nm-thick P3HT (channel) layers. A prospective on/off ratio (>1 × 10(3)) was obtained regardless of the P3HT thickness, whereas the resulting hole mobility (0.5-1.1 cm(2)/(V s)) at a linear regime was dependent on the P3HT thickness. The tilted ordering of 5CB at the LC-P3HT interfaces, which is induced by the gate electric field, has been proposed as a core point of working mechanism for the present LC-g-OFETs. PMID:25478816

  12. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease.

    PubMed

    Hu, Qiong-Zheng; Jang, Chang-Hyun

    2011-12-01

    In this study, a new method for the detection of heavy metals in aqueous phase was developed using liquid crystals (LCs). When UV-treated nematic LC, 4-cyano-4'-pentyl biphenyl (5CB) that was confined in the urease-modified gold grid was immersed in a urea solution, an optical response from bright to dark was observed under a polarized microscope, indicating that a planar-to-homeotropic orientational transition of the LC occurred at the aqueous/LC interface. Since urease hydrolyzes urea to produce ammonia, which would be ionized into ammonium and hydroxide ions, the main product of the photochemically degraded 5CB, 4-cyano-4'-biphenylcarboxylic acid (CBA), was deprotonated and self-assembled at the interface, inducing the orientational transition in the LC. Due to the high sensitivity and rapid response of this system, detection of heavy metal ions was further exploited. The divalent copper ion, which could effectively inhibit the activity of urease, was used as a model heavy metal ion. The optical appearance of the LC did not change when urea was in contact with the copper nitrate hydrate-blocked urease. After the copper-inhibited urease was reactivated by EDTA, a bright-to-dark shift in the optical signal was regenerated, indicating an orientational transition of the LC. This type of LC-based sensor shows high spatial resolution due to its optical characteristics and therefore could potentially be used to accurately monitor the presence of enzyme inhibitors such as heavy metal ions in real-time. PMID:21846586

  13. Hierarchical microstructures formed by bidisperse colloidal suspensions within colloid-in-liquid crystal gels.

    PubMed

    Diestra-Cruz, Heberth; Bukusoglu, Emre; Abbott, Nicholas L; Acevedo, Aldo

    2015-04-01

    Past studies have reported that colloids of a single size dispersed in the isotropic phase of a mesogenic solvent can form colloid-rich networks (and gels) upon thermal quenching of the system across the isotropic-nematic phase boundary of the mesogens. Herein we report the observation and characterization of complex hierarchical microstructures that form when bidisperse colloidal suspensions of nanoparticles (NPs; iron oxide with diameters of 188 ± 20 nm or poly(methyl methacrylate) with diameters of 150 ± 15 nm) and microparticles (MPs; polystyrene with diameters of 2.77 ± 0.20 μm) are dispersed in the isotropic phase of 4-pentyl-4'-cyanobiphenyl (5CB) and thermally quenched. Specifically, we document microstructuring that results from three sequential phase separation processes that occur at distinct temperatures during stepwise cooling of the ternary mixture from its miscibility region. The first phase transition demixes the system into coexisting MP-rich and NP-rich phases; the second promotes formation of a particle network within the MP-rich phase; and the third, which coincides with the isotropic-to-nematic phase transition of 5CB, produces a second colloidal network within the NP-rich phase. We quantified the dynamics of each demixing process by using optical microscopy and Fourier transform image analysis to establish that the phase transitions occur through (i) surface-directed spinodal decomposition, (ii) spinodal decomposition, and (iii) nucleation and growth, respectively. Significantly, the observed series of phase transitions leads to a hierarchical organization of cellular microstructures not observed in colloid-in-liquid crystal gels formed from monodisperse colloids. The results of this study suggest new routes to the synthesis of colloidal materials with hierarchical microstructures that combine large surface areas and organized porosity with potential applications in catalysis, separations, chemical sensing, or tissue engineering. PMID

  14. Photorefractivity in nematic liquid crystals doped with a conjugated polymer: Mechanisms for enhanced charge transport

    SciTech Connect

    Wiederrecht, G.P.; Niemczyk, M.P.; Svec, W.A.; Wasielewski, M.R. |

    1999-06-01

    New organic materials that exhibit photorefractive effects are of wide interest for potential optical signal processing applications. The authors report on a photorefractive nematic liquid crystal composite containing the conjugated polymer poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene), BEH-PPV that exhibits a novel fringe spacing dependent inversion of the polarity of the space-charge field due to competition between the ionic diffusion and charge drift transport mechanisms. A eutectic mixture of 35% (wt %) 4{prime}-(n-octyloxy)-4-cyanobiphenyl, 8OCB, and 65% 4{prime}(n-pentyl)-4-cyanobiphenyl, 5CB, was doped with 10{sup {minus}5} M BEH-PPV (200 kD by GPC), as the electron donor. The molecular weight of the BEH-PPV polymer implies that 500 repeat units of the monomer are present with an extended chain length of 0.35 {micro}m. N,N{prime}-Dioctyl-1,4:5,8-naphthalenediimide, NI, 8 {times} 10{sup {minus}3} M, was added as the electron acceptor. The free energy change for the photoinduced electron-transfer reaction, (BEH-PPV) + NI {yields} (BEH-PPV){sup +} + NI{sup {minus}}, is {minus}1.0 eV. Two other liquid-crystal composites were also studied as controls.

  15. Elastic Torque on a Ferromagnetic Disk within a Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Rovner, Joel B.; Borgnia, Dan S.; Lapointe, Clayton P.; Reich, Daniel H.; Leheny, Robert L.

    2012-02-01

    An aspherical particle suspended in a nematic liquid crystal will impose an orientationally dependent energy due to coupling to the nematic elasticity. This energy depends strongly on the anchoring conditions on the surface of the inclusion, its shape, as well as the proximity of other boundary conditions on the fluid such as those set by the container. To study these properties, ferromagnetic nickel disks with homeotropic surface anchoring were suspended in the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) in a planar cell. The disks, 300 nm in thickness and 10 μm in diameter, possess a permanent magnetic moment confined to the disk's plane. In the absence of any external torque the disks align with the normal to their faces parallel to the director. Rotating of the disks from this preferred orientation creates an elastic deformation that is manifested by an opposing torque. Balancing this torque with the torque from an external magnetic field for various angles of rotation, we have mapped out the orientationally dependent energy. Over a large range of angles the torque shows a linear dependence as predicted by an electrostatic analogy.

  16. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  17. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  18. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  19. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  20. 21 CFR 880.6970 - Liquid crystal vein locator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal vein locator. 880.6970 Section 880... Devices § 880.6970 Liquid crystal vein locator. (a) Identification. A liquid crystal vein locator is a... skin by displaying the color changes of heat sensitive liquid crystals (cholesteric esters)....

  1. Semiconductor liquid crystal composition and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  2. Electro-osmosis in nematic liquid crystals.

    PubMed

    Tovkach, O M; Calderer, M Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities. PMID:27575193

  3. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities.

  4. Phase behavior of ionic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kondrat, S.; Bier, M.; Harnau, L.

    2010-05-01

    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

  5. Liquid nitrogen dewar for protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Gaseous Nitrogen Dewar apparatus developed by Dr. Alex McPherson of the University of California, Irvine for use aboard Mir and the International Space Station allows large quantities of protein samples to be crystallized in orbit. The specimens are contained either in plastic tubing (heat-sealed at each end). Biological samples are prepared with a precipitating agent in either a batch or liquid-liquid diffusion configuration. The samples are then flash-frozen in liquid nitrogen before crystallization can start. On orbit, the Dewar is placed in a quiet area of the station and the nitrogen slowly boils off (it is taken up by the environmental control system), allowing the proteins to thaw to begin crystallization. The Dewar is returned to Earth after one to four months on orbit, depending on Shuttle flight opportunities. The tubes then are analyzed for crystal presence and quality

  6. Liquid crystal quantitative temperature measurement technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Wu, Zongshan

    2001-10-01

    Quantitative temperature measurement using wide band thermochromic liquid crystals is an “area” thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.

  7. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  8. Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer.

    PubMed

    Jemal, Abdelmonem; Ben Belgacem, Mohamed; Kamoun, Saber; Gargouri, Mohamed; Honorat Dorkenoo, Kokou D; Barsella, Alberto; Mager, Loïc

    2013-01-28

    We present the inscription of a Light Induced Self-Written (LISW) waveguide in a 4-cyano-4'-pentylbipheny (5CB) doped photopolymer. The dynamic reorientation of the 5CB molecules in the material under applied electric field leads to birefringence in LISW waveguide and thus allows the control of the phase of the guided mode. PMID:23389136

  9. Effect of the Surface Affinity of Liquid Crystals and Monomers on the Orientation of Polymer-Dispersed Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hoon; Yoon, Tae-Hoon

    2013-09-01

    We investigated the effect of the surface affinity of liquid crystals and reactive monomers on liquid crystal orientation. Liquid crystals and monomers having different contact angles with the vertical alignment polyimide were mixed and photo-polymerized using a UV light. Liquid crystals with smaller contact angles and reactive monomers with greater contact angles promoted a uniform vertical orientation of liquid crystals with a vertical polymer morphology. On the other hand, liquid crystals with greater contact angles and monomers with smaller contact angles resulted in a deformed liquid crystal orientation with an elliptical polymer structure.

  10. Liquid-core, liquid-cladding photonic crystal fibers.

    PubMed

    De Matos, Christiano J; Cordeiro, Cristiano M B; Dos Santos, Eliane M; Ong, Jackson S; Bozolan, Alexandre; Brito Cruz, Carlos H

    2007-09-01

    We experimentally demonstrate a simple and novel technique to simultaneously insert a liquid into the core of a hollow-core photonic crystal fiber (PCF) and a different liquid into its cladding. The result is a liquid-core, liquid-cladding waveguide in which the two liquids can be selected to yield specific guidance characteristics. As an example, we tuned the core-cladding index difference by proper choice of the inserted liquids to obtain control over the number of guided modes. Single-mode guidance was achieved for a particular choice of liquids. We also experimentally and theoretically investigated the nature of light confinement and observed the transition from photonic bandgap to total internal reflection guidance both with the core-cladding index contrast and with the PCF length. PMID:19547475

  11. Reversible switching of liquid crystal micro-particles in a nematic liquid crystal.

    PubMed

    Imamura, Koki; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-01-21

    Liquid crystal micro-particles are functional materials possessing optical and dielectric anisotropies originating from the arrangement of rod-like molecules within the particles. Although they can be switched by an electric field, particles dispersed in isotropic hosts usually cannot return to their original state, because there is no restoration force acting on the particles. Here, we describe reversible switching of liquid crystal micro-particles by dispersing them in a nematic liquid crystal host. We fabricate square micro-particles with unidirectional molecular alignment and investigate their static and dynamic electro-optic properties by applying an in-plane electric field. The behavior of the micro-particles is well-described by the theoretical model we construct, making this study potentially useful for the development of liquid crystal-liquid crystal particle composites with engineered properties. PMID:26514389

  12. Novel ferroelectric liquid crystals consisting glassy liquid crystal as chiral dopants

    NASA Astrophysics Data System (ADS)

    Chen, Huang-Ming Philip; Tsai, Yun-Yen; Lin, Chi-Wen; Shieh, Han-Ping David

    2006-08-01

    A series of ferroelectric liquid crystals consisting new glassy liquid crystals (GLCs) as chiral dopants were prepared and evaluated for their potentials in fast switching ability less than 1 ms. The properties of pure ferroelectric glassy liquid crystals (FGLCs) and mixtures were reported in this paper. In particular, the novel FGLC possessing wide chiral smectic C mesophase over 100 °C is able to suppress smectic A phase of host. The mixture containing 2.0 % GLC-1 performs greater alignment ability and higher contrast ratio than R2301 (Clariant, Japan) in a 2 μm pre-made cell (EHC, Japan). These results indicate that novel FLC mixtures consisting glassy liquid crystals present a promising liquid crystal materials for fast switching field sequential color displays.

  13. Deuteron and proton NMR study of D2, p-dichlorobenzene and 1,3,5-trichlorobenzene in bimesogenic liquid crystals with two nematic phases

    NASA Astrophysics Data System (ADS)

    Burnell, E. E.; Ahmed, Z.; Welch, C.; Mehl, G. H.; Dong, R. Y.

    2016-08-01

    The solutes dideuterium, 1,3,5-trichlorobenzene and p-dichlorobenzene (pdcb) are co-dissolved in a 61/39 wt% mixture of CBC9CB/5CB, a bimesogenic liquid crystal with two nematic phases. NMR spectra are collected for each solute. The local electric field gradient (FZZ) is obtained from the dideuterium spectrum. A double Maier-Saupe potential (MSMS) is used to rationalize the order parameters of pdcb. The liquid-crystal fields G1 and G2 are taken to be due to size and shape interactions and interactions between the solute molecular quadrupole and the mean FZZ of the medium. The FZZ 's obtained from D2 and G2 (from pdcb) are compared and discussed.

  14. The Viscoelastic Properties of Nematic Monodomains Containing Liquid Crystal Polymers.

    NASA Astrophysics Data System (ADS)

    Gu, Dongfeng

    The work presented here investigates the viscoelastic properties of nematic materials containing liquid crystal polymers (LCP). We focus on how the elastic constants and the viscosity coefficients of the mixture systems are influenced by polymer architectures. In dynamic light scattering studies of the relaxation of the director orientation fluctuations for the splay, twist, and bend deformation modes, decrease of the relaxation rates was observed when LCPs were dissolved into low molar mass nematics (LMMN). For the side-chain LCPs, the slowing down in the bend mode is comparable to or larger than those of the splay and twist modes. For main-chain LCPs, the relative changes in the relaxation rates for the twist and splay modes are about one order of magnitude larger than that for the bend mode. The results of light scattering under an electric field show that the decrease in the twist relaxation rate is due to a large increase in the twist viscosity and a minor decrease in the twist elastic constant. These changes were found to increase with decrease of the spacer length, with increase of molecular weight, and with decrease of the backbone flexibility. In Freedericksz transition measurements, the splay and bend elastic constants and the dielectric anisotropies of the nematic mixtures were determined and the values are 5~15% lower than those of the pure solvent. From the analysis of the results of Freedericksz transition and light scattering experiments, a complete set of the elastic constants and viscosity coefficients corresponding to the three director deformation modes were obtained for the LCP mixtures. The changes in the viscosity coefficients due to addition of LCPs were analysed to estimate the anisotropic shapes of the polymer backbone via a hydrodynamic model. The results suggest that an oblate backbone configuration is maintained by the side-chain LCPs and a prolate chain configuration appears for the main-chain LCPs. The rheological behavior of a side

  15. Orientation of nematic liquid crystal in open glass microstructures

    NASA Astrophysics Data System (ADS)

    Azarinia, H.; Beeckman, J.; Neyts, K.; Schacht, E.; Gironès, J.; James, R.; Fernandez, F. A.

    2009-09-01

    Liquid crystal materials can have bulk reorientation due to surface interaction and are therefore of interest for biosensing applications. We present a setup, with holes etched in a substrate, filled with liquid crystal and covered by a sample fluid. The influence of the depth of the microcavities and the type of liquid on the liquid crystal orientation is investigated by experiments and simulations.

  16. Liquid-crystal fiber-optic switch.

    PubMed

    Soref, R A

    1979-05-01

    An adjustable access coupler for multimode fiber-optic networks has been constructed, based on the voltage-tunable total-internal-reflection effect in nematic liquid crystals. Fibers are coupled via graded-index rod lenses at normal incidence to flint-glass prisms in contact with a 6-microm liquid-crystal layer. The achromatic four-port switch has a 1.6-dB optical insertion loss, a tap ratio controllable from -4.6 to -48 dB, a directionality of 44 dB, and an operating voltage of 5 to 20 V rms. PMID:19687832

  17. Dynamic Theory of Polydomain Liquid Crystal Elastomers.

    PubMed

    Duzgun, Ayhan; Selinger, Jonathan V

    2015-10-30

    When liquid crystal elastomers are prepared without any alignment, disordered polydomain structures emerge as the materials are cooled into the nematic phase. These polydomain structures are often attributed to quenched disorder in the cross-linked polymer network. As an alternative explanation, we develop a theory for the dynamics of the isotropic-nematic transition in liquid crystal elastomers, and show that the dynamics can induce a polydomain structure with a characteristic length scale, through a mechanism analogous to the Cahn-Hilliard equation for phase separation. PMID:26565497

  18. Topology and bistability in liquid crystal devices

    SciTech Connect

    Majumdar, A.; Newton, C. J. P.; Robbins, J. M.; Zyskin, M.

    2007-05-15

    We study nematic liquid crystal configurations in a prototype bistable device--the post aligned bistable nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field n, in a model version of the PABN cell. First, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry.

  19. Optical solitons in liquid crystals

    SciTech Connect

    Yung, Y.S.; Lam, L.; Los Alamos National Lab., NM )

    1989-01-01

    In this paper, we will discuss theoretically the possible existence of optical solitons in the isotropic liquid and in the nematic phase. For the same compound, when heated, the nematic phase will go through a first order transition at temperature T{sub c} to the isotropic liquid phase. As temperature increases from below T{sub c}, the orientation order parameter, Q, decreases, drops to zero abruptly at T{sub c} and remains zero for T > T{sub c}. 10 refs., 1 fig.

  20. Crystals, liquid crystals and superfluid helium on curved surfaces

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    In this thesis we study the ground state of ordered phases grown as thin layers on substrates with smooth spatially varying Gaussian curvature. The Gaussian curvature acts as a source for a one body potential of purely geometrical origin that controls the equilibrium distribution of the defects in liquid crystal layers, thin films of He4 and two dimensional crystals on a frozen curved surface. For superfluids, all defects are repelled (attracted) by regions of positive (negative) Gaussian curvature. For liquid crystals, charges between 0 and 4pi are attracted by regions of positive curvature while all other charges are repelled. As the thickness of the liquid crystal film increases, transitions between two and three dimensional defect structures are triggered in the ground state of the system. Thin spherical shells of nematic molecules with planar anchoring possess four short 12 disclination lines but, as the thickness increases, a three dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. Finally, we examine the static and dynamical properties that distinguish two dimensional crystals constrained to lie on a curved substrate from their flat space counterparts. A generic mechanism of dislocation unbinding in the presence of varying Gaussian curvature is presented. We explore how the geometric potential affects the energetics and dynamics of dislocations and point defects such as vacancies and interstitials.

  1. Angular velocity response of nanoparticles dispersed in liquid crystal

    NASA Astrophysics Data System (ADS)

    Huang, Pin-Chun; Shih, Wen-Pin

    2013-06-01

    A hybrid material of nanoparticles dispersed in liquid crystal changed capacitance after spinning beyond threshold angular velocity. Once the centrifugal force of nanoparticles overcomes the attractive force between liquid crystals, the nanoparticles begin to move. The order of highly viscous liquid crystals is disturbed by the nanoparticles' penetrative movement, and the dielectric constant of the liquid crystal cell changes as a result. We found that the angular velocity response of nanoparticles dispersed in liquid crystal with higher working temperature and nanoparticles' density provided higher sensitivity. The obtained results are important for the continuous improvement of liquid-crystal-based inertial sensors or nano-viscometers.

  2. Investigations into complex liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Jennifer

    Liquid crystal phases exhibit physical characteristics that lie between those of liquid and crystal phases. The many liquid crystal sub-phases are defined based on the degree of positional and orientational ordering the molecules have and the materials that make up these liquid crystal phases. This thesis presents a study of the molecular packing and physical properties of complex liquid crystal phases using dopants to better examine the stability and packing mechanisms of these phases. It also looks at the dispersion of quantum dots in liquid crystal materials, examining the electro-optical properties of the mixtures. The main goal of this thesis is to examine the effects of dopants on the properties of liquid crystal phases using optical microscopy, differential scanning calorimetry, electro-optical measurements, and X-ray scattering. For those mixtures with quantum dots fluorescence microscopy and photoluminescence measurements were also conducted. Rod-like liquid crystals are commonly used in display applications when the material is in a nematic liquid crystal phase, which is the least ordered phase exhibiting no positional ordering. The more complicated chiral smectic liquid crystal phases, which have a one dimensional layer structure, show potential for faster and tri-stable switching. A chiral rod-like liquid crystal material is doped with both chiral and achiral rod-like liquid crystals to examine the stability of one of the chiral smectic sub-phase, the SmC* FI1 phase. This phase consists of tilted molecules rotating about the cone defined by the tilt angle with a periodicity of three layers and an overall helical structure. The SmC*FI1 phase is stabilized by the competition between antiferroelectric and ferroelectric interactions, and small amounts of the achiral dopant broadens the range of this phase by almost 5°C. Higher dopant concentrations of the achiral material result in the destabilization of not just the SmC*FI1 phase but all tilted sub

  3. Helmet-Mounted Liquid-Crystal Display

    NASA Technical Reports Server (NTRS)

    Smith, Steve; Plough, Alan; Clarke, Robert; Mclean, William; Fournier, Joseph; Marmolejo, Jose A.

    1991-01-01

    Helmet-mounted binocular display provides text and images for almost any wearer; does not require fitting for most users. Accommodates users from smallest interpupillary distance to largest. Two liquid-crystal display units mounted in helmet. Images generated seen from any position head can assume inside helmet. Eyes directed to position for best viewing.

  4. Inexpensive Electrooptic Experiments on Liquid Crystal Displays.

    ERIC Educational Resources Information Center

    Ciferno, Thomas M.; And Others

    1995-01-01

    Describes the construction and use of an electrooptic apparatus that can be incorporated into the classroom to test liquid crystal displays (LCDs) and introduce students to experiments of an applied physics nature with very practical implications. Presents experiments that give students hands-on experience with technologies of current interest to…

  5. Infrared diagnosis using liquid crystal detectors

    NASA Technical Reports Server (NTRS)

    Hugenschmidt, M.; Vollrath, K.

    1986-01-01

    The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.

  6. Annihilation of defects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Svetec, M.; Ambrožič, M.; Kralj, S.

    The annihilation of defect is studied theoretically in liquid crystals (LCs). We consider the annihilation of point disclinations in nematic and line edge dislocations in smectic A LC phase, respectively. We stress qualitative similarities in these processes. The whole annihilation regime is taken into account, consisting of the pre-collision, collision, and post-collision stage.

  7. Randomized Grain Boundary Liquid Crystal Phase

    NASA Astrophysics Data System (ADS)

    Chen, D.; Wang, H.; Li, M.; Glaser, M.; Maclennan, J.; Clark, N.

    2012-02-01

    The formation of macroscopic, chiral domains, in the B4 and dark conglomerate phases, for example, is a feature of bent-core liquid crystals resulting from the interplay of chirality, molecular bend and molecular tilt. We report a new, chiral phase observed in a hockey stick-like liquid crystal molecule. This phase appears below a smectic A phase and cools to a crystal phase. TEM images of the free surface of the chiral phase show hundreds of randomly oriented smectic blocks several hundred nanometers in size, similar to those seen in the twist grain boundary (TGB) phase. However, in contrast to the TGB phase, these blocks are randomly oriented. The characteristic defects in this phase are revealed by freeze-fracture TEM images. We will show how these defects mediate the randomized orientation and discuss the intrinsic mechanism driving the formation of this phase. This work is supported by NSF MRSEC Grant DMR0820579 and NSF Grant DMR0606528.

  8. Colloidal cholesteric liquid crystal in spherical confinement.

    PubMed

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  9. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  10. Electric heating effects in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Shiyanovskii, S. V.; Lavrentovich, O. D.

    2006-07-01

    Electric heating effects in the nematic liquid crystal change the liquid crystal physical properties and dynamics. We propose a model to quantitatively describe the heating effects caused by dielectric dispersion and ionic conductivity in the nematic liquid crystals upon the application of an ac electric field. The temperature increase of the liquid crystal cell is related to the properties of the liquid crystal such as the imaginary part of the dielectric permittivity, thermal properties of the bounding plates, and the surrounding medium as well as frequency and amplitude of the electric field. To study the temperature dynamics experimentally, we use a small thermocouple inserted directly into the nematic bulk; we assure that the thermocouple does not alter the thermal behavior of the system by comparing the results to those obtained by a noncontact birefringent probing technique recently proposed by Wen and Wu [Appl. Phys. Lett. 86, 231104 (2005)]. We determine how the temperature dynamics and the stationary value of the temperature increase depend on the parameters of the materials and the applied field. We used different surrounding media, from extremely good heat conductors such as aluminum cooling device to extremely poor conductor, Styrofoam; these two provide two limiting cases as compared to typical conditions of nematic cell exploitation in a laboratory or in commercial devices. The experiments confirm the theoretical predictions, namely, that the temperature rise is controlled not only by the heat transfer coefficient of the surrounding medium (as in the previous model) but also by the thickness and the thermal conductivity coefficient of the bounding plates enclosing the nematic layer. The temperature increase strongly depends on the director orientation and can change nonmonotonously with the frequency of the applied field.

  11. Liquid Crystals: Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications (Adv. Mater. 16/2016).

    PubMed

    Narayan, Rekha; Kim, Ji Eun; Kim, Ju Young; Lee, Kyung Eun; Kim, Sang Ouk

    2016-04-01

    Graphene-oxide liquid crystals (GOLCs) have recently been discovered as a novel 2D material with remarkable properties. On page 3045, S. O. Kim and co-workers review the discovery of different GOLC mesophases and recent progress on fundamental studies and applications. The image displays the nematic schlieren texture (in the background) formed by flowing domains of graphene-oxide liquid crystals and their potential applications in energy storage, optoelectronics and wet-spun fibers. PMID:27105812

  12. Shear-Sensitive Monomer/Polymer Liquid Crystal System

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, D. S.

    1993-01-01

    Report describes preliminary investigation of new monomer/polymer liquid crystal system, thin film of shear-sensitive cholesteric monomer liquid crystal (TI 511) on Xydar (STR800) (or equivalent) liquid crystal polymer substrate. Monomer/polymer liquid crystal films applied to surfaces provide quantitative indications of shear stresses caused by winds blowing along surfaces. Effects of shear stresses reversible in new coating system. System provides quantitative data on flows in wind tunnels.

  13. Chem I Supplement: Liquid Crystals--The Chameleon Chemicals.

    ERIC Educational Resources Information Center

    Brown, Glenn H.

    1983-01-01

    Presents information relevant to everyday life so as to stimulate student interest in the properties of the two basic types of liquid crystals: thermotropic and lyotropic. Describes the applications of liquid crystals to electronics, biomedicine, and polymer science and appraises the future of liquid crystal research. (JM)

  14. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  15. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  16. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  17. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  18. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to...

  19. Liquid crystals for holographic optical data storage.

    PubMed

    Matharu, Avtar S; Jeeva, Shehzad; Ramanujam, P S

    2007-12-01

    A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity, is discussed. Polymeric liquid crystals play an important role in the development of materials for holographic storage and photoresponsive materials based on azobenzene are targeted for discussion due to their ease of photo-reversion between trans- and cis-states. Although the final polymer may not be liquid crystalline, irradiation can induce ordered domains. The mesogens act in a co-operative manner, enhancing refractive indices and birefringences. Surface relief gratings are discussed as a consequence of holographic storage. Cholesteric polymers comprising azobenzene are briefly highlighted. Irradiation causing cis-trans-isomerisation can be used to control helix pitch. A brief mention of liquid crystals is also made since these materials may be of future interest since they are optically transparent and amenable to photo-induced anisotropy. PMID:17982514

  20. Liquid crystal assemblies in biologically inspired systems

    PubMed Central

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications. PMID:24558293

  1. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  2. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  3. Zeolite-like liquid crystals.

    PubMed

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  4. Photoalignment of liquid crystals and development of novel glassy liquid crystals

    NASA Astrophysics Data System (ADS)

    Kim, Chunki

    This thesis consists of two parts: (i) photoalignment of liquid crystals, including a nematic fluid, a glassy-namtic pentafluorene, and a cholesteric glassy liquid crystal; and (ii) development of cholesteric glassy liquid crystals comprising a hybrid chiral-nematic mesogen and of photochromic glassy liquid crystals with dithienylethene cores. Photoalignment behaviors were interpreted in terms of the kinetics of axis-selective photodimerization, the rotational mobility of pendant coumarin monomers, and the coumarin monomer's and dimer's absorption dipoles located by computational chemistry. Coumarin-containing polymethacrylate films were employed to elucidate the roles played by coumarin monomer's and dimer's orientational order, their relative abundance, and the energetics of their interactions with overlying liquid crystals. Under favorable conditions, photoalignment was shown to be comparable to rubbing polymimide film in the ability to orient liquid crystals. A hole-conducting copolymer film comprising triphenylamine and coumarin was used to unravel how the dilution of coumarin monomers, polarization ratio of UV-irradiation to induce dimerization of coumarin, and triplet energy transfer from triphenylamine to coumarin moieties affect the quality of photoalignment and its cross-over behavior. Cholesteric glassy liquid crystals are comprised of a helical stack of quasi-nematic layers frozen in the solid state capable of selective wavelength reflection with simultaneous circular polarization. Potentially applications of this material class include robust non-absorbing circular polarizers, optical notch filters and reflectors, and polarized light-emitters and lasers. To facilitate material synthesis over prior arts, hybrid chiral-nematic mesogens were chemically bonded to benzene via enantiomeric 2-methylpropylene spacers, exhibiting a broad cholesteric fluid temperature range. Phase transition temperatures, glass-forming ability, morphological stability against

  5. Narrowband multispectral liquid crystal tunable filter.

    PubMed

    Abuleil, Marwan; Abdulhalim, Ibrahim

    2016-05-01

    Multispectral tunable filters with high performance are desirable components in various biomedical and industrial applications. In this Letter, we present a new narrowband multispectral tunable filter with high throughput over a wide dynamic range. It is composed from a wideband large dynamic range liquid crystal tunable filter combined with a multiple narrowbands spectral filter made of two stacks of photonic crystals and cavity layer in between. The filter tunes between nine spectral bands covering the range 450-1000 nm with bandwidth <10  nm and throughput >80%. PMID:27128048

  6. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2011-09-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  7. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2012-03-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  8. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. PMID:25059128

  9. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Rovner, Joel B.; Borgnia, Dan S.; Reich, Daniel H.; Leheny, Robert L.

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n̂. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>(π)/(2), the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θπ-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  10. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal.

    PubMed

    Chang, Wei-Shun; Link, Stephan; Yethiraj, Arun; Barbara, Paul F

    2008-01-17

    Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media. PMID:17975912

  11. Influence of Simple Electrolytes on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces

    PubMed Central

    Carlton, Rebecca J.; Gupta, Jugal K.; Swift, Candice L.; Abbott, Nicholas L.

    2011-01-01

    We report orientational anchoring transitions at aqueous interfaces of a water-immiscible, thermotropic liquid crystal (LC; nematic phase of 4′-pentyl-4-cyanobiphenyl) that are induced by changes in pH of the aqueous solution and the addition of simple electrolytes (NaCl) to the aqueous phase. Whereas measurements of the zeta potential on the aqueous side of the interface of LC-in-water emulsions prepared with 5CB confirm pH-dependent formation of an electrical double layer extending into the aqueous phase, quantification of the orientational ordering of the LC leads to the proposition that an electrical double layer is also formed on the LC-side of the interface with an internal electric field that drives the LC anchoring transition. Further support for this conclusion is obtained from measurements of the dependence of LC ordering on pH and ionic strength, as well as a simple model based on the Poisson-Boltzmann equation from which we calculate the contribution of an electrical double layer to the orientational anchoring energy of the LC. Overall, the results presented herein provide new fundamental insights into ionic phenomena at LC-aqueous interfaces, and expand the range of solutes known to cause orientational anchoring transitions at LC-aqueous interfaces beyond previously examined amphiphilic adsorbates. PMID:22106820

  12. Fluctuations below a stationary supercritical bifurcation to electroconvection in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Qiu, Xin-Liang; Ahlers, Guenter

    2003-03-01

    We report measurements of thermally driven fluctuations near the onset of electroconvection in a nematic liquid crystal (NLC). The cell (from E.H.C Co, Ltd Japan) had a nominal spacing of 25 μm and planar alignment. It was filled with the NLC Merck phase IV (N4). The NLC was doped with 0.1% by weight of tetra butylammonium bromide(TBAB) and the conductivity was near 9 × 10-7 (Ω m)-1 at 30^oC. The system was driven by an alternating voltage of frequency 25 Hz and amplitude V. The initial bifurcation to electroconvection was supercritical and yielded oblique stationary rolls. For small but negative ɛ ≡ V^2/V_c^2 - 1 the mean-square amplitude of the fluctuations was proportional to |ɛ|^-γ with γ larger than the value γ_LT = 1/2 given by linear theory (LT). This result differs from the one obtained earlier (M.A. Scherer ,G. Ahlers, F. Hörner, and I. Rehberg, Phys. Rev. Lett. 85), 3754 (2000); M.A. Scherer and G. Ahlers, Phys. Rev. E 65, 051101 (2002) for the NLC 5CB, which undergoes a supercritical Hopf bifurcation to oblique rolls and which yields γ ˜= 0.25 < γ_LT . We conclude that the two systems belong to different universality classes.

  13. Enantiomeric Interactions between Liquid Crystals and Organized Monolayers of Tyrosine-Containing Dipeptides

    PubMed Central

    Bai, Yiqun; Abbott, Nicholas L.

    2011-01-01

    We have examined the orientational ordering of nematic liquid crystals (LCs) supported on organized monolayers of dipeptides with the goal of understanding how peptide-based interfaces encode intermolecular interactions that are amplified into supramolecular ordering. By characterizing the orientations of nematic LCs (4-cyano-4′-pentylbiphenyl (5CB) and TL205 (a mixture of mesogens containing cyclohexane-fluorinated biphenyls and fluorinated terphenyls)) on monolayers of either L-cysteine-L-tyrosine, L-cysteine-L-phenylalanine or L-cysteine-L-phosphotyrosine formed on crystallographically textured films of gold, we conclude that patterns of hydrogen bonds generated by the organized monolayers of dipeptides are transduced via macroscopic orientational ordering of the LCs. This conclusion is supported by the observation that the ordering exhibited by the achiral LCs is specific to the enantiomers used to form the dipeptide-based monolayers. The dominate role of the –OH group of tyrosine in dictating the patterns of hydrogen bonds that orient the LCs was also evidenced by the effects of phosphorylation of the tyrosine on the ordering of the LCs. Overall, these results reveal that crystallographic texturing of gold films can direct the formation of monolayers of dipeptides with long-range order, thus unmasking the influence of hydrogen bonding, chirality and phosphorylation on the macroscopic orientational ordering of LCs supported on these surfaces. These results suggest new approaches based on supramolecular assembly for reporting the chemical functionality and stereochemistry of synthetic and biological peptide-based molecules displayed at surfaces. PMID:22091988

  14. Errors in thermochromic liquid crystal thermometry

    NASA Astrophysics Data System (ADS)

    Wiberg, Roland; Lior, Noam

    2004-09-01

    This article experimentally investigates and assesses the errors that may be incurred in the hue-based thermochromic liquid crystal thermochromic liquid crystal (TLC) method, and their causes. The errors include response time, hysteresis, aging, surrounding illumination disturbance, direct illumination and viewing angle, amount of light into the camera, TLC thickness, digital resolution of the image conversion system, and measurement noise. Some of the main conclusions are that: (1) The 3×8 bits digital representation of the red green and blue TLC color values produces a temperature measurement error of typically 1% of the TLC effective temperature range, (2) an eight-fold variation of the light intensity into the camera produced variations, which were not discernable from the digital resolution error, (3) this temperature depends on the TLC film thickness, and (4) thicker films are less susceptible to aging and thickness nonuniformities.

  15. Angular effects on thermochromic liquid crystal thermography

    NASA Astrophysics Data System (ADS)

    Kodzwa, Paul M.; Eaton, John K.

    2007-12-01

    This paper directly discusses the effects of lighting and viewing angles on liquid crystal thermography. This is because although thermochromic liquid crystals (TLCs) are a widely-used and accepted tool in heat transfer research, little effort has been directed to analytically describing these effects. Such insight is invaluable for the development of effective mitigation strategies. Using analytical relationships that describe the perceived color shift, a systematic manner of improving the performance of a TLC system is presented. This is particularly relevant for applications where significant variations in lighting and/or viewing angles are expected (such as a highly curved surface). This discussion includes an examination of the importance of the definition of the hue angle used to calibrate the color of a TLC-painted surface. The theoretical basis of the validated high-accuracy calibration approach reported by Kodzwa et al. (Exp Fluids s00348-007-0310-6, 2007) is presented.

  16. Phototunable reflection notches of cholesteric liquid crystals

    SciTech Connect

    Hrozhyk, Uladzimir A.; Serak, Svetlana V.; Tabiryan, Nelson V.; Bunning, Timothy J.

    2008-09-15

    The reflection notch of cholesteric liquid crystals (CLCs) formed from highly photosenstive azobenzene nematic liquid crystals doped with light-insensitive, large helical twisting power chiral dopants is shown to be widely phototunable by green laser beams. The nonlinear transmission properties of these materials were studied. We have shown that the relative shift in Bragg wavelength is independent of the chiral dopant concentration and develop a predictive theory of such behavior. The theory describes the dynamics of phototuning as well. Reflection shifts greater than 150 nm were driven with low power, cw of 532 nm in these photosensitive CLCs, previously attainable only through UV pre-exposure. A nonlinear feedback mechanism was demonstrated for CLCs of left, right, and both handedness upon laser-induced blueshifting of the reflection notch from a red wavelength using a green cw laser.

  17. Modal liquid crystal array of optical elements.

    PubMed

    Algorri, J F; Love, G D; Urruchi, V

    2013-10-21

    In this study, a novel liquid crystal array based on modal control principle is proposed and demonstrated. The advanced device comprises a six striped electrode structure that forms a configurable 2D matrix of optical elements. A simulation program based on the Frank-Oseen equations and modal control theory has been developed to predict the device electrooptic response, that is, voltage distribution, interference pattern and unwrapped phase. A low-power electronics circuit, that generates complex waveforms, has been built for driving the device. A combined variation of the waveform amplitude and phase has provided a high tuning versatility to the device. Thus, the simulations have demonstrated the generation of a liquid crystal prism array with tunable slope. The proposed device has also been configured as an axicon array. Test measurements have allowed us to demonstrate that electrooptic responses, simulated and empirical, are fairly in agreement. PMID:24150324

  18. Macroscopic dynamics of polar nematic liquid crystals.

    PubMed

    Brand, Helmut R; Pleiner, Harald; Ziebert, Falko

    2006-08-01

    We present the macroscopic equations for polar nematic liquid crystals. We consider the case where one has both, the usual nematic director, n[over ] , characterizing quadrupolar order as well as the macroscopic polarization, P , representing polar order, but where their directions coincide and are rigidly coupled. In this case one has to choose P as the independent macroscopic variable. Such equations are expected to be relevant in connection with nematic phases with unusual properties found recently in compounds composed of banana-shaped molecules. Among the effects predicted, which are absent in conventional nematic liquid crystals showing only quadrupolar order, are pyro-electricity and its analogs for density and for concentration in mixtures as well as a flow alignment behavior, which is more complex than in usual low molecular weight nematics. We also discuss the formation of defect structures expected in such systems. PMID:17025458

  19. Photoinduced molecular reorientation of absorbing liquid crystals

    NASA Astrophysics Data System (ADS)

    Marrucci, L.; Paparo, D.

    1997-08-01

    The phenomenon of photoinduced molecular reorientation of absorbing nematic liquid crystals is analyzed in a macroscopic general framework and with a specific molecular model. The photoinduced torque responsible for the reorientation is shown to describe a transfer of angular momentum from the molecule center-of-mass degrees of freedom to the rotational ones, mediated by molecular friction. As a consequence, a photoinduced stress tensor is predicted to develop together with the torque in the illuminated fluid. A molecular expression of the photoinduced torque is derived with a rigorous procedure, valid both for a pure material and for a dye-liquid-crystal mixture. This torque expression corrects those reported in previous works on the same subject. The photoinduced torque is evaluated analytically in a simple approximate limit.

  20. Optical modeling of liquid crystal biosensors

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Kun; Rey, Alejandro D.

    2006-11-01

    Optical simulations of a liquid crystal biosensor device are performed using an integrated optical/textural model based on the equations of nematodynamics and two optical methods: the Berreman optical matrix method [J. Opt. Soc. Am. 62, 502 (1972)] and the discretization of the Maxwell equations based on the finite difference time domain (FDTD) method. Testing the two optical methods with liquid crystal films of different degrees of orientational heterogeneities demonstrates that only the FDTD method is suitable to model this device. Basic substrate-induced texturing process due to protein adsorption gives rise to an orientation correlation function that is nearly linear with the transmitted light intensity, providing a basis to calibrate the device. The sensitivity of transmitted light to film thickness, protein surface coverage, and wavelength is established. A crossover incident light wavelength close to λco≈500nm is found, such that when λ >λco thinner films are more sensitive to the amount of protein surface coverage, while for λ <λco the reverse holds. In addition it is found that for all wavelengths the sensitivity increases with the amount of protein coverage. The integrated device model based on FDTD optical simulations in conjunction with the Landau-de Gennes nematodynamics model provides a rational basis for further progress in liquid crystal biosensor devices.

  1. Liquid crystal phase shifters for space applications

    NASA Astrophysics Data System (ADS)

    Woehrle, Christopher D.

    Space communication satellites have historically relied heavily on high gain gimbal dish antennas for performing communications. Reflector dish antennas lack flexibility in anti-jamming capabilities, and they tend to have a high risk associated to them given the need for mechanical mechanisms to beam steer. In recent years, a great amount of investment has been made into phased array antenna technologies. Phased arrays offer increased signal flexibility at reduced financial cost and in system risk. The problem with traditional phased arrays is the significant program cost and overall complexity added to the satellite by integrating antenna elements that require many dedicated components to properly perform adaptive beam steering. Several unique methods have been proposed to address the issues that plague traditional phase shifters slated for space applications. Proposed approaches range from complex mechanical switches (MEMS) and ferroelectric devices to more robust molecular changes. Nematic liquid crystals offer adaptive beam steering capabilities that traditional phased arrays have; however, with the added benefit of reduced system cost, complexity, and increased resilience to space environmental factors. The objective of the work presented is to investigate the feasibility of using nematic liquid crystals as a means of phase shifting individual phased array elements slated for space applications. Significant attention is paid to the survivability and performance of liquid crystal and associated materials in the space environment. Performance regarding thermal extremes and interactions with charged particles are the primary factors addressed.

  2. Structures of cyano-biphenyl liquid crystals

    NASA Technical Reports Server (NTRS)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  3. Protein crystallization on liquid surfaces: Forced versus natural crystallization

    NASA Astrophysics Data System (ADS)

    Hirsa, A.

    2005-11-01

    Two-dimensional crystallization of proteins has recently been reported where streptavidin protein dissolved in the bulk liquid anchors to binding sites on a biotinylated lipid monolayer initially spread on the liquid surface. Thermodynamic aspects investigated include the effects of subphase buffer and pH, dilution of bulk protein and monolayer. Here, we investigate three possible avenues where flow can influence protein crystallization: i) change the initial state of monolayer, ii) advect dissolved protein to the interface, iii) apply direct hydrodynamic force on the crystals at the interface. The flow system consists of a stationary open cylinder driven by constant rotation of the floor, in the axisymmetric flow regime with inertia. Direct imaging of the interface illuminated by forward scattering of a laser was utilized to avoid labeling proteins for conventional fluorescence microscopy. These images provide greater detail than Brewster angle microscopy. Scientific motivation is to use flow to probe protein structure, and the application is to make designer protein thin-films, e.g. for biosensors.

  4. Preparation of QP4VP-b-LCP liquid crystal block copolymer and its application as a biosensor.

    PubMed

    Omer, Muhammad; Park, Soo-Young

    2014-09-01

    The interface between nematic liquid crystal, 4-cyano-4'-pentylbiphenyl (5CB), and water in a transmission electron microscopy (TEM) grid cell coated with QP4VP-b-LCP (quaternized poly(4-vinylpyridine) (QP4VP) and poly(4-cyanobiphenyl-4'-oxyundecylacrylate) (LCP)) was examined for protein and DNA detection. QP4VP-b-LCP was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Quaternization of P4VP with iodomethane (CH3I) made it a strong cationic polyelectrolyte and allowed QP4VP-b-LCP to form complexes with oppositely charged biological species. Several proteins, such as bovine serum albumin (BSA), hemoglobin (Hb), α chymotrypsinogen-A (ChTg), and lysozyme (LYZ), were tested for nonspecific protein detection. By injecting the protein solutions into the TEM grid cell, the initial homeotropic orientation of the TEM grid cell changed to a planar orientation above their isoelectric points (PIs) due to electrostatic interactions between QP4VP (+charge) and proteins (-charge), which did not occur below the PIs of the tested proteins. Their minimum concentrations at which the homeotropic to planar configurational change (H-P change) occurred were 0.01, 0.02, 0.03, and 0.04 wt.% for BSA, ChTg, Hb, and LYZ, respectively. One of the strong anionic polyelectrolytes, deoxyribonucleic acid (DNA) (due to the phosphate deoxyribose backbone) was also tested. A H-P change was observed with as little as 0.0013 wt.% salmon sperm DNA regardless of the pH of the cell. A H-P change occurred in 5CB and was observed by polarized optical microscopy. This simple and inexpensive setup for nonspecific biomaterial detection provides the basic idea for developing effective selective biosensors by introducing specific binding groups, such as the aptamer and antibody. PMID:24980600

  5. Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture.

    PubMed

    Sun, Shih-Hung; Lee, Mon-Juan; Lee, Yun-Han; Lee, Wei; Song, Xiaolong; Chen, Chao-Yuan

    2015-01-01

    The use of fluorescence is ubiquitously found in the detection of immunoreaction; though with good sensitivity, this technique requires labeling as well as other time-consuming steps to perform the measurement. An alternative approach involving liquid crystals (LCs) was proposed, based on the fact that an immunocomplex can disturb the orientation of LCs, leading to an optical texture different from the case when only antigen or antibody exists. This method is label-free, easy to manipulate and low-cost. However, its sensitivity was low for practical usage. In this study, we adopted a high-birefringence liquid crystal (LC) to enhance the sensitivity for the immunodetection. Experiments were performed, targeting at the cancer biomarker CA125. We showed that the larger birefringence (Δn = 0.33 at 20 °C) amplifies the detected signal and, in turn, dramatically improves the detection limit. To avoid signal loss from conventional rinsing steps in immunodetection, CA125 antigen and antibody were reacted before immobilized on substrates. We studied the specific binding events and obtained a detection limit as low as 1 ng/ml. The valid temperature ranges were compared by using the typical single-compound LC 5CB and the high-birefringence LC mixture. We further investigated time dependency of the optical textures and affirmed the capability of LC-based immunodetection in distinguishing between specific and nonspecific antibodies. PMID:25657889

  6. Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture

    PubMed Central

    Sun, Shih-Hung; Lee, Mon-Juan; Lee, Yun-Han; Lee, Wei; Song, Xiaolong; Chen, Chao-Yuan

    2014-01-01

    The use of fluorescence is ubiquitously found in the detection of immunoreaction; though with good sensitivity, this technique requires labeling as well as other time-consuming steps to perform the measurement. An alternative approach involving liquid crystals (LCs) was proposed, based on the fact that an immunocomplex can disturb the orientation of LCs, leading to an optical texture different from the case when only antigen or antibody exists. This method is label-free, easy to manipulate and low-cost. However, its sensitivity was low for practical usage. In this study, we adopted a high-birefringence liquid crystal (LC) to enhance the sensitivity for the immunodetection. Experiments were performed, targeting at the cancer biomarker CA125. We showed that the larger birefringence (Δn = 0.33 at 20 °C) amplifies the detected signal and, in turn, dramatically improves the detection limit. To avoid signal loss from conventional rinsing steps in immunodetection, CA125 antigen and antibody were reacted before immobilized on substrates. We studied the specific binding events and obtained a detection limit as low as 1 ng/ml. The valid temperature ranges were compared by using the typical single-compound LC 5CB and the high-birefringence LC mixture. We further investigated time dependency of the optical textures and affirmed the capability of LC-based immunodetection in distinguishing between specific and nonspecific antibodies. PMID:25657889

  7. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.

    PubMed

    Zhang, Minmin; Jang, Chang-Hyun

    2015-08-01

    The lipid peroxidation process has attracted much attention because of the growing evidence of its involvement in the pathogenesis of age-related diseases. Herein, we report a simple, label-free method to study the oxidation of phospholipids by the Fenton reaction at the interface between an aqueous phase and immiscible liquid crystals (LCs). The different images produced by the orientation of 4-cyano-4'-pentylbiphenyl (5CB) corresponded to the presence or absence of oxidized 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG). The oxidation effects of the Fenton reaction on DOPG were evaluated by monitoring the orientational response of liquid crystals upon contact with the oxidized DOPG solutions. DOPG was oxidized into chain-changed products containing hydroxy, carbonyl, or aldehyde groups, resulting in the rearrangement of the phospholipid layer. This induced the orientational transition of LCs from homeotropic to planar states; therefore, a dark to bright optical shift was observed. This shift was due to the Fenton reaction preventing DOPG to induce the orientational alignment of LCs at the aqueous/LC interface. We also used an ultraviolet spectrophotometer to confirm the effects of oxidation on phospholipids by the Fenton reaction. Using this simple method, a new approach for investigating phospholipid oxidation was established with high resolution and easy accessibility. PMID:25656072

  8. Liquid crystal-ZnO nanoparticle photovoltaics: Role of nanoparticles in ordering the liquid crystal

    SciTech Connect

    Martinez-Miranda, L. J.; Traister, Kaitlin M.; Melendez-Rodriguez, Iriselies; Salamanca-Riba, Lourdes

    2010-11-29

    We investigate the role that order plays in the transfer of charges in the ZnO nano-particle-octylcyanobiphenyl (8CB) liquid crystal system, considered for photovoltaic applications. We have changed the concentration of ZnO nanoparticles in 8CB from 1.18 to 40 wt %. Our results show an improvement in the alignment of the liquid crystal with increasing weight percentage of ZnO nanoparticles, up to a concentration of 30 wt %. In addition, the current generated by the system increases by three orders of magnitude.

  9. Liquid crystal nanocomposites produced by mixtures of hydrogen bonded achiral liquid crystals and functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Keskinova, E.; Naradikian, H.; Rafailov, P. M.; Dettlaff-Weglikowska, U.; Spassov, T.

    2014-12-01

    The liquid crystalline (LC) nature of alkyloxybenzoic acids is preserved after adding of any mesogenic or non-mesogenic compound through hydrogen bonding. However, this noncovalent interaction provokes a sizable effect on the physical properties as, e. g. melting point and mesomorphic states. In the present work we investigate nanocomposites, prepared by mixture of the eighth homologue of p-n-alkyloxybenzoic acids (8OBA) with single-walled carbon nanotubes (SWCNT) with the purpose to modify the optical properties of the liquid crystal. We exercise optical control on the LC system by inserting SWCNT specially functionalized by carboxylic groups. Since the liquid crystalline state combines order and mobility at the molecular (nanoscale) level, molecular modification can lead to different macroscopical nanocomposite symmetry. The thermal properties of the functionalized nanocomposite are confirmed by DSC analyses. The mechanism of the interaction between surface-treated nanoparticles (functionalized nanotubes) and the liquid crystal 8OBA bent- dimer molecules is briefly discussed.

  10. Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4'-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)).

    PubMed

    Omer, Muhammad; Khan, Mashooq; Kim, Young Kyoo; Lee, Joon Hyung; Kang, Inn-Kyu; Park, Soo-Young

    2014-09-01

    The interface between the nematic liquid crystal, 4-cyano-4'-pentylbiphenyl (5CB) and water within a transmission electron microscopy (TEM) grid cell coated with the pH-dependent weak cationic amphiphilic block copolymer poly((4-cyanobiphenyl-4'-oxyundecylacrylate)-b-((2-dimethyl amino) ethyl methacrylate)) (LCP-b-PDMAEMA) (which was successfully synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization) was subsequently evaluated for protein and deoxyribonucleic acid (DNA) detection. The LCP-b-PDMAEMA monolayer was fabricated using a Langmuir Blodgett trough, transferred to the 5CB-filled TEM grid, and placed on the octadecyltrichlorosilane-coated glass (TEMPDMAEMA) in such a way that the LCP chains were immersed in the 5CB while the PDMAEMA chains were pointed away from the 5CB surface and immersed in water. Several model proteins such as bovine serum albumin (BSA), hemoglobin (Hb), and chymotrypsinogen (ChTg) were tested at pH values ranging from 2 to 12 to determine the role of the charge state of the protein on protein detection by a weak polyelectrolyte such as PDMAEMA. PDMAEMA contains cationic and neutral states below and above the pKa value, respectively, and is thus able to absorb proteins below its pKa threshold through electrostatic interactions. BSA exhibited a homeotropic to planar (H-P) change in orientation within the TEMPDMAEMA grid cell at concentrations greater than 0.02wt% within the pH range between the isoelectric point (pI) of BSA and the pKa of PDMAEMA, where the charge states of BSA and PDMAEMA were negative and positive, respectively. However, this change in orientation did not occur with other proteins that exhibited a pI higher than the pKa of PDMAEMA due to the electrostatic repulsions resulting from their same cationic charges. This result indicates that the electrostatic interactions between proteins and PDMAEMA are a major contributing factor for protein detection by the H-P transformation within the

  11. Cholesteric liquid crystal photonic crystal lasers and photonic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ying

    This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser

  12. Liquid crystal devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  13. New triazolium based ionic liquid crystals

    SciTech Connect

    Stappert, Kathrin; Unal, Derya; Mallick, Bert; Mudring, Anja-Verena

    2014-01-01

    A set of novel 1,2,3-triazolium based ionic liquid crystals was synthesized and their mesomorphic behaviour studied by DSC (differential scanning calorimetry), POM (polarizing optical microscopy) and SAXS (small angle X-ray scattering). Beside the variation of the chain length (C10, C12 and C14) at the 1,2,3-triazolium cation also the anion has been varied (Br-, I-, I3-, BF4-, SbF6-, N(CN)2-, Tf2N-) to study the influence of ion size, symmetry and H-bonding capability on the mesophase formation. Interestingly, for the 1,3-didodecyl-1,2,3-triazolium cation two totally different conformations were found in the crystal structure of the bromide (U-shaped) and the triiodide (rod shaped).

  14. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP.

    PubMed

    Khan, Waliullah; Choi, Jin Ho; Kim, Gyu Man; Park, Soo-Young

    2011-10-21

    We are reporting for the first time the pH responsiveness of liquid crystal (LC) microdroplets decorated with an amphiphilic block copolymer of PAA-b-LCP. We successfully demonstrated the adsorption of block copolymer on LC droplets by fluorescence microscopy and pH response to the radial-to-bipolar orientational change of the LC droplets by changing pH from 12 to 2 through the polarized optical microscope (POM). We believe that our results may pave the way for the generation of monodisperse droplets decorated by various amphiphilic block copolymers which respond to several kinds of the external stimuli. These developments may be important for potential applications of the LC droplets in sensing and encapsulation fields. PMID:21874196

  15. Liquid crystal-based hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  16. Laser damage resistant nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Raszewski, Z.; Piecek, W.; Jaroszewicz, L.; Soms, L.; Marczak, J.; Nowinowski-Kruszelnicki, E.; Perkowski, P.; Kedzierski, J.; Miszczyk, E.; Olifierczuk, M.; Morawiak, P.; Mazur, R.

    2013-08-01

    There exists a problem in diagnostics of a dense plasma (so-called Thomson diagnostics). For this purpose, the plasma is illuminated by series of high energy laser pulses. Such pulses are generated by several independent lasers operating sequentially, and these pulses are to be directed along an exactly the same optical path. In this case, the energy of each separate pulse is as large as 3 J, so it is impossible to generate a burst of such pulses by a single laser. In this situation, several independent lasers have to be used. To form optical path with λ = 1.064 μm and absolute value of the energy of laser pulse through of 3 J, a special refractive index matched twisted Nematic Liquid Crystal Cell (NLCC) of type LCNP2 with switching on time τON smaller than 5 μs might be applied. High laser damage resistance of NLCC and short τON can be fulfilled by preparation of liquid crystal cells with Liquid Crystal Mixture (LCM), well tuned to twisted nematic electro-optical effect, and well tuned all optical interfaces (Air - Antireflection - Quartz Plate - Electrode - Blocking Film - Aligning Layer - LCM - Aligning Layer - Blocking Film - Electrode - Quartz Plate - Antireflection - Air). In such LCNP2 cell, the transmission is higher than 97% at λ = 1.064 μm, as it is presented by Gooch and Tarry [J. Phys. D: Appl. Phys. 8, 1575 (1975)]. The safe laser density energy is about 0.6 J/cm2 for a train of laser pulses (λ = 1.064 μm, pulse duration 10 ns FWHM, pulse repetition rate 100 pps, train duration 10 s), so the area of liquid crystal cell tolerating 3 J through it shall be as large as 5 cm2. Due to the presence of two blocking film layers between electrodes, LCNP2 can be driven by high voltages. Switching on time smaller than τON = 5 μs was obtained under 200 V switching voltage.

  17. Stochastic rotation dynamics for nematic liquid crystals

    SciTech Connect

    Lee, Kuang-Wu Mazza, Marco G.

    2015-04-28

    We introduce a new mesoscopic model for nematic liquid crystals (LCs). We extend the particle-based stochastic rotation dynamics method, which reproduces the Navier-Stokes equation, to anisotropic fluids by including a simplified Ericksen-Leslie formulation of nematodynamics. We verify the applicability of this hybrid model by studying the equilibrium isotropic-nematic phase transition and nonequilibrium problems, such as the dynamics of topological defects and the rheology of sheared LCs. Our simulation results show that this hybrid model captures many essential aspects of LC physics at the mesoscopic scale, while preserving microscopic thermal fluctuations.

  18. Wide Angle Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xing-Hua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John J.; Miranda, Felix A.; McManamon, Paul F.

    2004-01-01

    Accurate modeling of a high resolution, liquid crystal (LC) based, optical phased array (OPA) is shown. The simulation shows excellent agreement with a test 2-D LC OPA. The modeling method is extendable to cases where the array element size is close to the wavelength of light. The fringing fields of such a device are first studied, and subsequently reduced. This results in a device that demonstrates plus or minus 7.4 degrees of continuous beam steering at a wavelength of 1550 nm, and a diffraction efficiency (DE) higher than 72%.

  19. Thermal diode made by nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Melo, Djair; Fernandes, Ivna; Moraes, Fernando; Fumeron, Sébastien; Pereira, Erms

    2016-09-01

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed.

  20. Phase Behavior of Perturbed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kralj, S.; Kutnjak, Z.; Lahajnar, G.; Svetec, M.

    We study theoretically the combined effect of confinement and randomness on LC phase transitions in orientational (isotropic-nematic) and translational (nematic-smectic A) degrees of ordering. We focus to cases where these transitions are of (very) weakly 1st order. An adequate experimental realisation is, e.g., 8CB liquid crystal confined to a Controlled-Pore Glass matrix. Based on universal responses of "hard" and "soft" continuum fields to distortions we derive how different mechanisms influence qualitative and quantitative characteristics of phase transitions under consideration.

  1. Adaptive lens using liquid crystal concentration redistribution

    NASA Astrophysics Data System (ADS)

    Ren, Hongwen; Lin, Yi-Hsin; Wu, Shin-Tson

    2006-05-01

    An adaptive lens using electrically induced liquid crystal (LC)/monomer concentration redistribution is demonstrated. In the absence of an electric field, the LC/monomer mixture is homogeneously distributed. Application of an inhomogeneous electric field causes the LC molecules to diffuse towards the high field region and the liquid monomer towards the low field region. On the other hand, the LC molecules tend to diffuse from high to low concentration direction in order to balance the concentration change. A gradient LC concentration is thus obtained. Using the gradient LC concentration, we demonstrate a tunable-focus lens. Compared with a conventional LC lens, our lens has advantages in small astigmatism and without light scattering, but its response time is slower.

  2. Tuning fluidic resistance via liquid crystal microfluidics.

    PubMed

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling-typically absent in isotropic fluids-bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions-which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters-act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  3. Localized soft elasticity in liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.; Biggins, John S.; Shick, Andreas F.; Warner, Mark; White, Timothy J.

    2016-02-01

    Synthetic approaches to prepare designer materials that localize deformation, by combining rigidity and compliance in a single material, have been widely sought. Bottom-up approaches, such as the self-organization of liquid crystals, offer potential advantages over top-down patterning methods such as photolithographic control of crosslink density, relating to the ease of preparation and fidelity of resolution. Here, we report on the directed self-assembly of materials with spatial and hierarchical variation in mechanical anisotropy. The highly nonlinear mechanical properties of the liquid crystalline elastomers examined here enables strain to be locally reduced >15-fold without introducing compositional variation or other heterogeneities. Each domain (>=0.01 mm2) exhibits anisotropic nonlinear response to load based on the alignment of the molecular orientation with the loading axis. Accordingly, we design monoliths that localize deformation in uniaxial and biaxial tension, shear, bending and crack propagation, and subsequently demonstrate substrates for globally deformable yet locally stiff electronics.

  4. Tuning Fluidic Resistance via Liquid Crystal Microfluidics

    PubMed Central

    Sengupta, Anupam

    2013-01-01

    Flow of molecularly ordered fluids, like liquid crystals, is inherently coupled with the average local orientation of the molecules, or the director. The anisotropic coupling—typically absent in isotropic fluids—bestows unique functionalities to the flowing matrix. In this work, we harness this anisotropy to pattern different pathways to tunable fluidic resistance within microfluidic devices. We use a nematic liquid crystalline material flowing in microchannels to demonstrate passive and active modulation of the flow resistance. While appropriate surface anchoring conditions—which imprint distinct fluidic resistances within microchannels under similar hydrodynamic parameters—act as passive cues, an external field, e.g., temperature, is used to actively modulate the flow resistance in the microfluidic device. We apply this simple concept to fabricate basic fluidic circuits, which can be hierarchically extended to create complex resistance networks, without any additional design or morphological patterning of the microchannels. PMID:24256819

  5. UV sensors based on liquid crystals mixtures

    NASA Astrophysics Data System (ADS)

    Chanishvili, Andro; Petriashvili, Gia; Chilaya, Guram; Barberi, Riccardo; De Santo, Maria P.; Matranga, Mario A.; Ciuchi, F.

    2006-04-01

    The Erythemal Response Spectrum is a scientific expression that describes the sensitivity of the skin to the ultraviolet radiation. The skin sensitivity strongly depends on the UV wavelength: a long exposition to UV radiation causes erythema once a threshold dose has been exceeded. In the past years several devices have been developed in order to monitor the UV exposure, most of them are based on inorganic materials that are able to mimic the human skin behaviour under UV radiation. We present a new device based on liquid crystals technology. The sensor is based on a liquid crystalline mixture that absorbs photons at UV wavelength and emits them at a longer one. This system presents several innovative features: the absorption range of the mixture can be varied to be sensitive to different wavelengths, the luminescence intensity can be tuned, the system can be implemented on flexible devices.

  6. Control of liquid crystal molecular orientation using ultrasound vibration

    NASA Astrophysics Data System (ADS)

    Taniguchi, Satoki; Koyama, Daisuke; Shimizu, Yuki; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2016-03-01

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5-25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  7. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  8. Nematic liquid crystals for optical shutters: A concept

    NASA Technical Reports Server (NTRS)

    Imus, R. E.

    1972-01-01

    Nonmechanical shutter utilizes nematic crystals to attenuate illumination, thus protecting light-sensitive devices such as vidicon or image orthicon tubes and phototubes. Opacity of liquid crystals is controlled by photosensor.

  9. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  10. Diffraction properties of highly birefringent liquid-crystal composite gratings.

    PubMed

    Butler, J J; Malcuit, M S

    2000-03-15

    We have fabricated electrically switchable holographic gratings, using Polaroid Corporation's DMP-128 photopolymer filled with the nematic liquid crystal E7. It is shown that a coupled-wave theory that includes the effects of the birefringence of the liquid crystal must be used to explain the diffraction properties of these anisotropic volume gratings. Furthermore, a detailed comparison of theory and experiment provides information about the alignment of the liquid crystal within the polymer host. PMID:18059899

  11. Electro-optical switching by liquid-crystal controlled metasurfaces.

    PubMed

    Decker, Manuel; Kremers, Christian; Minovich, Alexander; Staude, Isabelle; Miroshnichenko, Andrey E; Chigrin, Dmitry; Neshev, Dragomir N; Jagadish, Chennupati; Kivshar, Yuri S

    2013-04-01

    We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation. PMID:23571978

  12. Electrically Tilted Liquid Crystal Display Mode for High Speed Operation

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Jae Chang; Yoon, Tae-Hoon

    2006-09-01

    To develop liquid crystal displays suitable for moving picture, a liquid crystal display mode having an electrically tilted phase is proposed. This is realized by initially having a tilted liquid crystal with low bias voltage. We found that its measured response time is in good agreement with numerical calculation obtained using the Erickson-Leslie equation. The falling times were smaller than 10 ms with conventional driving and 6 ms with overdriving.

  13. Particles and curvatures in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.

  14. Ferroelectric Liquid Crystals In Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Holmes, Harlan K.

    1994-01-01

    The process of simultaneous optical visualization and quantitative measurement of aerodynamic boundary layer parameters requires new concepts, materials and utilization methods. Measurement of shear stress in terms of the transmitted or the reflected light intensity from an aligned ferroelectric liquid crystal (FLC) thin (approx. 1 micron) film deposited on a glass substrate has been the first step in this direction. In this paper, recent progress in utilization of FLC thin films for skin friction measurement and for studying the state of the boundary layer in a wind tunnel environment is reviewed. The switching characteristics of FLCs have been used to measure pressure from the newly devised system of partially exposed polymer dispersed ferroelectric liquid crystals (PEPDFLCs). In this configuration, a PEPDFLC thin film (approx. 10-25 microns) is sandwiched between two transparent conducting electrodes, one a rigid surface and the other a flexible sheet such as polyvinylidene fluoride or mylar. The switching characteristics of the film are a function of the pressure applied to the flexible transparent electrode and a predetermined bias voltage across the two electrodes. The results, considering the dielectrics of composite media, are discussed.

  15. Photorefractive conjugated polymer-liquid crystal composites

    SciTech Connect

    Wasielewski, M. R.; Yoon, B. A.; Fuller, M.; Wiederrecht, G. P.; Niemczyk, M. P.; Svec, W. A.

    2000-05-15

    A new mechanism for space-charge field formation in photorefractive liquid crystal composites containing poly(2,5-bis(2{prime}-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV) and the electron acceptor N,N{prime}-dioctyl-1,4:5,8-naphthalenediimide, NI, is observed. Using asymmetric energy transfer (beam coupling) measurements that are diagnostic for the photorefractive effect, the direction of beam coupling as a function of grating fringe spacing inverts at a spacing of 5.5 {micro}m. The authors show that the inversion is due to a change in the dominant mechanism for space-charge field formation. At small fringe spacings, the space-charge field is formed by ion diffusion in which the photogenerated anion is the more mobile species. At larger fringe spacings, the polarity of the space charge field inverts due to dominance of a charge transport mechanism in which photogenerated holes are the most mobile species due to hole migration along the BEH-PEV chains coupled with interchain hole hopping. Control experiments are presented, which use composites that can access only one of the two charge transport mechanisms. The results show that charge migration over long distances leading to enhanced photorefractive effects can be obtained using conjugated polymers dissolved in liquid crystals.

  16. Liquid crystal-carbon nanotubes mixtures

    NASA Astrophysics Data System (ADS)

    Popa-Nita, V.; Kralj, S.

    2010-01-01

    The self-organizing properties of nematic liquid crystals (LCs) can be used to align carbon nanotubes (CNTs) dispersed in them. In the previous paper [P. van der Schoot, V. Popa-Nita, and S. Kralj, J. Phys. Chem. B 112, 4512 (2008)], we have considered the weak anchoring limit of the nematic LC molecules at the nanotube's surface, where the CNT alignment is caused by the anisotropic interfacial tension of the nanotubes in the nematic host fluid. In this paper, we present the theoretical results obtained for strong enough anchoring at the CNT-LC interface for which the nematic ordering around nanotube is apparently distorted. Consequently, relatively strong long-range and anisotropic interactions can emerge within the system. In order to get insight into the impact of LC ordering on the alignment of nanotubes we treat the two mixture components on the same footing and combine Landau-de Gennes free energy for the thermotropic ordering of the liquid crystal and Doi free energy for lyotropic nematic ordering of carbon nanotubes caused by their mutually excluded volume. The phase ordering of the binary mixture is analyzed as a function of the volume fraction of the carbon nanotubes, the strength of coupling, and the temperature. We find that the degree of ordering of the nanorods can be tuned by raising or lowering the temperature or by increasing or decreasing their concentration.

  17. Handbook of Liquid Crystals, Handbook of Liquid Crystals: Four Volume Set

    NASA Astrophysics Data System (ADS)

    Demus, Dietrich; Goodby, John W.; Gray, George W.; Spiess, Hans W.; Vill, Volkmar

    1998-06-01

    The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The four volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with a selection of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volume 2 concentrates on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. This volume is therefore by far the most detailed reference source on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive

  18. Mesomorphism and electrochemistry of thienoviologen liquid crystals.

    PubMed

    Cospito, S; Beneduci, A; Veltri, L; Salamonczyk, M; Chidichimo, G

    2015-07-21

    The thienoviologen series 4,4'-(2,2'-bithiophene-5,5'-diyl)bis(1-alkylpridinium)X2, with = counterion is a new class of electron acceptor materials which show very interesting electrochromic and electrofluorescence properties. Depending on the length, m, of the promesogenic alkyl chains, and on the counterion, thienoviologens might become liquid crystals. Here, we present the mesomorphic behaviour, and the electrochemical and spectroelectrochemical properties in solution of new thienoviologens of the series and (I = iodide; NTf2(-) = bis(tri-fuoromethylsulfonyl)imide) with m = 8, 12. Interestingly, we found that only the compounds are liquid crystals, exhibiting a calamitic behaviour in contrast to the homologous compounds of the series with m = 9-11 and X = NTf2(-), which showed columnar rectangular mesophases. The electrochemical study here reported allowed us to explain for the first time the anomalous behaviour of these thienoviologens already observed in cyclic voltammetry, where two apparently irreversible redox processes occur. This can be explained by a comproportionation reaction in which the neutral species rapidly reduces the dication to the radical-cation, due to its strong reducing power. Electrochemical reduction of the thienoviologens causes electrochromism since a new absorption band, occurring at 660 nm in the electronic spectra, appears with the negative potential bias applied. With a LUMO level of 3.64 eV, similar to those of the C60 and of other n-type materials, these compounds can find applications in several electronics devices, where their liquid crystalline properties can be used to control film morphology and geometry, provided they have good electron mobility. PMID:26082287

  19. Hydrogen-Bonded Liquid Crystal Nanocomposites.

    PubMed

    Roohnikan, Mahdi; Toader, Violeta; Rey, Alejandro; Reven, Linda

    2016-08-23

    Nanoparticle-liquid crystal (NP-LC) composites based on hydrogen bonding were explored using a model system. The ligand shells of 3 nm diameter zirconium dioxide nanoparticles (ZrO2 NPs) were varied to control their interaction with 4-n-hexylbenzoic acid (6BA). The miscibility and effect of the NPs on the nematic order as a function of particle concentration was characterized by polarized optical microscopy (POM), fluorescence microscopy and (2)H NMR spectroscopy. Nonfunctionalized ZrO2 NPs have the lowest miscibility and strongest effect on the LC matrix due to irreversible binding of 6BA to the NPs via a strong zirconium carboxylate bond. The ZrO2 NPs were functionalized with 6-phosphonohexanoic acid (6PHA) or 4-(6-phosphonohexyloxy)benzoic acid (6BPHA) which selectively bind to the ZrO2 NP surface via the phosphonic acid groups. The miscibility was increased by controlling the concentration of the pendant CO2H groups by adding hexylphosphonic acid (HPA) to act as a spacer group. Fluorescence microscopy of lanthanide doped ZrO2 NPs showed no aggregates in the nematic phase below the NP concentration where aggregates are observed in the isotropic phase. The functionalized NPs preferably concentrate into LC defects and any remaining isotropic liquid but are still present throughout the nematic liquid at a lower concentration. PMID:27466705

  20. Isotropization of nematic liquid crystals by TMDSC

    SciTech Connect

    Chen, Wei; Dadmun, M.; Zhang, Ge; Boller, A.; Wunderlich, B. |

    1997-12-01

    Temperature-modulated differential scanning calorimetry (TMDSC) and traditional DSC are used to study the transition between the nematic liquid crystalline state and the isotropic liquid for two small molecules [4,4{prime}-azoxyanisole and N,N`-bis(4-n-octyloxybenzal)-1,4-phenylenediamine] and one macromolecule (4,4{prime}-dihydroxy-{alpha}-methylstilbene copolymerized with a 1:1 molar mixture of 1,7-dibromoheptane and 1,9-dibromononane). The DSC measurements with 4,4{prime}-azoxyanisole were used for temperature calibration with varying heating and cooling rates. Quasi-isothermal TMDSC with small temperature amplitude and standard TMDSC with underlying heating and cooling rates were utilized to analyze the breadth of the transitions. It could be verified that the isotropization transition of a nematic liquid crystal is, indeed, reversible for all three molecules. The nature of the transition changes, however, from relatively sharp, for small, rigid molecules, to about three kelvins wide for the small molecule with flexible ends, to as broad as 20 K for the macromolecule. It was also demonstrated that quantitative heats of fusion of sharp transitions can be extracted from TMDSC, but only from the time-domain heat-flow signal.

  1. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  2. Microscopic theory of liquid crystal rheology

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1995-07-01

    We propose a new expression for the irreversible entropy production of a nematic liquid crystal subject to a velocity gradient. This is done by adding a contribution due to the streaming angular velocity, ω, which is distinct from the contribution from the angular velocity of the director, Ω. This removes the inconsistency between the isotropic fluid entropy production and the liquid crystal entropy production. The new entropy production means that the traditional viscosity coefficients must be replaced by a new set of coefficients. This can be done in a few different ways depending on how one defines the thermodynamic forces and fluxes. We derive equilibrium fluctuation relations for the viscosities by applying linear response theory. One finds that it is very important to select the proper equilibrium ensemble in order to obtain simple expressions, i.e., linear combinations of time correlation function integrals (TCFI's), for the viscosities. It turns out that the thermodynamic forces must be given external parameters whereas the fluxes must be fluctuating phase functions. This means that one sometimes must use equilibrium ensembles where Ω and ω are constrained to be zero. Most TCFI's are the same in those ensembles as in ordinary equilibrium ensembles such as the canonical or isokinetic ensemble. There are relations between those TCFI's that are different. It is particularly convenient to constrain Ω to be zero because this makes a director based coordinate system an inertial frame. It also prevents the director reorientation from affecting the tails of the time correlation functions. In order to test some of the fluctuation relations numerically, we have evaluated them for a nematic liquid crystal phase of an oblate version of the Gay-Berne fluid. We have compared the ordinary isokinetic ensemble to an ensemble where Ω has been constrained to be zero by performing equilibrium molecular dynamics (EMD) simulations. The results were either the same or

  3. Quantum theory of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Issaenko, Sergei A.

    A long standing and central problem in cholesteric liquid crystals is to relate the macroscopic pitch to the underlying microscopic interactions. These interactions are of two types which we call quantum (dispersion) and classical. Here we show that, contrary to common belief, intermolecular biaxial correlations usually play an important role for dispersion forces. To understand the microscopic picture of cholesteric liquid crystal we first analyze the effective chiral interaction between molecules arising front long-range quantum interactions between fluctuating charge moments in terms of a simple model of a chiral molecule. This model is based on the approximations that (a) the dominant excited states of a molecule form a band whose width is small compared to the average energy of excitation above the ground state and (b) biaxial orientational correlation between adjacent molecules can be neglected. We consider a system consisted of elongated molecules and, although we invoke the expansion in terms of coordinates transverse to the long axis of constituent molecules, we treat the longitudinal coordinate exactly. We identify two distinct physical limits depending on whether one or both of the interacting molecules are excited in the virtual state. The two-molecule interaction can be interpreted in terms of a superposition of pairwise interactions between individual atoms (or local chiral centers) on a chiral molecule and centers of anisotropic part of polarizability on the other molecule, while the one-molecule term involves three-body interactions between two local dipole moments of a chiral molecule and centers of anisotropic part of polarizability on the other, possibly nonchiral molecule. The numerical estimates of the pitch appeared from the above mechanism even without the Taylor expansion of the potential turns out to be considerably larger than experimental results and so it appears that the mean field treatment of these interactions can be used only in

  4. Measurement and assignment of long-range C-H dipolar couplings in liquid crystals by two-dimensional NMR spectroscopy

    SciTech Connect

    Hong, M.; Pines, A. |; Caldarelli, S.

    1996-08-29

    We describe multidimensional NMR techniques to measure and assign {sup 13}C-{sup 1}H dipolar couplings in nematic liquid crystals with high resolution. In particular, dipolar couplings between aromatic and aliphatic sites are extracted, providing valuable information on the structural correlations between these two components of thermotropic liquid crystal molecules. The NMR techniques are demonstrated on 4-pentyl-4`-biphenylcarbonitrile (5CB), a well-characterized room-temperature nematic liquid crystal. Proton-detected local-field NMR spectroscopy is employed to obtain highly resolved C-H dipolar couplings that are separated according to the chemical shifts of the carbon sites. Each {sup 13}C cross section in the 2D spectra exhibits several doublet splittings, with the largest one resulting from the directly bonded C-H coupling. The smaller splittings originate from the long-range C-H dipolar couplings and can be assigned qualitatively by a chemical shift heteronuclear correlation (HETCOR) experiment. The HETCOR experiment incorporates a mixing period for proton spin diffusion to occur, so that maximal polarization transfer can be achieved between the unbonded {sup 13}C and {sup 1}H nuclei. To assign the long-range C-H couplings quantitatively. we combined these two techniques into a novel reduced-3D experiment, in which the {sup 1}H chemical shift-displaced C-H dipolar couplings are correlated with the {sup 13}C chemical shifts. 34 refs., 6 figs., 2 tabs.

  5. Thermal response of cholesteric liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Nagai, Hama; Urayama, Kenji

    2015-08-01

    The effects of temperature variation on photonic properties of cholesteric liquid crystal elastomers (CLCEs) are investigated in mechanically unconstrained and constrained geometries. In the unconstrained geometry, cooling in the cholesteric state induces both a considerable shift of the selective reflection band to shorter wavelengths and a finite degree of macroscopic expansion in the two directions normal to the axis of the helical director configuration. The thermal deformation is driven by a change in orientational order of the underlying nematic structure S and the relation between the macroscopic strain and S is explained on the basis of the anisotropic Gaussian chain network model. The helical pitch varies with the film thickness in an affine manner under temperature variation. The CLCEs under the constrained geometry where thermal deformation is strictly prohibited show no shift of the reflection bands when subjected to temperature variation. This also reveals the strong correlation between the macroscopic dimensions and the pitch of the helical director configuration.

  6. Helical motion of chiral liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Sano, Masaki

    Artificial swimmers have been intensively studied to understand the mechanism of the locomotion and collective behaviors of cells and microorganisms. Among them, most of the artificial swimmers are designed to move along the straight path. However, in biological systems, chiral dynamics such as circular and helical motion are quite common because of the chirality of their bodies, which are made of chiral biomolecules. To understand the role of the chirality in the physics of microswimmers, we designed chiral artificial swimmers and the theoretical model for the chiral motion. We found that chiral liquid crystal droplets, when dispersed in surfactant solutions, swim in the helical path induced by the Marangoni effect. We will discuss the mechanism of the helical motion with our phenomenological model. This work is supported by Grant-in-Aid for JSPS Fellows (Grant No. 26.9814), and MEXT KAKENHI Grant No. 25103004.

  7. Nanoparticles induced multiferroicity in liquid crystal

    NASA Astrophysics Data System (ADS)

    Ganguly, Prasun; Kumar, Ajay; Muralidhar, K.; Biradar, A. M.

    2016-05-01

    Soft multiferroic character has been observed in a ferroelectric liquid crystal (FLC) dispersed with nickel nanoparticles (Ni NPs). A suitable amount of ferromagnetic Ni NPs has been added into FLC material, and the co-existence of ferroelectric and ferromagnetic ordering is examined using P-E and M-H hysteresis measurements. The magnitude of ferromagnetic order is found to depend strongly on the concentration of Ni NPs. Our theoretical approach indicated a strong dependence of helical pitch of FLC on the doping concentration of Ni NPs. We proposed that the intrinsic magnetic field of Ni NPs has been coupled with that of director field of the FLC molecules to result in the observed multiferroic behavior.

  8. Lipid decorated liquid crystal pressure sensors

    NASA Astrophysics Data System (ADS)

    Lopatkina, Tetiana; Popov, Piotr; Honaker, Lawrence; Jakli, Antal; Mann, Elizabeth; Mann's group Collaboration; Jakli's group Collaboration

    Surfactants usually promote the alignment of liquid crystal (LC) director parallel to the surfactant chains, and thus on average normal to the substrate (homeotropic), whereas water promotes tangential (planar) alignment. A water-LC interface is therefore very sensitive to the presence of surfactants, such as lipids: this is the principle of LC-based chemical and biological sensing introduced by Abbott et al.Using a modified configuration, we found that at higher than 10 micro molar lipid concentration, the uniformly dark texture seen for homeotropic alignment between left-, and right-handed circular polarizers becomes unstable and slowly brightens again. This texture shows extreme sensitivity to external air pressure variations offering its use for sensitive pressure sensors. Our analysis indicates an osmotic pressure induced bending of the suspended films explaining both the birefringence and pressure sensitivity. In the talk we will discuss the experimental details of these effects. This work was financially supported by NSF DMR No. DMR-0907055.

  9. Cholesteric liquid crystal devices with nanoparticle aggregation.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Hung, Yu-Hsiang; Chen, Sheng-Chieh

    2010-10-11

    A broadband cholesteric liquid crystal (CLC) device with a multi-domain structure is demonstrated by using an aggregation of polyhedral oligomeric silsesquioxane (POSS) nanoparticles in the CLC layer. The aggregation pattern of the self-assembled POSS nanoparticles depends on the concentration of POSS doped in the mixture of POSS/CLC and the cooling rate of the mixture from a temperature higher than the clear point. POSS-induced changes in the bulk and surface properties of the cholesteric cells, such as a promotion of homeotropic alignment, help to form a cholesteric structure with a broadband reflection of light; the latter can be used for improvement of bistable CLC devices. A higher POSS concentration and a higher cooling rate both improve the appearance of the black-white CLC device. PMID:20941154

  10. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals. PMID:23772091

  11. Fork gratings based on ferroelectric liquid crystals.

    PubMed

    Ma, Y; Wei, B Y; Shi, L Y; Srivastava, A K; Chigrinov, V G; Kwok, H-S; Hu, W; Lu, Y Q

    2016-03-21

    In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices. PMID:27136779

  12. Planar optics with patterned chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0–2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  13. Dendritic Growth in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martin, Joshua; Garg, Shila

    2000-03-01

    The experimental study of the onset of electrohydrodynamic convection (EHC) through a dendritic growth is reported. If a magnetic Freedericksz-distorted liquid crystal of negative dielectric anisotropy is subjected to an electric field parallel to the magnetic field, EHC sets in through the nucleation of dendrites [1,2]. Measurements of tip speeds of the dendrites as a function of applied voltage at a fixed magnetic field are made. The goal is to explore the effect of the magnetic and electric fields on the dendritic growth. In addition, pattern dynamics is monitored once the final state of spatio-temporal chaos is reached by the system. [1] J. T. Gleeson, Nature 385, 511 (1997). [2] J. T. Gleeson, Physica A 239, 211 (1997). This research was supported by NSF grants DMR 9704579 and DMR 9619406.

  14. Structural studies of tubular discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Mindyuk, Oksana Yaroslavovna

    1999-11-01

    Discotic liquid crystals based on the rigid ring-shaped phenylacetylene macrocycle molecule (PAM) are of great interest due to their potential organization into supramolecular channels. We have used high resolution X-ray diffraction to study the structure of pure and doped PAM and to demonstrate that PAM forms a tubular columnar liquid crystal with an unexpected distortion and doubling of the underlying hexagonal lattice. We have doped PAM with different percentages of silver ions and determined that doping did not change peak positions on the powder diffraction data but significantly altered the intensity of the peaks. This implies that the silver ions were most likely intercalated within the channels formed by the PAM molecules, thus leaving the lattice parameters unaffected. We have also used grazing incidence X-ray diffraction and X-ray reflectivity to study Langmuir films of PAM. PAM adopts an "edge-on" molecular arrangement at the air-water interface. We will discuss the direct observation of the structural reorganization within macromolecular Langmuir films of disc-shaped ionophoric molecules arising from interactions with potassium and cesium ions in the subphase. The columnar order is disrupted by CsCl in the subphase and strongly enhanced by KCl in the subphase, thus effectively tailoring the structural properties of the Langmuir films for potential applications. We have also used X-ray reflectivity (XR) and grazing incidence x-ray diffraction (GID) to study Langmuir films of another macrocyclic ionophore: torand (tributyldodecahydrohexaazakekulene, "TBDK") molecules. TBDK is a rigid, triangular molecule; it has been investigated as a potential surface-active complexing agent. The system forms a stable monolayer at the air-water interface and exhibits two distinct structural phases at lower and higher pressures.

  15. Highly anisotropic conductivity in organosiloxane liquid crystals

    NASA Astrophysics Data System (ADS)

    Gardiner, D. J.; Coles, H. J.

    2006-12-01

    In this paper, we present the conductivity and dielectric characterization of three homologous series of smectic A siloxane containing liquid crystals. The materials studied include one monomesogenic series, which consists of a 4-(ω-alkyloxy)-4'-cyanobiphenyl unit terminated by pentamethyldisiloxane, and two bimesogenic series, which consist of twin 4-(ω-alkyloxy)-4'-cyanobiphenyls joined via tetramethyldisiloxane or decamethylpentasiloxane. All of the compounds exhibit wide temperature range enantiotropic smectic A phases; the effect of the siloxane moiety is to suppress nematic morphology even in the short chain homologs. We find that these compounds exhibit a highly anisotropic conductivity: the value perpendicular to the director is to up to 200 times that parallel to the director. For the nonsiloxane analog 4-(ω-octyl)-4'-cyanobiphenyl (8CB), this value is approximately 2. It is also found that the dielectric anisotropy is reduced significantly; a typical value is ˜1 compared to 8.4 for 8CB. We propose that the origin of these unusual properties is in the smectic structure; the microphase separation of the bulky, globular siloxane moieties into liquidlike regions severely inhibits the mobility parallel to the director and across the smectic layers. Further, the inclusion of this unit acts to increase the antiparallel correlations of molecular dipoles in the aromatic and alkyloxy sublayers, reducing the dielectric anisotropy significantly compared to nonsiloxane analogs. The highly anisotropic conductivity suggests that these materials are particularly suitable for application in electro-optic effects which exploit this property, e.g., the bistable electro-optic effect in smectic A liquid crystals.

  16. Simulation of electrically controlled nematic liquid crystal Rochon prism

    NASA Astrophysics Data System (ADS)

    Buczkowska, M.; Derfel, G.

    2016-09-01

    Operation of an electrically controlled beam steering device based on Rochon prism made by use of nematic liquid crystal is modelled numerically. Deflection angles and angular distribution of light intensity in the deflected beam are calculated. Dynamics of the device is studied. Advantage of application of dual frequency nematic liquid crystal is demonstrated. Role of flexoelectric properties of the nematic is analyzed.

  17. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope. PMID:19844566

  18. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  19. Electron paramagnetic resonance study of two smectic A liquid crystals.

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Gelerinter, E.; Fishel, D. L.

    1972-01-01

    Study of the molecular ordering in two smectic A liquid crystals using vanadyl acetylacetonate as a paramagnetic probe. The average hyperfine splitting of the spectrum in the smectic A mesophase is measured as a function of the orientation relative to the dc magnetic field of the spectrometer after alignment of the molecules of the liquid crystal.

  20. Binary Operation Of A Liquid-Crystal Light Valve

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.

    1990-01-01

    Conditions for operation of commercially available liquid-crystal light valve as binary spatial light modulator discovered. In mode, modulator turns on sharply and then saturates as intensity of writing beam increases. Valve comprises photoconductive layer and liquid-crystal layer separated by dielectric mirror and sandwiched between two transparent electrodes. Potential applications include enhancement of images, optical recording, and holography.

  1. Slovenian Pre-Service Teachers' Conceptions about Liquid Crystals

    ERIC Educational Resources Information Center

    Pavlin, Jerneja; Vaupotic, Natasa; Glazar, Sasa A.; Cepic, Mojca; Devetak, Iztok

    2011-01-01

    A total of 448 first-year university students participated in the study at the beginning of the academic year 2009/10. A paper-pencil liquid crystal questionnaire (LCQ) comprising 20 items was used to evaluate students' general conceptions related to liquid crystals, their properties and to the state of matter in general. The results show that 2/3…

  2. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    ERIC Educational Resources Information Center

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  3. Liquid Crystal-based Beam Steering Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip; Lavrentovich, Oleg; Wang, Xinghua; Pishnyak, Oleg; Kreminska, Liubov; Golovin, Andrii

    2006-01-01

    Liquid crystal-based beam steering devices can provide electronic beam scanning to angles above 1 milliradian, sub-microradian beam pointing accuracy, as well as wave-front correction to maintain output optical beam quality. The liquid crystal technology effort will be summarized, and the potential application of the resulting devices to NASA space-based scenarios will be described.

  4. A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih

    2011-12-01

    A polarization-independent liquid crystal (LC) phase modulation using the surface pinning effect of polymer dispersed liquid crystals (SP-PDLC) is demonstrated. In the bulk region of the SP-PDLC, the orientations of LC directors are randomly dispersed; thus, any polarization of incident light experiences the same averaged refractive index. In the regions near glass substrates, the LC droplets are pinned. The orientations of top and bottom droplets are orthogonal. Two eigen-polarizations of an incident light experience the same phase shift. As a result, the SP-PDLC is polarization independent. Polarizer-free microlens arrays of SP-PDLC are also demonstrated. The SP-PDLC has potential for application in spatial light modulators, laser beam steering, and electrically tunable microprisms.

  5. Thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Fuh, A. Y.-G.; Li, J.-H.; Cheng, K.-T.

    2010-10-01

    This work describes an approach for fabricating thermally switchable flexible liquid crystal devices in prepolymer-doped cholesteric liquid crystals (CLCs). The roughness of the UV-cured polymer film eliminates the stability of planar CLCs, allowing the textures in the UV-cured regions to be changed from planar to focal conic. Impurities associated with doping with prepolymers cause the clearing temperature of LCs in the UV-cured regions to differ from that in the uncured regions as the prepolymers are polymerized. Therefore, the textures in these two regions can be switched by controlling the temperature. Thermally switchable flexible LC devices, such as optically addressed smart cards, light valves, and others, can be realized using this approach.

  6. Graphene-based liquid crystal microlens arrays

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Chen, Cheng; Wu, Yong; Luo, Jun; Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    In this paper, we design and fabricate a kind of liquid crystal microlens arrays (LCMAs) with patterned electrodes made of monolayer graphene, which is grown on copper sheet by chemical vapor deposition (CVD). Graphene is the first two-dimensional atomic crystal. It uniquely combines extreme mechanical strength, high optically transmittance from visible light to infrared spectrum, and excellent electrical conductivity. These properties make it highly attractive for various applications in photonic devices that require conductive but transparent thin films. The graphene-based LCMAs have shown excellent optical performances in the tests. By adjusting the voltage signal loaded over the graphene-based LCMAs, the point spread functions (PSF) and focusing images of incident laser beams with different wavelengths, could be obtained. At the same time, we also get the focusing images of the common ITO-based LCMAs under the same experimental conditions to discuss the advantages and disadvantages between them. Further, the graphene-based LCMAs are also used in visible imaging. During the imaging tests, the graphene electrodes in the LCMAs work well.

  7. Localized soft elasticity in liquid crystal elastomers.

    PubMed

    Ware, Taylor H; Biggins, John S; Shick, Andreas F; Warner, Mark; White, Timothy J

    2016-01-01

    Synthetic approaches to prepare designer materials that localize deformation, by combining rigidity and compliance in a single material, have been widely sought. Bottom-up approaches, such as the self-organization of liquid crystals, offer potential advantages over top-down patterning methods such as photolithographic control of crosslink density, relating to the ease of preparation and fidelity of resolution. Here, we report on the directed self-assembly of materials with spatial and hierarchical variation in mechanical anisotropy. The highly nonlinear mechanical properties of the liquid crystalline elastomers examined here enables strain to be locally reduced >15-fold without introducing compositional variation or other heterogeneities. Each domain (⩾0.01 mm(2)) exhibits anisotropic nonlinear response to load based on the alignment of the molecular orientation with the loading axis. Accordingly, we design monoliths that localize deformation in uniaxial and biaxial tension, shear, bending and crack propagation, and subsequently demonstrate substrates for globally deformable yet locally stiff electronics. PMID:26902873

  8. Localized soft elasticity in liquid crystal elastomers

    PubMed Central

    Ware, Taylor H.; Biggins, John S.; Shick, Andreas F.; Warner, Mark; White, Timothy J.

    2016-01-01

    Synthetic approaches to prepare designer materials that localize deformation, by combining rigidity and compliance in a single material, have been widely sought. Bottom-up approaches, such as the self-organization of liquid crystals, offer potential advantages over top–down patterning methods such as photolithographic control of crosslink density, relating to the ease of preparation and fidelity of resolution. Here, we report on the directed self-assembly of materials with spatial and hierarchical variation in mechanical anisotropy. The highly nonlinear mechanical properties of the liquid crystalline elastomers examined here enables strain to be locally reduced >15-fold without introducing compositional variation or other heterogeneities. Each domain (⩾0.01 mm2) exhibits anisotropic nonlinear response to load based on the alignment of the molecular orientation with the loading axis. Accordingly, we design monoliths that localize deformation in uniaxial and biaxial tension, shear, bending and crack propagation, and subsequently demonstrate substrates for globally deformable yet locally stiff electronics. PMID:26902873

  9. Plasmonic Photopatterning of Complex Molecular Orientations in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Guo, Yubing; Jiang, Miao; Peng, Chenhui; Sun, Kai; Yaroshchuk, Oleg; Lavrentovich, Oleg; Wei, Qi-Huo

    Aligning liquid crystal (LC) molecules in spatially non-uniform patterns are highly demanded for applications such as programmable origami and liquid crystal enabled nonlinear electrokinetics. We developed a high resolution projection photoalignment technique for patterning arbitrary LC alignment fields. The photoalignment is based on carefully engineered metasurfaces, or dubbed as plasmonic metamasks (PMMs). When illuminated by light, the PMMs generate patterns of both light intensity and polarization. By projecting the light transmitted through the PMMs onto liquid crystal cells coated with photosensitive materials, alignment patterns predesigned in polarization patterns of the PMMs can be imposed in liquid crystals. This technique makes the liquid crystal alignment a repeatable and scalable process similar to conventional photolithography, promising various applications. National Science Foundation CMMI-1436565.

  10. Insertion of liquid crystal molecules into hydrocarbon monolayers.

    PubMed

    Popov, Piotr; Lacks, Daniel J; Jákli, Antal; Mann, Elizabeth K

    2014-08-01

    Atomistic molecular dynamics simulations were carried out to investigate the molecular mechanisms of vertical surface alignment of liquid crystals. We study the insertion of nCB (4-Cyano-4'-n-biphenyl) molecules with n = 0,…,6 into a bent-core liquid crystal monolayer that was recently found to provide good vertical alignment for liquid crystals. The results suggest a complex-free energy landscape for the liquid crystal within the layer. The preferred insertion direction of the nCB molecules (core or tail first) varies with n, which can be explained by entropic considerations. The role of the dipole moments was found to be negligible. As vertical alignment is the leading form of present day liquid crystal displays (LCD), these results will help guide improvement of the LCD technology, as well as lend insight into the more general problem of insertion of biological and other molecules into lipid and surfactant layers. PMID:25106607

  11. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  12. Insertion of liquid crystal molecules into hydrocarbon monolayers

    SciTech Connect

    Popov, Piotr Mann, Elizabeth K.; Lacks, Daniel J.; Jákli, Antal

    2014-08-07

    Atomistic molecular dynamics simulations were carried out to investigate the molecular mechanisms of vertical surface alignment of liquid crystals. We study the insertion of nCB (4-Cyano-4{sup ′}-n-biphenyl) molecules with n = 0,…,6 into a bent-core liquid crystal monolayer that was recently found to provide good vertical alignment for liquid crystals. The results suggest a complex-free energy landscape for the liquid crystal within the layer. The preferred insertion direction of the nCB molecules (core or tail first) varies with n, which can be explained by entropic considerations. The role of the dipole moments was found to be negligible. As vertical alignment is the leading form of present day liquid crystal displays (LCD), these results will help guide improvement of the LCD technology, as well as lend insight into the more general problem of insertion of biological and other molecules into lipid and surfactant layers.

  13. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  14. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  15. Complementary interference method for determining optical parameters of liquid crystals

    NASA Astrophysics Data System (ADS)

    Kowiorski, K.; Kędzierski, J.; Raszewski, Z.; Kojdecki, M. A.; Chojnowska, O.; Garbat, K.; Miszczyk, E.; Piecek, W.

    2016-04-01

    Wedge cells of small apex angle, filled with liquid crystals, were used to determining optical characteristics as functions of temperature for three liquid crystalline mixtures recently produced and a reference nematic. The interference fringes appearing in polarised monochromatic light (of sodium yellow line) normally incident on the cell were exploited to measure the ordinary and extraordinary refractive indices in the reflection mode and birefringence in the transmission mode. The measurements were repeated using Abbe's refractometer for 6CHBT as the reference to verifying the precision. Additionally the order parameter was computed from birefringence as a function of temperature. The results confirm the usefulness of the method and provide the properties of two nematic liquid crystals of small and large birefringence and one smectic liquid crystal of medium birefringence, recently produced. The experimental systems served also to investigating phase transition between the liquid crystals and the isotropic liquid at near-clearing temperature.

  16. Ionic conductivity of imidazole-functionalized liquid crystal mesogens

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Anthamatten, Mitchell

    2012-02-01

    Imidazole has been investigated as a novel anhydrous proton conducting functional group that could enable higher temperature operation (> 120 ^oC) of polymer electrolyte fuel cells. Its amphoteric behavior can support Grotthuss-like proton transport; however molecular mobility and a high concentration of imidazole groups are needed to achieve high ionic conductivity. Our hypothesis is that liquid crystal ordering, particularly in layered smectic phase, can facilitate formation of 2D proton transport and promote proton conductivity. We have designed and synthesized two imidazole-terminated liquid crystal mesogens, and the ionic conductivities in the liquid crystalline and isotropic states have been measured. Here we report on synthesis and characterization of diacylhydrazine liquid crystals bearing imidazole terminal groups. The proton conductivity of products is compared to pure liquid imidazole and to liquid crystal mesogens without imidazole groups.

  17. Ultrahigh sensitivity in liquid-crystal-based immunodetection by surface modification of the alignment layer

    NASA Astrophysics Data System (ADS)

    Lee, Mon-Juan; Su, Hui-Wen; Sun, Shih-Hung; Lee, Wei

    2014-10-01

    Liquid crystals (LCs) can be employed in biological sensing and applied to label-free immunodetection owing to their unique birefringent, anchoring, alignment and collective properties. Like all different kinds of immunoassays, both sensitivity and specificity are universally the most important key points of concern. In this study, we developed various approaches toward ultrahigh sensitivity in LC-based immunoassays for potential clinical applications. The LC-based immunodetection technique was demonstrated with the cancer biomarker CA125, which is a mucin-like glycoprotein commonly present in the serum of patients with ovarian and other types of cancer. By using LCs with larger birefringence, such as HDN, the sensitivity of immunodetection was drastically enhanced compared to 5CB, which has a relatively lower birefringence and is commonly used in LC biosensing studies. In addition, UV modification of the monolayer of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP), which functions as the alignment layer for LCs, is suggested to increase functional groups suitable for covalent binding of biomolecules, stabilizing the immobilized anti-CA125 antibody and the immunocomplex thus formed, and contributing to the lowered detection limit. Finally, we show that it is possible to directly identify the formation of CA125 immunocomplex with HDN in a mixture of antigen and antibody without the need to eliminate unbound or unreacted biomolecules through washing, thereby creating a simplified procedure for faster LC-based immunoassay. It is evident from our results that label-free immunodetection based on birefringent LCs represents a novel biosensing technique with potentials to detect a wide range of biomolecules, providing an alternative to conventional label-based immunoassays.

  18. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    SciTech Connect

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Youngkyoo; Kim, Hwajeong; Lee, Joon-Hyung; Park, Soo-Young; Kang, Inn-Kyu

    2014-09-15

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4{sup ′}-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm{sup 2}/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V{sub D}) and gate (V{sub G}) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V{sub D} and V{sub G}. The best voltage combination was V{sub D} = −0.2 V and V{sub G} = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  19. Defects and order in liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jain, Shilpa

    This thesis investigates the partial destruction of ordering in liquid crystalline systems due to the influence of defects and thermal fluctuations. The systems under consideration are hexagonal columnar crystals with crystalline order perpendicular to the columns, and two-dimensional smectics with order perpendicular to the layers. We first study the possibility of reentrant melting of a hexagonal columnar crystal of flexible charged polymers at high enough densities. The Lindemann criterion is employed in determining the melting point. Lattice fluctuations are calculated in the Debye model, and an analogy with the Abrikosov vortex lattice in superconductors is exploited in estimating both the elastic constants of the hexagonal lattice, and the appropriate Lindemann constant. We also discuss the unusual functional integral describing the statistical mechanics of a single polymer in an Einstein cage model using the path-integral formulation. A crossover as a function of an external field along the column axis is discussed as well. Next, we study defects in a columnar crystal in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column "heads" and "tails". These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a "supersolid" phase with infinitely long vacancy or interstitial strings. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel

  20. Light Propagation in Liquid Crystals with a Chiral Dopant

    NASA Astrophysics Data System (ADS)

    Lawson, Justin; Saunders, Karl; Gantner, Logan

    2009-11-01

    This project will investigate the design and feasibility of a novel liquid crystal sensor that could be used to detect the presence and amount of foreign biological and/or chemical airborne agents. Such a sensor would have the advantage of being very portable. As such could have particular value in detecting biological or chemical weapons in the field of military operations. It would also be of use in a rapid response to a chemical or biological terrorist attack. The device would operate on the basic principal that when certain types of molecules bind to a liquid crystal molecule, the conformation of the liquid crystal molecule changes. This would in turn lead to a change in the overall arrangement of the liquid crystal, which could be detected using polarized light. In the absence of a contaminant the average molecular direction (optical axis, n ) is constant throughout the liquid crystal. The dopant adds a chirality or twist so that n precesses as a function of depth. We first solve for the reflected and transmitted light off of the air-liquid crystal boundary in the simplified case where there is linear chirality or a spiral configuration which repeats itself over some fixed interval (or pitch). We then generalize for cases in which this repeat distance varies with crystal depth. Finally we will obtain an expression for the contaminated crystal configuration which should depend on time and a diffusion constant and examine how the light properties change with respect to intensity and duration of exposure to the contaminant.

  1. Complex tiling patterns in liquid crystals

    PubMed Central

    Tschierske, C.; Nürnberger, C.; Ebert, H.; Glettner, B.; Prehm, M.; Liu, F.; Zeng, X.-B.; Ungar, G.

    2012-01-01

    In this account recent progress in enhancing the complexity of liquid crystal self-assembly is highlighted. The discussed superstructures are formed mainly by polyphilic T-shaped and X-shaped molecules composed of a rod-like core, tethered with glycerol units at both ends and flexible non-polar chain(s) in lateral position, but also related inverted molecular structures are considered. A series of honeycomb phases composed of polygonal cylinders ranging from triangular to hexagonal, followed by giant cylinder honeycombs is observed for ternary T-shaped polyphiles on increasing the size of the lateral chain(s). Increasing the chain size further leads to new modes of lamellar organization followed by three-dimensional and two-dimensional structures incorporating branched and non-branched axial rod-bundles. Grafting incompatible chains to opposite sides of the rod-like core leads to quaternary X-shaped polyphiles. These form liquid crystalline honeycombs where different cells are filled with different material. Projected on an Euclidian plane, all honeycomb phases can be described either by uniformly coloured Archimedean and Laves tiling patterns (T-shaped polyphiles) or as multi-colour tiling patterns (X-shaped polyphiles). It is shown that geometric frustration, combined with the tendency to segregate incompatible chains into different compartments and the need to find a periodic tiling pattern, leads to a significant increase in the complexity of soft self-assembly. Mixing of different chains greatly enhances the number of possible ‘colours’ and in this way, periodic structures comprising up to seven distinct compartments can be generated. Relations to biological self-assembly are discussed shortly. PMID:24098852

  2. Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration.

    PubMed

    Casas Bedoya, A; Mahmoodian, S; Monat, C; Tomljenovic-Hanic, S; Grillet, C; Domachuk, P; Mägi, E C; Eggleton, B J; van der Heijden, R W

    2010-12-20

    A microfluidic double heterostructure cavity is created in a silicon planar photonic crystal waveguide by selective infiltration of a liquid crystal. The spectral evolution of the cavity resonances probed by evanescent coupling reveals that the liquid crystal evaporates, even at room temperature, despite its relatively low vapor pressure of 5 × 10(-3) Pa. We explore the infiltration and evaporation dynamics of the liquid crystal within the cavity using a Fabry-Perot model that accounts for the joint effects of liquid volume reduction and cavity length variation due to liquid evaporation. While discussing how the pattern of the infiltrated liquid can be optimized to restrict evaporation, we find that the experimental behavior is consistent with basic microfluidic relations considering the small volumes of liquids and large surface areas present in our structure. PMID:21197006

  3. Surface mediated nonlinear optic effects in liquid crystals

    NASA Astrophysics Data System (ADS)

    Merlin, Jessica M.

    Liquid crystals have become a significant part of technology, mainly through their use in the display industry. This is due in part to the fact that the optical properties of liquid crystals are easily manipulated electronically. It has been recognized that the optical properties liquid crystals may also be controlled using light. Because of this, there are other various applications being explored for liquid crystals in photorefraction, optical limiting and switching, and in spatial light modulators. Although, the photorefractive effect was reported in liquid crystals over 10 years ago, there is still controversy over the exact mechanism for the reorientation of the liquid crystal director. This difficulty may be due in part to the fact that it is difficult to characterize the effect using photorefractive measurements and figures of merit. The optical and electronic control of liquid crystals will be studied here using a Friedericksz transition measurement in a twist cell geometry. This type of apparatus was chosen because it leads to a more direct demonstration of the surface effect. Namely, by studying changes in the Friedericksz transition threshold in a twist cell, a more direct observation of changes in the internal field may be observed. First a brief introduction to liquid crystals and their role in technology will be presented. This will be followed by a more rigorous discussion of the physics of liquid crystals and a review of the important literature. The experimental apparatus and the materials and cell geometry used will be described followed by the results of those measurements. Finally, the results will be considered in terms of a model involving interfacial charge and discussed in the context of previous work.

  4. Quasiequilibrium states in thermotropic liquid crystals studied by multiple-quantum NMR

    NASA Astrophysics Data System (ADS)

    Buljubasich, L.; Monti, G. A.; Acosta, R. H.; Bonin, C. J.; González, C. E.; Zamar, R. C.

    2009-01-01

    Previous work showed that by means of the Jeener-Broekaert (JB) experiment, two quasiequilibrium states can be selectively prepared in the proton spin system of thermotropic nematic liquid crystals (LCs) in a strong magnetic field. The similarity of the experimental results obtained in a variety of LC in a broad Larmor frequency range, with crystal hydrates, supports the assumption that also in LC the two spin reservoirs, into which the Zeeman order is transferred, originate in the dipolar energy and that they are associated with a separation in energy scales: A constant of motion related to the stronger dipolar interactions (S), and a second one (W) corresponding to the secular part of the weaker dipolar interactions with regard to the Zeeman and the strong dipolar part. We study the nature of these quasi-invariants in nematic 5CB (4'-pentyl-4-biphenyl-carbonitrile) and measure their relaxation times by encoding the multiple-quantum coherences of the states following the JB pulse pair on two orthogonal bases, Z and X. The experiments were also performed in powder adamantane at 301K which is used as a reference compound having only one dipolar quasi-invariant. We show that the evolution of the quantum states during the buildup of the quasiequilibrium state in 5CB prepared under the S condition is similar to the case of powder adamantane and that their quasiequilibrium density operators have the same tensor structure. In contrast, the second constant of motion, whose explicit operator form is not known, involves a richer composition of multiple-quantum coherences of even order on the X basis, in consistency with the truncation inherent in its definition. We exploited the exclusive presence of coherences of ±4,±6,±8, besides 0 and ±2 under the W condition to measure the spin-lattice relaxation time TW accurately, so avoiding experimental difficulties that usually impair dipolar order relaxation measurement such as Zeeman contamination at high fields and also

  5. Magneto-optic garnet and liquid crystal optical switches

    NASA Technical Reports Server (NTRS)

    Krawczak, J. A.; Torok, E. J.; Harvey, W. A.; Hewitt, F. G.; Nelson, G. L.

    1984-01-01

    Magnetic stripe domain and liquid crystal devices are being developed and evaluated as fiber optic switches that can be utilized for nonblocking type nxm optical matrix switches in networking and optical processing. Liquid crystal switches are characterized by very low insertion loss and crosstalk, while stripe domain switches commutate in less than one microsecond. Both switches operate on multimode, randomly polarized fiber light with potentially large values for (n,m). The applications of these magnetic stripe domain and liquid crystal devices are discussed.

  6. Positron lifetime measurements in chiral nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, Devendra S.

    1991-01-01

    Positron lifetimes in the isotropic phases of chiral nematic liquid crystal formulations and their mixtures up to the racemic level were measured. The lifetime spectra for all liquid crystal systems were analyzed into three components. Although the individual spectra in the left- and right-handed components are identical, their racemic mixtures exhibit much larger orthopositronium lifetimes; these larger lifetimes indicate the presence of larger microvoids. This result is consistent with the reportedly higher thermodynamic stability and color play range in the racemic mixtures of chiral nematic liquid crystals.

  7. Topographic-pattern-induced homeotropic alignment of liquid crystals.

    PubMed

    Yi, Youngwoo; Lombardo, Giuseppe; Ashby, Neil; Barberi, Riccardo; Maclennan, Joseph E; Clark, Noel A

    2009-04-01

    Polymer films nanoimprinted with checkerboard patterns of square wells align calamitic (rodlike) liquid crystals vertically, horizontally, or tilted depending on the depth/width ratio of the wells. The liquid crystal prefers planar orientation on polymer films that are smooth but when the films are topographically patterned, the increasing elastic energy density as the wells become narrower eventually overcomes the surface anchoring of the polymer and the liquid crystal director field makes a transition from planar to homeotropic. Similar effects have been demonstrated in both nematics and smectics, and the behavior is confirmed by theory and computer simulation. PMID:19518244

  8. Infrared cylindrical cloak in nanosphere dispersed liquid crystal metamaterial.

    PubMed

    Pawlik, G; Tarnowski, K; Walasik, W; Mitus, A C; Khoo, I C

    2012-06-01

    We present a design of an infrared cylindrical cloak using nanosphere dispersed nematic liquid crystal (NLC) metamaterial following the approach of Smith's group [Science 314, 977 (2006)]. Cloaking conditions require spatial distribution of liquid crystal birefringence with constant extraordinary index of refraction and radially dependent ordinary index of refraction. An approximate analytical formula for the latter is derived. Finite element (FE) simulations confirm the cloaking effect. Owing to the tunable birefringence of the liquid crystal component, such cloaking material offers the interesting possibilities of real-time control of invisibility. The possibility of experimental realization is briefly discussed. PMID:22660049

  9. Liquid crystal photoalignment material based on chloromethylated polyimide

    SciTech Connect

    Zhong Zhenxin; Li Xiangdan; Lee, Seung Hee; Lee, Myong-Hoon

    2004-09-27

    We report a liquid crystal photoalignment material with high photosensitivity and excellent thermal stability. The chloromethylated aromatic polyimide exhibited defect-free homogeneous alignment of liquid crystals upon irradiation of polarized deep ultraviolet (UV) for 50 s. The aligning ability of the film was retained up to 210 deg. C, and the cell containing liquid crystals could be stored at 85 deg. C for more than 14 days without any deterioration. FT-IR and UV-vis spectra confirmed that the alignment was induced by photodecomposition of polyimide, drastically accelerated by the introduction of chloromethyl side group.

  10. Ultra fast polymer network blue phase liquid crystals

    NASA Astrophysics Data System (ADS)

    Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar

    2011-06-01

    Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).

  11. Thermochromic liquid crystals in heat transfer research

    NASA Astrophysics Data System (ADS)

    Stasiek, Jan A.; Kowalewski, Tomasz A.

    2002-06-01

    In recent years Thermochromic Liquid Crystals (TLC) have been successfully used in non-intrusive heat transfer and fluid mechanics studies. Thin coatings of TLC's at surfaces is utilized to obtain detailed heat transfer data of steady or transient process. Application of TLC tracers allows instantaneous measurement of the temperature and velocity fields for two-dimensional cross-section of flow. Computerized flow visualization techniques allow automatic quantification of temperature of the analyzed surface or the visualized flow cross-section. Here we describe our experience in applying the method to selected problems studied in our laboratory. They include modeling flow configurations in the differentially heated inclined cavity with vertical temperature gradient simulating up-slope flow as well as thermal convection under freezing surface. The main aim of these experimental models is to generate reliable experimental database on velocity and temperature fields for specific flow. The methods are based on computerized true-color analysis of digital images for temperature measurements and modified Particle Image Velocimetry and Thermometry (PIVT) used to obtain the flow field velocity.

  12. Surface Dipole Control of Liquid Crystal Alignment.

    PubMed

    Schwartz, Jeffrey J; Mendoza, Alexandra M; Wattanatorn, Natcha; Zhao, Yuxi; Nguyen, Vinh T; Spokoyny, Alexander M; Mirkin, Chad A; Baše, Tomáš; Weiss, Paul S

    2016-05-11

    Detailed understanding and control of the intermolecular forces that govern molecular assembly are necessary to engineer structure and function at the nanoscale. Liquid crystal (LC) assembly is exceptionally sensitive to surface properties, capable of transducing nanoscale intermolecular interactions into a macroscopic optical readout. Self-assembled monolayers (SAMs) modify surface interactions and are known to influence LC alignment. Here, we exploit the different dipole magnitudes and orientations of carboranethiol and -dithiol positional isomers to deconvolve the influence of SAM-LC dipolar coupling from variations in molecular geometry, tilt, and order. Director orientations and anchoring energies are measured for LC cells employing various carboranethiol and -dithiol isomer alignment layers. The normal component of the molecular dipole in the SAM, toward or away from the underlying substrate, was found to determine the in-plane LC director orientation relative to the anisotropy axis of the surface. By using LC alignment as a probe of interaction strength, we elucidate the role of dipolar coupling of molecular monolayers to their environment in determining molecular orientations. We apply this understanding to advance the engineering of molecular interactions at the nanoscale. PMID:27090503

  13. Blue-phase liquid crystal droplets

    PubMed Central

    Martínez-González, José A.; Zhou, Ye; Rahimi, Mohammad; Bukusoglu, Emre; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-01-01

    Blue phases of liquid crystals represent unique ordered states of matter in which arrays of defects are organized into striking patterns. Most studies of blue phases to date have focused on bulk properties. In this work, we present a systematic study of blue phases confined into spherical droplets. It is found that, in addition to the so-called blue phases I and II, several new morphologies arise under confinement, with a complexity that increases with the chirality of the medium and with a nature that can be altered by surface anchoring. Through a combination of simulations and experiments, it is also found that one can control the wavelength at which blue-phase droplets absorb light by manipulating either their size or the strength of the anchoring, thereby providing a liquid–state analog of nanoparticles, where dimensions are used to control absorbance or emission. The results presented in this work also suggest that there are conditions where confinement increases the range of stability of blue phases, thereby providing intriguing prospects for applications. PMID:26460039

  14. Liquid Crystal Phases of Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Mackay, Ian; Sullivan, Don

    2012-02-01

    Liquid crystal polymers exhibit orientational order (nematic phase) and position order (smectic phase). Previous work on semiflexible polymers using self consistent field theory studied the isotropic-nematic and nematic-smectic transition for homogenous and diblock copolymers. The nematic phase is stabilized by excluded-volume effects between wormlike cylindrical segments. The smectic phase is further stabilized by excluded-volume effects between terminal end segments. Because models of semiflexible polymers include orientational degrees of freedom, in addition to the usual positional degrees of freedom, they are computationally more demanding to study. Spectral decomposition applied to segment orientations has previously been used to make computation feasible. However this method does not converge well for strongly ordered states, which arise in many real systems. I describe a Crank-Nicolson finite difference method applied to the orientations which is expected to converge well for highly ordered systems. This method also exhibits better numerical stability and accuracy and may thus serve as a better foundation for further studies of highly ordered systems. I also describe a modification to the spectral method which can compute the tilted Smectic C phase.

  15. Liquid Crystal Ordering of Random DNA Oligomers

    NASA Astrophysics Data System (ADS)

    Bellini, Tommaso; Zanchetta, Giuliano; Fraccia, Tommaso; Cerbino, Roberto; Tsai, Ethan; Moran, Mark; Smith, Gregory; Walba, David; Clark, Noel

    2012-02-01

    Concentrated solutions of DNA oligomers (6 to 20 base pairs) organize into chiral nematic (NEM) and columnar (COL) liquid crystal (LC) phases. When the oligomer duplexes are mixed with single strands, LC phase formation proceeds through macroscopic phase separation, as a consequence of the combination of various self-assembly processes including strand pairing, reversible linear aggregation, demixing and LC ordering. We extended our investigation to the case of LC ordering in oligonucleotides whose sequences are partially or entirely randomly chosen, and we observed LC phases even in entirely random 20mers, corresponding to a family of 4^20 10^12 different sequences. We have tracked the origin of this behaviour: random sequences pair into generally defected duplexes, a large fraction of them terminating with stretches of unpaired bases (overhangs); overhangs promote linear aggregation of duplexes, with a mean strength depending on the overhang length; LC formation is accompanied by a phase separation where the duplexes with longer overhangs aggregate to form COL LC domains that coexist with an isotropic fluid rich in duplexes whose structure cannot aggregate.

  16. Free surface dynamics of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Kondic, Lou; Lam, Michael; Lin, Te-Sheng

    2014-11-01

    Spreading thin films of nematic liquid crystal (NLC) are known to behave very differently to those of isotropic fluids. The polar interactions of the rod-like molecules with each other, and the interactions with the underlying substrate, can lead to intricate patterns and instabilities that are not yet fully understood. The physics of a system even as simple as a film of NLC spreading slowly over a surface (inclined or horizontal) are remarkably complex: the outcome depends strongly on the details of the NLC's behavior at both the substrate and the free surface (so-called ``anchoring'' effects). We will present a dynamic flow model that takes careful account of such nematic-substrate and nematic-free surface interactions. We will present model simulations for several different flow scenarios that indicate the variety of behavior that can emerge. Spreading over a horizontal substrate may exhibit a range of unstable behavior. Flow down an incline also exhibits intriguing instabilities: in addition to the usual transverse fingering, instabilities can be manifested behind the flowing front in a manner reminiscent of Newtonian flow down an inverted substrate. NSF DMS-1211713.

  17. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  18. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc. PMID:25361316

  19. Molecular wires from discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Labardi, Massimiliano; Scalia, Giusy

    2014-02-01

    Discotic liquid crystal (LC) can arrange in columnar structures along which electrical conduction occurs via π-π interaction between adjacent molecular cores. The efficiency of the conductivity is strongly dependent on the overlap of the orbitals of neighbor molecules and, in general, on the structural arrangements. The understanding of the factors that influence the organization is crucial for the optimization of the final conductive properties of the self-assembled columns. In this paper we present a study on the self-organization into molecular wires of a discotic LC using a solution based method. In particular, we focus on the effect of solvents used for preparing the LC solution. The resulting morphologies were investigated by atomic force microscopy (AFM) and optical microscopy, showing that diverse structures result from different solvents. With suitable conditions, we were able to induce very long fibers, with several tents of micrometer in length that, in turn, self-organize assuming a common orientation on a macroscopic scale.

  20. Structural Transitions in Cholesteric Liquid Crystal Droplets.

    PubMed

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A; Rahimi, Mohammad; Roberts, Tyler F; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L; de Pablo, Juan J

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates. PMID:27249186

  1. Colloidal particles embedded in liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Melchert, Drew; Sadati, Monirosadat; Zhou, Ye; de Pablo, Juan J.

    In this work, we encapsulate polystyrene and silica particles in nematic liquid crystal (LC) droplets dispersed in water using microfluidic glass capillary devices. While polystyrene particles induce planar anchoring on the surface, silica particles, treated with DMOAP, create homeotropic anchoring of the LC molecules at their surface. Sodium dodecyl sulfate (SDS) is added to the aqueous phase to stabilize LC droplets and promote a radial configuration with point defect in the center of LC droplet. Our experimental and computational studies show that, when trapped inside the LC droplets, particles with both anchoring types become mostly localized at the defect point (at the center) and interact with the radial configuration. Interestingly, a twisting structure is observed for polystyrene particle with strong planar anchoring. Although localization of the particles at the droplet center is the most stable state and with the lowest free energy, off-center positions also emerge, displacing the defect point from the center to near the surface of a radial droplet. - Corresponding author - Second affiliation: Argonne National Laboratory, Argonne, IL 60439, USA.

  2. Lenticular arrays based on liquid crystals

    NASA Astrophysics Data System (ADS)

    Urruchi Del Pozo, V.; Algorri Genaro, J. F.; Sánchez-Pena, J. M.; Geday, M. A.; Arregui, X. Q.; Bennis, N.

    2012-09-01

    Lenticular array products have experienced a growing interest in the last decade due to the very wide range of applications they can cover. Indeed, this kind of lenses can create different effects on a viewing image such as 3D, flips, zoom, etc. In this sense, lenticular based on liquid crystals (LC) technology is being developed with the aim of tuning the lens profiles simply by controlling the birefringence electrically. In this work, a LC lenticular lens array has been proposed to mimic a GRIN lenticular lens array but adding the capability of tuning their lens profiles. Comb control electrodes have been designed as pattern masks for the ITO on the upper substrate. Suitable high resistivity layers have been chosen to be deposited on the control electrode generating an electric field gradient between teeth of the same electrode. Test measurements have allowed us to demonstrate that values of phase retardations and focal lengths, for an optimal driving waveform, are fairly in agreement. In addition, results of focusing power of tuneable lenses were compared to those of conventional lenses. The behaviour of both kinds of lenses has revealed to be mutually similar for focusing collimated light and for refracting images.

  3. Liquid crystal filled surface plasmon resonance thermometer.

    PubMed

    Lu, Mengdi; Zhang, Xinpu; Liang, Yuzhang; Li, Lixia; Masson, Jean-Francois; Peng, Wei

    2016-05-16

    A novel surface plasmon resonance (SPR) thermometer based on liquid crystal (LC) filled hollow fiber is demonstrated in this paper. A hollow fiber was internally coated with silver and then filled with LC. The SPR response to temperature was studied using modeling and verified experimentally. The results demonstrated that the refractive index of LC decreases with the increasing temperature and the variation can be detected by the resonance wavelength shift of the plasmon resonance. The temperature sensitivities were 4.72 nm/°C in the temperature range of 20 to 34.5 °C and 0.55 nm/°C in the temperature range of 36 to 50 °C, At the phase transition temperature between nematic and isotropic phases of the LC, the temperature sensitivity increased by one order of magnitude and a shift of more than 46 nm was observed with only a 1.5 °C temperature change. This sensor can be used for temperature monitoring and alarming, and can be extended for other physical parameter measurement. PMID:27409911

  4. Infrared shutter using cholesteric liquid crystal.

    PubMed

    Choi, Gyu Jin; Jung, Hye Min; Lee, Seung Hee; Gwag, Jin Seog

    2016-06-01

    In this paper, we propose an infrared light shutter device using cholesteric liquid crystals. The pitch of the device corresponds to the wavelengths of the infrared region with a strong thermal effect. This device is intended for use as a smart window to maintain an optimal indoor temperature by controlling the infrared radiation coming from the sun. The proposed cholesteric device switches between the planar state and the isotropic state by controlling the temperature using an electrically heated transparent electrode made of indium tin oxide. A window with a planar state that reflects infrared radiation would be used mainly in the summer, while the isotropic state that transmits infrared would be applied in the winter. The proposed device produced a variety of gray levels of transmittance based on the temperature, and thus it can provide the proper temperature for each user. The easy fabrication process gives it appeal as a functional device in the smart window market, and it compares favorably with previous light shutter devices. The infrared shutter is expected to be useful for next-generation window applications. PMID:27411200

  5. Liquid crystal elastomer strips as soft crawlers

    NASA Astrophysics Data System (ADS)

    DeSimone, Antonio; Gidoni, Paolo; Noselli, Giovanni

    2015-11-01

    In this paper, we speculate on a possible application of Liquid Crystal Elastomers to the field of soft robotics. In particular, we study a concept for limbless locomotion that is amenable to miniaturisation. For this purpose, we formulate and solve the evolution equations for a strip of nematic elastomer, subject to directional frictional interactions with a flat solid substrate, and cyclically actuated by a spatially uniform, time-periodic stimulus (e.g., temperature change). The presence of frictional forces that are sensitive to the direction of sliding transforms reciprocal, 'breathing-like' deformations into directed forward motion. We derive formulas quantifying this motion in the case of distributed friction, by solving a differential inclusion for the displacement field. The simpler case of concentrated frictional interactions at the two ends of the strip is also solved, in order to provide a benchmark to compare the continuously distributed case with a finite-dimensional benchmark. We also provide explicit formulas for the axial force along the crawler body.

  6. Disassembly and characterization of liquid crystal screens.

    PubMed

    Juchneski, Nichele C F; Scherer, Janine; Grochau, Inês H; Veit, Hugo M

    2013-06-01

    The technology used in the manufacturing of televisions and monitors has been changing in recent years. Monitors with liquid crystal displays (LCD) emerged in the market with the aim of replacing cathode ray tube monitors. As a result, the disposal of this type of product, which is already very high, will increase. Thus, without accurate knowledge of the components and materials present in an LCD monitor, the recycling of materials, such as mercury, thermoplastic polymers, glasses, metals and precious metals amongst others, is not only performed, but allows contamination of soil, water and air with the liberation of toxic compounds present in this type of waste when disposed of improperly. Therefore, the objective of this study was to disassemble and characterize the materials in this type of waste, identify the composition, amount and form to enable, in further work, the development of recycling routes. After various tests and analyses, it was observed that an LCD display can be recycled, provided that precautions are taken. Levels of lead, fluoride and copper are above those permitted by the Brazilian law, characterizing this residue as having a high pollution potential. The materials present in printed circuit boards (base and precious metals)-thermoplastics, such as polyethylene terephthalate, acrylic, acrylonitrile butadiene styrene and polycarbonate and metals, such as steel and aluminum, and a layer of indium (in the internal face of the glass)-are components that make a point in terms of their potential for recycling. PMID:23615511

  7. Liquid crystal-on-organic field-effect transistor sensory devices for perceptive sensing of ultralow intensity gas flow touch.

    PubMed

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-01-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices. PMID:23948946

  8. Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch

    NASA Astrophysics Data System (ADS)

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-08-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.

  9. Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch

    PubMed Central

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-01-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4′-pentylbiphenyl – 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm–11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices. PMID:23948946

  10. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    DOEpatents

    Marshall, Kenneth L.

    2009-02-17

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  11. Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems

    NASA Technical Reports Server (NTRS)

    Marshall, Kenneth L. (Inventor)

    2009-01-01

    Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.

  12. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    SciTech Connect

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.; Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina; Staliunas, Kestutis

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  13. Demonstration of superprism effect in silicon pillar 2-D photonic crystal infiltrated with liquid crystals

    NASA Astrophysics Data System (ADS)

    Baroni, Pierre-Yves; Paeder, Vincent; Chang, Yu-Chi; Roussey, Matthieu; Herzig, Hans Peter; Nakagawa, Wataru

    2011-01-01

    Superprism-based deflection of an optical beam is observed in a photonic crystal composed of a triangular lattice of pillars infiltrated with a liquid crystal. The device is based on a Silicon-on-insulator substrate and operates in the telecommunications band. The experimental results show a wavelength shift of 0.76 μm/nm, in reasonable agreement with simulations. Temperature-based control of the liquid crystal properties is also shown to modulate the superprism characteristics.

  14. Light diffraction by acoustically induced domains in nematic liquid crystals

    SciTech Connect

    Kapustina, O. A.

    2006-05-15

    The phenomenon of light diffraction by a system of linear domains formed in planar layers of nematic liquid crystals in an oscillating Couette flow, acoustically induced at sound frequencies, is investigated.

  15. Liquid Crystal Displays: A Motivator for Some Simple Investigations.

    ERIC Educational Resources Information Center

    Selkirk, Keith

    1980-01-01

    The format of digits in liquid crystal displays (LCDs) on calculators and watches can motivate some simple investigations appropriate for school mathematics. Several sample problems or investigations are provided. (MK)

  16. Dynamic Self-Stiffening in Liquid Crystal Elastomers

    PubMed Central

    Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.

    2013-01-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials which respond to external stresses through a permanent increase in stiffness are uncommon. Here, we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a nematic director which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement. PMID:23612280

  17. Direct Observation of Smectic Layers in Thermotropic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Gao, M.; Diorio, N.; Weissflog, W.; Baumeister, U.; Sprunt, S.; Gleeson, J. T.; Jákli, A.

    2012-09-01

    We demonstrate subnanometer resolution cryo-TEM imaging of smectic layers in the smectic and nematic phases of two bent-core liquid crystals. Our results show perfect periodicity over several hundred layers in the smectic phase and also provide the first direct evidence of smectic clusters on length scales of 30-50 nm in a nematic liquid crystal. The results are corroborated with small angle x-ray scattering measurements. The observation of smectic clusters in the nematic phase is of special interest in bent-core liquid crystals, where the smectic clusters are stable over wide temperature ranges, in contrast to the well-known pretransitional “cybotactic” clusters that appear only in the vicinity of a bulk smectic phase. The means to characterize and manipulate this nanoscale molecular order could open up completely new liquid crystal-based technologies.

  18. Visualization of Thin Liquid Crystal Bubbles in Microgravity

    NASA Technical Reports Server (NTRS)

    Park, C. S.; Clark, N. A.; Maclennan, J. E.; Glaser, M. A.; Tin, P.; Stannarius, R.; Hall, N.; Storck, J.; Sheehan, C.

    2015-01-01

    The Observation and Analysis of Smectic Islands in Space (OASIS) experiment exploits the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physics.

  19. Silicon dioxide nanoporous structure with liquid crystal for optical sensors

    NASA Astrophysics Data System (ADS)

    Sushynskyi, Orest; Vistak, Maria; Gotra, Zenon; Fechan, Andriy; Mikityuk, Zinoviy

    2013-05-01

    It has been studied the spectral characteristics of the porous silicon dioxide and cholesteric liquid crystal. It has been shown that doping of the EE1 cholesteric liquid crystal with Fe3O4 magnetite nanoparticles doesn't shift significantly the position of the transmittance minimum of the material. It has been found that the deformation of chiral pitch of cholesteric liquid crystal with magnetite is observed in case of doping of porous nanocomposite host with following shifting of minimum of transmittance into short wavelength direction. It has been shown that influence of carbon monoxide on optical characteristics of the cholesteric liquid crystal with magnetite can be explained by the interaction of CARBON MONOXIDE molecules with magnetite nanodopants.

  20. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  1. Liquid-crystal tunable filter based on sapphire microspheres.

    PubMed

    Gilardi, Giovanni; Donisi, Domenico; Serpengüzel, Ali; Beccherelli, Romeo

    2009-11-01

    We design an integrated optoelectronic device based on the whispering-gallery modes of a sapphire microsphere integrated with a liquid-crystal tuning medium to produce a narrowband, electrically tunable, channel-dropping filter. The sapphire microsphere is glued over a diffused waveguide in a glass substrate. At the base of the microsphere, a small volume of liquid crystal is infiltrated. We numerically evaluate the performance of the device and demonstrate a voltage tuning of the narrowband resonances. PMID:19881558

  2. Colors Of Liquid Crystals Used To Measure Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, D. C.; Muratore, J. J., Jr.

    1996-01-01

    Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.

  3. Boundary layer elasto-optic switching in ferroelectric liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.

    1992-01-01

    The first experimental observation of a change in the director azimuthal angle due to applied shear stress is reported in a sample configuration involving a liquid-crystal-coated top surface exposed directly to gas flow. The electrooptic response caused by the shear stress is large, fast, and reversible. These findings are relevant to the use of liquid crystals in boundary layer investigations on wind tunnel models.

  4. Oriental transitions in nematic liquid crystals on grooved substrates

    SciTech Connect

    Krekhov, A.P.; Khasimullin, M.V.; Lebedev, Y.A.

    1995-12-31

    An expression for the surface energy of a nematic liquid crystal (NLC) on a fine-grooved substrate is obtained with the phenomenological approach. Temperature-induced orientational transitions in nematic liquid crystals are analyzed as functions of the surface-profile parameters. A planar{yields}tilted{yields}homeotropic alignment transition was observed near the clearing point of an MBBA layer sandwiched between two grooved glass substrates, with a microrelief obtained by oblique evaporation of silicon monoxide. 15 refs., 1 fig.

  5. Anisotropic colloidal micromuscles from liquid crystal elastomers.

    PubMed

    Marshall, Jean E; Gallagher, Sarah; Terentjev, Eugene M; Smoukov, Stoyan K

    2014-01-01

    Monodomain liquid crystal elastomers (LCEs) are new materials uniquely suitable for artificial muscles, as they undergo large reversible uniaxial shape changes, with strains of 20-500% and stresses of 10-100 kPa, falling exactly into the dynamic range of a muscle. LCEs exhibit little to no fatigue over thousands of actuation cycles. Their practical use has been limited, however, owing to the difficulty of synthesizing components, achieving consistent alignment during cross-linking across the whole material and often a high nematic-isotropic phase transition temperature. The most widely studied method for LC alignment involves mechanical stretching of the material during one of two cross-linking steps, which makes fabrication difficult to control and lends itself mainly to samples that can be easily grasped (with sizes of the order of mm). In this article, we describe a method of adapting the LCE synthesis to microscale objects, achieving monodomain alignment with a single cross-linking step, and lowering the cycling temperature. LCE precursor droplets are embedded in and then stretched in a polymer matrix at high temperature. Confinement of the uniaxially stretched droplets maintains the alignment achieved during stretching and allows us to eliminate one of the cross-linking steps and the variability associated with it. Adding a comonomer during the polymerization leads to lowering of the nematic-to-isotropic transition temperature (58 °C), significantly expanding the range of potential applications for these micromuscles. We demonstrate reversible thermal switching of the micromuscles in line with the largest strain changes observed for side-chain LCEs and a differential scanning calorimetry characterization of the material phase transitions. The method demonstrates the parallel fabrication of many microscale actuators and is amenable to further scale-up and manufacturing. PMID:24295079

  6. Columnar liquid crystals in cylindrical nanoconfinement.

    PubMed

    Zhang, Ruibin; Zeng, Xiangbing; Kim, Bongseock; Bushby, Richard J; Shin, Kyusoon; Baker, Patrick J; Percec, Virgil; Leowanawat, Pawaret; Ungar, Goran

    2015-02-24

    Axial orientation of discotic columnar liquid crystals in nanopores of inorganic templates, with the columns parallel to the axis of the nanochannels, is considered desirable for applications such as production of molecular wires. Here, we evaluate experimentally the role of the rigidity of the LC columns in achieving such orientation in nanopores where the planar anchoring (i.e., columns parallel to wall surface) is enforced. We studied the columnar phase of several discotic compounds with increasing column rigidity in the following order: dendronized carbazole, hexakis(hexyloxy)triphenylene (HAT6), a 1:1 HAT6-trinitrofluorenone (TNF) complex, and a helicene derivative. Using 2-D X-ray diffraction, AFM, grazing incidence diffraction, and polarized microscopy, we observed that the orientation of the columns changes from circular concentric to axial with increasing column rigidity. Additionally, when the rigidity is borderline, increasing pore diameter can change the configuration from axial back to circular. We derive expressions for distortion free energy that suggest that the orientation is determined by the competition between, on the one hand, the distortion energy of the 2-d lattice and the mismatch of its crystallographic facets with the curved pore wall in the axial orientation and, on the other hand, the bend energy of the columns in the circular configuration. Furthermore, the highly detailed AFM images of the core of the disclinations of strength +1 and +1/2 in the center of the pore reveal that the columns spiral down to the very center of the disclination and that there is no amorphous or misaligned region at the core, as suggested previously. PMID:25626118

  7. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  8. Optical characterization of lyotropic chromonic liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hui

    Lyotropic chromonic liquid crystals (LCLCs) represent a special class of lyotropic mesophases markedly different from conventional amphiphilic mesogens. Materials forming LCLCs are composed of plank-like molecules with a polyaromatic central core and hydrophilic ionic groups at the periphery. The individual molecules tend to assemble into rodlike aggregates that form the N phase once the concentration exceeds about 0.1M. The LCLC materials show a tremendous potential for applications in optics as self-assembling polarizing and compensating films and in the area of real-time biological sensing. The emerging applications require an understanding of basic properties of LCLC. This work addresses these needs by providing the optical characterization of LCLC. We studied in detail the optical anisotropic properties of three different nematic LCLCs: disodium cromoglycate (DSCG), Blue 27, and Violet 20. We determined the birefringence of these three materials as the function of the temperature T and wavelength lambda and the corresponding dependencies of the absorption coefficients for Blue 27 and Violet 20. The birefringence is negative and significantly lower in the absolute value as compared to the birefringence of typical thermotropic N materials. We determined the scalar order parameter of the nematic phase of Blue 27 and its temperature dependence. The scalar order parameter is close to the one predicted by the classic Onsager theory for solutions of rigid rods. However, this similarity is not complete, as the measured scalar order parameter depends on temperature. The I-N pretransitional fluctuations in an aqueous solution of DSCG were studied by light scattering. We obtained the correlation length of the orientational order-parameter fluctuations of isotropic DSCG solution. The pretransitional behavior of light scattering does not completely follow the classic Landau-de Gennes model. This feature is explained by the variable length of DSCG aggregates as a function

  9. Liquid crystal thermography and true-colour digital image processing

    NASA Astrophysics Data System (ADS)

    Stasiek, J.; Stasiek, A.; Jewartowski, M.; Collins, M. W.

    2006-06-01

    In the last decade thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLCs at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make visible the temperature and velocity fields in liquids by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are also presented.

  10. Hexagonal columnar liquid crystal in the cells secreting spider silk.

    PubMed

    Knight, D; Vollrath, F

    1999-12-01

    The liquid crystallinity of spider dragline silk dope is thought to be important for both the spinning process and the extreme mechanical properties of the final thread. Although the formation of the liquid crystalline units is poorly understood, it has been suggested that spider silk proteins are secreted in a random coil and then aggregate end-to-end into rod-shaped units to form supramolecular liquid crystals. However, evidence presented here from transmission electron microscopy indicates that coat protein of the dragline silk of a Nephila spider is stored as hexagonal columnar liquid crystals within the intracellular secretory vesicles. This implies that this component is already folded into short rods within the gland cells and forms molecular rather than supramolecular liquid crystals. PMID:18627876

  11. A liquid crystal and polymer composite film for liquid crystal lenses

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Hung-Shan; Wang, Yu-Jen; Chang, Chia-Ming

    2015-03-01

    Liquid crystal (LC) lenses offer novel opportunities for applications of ophthalmic lenses, camera modules, pico projectors, endoscopes, and optical zoom systems owing to electrically tunable lens power. Nevertheless, the tunable lens power and the aperture size of LC lenses are limited by the optical phase resulting from limit birefringence of LC materials. Recently, we developed a liquid crystal and polymer composite film (LCPCF) as a separation layer and an alignment layer for a multi-layered structure of LC lenses in order to enlarge the polarization-independent optical phase modulation. However, the physical properties and mechanical properties of the LCPCF are not clearly investigated. In this paper, we show the mechanical and physical properties of the LCPCF. The anchoring energy of the LCPCF is comparable with the standard rubbing-induced alignment layer. The transmission efficiency is around 97% neglecting the Fresnel reflection. The surface roughness is under 2 nm by using AFM scanning. The bending strength test indicates that the LCPCF can hold the LC material with reasonable deformation. We believe this study provides a deeper insight to the LC lens structure embedded with LCPCF.

  12. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.

    PubMed

    Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael

    2016-01-01

    LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus. PMID:26889665

  13. Flexoelectricity of a Calamitic Liquid Crystal Elastomer Swollen with a Bent-core Liquid Crystal

    SciTech Connect

    Chambers, M.; Verduzco, R; Gleeson, J; Sprunt, S; Jakli, A

    2009-01-01

    We have measured the electric current induced by mechanical distortion of a calamitic liquid crystal elastomer (LCE) swollen with a low molecular weight bent-core nematic (BCN) liquid crystal, and have determined, for the first time, the bend flexoelectric coefficient e{sub 3} of such a BCN-LCE composite. In one method, we utilize air-pressure to induce a mechanical bend deformation and flexoelectric polarization in a BCN-LCE film, and then measure the polarization current as a function of time. An alternative technique uses a rotary-motor driven scotch yoke to periodically flex the BCN-LCE; in this case, the magnitude and phase of the induced current are recorded via a lock-in amplifier. The flexoelectric coefficient, e{sub 3}, was found to be {approx}20 nC/cm{sup 2}, and is stable in magnitude from room temperature to {approx}65 C. It is about one third the value measured in samples of the pure BCN; this fraction corresponds closely to the molar concentration of BCN in the LCE. The flexoelectric current increases linearly with the magnitude of the bend deformation and decays with frequency. These observations indicate a promising way forward towards producing very low-cost, self-standing, rugged electromechanical energy conversion devices.

  14. Two dimensional liquid crystal devices and their computer simulations

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    The main focus of the dissertation is design and optimization two dimensional liquid crystal devices, which means the liquid crystal director configurations vary in two dimensions. Several optimized and designed devices are discussed in the dissertation. They include long-term bistable twisted nematic liquid crystal display (BTN LCD), which is very low power consumption LCD and suitable for E-book application; wavelength tunable liquid crystal Fabry-Perot etalon filter, which is one of the key components in fiber optic telecommunications; high speed refractive index variable devices, which can be used in infrared beam steering and telecommunications; high density polymer wall diffractive liquid crystal on silicon (PWD-LCoS) light valve, which is a promising candidate for larger screen projection display and also can be used in other display applications. Two dimensional liquid crystal director simulation program (relaxation method) and two dimensional optical propagation simulation program (finite-difference time-domain, FDTD method) are developed. The algorithms of these programs are provided. It has been proved that they are the very efficient tools that used in design and optimization the devices described above.

  15. Photorefractivity in polymer-stabilized nematic liquid crystals

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1998-07-01

    Polymer-stabilized liquid crystals, consisting of low concentrations of a polymeric electron acceptor, are shown to exhibit significantly enhanced photorefractive properties. The charge generation and transport properties of these composite systems are strongly modified from nematic liquid crystals doped with electron donors and acceptors. The new composites are produced by polymerizing a small quantity of a 1,4:5,8-naphthalenediimide electron acceptor functionalized with an acrylate group in an aligned nematic liquid crystal. Photopolymerization creates an anisotropic gel-like medium in which the liquid crystal is free to reorient in the presence of a space charge field, while maintaining charge trapping sites in the polymerized regions of the material. The presence of these trapping sites results in the observation of longer lived, higher resolution holographic gratings in the polymer-stabilized liquid crystals than observed in nematic liquid crystals alone. These gratings display Bragg regime diffraction. Asymmetric beam coupling, photo-conductivity, and four-wave mixing experiments are performed to characterize the photophysics of these novel materials.

  16. `Guest-host' effect in liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Suchodolska, B.; Rudzki, A.; Ossowska-Chruściel, M. D.; Zalewski, S.; Chruściel, J.

    2015-01-01

    The most important goal of our research is to show the influence of the 'guest' (bent-core mesogen, 1,3-phenyldicarboxylatebis{4-[(4-octylbenzoyl)sulphanyl]phenyl} [IFOS8], banana-shaped liquid crystal [BLC]) on the 'host' (calamitic liquid crystal [CLC], (S)-(+)-1-methylheptyloxybiphenyl-(4-n-octylphenyl)thiobenzoate [MHOBS8]), on the stability and the destabilization of the antiferroelectric B2 and the ferroelectric smectic C* (SmC*) phases, and change of the temperature ranges of other phases in the binary liquid crystal mixtures. This work is focused on polymorphism of three new binary liquid crystal mixtures, exhibiting a 'guest-host' (guest liquid crystal-host liquid crystal [GH-LC]) effect. MHOBS8 has, among others, a ferroelectric SmC* phase, and IFOS8 assumes the B2 phase with antiferroelectric properties. The observed properties of the mixtures, such as variation of the phase transition temperatures, spontaneous polarization, tilt angle and switching time, are characteristic of a 'guest-host' mixture. The influence of BLC on the character of the interactions within the CLC host is discussed, with particular attention paid to electro-optical properties of the GH-LC mixtures.

  17. Theory of the acoustic realignment of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Malanoski, A. P.; Greanya, V. A.; Weslowski, B. T.; Spector, M. S.; Selinger, J. V.; Shashidhar, R.

    2004-02-01

    When an ultrasonic wave is applied to a nematic liquid-crystal cell, the molecules change their orientation, leading to a change in the optical intensity transmitted through the cell. Modeling this acousto-optic effect involves three separate theoretical issues: (a) calculating the intensity of sound transmitted through the cell walls into the liquid crystal, (b) determining the consequent realignment of the liquid crystal, and (c) deriving the change in optical transmission through the cell. In this paper, we present a theory that addresses all three of these issues, and thereby reproduces the behavior seen in experiments. The theory shows how the performance depends not only on the liquid-crystal material properties, but also on the geometrical parameters of the system, such as the thickness of the glass walls, thickness of the liquid-crystal layer, angle of the ultrasonic wave, viewing angle, and boundary condition at the glass-liquid crystal interface. The theory predicts that the strong dependence on viewing angle still allows an optical image to be seen for realistic dimensions.

  18. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  19. Photorefractivity in polymer-stabilized nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wiederrecht, Gary P.; Wasielewski, Michael R.

    1998-10-01

    Polymer-stabilized liquid crystals, consisting of low concentrations of a polymeric electron acceptor, are shown to exhibit significantly enhanced photorefractive properties. The charge generation and transport properties of these composite systems are strongly modified from nematic liquid crystals doped with electron donors and acceptors. The new composites are produced by polymerizing a small quantity of a 1,4:5,8-naphthalenediimide electron acceptor functionalized with an acrylate group in an aligned nematic liquid crystal. Photopolymerization creates an anisotropic gel-like medium in which the liquid crystal is free to reorient in the presence of a space charge field, while maintaining charge trapping sites in the polymerized regions of the material. The presence of these trapping sites results in the observation of longer lived, higher resolution holographic gratings in the polymer-stabilized liquid crystals than observed in nematic liquid crystals alone. These gratings display Bragg regime diffraction. Asymmetric beam coupling, photo-conductivity, and four-wave mixing experiments are performed to characterize the photophysics of these novel materials.

  20. Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal

  1. NMR STUDIES OF LIQUID CRYSTALS AND MOLECULES DISSOLVED IN LIQUID CRYSTAL SOLVENTS

    SciTech Connect

    Drobny, G.P.

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic B{sub A}, smectic B{sub C}, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from zero at the smectic A

  2. Universal scaling of dielectric response of various liquid crystals and glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Gałązka, M.; Juszyńska-Gałązka, E.; Osiecka, N.; Bąk, A.

    2016-04-01

    We present a new generalized scaling relationship accounting both for the real and imaginary parts of the complex permittivity data. The generalized scaling procedure has been successfully used for various relaxation processes in liquid crystals (4-bromobenzylidene-4‧-pentyloxyaniline, 4-bromobenzylidene-4‧-hexyloxyaniline, 4‧-butyl-4-(2-methylbutoxy)-azoxybenzene, 4-ethyl-4‧-octylazoxybenzene), and in glass-forming liquids (glycerol, propylene carbonate, salol, cresolphthalein-dimethylether). As it is shown, one obtains common master-curve for liquid-like phases (isotropic liquid, cholesteric, nematic, smectic A), solid-like phases (smectic B, conformationally disorder crystal) and supercooled liquid phase.

  3. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber.

    PubMed

    Zito, Gianluigi; Pissadakis, Stavros

    2013-09-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a prepolymer/liquid crystal solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG, are discussed. Experimental data presented here demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, and is discussed further. PMID:23988927

  4. Do protein crystals nucleate within dense liquid clusters?

    PubMed Central

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10−3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation. PMID:26144225

  5. Nano Liquid Crystal Droplet Impact on Solid Surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; de Pablo, Juan; dePablo Team

    2015-03-01

    Liquid droplet impaction on solid surfaces is an important problem with a wide range of applications in everyday life. Liquid crystals (LCs) are anisotropic liquids whose internal structure gives rise to rich optical and morphological phenomena. In this work we study the liquid crystal droplet impaction on solid surfaces by molecular dynamics simulations. We employ a widely used Gay-Berne model to describe the elongated liquid crystal molecules and their interactions. Our work shows that, in contrast to isotropic liquids, drop deformation is symmetric unless an instability kicks in, in which case a nano scale liquid crystal droplet exhibits distinct anisotropic spreading modes that do not occur in simple liquids. The drop prefers spreading along the low viscosity direction, but inertia can in some cases overcome that bias. The effects of the director field of the droplet, preferred anchoring direction and the anchoring strength of the wall are investigated. Large scale (0.1 micron) simulations are performed to connect our nano scale results to the experiments. Our studies indicate that LCs could provide an interesting alternative for development of next-generation printing inks.

  6. Demonstrations of Some Optical Properties of Liquid Crystals.

    ERIC Educational Resources Information Center

    Nicastro, Anthony J.

    1983-01-01

    Discusses several properties of liquid crystal displays. Includes instructions for demonstrating liquid crystalline phase, ordering of the long axes of molecules along one direction, and electro-optic effects. The latter is accomplished with the use of an overhead projector following preparation of a sandwich cell. (JN)

  7. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  8. Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theo; Weiser, Erik; Hou, Tan; Jensen, Brian; St. Clair, Terry

    2004-01-01

    One of the major challenges for NASA's next-generation reusable-launch-vehicle (RLV) program is the design of a cryogenic lightweight composite fuel tank. Potential matrix resin systems need to exhibit a low coefficient of thermal expansion (CTE), good mechanical strength, and excellent barrier properties at cryogenic temperatures under load. In addition, the resin system needs to be processable by a variety of non-autoclavable techniques, such as vacuum-bag curing, resin-transfer molding (RTM), vacuum-assisted resin-transfer molding (VaRTM), resin-film infusion (RFI), pultrusion, and advanced tow placement (ATP). To meet these requirements, the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center developed a new family of wholly aromatic liquid-crystal oligomers that can be processed and thermally cross-linked while maintaining their liquid-crystal order. All the monomers were polymerized in the presence of a cross-linkable unit by use of an environmentally benign melt-condensation technique. This method does not require hazardous solvents, and the only side product is acetic acid. The final product can be obtained as a powder or granulate and has an infinite shelf life. The obtained oligomers melt into a nematic phase and do not exhibit isotropization temperatures greater than the temperatures of decomposition (Ti > T(sub dec)). Three aromatic formulations were designed and tested and included esters, ester-amides, and ester-imides. One of the major advantages of this invention, named LaRC-LCR or Langley Research Center-Liquid Crystal Resin, is the ability to control a variety of resin characteristics, such as melting temperature, viscosity, and the cross-link density of the final part. Depending on the formulation, oligomers can be prepared with melt viscosities in the range of 10-10,000 poise (100 rad/s), which can easily be melt-processed using a variety of composite-processing techniques. This capability provides NASA with custom

  9. Effect of Viscosity on the Crystallization of Undercooled Liquids

    NASA Technical Reports Server (NTRS)

    2003-01-01

    There have been numerous studies of glasses indicating that low-gravity processing enhances glass formation. NASA PI s are investigating the effect of low-g processing on the nucleation and crystal growth rates. Dr. Ethridge is investigating a potential mechanism for glass crystallization involving shear thinning of liquids in 1-g. For shear thinning liquids, low-g (low convection) processing will enhance glass formation. The study of the viscosity of glass forming substances at low shear rates is important to understand these new crystallization mechanisms. The temperature dependence of the viscosity of undercooled liquids is also very important for NASA s containerless processing studies. In general, the viscosity of undercooled liquids is not known, yet knowledge of viscosity is required for crystallization calculations. Many researchers have used the Turnbull equation in error. Subsequent nucleation and crystallization calculations can be in error by many orders of magnitude. This demonstrates the requirement for better methods for interpolating and extrapolating the viscosity of undercooled liquids. This is also true for undercooled water. Since amorphous water ice is the predominant form of water in the universe, astrophysicists have modeled the crystallization of amorphous water ice with viscosity relations that may be in error by five orders-of-magnitude.

  10. Electronic transport in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.

    2002-04-01

    Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping

  11. Reflective and transflective liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Zhou, Fushan

    Recently transflective liquid crystal displays (LCD) received a lot of attention. A transflective display has a transmissive mode and a reflective mode. It combines the high contrast, high brightness of the transmissive mode with energy-saving of reflective mode and has good performance in various illumination conditions. However, state-of-the-art transflective displays have problems such as different electro-optical properties, difficulty in compatibility and optimization of both modes, low efficiency of light utilization, and complexity in structure. This dissertation focuses on finding new designs of transflective displays that address those problems. One way to do this is to study film compensation of LCD. We first studied film compensation of bistable twisted nematic (BTN) LCD. Starting form the reduced (3x3) Mueller matrices, we derived and simplified the conditions that film compensated BTN can be optimized. Based on these relations, electro-optical properties of some particular configurations, and designs of transflective BTN with high brightness and contrast were given. To confirm and get a better understanding of the results, we use the Poincare sphere to analyze film compensated BTN. The key to this approach is the existence of "fixed points". Compared with the matrix approach, this approach is more simple, elegant, and efficient. We then generalized the Poincare sphere approach to a universal approach of LCD. We applied the universal approach to film compensation of ECB and IPS, and the design of achromatic birefringent filters. We also give two more new designs of transflective displays. In the first design, a dichroic mirror is used to split the visible spectrum into two parts used in transmissive and reflective modes, respectively. Both modes can be optimized. It has a simple structure and good light utilization. A design for a full-color transflective display with good performance is also given. In the second design, each pixel is divided into two

  12. Novel Microstructures for Polymer-Liquid Crystal Composite Materials

    NASA Technical Reports Server (NTRS)

    Magda, Jules J.

    2004-01-01

    There are a number of interface-dominated composite materials that contain a liquid crystalline (LC) phase in intimate contact with an isotropic phase. For example, polymer- dispersed liquid crystals, used in the fabrication of windows with switchable transparency, consist of micron size LC droplets dispersed in an isotropic polymer matrix. Many other types of liquid crystal composite materials can be envisioned that might have outstanding optical properties that could be exploited in novel chemical sensors, optical switches, and computer displays. This research project was based on the premise that many of these potentially useful LC composite materials can only be fabricated under microgravity conditions where gravity driven flows are absent. In the ground-based research described below, we have focused on a new class of LC composites that we call thermotropic- lyotropic liquid crystal systems (TLLCs). TLLCs consist of nanosize droplets of water dispersed in an LC matrix, with surfactants at the interface that stabilize the structure. By varying the type of surfactant one can access almost an infinite variety of unusual LC composite microstructures. Due to the importance of the interface in these types of systems, we have also developed molecular simulation models for liquid crystals at interfaces, and made some of the first measurements of the interfacial tension between liquid crystals and water.

  13. Liquid crystals based sensing platform-technological aspects.

    PubMed

    Hussain, Zakir; Qazi, Farah; Ahmed, Muhammad Imran; Usman, Adil; Riaz, Asim; Abbasi, Amna Didar

    2016-11-15

    In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme. PMID:27162142

  14. Nanolitre-scale crystallization using acoustic liquid-transfer technology

    PubMed Central

    Villaseñor, Armando G.; Wong, April; Shao, Ada; Garg, Ankur; Donohue, Timothy J.; Kuglstatter, Andreas; Harris, Seth F.

    2012-01-01

    Focused acoustic energy allows accurate and precise liquid transfer on scales from picolitre to microlitre volumes. This technology was applied in protein crystallization, successfully transferring a diverse set of proteins as well as hundreds of precipitant solutions from custom and commercial crystallization screens and achieving crystallization in drop volumes as small as 20 nl. Only higher concentrations (>50%) of 2-­methyl-2,4-pentanediol (MPD) appeared to be systematically problematic in delivery. The acoustic technology was implemented in a workflow, successfully reproducing active crystallization systems and leading to the discovery of crystallization conditions for previously uncharacterized proteins. The technology offers compelling advantages in low-nanolitre crystallization trials by providing significant reagent savings and presenting seamless scalability for those crystals that require larger volume optimization experiments using the same vapor-diffusion format. PMID:22868754

  15. Switchable tunneling mode for cylindrical photonic quantum well consisting of photonic crystals containing liquid crystal

    NASA Astrophysics Data System (ADS)

    Hu, C. A.; Yang, S. L.; Yang, T. J.

    2013-06-01

    We propose a cylindrical photonic quantum well made of photonic crystals containing liquid crystals, the properties of which are theoretically calculated and investigated by the transfer matrix method in the cylindrical symmetry system. Liquid crystals are introduced into the photonic quantum well structure as tunable defect layers. When the liquid crystals are pseudo-isotropic state and the azimuthal mode order of incident waves are m=0, there were two pass-bands around certain wavelength. When the liquid crystals are homeotropic state, the reflectance of pass-band at shorter wavelength decreases from 0.75 to 0.05 in the TM mode, but the reflectance does not change in the TE mode. When mode order m=1 and the liquid crystals are pseudo-isotropic state, the reflectance of defect mode stayed the same as m=0. However, the result is reversed while the phase of liquid crystals change from pseudo-isotropic to homeotropic state. The reflectance is the same as in the TM mode, but that in the TE mode decreases substantially from 0.75 to 0.05. The application of our structure to switching device is highly potential.

  16. Self-confined dynamics in supercooled liquids during crystallization

    NASA Astrophysics Data System (ADS)

    Sanz, Alejandro; Niss, Kristine; Ezquerra, Tiberio A.; Nogales, Aurora; Jimenez, Monica; Puente-Orench, Ines

    2015-03-01

    Within the temperature window limited by the equilibrium melting temperature and the liquid to glass transition temperature, some glass forming systems tend to undergo crystallization. Unlike polymeric materials, low molecular weight liquids are able to self-organize forming fully crystalline structures, in which the dynamics of the remaining disordered regions may be examined along the whole range of crystalline volume fraction when real time studies are assessed. From the point of view of the molecular mobility, dielectric spectroscopy is a unique tool for unraveling the dynamic effects during crystallization. The aim of this contribution is to show a complete picture of the crystallization process in paradigmatic glass formers like 2-propanol, ethanol and glycerol. The interrelationships between structure and dynamics during crystallization will be discussed, paying special attention to the role played by the hydrogen-bonded network across the phase transformation. Novel results on crystallization of 2-propanol studied by real time quasielastic neutron scattering measurements will also be presented.

  17. Driving voltage properties sensitive to microscale liquid crystal orientation pattern in twisted nematic liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Takahashi, Koki; Yamaguchi, Rumiko; Nose, Toshiaki

    2016-04-01

    We investigated the micropattern-sensitive driving voltage properties of twisted nematic liquid crystal (LC) cells and found that the threshold voltage for inducing the Fréedericksz transition strongly depends on the micropatterned LC molecular orientation state. We discuss the effects of various cell parameters such as the period of the micropattern Λ, the LC layer thickness d, and the twist angle Φ on the threshold voltage. By a computer simulation of the LC molecular orientation, we found that the threshold voltage V th varies in response to the deformation factor Δ (= d 2/Λ2 + Φ2/π2) of the spatially distributed LC molecular orientation. We confirm that V\\text{th}2 is proportional to 1 - Δ from both theoretical and experimental standpoints.

  18. Liquid crystal display modes in a nontilted bent-core biaxial smectic liquid crystal

    NASA Astrophysics Data System (ADS)

    Nagaraj, Mamatha; Panarin, Y. P.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-11-01

    Liquid crystal display (LCD) modes associated with the rotation of the secondary director in nontilted, biaxial smectic phase of an achiral bent-core compound are demonstrated. For LCDs, we find that at least four display modes are possible using SmAPA phase of the studied material, in which the minor directors in adjacent layers are aligned antiferroelectrically. The advantages of these modes include low driving field (1-2 V/μm), high contrast ratio 1000:1, relatively fast switching time of 0.5 ms and continuous gray scale. The molecular short axis or the polar axis in a negative dielectric, biaxial material is oriented by the in-plane electric field by a combination dielectric biaxiality and polarity at low electric fields and polarity at higher fields.

  19. Do protein crystals nucleate within dense liquid clusters?

    SciTech Connect

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  20. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular

  1. Photonics of liquid-crystal structures: A review

    SciTech Connect

    Palto, S. P. Blinov, L. M.; Barnik, M. I.; Lazarev, V. V.; Umanskii, B. A.; Shtykov, N. M.

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  2. Alignment and Stiffening of Liquid Crystal Elastomers under Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Agrawal, Aditya; Patra, Prabir; Ajayan, Pulickel; Chapman, Walter; Verduzco, Rafael

    2013-03-01

    Biological tissues have the remarkable ability to remodel and repair in response to disease, injury, and mechanical stresses, a phenomenon known ``functional adaptation'' or ``remodeling''. Herein, we report similar behavior in polydomain liquid crystal elastomers. Liquid crystal elastomers dramatically increase in stiffness by up to 90 % under low-amplitude, repetitive (dynamic) compression. By studying a systematic series of materials, we demonstrate that the stiffness increase is directly influenced by the liquid crystal content of the elastomers, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through a combination of rheological measurements, polarizing optical microscopy and 2-D X-ray diffraction, we demonstrate that self-stiffening arises due to rotations of the nematic director in response to dynamic compression, and show that the behavior is consistent with the theory for nematic rubber elasticity. Previous work with liquid crystal elastomers has focused primarily on `soft elastic' deformations at large strains, but our findings indicate rich behavior at previously overlooked low-strain, dynamic deformations.

  3. Theory of polymer-dispersed cholesteric liquid crystals

    SciTech Connect

    Matsuyama, Akihiko

    2013-11-07

    A mean field theory is presented to describe cholesteric phases in mixtures of a polymer and a cholesteric liquid crystal. Taking into account an anisotropic coupling between a polymer and a liquid crystal, we examine the helical pitch, twist elastic constant, and phase separations. Analytical expressions of the helical pitch of a cholesteric phase and the twist elastic constant are derived as a function of the orientational order parameters of a polymer and a liquid crystal and two intermolecular interaction parameters. We also find isotropic-cholesteric, cholesteric-cholesteric phase separations, and polymer-induced cholesteric phase on the temperature-concentration plane. We demonstrate that an anisotropic coupling between a polymer and a liquid crystal can stabilize a cholesteric phase in the mixtures. Our theory can also apply to mixtures of a nematic liquid crystal and a chiral dopant. We discuss the helical twisting power, which depends on temperature, concentration, and orientational order parameters. It is shown that our theory can qualitatively explain experimental observations.

  4. Ferroelectric thin films with liquid crystal for gradient index applications.

    PubMed

    Willekens, Oliver; George, John Puthenparampil; Neyts, Kristiaan; Beeckman, Jeroen

    2016-04-18

    We report on the first ever combination of a thin film of lead zirconate titanate (PZT) with a liquid crystal (LC) layer. Many liquid crystal applications use a transparent conductive oxide to switch the liquid crystal. Our proposed processing does not, instead relying on the extremely high dielectric constant of the ferroelectric layer to extend the electric field from widely spaced electrodes over the liquid crystal. It eliminates almost entirely the fringe field problems that arise in nearly all the liquid crystal devices that use multiple addressing electrodes. We show, both via rigorous simulations as well as experiments, that the addition of a PZT layer over the addressing electrodes leads to a markedly improved LC switching performance at distances of up to 30 μm from the addressing electrodes with the current PZT-layer thickness of 0.84 μm. This improvement in switching is used to tune the focal length of the microlens with electrodes spaced at 30 μm. PMID:27137248

  5. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  6. Optically isotropic liquid crystal media formulated by doping star-shaped cyclic oligosiloxane liquid crystal surfactants in twin nematic liquid crystals.

    PubMed

    Kim, Namil; Kim, Dae-Yoon; Park, Minwook; Choi, Yu-Jin; Kim, Soeun; Lee, Seung Hee; Jeong, Kwang-Un

    2015-05-21

    The formation of optically isotropic liquid crystal (LC) media has been investigated by doping the star-shaped LC molecular surfactants (SiLC) into the rod-shaped twin LC host molecules (DiLC). The experimental phase diagram was constructed on the basis of differential scanning calorimetry (DSC) and then a theoretical calculation was conducted through a combined Flory-Huggins (FH)/Maier-Saupe-McMillan (MSM)/phase field (PF) model to account for the experimental results. The phase diagram of the SiLC/DiLC mixtures revealed the broad coexistence regions such as smectic A + crystal (SmA1 + Cr2), liquid + crystal (L1 + Cr2), and liquid + nematic (L1 + N2) at the intermediate composition along with the narrow single phase crystal (Cr2), smectic (SmA1), and nematic (N2) regions. The morphologies and structures of these coexistence regions were further confirmed by polarized optical microscopy (POM) and wide-angle X-ray diffraction (WAXD). At the 80/20 SiLC/DiLC composition, the optical anisotropy was induced under an alternating current (AC) electric field above its isotropization temperature. The formation of an optically isotropic LC medium in mixtures of the SiLC molecular surfactants and nematic LC host may allow us to develop new electro-optical devices. PMID:25779205

  7. Nonlinear optics, active plasmonics and metamaterials with liquid crystals

    NASA Astrophysics Data System (ADS)

    Khoo, Iam Choon

    2014-03-01

    Nematic liquid crystals possess large and versatile optical nonlinearities suitable for photonics applications spanning the femtoseconds to milliseconds time scales, and across a wide spectral window. We present a comprehensive review of the physical properties and mechanisms that underlie these multiple time scales nonlinearities, delving into individual molecular electronic responses as well as collective ordered-phase dynamical processes. Several exemplary theoretical formalisms and feasibility demonstrations of ultrafast all-optical transmission switching and tunable metamaterials and plasmonic photonic structures where the liquid crystal constituents play the critical role of enabling the processes are discussed. Emphasis is placed on all-optical processes, but we have also highlighted cases where electro-optical means could provide additional control, flexibility and enhancement possibility. We also point out how another phase of chiral nematic, namely, Blue-Phase liquid crystals could circumvent some of the limitations of nematic and present new possibilities.

  8. Substrate-induced gliding in a nematic liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Mema, E.; Kondic, L.; Cummings, L. J.

    2015-12-01

    We consider the interaction between nematic liquid crystals (NLCs) and polymer substrates. Such substrates can interact with NLCs, exhibiting a phenomenon known as director gliding: the preferred orientation of the NLC molecules at the interface changes on time scales that are slow relative to the elastic relaxation time scale of the NLC. We present two models for gliding, inspired by experiments that investigate the interaction between the NLC and a polymer substrate. These models, though simple, lead to nontrivial results, including loss of bistability under gliding. Perhaps surprisingly, we find that externally imposed switching between the steady states of a bistable system may reverse the effect of gliding, preventing loss of bistability if switching is sufficiently frequent. Our findings may be of relevance to a variety of technological applications involving liquid crystal devices, and particularly to a new generation of flexible liquid crystal displays that implement polymeric substrates.

  9. Dynamics of a disc in a nematic liquid crystal.

    PubMed

    Antipova, Alena; Denniston, Colin

    2016-01-28

    We use lattice Boltzmann simulations to study the dynamics of a disc immersed in a nematic liquid crystal. In the absence of external torques, discs with homeotropic anchoring align with their surface normal parallel to the director of the nematic liquid crystal. In the presence of a weak magnetic field a ferromagnetic disc will rotate to equilibrate the elastic torque due to the distortion of the nematic director and the magnetic torque. When the magnetic field rotates the disc so that the angle θ between normal to the surface of the disc â and director of the liquid crystal n[combining circumflex] becomes greater than π/2, the disc flips around the axis perpendicular to the rotation axis so that â sweeps through π radians. An analysis of this behaviour was performed. In particular, we look at the impact of the disc thickness and edges on defect creation and the flipping transition. We also analyse the importance of backflow. PMID:26575160

  10. Defect topologies in chiral liquid crystals confined to mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Schlotthauer, Sergej; Skutnik, Robert A.; Stieger, Tillmann; Schoen, Martin

    2015-05-01

    We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.

  11. Bistable salt doped cholesteric liquid crystals light shutter

    NASA Astrophysics Data System (ADS)

    Moheghi, Alireza; Nemati, Hossein; Li, Yannian; Li, Quan; Yang, Deng-Ke

    2016-02-01

    Liquid crystals have been used to make electrically switchable light shutters (windows), but most of them are monostable: opaque in the absence of applied voltage and transparent when a voltage is applied. Here we report a bistable switchable light shutter based on cholesteric liquid crystal doped with tetrabutylammonium bromide. The salt makes it possible for the liquid crystal to have different electro-optical responses to applied voltages with different frequencies. The shutter can be either transparent or opaque in the absence of applied voltage. It can be switched from the transparent state to the opaque state by applying a low frequency (60 Hz) voltage pulse and switched back to the transparent state by applying a high frequency (2 kHz) voltage pulse. Because of the bistability, it can be used for energy-saving switchable privacy control and architectural windows.

  12. Phase behavior and dynamics of a cholesteric liquid crystal

    SciTech Connect

    Roy, D.; Fragiadakis, D.; Roland, C. M.; Dabrowski, R.; Dziaduszek, J.; Urban, S.

    2014-02-21

    The synthesis, equation of state, phase diagram, and dielectric relaxation properties are reported for a new liquid crystal, 4{sup ′}-butyl-4-(2-methylbutoxy)azoxybenzene (4ABO5*), which exhibits a cholesteric phase at ambient temperature. The steepness of the intermolecular potential was characterized from the thermodynamic potential parameter, Γ = 4.3 ± 0.1 and the dynamic scaling exponent, γ = 3.5 ± 0.2. The difference between them is similar to that seen previously for nematic and smectic liquid crystals, with the near equivalence of Γ and γ consistent with the near constancy of the relaxation time of 4ABO5* at the cholesteric to isotropic phase transition (i.e., the clearing line). Thus, chirality does not cause deviations from the general relationship between thermodynamics and dynamics in the ordered phase of liquid crystals. The ionic conductivity of 4ABO5* shows strong coupling to the reorientational dynamics.

  13. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  14. Crystal-liquid interfacial free energy via thermodynamic integration

    SciTech Connect

    Benjamin, Ronald; Horbach, Jürgen

    2014-07-28

    A novel thermodynamic integration (TI) scheme is presented to compute the crystal-liquid interfacial free energy (γ{sub cl}) from molecular dynamics simulation. The scheme is applied to a Lennard-Jones system. By using extremely short-ranged and impenetrable Gaussian flat walls to confine the liquid and crystal phases, we overcome hysteresis problems of previous TI schemes that stem from the translational movement of the crystal-liquid interface. Our technique is applied to compute γ{sub cl} for the (100), (110), and (111) orientation of the crystalline phase at three temperatures under coexistence conditions. For one case, namely, the (100) interface at the temperature T = 1.0 (in reduced units), we demonstrate that finite-size scaling in the framework of capillary wave theory can be used to estimate γ{sub cl} in the thermodynamic limit. Thereby, we show that our TI scheme is not associated with the suppression of capillary wave fluctuations.

  15. Defect topologies in chiral liquid crystals confined to mesoscopic channels

    SciTech Connect

    Schlotthauer, Sergej Skutnik, Robert A.; Stieger, Tillmann; Schoen, Martin

    2015-05-21

    We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.

  16. Transmission characteristics of a twisted nematic liquid-crystal layer

    NASA Technical Reports Server (NTRS)

    Grinberg, J.; Jacobson, A. D.

    1976-01-01

    An approximate analytical expression is calculated for the transmission of thin twisted nematic layers situated between a polarizer/analyzer pair. The approximation assumes that the twist angle of the nematic liquid crystal is smaller than the maximum retardation of the cell. The direction of the incident light is assumed to be parallel to the normal of the electrode. This configuration is analyzed for a general arrangement of polarizer and analyzer; the general result is evaluated for the case of the polarizer parallel and analyzer perpendicular to the liquid-crystal optical axis on the input and output electrodes, respectively. The results show that in the case of a thin twisted nematic layer the transmission depends on the thickness of the layer, on the birefringence of the liquid crystal, and on the wavelength of the light. This is a departure from the well-known independence of the transmission on these parameters for a thick twisted nematic layer.

  17. Substrate-induced gliding in a nematic liquid crystal layer.

    PubMed

    Mema, E; Kondic, L; Cummings, L J

    2015-12-01

    We consider the interaction between nematic liquid crystals (NLCs) and polymer substrates. Such substrates can interact with NLCs, exhibiting a phenomenon known as director gliding: the preferred orientation of the NLC molecules at the interface changes on time scales that are slow relative to the elastic relaxation time scale of the NLC. We present two models for gliding, inspired by experiments that investigate the interaction between the NLC and a polymer substrate. These models, though simple, lead to nontrivial results, including loss of bistability under gliding. Perhaps surprisingly, we find that externally imposed switching between the steady states of a bistable system may reverse the effect of gliding, preventing loss of bistability if switching is sufficiently frequent. Our findings may be of relevance to a variety of technological applications involving liquid crystal devices, and particularly to a new generation of flexible liquid crystal displays that implement polymeric substrates. PMID:26764717

  18. Simulation of coherent backscattering of light in nematic liquid crystals

    SciTech Connect

    Aksenova, E. V. Kokorin, D. I. Romanov, V. P.

    2012-08-15

    Multiple scattering of light by the fluctuations of the director in a nematic liquid crystal (NLC) aligned by a magnetic field is considered. A peak of coherent backscattering is calculated by numerical simulation. Since the indicatrix of single scattering for a liquid crystal (LC) is known exactly, the calculations are carried out without any simplifying assumptions on the parameters of the liquid crystal. Multiple scattering is simulated as a random walk of photons in the medium. A peak of coherent backscattering in such a medium is very narrow; therefore, the so-called semianalytical method is applied. The parameters of the backscattering peak obtained by numerical simulation are compared with the available experimental data and with the results of analytical approximations. It turns out that the experimental data are in good agreement with the results of simulation. The results of numerical simulation adequately describe the anisotropy and the width of the backscattering peak.

  19. Leslie thermomechanical power in diluted cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Oswald, P.

    2014-11-01

    I measure the Leslie thermomechnical coefficient ν in diluted cholesteric liquid crystals. The chiral molecules are R811 and cholesteryl chloride (CC) and the host nematic liquid crystals are 7CB and MBBA. I show that ν is proportional to the concentration of chiral molecules C when C\\ll1 . This allows me to define the Leslie thermomechanical power as \\textit{LTP}=ν/(2π C) by analogy with the helical twisting power, \\textit{HTP}=q/(2π C) where q denotes the equilibrium twist. I show that the LTP (dynamic in nature) and the HTP (static in nature) are independent in sign and magnitude. In addition, the same chiral molecule can rotate clockwise or counterclockwise depending on the host nematic liquid crystal used.

  20. Design of a polarimeter with two ferroelectric liquid crystal panels

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Lizana, Angel; Campos, Juan

    2013-09-01

    We present a Stokes polarimeter based on two ferroelectric liquid crystal monopixel panels. This architecture presents advantages associated to dynamic polarimeters and also, allows very fast polarization measurements. A ferroelectric liquid crystal panel can be modeled as a waveplate with a constant retardance and, with two possible orientations for its fast axis when a bipolar electrical sign is addressed. We have calibrated the optical features of our ferroelectric liquid crystal panels: retardance and rotation of the optical axis. In addition, we have carried out an optimization of the orientation of these panels in the setup in order to obtain a minimum condition number of our polarimeter and so, minimize the propagation of noise. Afterwards, we have conducted a tolerance analysis of the elements involved in the setup, focusing for a 2% of accuracy in the Stokes vectors measurements. Then, an experimental calibration is carried out and several measurements are taken in order to analyze its performance.

  1. Selective crystallization of tank supernatant liquid

    SciTech Connect

    Herting, D.

    1996-10-01

    The objective of this task is to demonstrate the feasibility of selectively removing sodium nitrate (NaNO{sub 3}) from Hanford Site tank waste by a large-scale fractional crystallization process. Two thirds of all the nuclear waste stored in Hanford`s underground storage tanks is sodium nitrate (mass basis, excluding water). Fractional crystallization can remove essentially nonradioactive NaNO{sub 3} and other sodium salts from the waste, thereby reducing the volume of low-level waste glass by as much as 90%.

  2. Ordering Transitions in Nematic Liquid Crystals Induced by Vesicles Captured through Ligand-Receptor Interactions

    PubMed Central

    Tan, Lie Na; Bertics, Paul J.; Abbott, Nicholas L.

    2011-01-01

    We report that phospholipid vesicles incorporating ligands, when captured from solution onto surfaces presenting receptors for these ligands, can trigger surface-induced orientational ordering transitions in nematic phases of 4′-pentyl-4-cyanobiphenyl (5CB). Specifically, whereas avidin-functionalized surfaces incubated against vesicles comprised of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were observed to cause the liquid crystal (LC) to adopt a parallel orientation at the surfaces, the same surfaces incubated against biotinylated vesicles (DOPC and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (biotin-DOPE)) caused homeotropic (perpendicular) ordering of the LC. The use of a combination of atomic force microscopy (AFM), ellipsometry and quantitative fluorimetry, performed as a function of vesicle composition and vesicle concentration in solution, revealed the capture of intact vesicles containing 1% biotin-DOPE from buffer at the avidin-functionalized surfaces; subsequent exposure to water prior to contact with the LC, however, resulted in rupture of the majority of vesicles into interfacial multilayer assemblies with a maximum phospholipid loading set by random close-packing of the intact vesicles captured initially on the surface (5.1 ± 0.2 phospholipid molecules/nm2). At high concentrations of biotinylated lipid (> 10% biotin-DOPE) in the vesicles, the limiting lipid loading was measured to be 4.0 ± 0.3 phospholipid molecules/nm2, consistent with the maximum phospholipid loading set by spontaneous formation of a bilayer during incubation with the biotinylated vesicles. Independent of the initial morphology of the phospholipid assembly captured on the surface (intact vesicle, planar multilayer), we measured homeotropic ordering of the LC on the surfaces. We interpret this result to infer reorganization of the phospholipid bilayers either prior to or upon contact with the LCs such that interactions of the acyl chains of the phospholipid

  3. Interactions of carbon nanotubes in a nematic liquid crystal. II. Experiment

    NASA Astrophysics Data System (ADS)

    Agha, Hakam; Galerne, Yves

    2016-04-01

    Multiwall carbon nanotube (CNT) colloids with different anchoring conditions are dispersed in pentyl-cyanobiphenyl (5CB), a thermotropic liquid crystal (LC) that exhibits a room-temperature nematic phase. The experiments make use of CNTs treated for strong planar, homeotropic, or Janus anchorings. Observations with a polarizing microscope show that the CNTs placed in a uniform nematic field stabilize parallel or perpendicular to n depending on their anchoring conditions. In the presence of a splay-bend disclination line, they are first attracted toward it and ultimately, they get trapped on it. Their orientation relative to the line is then found to be parallel or perpendicular to it, again depending on the anchoring conditions. When a sufficient number of particles are deposited on a disclination line, they form a micro- or nanonecklace in the shape of a thin thread or of a bottle brush, with the CNTs being oriented parallel or perpendicular to the disclination line according to the anchoring treatment. The system exhibits a rich versatility, even if until now the weak anchorings appear to be difficult to control. In a next step, the necklaces may be glued by means of pyrrole electropolymerization. In this manner, we realize a true materialization of the disclination lines, and we obtain nanowires capable of conducting the electricity in the place of the initial disclinations that just worked as templates. The advantage of the method is that it finally provides nanowires that are automatically connected to predesignated three-dimensional (3D) electrodes. Such a 3D nanowiring could have important applications, as it could allow one to develop electronic circuits in the third dimension. They could thus help with increasing the transistor density per surface unit, although downsizing of integrated circuits will soon be limited to atomic sizes or so. In other words, the predicted limitation to Moore's law could be avoided. For the moment, the nanowires that we obtain

  4. Digital Beam Deflectors Based Partly on Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Miranda, Felix A.; Kreminska, Liubov; Pishnyak, Oleg; Golovin, Andrii; Winker, Bruce K.

    2007-01-01

    A digital beam deflector based partly on liquid crystals has been demonstrated as a prototype of a class of optical beam-steering devices that contain no mechanical actuators or solid moving parts. Such beam-steering devices could be useful in a variety of applications, including free-space optical communications, switching in fiber-optic communications, general optical switching, and optical scanning. Liquid crystals are of special interest as active materials in nonmechanical beam steerers and deflectors because of their structural flexibility, low operating voltages, and the relatively low costs of fabrication of devices that contain them.

  5. Observations of dynamic stall phenomena using liquid crystal coatings

    NASA Astrophysics Data System (ADS)

    Reda, Daniel C.

    1991-02-01

    Novel, shear stress-sensitive/temperature-insensitive liquid crystal coatings have been applied to the surface of an oscillating airfoil in order to ascertain the unsteady fluid physics associated with the dynamic-stall process. Surface microtufts and laser sheet/smoke-particle flow visualization were used to compare the liquid-crystal results. Boundary-layer transition and turbulent separation locations were measured as a function of geometric angle of attack. The results obtained are compared with Eppler (1980) aerodynamic design code predictions.

  6. Simulation of weak anchoring effects on nematic liquid crystal hemispheres

    NASA Astrophysics Data System (ADS)

    Gillen, Sean; Somers, David A. T.; Munday, Jeremy N.

    The free energy of a nematic liquid crystal droplet depends on an interplay between elastic and surface interactions. When the two contributions are of similar magnitude, there exists a transition of the nematic structure of the droplet. Because the two contributions scale differently with length scales, this transition is visible as a function of the size of the droplet. We carry out numerical simulations to explore the use of this transition in measuring surface anchoring energies. This technique could help elucidate alignment forces on liquid crystals, such as those caused by rubbed surfaces, electric fields, or even the Casimir torque. Electrical and Computer Engineering.

  7. Liquid crystal alignment induced by micron-scale patterned surfaces.

    PubMed

    Willman, E; Seddon, L; Osman, M; Bulak, A; James, R; Day, S E; Fernandez, F A

    2014-05-01

    Induced bulk orientation of nematic liquid crystal in contact with micron-scale patterned surfaces is investigated using the Landau-de Gennes theory by means of three-dimensional simulations. The effect of the size and spacing of square cross-sectional well and post patterns is investigated and shown to influence the orientation of the liquid crystal bulk, far removed from the surface. Additionally, the effective anchoring strength of the induced alignment is estimated using a modified version of the torque balance method. Both azimuthal and zenithal multistability are shown to exist within unique ranges of feature sizes. PMID:25353809

  8. Locomotion in a liquid crystal near a wall

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Krieger, Madison; Spagnolie, Saverio

    2015-11-01

    Recent observations of bacteria swimming in nematic liquid crystal solution motivate the theoretical study of how swimming speed depends on liquid crystal properties. We consider the Taylor sheet near a wall, in which propulsion is achieved by the propagation of traveling waves along the length of the swimmer. Using the lubrication approximation, we determine how swimming speed depends on the Ericksen number, which is the ratio of elastic to viscous stresses. We also study the effect of anchoring strength, at the surface of the swimmer and the surface of the wall. Supported by NSF-CBET 1437195.

  9. Open loop liquid crystal adaptive optics systems: progresses and results

    NASA Astrophysics Data System (ADS)

    Cao, Zhao-liang; Mu, Quan-quan; Xu, Huan-yu; Zhang, Pei-guang; Yao, Li-shuang; Xuan, Li

    2015-10-01

    Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. In this paper, a polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration was suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.

  10. Characteristic Pressure Dependence of Spontaneous Polarization in Ferroelectric Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Uehara, Hiroyuki

    2008-09-01

    The spontaneous polarization and rotational viscosity of the c-director of the ferroelectric liquid crystal 4'-octyloxy-biphenyl-4-carboxylic acid 4-(1-methyl-heptyloxy)-phenyl ester at various pressures were investigated. Spontaneous polarization as a function of T-TCA( p) decreased markedly when pressure was changed from 0.1 to 20 MPa and was independent of pressure as pressure was further increased. Rotational viscosity decreased when pressure was applied. These results suggest that the conformation of liquid crystal molecules changes at pressures below 20 MPa.

  11. Observations of dynamic stall phenomena using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.

    1991-01-01

    Novel, shear stress-sensitive/temperature-insensitive liquid crystal coatings have been applied to the surface of an oscillating airfoil in order to ascertain the unsteady fluid physics associated with the dynamic-stall process. Surface microtufts and laser sheet/smoke-particle flow visualization were used to compare the liquid-crystal results. Boundary-layer transition and turbulent separation locations were measured as a function of geometric angle of attack. The results obtained are compared with Eppler (1980) aerodynamic design code predictions.

  12. Cooperative liquid-crystal alignment generated by overlaid topography

    NASA Astrophysics Data System (ADS)

    Yi, Youngwoo; Maclennan, Joseph E.; Clark, Noel A.

    2011-05-01

    Nematic and smectic liquid crystals were introduced into μm-scale gaps between plates coated with polymer films nanoimprinted with parallel arrays of rectangular channels. Overlaying the channels on the two plates close enough at a slight angle produces a mosaic of alternating planar and homeotropic alignments and hybrid alignment, showing that complex liquid-crystal orientation patterns can be achieved by combining two simple topographic patterns. These alignment patterns are attributed to spatial variation of surface roughness and 3D topographic structure created by a sufficient proximity of the two patterns.

  13. Cooperative liquid-crystal alignment generated by overlaid topography.

    PubMed

    Yi, Youngwoo; Maclennan, Joseph E; Clark, Noel A

    2011-05-01

    Nematic and smectic liquid crystals were introduced into μm-scale gaps between plates coated with polymer films nanoimprinted with parallel arrays of rectangular channels. Overlaying the channels on the two plates close enough at a slight angle produces a mosaic of alternating planar and homeotropic alignments and hybrid alignment, showing that complex liquid-crystal orientation patterns can be achieved by combining two simple topographic patterns. These alignment patterns are attributed to spatial variation of surface roughness and 3D topographic structure created by a sufficient proximity of the two patterns. PMID:21728557

  14. Bonded boojum-colloids in nematic liquid crystals.

    PubMed

    Eskandari, Zahra; Silvestre, Nuno M; Telo da Gama, Margarida M

    2013-08-20

    We investigate bonded boojum-colloids in nematic liquid crystals, configurations where two colloids with planar degenerate anchoring are double-bonded through line defects connecting their surfaces. This bonded structure promotes the formation of linear chains aligned with the nematic director. We show that the bonded configuration is the global minimum in systems that favor twist deformations. In addition, we investigate the influence of confinement on the stability of bonded boojum-colloids. Although the unbonded colloid configuration, where the colloids bundle at oblique angles, is favored by confinement, the bonded configuration is again the global minimum for liquid crystals with sufficiently small twist elastic constants. PMID:23859624

  15. Investigating the orientational order in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Shun

    This thesis is composed of two projects. The first one is the investigation of a reversed phase sequence, which subsequently leads to the discovery of a novel Smectic-C liquid crystal phase. The 10OHFBBB1M7 (10OHF) compound shows a reversed phase sequence with the SmC*d4 phase occurring at a higher temperature than the SmC* phase. This phase sequence is stabilized by moderate doping of 9OTBBB1M7 (C9) or 11OTBBB1M7 (C11). To further study this unique phase sequence, the mixtures of 10OHFBBB1M7 and its homologs have been characterized by optical techniques. In order to perform the resonant X-ray diffraction experiment, we have added C9 and C11 compounds to the binary mixtures and pure 10OHF. In two of the studied mixtures, a new smectic-C* liquid crystal phase with six-layer periodicity has been discovered. Upon cooling, the new phase appears between the SmC*a phase having a helical structure and the SmC*d4 phase with four-layer periodicity. The SmC*d6 phase shows a distorted clock structure. Three theoretical models have predicted the existence of a six-layer phase. However, our experimental findings are not consistent with the theories. The second project involves the mixtures of liquid crystals with different shapes. The role of different interactions in stabilizing the antiferroelectric smectic liquid crystal phases have been a long-standing questions in the community. By mixing the antiferroelectric smectic liquid crystal with achiral liquid crystal molecules with rod and hockey-stick shapes, distinct different behaviors are obtained. In the case of the mixtures of chiral smectic liquid crystals with rod-like molecules, all the smectic-C* variant phases vanish with a small amount of doping. However, the hockey-stick molecule is much less destructive compared to the rod-like molecule. This suggests that the antiferroelectric smectic liquid crystal molecules may have a shape closer to a hockey-stick rather than a rod.

  16. Droplet manipulation on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih; Chu, Ting-Yu; Chen, Jun-Lin

    2010-08-01

    A droplet manipulation on a switchable surface using a liquid crystal and polymer composite film (LCPCF) based on phase separation is developed recently. The wettability of LCPCF is electrically tunable because of the orientation of liquid crystal directors anchored among the polymer grains. A droplet on LCPCF can be manipulated owning to the wettability gradient induced by spatially orientation of LC directors. We discuss the droplet manipulation on LCPCF and demonstrate several applications of LCPCF, such as polarizer-free displays, and human semen sensing.

  17. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  18. Bistable switching in dual-frequency liquid crystals

    SciTech Connect

    Palto, S. P. Barnik, M. I.

    2006-06-15

    Various bistable switching modes in nematic liquid crystals with frequency inversion of the sign of dielectric anisotropy are revealed and investigated. Switching between states with different helicoidal distributions of the director field of a liquid crystal, as well as between uniform and helicoidal states, is realized by dual-frequency waveforms of a driving voltage. A distinctive feature of the dual-frequency switching is that the uniform planar distribution of the director field may correspond to a thermodynamically equilibrium state, and the chirality of an LC is not a necessary condition for switching to a helicoidal state.

  19. Interaction of small spherical particles in confined cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Lev, B. I.; Fukuda, Jun-ichi; Tovkach, O. M.; Chernyshuk, S. B.

    2014-01-01

    The theory of the elastic interaction of spherical colloidal particles immersed into a confined cholesteric liquid crystal is proposed. The case of weak anchoring on the particle surfaces is considered. We derive a general expression for the energy of the interaction between small spherical particles (with diameter much smaller than the cholesteric pitch) suspended in a cholesteric confined by two parallel planes. The resulting form of the interaction energy has a more complex spatial pattern and energy versus distance dependence than that in nematic colloids. The absence of translational symmetry related to helical periodicity and local nematic ordering in cholesteric liquid crystals manifest themselves in the complex nature of the interaction maps.

  20. Gradient index liquid crystal devices and method of fabrication thereof

    DOEpatents

    Lee, Jae-Cheul; Jacobs, Stephen

    1991-01-01

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  1. Gradient index liquid crystal devices and method of fabrication thereof

    DOEpatents

    Lee, J.C.; Jacobs, S.

    1991-10-29

    Laser beam apodizers using cholesteric liquid crystals provides soft edge profile by use of two separate cholesteric liquid crystal mixtures with different selective reflection bands which in an overlap region have a gradient index where reflectivity changes as a function of position. The apodizers can be configured as a one-dimensional beam apod INTRODUCTION The U.S. government has rights in the invention under Contract No. DE-FC03-85DP40200 between the University of Rochester and the Department of Energy.

  2. Low voltage blue phase liquid crystal for spatial light modulators.

    PubMed

    Peng, Fenglin; Lee, Yun-Han; Luo, Zhenyue; Wu, Shin-Tson

    2015-11-01

    We demonstrated a low-voltage polymer-stabilized blue phase liquid crystal (BPLC) for phase-only modulation with a liquid-crystal-on-silicon (LCoS). A new device configuration was developed, which allows the incident laser beam to traverse the BPLC layer four times before exiting the LCoS. As a result, the 2π phase change voltage is reduced to below 24 V in the visible region. The response time remains relatively fast (∼3  ms). The proposed device configuration enables widespread applications of BPLC spatial light modulators. PMID:26512528

  3. Large Flow Birefringence of Nematogenic Bent-Core Liquid Crystals

    SciTech Connect

    Bailey, C.; Fodor-Csorba, K; Verduzco, R; Gleeson, J; Sprunt, S; Jakli, A

    2009-01-01

    We have found that bent-core liquid crystalline materials show exceptionally large intrinsic flow birefringence in their isotropic liquid phase. This effect is more than 100 times larger than typical values measured for low molecular weight liquid crystals. The specific flow birefringence (i.e., normalized by the flow viscosity) is an order of magnitude larger than in both side-chain polymeric as well as low molecular weight liquid crystals. We propose that this large enhancement for bent-core compounds may be attributed to nanoscale smecticlike clusters that persist above the nematic-isotropic transition temperature, and shear align under shear flow; however, this mechanism has not yet been definitively confirmed.

  4. Anchoring transition in confined discotic columnar liquid crystal films

    NASA Astrophysics Data System (ADS)

    Brunet, Thomas; Thiebaut, Olivier; Charlet, Émilie; Bock, Harald; Kelber, Julien; Grelet, Éric

    2011-01-01

    We report the achievement of ultrathin films (down to 25 nm thick) of thermotropic columnar liquid crystals in homeotropic alignment (columns normal to the interface) confined between a glass slide and a thin metallic electrode (about 150 nm thick). The face-on orientation of the discotic compound is obtained by anchoring transition of a columnar liquid crystalline phase from a degenerate planar orientation to the homeotropic alignment without any phase transition to the isotropic liquid phase. The kinetic dependence on temperature of such anchoring transition is investigated revealing various diffusive growth regimes of the homeotropic domains. Finally, confining effects are also considered by varying the thickness of the columnar liquid crystal film to reach the typical value required in organic solar cells thus demonstrating the reliability of such alignment process in a photovoltaic context.

  5. Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal

    NASA Astrophysics Data System (ADS)

    Khalkhali, T. Fathollahi; Rezaei, B.; Ramezani, A. H.

    2012-11-01

    We analyze the tunability of full band gap in photonic crystal slabs created by square and triangular lattices of air holes in anisotropic tellurium background, considering that the regions above and below the slab are occupied by SiO2 and the holes are infiltrated with liquid crystals. Using the supercell method based on plane wave expansion, we study the variation of full band gap by changing the optical axis orientation of liquid crystal. Our results demonstrate the existence and remarkable tunability of full band gap in both square and triangular lattices, largest band gap and tunability being obtained for the triangular lattice.

  6. Bubble migration in a compacting crystal-liquid mush

    NASA Astrophysics Data System (ADS)

    Boudreau, Alan

    2016-04-01

    Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid

  7. Analysis of tunable bandgaps in liquid crystal-infiltrated 2D silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Cos, J.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F.

    2010-09-01

    We present a theoretical study on two-dimensional photonic crystals composed of silicon and the E7 liquid crystal. We analyze how the optical axis orientation of the liquid crystal influences the photonic bands and bandgaps, for the case when the Maxwell equations can be decoupled into the TE and TM modes. We consider two different structures, a triangular lattice of E7 liquid crystal cylinders in a silicon background and a triangular lattice of silicon cylinders in an E7 liquid crystal background. The effect of the liquid crystal anisotropy on the geometry of the irreducible Brillouin zone allows us to propose a simplified way to calculate the photonic bandgaps. Results show that the bandgap width and center frequency have a 60° periodicity for both structures. Using the plane-wave expansion method, we determined the maximum bandgap and the optimal radius of the cylinders for each structure. Finally, for the second structure, we propose an optical switch with a 50% duty cycle. These structures can be applied to design tunable photonic devices.

  8. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  9. Liquid crystal orientational order in confined geometries: A NMR perspective

    NASA Astrophysics Data System (ADS)

    Zeng, Huairen

    Liquid crystals are a very rich physical system where it is possible to study many phenomena both theoretically as well as experimentally. In almost all applications, liquid crystals exist in contact with some kind of substrate. Liquid crystals properties are greatly affected by a nearby surface: confinement alignment, phase transition temperatures, the critical behavior of the thermodynamic quantities and several other of their properties change. Researching confined liquid crystals to study surface effects will be beneficial for basic physics understanding and provide results perhaps extrapolated to the applied world. An important concept in a microscopic description of a liquid crystal phase is the order parameter, each of the phases is characterized by one or more such parameters. It is therefore of interest to quantify and measure the degree of order of a particular phase 2H-NMR, as a microscopic measurement at the molecular level, has a number of unique features that make it a useful technique to study liquid crystals. NMR can distinguish between spatial and time averages whereas other methods such as birefringence can not. And, most importantly, deuterium NMR is sensitive to the orientational order present in the system. In fact, through NMR lineshape analysis, we can derive the configuration of the nematic director field, and thus determine liquid crystal alignment in random interconnected host. In this work I will use thermotropic liquid crystals and confine them in Millipore membranes, silica Aerogel porous glass and silica Aerosil spheres. Millipore membranes are made from pure, biologically inert mixtures of cellulose acetate and cellulose nitrate. It is a randomly interconnected host geometry with a high porosity, and available in a variety of void sizes, for my research I will use sizes from 8.0 mum to 0.025 mum. Silica Aerogel is a connected pore network, available in many different densities. Our work will cover densities ranging from 0.068 to 0

  10. Rayleigh Light Scattering from Nematic Liquid Crystals at Oblique Incidence.

    NASA Astrophysics Data System (ADS)

    da, Xiao-Yi.

    Ryuichi Akiyama 1980 and his co-workers first showed the possibility that light scattering experiments on nematic liquid crystals could be carried out preferably by using oblique incidence rather than the conventional normal incidence. Miraldi, et al 1980 strongly recommended the application of oblique incidence, and gave a discussion in detail. The present work starts from an attempt to obtain the three Frank elastic constants and viscosity coefficients of nematic liquid crystals by Rayleigh light scattering. A suitable scattering geometry has been chosen; a systematic method of measuring these constants and coefficients has been developed by measuring the linewidths of the scattered light from a single sample at various incidence angles and fitting the measured linewidths with appropriate theoretical expressions. It is shown in the present work that the light scattering experiments on nematic liquid crystals at oblique incidence have many advantages over the same kind of experiments at normal incidence so far widely employed, and show a promising future. After a brief introduction to the general theory of the dynamic light scattering, nematic liquid crystals and light scattering from nematic liquid crystals in Chapters 1, 2, and 3, and a brief review of the measurements of elastic constants and viscosity coefficients of nematic liquid crystals by light scattering in Chapter 4, a straightforward method concerning the calculation of variations of the wave vectors upon scattering is developed in Chapter 5. This method assumes that a nematic liquid crystal behaves optically like a uniaxial crystal. In doing so, all we have to know is the ordinary and extraordinary refractive indices n(,o) and n(,e) of the sample under consideration. The linewidth and intensity distributions of the scattered light can then be determined by inserting the variations in wave vectors into appropriate equations for a known material for which the knowledge of the elastic constants as well

  11. Simulation study of liquid crystal anchoring at a polymer surface

    NASA Astrophysics Data System (ADS)

    Hamaneh, Mehdi

    2005-03-01

    The process of rubbing a polymer substrate to induce planar anchoring has two effects. It aligns the polymer chains and also creates grooves in the surface. We have investigated which one of these effects is more important by conducting a series of simulations of molecules of 5CB in contact with a poly(vinyl alcohol) surface. The polymer surface was constructed from a set of parallel straight chains. It was then distorted to mimic the effect of grooves in a direction perpendicular to the chain direction, thus causing two opposing anchoring effects. It was found that the 5CB molecules ordered preferentially along the chain direction when the depth of the grooves was less than 20 percent of the distance between grooves. For grooves whose walls were more steeply pitched, the nematic ordering aligned with the grooves.

  12. Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants.

    PubMed

    Adlem, K; Čopič, M; Luckhurst, G R; Mertelj, A; Parri, O; Richardson, R M; Snow, B D; Timimi, B A; Tuffin, R P; Wilkes, D

    2013-08-01

    Here we report the chemical induction of the twist-bend nematic phase in a nematic mixture of ether-linked liquid crystal dimers by the addition of a dimer with methylene links; all dimers have an odd number of groups in the spacer connecting the two mesogenic groups. The twist-bend phase has been identified from its optical texture and x-ray scattering pattern as well as NMR spectroscopy, which demonstrates the phase chirality. Theory predicts that the key macroscopic property required for the stability of this chiral phase formed from achiral molecules is for the bend elastic constant to tend to be negative; in addition the twist elastic constant should be smaller than half the splay elastic constant. To test these important aspects of the prediction we have measured the bend and splay elastic constants in the nematic phase preceding the twist-bend nematic using the classic Frederiks methodology and all three elastic constants employing the dynamic light scattering approach. Our results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition. PMID:24032852

  13. Simple system for evaluating retardation of liquid crystal cells using grating type liquid crystal polarization splitters

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Nose, Toshiaki

    2016-04-01

    We propose a unique optical system for measuring the retardation of birefringent films using a pair of liquid crystal (LC) gratings; that is, the examined birefringent films are inserted between two LC gratings. Because the LC grating functions as a polarization beam splitter for circularly polarized light, the proposed system is optically equivalent to the measurement system using a pair of two circular polarizers. First, the polarization splitting performance of the LC grating is discussed. It is found that a sufficiently high voltage (such that the retardation is less than a half wavelength) has to be applied for the almost pure circularly polarized diffracted light. Next, the measurement of the retardation of a homogeneous LC cell as an examined birefringent film was demonstrated using the proposed method. The proposed method is revealed to have the same measurement performance as that of the conventional method using a pair of linear polarizers and has an advantage that there is no need for the optic axis of the test birefringent specimen to be set at a specific angle.

  14. Photocontrol of fluid slugs in liquid crystal polymer microactuators.

    PubMed

    Lv, Jiu-An; Liu, Yuyun; Wei, Jia; Chen, Erqiang; Qin, Lang; Yu, Yanlei

    2016-01-01

    The manipulation of small amounts of liquids has applications ranging from biomedical devices to liquid transfer. Direct light-driven manipulation of liquids, especially when triggered by light-induced capillary forces, is of particular interest because light can provide contactless spatial and temporal control. However, existing light-driven technologies suffer from an inherent limitation in that liquid motion is strongly resisted by the effect of contact-line pinning. Here we report a strategy to manipulate fluid slugs by photo-induced asymmetric deformation of tubular microactuators, which induces capillary forces for liquid propulsion. Microactuators with various shapes (straight, 'Y'-shaped, serpentine and helical) are fabricated from a mechanically robust linear liquid crystal polymer. These microactuators are able to exert photocontrol of a wide diversity of liquids over a long distance with controllable velocity and direction, and hence to mix multiphase liquids, to combine liquids and even to make liquids run uphill. We anticipate that this photodeformable microactuator will find use in micro-reactors, in laboratory-on-a-chip settings and in micro-optomechanical systems. PMID:27604946

  15. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    SciTech Connect

    Ouskova, Elena; Sio, Luciano De Vergara, Rafael; Tabiryan, Nelson; White, Timothy J.; Bunning, Timothy J.

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  16. 'Crystal Genes' in Metallic Liquids and Glasses.

    PubMed

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, Matthew J; Ho, Kai-Ming

    2016-01-01

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems. PMID:27030071

  17. A statistical calibration technique for thermochromic liquid crystals

    NASA Astrophysics Data System (ADS)

    Roesgen, T.; Totaro, R.

    2002-09-01

    A novel approach is proposed for the color calibration of thermochromic liquid crystals. Based on a statistical interpretation, a linear transform of the native (R, G, B) values can replace the customary hue mapping. The transform coefficients are computed through a proper orthogonal decomposition, providing complete data decorrelation and optimal information compression.

  18. Light-scattering study of a polymer nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1985-07-01

    We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.

  19. 21 CFR 884.2982 - Liquid crystal thermographic system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... breast cancer or other uses—(1) Identification. A nonelectrically powered or an AC-powered liquid crystal... for detection of breast cancer or other uses is a nonelectrically powered or an AC-powered device... screening for detection of breast cancer or other uses—(1) Identification. A nonelectrically powered or...

  20. 21 CFR 884.2982 - Liquid crystal thermographic system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... breast cancer or other uses—(1) Identification. A nonelectrically powered or an AC-powered liquid crystal... for detection of breast cancer or other uses is a nonelectrically powered or an AC-powered device... screening for detection of breast cancer or other uses—(1) Identification. A nonelectrically powered or...

  1. Liquid crystals detect voids in fiber glass laminates

    NASA Technical Reports Server (NTRS)

    Hollar, W. T.

    1967-01-01

    Liquid crystal solution nondestructively detects voids or poor bond lines in fiber glass laminates. A thin coating of the solution is applied by spray or brush to the test article surface, and when heated indicates the exact location of defects by differences in color.

  2. Adaptive optics fundus camera using a liquid crystal phase modulator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuo; Nakazawa, Naoki; Bessho, Kenichiro; Kitaguchi, Yoshiyuki; Maeda, Naoyuki; Fujikado, Takashi; Mihashi, Toshifumi

    2008-05-01

    We have developed an adaptive optics (AO) fundus camera to obtain high resolution retinal images of eyes. We use a liquid crystal phase modulator to compensate the aberrations of the eye for better resolution and better contrast in the images. The liquid crystal phase modulator has a wider dynamic range to compensate aberrations than most mechanical deformable mirrors and its linear phase generation makes it easy to follow eye movements. The wavefront aberration was measured in real time with a sampling rate of 10 Hz and the closed loop system was operated at around 2 Hz. We developed software tools to align consecutively obtained images. From our experiments with three eyes, the aberrations of normal eyes were reduced to less than 0.1 μm (RMS) in less than three seconds by the liquid crystal phase modulator. We confirmed that this method was adequate for measuring eyes with large aberrations including keratoconic eyes. Finally, using the liquid crystal phase modulator, high resolution images of retinas could be obtained.

  3. Optical pulse generator using liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Collins, S. A., Jr.

    1984-01-01

    Numerical optical computing is discussed. A design for an optical pulse generator using a Hughes Liquid crystal light valve and intended for application as an optical clock in a numerical optical computer is considered. The pulse generator is similar in concept to the familiar electronic multivibrator, having a flip-flop and delay units.

  4. Simulated Textures of Toroidal Nematic Liquid Crystal Droplets

    NASA Astrophysics Data System (ADS)

    Ellis, Perry; Fernandez-Nieves, Alberto

    2014-03-01

    Nematic liquid crystals under confinement by curved surfaces can produce complex hierarchical structures whose design principles and properties have yet to be unraveled. Here we focus on toroidal geometries and perform computer simulations of the nematic textures seen between crossed-polarizers. We find agreement with experiments using director fields that exhibit pronounced twist deformations with contributions from bend and splay.

  5. Statistical mechanics of the flexoelectric effect in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Dhakal, Subas; Selinger, Jonathan V.

    2009-03-01

    Flexoelectricity is the phenomenon in which polarization is induced by imposed deformations of the director field in nematic liquid crystals. Recent experiments [1,2] have found that the flexoelectric effect is three orders of magnitude greater for bent-core liquid crystals than for conventional rod-like liquid crystals. To understand this experimental result, we develop a lattice model for the statistical mechanics of the flexoelectric effect. We perform Monte Carlo simulations and mean-field calculations to find the behavior as a function of interaction parameters, temperature, and applied electric field. The resulting phase diagram has four phases: isotropic, uniaxial nematic, biaxial nematic, and polar. In the uniaxial and biaxial nematic phases, there is a large splay or bend flexoelectric effect, which diverges as the system approaches the nematic-polar transition. This model may explain the large bend flexoelectric coefficient observed in bent-core liquid crystals, which have a tendency toward polar order. [1] J. Harden, B. Mbanga, N. Eber, K. Fodor-Csorba, S. Sprunt, J. T. Gleeson, and A. Jakli, Phys. Rev. Lett. 97,157802 (2006). [2] J. Harden, R. Teeling, J. T. Gleeson, S. Sprunt, and A.Jakli, Phys. Rev. E 78, 031702 (2008).

  6. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  7. Imaging Spectrometer Using a Liquid Crystal Tunable Filter

    NASA Technical Reports Server (NTRS)

    Chrien, Tomas G.; Chovit, Christopher; Miller, Peter J.

    1993-01-01

    A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design.

  8. Liquid Crystals Indicate Directions Of Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.

    1996-01-01

    Report consisting of main text of U.S. Patent 5,394,752 presents detailed information on one aspect of method of using changes in colors of liquid-crystal coatings to indicate instantaneous directions of flow-induced shear stresses (skin friction) on aerodynamic surfaces.

  9. Electrically tunable holographic polymer templated blue phase liquid crystal grating

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hong; Chen, Chao-Ping; Zhu, Ji-Liang; Yuan, Ya-Chao; Li, Yan; Hu, Wei; Li, Xiao; Li, Hong-Jing; Lu, Jian-Gang; Su, Yi-Kai

    2015-06-01

    In this paper, we demonstrate an alternative approach to fabricating an electrically tunable holographic polymer templated blue phase liquid crystal grating. This grating is obtained by preforming a polymer template comprised of periodic fringes, and then refilling it with a blue phase liquid crystal. Compared with conventional holographic polymer dispersed liquid crystal gratings, our grating can remarkably reduce its switching voltage from 200 V to 43 V while maintaining a sub-millisecond response time. The holographic polymer templated blue phase liquid crystal (HPTBPLC) grating is free from electrode patterning, thus leading to a lower cost and more flexible applications. Project supported by the National Basic Research Program of China (Grant No. 2013CB328804), the National Natural Science Foundation of China (Grant No. 61307028), the Funds from the Science and Technology Commission of Shanghai Municipality (Grant Nos. 11JC1405300, 13ZR1420000, and 14ZR1422300), and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK 2011C047).

  10. Novel Ferroelectric Liquid Crystals with Very Large Spontaneous Polarization

    NASA Astrophysics Data System (ADS)

    Nakauchi, Jun; Uematsu, Mioko; Sakashita, Keiichi; Kageyama, Yoshitaka; Hayashi, Seiji; Ikemoto, Tetsuya; Mori, Kenji

    1989-07-01

    Several ferroelectric liquid crystals derived from a new optically active (2S, 5R)-2-hydroxy-5-hexyl-δ-valerolactone have been synthesized, and their mesomorphic and ferroelectric properties have been investigated. Very large spontaneous polarization (Ps) has been observed in these compounds, one of which shows an extremly large Ps value: as high as 320 nC/cm2.

  11. LIQUID CRYSTAL POLYMERS (LCP) USED AS A MACHINING FLUID CD

    EPA Science Inventory

    This interactive CD was produced to present the science, research activities, and beneficial environmental and machining advantages for utilizing Liquid Crystal Polymers (LCPs) as a machine fluid in the manufacturing industry.

    In 1995, the USEPA funded a project to cut flu...

  12. Intangible pointlike tracers for liquid-crystal-based microsensors

    SciTech Connect

    Brasselet, Etienne; Juodkazis, Saulius

    2010-12-15

    We propose an optical detection technique for liquid-crystal-based sensors that is based on polarization-resolved tracking of optical singularities and does not rely on standard observation of light-intensity changes caused by modifications of the liquid crystal orientational ordering. It uses a natural two-dimensional network of polarization singularities embedded in the transverse cross section of a probe beam that passes through a liquid crystal sample, in our case, a nematic droplet held in laser tweezers. The identification and spatial evolution of such a topological fingerprint is retrieved from subwavelength polarization-resolved imaging, and the mechanical constraint exerted on the molecular ordering by the trapping beam itself is chosen as the control parameter. By restricting our analysis to one type of point singularity, C points, which correspond to location in space where the polarization azimuth is undefined, we show that polarization singularities appear as intangible pointlike tracers for liquid-crystal-based three-dimensional microsensors. The method has a superresolution potential and can be used to visualize changes at the nanoscale.

  13. Metric approach for sound propagation in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Pereira, E.; Fumeron, S.; Moraes, F.

    2013-02-01

    In the eikonal approach, we describe sound propagation near topological defects of nematic liquid crystals as geodesics of a non-Euclidian manifold endowed with an effective metric tensor. The relation between the acoustics of the medium and this geometrical description is given by Fermat's principle. We calculate the ray trajectories and propose a diffraction experiment to retrieve information about the elastic constants.

  14. Optical logic gates employing liquid crystal optical switches.

    PubMed

    Khan, A H; Nejib, U R

    1987-01-15

    This paper describes very simple optical logic gates consisting of liquid crystal optical switches. This technique was used to implement all possible 2-operand Boolean functions. The importance of these systems in making optical computers is discussed in terms of a binary half-adder and a flip-flop. A new algebra governing the function of these systems is also proposed. PMID:20454123

  15. Flexoelectricity in an oxadiazole bent-core nematic liquid crystal

    SciTech Connect

    Kaur, S. Panov, V. P.; Gleeson, H. F.; Greco, C.; Ferrarini, A.; Görtz, V.; Goodby, J. W.

    2014-12-01

    We have determined experimentally the magnitude of the difference in the splay and bend flexoelectric coefficients, |e{sub 1} − e{sub 3}|, of an oxadiazole bent-core liquid crystal by measuring the critical voltage for the formation of flexodomains together with their wave number. The coefficient |e{sub 1} − e{sub 3}| is found to be a factor of 2–3 times higher than in most conventional calamitic nematic liquid crystals, varying from 8 pCm{sup −1} to 20 pCm{sup −1} across the ∼60 K—wide nematic regime. We have also calculated the individual flexoelectric coefficients e{sub 1} and e{sub 3}, with the dipolar and quadrupolar contributions of the bent-core liquid crystal by combining density functional theory calculations with a molecular field approach and atomistic modelling. Interestingly, the magnitude of the bend flexoelectric coefficient is found to be rather small, in contrast to common expectations for bent-core molecules. The calculations are in excellent agreement with the experimental values, offering an insight into how molecular parameters contribute to the flexoelectric coefficients and illustrating a huge potential for the prediction of flexoelectric behaviour in bent-core liquid crystals.

  16. Magnetic alignment study of rare-earth-containing liquid crystals.

    PubMed

    Galyametdinov, Yury G; Haase, Wolfgang; Goderis, Bart; Moors, Dries; Driesen, Kris; Van Deun, Rik; Binnemans, Koen

    2007-12-20

    The liquid-crystalline rare-earth complexes of the type [Ln(LH)3(DOS)3]-where Ln is Tb, Dy, Ho, Er, Tm, or Yb; LH is the Schiff base N-octadecyl-4-tetradecyloxysalicylaldimine; and DOS is dodecylsulfate-exhibit a smectic A phase. Because of the presence of rare-earth ions with a large magnetic anisotropy, the smectic A phase of these liquid crystals can be easier aligned in an external magnetic field than smectic A phases of conventional liquid crystals. The magnetic anisotropy of the [Ln(LH)3(DOS)3] complexes was determined by measurement of the temperature-dependence of the magnetic susceptibility using a Faraday balance. The highest value for the magnetic anisotropy was found for the dysprosium(III) complex. The magnetic alignment of these liquid crystals was studied by time-resolved synchrotron small-angle X-ray scattering experiments. Depending on the sign of the magnetic anisotropy, the director of the liquid-crystalline molecules was aligned parallel or perpendicular to the magnetic field lines. A positive value of the magnetic anisotropy (and parallel alignment) was found for the thulium(III) and the ytterbium(III) complexes, whereas a negative value of the magnetic anisotropy (and perpendicular alignment) was observed for the terbium(III) and dysprosium(III) complexes. PMID:18044875

  17. Ordering Transitions Triggered by Specific Binding of Vesicles to Protein-Decorated Interfaces of Thermotropic Liquid Crystals

    PubMed Central

    Tan, Lie Na; Orler, Victor J.; Abbott, Nicholas L.

    2012-01-01

    We report that specific binding of ligand-functionalized (biotinylated) phospholipid vesicles (diameter = 120 ± 19 nm) to a monolayer of proteins (streptavidin or anti-biotin antibody) adsorbed at an interface between an aqueous phase and an immiscible film of a thermotropic liquid crystal (LC) (nematic 4′-pentyl-4-cyanobiphenyl (5CB)) triggers a continuous orientational ordering transition (continuous change in the tilt) in the LC. Results presented in this paper indicate that, following the capture of the vesicles at the LC interface via the specific binding interaction, phospholipids are transferred from the vesicles onto the LC interface to form a monolayer, reorganizing and partially displacing proteins from the LC interface. The dynamics of this process are accelerated substantially by the specific binding event relative to a protein-decorated interface of a LC that does not bind the ligands presented by vesicles. The observation of the continuous change in the ordering of the LC, when combined with other results presented in this paper, is significant as it is consistent with the presence of sub-optical domains of proteins and phospholipids on the LC interface. An additional significant hypothesis that emerges from the work reported in this paper is that the ordering transition of the LC is strongly influenced by the bound state of the protein adsorbed on the LC interface, as evidenced by the influence on the LC of (i) “crowding” of the protein within a monolayer formed at the LC interface and (ii) aging of the proteins on the LC interface. Overall, these results demonstrate that ordering transitions in LCs can be used to provide fundamental insights into the competitive adsorption of proteins and lipids at oil-water interfaces, and that LC ordering transitions have the potential to be useful for reporting specific binding events involving vesicles and proteins. PMID:22372743

  18. Stretchable liquid-crystal blue-phase gels

    NASA Astrophysics Data System (ADS)

    Castles, F.; Morris, S. M.; Hung, J. M. C.; Qasim, M. M.; Wright, A. D.; Nosheen, S.; Choi, S. S.; Outram, B. I.; Elston, S. J.; Burgess, C.; Hill, L.; Wilkinson, T. D.; Coles, H. J.

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  19. Dispersive kinetics in discotic liquid crystals.

    PubMed

    Kruglova, O; Mulder, F M; Kearley, G J; Picken, S J; Stride, J A; Paraschiv, I; Zuilhof, H

    2010-11-01

    The dynamics of the discotic liquid-crystalline system, hexakis (n-hexyloxy) triphenylene (HAT6), is considered in the frame of the phenomenological model for rate processes proposed by Berlin. It describes the evolution of the system in the presence of the long-time scale correlations in the system, and we compare this with experimental quasielastic neutron scattering of the molecular assembly of HAT6 in the columnar phase. We interpret the parameters of this model in terms of nonextensive thermodynamics in which rare events in the local fast dynamics of some parts of the system control the slower dynamics of the larger molecular entity and lead to a fractional diffusion equation. The importance of these rare local events to the overall dynamics of the system is linked to the entropic index, this being obtained from the data within the model approach. Analysis of the waiting-time dependence from momentum transfer reveals a Lévy distribution of jump lengths, which allows us to construct the van Hove correlation function for discotic liquid-crystalline system. PMID:21230490

  20. Application of Reed-Vibration Mechanical Spectroscopy for Liquids in Studying Liquid Crystallization

    NASA Astrophysics Data System (ADS)

    Zhou, Heng-Wei; Wang, Li-Na; Zhang, Li-Li; Huang, Yi-Neng

    2013-08-01

    By using the reed-vibration mechanical spectroscopy for liquids (RMS-L), we measured the complex Young's modulus of dimethyl phthalate (DP) during a cooling and heating circulation starting from room temperature at about 2 KHz. The results show that there is no crystallization in the cooling supercooled liquid (CSL) of DP, but a crystallization process in the heating supercooled liquid (HSL) after the reverse glass transition. Based on the measured modulus, crystal volume fraction (v) during the HSL crystallization was calculated. Moreover, the Avrami exponent (n) was obtained according to the JJMA equation and v data. In view of n versus temperature and v, the nucleation dynamics was analyzed, and especially, there has already existed saturate nuclei in DP HSL before the crystallization. Furthermore, the authors inferred that the nuclei are induced by the random frozen stress in the glass, but there is no nucleus in CSL. The above results indicated that RMS-L might provide a new way to measure and analyze the crystallization of liquids.

  1. Hysteresis upon light-induced hydrodynamic reorientation of the director of a nematic liquid crystal

    SciTech Connect

    Akopyan, R S; Alaverdyan, R B; Vardanyan, A S; Chilingaryan, Yu S

    2000-08-31

    Oscillations and hysteresis in the behaviour of the director of a nematic liquid crystal were observed upon its light-induced hydrodynamic reorientation caused by direct volume expansion. The light propagated through the liquid crystal placed between crossed polarisers provides the feedback. This light falls back on the liquid crystal and is absorbed by producing the volume expansion. A theory is suggested that describes the observed behaviour of the director of the nematic liquid crystal. (laser applications and other topics in quantum electronics)

  2. Shear-accelerated crystallization in a supercooled atomic liquid.

    PubMed

    Shao, Zhen; Singer, Jonathan P; Liu, Yanhui; Liu, Ze; Li, Huiping; Gopinadhan, Manesh; O'Hern, Corey S; Schroers, Jan; Osuji, Chinedum O

    2015-02-01

    A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disk. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the nondeformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate γ̇(c)≈0.3 s(-1) which corresponds to Péclet number, Pe∼O(1). The observation of shear-accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of nontrivial shear-related effects during thermoplastic deformation of similar systems. PMID:25768445

  3. The microscopic pathway to crystallization in supercooled liquids

    PubMed Central

    Russo, John; Tanaka, Hajime

    2012-01-01

    Despite its fundamental and technological importance, a microscopic understanding of the crystallization process is still elusive. By computer simulations of the hard-sphere model we reveal the mechanism by which thermal fluctuations drive the transition from the supercooled liquid state to the crystal state. In particular we show that fluctuations in bond orientational order trigger the nucleation process, contrary to the common belief that the transition is initiated by density fluctuations. Moreover, the analysis of bond orientational fluctuations shows that these not only act as seeds of the nucleation process, but also i) determine the particular polymorph which is to be nucleated from them and ii) at high density favour the formation of fivefold structures which can frustrate the formation of crystals. These results can shed new light on our understanding of the relationship between crystallization and vitrification. PMID:22792437

  4. Shear-accelerated crystallization in a supercooled atomic liquid

    NASA Astrophysics Data System (ADS)

    Shao, Zhen; Singer, Jonathan P.; Liu, Yanhui; Liu, Ze; Li, Huiping; Gopinadhan, Manesh; O'Hern, Corey S.; Schroers, Jan; Osuji, Chinedum O.

    2015-02-01

    A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disk. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the nondeformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate γ˙c≈0.3 s-1 which corresponds to Péclet number, Pe˜O (1 ) . The observation of shear-accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of nontrivial shear-related effects during thermoplastic deformation of similar systems.

  5. Surface order at surfactant-laden interfaces between isotropic liquid crystals and liquid phases with different polarity

    NASA Astrophysics Data System (ADS)

    Feng, Xunda; Bahr, Christian

    2011-03-01

    We present an ellipsometry study of the interface between thermotropic liquid crystals and liquid phases consisting of various binary mixtures of water and glycerol. The liquid-crystal samples contain a small constant amount of a surfactant which induces a homeotropic anchoring at the interface. We determine the smectic or nematic order at the interface in the temperature range above the liquid-crystal-isotropic transition while the water to glycerol ratio is varied, corresponding to a systematic modification of the polarity of the liquid phase. The surface-induced order becomes less pronounced with increasing glycerol concentration in the liquid phase. The observed behavior is compared with previous studies in which the surfactant concentration in the liquid-crystal bulk phase was varied. The results indicate that in both cases the magnitude of the surfactant coverage at the interface is the key quantity which determines the liquid-crystal surface order at the interface.

  6. 75 FR 63856 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... COMMISSION In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and... sale for importation, and the sale within the United States after importation of certain liquid crystal... importation of certain liquid crystal display devices, including monitors, televisions, and modules,...

  7. 75 FR 74080 - In the Matter of Certain Liquid Crystal Display Devices, Including Monitors, Televisions, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... COMMISSION Inv. No. 337-TA-749 In the Matter of Certain Liquid Crystal Display Devices, Including Monitors... sale within the United States after importation of certain liquid crystal display devices, including... importation of certain liquid crystal display devices, including monitors, televisions, and modules,...

  8. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  9. Mixing effects in the crystallization of supercooled quantum binary liquids.

    PubMed

    Kühnel, M; Fernández, J M; Tramonto, F; Tejeda, G; Moreno, E; Kalinin, A; Nava, M; Galli, D E; Montero, S; Grisenti, R E

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites. PMID:26277142

  10. Mixing effects in the crystallization of supercooled quantum binary liquids

    SciTech Connect

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  11. Minimal model for transient swimming in a liquid crystal.

    PubMed

    Krieger, Madison S; Dias, Marcelo A; Powers, Thomas R

    2015-08-01

    When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady-state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong-anchoring case for any anchoring strength. We also find that the startup time increases with the ratio of the rotational viscosity to the shear viscosity, and then ultimately saturates once the rotational viscosity is much greater than the shear viscosity. PMID:26314259

  12. Liquid crystals for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  13. Colorimetric qualification of shear sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Muratore, Joseph J., Jr.

    1993-01-01

    The work that has been done to date on the Shear Sensitive Liquid Crystal Project demonstrated that cholesteric liquid crystal coatings respond to both the direction and magnitude of a shearing force. The response of the coating is to selectively scatter incident white light into a spectrum of colors. Discernible color changes at a fixed angle of observation and illumination are the result of an applied shear stress. The intention was to be able to convert these observable color patterns from a flow visualization technique into a quantitative tool. One of the earlier intentions was to be able to use liquid crystals in dynamic flow fields. This was assumed possible because liquid crystals had made it possible to visualize transients in surface shear forces. Although the transients were visualized by color changes to an order one micro second, the time response of a coating to align to a shearing force is dependent on the magnitude of the change between its initial and final states. Unfortunately, the response is not instantaneous. It is for this reason any future attempt at quantifying the magnitude and directions of a shearing force are limited to surface shear stress vector fields in three dimensional steady state flows. This limitation does not significantly detract from the utility of liquid crystal coatings. The measurement of skin friction in the study of transition on wings, prediction of drag forces, performance assessment, and the investigation of boundary layer behavior is of great importance in aerodynamics. There exist numerous examples of techniques for the measurement of surface shear stress. Most techniques require arduous calibrations and necessitate extensive preparation of the receiving surfaces. However, the main draw back of instruments such as Preston tubes, hot films, buried wire gages, and floating element balances is that they only provide a point measurement. The advantages of capturing global shear data would be appreciable when compared

  14. Nematic liquid crystals exhibiting high birefringence

    NASA Astrophysics Data System (ADS)

    Thingujam, Kiranmala; Bhattacharjee, Ayon; Choudhury, Basana; Dabrowski, Roman

    2016-06-01

    Two fluorinated isothiocyanato nematic liquid crystalline compounds, 4'-butylcyclohexyl-3, 5-difluoro-4-isothiocyanatobiphenyl and 4'-pentylcyclohexyl-3, 5-difluoro-4-isothiocynatobiphenyl are studied in detail to obtain their different physical parameters. Optical polarizing microscopy, differential scanning calorimetry, density and dielectric studies have been carried out for the two samples. Both the samples were found to have high clearing temperature (>100 °C) and exhibit small enthalpy of transition. The two samples exhibit high optical birefringence (Δ n > 0.2). The values of order parameters for the two samples were obtained using different approaches, namely, Vuks', Neugebauer's, modified Vuks' and direct extrapolation method from birefringence data. Experimentally obtained values of order parameters have also been compared with theoretical Maier-Saupe values. The parallel and perpendicular components of dielectric permittivity values of the two compounds were also calculated and their anisotropy values were found to be small. The effect of temperature on the molecular dipole moment μ and the angle of inclination β of the dipole axis with the director have also been investigated in this work.

  15. Photo-aligned ferroelectric liquid crystals in microchannels.

    PubMed

    Budaszewski, Daniel; Srivastava, Abhishek K; Tam, Alwin M W; Wolinski, Tomasz R; Chigrinov, Vladimir G; Kwok, Hoi-Sing

    2014-08-15

    In this Letter we disclose a method to realize a good alignment of ferroelectric liquid crystals (FLCs) in microchannels, based on photo-alignment. The sulfonic azo dye used in our research offers variable anchoring energy depending on the irradiation energy and thus provides good control on the FLC alignment in microchannels. The good FLC alignment has been observed only when anchoring energy normalized to the capillary diameter is less than the elastic energy of the FLC helix. The same approach can also be used for the different microstructures viz. photonic crystal fibers, microwaveguides, etc. which gives an opportunity for designing a photonic devices based on FLC. PMID:25121847

  16. Crystal growth of sulfide materials from alkali polysulfide liquids

    NASA Technical Reports Server (NTRS)

    White, W. B.

    1979-01-01

    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  17. Critical Slowing of Density Fluctuations Approaching the Isotropic-Nematic Transition in Liquid Crystals: 2D IR Measurements and Mode Coupling Theory.

    PubMed

    Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D

    2016-07-21

    Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid. PMID:27363680

  18. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    SciTech Connect

    Wahle, Markus Kitzerow, Heinz-Siegfried

    2015-11-16

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  19. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    NASA Astrophysics Data System (ADS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-11-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.

  20. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    DOE PAGESBeta

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; et al

    2016-01-28

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less

  1. Compound liquid crystal microlens array with convergent and divergent functions.

    PubMed

    Kang, Shengwu; Zhang, Xinyu

    2016-04-20

    Based on the common liquid crystal microlens, a new compound structure for a liquid crystal (LC) microlens array is proposed. The structure consists of two sub LC microlens arrays with properties of light divergence and convergence. The structure has two LC layers: one to form the positive sub lens, one for the negative. The patterned electrode and plane electrode are used in both sub microlens arrays. When two sub microlens arrays are electrically controlled separately, they can diverge or converge the incident light, respectively. As two sub microlens arrays are both applied on the voltage, the focal length of the compound LC microlens becomes larger than that of the LC microlens with a single LC layer. Another feature of a compound LC microlens array is that it can make the target contour become visible under intense light. The mechanisms are described in detail, and the experimental data are given. PMID:27140107

  2. Macroscopic chirality of a liquid crystal from nonchiral molecules

    NASA Astrophysics Data System (ADS)

    Jákli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-06-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment.

  3. Ultra-broadband wavelength conversion sensor using thermochromic liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Ichun Anderson; Park, S. W.; Chen, G.; Wang, C.; Bethea, C.; Martini, R.; Woolard, D.

    2013-03-01

    Wavelength conversion (WC) imaging is a methodology that employs temperature sensitive detectors to convert photoinduced termperature into a detectable optical signal. One specific method is to use molecular detectors such as thermochromic liquid crystals (TLC), which exhibits thermochromism to observe the surface temperature of an area by observing the apparent color in the visible spectrum. Utilizing this methodology, an ultra-broadband room temperature imaging system was envisioned and realized using off the shelf thermochromic liquid crystals. The thermochromic properties of the sensor were characterized to show a thermochromic coefficient α = 10%/°K and a noise equivalent power (NEP) of 64 μW. With the TLC camera, images of both pulsed and continuous wave (CW) sources spanning 0.6 μm to 150 μm wavelengths were captured to demonstrate its potential as a portable, low-cost, and ultra-broadband imaging tool.

  4. Modeling texture transitions in cholesteric liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Selinger, Robin; Gimenez-Pinto, Vianney; Lu, Shin-Ying; Selinger, Jonathan; Konya, Andrew

    2012-02-01

    Cholesteric liquid crystals can be switched reversibly between planar and focal-conic textures, a property enabling their application in bistable displays, liquid crystal writing tablets, e-books, and color switching ``e-skins.'' To explore voltage-pulse induced switching in cholesteric droplets, we perform simulation studies of director dynamics in three dimensions. Electrostatics calculations are solved at each time step using an iterative relaxation method. We demonstrate that as expected, a low amplitude pulse drives the transition from planar to focal conic, while a high amplitude pulse drives the transition from focal conic back to the planar state. We use the model to explore the effects of droplet shape, aspect ratio, and anchoring conditions, with the goal of minimizing both response time and energy consumption.

  5. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    SciTech Connect

    Middha, Manju Kumar, Rishi Raina, K. K.

    2014-04-24

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence.

  6. Circular polarization interferometry: circularly polarized modes of cholesteric liquid crystals.

    PubMed

    Sanchez-Castillo, A; Eslami, S; Giesselmann, F; Fischer, P

    2014-12-15

    We describe a novel polarization interferometer which permits the determination of the refractive indices for circularly-polarized light. It is based on a Jamin-Lebedeff interferometer, modified with waveplates, and permits us to experimentally determine the refractive indices nL and nR of the respectively left- and right-circularly polarized modes in a cholesteric liquid crystal. Whereas optical rotation measurements only determine the circular birefringence, i.e. the difference (nL - nR), the interferometer also permits the determination of their absolute values. We report refractive indices of a cholesteric liquid crystal in the region of selective (Bragg) reflection as a function of temperature. PMID:25607071

  7. Intrinsic response of polymer liquid crystals in photochemical phase transition

    SciTech Connect

    Ikeda, Tomiki; Sasaki, Takeo; Kim, Haengboo )

    1991-01-24

    Time-resolved measurements were performed on the photochemically induced isothermal phase transition of polymer liquid crystals (PLC) with mesogenic side chains of phenyl benzoate (PAPB3) and cyanobiphenyl (PACB3) under conditions wherein the photochemical reaction of the doped photoresponsive molecule (4-butyl-4-{prime}-methoxyazobenzene, BMAB) was completed within {approximately} 10 ns, and the subsequent phase transition of the matrix PLC from nematic (N) to isotropic (I) state was followed by time-resolved measurements of the birefringence of the system. Formation of a sufficient amount of the cis isomer of BMAB with a single pulse of a laser lowered the N-I phase transition temperature of the mixture, inducing the N-I phase transition of PLCs isothermally in a time range of {approximately} 200 ms. This time range is comparable to that of low molecular weight liquid crystals, indicating that suppression in mobility of mesogens in PLCs does not affect significantly the thermodynamically controlled process.

  8. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    NASA Astrophysics Data System (ADS)

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field.

  9. Dynamic arrest of nematic liquid-crystal colloid networks

    NASA Astrophysics Data System (ADS)

    Zou, Lu; Hwang, Jeoung-Yeon; Kim, Chanjoong

    2013-10-01

    We report interesting self-assembly structures of nematic liquid-crystal colloid (NLCC) networks, which are arrested during cooling from the isotropic temperature to room temperature. The NLCC is composed of sterically stabilized colloidal particles and a nematic liquid crystal (NLC) with nematic-isotropic transition temperature (TNI) that is much higher than those of previously studied 4-Cyano-4'-pentylbiphenyl and N-(4-Methoxybenzylidene)-4-butylaniline. We find that the structure of NLCCs depends on TNI, cooling rates, and boundary conditions, varying from cellular network to hierarchical fern structures in different length scales. Our time-lapse study shows that the transition from the cellular network to the fern structure directly corresponds to the transition from a spinodal demixing to a nucleation-and-growth mechanism.

  10. Thermal expansion accompanying the glass-liquid transition and crystallization

    NASA Astrophysics Data System (ADS)

    Jiang, M. Q.; Naderi, M.; Wang, Y. J.; Peterlechner, M.; Liu, X. F.; Zeng, F.; Jiang, F.; Dai, L. H.; Wilde, G.

    2015-12-01

    We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1) bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  11. High contrast reflective liquid crystal display using a thermochromic reflector

    NASA Astrophysics Data System (ADS)

    Heo, Kyong Chan; Yi, Jonghoon; Kwon, Jin Hyuk; Seog Gwag, Jin

    2015-02-01

    This paper presents a reflective liquid crystal display (LCD) with a high contrast ratio (CR) combined with mono-type thermochromic materials to solve the low CR of reflective type LCDs. Here, reflective, wide-band, electrically controlled birefringence mode was used as the optical liquid crystal (LC) mode, and a thermochromic material was used as the reflector for the white state and an absorber for the dark state. The combination of LCD and thermochromic material can have a synergistic effect in achieving a better display. By controlling the reflectance of the thermochromic reflector using Joule heating, the proposed reflective LC cell exhibited a high CR of approximately 70:1. The figure was extremely high compared to the approximately 10:1 of a typical reflective LC cell with an optically wide band design. The proposed LC cell configuration is expected to find many outdoor applications which can admit slow response speed.

  12. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    PubMed Central

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823

  13. Liquid crystals for unsteady surface shear stress visualization

    NASA Astrophysics Data System (ADS)

    Reda, D. C.

    1988-04-01

    Oscillating airfoil experiments were conducted to test the frequency response of thermochromic liquid crystal coatings to unsteady surface shear stresses under isothermal-flow conditions. The model was an NACA-0015 airfoil, exposed to an incompressible flow at a freestream Reynolds number (based on chord) of 1.14 x 1000000. Angle-of-attack forcing functions were sine waves of amplitude + or - 10 deg about each of three mean angles of attack: 0 deg 10 deg, and 20 deg. Frequencies of oscillation were 0.2, 0.6 and 1.2 hertz, corresponding to reduced frequencies of 0.0055, 0.0164 and 0.0328. Data acquisition was accomplished by video recording. Observations showed the liquid crystal technique capable of visualizing high surface shear stress zones over the stated dynamic range in a continuous and reversible manner.

  14. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth.

    PubMed

    E, J C; Wang, L; Cai, Y; Wu, H A; Luo, S N

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling. PMID:25681932

  15. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    NASA Astrophysics Data System (ADS)

    E, J. C.; Wang, L.; Cai, Y.; Wu, H. A.; Luo, S. N.

    2015-02-01

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m-3s-1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.

  16. Orientational dynamics of nematic liquid crystals under shear flow

    NASA Astrophysics Data System (ADS)

    Rienäcker, G.; Hess, S.

    The orientational dynamics of low molecular weight and polymeric nematic liquid crystals in a flow field is investigated, based on a nonlinear relaxation equation for the second rank alignment tensor. Various approximations are discussed: Assuming uniaxial alignment with a constant order parameter, the results of the Ericksen-Leslie theory are recovered. The detailed analysis to be presented here for plane Couette flow concerns (i) uniaxial alignment with a variable degree of order and (ii) the tensorial analysis involving the three symmetry-adapted components of the five components of the alignment tensor. The transitions between tumbling, wagging and aligning behavior observed in polymeric liquid crystals and described by the Doi theory of rod-like nematic polymers are recovered. Consequences for the rheological behavior are indicated.

  17. Brownian Dynamics of Colloidal Particles in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martinez, Angel; Collings, Peter J.; Yodh, Arjun G.

    We employ video microscopy to study the Brownian dynamics of colloidal particles in the nematic phase of lyotropic chromonic liquid crystals (LCLCs). These LCLCs (in this case, DSCG) are water soluble, and their nematic phases are characterized by an unusually large elastic anisotropy. Our preliminary measurements of particle mean-square displacement for polystyrene colloidal particles (~5 micron-diameter) show diffusive and sub-diffusive behaviors moving parallel and perpendicular to the nematic director, respectively. In order to understand these motions, we are developing models that incorporate the relaxation of elastic distortions of the surrounding nematic field. Further experiments to confirm these preliminary results and to determine the origin of these deviations compared to simple diffusion theory are ongoing; our results will also be compared to previous diffusion experiments in nematic liquid crystals. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, and NASA NNX08AO0G.

  18. Spectral characterization and tuning with liquid-crystal retarders

    NASA Astrophysics Data System (ADS)

    Sánchez-López, María. del Mar; Moreno, Ignacio; Vargas, Asticio; García-Martínez, Pascuala

    2015-09-01

    An accurate characterization of the retardance function of liquid-crystal retarders (LCR) is essential for a proper use of instruments that include these devices. In this paper a simple technique to characterize the retardance of a LCR, both as a function of wavelength and applied voltage, is presented. With the proposed analysis we can describe the spectral modulation properties of the device using few parameters. The method is then extended to the case of non-normal incidence, thus allowing to distinguish between the extraordinary and ordinary axes. The accounting of Fabry-Perot interference effects are used to obtain a very accurate determination of the spectral phase shifts. Finally, such a full characterization of the LCR retardance is applied to a liquid-crystal spatial light modulator and an optical architecture is designed where the spectral content of the light beam can be engineered at will.

  19. Substrate induced gliding for a nematic liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Mema, Ensela; Cummings, Linda; Kondic, Lou

    2015-03-01

    The interaction between nematic liquid crystals (NLC) and polymer substrates is of current industrial interest, due to a desire to manufacture a new generation of flexible Liquid Crystal Displays (LCDs) for use in portable electronic devices. Polymer substrates present challenges because they can interact with the NLC, exhibiting a phenomenon known as gliding: the preferred orientation of the NLC molecules at the interface changes over timescales of minutes to hours. We present two models for gliding, inspired by the physics and chemistry of the interaction between the NLC and polymer substrate. These models, though simple, lead to non-trivial results, including loss of bistability, a finding that may have implications for display devices. Supported by NSF Grant No. DMS-1211713.

  20. A numerical method for eigenvalue problems in modeling liquid crystals

    SciTech Connect

    Baglama, J.; Farrell, P.A.; Reichel, L.; Ruttan, A.; Calvetti, D.

    1996-12-31

    Equilibrium configurations of liquid crystals in finite containments are minimizers of the thermodynamic free energy of the system. It is important to be able to track the equilibrium configurations as the temperature of the liquid crystals decreases. The path of the minimal energy configuration at bifurcation points can be computed from the null space of a large sparse symmetric matrix. We describe a new variant of the implicitly restarted Lanczos method that is well suited for the computation of extreme eigenvalues of a large sparse symmetric matrix, and we use this method to determine the desired null space. Our implicitly restarted Lanczos method determines adoptively a polynomial filter by using Leja shifts, and does not require factorization of the matrix. The storage requirement of the method is small, and this makes it attractive to use for the present application.