Science.gov

Sample records for 5d anti-de sitter

  1. Supersymmetric Kerr-anti-de Sitter solutions

    SciTech Connect

    Cvetic, Mirjam; Gao Peng; Simon, Joan

    2005-07-15

    We prove the existence of one quarter supersymmetric type IIB configurations that arise as nontrivial scaling solutions of the standard five-dimensional Kerr-anti-de Sitter black holes by the explicit construction of its Killing spinors. This neutral, spinning solution is asymptotic to the static anti-de Sitter space-time with cosmological constant -(1/l{sup 2}), it has two finite equal angular momenta J{sub 1}={+-}J{sub 2}, mass M=(1/l)(|J{sub 1}|+|J{sub 2}|) and a naked singularity. We also address the scaling limit associated with one-half supersymmetric solution with only one angular momentum.

  2. Blackfolds in (anti)-de Sitter backgrounds

    SciTech Connect

    Armas, Jay; Obers, Niels A.

    2011-04-15

    We construct different neutral blackfold solutions in Anti-de Sitter and de Sitter background spacetimes in the limit where the cosmological constant is taken to be much smaller than the horizon size. This includes a class of blackfolds with horizons that are products of odd-spheres times a transverse sphere, for which the thermodynamic stability is also studied. Moreover, we exhibit a specific case in which the same blackfold solution can describe different limiting black hole spacetimes therefore illustrating the geometric character of the blackfold approach. Furthermore, we show that the higher-dimensional Kerr-(Anti)-de Sitter black hole allows for ultraspinning regimes in the same limit under consideration and demonstrate that this is correctly described by a pancaked blackfold geometry. We also give evidence for the possibility of saturating the rigidity theorem in these backgrounds.

  3. Asymptotically anti-de Sitter Proca stars

    NASA Astrophysics Data System (ADS)

    Duarte, Miguel; Brito, Richard

    2016-09-01

    We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on four-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully nonlinear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in five dimensions.

  4. The bizarre anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Sokołowski, Leszek M.

    2016-08-01

    Anti-de Sitter spacetime is important in general relativity and modern field theory. We review its geometrical features and properties of light signals and free particles moving in it. By applying only the elementary tools of tensor calculus, we derive ab initio of all these properties and show that they are really weird. One finds superluminal velocities of light and particles, infinite particle energy necessary to escape at infinite distance and spacetime regions inaccessible by a free fall, though reachable by an accelerated spaceship. Radial timelike geodesics are identical to the circular ones and actually all timelike geodesics are identical to one circle in a fictitious five-dimensional space. Employing the latter space, one is able to explain these bizarre features of anti-de Sitter spacetime; in this sense the spacetime is not self-contained. This is not a physical world.

  5. Gravitational collapse in anti de Sitter space

    SciTech Connect

    Garfinkle, David

    2004-11-15

    A numerical and analytic treatment is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz and Maeda to lead to a violation of cosmic censorship. That initial data is essentially a thick domain wall connecting two regions of anti de Sitter space. The evolution results in no violation of cosmic censorship, but rather the formation of a small black hole.

  6. Colorful Horizons with Charge in Anti-de Sitter Space

    SciTech Connect

    Gubser, Steven S.

    2008-11-07

    An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti-de Sitter space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to separate Reissner-Nordstroem-anti-de Sitter solutions from a family of symmetry-breaking solutions which preserve a diagonal combination of gauge invariance and spatial rotational invariance.

  7. Anti-de Sitter 5D black hole solutions with a self-interacting bulk scalar field: A potential reconstruction approach

    SciTech Connect

    Farakos, K.; Kouretsis, A. P.; Pasipoularides, P.

    2009-09-15

    We construct asymptotically AdS black hole solutions, with a self-interacting bulk scalar field, in the context of 5D general relativity. As the observable universe is characterized by spatial flatness, we focus on solutions where the horizon of the black hole, and subsequently all 3D hypersurfaces for fixed radial coordinate, have zero spatial curvature. We examine two cases for the black hole scalar hair: (a) an exponential decaying scalar field profile and (b) an inverse power scalar field profile. The scalar black hole solutions we present in this paper are characterized by four functions f(r), a(r), {phi}(r), and V({phi}(r)). Only the functions {phi}(r) and a(r) are determined analytically, while the functions f(r) and V({phi}(r)) are expressed semianalytically by integral formulas in terms of a(r). We present our numerical results and study in detail the characteristic properties of our solutions. We also note that the potential we obtain has a nonconvex form in agreement with the corresponding 'no hair theorem' for AdS spacetimes.

  8. Anti-de Sitter space, squashed and stretched

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar; Sandin, Patrik

    2006-02-01

    We study the Lorentzian analogues of the squashed 3-sphere, namely, (2+1)-dimensional anti-de Sitter space squashed or stretched along fibres that are either spacelike or timelike. The causal structure and the property of being an Einstein Weyl space depend critically on whether we squash or stretch. We argue that squashing and stretching completely destroy the conformal boundary of the unsquashed spacetime. As a physical application we observe that the near horizon geometry of the extremal Kerr black hole, at constant Boyer Lindquist latitude, is anti-de Sitter space squashed along compactified spacelike fibres.

  9. Asymptotically anti-de Sitter space-times

    NASA Astrophysics Data System (ADS)

    Ashtekar, A.; Magnon, A.

    1984-07-01

    The structure of the gravitational field at infinity of asymptotically anti-de Sitter space-times is analyzed in detail using conformal techniques. It is found that the situation differs from that in the case of asymptotically Minkowskian space-times in a number of respects. In particular, the asymptotic symmetry group is quite different from the BMS group, and there is no analogue of the Bondi news. The analysis also introduces definitions of 'conserved' quantities in terms of the curvature tensor which are free of the ambiguities present in the previous definitions based on the deviation of the physical metric from an anti-de Sitter background.

  10. Superradiant instabilities of asymptotically anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.

    2016-06-01

    We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino-Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.

  11. On electric field in anti-de Sitter spacetime

    SciTech Connect

    Cheong, Lee Yen E-mail: chewxy01813@gmail.com Yan, Chew Xiao E-mail: chewxy01813@gmail.com Ching, Dennis Ling Chuan E-mail: chewxy01813@gmail.com

    2014-10-24

    In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.

  12. Superradiant instabilities of asymptotically anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.

    2016-06-01

    We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino–Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.

  13. Photon rockets in the (anti-)de Sitter universe

    SciTech Connect

    Podolsky, J.

    2008-08-15

    A class of exact solutions to Einstein's equations is presented, which describes accelerating photon rockets in the de Sitter and anti-de Sitter universes. These are particular members of the Robinson-Trautman family of axially symmetric spacetimes with pure radiation. In particular, generalizations of (type D) Kinnersley's rockets and (type II) Bonnor's rockets to the case of a nonvanishing cosmological constant are given. Some of the main physical properties of these solutions are investigated, and their relation to the C-metric solution which describes uniformly accelerated black holes is also given.

  14. Asymptotically anti-de Sitter spacetimes in topologically massive gravity

    SciTech Connect

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2009-04-15

    We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter {mu} ({mu}{ne}0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |{mu}l|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.

  15. Non-Abelian cosmic strings in de Sitter and anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Santos, Antônio de Pádua; Bezerra de Mello, Eugênio R.

    2016-09-01

    In this paper we investigate the non-Abelian cosmic string in de Sitter and anti-de Sitter spacetimes. In order to do that we construct the complete set of equations of motion considering the presence of a cosmological constant. By using numerical analysis we provide the behavior of the Higgs and gauge fields and also of the metric tensor for specific values of the physical parameters of the theory. For the de Sitter case, we find the appearance of an horizon. This horizon is consequence of the presence of the cosmological constant, and its position strongly depends on the value of the gravitational coupling. In the anti-de Sitter case, we find that the system does not present horizons. In fact the new feature of this system is related with the behavior of the (00) and (z z ) components of the metric tensor. They present a strong increasing behavior for large distance from the string.

  16. Dirac fermions on an anti-de Sitter background

    SciTech Connect

    Ambruş, Victor E. Winstanley, Elizabeth

    2014-11-24

    Using an exact expression for the bi-spinor of parallel transport, we construct the Feynman propagator for Dirac fermions in the vacuum state on anti-de Sitter space-time. We compute the vacuum expectation value of the stress-energy tensor by removing coincidence-limit divergences using the Hadamard method. We then use the vacuum Feynman propagator to compute thermal expectation values at finite temperature. We end with a discussion of rigidly rotating thermal states.

  17. Instability of charged anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho

    2016-10-01

    We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.

  18. Cosmic censorship of rotating Anti-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-02-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  19. Lightlike hypersurfaces along spacelike submanifolds in anti-de Sitter space

    SciTech Connect

    Izumiya, Shyuichi

    2015-11-15

    Anti-de Sitter space is the Lorentzian space form with negative curvature. In this paper, we consider lightlike hypersurfaces along spacelike submanifolds in anti-de Sitter space with general codimension. In particular, we investigate the singularities of lightlike hypersurfaces as an application of the theory of Legendrian singularities.

  20. Generalized Gravitational Entropy for Warped Anti-de Sitter Space.

    PubMed

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2016-07-01

    For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS_{3}) in a consistent truncation of string theory, the so-called S-dual dipole theory. It turns out that the generalized gravitational entropy in WAdS_{3} is captured by the least action of a charged particle in WAdS_{3} space, or equivalently, by the geodesic length in an auxiliary AdS_{3}. Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS_{3}/CFT_{2} correspondence. PMID:27419559

  1. Generalized Gravitational Entropy for Warped Anti-de Sitter Space

    NASA Astrophysics Data System (ADS)

    Song, Wei; Wen, Qiang; Xu, Jianfei

    2016-07-01

    For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS3 ) in a consistent truncation of string theory, the so-called S -dual dipole theory. It turns out that the generalized gravitational entropy in WAdS3 is captured by the least action of a charged particle in WAdS3 space, or equivalently, by the geodesic length in an auxiliary AdS3 . Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS3/CFT2 correspondence.

  2. (Anti-) de Sitter electrically charged black-hole solutions in higher-derivative gravity

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Qian, Wei-Liang; Pavan, A. B.; Abdalla, E.

    2016-06-01

    In this paper, static electrically charged black-hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black holes. In particular, it was found that for uncharged black holes the first group can be reduced to the Schwarzschild (Anti-) de Sitter solution, while the second group is intrinsically different from a Schwarzschild (Anti-) de Sitter solution even when the charge and the cosmological constant become zero.

  3. Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds

    SciTech Connect

    Madhav, T. Arun; Goswami, Rituparno; Joshi, Pankaj S.

    2005-10-15

    We study here the gravitational collapse of a matter cloud with a nonvanishing tangential pressure in the presence of a nonzero cosmological term {lambda}. It is investigated how {lambda} modifies the dynamics of the collapsing cloud and whether it affects the cosmic censorship. Conditions for bounce and singularity formation are derived. It is seen that when the tangential pressure vanishes, the bounce and singularity conditions reduce to the dust case studied earlier. The collapsing interior is matched to an exterior which is asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. The junction conditions for matching the cloud to the exterior are specified. The effect of {lambda} on apparent horizons is studied in some detail and the nature of central singularity is analyzed. The visibility of singularity and implications for the cosmic censorship conjecture are discussed. It is shown that for a nonvanishing cosmological constant, both black hole and naked singularities do form as collapse end states in spacetimes which are asymptotically de Sitter or anti-de Sitter.

  4. Scalar field breathers on anti-de Sitter background

    NASA Astrophysics Data System (ADS)

    Fodor, Gyula; Forgács, Péter; Grandclément, Philippe

    2014-03-01

    We study spatially localized, time-periodic solutions (breathers) of scalar field theories with various self-interacting potentials on anti-de Sitter (AdS) spacetimes in D dimensions. A detailed numerical study of spherically symmetric configurations in D =3 dimensions is carried out, revealing a rich and complex structure of the phase-space (bifurcations, resonances). Scalar breather solutions form one-parameter families parametrized by their amplitude, ɛ, while their frequency, ω =ω(ɛ), is a function of the amplitude. The scalar breathers on AdS we find have a small amplitude limit, tending to the eigenfunctions of the linear Klein-Gordon operator on AdS. Importantly most of these breathers appear to be generically stable under time evolution.

  5. Chemical potential driven phase transition of black holes in anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Galante, Mario; Giribet, Gaston; Goya, Andrés; Oliva, Julio

    2015-11-01

    Einstein-Maxwell theory conformally coupled to a scalar field in D dimensions may exhibit a phase transition at low temperature whose end point is an asymptotically anti-de Sitter black hole with a scalar field profile that is regular everywhere outside and on the horizon. This provides a tractable model to study the phase transition of hairy black holes in anti-de Sitter space in which the backreaction on the geometry can be solved analytically.

  6. The fate of monsters in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Ong, Yen Chin; Chen, Pisin

    2013-07-01

    Black hole entropy remains a deep puzzle: where does such enormous amount of entropy come from? Curiously, there exist gravitational configurations that possess even larger entropy than a black hole of the same mass, in fact, arbitrarily high entropy. These are the so-called monsters, which are problematic to the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence paradigm since there is far insufficient degrees of freedom on the field theory side to account for the enormous entropy of monsters in AdS bulk. The physics of the bulk however may be considerably modified at semi-classical level due to the presence of branes. We show that this is especially so since monster spacetimes are unstable due to brane nucleation. As a consequence, it is not clear what the final fate of monsters is. We argue that in some cases there is no real threat from monsters since although they are solutions to Einstein's Field Equations, they are very likely to be completely unstable when embedded in string theory, and thus probably are not solutions to the full quantum theory of gravity. Our analysis, while suggestive and supportive of the claim that such pathological objects are not allowed in the final theory, by itself does not rule out all monsters. We comment on various kin of monsters such as the "bag-of-gold" spacetime, and also discuss briefly the implications of our work to some puzzles related to black hole entropy.

  7. Simulation of black hole collisions in asymptotically Anti-de Sitter spacetimes.

    PubMed

    Bantilan, Hans; Romatschke, Paul

    2015-02-27

    We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times. PMID:25768753

  8. Simulation of black hole collisions in asymptotically Anti-de Sitter spacetimes.

    PubMed

    Bantilan, Hans; Romatschke, Paul

    2015-02-27

    We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times.

  9. Semiclassical quantization of circular strings in de Sitter and anti--de Sitter spacetimes

    SciTech Connect

    de Vega, H.J. |; Larsen, A.L.; Sanchez, N.

    1995-06-15

    We compute the {ital exact} equation of state of circular strings in the (2+1)--dimensional de Sitter (dS) and anti--de Sitter (AdS) spacetimes, and analyze its properties for the different (oscillating, contracting, and expanding) strings. The string equation of state has the perfect fluid form {ital P}=({gamma}{minus}1){ital E}, with the pressure and energy expressed closely and completely in terms of elliptic functions, the instantaneous coefficient {gamma} depending on the elliptic modulus. We semiclassically quantize the oscillating circular strings. The string mass is {ital m}= {radical}{ital C} /({pi}{ital H}{alpha}{prime}), {ital C} being the Casimir operator, {ital C}={minus}{ital L}{sub {mu}{nu}}{ital L}{sup {mu}{nu}}, of the O(3,1)-dS [O(2,2)-AdS] group, and {ital H} is the Hubble constant. We find {alpha}{prime}{ital m}{sub dS}{sup 2}{approx}4{ital n}{minus}5{ital H}{sup 2}{alpha}{prime}{ital n}{sup 2} ({ital n}{element_of}{ital N}{sub 0}), and a {ital finite} number of states {ital N}{sub dS}{approx}0.34/({ital H}{sup 2}{alpha}{prime}) in de Sitter spacetime; {ital m}{sub AdS}{sup 2}{approx}{ital H}{sup 2}{ital n}{sup 2} (large {ital n}{element_of}{ital N}{sub 0}) and {ital N}{sub AdS}={infinity} in anti--de Sitter spacetime. The level spacing grows with {ital n} in AdS spacetime, while it is approximately constant (although smaller than in Minkowski spacetime and slightly decreasing) in dS spacetime. The massive states in dS spacetime decay through the tunnel effect and the semiclassical decay probability is computed. The semiclassical quantization of {ital exact} (circular) strings and the canonical quantization of generic string perturbations around the string center of mass qualitatively agree.

  10. Deformations of anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Detournay, Stephane

    2006-11-01

    This PhD thesis mainly deals with deformations of locally anti-de Sitter black holes, focusing in particular on BTZ black holes. We first study the generic rotating and (extended) non-rotating BTZ black holes within a pseudo-Riemannian symmetric spaces framework, emphasize on the role played by solvable subgroups of SL(2,R) in the black hole structure and derive their global geometry in a group-theoretical way. We analyse how these observations are transposed in the case of higher-dimensional locally AdS black holes. We then show that there exists, in SL(2,R), a family of twisted conjugacy classes which give rise to winding symmetric WZW D1-branes in a BTZ black hole background. The term "deformation" is then considered in two distinct ways. On the one hand, we deform the algebra of functions on the branes in the sense of (strict) deformation quantization, giving rise to a "noncommutative black hole". In the same context, we investigate the question of invariant deformations of the hyperbolic plane and present explicit formulae. On the other hand, we explore the moduli space of the (orbifolded) SL(2,R) WZW model by studying its marginal deformations, yielding namely a new class of exact black string solutions in string theory. These deformations also allow us to relate the D1-branes in BTZ black holes to D0-branes in the 2D black hole. A fair proportion of this thesis consists of (hopefully) pedagogical short introductions to various subjects: deformation quantization, string theory, WZW models, symmetric spaces, symplectic and Poisson geometry.

  11. Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit

    NASA Technical Reports Server (NTRS)

    Elgradechi, Amine M.

    1993-01-01

    Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.

  12. Randall-sundrum brane model with 7D anti-de sitter space.

    PubMed

    Bao, Ruoyu; Lykken, Joseph

    2005-12-31

    In the same sense that 5D anti-de Sitter space (AdS(5)) warped geometries arise naturally from type IIB string theory with stacks of D3 branes, AdS(7) warped geometries arise naturally from M theory with stacks of M5 branes. We compactify two spatial dimensions of AdS(7) to get AdS(5) x Sigma(2), where the metric for Sigma(2) inherits the same warp factor as appears in the AdS(5). We analyze the 5D spectrum in detail for the case of a bulk scalar or a graviton in AdS(5) x T(2), in a setup which mimics the first Randall-Sundrum model. The results display novel features which might be observed in experiments at the CERN Large Hadron Collider. For example, we obtain TeV scale string winding states without lowering the string scale. This is due to the double warping which is a generic feature of winding states along compactified AdS directions. Experimental verification of these signatures of AdS(7) could be interpreted as direct evidence for M theory. PMID:16486337

  13. Tunneling between de Sitter and anti-de Sitter black holes in a noncommutative D{sub 3}-brane formalism

    SciTech Connect

    Kar, Supriya

    2006-12-15

    We obtain de Sitter (dS) and anti-de Sitter (AdS) generalized Reissner-Nordstrom-like black hole geometries in a curved D{sub 3}-brane framework, underlying a noncommutative gauge theory on the brane world. The noncommutative scaling limit is explored to investigate a possible tunneling of an AdS vacuum in string theory to dS vacuum in its low energy gravity theory. The Hagedorn transition is invoked into its self-dual gauge theory to decouple the gauge nonlinearity from the dS geometry, which in turn is shown to describe a pure dS vacuum.

  14. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya

    2014-06-01

    We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  15. Every timelike geodesic in Anti-de Sitter spacetime is a circle of the same radius

    NASA Astrophysics Data System (ADS)

    Sokołowski, Leszek M.; Golda, Zdzisław A.

    2016-10-01

    In this paper, we refine and analytically prove an old proposition due to Calabi and Markus on the shape of timelike geodesics of anti-de Sitter space in the ambient flat space. We prove that each timelike geodesic forms in the ambient space a circle of the radius determined by Λ, lying on a Euclidean two-plane. Then, we outline an alternative proof for AdS4. We also make a comment on the shape of timelike geodesics in de Sitter space.

  16. Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence.

    PubMed

    Solodukhin, Sergey N

    2006-11-17

    A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted. PMID:17155672

  17. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude. PMID:25763946

  18. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.

  19. Vacuum energy in Einstein-Gauss-Bonnet anti de Sitter gravity

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Olea, Rodrigo

    2006-10-01

    A finite action principle for Einstein-Gauss-Bonnet anti de Sitter gravity is achieved by supplementing the bulk Lagrangian by a suitable boundary term, whose form substantially differs in odd and even dimensions. For even dimensions, this term is given by the boundary contribution in the Euler theorem with a coupling constant fixed, demanding the spacetime to have constant (negative) curvature in the asymptotic region. For odd dimensions, the action is stationary under a boundary condition on the variation of the extrinsic curvature. A well-posed variational principle leads to an appropriate definition of energy and other conserved quantities using the Noether theorem, and to a correct description of black hole thermodynamics. In particular, this procedure assigns a nonzero energy to anti de Sitter spacetime in all odd dimensions.

  20. The anti-de Sitter Gott universe: a rotating BTZ wormhole

    NASA Astrophysics Data System (ADS)

    Holst, Sören; Matschull, Hans-Jürgen

    1999-10-01

    Recently, it has been shown that a (2 + 1)-dimensional black hole can be created by the collapse of two colliding massless particles in an otherwise empty anti-de Sitter space. Here we generalize this construction to the case of a non-zero impact parameter. The resulting spacetime, which may be regarded as a Gott universe in an anti-de Sitter background, contains closed timelike curves. By treating these as singular we are able to interpret our solution as a rotating black hole, hence providing a link between the Gott universe and the BTZ black hole. When analysing the spacetime we see how the full causal structure of the interior can be almost completely inferred just from considerations of the conformal boundary.

  1. Anti-de Sitter-wave solutions of higher derivative theories.

    PubMed

    Gürses, Metin; Hervik, Sigbjørn; Şişman, Tahsin Çağrı; Tekin, Bayram

    2013-09-01

    We show that the recently found anti-de Sitter (AdS)-plane and AdS-spherical wave solutions of quadratic curvature gravity also solve the most general higher derivative theory in D dimensions. More generally, we show that the field equations of such theories reduce to an equation linear in the Ricci tensor for Kerr-Schild spacetimes having type-N Weyl and type-N traceless Ricci tensors.

  2. Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space

    NASA Astrophysics Data System (ADS)

    Shyaka, Claude; Kharel, Savan

    2016-03-01

    The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.

  3. Toroidal configurations of perfect fluid in the Reissner-Nordström-(anti-)de Sitter spacetimes

    SciTech Connect

    Kucáková, Hana; Slaný, Petr; Stuchlík, Zdenĕk E-mail: petr.slany@fpf.slu.cz

    2011-01-01

    Influence of cosmological constant on toroidal fluid configurations around charged spherically symmetric black holes and naked singularities is demostrated by study of perfect-fluid tori with uniform distribution of specific angular momentum orbiting in the Reissner-Nordström-(anti-)de Sitter spacetimes. Toroidal configurations are allowed only in the spacetimes admitting existence of stable circular geodesics. Configurations with marginally closed equipotential (equipressure) surfaces crossing itself in a cusp allow accretion (through the inner cusp) and/or excretion (through the outer cusp) of matter from the toroidal configuration. Detailed classification of the Reissner-Nordström-(anti-)de Sitter spacetimes according to properties of the marginally stable tori is given. It is demonstrated that in the Reissner-Nordström-de Sitter naked-singularity spacetimes an interesting phenomenon of doubled tori can exist enabling exchange of matter between two tori in both inward and outward directions. In naked-singularity spacetimes the accretion onto the central singularity is impossible due to existence of a potential barrier.

  4. Bjorken flow from an anti-de Sitter space Schwarzschild black hole.

    PubMed

    Alsup, James; Siopsis, George

    2008-07-18

    We consider a large black hole in asymptotically anti-de Sitter spacetime of arbitrary dimension with a Minkowski boundary. By performing an appropriate slicing as we approach the boundary, we obtain via holographic renormalization a gauge theory fluid obeying Bjorken hydrodynamics in the limit of large longitudinal proper time. The metric we obtain reproduces to leading order the metric recently found as a direct solution of the Einstein equations in five dimensions. Our results are also in agreement with recent exact results in three dimensions. PMID:18764245

  5. Anyonic strings and membranes in anti-de Sitter space and dual Aharonov-Bohm effects.

    PubMed

    Hartnoll, Sean A

    2007-03-16

    It is observed that strings in AdS(5) x S(5) and membranes in AdS(7) x S(4) exhibit long range phase interactions. Two well separated membranes dragged around one another in anti-de Sitter space (AdS) acquire phases of 2 pi/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.

  6. Generic cosmic-censorship violation in anti-de Sitter space.

    PubMed

    Hertog, Thomas; Horowitz, Gary T; Maeda, Kengo

    2004-04-01

    We consider (four-dimensional) gravity coupled to a scalar field with potential V(phi). The potential satisfies the positive energy theorem for solutions that asymptotically tend to a negative local minimum. We show that for a large class of such potentials, there is an open set of smooth initial data that evolve to naked singularities. Hence cosmic censorship does not hold for certain reasonable matter theories in asymptotically anti-de Sitter spacetimes. The asymptotically flat case is more subtle. We suspect that potentials with a local Minkowski minimum may similarly lead to violations of cosmic censorship in asymptotically flat spacetimes, but we do not have definite results.

  7. Classical Yang-Mills Black Hole Hair in Anti-de Sitter Space

    NASA Astrophysics Data System (ADS)

    Winstanley, E.

    The properties of hairy black holes in Einstein-Yang-Mills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess.

  8. Anyonic Strings and Membranes in Anti-de Sitter Space and Dual Aharonov-Bohm Effects

    SciTech Connect

    Hartnoll, Sean A.

    2007-03-16

    It is observed that strings in AdS{sub 5}xS{sup 5} and membranes in AdS{sub 7}xS{sup 4} exhibit long range phase interactions. Two well separated membranes dragged around one another in anti-de Sitter space (AdS) acquire phases of 2{pi}/N. The same phases are acquired by a well separated F and D string dragged around one another. The phases are shown to correspond to both the standard and a novel type of Aharonov-Bohm effect in the dual field theory.

  9. Asymptotically (anti)-de Sitter solutions in Gauss-Bonnet gravity without a cosmological constant

    SciTech Connect

    Dehghani, M.H.

    2004-09-15

    In this paper I show that one can have asymptotically de Sitter, anti-de Sitter (AdS), and flat solutions in Gauss-Bonnet gravity without a cosmological constant term in field equations. First, I introduce static solutions whose three surfaces at fixed r and t have constant positive (k=1), negative (k=-1), or zero (k=0) curvature. I show that for k={+-}1 one can have asymptotically de Sitter, AdS, and flat spacetimes, while for the case of k=0, one has only asymptotically AdS solutions. Some of these solutions present naked singularities, while some others are black hole or topological black hole solutions. I also find that the geometrical mass of these five-dimensional spacetimes is m+2{alpha}|k|, which is different from the geometrical mass m of the solutions of Einstein gravity. This feature occurs only for the five-dimensional solutions, and is not repeated for the solutions of Gauss-Bonnet gravity in higher dimensions. Second, I add angular momentum to the static solutions with k=0, and introduce the asymptotically AdS charged rotating solutions of Gauss-Bonnet gravity. Finally, I introduce a class of solutions which yields an asymptotically AdS spacetime with a longitudinal magnetic field, which presents a naked singularity, and generalize it to the case of magnetic rotating solutions with two rotation parameters.

  10. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-05-01

    In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mimetic $F(R)$ gravity case, for the Reissner-Nordstr\\"om-anti de Sitter black hole metric, at first order of the perturbed variables. Interestingly enough, the resulting equations are identical to the ones corresponding to the ordinary $F(R)$ gravity Reissner-Nordstr\\"om-anti de Sitter black hole, at least at first order. We attribute this feature to the particular form of the Reissner-Nordstr\\"om-anti de Sitter metric, and we speculate for which cases there could be differences between the mimetic and non-mimetic case. Since the perturbation equations are the same for the two cases, it is possible to have black hole instabilities in the mimetic $F(R)$ gravity case too, which can be interpreted as anti-evaporation of the black hole.

  11. Accretion on Reissner–Nordström–(anti)-de Sitter black hole with global monopole

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayyesha K.; Camci, Ugur; Jamil, Mubasher

    2016-11-01

    In this paper, we investigate the accretion on the Reissner–Nordström–anti-de-Sitter black hole with global monopole charge. We discuss the general solutions of accretion using the isothermal and polytropic equations of state for steady state, spherically symmetric, non-rotating accretion on the black hole. In the case of isothermal flow, we consider some specific fluids and derive their solutions at the sonic point as well. However, in the case of polytropic fluid we calculate the general expressions only, as there exists no global (Bondi) solutions for polytropic test fluids. In addition to this, the effect of fluid on the mass accretion rate are also studied. Moreover, the large monopole parameter β greatly suppresses the maximum accretion rate.

  12. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability

    NASA Astrophysics Data System (ADS)

    Bosch, Pablo; Green, Stephen R.; Lehner, Luis

    2016-04-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  13. Abundant stable gauge field hair for black holes in anti-de Sitter space.

    PubMed

    Baxter, J E; Helbling, Marc; Winstanley, Elizabeth

    2008-01-11

    We present new hairy black hole solutions of SU(N) Einstein-Yang-Mills (EYM) theory in asymptotically anti-de Sitter (AdS) space. These black holes are described by N+1 independent parameters and have N-1 independent gauge field degrees of freedom. Solutions in which all gauge field functions have no zeros exist for all N, and for a sufficiently large (and negative) cosmological constant. At least some of these solutions are shown to be stable under classical, linear, spherically symmetric perturbations. Therefore there is no upper bound on the amount of stable gauge field hair with which a black hole in AdS can be endowed. PMID:18232751

  14. New Features of Gravitational Collapse in Anti-de Sitter Spacetimes.

    PubMed

    Santos-Oliván, Daniel; Sopuerta, Carlos F

    2016-01-29

    Gravitational collapse of a massless scalar field in spherically symmetric anti-de Sitter (AdS) spacetimes presents a new phenomenology with a series of critical points whose dynamics is discretely self-similar as in the asymptotically flat case. Each critical point is the limit of a branch of scalar field configurations that have bounced off the AdS boundary a fixed number of times before forming an apparent horizon. We present results from a numerical study that focus on the interfaces between branches. We find that there is a mass gap between branches and that subcritical configurations near the critical point form black holes with an apparent horizon mass that follows a power law of the form M(AH)-M(g)∝(p(c)-p)^(ξ), where M(g) is the mass gap and the exponent ξ≃0.7 appears to be universal. PMID:26871317

  15. The emergence of superconducting systems in Anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Wu, W. M.; Pierpoint, M. P.; Forrester, D. M.; Kusmartsev, F. V.

    2016-10-01

    In this article, we investigate the mathematical relationship between a (3+1) dimensional gravity model inside Anti-de Sitter space AdS4, and a (2+1) dimensional superconducting system on the asymptotically flat boundary of AdS4 (in the absence of gravity). We consider a simple case of the Type II superconducting model (in terms of Ginzburg-Landau theory) with an external perpendicular magnetic field H. An interaction potential V ( r, ψ) = α( T)| ψ|2 /r 2 + χ| ψ|2 /L 2 + β| ψ|4 /(2 r k ) is introduced within the Lagrangian system. This provides more flexibility within the model, when the superconducting system is close to the transition temperature T c. Overall, our result demonstrates that the Ginzburg-Landau differential equations can be directly deduced from Einstein's theory of general relativity.

  16. Unique Continuation from Infinity in Asymptotically Anti-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Holzegel, Gustav; Shao, Arick

    2016-11-01

    We consider the unique continuation properties of asymptotically anti-de Sitter spacetimes by studying Klein-Gordon-type equations {Box_g φ + σ φ = {G} ( φ, partial φ )}, {σ in {R}}, on a large class of such spacetimes. Our main result establishes that if {φ} vanishes to sufficiently high order (depending on {σ}) on a sufficiently long time interval along the conformal boundary I, then the solution necessarily vanishes in a neighborhood of I. In particular, in the {σ}-range where Dirichlet and Neumann conditions are possible on I for the forward problem, we prove uniqueness if both these conditions are imposed. The length of the time interval can be related to the refocusing time of null geodesics on these backgrounds and is expected to be sharp. Some global applications as well as a uniqueness result for gravitational perturbations are also discussed. The proof is based on novel Carleman estimates established in this setting.

  17. Anti-De Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories

    NASA Astrophysics Data System (ADS)

    Witten, Edward

    2014-03-01

    The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of N = 4 super Yang-Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in Anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement, and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale "holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.

  18. The Derivation and Quasinormal Mode Spectrum of Acoustic Anti-de Sitter Black Hole Analogues

    NASA Astrophysics Data System (ADS)

    Babb, James Patrick

    Dumb holes (also known as acoustic black holes) are fluid flows which include an "acoustic horizon": a surface, analogous to a gravitational horizon, beyond which sound may pass but never classically return. Soundwaves in these flows will therefore experience "effective geometries" which are identical to black hole spacetimes up to a conformal factor. By adjusting the parameters of the fluid flow, it is possible to create an effective geometry which is conformal to the Anti-de Sitter black hole spacetime---a geometry which has received a great deal of attention in recent years due to its conjectured holographic duality to Conformal Field Theories. While we would not expect an acoustic analogue of the AdS-CFT correspondence to exist, this dumb hole provides a means, at least in principle, of experimentally testing the theoretical properties of the AdS spacetime. In particular, I have calculated the quasinormal mode spectrum of this acoustic geometry.

  19. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    PubMed

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes. PMID:27104693

  20. Holographic thermalization, stability of anti-de sitter space, and the Fermi-Pasta-Ulam paradox.

    PubMed

    Balasubramanian, Venkat; Buchel, Alex; Green, Stephen R; Lehner, Luis; Liebling, Steven L

    2014-08-15

    For a real massless scalar field in general relativity with a negative cosmological constant, we uncover a large class of spherically symmetric initial conditions that are close to anti-de Sitter space (AdS) but whose numerical evolution does not result in black hole formation. According to the AdS/conformal field theory (CFT) dictionary, these bulk solutions are dual to states of a strongly interacting boundary CFT that fail to thermalize at late times. Furthermore, as these states are not stationary, they define dynamical CFT configurations that do not equilibrate. We develop a two-time-scale perturbative formalism that captures both direct and inverse cascades of energy and agrees with our fully nonlinear evolutions in the appropriate regime. We also show that this formalism admits a large class of quasiperiodic solutions. Finally, we demonstrate a striking parallel between the dynamics of AdS and the classic Fermi-Pasta-Ulam-Tsingou problem.

  1. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    PubMed

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  2. Holographic thermalization, stability of anti-de sitter space, and the Fermi-Pasta-Ulam paradox.

    PubMed

    Balasubramanian, Venkat; Buchel, Alex; Green, Stephen R; Lehner, Luis; Liebling, Steven L

    2014-08-15

    For a real massless scalar field in general relativity with a negative cosmological constant, we uncover a large class of spherically symmetric initial conditions that are close to anti-de Sitter space (AdS) but whose numerical evolution does not result in black hole formation. According to the AdS/conformal field theory (CFT) dictionary, these bulk solutions are dual to states of a strongly interacting boundary CFT that fail to thermalize at late times. Furthermore, as these states are not stationary, they define dynamical CFT configurations that do not equilibrate. We develop a two-time-scale perturbative formalism that captures both direct and inverse cascades of energy and agrees with our fully nonlinear evolutions in the appropriate regime. We also show that this formalism admits a large class of quasiperiodic solutions. Finally, we demonstrate a striking parallel between the dynamics of AdS and the classic Fermi-Pasta-Ulam-Tsingou problem. PMID:25170699

  3. Charged anti-de Sitter scalar-tensor black holes and their thermodynamic phase structure

    SciTech Connect

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.; Stefanov, Ivan Zh.; Todorov, Michail D.

    2010-05-15

    In the present paper we numerically construct new charged anti-de Sitter black holes coupled to nonlinear Born-Infeld electrodynamics within a certain class of scalar-tensor theories. The properties of the solutions are investigated both numerically and analytically. We also study the thermodynamics of the black holes in the canonical ensemble. For large values of the Born-Infeld parameter and for a certain interval of the charge values we find the existence of a first-order phase transition between small and very large black holes. An unexpected result is that for a certain small charge subinterval two phase transitions have been observed, one of zeroth and one of first order. It is important to note that such phase transitions are also observed for pure Einstein-Born-Infeld-AdS black holes.

  4. Geometrodynamics of quantum fields in black hole anti-de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Debenedictis, Andrew

    In the context of semi-classical general relativity, an in depth study of quantum effects on classical singularity structure is performed. The system studied is that of an asymptotically anti-de Sitter (AdS) cylindrical black hole spacetime with conformally coupled scalars as the matter field. This fact requires special care with boundary conditions which is discussed in detail. Thermodynamic properties of torroidal versions of these black holes are first studied. The free energy and entropy are obtained using simple thermodynamic arguments and the stability of the black holes is discussed. The renormalized expectation value =lim x→x' is calculated using a mode sum decomposition. It is found that the field is divergence free throughout the spacetime and attains its maximum value near the horizon. The gravitational back-reaction which this field introduces is also calculated. By first calculating the expectation value of the field's stress-energy-tensor, , the Einstein field equations are solved (to first order in h) and the perturbation on the Kretschmann scalar is obtained. It is found that near the horizon, the perturbation initially strengthens the singularity. Near spatial infinity, however, curvature is weakened . Finally, a method of adding successive boundary counter-terms is utilized to renormalize the bulk gravitational action in asymptotically AdS solutions. It is shown that the correct conserved quantities of the spacetime are produced and therefore this renormalized quantity may be viewed as a "gravitational stress-energy tensor". The resulting stress-energy tensor yields both the correct black hole energies as well as terms interpreted as vacuum Casimir energies of the dual field theory (including a negative energy contribution). This calculation is done up to d = 8 (d being the boundary dimension). In light of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence, the trace of this quantity yields the Weyl anomaly

  5. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    SciTech Connect

    Steinacker, H

    1997-05-23

    Quantum groups in general and the quantum Anti-de Sitter group U{sub q}(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin {ge} 1, {open_quotes}naive{close_quotes} representations are unitarizable only after factoring out a subspace of {open_quotes}pure gauges{close_quotes}, as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U{sub q}(g), which plays the role of a BRST operator in the case of U{sub q}(so(2,3)) at roots of unity, for any spin {ge} 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard {open_quotes}truncated{close_quotes} tensor product as well as many-particle representations.

  6. Vacuum for a massless quantum scalar field outside a collapsing shell in anti-de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Abel, Paul G.; Winstanley, Elizabeth

    2016-08-01

    We consider a massless quantum scalar field on a two-dimensional space-time describing a thin shell of matter collapsing to form a Schwarzschild-anti-de Sitter black hole. At early times, before the shell starts to collapse, the quantum field is in the vacuum state, corresponding to the Boulware vacuum on an eternal black hole space-time. The scalar field satisfies reflecting boundary conditions on the anti-de Sitter boundary. Using the Davies-Fulling-Unruh prescription for computing the renormalized expectation value of the stress-energy tensor, we find that at late times the black hole is in thermal equilibrium with a heat bath at the Hawking temperature, so the quantum field is in a state analogous to the Hartle-Hawking vacuum on an eternal black hole space-time.

  7. Integrability of particle motion and scalar field propagation in Kerr-(anti-) de Sitter black hole spacetimes in all dimensions

    NASA Astrophysics Data System (ADS)

    Vasudevan, Muraari; Stevens, Kory A.

    2005-12-01

    We study the Hamilton-Jacobi and massive Klein-Gordon equations in the general Kerr-(Anti) de Sitter black hole background in all dimensions. Complete separation of both equations is carried out in cases when there are two sets of equal black hole rotation parameters. We analyze explicitly the symmetry properties of these backgrounds that allow for this Liouville integrability and construct a nontrivial irreducible Killing tensor associated with the enlarged symmetry group which permits separation. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties. This work greatly generalizes previously known results for both the Myers-Perry metrics, and the Kerr-(Anti) de Sitter metrics in higher dimensions.

  8. Fermions tunneling of higher-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, ShuZheng

    2009-04-01

    The 1/2 spin fermions tunneling at the horizon of n-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter is researched via semi-classical approximation method, and the Hawking temperature and fermions tunneling rate are obtained in this Letter. Using a new method, the semi-classical Hamilton-Jacobi equation is gotten from the Dirac equation in this Letter, and the work makes several quantum tunneling theories more harmonious.

  9. Scalar hair on the black hole in asymptotically anti--de Sitter spacetime

    SciTech Connect

    Torii, Takashi; Maeda, Kengo; Narita, Makoto

    2001-08-15

    We examine the no-hair conjecture in asymptotically anti--de Sitter (AdS) spacetime. First, we consider a real scalar field as the matter field and assume static spherically symmetric spacetime. Analysis of the asymptotics shows that the scalar field must approach the extremum of its potential. Using this fact, it is proved that there is no regular black hole solution when the scalar field is massless or has a 'convex' potential. Surprisingly, while the scalar field has a growing mode around the local minimum of the potential, there is no growing mode around the local maximum. This implies that the local maximum is a kind of 'attractor' of the asymptotic scalar field. We give two examples of the new black hole solutions with a nontrivial scalar field configuration numerically in the symmetric or asymmetric double well potential models. We study the stability of these solutions by using the linear perturbation method in order to examine whether or not the scalar hair is physical. In the symmetric double well potential model, we find that the potential function of the perturbation equation is positive semidefinite in some wide parameter range and that the new solution is stable. This implies that the black hole no-hair conjecture is violated in asymptotically AdS spacetime.

  10. Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin; Wu, Shuang-Qing

    2008-03-01

    Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3 + 1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1 + 1)-dimensional effective metric from these black strings need not be equal to one (√{ - g } ≠ 1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1 + 1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant.

  11. Globally regular instability of 3-dimensional anti-de Sitter spacetime.

    PubMed

    Bizoń, Piotr; Jałmużna, Joanna

    2013-07-26

    We consider three-dimensional anti-de Sitter (AdS) gravity minimally coupled to a massless scalar field and study numerically the evolution of small smooth circularly symmetric perturbations of the AdS3 spacetime. As in higher dimensions, for a large class of perturbations, we observe a turbulent cascade of energy to high frequencies which entails instability of AdS3. However, in contrast to higher dimensions, the cascade cannot be terminated by black hole formation because small perturbations have energy below the black hole threshold. This situation appears to be challenging for the cosmic censor. Analyzing the energy spectrum of the cascade we determine the width ρ(t) of the analyticity strip of solutions in the complex spatial plane and argue by extrapolation that ρ(t) does not vanish in finite time. This provides evidence that the turbulence is too weak to produce a naked singularity and the solutions remain globally regular in time, in accordance with the cosmic censorship hypothesis. PMID:23931347

  12. Quasinormal modes of (anti-)de Sitter black holes in the 1 /D expansion

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro

    2015-04-01

    We use the inverse-dimensional expansion to compute analytically the frequencies of a set of quasinormal modes of static black holes of Einstein-(Anti-)de Sitter gravity, including the cases of spherical, planar or hyperbolic horizons. The modes we study are decoupled modes localized in the near-horizon region, which are the ones that capture physics peculiar to each black hole (such as their instabilities), and which in large black holes contain hydrodynamic behavior. Our results also give the unstable Gregory-Laflamme frequencies of Ricci-flat black branes to two orders higher in 1 /D than previous calculations. We discuss the limits on the accuracy of these results due to the asymptotic but not convergent character of the 1 /D expansion, which is due to the violation of the decoupling condition at finite D. Finally, we compare the frequencies for AdS black branes to calculations in the hydrodynamic expansion in powers of the momentum k. Our results extend up to k 9 for the sound mode and to k 8 for the shear mode.

  13. Precise relativistic orbits in Kerr and Kerr (anti) de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Kraniotis, G. V.

    2004-10-01

    The timelike geodesic equations resulting from the Kerr gravitational metric element are derived and solved exactly including the contribution from the cosmological constant. The geodesic equations are derived, by solving the Hamilton Jacobi partial differential equation by separation of variables. The solutions can be applied in the investigation of the motion of a test particle in the Kerr and Kerr (anti) de Sitter gravitational fields. In particular, we apply the exact solutions of the timelike geodesics: (i) to the precise calculation of dragging (Lense Thirring effect) of a satellite's spherical polar orbit in the gravitational field of Earth assuming Kerr geometry; (ii) assuming the galactic centre is a rotating black hole we calculate the precise dragging of a stellar polar orbit around the galactic centre for various values of the Kerr parameter including those supported by recent observations. The exact solution of non-spherical geodesics in Kerr geometry is obtained by using the transformation theory of elliptic functions. The exact solution of spherical polar geodesics with a nonzero cosmological constant can be expressed in terms of Abelian modular theta functions that solve the corresponding Jacobi's inversion problem.

  14. Rainbow valley of colored (anti) de Sitter gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong

    2016-04-01

    We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.

  15. Black hole formation from pointlike particles in three-dimensional anti-de Sitter space

    NASA Astrophysics Data System (ADS)

    Lindgren, E. J.

    2016-07-01

    We study collisions of many point-like particles in three-dimensional anti-de Sitter space, generalizing the known result with two particles. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massless particles falling in radially from the boundary. We find that when going away from the case of equal energies and discrete rotational symmetry, this is not a trivial generalization of the two-particle case, but requires that the excised wedges corresponding to the particles must be chosen in a very precise way for a consistent solution. We also explicitly take the limit when the number of particles goes to infinity and obtain thin shell solutions that in general break rotational invariance, corresponding to an instantaneous and inhomogeneous perturbation at the boundary. We also compute the stress-energy tensor of the shell using the junction formalism for null shells and obtain agreement with the point particle picture.

  16. More on asymptotically anti-de Sitter spaces in topologically massive gravity

    SciTech Connect

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2010-09-15

    Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).

  17. Solitons and hairy black holes in Einstein-non-Abelian-Proca theory in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Ponglertsakul, Supakchai; Winstanley, Elizabeth

    2016-08-01

    We present new soliton and hairy black hole solutions of Einstein-non-Abelian-Proca theory in asymptotically anti-de Sitter spacetime with gauge group su (2 ) . For static, spherically symmetric configurations, we show that the gauge field must be purely magnetic, and we solve the resulting field equations numerically. The equilibrium gauge field is described by a single function ω (r ) , which must have at least one zero. The solitons and hairy black holes share many properties with the corresponding solutions in asymptotically flat spacetime. In particular, all the solutions we study are unstable under linear, spherically symmetric, perturbations of the metric and gauge field.

  18. Quasinormal modes of plane-symmetric anti-de Sitter black holes: A complete analysis of the gravitational perturbations

    SciTech Connect

    Miranda, Alex S.; Zanchin, Vilson T.

    2006-03-15

    We study in detail the quasinormal modes of linear gravitational perturbations of plane-symmetric anti-de Sitter black holes. The wave equations are obtained by means of the Newman-Penrose formalism and the Chandrasekhar transformation theory. We show that oscillatory modes decay exponentially with time such that these black holes are stable against gravitational perturbations. Our numerical results show that in the large (small) black hole regime the frequencies of the ordinary quasinormal modes are proportional to the horizon radius r{sub +} (wave number k). The frequency of the purely damped mode is very close to the algebraically special frequency in the small horizon limit, and goes as ik{sup 2}/3r{sub +} in the opposite limit. This result is confirmed by an analytical method based on the power series expansion of the frequency in terms of the horizon radius. The same procedure applied to the Schwarzschild anti-de Sitter spacetime proves that the purely damped frequency goes as i(l-1)(l+2)/3r{sub +}, where l is the quantum number characterizing the angular distribution. Finally, we study the limit of high overtones and find that the frequencies become evenly spaced in this regime. The spacing of the frequency per unit horizon radius seems to be a universal quantity, in the sense that it is independent of the wave number, perturbation parity, and black hole size.

  19. Final fate of instability of Reissner-Nordstroem-anti-de Sitter black holes by charged complex scalar fields

    SciTech Connect

    Maeda, Kengo; Fujii, Shunsuke; Koga, Jun-ichirou

    2010-06-15

    We investigate instability of four-dimensional Reissner-Nordstroem-anti-de Sitter (RN-AdS{sub 4}) black holes with various topologies by charged scalar field perturbations. We numerically find that the RN-AdS{sub 4} black holes become unstable against the linear perturbations below a critical temperature. It is analytically shown that charge extraction from the black holes occurs during the unstable evolution. To explore the end state of the instability, we perturbatively construct static black hole solutions with the scalar hair near the critical temperature. It is numerically found that the entropy of the hairy black hole is always larger than the one of the unstable RN-AdS{sub 4} black hole in the microcanonical ensemble. Our results support the speculation that the black hole with charged scalar hair always appears as the final fate of the instability of the RN-AdS{sub 4} black hole.

  20. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, ShuZheng

    2009-10-01

    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the "tortoise" coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r - t) sector is important to our research. Because we only need to study the (r - t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  1. Moving closer to the collapse of a massless scalar field in spherically symmetric anti-de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Santos-Oliván, Daniel; Sopuerta, Carlos F.

    2016-05-01

    We present a new hybrid Cauchy-characteristic evolution scheme that is particularly suited to study gravitational collapse in spherically symmetric asymptotically (global) anti-de Sitter (AdS) spacetimes. The Cauchy evolution allows us to track the scalar field through the different round trips to the AdS boundary, while the characteristic method can bring us very close to the point of formation of an apparent horizon. We describe all the details of the method, including the transition between the two evolution schemes and the details of the numerical implementation for the case of massless scalar fields. We use this scheme to provide more numerical evidence for a recent conjecture on the power law scaling of the apparent horizon mass resulting from the collapse of subcritical configurations. We also compute the critical exponents and echoing periods for a number of critical points and confirm the expectation that their values should be the same as in the asymptotically flat case.

  2. Test of the Anti-de Sitter-Space/Conformal-Field-Theory Correspondence Using High-Spin Operators

    SciTech Connect

    Benna, M. K.; Benvenuti, S.; Klebanov, I. R.; Scardicchio, A.

    2007-03-30

    In two remarkable recent papers the planar perturbative expansion was proposed for the universal function of the coupling appearing in the dimensions of high-spin operators of the N=4 super Yang-Mills theory. We study numerically the integral equation derived by Beisert, Eden, and Staudacher, which resums the perturbative series. In a confirmation of the anti-de Sitter-space/conformal-field-theory (AdS/CFT) correspondence, we find a smooth function whose two leading terms at strong coupling match the results obtained for the semiclassical folded string spinning in AdS{sub 5}. We also make a numerical prediction for the third term in the strong coupling series.

  3. Massive Vector Particles Tunneling from the Neutral Rotating Anti-de Sitter Black Holes in Conformal Gravity

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Jun-Kun

    2016-04-01

    We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter (AdS) black holes in conformal gravity by using the tunneling method. It is well known that the dynamics of massive vector particles are governed by the Proca field equation. Applying WKB approximation to the Proca equation, the tunneling probabilities and radiation spectrums of the emitted particles are derived. Hawking temperature of the neutral rotating AdS black holes in conformal gravity is recovered, which is consistent with the previous result in the literature. Supported by the National Natural Science Foundation of China under Grant No. 11205048, and the Foundation for Young Key Teacher of Henan Normal University

  4. Quasilocal thermodynamics of Kerr and Kerr--anti-de Sitter spacetimes and the AdS/CFT correspondence

    SciTech Connect

    Dehghani, M. H.; Mann, R. B.

    2001-08-15

    We consider the quasilocal thermodynamics of rotating black holes in asymptotically flat and asymptotically anti--de Sitter (AdS) spacetimes. Using the minimal number of intrinsic boundary counterterms inspired by the AdS/conformal field theory correspondence, we find that we are able to carry out an analysis of the thermodynamics of these black holes for virtually all possible values of the rotation parameter and cosmological constant that leave the quasilocal boundary well defined, going well beyond what is possible with background subtraction methods. Specifically, we compute the quasilocal energy E and angular momentum J for arbitrary values of the rotation, mass, and cosmological constant parameters for the (3+1)-dimensional Kerr, Kerr-AdS black holes, and (2+1)-dimensional Banados-Teitelboim-Zannelli (BTZ) black hole. We perform a quasilocal stability analysis and find phase behavior that is commensurate with previous analyses carried out at infinity.

  5. Hawking non-thermal and thermal radiations of Schwarzschild anti-de Sitter black hole by Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Rahman, M. Atiqur; Hossain, M. Ilias

    2013-06-01

    The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SAdS black hole.

  6. Scalar quasinormal modes of anti-de Sitter static spacetime in Horava-Lifshitz gravity with U (1 ) symmetry

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Qian, Wei-Liang; Pavan, A. B.

    2016-09-01

    In this paper, we investigate the scalar quasinormal modes of Hořava-Lifshitz theory with U (1 ) symmetry in static anti-de Sitter spacetime. The static planar and spherical black hole solutions in lower energy limit are derived in nonprojectable Hořava-Lifshitz gravity. The equation of motion of a scalar field is obtained, and is utilized to study the quasinormal modes of massless scalar particles. We find that the effect of Hořava-Lifshitz correction is to increase the quasinormal period as well as to slow down the decay of the oscillation magnitude. Besides, the scalar field could be unstable when the correction becomes too large.

  7. Maxwell perturbations on asymptotically anti-de Sitter spacetimes: Generic boundary conditions and a new branch of quasinormal modes

    NASA Astrophysics Data System (ADS)

    Wang, Mengjie; Herdeiro, Carlos; Sampaio, Marco O. P.

    2015-12-01

    Perturbations of asymptotically anti-de-Sitter (AdS) spacetimes are often considered by imposing field vanishing boundary conditions (BCs) at the AdS boundary. Such BCs, of Dirichlet-type, imply a vanishing energy flux at the boundary, but the converse is, generically, not true. Regarding AdS as a gravitational box, we consider vanishing energy flux (VEF) BCs as a more fundamental physical requirement and we show that these BCs can lead to a new branch of modes. As a concrete example, we consider Maxwell perturbations on Kerr-AdS black holes in the Teukolsky formalism, but our formulation applies also for other spin fields. Imposing VEF BCs, we find a set of two Robin BCs, even for Schwarzschild-AdS black holes. The Robin BCs on the Teukolsky variables can be used to study quasinormal modes, superradiant instabilities and vector clouds. As a first application, we consider here the quasinormal modes of Schwarzschild-AdS black holes. We find that one of the Robin BCs yields the quasinormal spectrum reported in the literature, while the other one unveils a new branch for the quasinormal spectrum.

  8. Dyons and dyonic black holes in su (N ) Einstein-Yang-Mills theory in anti-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2016-03-01

    We present new spherically symmetric, dyonic soliton and black hole solutions of the su (N ) Einstein-Yang-Mills equations in four-dimensional asymptotically anti-de Sitter spacetime. The gauge field has nontrivial electric and magnetic components and is described by N -1 magnetic gauge field functions and N -1 electric gauge field functions. We explore the phase space of solutions in detail for su (2 ) and su (3 ) gauge groups. Combinations of the electric gauge field functions are monotonic and have no zeros; in general the magnetic gauge field functions may have zeros. The phase space of solutions is extremely rich, and we find solutions in which the magnetic gauge field functions have more than fifty zeros. Of particular interest are solutions for which the magnetic gauge field functions have no zeros, which exist when the negative cosmological constant has sufficiently large magnitude. We conjecture that at least some of these nodeless solutions may be stable under linear, spherically symmetric, perturbations.

  9. Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation

    SciTech Connect

    Brihaye, Yves; Hartmann, Betti

    2011-10-15

    We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field that possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.

  10. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  11. Quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter black hole

    SciTech Connect

    Uchikata, Nami; Yoshida, Shijun

    2011-03-15

    We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r{sub +}<(3/eL)Q{sub c}, where Q, Q{sub c}, and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r{sub +}< or approx. 0.8Q{sub c}, 0.78Q{sub c}, and 0.76Q{sub c}, respectively.

  12. Thermodynamical features of Verlinde's approach for a non-commutative Schwarzschild-anti-deSitter black hole in a broad range of scales

    NASA Astrophysics Data System (ADS)

    Mehdipour, S. Hamid

    2014-09-01

    We try to study the thermodynamical features of a non-commutative inspired Schwarzschild-anti-de Sitter black hole in the context of the entropic gravity model, particularly for the model that is employed in a broad range of scales, from the short distances to the large distances. At small length scales, the Newtonian force fails because one finds a linear relation between the entropic force and the distance. In addition, there are some deviations from the standard Newtonian gravity at large length scales.

  13. The Klein–Gordon–Fock equation in the curved spacetime of the Kerr–Newman (anti) de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Kraniotis, G. V.

    2016-11-01

    Exact solutions of the Klein–Gordon–Fock (KGF) general relativistic equation that describe the dynamics of a massive, electrically charged scalar particle in the curved spacetime geometry of an electrically charged, rotating Kerr–Newman–(anti) de Sitter black hole are investigated. In the general case of a rotating, charged, cosmological black hole the solution of the KGF equation with the method of separation of variables results in Fuchsian differential equations for the radial and angular parts which for most of the parameter space contain more than three finite singularities and thereby generalise the Heun differential equations. For particular values of the physical parameters (i.e. mass of the scalar particle) these Fuchsian equations reduce to the case of the Heun equation and the closed form analytic solutions we derive are expressed in terms of Heun functions. For other values of the parameters some of the extra singular points are false singular points. We derive the conditions on the coefficients of the generalised Fuchsian equation such that a singular point is a false point. In such a case the exact solution of the Fuchsian equation can in principle be simplified and expressed in terms of Heun functions. This is the generalisation of the case of a Heun equation with a false singular point in which the exact solution of Heun’s differential equation is expressed in terms of Gauß hypergeometric function. We also derive the exact solutions of the radial and angular equations for a charged massive scalar particle in the Kerr–Newman spacetime. The analytic solutions are expressed in terms of confluent Heun functions. Moreover, we derived the constraints on the parameters of the theory such that the solution simplifies and expressed in terms of confluent Kummer hypergeometric functions. We also investigate the radial solutions in the KN case in the regions near the event horizon and far from the black hole. Finally, we construct several

  14. Di-Jet Conical Correlations Associated with Heavy Quark Jets in anti-de Sitter Space/Conformal Field Theory Correspondence

    SciTech Connect

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-03-13

    We show that far zone Mach and diffusion wake 'holograms' produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N{sub c}{yields}{infinity} supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium 'neck' zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence.

  15. Di-jet conical correlations associated with heavy quark jets in anti-de sitter space/conformal field theory correspondence.

    PubMed

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-03-13

    We show that far zone Mach and diffusion wake "holograms" produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N_{c}-->infinity supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium "neck" zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence. PMID:19392107

  16. Hawking non-thermal and thermal radiations of Reissner Nordström anti-de Sitter black hole by Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Ilias Hossain, M.; Atiqur Rahman, M.

    2013-09-01

    We have investigated Hawking non-thermal and purely thermal Radiations of Reissner Nordström anti-de Sitter (RNAdS) black hole by massive particles tunneling method. The spacetime background has taken as dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has derived from Hamilton-Jacobi equation. We have supposed that energy and angular momentum are conserved and have shown that the non-thermal and thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results for RNAdS black hole is also in the same manner with Parikh and Wilczek's opinion and explored the new result for Hawking radiation of RNAdS black hole.

  17. On the global existence of hairy black holes and solitons in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2016-10-01

    We investigate the existence of black hole and soliton solutions to four dimensional, anti-de Sitter (adS), Einstein-Yang-Mills theories with general semisimple connected and simply connected gauge groups, concentrating on the so-called regular case. We here generalise results for the asymptotically flat case, and compare our system with similar results from the well-researched adS {mathfrak {su}}(N) system. We find the analysis differs from the asymptotically flat case in some important ways: the biggest difference is that for Λ <0, solutions are much less constrained as r→ infty , making it possible to prove the existence of global solutions to the field equations in some neighbourhood of existing trivial solutions, and in the limit of |Λ |→ infty . In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the {mathfrak {su}}(N) case proved important to stability.

  18. Conformal entropy from horizon states: Solodukhin's method for spherical, toroidal, and hyperbolic black holes in D-dimensional anti-de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Dias, Gonçalo A. S.; Lemos, José P. S.

    2006-08-01

    A calculation of the entropy of static, electrically charged, black holes with spherical, toroidal, and hyperbolic-compact and oriented horizons, in D spacetime dimensions, is performed. These black holes live in an anti de Sitter spacetime, i.e., a spacetime with negative cosmological constant. To find the entropy, the approach developed by Solodukhin is followed. The method consists in a redefinition of the variables in the metric, by considering the radial coordinate as a scalar field. Then one performs a 2+(D-2) dimensional reduction, where the (D-2) dimensions are in the angular coordinates, obtaining a 2-dimensional effective scalar field theory. This theory is a conformal theory in an infinitesimally small vicinity of the horizon. The corresponding conformal symmetry will then have conserved charges, associated with its infinitesimal conformal generators, which will generate a classical Poisson algebra of the Virasoro type. Shifting the charges and replacing Poisson brackets by commutators, one recovers the usual form of the Virasoro algebra, obtaining thus the level zero conserved charge eigenvalue L0, and a nonzero central charge c. The entropy is then obtained via the Cardy formula.

  19. Quantization of a scalar field in two Poincaré patches of anti-de Sitter space and AdS/CFT

    NASA Astrophysics Data System (ADS)

    Fujisawa, Ippei; Nakayama, Ryuichi

    2014-09-01

    Two sets of modes of a massive free scalar field are quantized in a pair of Poincaré patches of Lorentzian anti-de Sitter (AdS) space, AdSd+1 (d≥2). It is shown that in Poincaré coordinates (r,t,x→), the two boundaries at r=±∞ are connected. When the scalar mass m satisfies a condition 0<ν=√{(d2/4)+(}<1, there exist two sets of mode solutions to Klein-Gordon equation, with distinct fall-off behaviors at the boundary. By using the fact that the boundaries at r=±∞ are connected, a conserved Klein-Gordon norm can be defined for these two sets of scalar modes, and these modes are canonically quantized. Energy is also conserved. A prescription within the approximation of semi-classical gravity is presented for computing two- and three-point functions of the operators in the boundary CFT, which correspond to the two fall-off behaviours of scalar field solutions.

  20. Gravitational lensing and frame dragging of light in the Kerr-Newman and the Kerr-Newman (anti) de Sitter black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Kraniotis, G. V.

    2014-11-01

    The null geodesics that describe photon orbits in the spacetime of a rotating electrically charged black hole (Kerr-Newman) are solved exactly including the contribution from the cosmological constant. We derive elegant closed form solutions for relativistic observables such as the deflection angle and frame dragging effect that a light ray experiences in the gravitational fields (i) of a Kerr-Newman black hole and (ii) of a Kerr-Newman-de Sitter black hole. We then solve the more involved problem of treating a Kerr-Newman black hole as a gravitational lens, i.e. a KN black hole along with a static source of light and a static observer both located far away but otherwise at arbitrary positions in space. For this model, we derive the analytic solutions of the lens equations in terms of Appell and Lauricella hypergeometric functions and the Weierstra\\ss modular form. The exact solutions derived for null, spherical polar and non-polar orbits, are applied for the calculation of frame dragging for the orbit of a photon around the galactic centre, assuming that the latter is a Kerr-Newman black hole. We also apply the exact solution for the deflection angle of an equatorial light ray in the gravitational field of a Kerr-Newman black hole for the calculation of bending of light from the gravitational field of the galactic centre for various values of the Kerr parameter, electric charge and impact factor. In addition, we derive analytic expressions for the Maxwell tensor components for a Zero-Angular-Momentum-Observer (ZAMO) in the Kerr-Newman-de Sitter spacetime.

  1. Flavor-changing decays of the top quark in 5D warped models

    NASA Astrophysics Data System (ADS)

    Díaz-Furlong, Alfonso; Frank, Mariana; Pourtolami, Nima; Toharia, Manuel; Xoxocotzi, Reyna

    2016-08-01

    We study flavor-changing neutral current decays of the top quark in the context of general warped extra dimensions, where the five-dimensional (5D) metric is slightly modified from 5D anti-de Sitter (AdS5 ). These models address the Planck-electroweak hierarchies of the Standard Model and can obey all the low-energy flavor bounds and electroweak precision tests, while allowing the scale of new physics to be at the TeV level, and thus within the reach of the LHC at Run II. We perform the calculation of these exotic top decay rates for the case of a bulk Higgs, and thus include in particular the effect of the additional Kaluza-Klein (KK) Higgs modes running in the loops, along with the usual KK fermions and KK gluons.

  2. Conformally covariant quantization of the Maxwell field in de Sitter space

    NASA Astrophysics Data System (ADS)

    Faci, S.; Huguet, E.; Queva, J.; Renaud, J.

    2009-12-01

    In this article, we quantize the Maxwell (“massless spin one”) de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO0(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R6 and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.

  3. Conformally covariant quantization of the Maxwell field in de Sitter space

    SciTech Connect

    Faci, S.; Huguet, E.; Queva, J.; Renaud, J.

    2009-12-15

    In this article, we quantize the Maxwell ('massless spin one') de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO{sub 0}(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R{sup 6} and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.

  4. Anti-de Sitter universe dynamics in loop quantum cosmology

    SciTech Connect

    Bentivegna, Eloisa; Pawlowski, Tomasz

    2008-06-15

    A model for a flat isotropic universe with a negative cosmological constant {lambda} and a massless scalar field as sole matter content is studied within the framework of loop quantum cosmology. By application of the methods introduced for the model with {lambda}=0, the physical Hilbert space and the set of Dirac observables are constructed. As in that case, the scalar field plays here the role of an emergent time. The properties of the system are found to be similar to those of the k=1 Friedmann-Robertson-Walker (FRW) model: for small energy densities, the quantum dynamics reproduces the classical one, whereas, due to modifications at near-Planckian densities, the big bang and big crunch singularities are replaced by a quantum bounce connecting deterministically the large semiclassical epochs. Thus in loop quantum cosmology the evolution is qualitatively cyclic.

  5. Anti-de Sitter D-branes in curved backgrounds

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2005-07-01

    We investigate the properties of the AdS D1-branes which are the bound states of a curved D1-brane with n fundamental strings (F1) in the AdS3 spacetime, and the AdS D2-branes which are the axially symmetric bound states of a curved D2-brane with m D0-branes and n fundamental strings in the AdS3 × S3 spacetime. We see that, while the AdS D1-branes asymptotically approach to the event horizon of the AdS3 spacetime the AdS D2-branes will end on it. As the near horizon geometry of the F1/NS5 becomes the spacetime of AdS3 × S3 × T4 with NS-NS three form turned on, we furthermore investigate the corresponding AdS D-branes in the NS5-branes and macroscopic F-strings backgrounds, as an attempt to understand the origin of the AdS D-branes. From the found DBI solutions we see that in the F-strings background, both of the AdS D1-branes and AdS D2-branes will asymptotically approach to the position with a finite distance away from the F-strings. However, the AdS D2-branes therein could also end on the F-strings once it carries sufficient D0-branes charges. We also see that there does not exist any stable AdS D-branes in the NS5-branes backgrounds. We present physical arguments to explain these results, which could help us in understanding the intriguing mechanics of the formation of the AdS D-branes.

  6. Extremal surfaces in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Narayan, K.

    2015-06-01

    We study extremal surfaces in de Sitter space in the Poincare slicing in the upper patch, anchored on spatial subregions at the future boundary I+, restricted to constant boundary Euclidean time slices (focusing on strip subregions). We find real extremal surfaces of minimal area as the boundaries of past light-cone wedges of the subregions in question: these are null surfaces with vanishing area. We also find complex extremal surfaces as complex extrema of the area functional, and the area is not always real valued. In dS4 the area is real. The area has structural resemblance with entanglement entropy in a dual conformal field theory. There are parallels with analytic continuation from the Ryu-Takayanagi expressions for holographic entanglement entropy in anti-de Sitter. We also discuss extremal surfaces in the de Sitter (dS) black brane and the de Sitter "bluewall" studied previously. The dS4 black brane complex surfaces exhibit a real finite cutoff-independent extensive piece. In the bluewall geometry, there are real surfaces that go from one asymptotic universe to the other through the Cauchy horizons.

  7. Perturbations on and off de Sitter brane in anti-de Sitter bulk

    NASA Astrophysics Data System (ADS)

    Libanov, M.; Rubakov, V.

    2016-09-01

    Motivated by holographic models of a (pseudo)conformal Universe, we carry out a complete analysis of linearized metric perturbations in the time-dependent two-brane setup of the Lykken-Randall type. We present the equations of motion for the scalar, vector and tensor perturbations and identify light modes in the spectrum, which are scalar radion and transverse-traceless graviton. We show that there are no other modes in the discrete part of the spectrum. We pay special attention to properties of light modes and show, in particular, that the radion has red power spectrum at late times, as anticipated on holographic grounds. Unlike the graviton, the radion survives in the single-brane limit, when one of the branes is sent to the adS boundary. These properties imply that potentially observable features characteristic of the 4d (pseudo)conformal cosmology, such as statistical anisotropy and specific shapes of non-Gaussianity, are inherent also in holographic conformal models as well as in brane world inflation.

  8. Equivalence of emergent de Sitter spaces from conformal field theory

    NASA Astrophysics Data System (ADS)

    Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire

    2016-09-01

    Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS2), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these two emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show that both prescriptions lead to an emergent hyperbolic patch of dS2. We offer a general method for relating kinematic space and the auxiliary de Sitter space that is valid in the vacuum and thermal cases.

  9. 'Micromanaging de Sitter holography'

    SciTech Connect

    Dong, Xi; Horn, Bart; Silverstein, Eva; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP

    2010-08-26

    We develop tools to engineer de Sitter vacua with semi-holographic duals, using elliptic fibrations and orientifolds to uplift Freund-Rubin compactifications with CFT duals. The dual brane construction is compact and constitutes a microscopic realization of the dS/dS correspondence, realizing d-dimensional de Sitter space as a warped compactification down to (d-1)-dimensional de Sitter gravity coupled to a pair of large-N matter sectors. This provides a parametric microscopic interpretation of the Gibbons-Hawking entropy. We illustrate these ideas with an explicit class of examples in three dimensions, and describe ongoing work on four-dimensional constructions. The Gibbons-Hawking entropy of the de Sitter horizon [1] invites a microscopic interpretation and a holographic formulation of inflating spacetimes. Much progress was made in the analogous problem in black hole physics using special black holes in string theory whose microstates could be reliably counted, such as those analyzed in [2,3]; this led to the AdS/CFT correspondence [4]. In contrast, a microscopic understanding of the entropy of de Sitter space is more difficult for several reasons including its potential dynamical connections to other backgrounds (metastability), the absence of a non-fluctuating timelike boundary, and the absence of supersymmetry. In this paper, we develop a class of de Sitter constructions in string theory, built up from AdS/CFT dual pairs along the lines of [5], which are simple enough to provide a microscopic accounting of the parametric scaling of the Gibbons-Hawking entropy. These models realize microscopically a semi-holographic description of metastable de Sitter space which had been derived macroscopically in [6]. It would also be interesting to connect this to other approaches to de Sitter holography such as [7, 8] and to other manifestations of the de Sitter entropy such as [9]. The construction is somewhat analogous to neutral black branes analyzed in [11]. We will

  10. A note on Schwarzschild-de Sitter black holes in mimetic F(R) gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-05-01

    In this paper, we investigate the conditions under which a Schwarzschild-de Sitter black hole spacetime is a solution of the mimetic F(R) gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic F(R) gravity is a slight modification of the ordinary F(R) gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary F(R) gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner-Nordström anti-de Sitter black hole.

  11. Simple de Sitter solutions

    SciTech Connect

    Silverstein, Eva

    2008-05-15

    We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable de Sitter (dS) minima of the potential for moduli obtained from a compactification on a product of two nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four-dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, Kaluza Klein (KK), and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential.

  12. Simple de Sitter Solutions

    SciTech Connect

    Silverstein, Eva; /Stanford U., Phys. Dept. /SLAC

    2008-01-07

    We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable dS minima of the potential for moduli obtained from a compactification on a product of two Nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, KK, and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential.

  13. A de Sitter tachyon thick braneworld

    SciTech Connect

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto; Mora-Luna, Refugio Rigel; Rocha, Roldão da E-mail: aha@fis.unam.mx E-mail: rigel@ifm.umich.mx

    2013-02-01

    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.

  14. Bondi-type accretion in the Reissner-Nordström-(anti-)de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Ficek, F.

    2015-12-01

    In this paper I study the stationary, spherically symmetric accretion of fluids onto a charged black hole in the presence of a cosmological constant. For some isothermal equations of state it is possible to obtain analytic solutions. For the case of a radiation fluid I derive the relation between the locations of horizons and sonic (critical) points. In specific cases the solutions form closed, binocular-like trajectories in a phase diagram of the velocity versus radius.

  15. Charlotte Moore Sitterly

    NASA Astrophysics Data System (ADS)

    Rubin, Vera C.

    2010-07-01

    Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a Ph.D. degree at the University of California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 Moore moved to the National Bureau of Standards (NBS), to supervise preparation of the widely-used tables of atomic energy levels. Following the successful launching (1946) of a V2 rocket to obtain the ultraviolet spectrum of the Sun, she started working also with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with both the NBS and the NRL until her death in 1990. Charlotte Moore was a rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are reliable.

  16. Infrared surprises in the de Sitter universe

    NASA Astrophysics Data System (ADS)

    Moschella, Ugo

    2016-06-01

    We describe a few unexpected features of de Sitter quantum field theory (QFT) that have no Minkowskian counterparts. These phenomena show that even when the cosmological constant is tiny a Minkowskian way of fast thinking about de Sitter can lead to mistakes and that de Sitter QFT is essentially different from standard relativistic (Minkowskian) QFT.

  17. Dirac equation in a de Sitter expansion for massive neutrinos from modern Kaluza-Klein theory

    NASA Astrophysics Data System (ADS)

    Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio

    2012-03-01

    Using the modern Kaluza-Klein theory of gravity (or the Induced Matter theory), we study the Dirac equation for massive neutrinos on a de Sitter background metric from a 5D Riemann-flat (and hence Ricci-flat) extended de Sitter metric, on which is defined the vacuum for test massless 1/2-spin neutral fields minimally coupled to gravity and free of any other interactions. We obtain that the effective 4D masses of the neutrinos can only take three possible values, which are related to the (static) foliation of the fifth and noncompact extra dimension.

  18. Primordial SdS universe from a 5D vacuum: scalar field fluctuations on Schwarzschild and Hubble horizons

    SciTech Connect

    Aguilar, José Edgar Madriz; Bellini, Mauricio E-mail: mbellini@mdp.edu.ar

    2010-11-01

    We study scalar field fluctuations of the inflaton field in an early inflationary universe on an effective 4D Schwarzschild-de Sitter (SdS) metric, which is obtained after make a planar coordinate transformation on a 5D Ricci-flat Schwarzschild-de Sitter (SdS) static metric. We obtain the important result that the spectrum of fluctuations at zeroth order is independent of the scalar field mass M on Schwarzschild scales, while on cosmological scales it exhibits a mass dependence. However, in the first-order expansion, the spectrum depends of the inflaton mass and the amplitude is linear with the Black-Hole (BH) mass m.

  19. Relationship between five-dimensional black holes and de Sitter spaces

    NASA Astrophysics Data System (ADS)

    Myung, Y. S.

    2004-02-01

    We study a close relationship between the topological anti-de Sitter (TAdS) black holes and topological de Sitter (TdS) spaces including the Schwarzschild de Sitter (SdS) black hole in five dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing k by -k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild TdS space by substituting m with -m. For this purpose we calculate thermal quantities of bulk (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further, we compute logarithmic corrections to the Bekenstein Hawking entropy, Cardy Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that in the thermal relation between the TdS spaces and TAdS black holes, the cosmological horizon plays the same role as the horizon of TAdS black holes. Finally we note that the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes.

  20. Infrared divergences in de Sitter space

    SciTech Connect

    Polarski, D. Service d'Astrophysique, CEN Saclay, 91191 Gif-sur-Yvette CEDEX, France)

    1991-03-15

    Infrared divergences in de Sitter space are considered. It is shown that symmetry breaking is unavoidable only when the infrared divergence is strong enough. The static vacuum has no symmetry breaking despite the presence of an infrared divergence.

  1. Faddeev-Popov-ghost propagators for Yang-Mills theories and perturbative quantum gravity in the covariant gauge in de Sitter spacetime

    SciTech Connect

    Faizal, Mir; Higuchi, Atsushi

    2008-09-15

    The propagators of the Faddeev-Popov (FP) ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge are infrared (IR) divergent in de Sitter spacetime. We point out, however, that the modes responsible for these divergences will not contribute to loop diagrams in computations of time-ordered products in either Yang-Mills theories or perturbative quantum gravity. Therefore, we propose that the IR-divergent FP-ghost propagator should be regularized by a small mass term that is sent to zero in the end of any perturbative calculations. This proposal is equivalent to using the effective FP-ghost propagators, which we present in an explicit form, obtained by removing the modes responsible for the IR divergences. We also make some comments on the corresponding propagators in anti-de Sitter spacetime.

  2. Wilson loops in superconformal Chern-Simons theory and fundamental strings in Anti-de Sitter supergravity dual

    NASA Astrophysics Data System (ADS)

    Rey, Soo-Jong; Suyama, Takao; Yamaguchi, Satoshi

    2009-03-01

    We study Wilson loop operators in three-dimensional, Script N = 6 superconformal Chern-Simons theory dual to IIA superstring theory on AdS4 × Bbb CBbb P3. Novelty of Wilson loop operators in this theory is that, for a given contour, there are two linear combinations of Wilson loop transforming oppositely under time-reversal transformation. We show that one combination is holographically dual to IIA fundamental string, while orthogonal combination is set to zero. We gather supporting evidences from detailed comparative study of generalized time-reversal transformations in both D2-brane worldvolume and ABJM theories. We then classify supersymmetric Wilson loops and find at most 1/6 supersymmetry. We next study Wilson loop expectation value in planar perturbation theory. For circular Wilson loop, we find features remarkably parallel to circular Wilson loop in Script N = 4 super Yang-Mills theory in four dimensions. First, all odd loop diagrams vanish identically and even loops contribute nontrivial contributions. Second, quantum corrected gauge and scalar propagators take the same form as those of Script N = 4 super Yang-Mills theory. Combining these results, we propose that expectation value of circular Wilson loop is given by Wilson loop expectation value in pure Chern-Simons theory times zero-dimensional Gaussian matrix model whose variance is specified by an interpolating function of `t Hooft coupling. We suggest the function interpolates smoothly between weak and strong coupling regime, offering new test ground of the AdS/CFT correspondence.

  3. Loop quantization of a model for D = 1 + 2 (anti)de Sitter gravity coupled to topological matter

    NASA Astrophysics Data System (ADS)

    Constantinidis, Clisthenis P.; Oporto, Zui; Piguet, Olivier

    2015-03-01

    We present a complete quantization of Lorentzian D=1+2 gravity with cosmological constant, coupled to a set of topological matter fields. The approach of loop quantum gravity is used thanks to a partial gauge fixing leaving a residual gauge invariance under a compact semi-simple gauge group, namely Spin(4) = SU(2) × SU(2). A pair of quantum observables is constructed, which are non-trivial despite being gauge-equivalent to zero at the classical level. A semi-classical approximation based on appropriately defined coherent states shows non-vanishing expectation values for them, thus not reproducing their classical behaviour.

  4. Inflation as de Sitter instability

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Franzin, Edgardo; Mignemi, Salvatore

    2016-09-01

    We consider cosmological inflation generated by a scalar field slowly rolling off from a de Sitter maximum of its potential. The models belong to the class of hilltop models and represent the most general model of this kind in which the scalar potential can be written as the sum of two exponentials. The minimally coupled Einstein-scalar gravity theory obtained in this way is the cosmological version of a two-scale generalization of known holographic models, allowing for solitonic solutions interpolating between an AdS spacetime in the infrared and scaling solutions in the ultraviolet. We then investigate cosmological inflation in the slow-roll approximation. Our model reproduces correctly, for a wide range of its parameters, the most recent experimental data for the power spectrum of primordial perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton, turns out to be seven to eight orders of magnitude smaller than the Planck mass.

  5. De Sitter thin brane model

    NASA Astrophysics Data System (ADS)

    Nishi, Masato

    2016-07-01

    We discuss the large mass hierarchy problem in a braneworld model which represents our acceleratively expanding universe. The Randall-Sundrum (RS) model with one extra warped dimension added to a flat four-dimensional space-time cannot describe our expanding universe. Here, we study instead the de Sitter thin brane model. This is described by the same action as that for the RS model, but the four-dimensional space-time on the branes is dS_4. We study the model for both the cases of positive five-dimensional cosmological constant Λ_5 and a negative one. In the positive Λ_5 case, the four-dimensional large hierarchy necessitates a five-dimensional large hierarchy, and we cannot get a natural explanation. On the other hand, in the negative Λ_5 case, the large hierarchy is naturally realized in the five-dimensional theory in the same manner as in the RS model. Moreover, another large hierarchy between the Hubble parameter and the Planck scale is realized by the O(10^2) hierarchy of the five-dimensional quantities. Finally, we find that the lightest mass of the massive Kaluza-Klein modes and the intervals of the mass spectrum are of order 10^2 GeV, which are the same as in the RS case and do not depend on the value of the Hubble parameter.

  6. 5-D Choptuik critical exponent and holography

    NASA Astrophysics Data System (ADS)

    Bland, J.; Kunstatter, G.

    2007-05-01

    Recently, a holographic argument was used to relate the saturation exponent, γBFKL, of 4-dimensional Yang-Mills theory in the Regge limit to the Choptuik critical scaling exponent, γ5d, in 5-dimensional black hole formation via scalar field collapse [L. Álvarez-Gaumé, C. Gómez, and M. A. Vázquez-Mozo, arXiv:hep-th/0611312.]. Remarkably, the numerical value of the former agreed quite well with previous calculations of the latter. We present new results of an improved calculation of γ5d with substantially decreased numerical error. Our current result is γ5d=0.4131±0.0001, which is close to, but not in strict agreement with, the value of γBFKL=0.409552 quoted in [L. Álvarez-Gaumé, C. Gómez, and M. A. Vázquez-Mozo, arXiv:hep-th/0611312.].

  7. Tachyon effective dynamics and de Sitter vacua

    SciTech Connect

    Carneiro da Cunha, Bruno

    2004-09-15

    We show that the Dirac-Born-Infeld (DBI) action for the singlet sector of the tachyon in two-dimensional string theory has a SL(2,R) symmetry, a real-time counterpart of the ground ring. The action can be rewritten as that of point particles moving in a de Sitter space, whose coordinates are given by the value of the eigenvalue and time. The symmetry then manifests as the isometry group of de Sitter space in two dimensions. We use this fact to write the collective field theory for a large number of branes, which has a natural interpretation as a fermion field in this de Sitter space. After spending some time building geometrical insight on facts about the condensation process, the state corresponding to a sD-brane is identified and standard results in quantum field theory in curved spacetime are used to compute the backreaction of the thermal background.

  8. Entropic uncertainty relation in de Sitter space

    NASA Astrophysics Data System (ADS)

    Jia, Lijuan; Tian, Zehua; Jing, Jiliang

    2015-02-01

    The uncertainty principle restricts our ability to simultaneously predict the measurement outcomes of two incompatible observables of a quantum particle. However, this uncertainty could be reduced and quantified by a new Entropic Uncertainty Relation (EUR). By the open quantum system approach, we explore how the nature of de Sitter space affects the EUR. When the quantum memory A freely falls in the de Sitter space, we demonstrate that the entropic uncertainty acquires an increase resulting from a thermal bath with the Gibbons-Hawking temperature. And for the static case, we find that the temperature coming from both the intrinsic thermal nature of the de Sitter space and the Unruh effect associated with the proper acceleration of A also brings effect on entropic uncertainty, and the higher the temperature, the greater the uncertainty and the quicker the uncertainty reaches the maximal value. And finally the possible mechanism behind this phenomenon is also explored.

  9. Supersymmetry and Lorentz Violation in 5D

    SciTech Connect

    Garcia-Aguilar, J. D.; Perez-Lorenzana, A.; Pedraza-Ortega, O.

    2011-10-14

    We present a study for a Supersymmetric field theory with Lorentz-Violation terms in 5D. We perform the analysis in the context of the Berger-Kostelecky model (BK), adding one compactified dimension that explicitly breaks the Lorentz invariance. We introduce terms that encode this breaking, and find non trivial restrictions over boundary conditions of fields that one needs to close the supersymmetric algebra.

  10. Matter-coupled de Sitter supergravity

    NASA Astrophysics Data System (ADS)

    Kallosh, R. E.

    2016-05-01

    The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov-Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.

  11. Infrared effects in a de Sitter background

    SciTech Connect

    Dolgov, A.D.; Einhorn, M.B.; Zakharov, V.I.

    1995-07-15

    We have estimated higher order quantum gravity corrections to de Sitter spacetime. Our results suggest that, while the classical spacetime metric may be distorted by the graviton self-interactions, the corrections are relatively weaker than previously thought, possibly growing like a power rather than exponentially in time.

  12. Schwinger effect in de Sitter space

    SciTech Connect

    Fröb, Markus B.; Garriga, Jaume; Kanno, Sugumi; Sasaki, Misao; Tanaka, Takahiro; Soda, Jiro; Vilenkin, Alexander E-mail: jaume.garriga@ub.edu E-mail: misao@yukawa.kyoto-u.ac.jp E-mail: tanaka@yukawa.kyoto-u.ac.jp

    2014-04-01

    We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field φ of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ''in'' vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ''upward'' and ''downward'' tunneling contribute to the build-up of the current. For heavy fields, with m{sup 2} >> eE,H{sup 2}, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m || H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mH∼Sitter invariance. Finally, we comment on the role of initial conditions, and ''persistence of memory'' effects.

  13. De Sitter Gravity and Liouville Theory

    NASA Astrophysics Data System (ADS)

    Klemm, Dietmar; Vanzo, Luciano

    2002-04-01

    We show that the spectrum of conical defects in three-dimensional de Sitter space is in one-to-one correspondence with the spectrum of vertex operators in Liouville conformal field theory. The classical conformal dimensions of vertex operators are equal to the masses of the classical point particles in dS3, that cause the conical defect. The quantum dimensions instead are shown to coincide with the mass of the Kerr-dS3 solution computed with the Brown-York stress tensor. Therefore classical de Sitter gravity encodes the quantum properties of Liouville theory. The equality of the gravitational and the Liouville stress tensor provides a further check of this correspondence. The Seiberg bound for vertex operators translates on the bulk side into an upper mass bound for classical point particles. Bulk solutions with cosmological event horizons correspond to microscopic Liouville states, whereas those without horizons correspond to macroscopic (normalizable) states. We also comment on recent criticisms by Dyson, Lindesay and Susskind, and point out that the contradictions found by these authors may be resolved if the dual CFT is not able to capture the thermal nature of de Sitter space. Indeed we find that on the CFT side, de Sitter entropy is merely Liouville momentum, and thus has no statistical interpretation in this approach.

  14. Initial development of 5D COGENT

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Lee, W.; Dorf, M.; Dorr, M.

    2015-11-01

    COGENT is a continuum gyrokinetic edge code being developed by the by the Edge Simulation Laboratory (ESL) collaboration. Work to date has been primarily focussed on a 4D (axisymmetric) version that models transport properties of edge plasmas. We have begun development of an initial 5D version to study edge turbulence, with initial focus on kinetic effects on blob dynamics and drift-wave instability in a shearless magnetic field. We are employing compiler directives and preprocessor macros to create a single source code that can be compiled in 4D or 5D, which helps to ensure consistency of physics representation between the two versions. A key aspect of COGENT is the employment of mapped multi-block grid capability to handle the complexity of diverter geometry. It is planned to eventually exploit this capability to handle magnetic shear, through a series of successively skewed unsheared grid blocks. The initial version has an unsheared grid and will be used to explore the degree to which a radial domain must be block decomposed. We report on the status of code development and initial tests. Work performed for USDOE, at LLNL under contract DE-AC52-07NA27344.

  15. Cosmic curvature from de Sitter equilibrium cosmology.

    PubMed

    Albrecht, Andreas

    2011-10-01

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  16. Conformal linear gravity in de Sitter space

    SciTech Connect

    Takook, M. V.; Tanhayi, M. R.; Fatemi, S.

    2010-03-15

    It has been shown that the theory of linear conformal quantum gravity must include a tensor field of rank-3 and mixed symmetry [Binegar et al., Phys. Rev. D 27, 2249 (1983)]. In this paper, we obtain the corresponding field equation in de Sitter space. Then, in order to relate this field with the symmetric tensor field of rank-2, K{sub {alpha}}{sub {beta}} related to graviton, we will define homomorphisms between them. Our main result is that if one insists K{sub {alpha}}{sub {beta}} to be a unitary irreducible representation of de Sitter and conformal groups, it must satisfy a field equation of order of 6, which is obtained.

  17. Representing the vacuum polarization on de Sitter

    SciTech Connect

    Leonard, Katie E.; Woodard, Richard P.; Prokopec, Tomislav

    2013-03-15

    Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obscure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.

  18. De Sitter's theory of Galilean satellites

    NASA Astrophysics Data System (ADS)

    Broer, Henk; Zhao, Lei

    2016-08-01

    In this article, we investigate the mathematical part of De Sitter's theory on the Galilean satellites, and further extend this theory by showing the existence of some quasi-periodic librating orbits by application of KAM theorems. After showing the existence of De Sitter's family of linearly stable periodic orbits in the Jupiter-Io-Europa-Ganymede model by averaging and reduction techniques in the Hamiltonian framework, we further discuss the possible extension of this theory to include a fourth satellite Callisto, and establish the existence of a set of positive measure of quasi-periodic librating orbits in both models for almost all choices of masses among which one sufficiently dominates the others.

  19. Radiation via tunneling from a de Sitter cosmological horizon

    NASA Astrophysics Data System (ADS)

    Medved, A. J.

    2002-12-01

    Hawking radiation can usefully be viewed as a semiclassical tunneling process that originates at the black hole horizon. The same basic premise should apply to de Sitter background radiation, with the cosmological horizon of de Sitter space now playing the featured role. In fact, a recent work (M. K. Parikh, hep-th/0204107) has gone a long way to verifying the validity of this de Sitter tunneling picture. In the current paper, we extend these prior considerations to arbitrary-dimensional de Sitter space, as well as Schwarzschild de Sitter spacetimes. It is shown that the tunneling formalism naturally censors against any black hole with a mass in excess of the Nariai value, thus enforcing a “third law” of Schwarzschild de Sitter thermodynamics. We also provide commentary on the dS/conformal field theory correspondence in the context of this tunneling framework.

  20. Quantum statistical entropy of Schwarzchild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2012-10-01

    Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.

  1. D-Sitter Space: Causal Structure, Thermodynamics, and Entropy

    SciTech Connect

    Silverstein, Eva M

    2003-05-05

    We study the entropy of concrete de Sitter flux compactifications and deformations of them containing D-brane domain walls. We determine the relevant causal and thermodynamic properties of these ''D-Sitter'' deformations of de Sitter spacetimes. We find a string scale correspondence point at which the entropy localized on the D-branes (and measured by probes sent from an observer in the middle of the bubble) scales the same with large flux quantum numbers as the entropy of the original de Sitter space, and at which Bousso's bound is saturated by the D-brane degrees of freedom (up to order one coefficients) for an infinite range of times. From the geometry of a static patch of D-Sitter space and from basic relations in flux compactifications, we find support for the possibility of a low energy open string description of the static patch of de Sitter space.

  2. 5D supergravity and projective superspace

    NASA Astrophysics Data System (ADS)

    Kuzenko, Sergei M.; Tartaglino-Mazzucchelli, Gabriele

    2008-02-01

    This paper is a companion to our earlier work [1] in which the projective superspace formulation for matter-coupled simple supergravity in five dimensions was presented. For the minimal multiplet of 5D Script N = 1 supergravity introduced by Howe in 1981, we give a complete solution of the Bianchi identities. The geometry of curved superspace is shown to allow the existence of a large family of off-shell supermultiplets that can be used to describe supersymmetric matter, including vector multiplets and hypermultiplets. We formulate a manifestly locally supersymmetric action principle. Its natural property turns out to be the invariance under so-called projective transformations of the auxiliary isotwistor variables. We then demonstrate that the projective invariance allows one to uniquely restore the action functional in a Wess-Zumino gauge. The latter action is well-suited for reducing the supergravity-matter systems to components.

  3. De Sitter Space Without Dynamical Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2016-06-01

    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

  4. Phase spaces for asymptotically de Sitter cosmologies

    NASA Astrophysics Data System (ADS)

    Kelly, William R.; Marolf, Donald

    2012-10-01

    We construct two types of phase spaces for asymptotically de Sitter Einstein-Hilbert gravity in each spacetime dimension d ⩾ 3. One type contains solutions asymptotic to the expanding spatially-flat (k = 0) cosmological patch of de Sitter space while the other is asymptotic to the expanding hyperbolic (k = -1) patch. Each phase space has a non-trivial asymptotic symmetry group (ASG) which includes the isometry group of the corresponding de Sitter patch. For d = 3 and k = -1 our ASG also contains additional generators and leads to a Virasoro algebra with vanishing central charge. Furthermore, we identify an interesting algebra (even larger than the ASG) containing two Virasoro algebras related by a reality condition and having imaginary central charges +/- i \\frac{3\\ell }{2G}. Our charges agree with those obtained previously using dS/CFT methods for the same asymptotic Killing fields showing that (at least some of) the dS/CFT charges act on a well-defined phase space. Along the way we show that, despite the lack of local degrees of freedom, the d = 3, k = -1 phase space is non-trivial even in pure Λ > 0 Einstein-Hilbert gravity due to the existence of a family of ‘wormhole’ solutions labeled by their angular momentum, a mass-like parameter θ0, the topology of future infinity (I+), and perhaps additional internal moduli. These solutions are Λ > 0 analogues of BTZ black holes and exhibit a corresponding mass gap relative to empty de Sitter.

  5. Aspects of quantum gravity in de Sitter spaces

    NASA Astrophysics Data System (ADS)

    Klemm, Dietmar; Vanzo, Luciano

    2004-11-01

    In this paper we give a review of recent attempts to understand quantum gravity on de Sitter spaces. In particular, we discuss the holographic correspondence between de Sitter gravity and conformal field theories proposed by Hull and by Strominger, and how this may be reconciled with the finite-dimensional Hilbert space proposal by Banks and Fischler. Furthermore we review the no-go theorems that forbid an embedding of de Sitter spaces in string theory, and discuss how they can be circumvented. Finally, some curious issues concerning the thermal nature of de Sitter space are elucidated.

  6. Inflation Driven by q-de Sitter

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Momeni, D.; Kamali, V.; Myrzakulov, R.

    2016-02-01

    We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter q is called as nonextensivity parameter. When q = 1, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of q-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation ϕ e n d , the spectral index and the associated running of the spectral index are n s - 1 ˜ -2 𝜖, α s ≡ 0. To end the inflation: we should have q={3}/{4}. We deduce that the inflation ends when the evolution of the scale factor is a( t) = e 3/4( t). With this scale factor there is no need to specify ϕ e n d . As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term Γ. In the first case when Γ = Γ0, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. n s = 1) may be approximately presented by (q={9}/{10}, ~N=70). Also there is a range of values of R and n s which is compatible with the BICEP2 data where q={9}/{10}. In case Γ = Γ1 V( ϕ), it is observed that small values of a number of e-folds are assured for small values of q parameter. Also in this case, the scale-invariant spectrum may be represented by (q,N) = ({9}/{10},70). For q={9}/{10} a range of values of R and n s is compatible with the BICEP2 data. Consequently, the proposal of q-de Sitter is consistent with observational data. We observe that the non-extensivity parameter q plays a significant role in inflationary scenario.

  7. Dirac oscillator and nonrelativistic Snyder-de Sitter algebra

    SciTech Connect

    Stetsko, M. M. E-mail: mykola@ktf.franko.lviv.ua

    2015-01-15

    Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied.

  8. Dirac oscillator and nonrelativistic Snyder-de Sitter algebra

    NASA Astrophysics Data System (ADS)

    Stetsko, M. M.

    2015-01-01

    Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied.

  9. Discrete symmetries and de Sitter spacetime

    SciTech Connect

    Cotăescu, Ion I. Pascu, Gabriel

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  10. Constraining de Sitter Space in String Theory.

    PubMed

    Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep

    2015-08-14

    We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution. PMID:26317710

  11. Constraining de Sitter Space in String Theory.

    PubMed

    Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep

    2015-08-14

    We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution.

  12. De Sitter uplift with Dynamical Susy Breaking

    NASA Astrophysics Data System (ADS)

    Retolaza, Ander; Uranga, Angel

    2016-04-01

    We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family SU(5) DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.

  13. The critical phenomena of charged rotating de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Guo, Xiongying; Li, Huaifan; Zhang, Lichun; Zhao, Ren

    2016-07-01

    In this paper, we investigate the effective thermodynamic quantities in Kerr-Newman-de Sitter spacetime by considering the relations between the black hole event horizon and the cosmological event horizon. We find the effect of the critical point of Kerr-Newman-de Sitter spacetime for the different state parameters. We study the critical phenomena of the system taking different state parameters. This result is consistent with the nature of a liquid-gas phase transition at the critical point, hence deepening the understanding of the analogy of charged de Sitter spacetime and liquid-gas systems.

  14. Neutrino Tunneling from NUT Kerr Newman de Sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Yang, Juan; Li, Jin

    2013-08-01

    In this paper, the method of semi-classical is applied to explore the Hawking radiation of a NUT-Kerr-Newman de Sitter Black Hole from tunneling point of view. The Hamilton-Jacobi equation in NUT-Kerr-Newman de Sitter space time is derived by the method presented by Lin and Yang (Chin. Phys. B, 20:110403, 2011). We obtain the Hawking temperatures at the event horizon and cosmological horizon and we also obtain the tunneling probability of neutrino following the semi-classical quantum equation. The results show the common features of NUT-Kerr-Newman de Sitter Black Hole.

  15. Vacuum Fluctuation Force on a Rigid Casimir Cavity in de Sitter and Schwarzschild-De Sitter Space-Time

    NASA Astrophysics Data System (ADS)

    Chen, Xiang

    2012-11-01

    We investigate the net force on a rigid Casimir cavity generated by vacuum fluctuations of electromagnetic field in three cases: de Sitter space-time, de Sitter space-time with weak gravitational field and Schwarzschild-de Sitter space-time. In de Sitter space-time the resulting net force follows the square inverse law but unfortunately it is too weak to be measurable due to the large universe radius. By introducing a weak gravitational field into the de Sitter space-time, we find that the net force can now be split into two parts, one is the gravitational force due to the induced effective mass between the two plates and the other one is generated by the metric structure of de Sitter space-time. In order to investigate the vacuum fluctuation force on the rigid cavity under strong gravitational field, we perform a similar analysis in Schwarzschild-de Sitter space-time and results are obtained in three different limits. The most interesting one is when the cavity gets closer to the horizon of a blackhole, square inverse law is recovered and the repulsive force due to negative energy/mass of the cavity now has an observable strength. More importantly the force changes from being repulsive to attractive when the cavity crosses the event horizon, so that the energy/mass of the cavity switches the sign, which suggests the unusual time direction inside the event horizon.

  16. Numerical Solution of Scalar Field for Nariai Case in 5D Ricci-Flat SdS Black String Space with Polynomial Approximation

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Xiao; Liu, Mo-Lin; Liu, Hong-Ya

    2008-10-01

    As one exact candidate of the higher dimensional black hole, the 5D Ricci Qat Schwarzschild-de Sitter black string space presents something interesting. In this paper, we give a numerical solution to the real scalar field around the Nariai black hole by the polynomial approximation. Unlike the previous tangent approximation, this fitting function makes a perfect match in the leading intermediate region and gives a good description near both the event and the cosmological horizons. We can read from our results that the wave is close to a harmonic one with the tortoise coordinate. Furthermore, with the actual radial coordinate the waves pile up almost equally near the both horizons.

  17. Ghost inflation and de Sitter entropy

    NASA Astrophysics Data System (ADS)

    Jazayeri, Sadra; Mukohyama, Shinji; Saitou, Rio; Watanabe, Yota

    2016-08-01

    In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those in the Standard Model are suppressed by the Planck scale. Since not only black holes but also cosmology are expected to play important roles towards our better understanding of gravity, we consider a cosmological setup to test the theory of ghost condensation. In particular we shall show that the de Sitter entropy bound proposed by Arkani-Hamed, et al. is satisfied if ghost inflation happened in the early epoch of our universe and if there remains a tiny positive cosmological constant in the future infinity. We then propose a notion of cosmological Page time after inflation.

  18. Quantum Larmor radiation in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Blaga, Robert; Busuioc, Sergiu

    2016-09-01

    We study the radiation emitted by inertial charge evolving on the expanding de Sitter spacetime. Performing a perturbative calculation, within scalar quantum electrodynamics (sQED), we obtain the transition amplitude for the process and using this we define the energy radiated by the source. In the non-relativistic limit we find that the leading term is compatible with the classical result (Larmor formula). The first quantum correction is found to be negative, a result which is in line with a number of similar quantum field theory results. For the ultra-relativistic case we find a logarithmic divergence of the emitted energy for large frequencies, which we link to the nature of the spacetime. We compare our results with that of Nomura et al. (JCAP 11:013, 2006), where the authors make a similar calculation for a general conformally flat spacetime.

  19. Lifetime of stringy de Sitter vacua

    NASA Astrophysics Data System (ADS)

    Westphal, Alexander

    2008-01-01

    In this note we perform a synopsis of the life-times from vacuum decay of several de Sitter vacuum constructions in string/M-theory which have a single dS minimum arising from lifting a pre-existing AdS extremum and no other local minima existent after lifting. For these vacua the decay proceeds via a Coleman-De Luccia instanton towards the universal Minkowski minimum at infinite volume. This can be calculated using the thin-wall approximation, provided the cosmological constant of the local dS minimum is tuned sufficiently small. We compare the estimates for the different model classes and find them all stable in the sense of exponentially long life times as long as they have a very small cosmological constant and a scale of supersymmetry breaking gsim TeV.

  20. Perdurance of multiply connected de Sitter space

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.

    1999-06-01

    This paper deals with a study of the effects that spherically symmetric first-order metric perturbations and vacuum quantum fluctuations have on the stability of the multiply connected de Sitter spacetime recently proposed by Gott and Li. It is the main conclusion of this study that although such a spacetime is stable to the classical metric perturbations for any size of the nonchronal region, it is only stable against the quantum fluctuations of vacuum if the size of the multiply connected region is of the order of the Planck scale. Therefore, boundary conditions for the state of the universe based on the notion that the universe created itself in a regime where closed timelike curves were active and stable still appear to be physically and philosophically well supported as are those boundary conditions relying on the notion that the universe was created out of nothing.

  1. Quantum statistical entropy and minimal length of 5D Ricci-flat black string with generalized uncertainty principle

    SciTech Connect

    Liu Molin; Gui Yuanxing; Liu Hongya

    2008-12-15

    In this paper, we study the quantum statistical entropy in a 5D Ricci-flat black string solution, which contains a 4D Schwarzschild-de Sitter black hole on the brane, by using the improved thin-layer method with the generalized uncertainty principle. The entropy is the linear sum of the areas of the event horizon and the cosmological horizon without any cutoff and any constraint on the bulk's configuration rather than the usual uncertainty principle. The system's density of state and free energy are convergent in the neighborhood of horizon. The small-mass approximation is determined by the asymptotic behavior of metric function near horizons. Meanwhile, we obtain the minimal length of the position {delta}x, which is restrained by the surface gravities and the thickness of layer near horizons.

  2. Nekrasov-Shatashvili limit of the 5D superconformal index

    NASA Astrophysics Data System (ADS)

    Papageorgakis, Constantinos; Pini, Alessandro; Rodríguez-Gómez, Diego

    2016-08-01

    We consider the Nekrasov-Shatashvili limit of the five-dimensional (5D) superconformal index and propose a novel prescription for selecting the finite contributions. Applying the latter to various examples of U(1) theories, we find that the 5D Nekrasov-Shatashvili index can be reproduced using recent techniques of Córdova and Shao, who related the 4D Schur index to the Bogomol'nyi-Prasad-Sommerfield (BPS) spectrum of the theory on the Coulomb branch. In this picture, the 5D instanton solitons are interpreted as additional flavor nodes in an associated 5D BPS quiver.

  3. On higher spin symmetries in de Sitter QFTs

    NASA Astrophysics Data System (ADS)

    Costa, Renato; Morrison, Ian A.

    2016-03-01

    We consider the consequences of global higher-spin symmetries in quantum field theories on a fixed de Sitter background of spacetime dimension D ≥ 3. These symmetries enhance the symmetry group associated with the isometries of the de Sitter background and thus strongly constrain the dynamics of the theory. In particular, we consider the case when a higher spin charge acts linearly on a scalar operator to leading order in a Fefferman-Graham expansion near the future/past conformal boundaries. We show that this implies that the expectation values of the operator inserted near the boundaries are asymptotically Gaussian. Thus, these operators have trivial cosmological spectra, and on global de Sitter these operators have only Gaussian correlations between operators inserted near future/past infinity. The latter result may be interpreted as an analogue of the Coleman-Mandula theorem for QFTs on de Sitter spacetime.

  4. Breaking of de Sitter invariance in quantum cosmological gravity

    NASA Astrophysics Data System (ADS)

    Kleppe, Gary

    1993-11-01

    The effects of de Sitter transformations on linearized quantum gravity in a de Sitter space background are worked out explicitly. It is shown that the linearized solutions are closed under the transformations of the de Sitter group. To do this it is necessary to use a compensating gauge transformation to return the transformed solution to the original gauge. It is then shown that the form of the graviton propagator in this background, as found by Tsamis and Woodard, is not de Sitter invariant, and no suitable invariant propagator exists, even when gauge transformations which compensate for the noninvariant gauge choice are introduced. This leads us to conclude that the vacuum is not invariant. Address after 1 August 1993: Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA.

  5. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    NASA Astrophysics Data System (ADS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  6. Charlotte Moore Sitterly: A Life of Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rubin, Vera C.

    2010-01-01

    Dr. Charlotte Moore Sitterly was a scientist in an era when it was rare for a woman to have the opportunity to devote her life to forefront science. Following her graduation from Swarthmore College in 1920, she accepted a position at Princeton University as an assistant to Henry Norris Russell. In 1925 she started a study of the solar spectrum. She could then not know that she would devote much of her scientific career to gathering basic atomic data that are invaluable to the scientific community, even today. In 1931 she obtained a PhD degree at U. California, Berkeley, and returned to Princeton as a staff member of the Princeton University Observatory. In 1945 she moved to the National Bureau of Science (NBS), to supervise preparation of the widely used tables of atomic energy levels. Following the successful lunching (1946) of a V2 rocket to obtain the ultra violet spectrum of the sun, Moore started working with Richard Tousey and his group at the Naval Research Laboratory (NRL). Ultimately, they extended the solar spectrum down to 2200 angstroms. She continued her affiliations with NBS and NRL until her death in 1990. Charlotte Moore was rare scientist who devoted her career to obtaining accurate numbers, thus enabling the scientific community to open her tables and know that the data are accurate.

  7. Tachyons in classical de Sitter vacua

    NASA Astrophysics Data System (ADS)

    Junghans, Daniel

    2016-06-01

    We revisit the possibility of de Sitter vacua and slow-roll inflation in type II string theory at the level of the classical two-derivative supergravity approximation. Previous attempts at explicit constructions were plagued by ubiquitous tachyons with a large η parameter whose origin has not been fully understood so far. In this paper, we determine and explain the tachyons in two setups that are known to admit unstable dS critical points: an SU(3) structure compactification of massive type IIA with O6-planes and an SU(2) structure compactification of type IIB with O5/O7-planes. We explicitly show that the tachyons are always close to, but never fully aligned with the sgoldstino direction in the considered examples and argue that this behavior is explained by a generalized version of a no-go theorem by Covi et al, which holds in the presence of large mixing in the mass matrix between the sgoldstino and the orthogonal moduli. This observation may also provide a useful stability criterion for general dS vacua in supergravity and string theory.

  8. General aspects of the de Sitter phase

    NASA Astrophysics Data System (ADS)

    Imponente, G.; Montani, G.

    2005-10-01

    We present a detailed discussion of the inflationary scenario in the context of inhomogeneous cosmologies. After a review of the fundamental features characterizing the inflationary model, as referred to a homogeneous and isotropic Universe, we develop a generalization in view of including small inhomogeneous corrections in the theory. A second step in our discussion is devoted to show that the inflationary scenario provides a valuable dynamical “bridge” between a generic Kasner-like regime and a homogeneous and isotropic Universe in the horizon scale. This result is achieved by solving the Hamilton-Jacobi equation for a Bianchi IX model in the presence of a cosmological space-dependent term. In this respect, we construct a quasi-isotropic inflationary solution based on the expansion of the Einstein equations up to first two orders of approximation, in which the isotropy of the Universe is due to the dominance of the scalar field kinetic term; the first order of approximation corresponds to the inhomogeneous corrections and is driven by the matter evolution. We show how such a quasi-isotropic solution contains a certain freedom in fixing the space functions involved in the problem. The main physical issue of this analysis corresponds to outline the impossibility for the classical origin of density perturbations, due to the exponential decay of the matter term during the de Sitter phase.

  9. F5D-1 on ramp with flight technicians

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The big block letters 'TEST' on the upper fuselage of this Douglas F5D-1 Skylancer (Bu. No. 139208/NASA tail number 212) denoted the craft as a test plane which was one of the fleet stabled at NASA Flight Research Center from 1961 to 1963 (redesignated the Dryden Flight Research Center in 1976). The calibration hangar, with the door partially open, is shown in the background while nearby the flight technicians are preparing the airplane for another research flight. In 1963 the F5D-1, NASA 212, was transferred to Ames Research Center, Mountain View, California, where it was flown on miscellaneous research projects including supersonic-transport landing studies. The F5D-1 was used to collect data on sink rates and approach characteristics. This particular F5D-1 was retired after several years, and in December 1975, it was loaned to Victor Valley College.

  10. Thermal interpretation of infrared dynamics in de Sitter

    NASA Astrophysics Data System (ADS)

    Rigopoulos, Gerasimos

    2016-07-01

    The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature R = 12H2, averaged over horizon sized regions of physical volume VH = (4π/3)(1/H)3, can be interpreted as Brownian motion in a medium with de Sitter temperature TDS = hbarH/2π. We demonstrate this by directly deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature TDS which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of ∂μphi and takes a well defined value per horizon volume ½langle(∇phi)2rangle = - ½TDS/VH. This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor langleTμνrangle for an arbitrary scalar potential.

  11. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities.

  12. Substitutional 4d and 5d impurities in graphene.

    PubMed

    Alonso-Lanza, Tomás; Ayuela, Andrés; Aguilera-Granja, Faustino

    2016-08-21

    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The adsorption energies and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which are also well-known characteristics of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar adsorption energies, distances and magnetic moments to the 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3 μB for manganese is reduced to 1 μB for technetium and rhenium. We find that compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree of hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different if 4d or 5d impurities are used instead of 3d impurities. PMID:27439363

  13. Hawking's radiation in non-stationary rotating de Sitter background

    NASA Astrophysics Data System (ADS)

    Ibohal, N.; Ibungochouba, T.

    2011-05-01

    Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell's electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.

  14. Puzzles and resolutions of information duplication in de Sitter space

    NASA Astrophysics Data System (ADS)

    Danielsson, Ulf H.; Domert, Daniel; Olsson, Martin E.

    2003-10-01

    In this paper we consider a scenario consisting of a de Sitter phase followed by a phase described by a scale factor a(t)˜tq, where 1/3Sitter phase in question.

  15. 5D Tempest simulations of kinetic edge turbulence

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Xiong, Z.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G. D.; Nevins, W. M.; Rognlien, T. D.; Umansky, M. V.; Qin, H.

    2006-10-01

    Results are presented from the development and application of TEMPEST, a nonlinear five dimensional (3d2v) gyrokinetic continuum code. The simulation results and theoretical analysis include studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry and its relationship to plasma flow generation with zero external momentum input, including the important orbit-squeezing effect due to the large electric field flow-shear in the edge. In order to extend the code to 5D, we have formulated a set of fully nonlinear electrostatic gyrokinetic equations and a fully nonlinear gyrokinetic Poisson's equation which is valid for both neoclassical and turbulence simulations. Our 5D gyrokinetic code is built on 4D version of Tempest neoclassical code with extension to a fifth dimension in binormal direction. The code is able to simulate either a full torus or a toroidal segment. Progress on performing 5D turbulence simulations will be reported.

  16. 2.5D dictionary learning based computed tomography reconstruction

    NASA Astrophysics Data System (ADS)

    Luo, Jiajia; Eri, Haneda; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    A computationally efficient 2.5D dictionary learning (DL) algorithm is proposed and implemented in the model- based iterative reconstruction (MBIR) framework for low-dose CT reconstruction. MBIR is based on the minimization of a cost function containing data-fitting and regularization terms to control the trade-off between data-fidelity and image noise. Due to the strong denoising performance of DL, it has previously been considered as a regularizer in MBIR, and both 2D and 3D DL implementations are possible. Compared to the 2D case, 3D DL keeps more spatial information and generates images with better quality although it requires more computation. We propose a novel 2.5D DL scheme, which leverages the computational advantage of 2D-DL, while attempting to maintain reconstruction quality similar to 3D-DL. We demonstrate the effectiveness of this new 2.5D DL scheme for MBIR in low-dose CT. By applying the 2D DL method in three different orthogonal planes and calculating the sparse coefficients accordingly, much of the 3D spatial information can be preserved without incurring the computational penalty of the 3D DL method. For performance evaluation, we use baggage phantoms with different number of projection views. In order to quantitatively compare the performance of different algorithms, we use PSNR, SSIM and region based standard deviation to measure the noise level, and use the edge response to calculate the resolution. Experimental results with full view datasets show that the different DL based algorithms have similar performance and 2.5D DL has the best resolution. Results with sparse view datasets show that 2.5D DL outperforms both 2D and 3D DL in terms of noise reduction. We also compare the computational costs, and 2.5D DL shows strong advantage over 3D DL in both full-view and sparse-view cases.

  17. Snyder-de Sitter model from two-time physics

    SciTech Connect

    Carrisi, M. C.; Mignemi, S.

    2010-11-15

    We show that the symplectic structure of the Snyder model on a de Sitter background can be derived from two-time physics in seven dimensions and propose a Hamiltonian for a free particle consistent with the symmetries of the model.

  18. Further investigations of the Kerr--de Sitter space

    SciTech Connect

    Khanal, U.

    1985-08-15

    Some recursion relations pertaining to the radial functions of Dirac, electromagnetic, and gravitational fields in the Kerr--de Sitter universe are proved. The behavior of the tortoise coordinate is investigated and it is shown that super radiance can also occur in this space.

  19. How to use retarded Green's functions in de Sitter spacetime

    SciTech Connect

    Higuchi, Atsushi; Cheong, Lee Yen

    2008-10-15

    We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetism in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.

  20. Consistency of scalar potentials from quantum de Sitter space

    NASA Astrophysics Data System (ADS)

    Espinosa, José R.; Fortin, Jean-François; Trépanier, Maxime

    2016-06-01

    Consistency of the unconventional view of de Sitter space as a quantum theory of gravity with a finite number of degrees of freedom requires that Coleman-De Luccia tunneling rates to vacua with negative cosmological constant should be interpreted as recurrences to low-entropy states. This demand translates into two constraints, or consistency conditions, on the scalar potential that are generically as follows: (1) the distance in field space between the de Sitter vacuum and any other vacuum with negative cosmological constant must be of the order of the reduced Planck mass or larger and (2) the fourth root of the vacuum energy density of the de Sitter vacuum must be smaller than the fourth root of the typical scale of the scalar potential. These consistency conditions shed a different light on both outstanding hierarchy problems of the standard model of particle physics: the scale of electroweak symmetry breaking and the scale of the cosmological constant. Beyond the unconventional interpretation of quantum de Sitter space, we complete the analytic understanding of the thin-wall approximation of Coleman-De Luccia tunneling, extend its numerical analysis to generic potentials and discuss the role of gravity in stabilizing the standard model potential.

  1. Schwarzschild-De Sitter Metric and Inertial Beltrami Coordinates

    NASA Astrophysics Data System (ADS)

    Sun, Li-Feng; Yan, Mu-Lin; Deng, Ya; Huang, Wei; Hu, Sen

    2013-08-01

    Under consideration of coordinate conditions, we get the Schwarzschild-Beltrami-de Sitter (S-BdS) metric solution of the Einstein field equations with a cosmological constant Λ. A brief review to the de Sitter invariant special relativity (dS-SR), and de Sitter general relativity (dS-GR, or GR with a Λ) is presented. The Beltrami metric Bμν provides inertial reference frame for the dS-spacetime. By examining the Schwarzschild-de Sitter (S-dS) metric gμ ν (M) existed in literatures since 1918, we find that the existed S-dS metric gμ ν (M) describes some mixing effects of gravity and inertial-force, instead of a pure gravity effect arisen from "solar mass" M in dS-GR. In this paper, we solve the vacuum Einstein equation of dS-GR, with the requirement of gravity-free metric gμ ν (M)\\big |{M-> 0} = Bμ ν . In this way we find S-BdS solution of dS-GR, written in inertial Beltrami coordinates. This is a new form of S-dS metric. Its physical meaning and possible applications are discussed.

  2. A Comparison of the Performance of the EQ-5D and the EQ-5D-Y Health-Related Quality of Life Instruments in South African Children

    ERIC Educational Resources Information Center

    Jelsma, Jennifer

    2010-01-01

    The aim of this study was to investigate the performance of the recent EQ-5D-Y instrument compared with the standard EQ-5D in assessing the health-related quality of life of high school children in Cape Town. Either the EQ-5D or the EQ-5D-Y was given to high school children. The sample consisted of 521 respondents. The EQ-5D-Y was found to be…

  3. Modular properties of full 5D SYM partition function

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Tizzano, Luigi; Winding, Jacob; Zabzine, Maxim

    2016-03-01

    We study properties of the full partition function for the U(1) 5D N = {2}^{ast } gauge theory with adjoint hypermultiplet of mass M . This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function G 2 C associated with a certain moment map cone C. The answer exhibits a curious SL(4 , ℤ) modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5d supersymmetric partition function with the insert ion of defects of various co-dimensions.

  4. A 5-D hyperchaotic Rikitake dynamo system with hidden attractors

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Pham, V.-T.; Volos, C. K.

    2015-07-01

    This paper presents a 5-D hyperchaotic Rikitake dynamo system with three positive Lyapunov exponents which is derived by adding two state feedback controls to the famous 3-D Rikitake two-disk dynamo system. It is noted that the proposed hyperchaotic system has no equilibrium points and hence it exhibits hidden attractors. In addition, the qualitative properties, as well as the adaptive synchronization of the hyperchaotic Rikitake dynamo system with unknown system parameters, are discussed in details. The main results are proved using Lyapunov stability theory and numerical simulations are shown using MATLAB. Moreover, an electronic circuit realization in SPICE has been detailed to confirm the feasibility of the theoretical 5-D hyperchaotic Rikitake dynamo model.

  5. Natural inflation from 5D SUGRA and low reheat temperature

    NASA Astrophysics Data System (ADS)

    Paccetti Correia, Filipe; Schmidt, Michael G.; Tavartkiladze, Zurab

    2015-09-01

    Motivated by recent cosmological observations of a possibly unsuppressed primordial tensor component r of inflationary perturbations, we reanalyze in detail the 5D conformal SUGRA originated natural inflation model of Ref. [1]. The model is a supersymmetric variant of 5D extranatural inflation, also based on a shift symmetry, and leads to the potential of natural inflation. Coupling the bulk fields generating the inflaton potential via a gauge coupling to the inflaton with brane SM states we necessarily obtain a very slow gauge inflaton decay rate and a very low reheating temperature Tr ≲ O (100) GeV. Analysis of the required number of e-foldings (from the CMB observations) leads to values of ns in the lower range of present Planck 2015 results. Some related theoretical issues of the construction, along with phenomenological and cosmological implications, are also discussed.

  6. Time-Dependent 5D Solutions of the Einstein Equations

    SciTech Connect

    Lopez, L. A.

    2010-07-12

    In this work are obtained 5D time-dependent solutions of Einstein equations, one is obtained by means of equiping a cylindrically symmetry solution (JEKK) with a scalar field, then lifting it to a fifth dimension. The other is obtained transforming the Myers-Perry solution via Wick rotation. The two solutions can be interpreted as gravitational waves in some cases. The singularities and C-energy are addressed.

  7. 2.5D Cartoon Hair Modeling and Manipulation.

    PubMed

    Yeh, Chih-Kuo; Jayaraman, Pradeep Kumar; Liu, Xiaopei; Fu, Chi-Wing; Lee, Tong-Yee

    2015-03-01

    This paper addresses a challenging single-view modeling and animation problem with cartoon images. Our goal is to model the hairs in a given cartoon image with consistent layering and occlusion, so that we can produce various visual effects from just a single image. We propose a novel 2.5D modeling approach to deal with this problem. Given an input image, we first segment the hairs of the cartoon character into regions of hair strands. Then, we apply our novel layering metric, which is derived from the Gestalt psychology, to automatically optimize the depth ordering among the hair strands. After that, we employ our hair completion method to fill the occluded part of each hair strand, and create a 2.5D model of the cartoon hair. By using this model, we can produce various visual effects, e.g., we develop a simplified fluid simulation model to produce wind blowing animations with the 2.5D hairs. To further demonstrate the applicability and versatility of our method, we compare our results with real cartoon hair animations, and also apply our model to produce a wide variety of hair manipulation effects, including hair editing and hair braiding. PMID:26357063

  8. Heterogeneous 2.5D integration on through silicon interposer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowu; Lin, Jong Kai; Wickramanayaka, Sunil; Zhang, Songbai; Weerasekera, Roshan; Dutta, Rahul; Chang, Ka Fai; Chui, King-Jien; Li, Hong Yu; Wee Ho, David Soon; Ding, Liang; Katti, Guruprasad; Bhattacharya, Suryanarayana; Kwong, Dim-Lee

    2015-06-01

    Driven by the need to reduce the power consumption of mobile devices, and servers/data centers, and yet continue to deliver improved performance and experience by the end consumer of digital data, the semiconductor industry is looking for new technologies for manufacturing integrated circuits (ICs). In this quest, power consumed in transferring data over copper interconnects is a sizeable portion that needs to be addressed now and continuing over the next few decades. 2.5D Through-Si-Interposer (TSI) is a strong candidate to deliver improved performance while consuming lower power than in previous generations of servers/data centers and mobile devices. These low-power/high-performance advantages are realized through achievement of high interconnect densities on the TSI (higher than ever seen on Printed Circuit Boards (PCBs) or organic substrates), and enabling heterogeneous integration on the TSI platform where individual ICs are assembled at close proximity (<1 mm separation) compared with several centimeters on a typical PCB. In this paper, we have outlined the benefits of adopting 2.5D TSI technology and also highlighted the current day approaches to implement this technology in Si fabrication facilities, and in assembly/packaging factories. While the systems and devices that power the mobile society benefit from exploiting advantages of 2.5D integration on TSI, there do exist surmountable challenges that need to be addressed for this relatively new technology to be used in high volume production of next generation semiconductor devices. The key areas of focus and challenges include: Technology planning and design-execution that are necessary for harnessing 2.5D TSI for building systems, processing flow for the fabrication of 100 μm thick TSI at acceptable costs, manufacturing flow for assembling multiple ICs on a 100 μm thick TSI in a repeatable, and reliable manner, thermo-mechanical analysis and optimization for addressing warpage issues, and thermal

  9. Localization of gauge fields in a tachyonic de Sitter thick braneworld

    NASA Astrophysics Data System (ADS)

    Herrera-Aguilar, Alfredo; Rojas, Alma D.; Santos, Elí

    2014-04-01

    In this work we show that universal gauge vector fields can be localized on the recently proposed 5D thick tachyonic braneworld which involves a de Sitter cosmological background induced on the 3-brane. Namely, by performing a suitable decomposition of the vector field, the resulting 4D effective action corresponds to a massive gauge field, while the profile along the extra dimension obeys a Schrödinger-like equation with a Pöschl-Teller potential. It turns out that the massless zero mode of the gauge field is bound to the expanding 3-brane and allows us to recover the standard 4D electromagnetic phenomena of our world. Moreover, this zero mode is separated from the continuum of Kaluza-Klein (KK) modes by a mass gap determined by the scale of the expansion parameter. We also were able to analytically solve the corresponding Schrödinger-like equation for arbitrary mass, showing that KK massive modes asymptotically behave like plane waves, as expected.

  10. Evolution of thick domain walls in de Sitter universe

    NASA Astrophysics Data System (ADS)

    Dolgov, A. D.; Godunov, S. I.; Rudenko, A. S.

    2016-10-01

    We consider thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we are interested not only in stationary solutions found therein, but also investigate the general case of domain wall evolution with time. When the wall thickness parameter, δ0, is smaller than H‑1/√2, where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ0 >= H‑1/√2. We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for δ0 gg H‑1. An explanation for the critical value δ0c = H‑1/√2 is also proposed.

  11. Schwinger effect and backreaction in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Stahl, Clément; Xue, She-Sheng

    2016-09-01

    We consider the particle-antiparticle pairs produced by both a strong electric field and de Sitter curvature. We investigate in 1 + 1 D the backreaction of the pairs on the electromagnetic field. To do so we describe the canonical quantization of an electromagnetic field in de Sitter space and add in the Einstein-Maxwell equation the fermionic current induced by the pairs. After solving this equation, we find that the electric field gets either damped or unaffected depending on the value of the pair mass and the gauge coupling. No enhancement of the electromagnetic field to support a magnetogenesis scenario is found. The physical picture is that the Schwinger pairs locally created screen the production and amplification of the electromagnetic field. However, if one considers light bosons created by the Schwinger mechanism, we report a solution to the Einstein-Maxwell equation with an enhancement of the electromagnetic field. This solution could be a new path to primordial magnetogenesis.

  12. Fermionic Schwinger effect and induced current in de Sitter space

    NASA Astrophysics Data System (ADS)

    Hayashinaka, Takahiro; Fujita, Tomohiro; Yokoyama, Jun'ichi

    2016-07-01

    We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 de Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.

  13. Quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model

    NASA Astrophysics Data System (ADS)

    Meitei, Irom Ablu; Singh, T. Ibungochouba; Singh, K. Yugindro

    2014-08-01

    Using the Hamilton-Jacobi method a study of quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model is carried out. It is shown that there exist seas of positive and negative energy states in the vicinity of the cosmological event horizon and there also exists a forbidden energy gap between the two seas. The forbidden energy gap vanishes on the surface of the cosmological event horizon so that the positive and negative energy levels overlap. The width of the forbidden energy gap and the energy of the particle at the cosmological event horizon are found to depend on the cosmological constant, the rotation parameter, positions of the particle and the cosmological event horizon, angular momentum of the particle, evaporation rate and shape of the cosmological event horizon. The tunneling probability of the emitted particles constituting Hawking radiation is also deduced for stationary nonrotating de Sitter cosmological model and the standard Hawking temperature is recovered.

  14. Dynamics of test bodies with spin in de Sitter spacetime

    SciTech Connect

    Obukhov, Yuri N.; Puetzfeld, Dirk

    2011-02-15

    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.

  15. Solutions of minimal four-dimensional de Sitter supergravity

    NASA Astrophysics Data System (ADS)

    Gutowski, J. B.; Sabra, W. A.

    2010-12-01

    Pseudo-supersymmetric solutions of minimal N = 2, D = 4 de Sitter supergravity are classified using spinorial geometry techniques. We find three classes of solutions. The first class of solution consists of geometries which are fibrations over a three-dimensional manifold equipped with a Gauduchon-Tod structure. The second class of solution is the cosmological Majumdar-Papapetrou solution of Kastor and Traschen, and the third corresponds to gravitational waves propagating in the Nariai cosmology.

  16. Semiclassical fermion pair creation in de Sitter spacetime

    SciTech Connect

    Stahl, Clément Eckhard, Strobel

    2015-12-17

    We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.

  17. The solar photon thruster as a terrestrial pole sitter.

    PubMed

    Matloff, Gregory L

    2004-05-01

    Geosynchronous satellites are invisible at high latitudes. A pole-sitting spacecraft would have communication, climate-studies, and near-polar Earth observation applications. We present a pole-sitter based on the solar photon thruster (SPT), a two-sail variant of the solar sail using a large curved collector sail (always normal to the Sun) to direct sunlight against a much smaller thruster. Thrust decreases slower for an SPT than for a conventional sail arrangement as the angle between sunlight and the collector normal increases. An SPT pole-sitter is offset from the terrestrial pole so that a component of Earth gravity balances the solar radiation-pressure component pushing the SPT off station. The component of gravitational attraction of the Earth pulling the spacecraft towards Earth is also balanced by a solar radiation-pressure component. Results are presented for 80-100% collector/thruster reflectivities. For a spacecraft areal mass thickness of 0.002 kg/m(2), collector and thruster reflectivities of 0.9, the SPT can be situated above latitude 45 degrees at a distance of approximately 60 Earth radii. An SPT pole sitter would be affected by lunar perturbation, which can be compensated for by an on-board rocket thruster producing 2 x 10(-6) g acceleration, a second SPT thruster sail thrusting against the influence of the Moon, or by directing a microwave beam against the spacecraft. Since an SPT pole sitter is in a position rather than an orbit, the effect of terrestrial gravitation limits the size and design of the payload package, which limits terrestrial target resolution.

  18. Stability of black holes in de Sitter space

    SciTech Connect

    Mellor, F.; Moss, I. )

    1990-01-15

    The theory of black-hole perturbations is extended to charged black holes in de Sitter space. These spacetimes have wormholes connecting different asymptotic regions. It appears that, at least in some cases, these holes are stable even at the Cauchy horizon. It follows that they violate cosmic censorship and an observer could in principle travel through the black hole to another universe. The stability of these spacetimes also implies the existence of a cosmological no hair'' theorem.

  19. Hawking radiation of the Vaidya Bonner de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Chen, Deyou; Yang, Shuzheng

    2007-08-01

    Considering the unfixed background space-time and the self-gravitational interaction, we view the Hawking radiation of the Vaidya Bonner de Sitter black hole by the Hamilton Jacobi method and the radial geodesic method. The result shows the tunneling rate is related not only to the change of Bekenstein Hawking entropy but also to the integral of the black hole mass and charge, which does not satisfy the unitary theory and is not in accordance with the known result.

  20. Probing Planckian physics in de Sitter space with quantum correlations

    SciTech Connect

    Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng; Sun, Cheng-Yi; Yang, Wen-Li

    2014-12-15

    We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points H{sub c} of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given.

  1. Thermodynamic volumes and isoperimetric inequalities for de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Dolan, Brian P.; Kastor, David; Kubizňák, David; Mann, Robert B.; Traschen, Jennie

    2013-05-01

    We consider the thermodynamics of rotating and charged asymptotically de Sitter (dS) black holes. Using Hamiltonian perturbation-theory techniques, we derive three different first-law relations including variations in the cosmological constant, and associated Smarr formulas that are satisfied by such spacetimes. Each first law introduces a different thermodynamic volume conjugate to the cosmological constant. We examine the relation between these thermodynamic volumes and associated geometric volumes in a number of examples, including Kerr-dS black holes in all dimensions and Kerr-Newman-dS black holes in D=4. We also show that the Chong-Cvetic-Lu-Pope solution of D=5 minimal supergravity—analytically continued to positive cosmological constant—describes black hole solutions of the Einstein-Chern-Simons theory and include such charged asymptotically de Sitter black holes in our analysis. In all these examples we find that the particular thermodynamic volume associated with the region between the black hole and cosmological horizons is equal to the naive geometric volume. Isoperimetric inequalities, which hold in the examples considered, are formulated for the different thermodynamic volumes and conjectured to remain valid for all asymptotically de Sitter black holes. In particular, in all examples considered, we find that for a fixed volume of the observable universe, the entropy is increased by adding black holes. We conjecture that this is true in general.

  2. Electromagnetic energy dispersion in a 5D universe

    SciTech Connect

    Hartnett, John G.

    2010-06-15

    Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.

  3. Some properties of the de Sitter black holes in three dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjoon; Nam, Soonkeon; Park, Jong-Dae

    2013-11-01

    We investigate the physical properties of the de Sitter spacetime and new type-de Sitter black holes in new massive gravity, a higher derivative gravity theory in three dimensions. We calculate thermodynamic quantities and check that the first law of thermodynamics is satisfied. In particular, we obtain the energies of the de Sitter spacetime and new type-de Sitter black holes from the renormalized Brown-York boundary stress tensor on the Euclidean surfaces at late temporal infinity. We also obtain the quasinormal modes and by using them we find that the entropy spectra are equally spaced via semi-classical quantization.

  4. 1.5D Egocentric Dynamic Network Visualization.

    PubMed

    Shi, Lei; Wang, Chen; Wen, Zhen; Qu, Huamin; Lin, Chuang; Liao, Qi

    2015-05-01

    Dynamic network visualization has been a challenging research topic due to the visual and computational complexity introduced by the extra time dimension. Existing solutions are usually good for overview and presentation tasks, but not for the interactive analysis of a large dynamic network. We introduce in this paper a new approach which considers only the dynamic network central to a focus node, also known as the egocentric dynamic network. Our major contribution is a novel 1.5D visualization design which greatly reduces the visual complexity of the dynamic network without sacrificing the topological and temporal context central to the focus node. In our design, the egocentric dynamic network is presented in a single static view, supporting rich analysis through user interactions on both time and network. We propose a general framework for the 1.5D visualization approach, including the data processing pipeline, the visualization algorithm design, and customized interaction methods. Finally, we demonstrate the effectiveness of our approach on egocentric dynamic network analysis tasks, through case studies and a controlled user experiment comparing with three baseline dynamic network visualization methods.

  5. Equations on knot polynomials and 3d/5d duality

    SciTech Connect

    Mironov, A.; Morozov, A.

    2012-09-24

    We briefly review the current situation with various relations between knot/braid polynomials (Chern-Simons correlation functions), ordinary and extended, considered as functions of the representation and of the knot topology. These include linear skein relations, quadratic Plucker relations, as well as 'differential' and (quantum) A-polynomial structures. We pay a special attention to identity between the A-polynomial equations for knots and Baxter equations for quantum relativistic integrable systems, related through Seiberg-Witten theory to 5d super-Yang-Mills models and through the AGT relation to the q-Virasoro algebra. This identity is an important ingredient of emerging a 3d- 5d generalization of the AGT relation. The shape of the Baxter equation (including the values of coefficients) depend on the choice of the knot/braid. Thus, like the case of KP integrability, where (some, so far torus) knots parameterize particular points of the Universal Grassmannian, in this relation they parameterize particular points in the moduli space of many-body integrable systems of relativistic type.

  6. Nearly free electrons in a 5d delafossite oxide metal

    PubMed Central

    Kushwaha, Pallavi; Sunko, Veronika; Moll, Philip J. W.; Bawden, Lewis; Riley, Jonathon M.; Nandi, Nabhanila; Rosner, Helge; Schmidt, Marcus P.; Arnold, Frank; Hassinger, Elena; Kim, Timur K.; Hoesch, Moritz; Mackenzie, Andrew P.; King, Phil D. C.

    2015-01-01

    Understanding the role of electron correlations in strong spin-orbit transition-metal oxides is key to the realization of numerous exotic phases including spin-orbit–assisted Mott insulators, correlated topological solids, and prospective new high-temperature superconductors. To date, most attention has been focused on the 5d iridium-based oxides. We instead consider the Pt-based delafossite oxide PtCoO2. Our transport measurements, performed on single-crystal samples etched to well-defined geometries using focused ion beam techniques, yield a room temperature resistivity of only 2.1 microhm·cm (μΩ-cm), establishing PtCoO2 as the most conductive oxide known. From angle-resolved photoemission and density functional theory, we show that the underlying Fermi surface is a single cylinder of nearly hexagonal cross-section, with very weak dispersion along kz. Despite being predominantly composed of d-orbital character, the conduction band is remarkably steep, with an average effective mass of only 1.14me. Moreover, the sharp spectral features observed in photoemission remain well defined with little additional broadening for more than 500 meV below EF, pointing to suppressed electron-electron scattering. Together, our findings establish PtCoO2 as a model nearly-free–electron system in a 5d delafossite transition-metal oxide. PMID:26601308

  7. Black hole solutions in 5D Horava-Lifshitz gravity

    SciTech Connect

    Koutsoumbas, George; Papantonopoulos, Eletherios; Pasipoularides, Pavlos; Tsoukalas, Minas

    2010-06-15

    We study the full spectrum of spherically symmetric solutions in the five-dimensional nonprojectable Horava-Lifshitz type gravity theories. For appropriate ranges of the coupling parameters, we have found several classes of solutions which are characterized by an AdS{sub 5}, dS{sub 5}, or flat large distance asymptotic behavior, plus the standard 1/r{sup 2} tail of the usual five-dimensional Schwarzschild black holes. In addition we have found solutions with an unconventional short or large distance behavior, and, for a special range of the coupling parameters, solutions which coincide with black hole solutions of conventional relativistic five-dimensional Gauss-Bonnet gravity.

  8. Vaidya black hole in non-stationary de Sitter space: Hawking's temperature

    NASA Astrophysics Data System (ADS)

    Ishwarchandra, Ngangbam; Singh, K. Yugindro

    2014-03-01

    In this paper we present a class of non-stationary solutions of Einstein's field equations describing embedded Vaidya-de Sitter black holes with a cosmological variable function Λ( u). The Vaidya-de Sitter black hole is interpreted as the radiating Vaidya black hole is embedded into the non-stationary de Sitter space with variable Λ( u). The energy-momentum tensor of the Vaidya-de Sitter black hole is expressed as the sum of the energy-momentum tensors of the Vaidya null fluid and that of the non-stationary de Sitter field, and satisfies the energy conservation law. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor. We find the violation of the strong energy condition due to the negative pressure and leading to a repulsive gravitational force of the matter field associated with Λ( u) in the space-time. We also find that the time-like vector field for an observer in the Vaidya-de Sitter space is expanding, accelerating, shearing and non-rotating. It is also found that the space-time geometry of non-stationary Vaidya-de Sitter solution with variable Λ( u) is Petrov type D in the classification of space-times. We also find the Vaidya-de Sitter black hole radiating with a thermal temperature proportional to the surface gravity and entropy also proportional to the area of the cosmological black hole horizon.

  9. Kinematics of particles with quantum-de Sitter-inspired symmetries

    NASA Astrophysics Data System (ADS)

    Barcaroli, Leonardo; Gubitosi, Giulia

    2016-06-01

    We present the first detailed study of the kinematics of free relativistic particles whose symmetries are compatible with the ones described by a quantum deformation of the de Sitter algebra, known as q -de Sitter Hopf algebra. In such algebra, the quantum deformation parameter is a function of the Planck length ℓ and the de Sitter radius H-1, such that when the Planck length vanishes, the algebra reduces to the de Sitter algebra, while when the de Sitter radius is sent to infinity, one recovers the κ -Poincaré Hopf algebra. In the first limit, the picture is that of a particle with trivial momentum space geometry moving on de Sitter spacetime; in the second one, the picture is that of a particle with de Sitter momentum space geometry moving on Minkowski spacetime. When both the Planck length and the inverse of the de Sitter radius are nonzero, effects due to spacetime curvature and nontrivial momentum space geometry are both present and affect each other. The particles' motion is then described in a full phase-space picture. We find that redshift effects that are usually associated with spacetime curvature become energy dependent. Also, the energy dependence of the particles' travel times that is usually associated with momentum space nontrivial properties is modified in a curvature-dependent way.

  10. Gauge theory of a group of diffeomorphisms. II. The conformal and de Sitter groups

    NASA Astrophysics Data System (ADS)

    Lord, Eric A.

    1986-12-01

    The extension of Hehl's Poincaré gauge theory to more general groups that include space-time diffeomorphisms is worked out for two particular examples, one corresponding to the action of the conformal group on Minkowski space, and the other to the action of the de Sitter group on de Sitter space, and the effect of these groups on physical fields.

  11. Short distance physics of the inflationary de Sitter universe

    SciTech Connect

    Ali, Ahmed Farag; Faizal, Mir; Khalil, Mohammed M. E-mail: f2mir@uwaterloo.ca

    2015-09-01

    In this work, we investigate inflationary cosmology using scalar field theory deformed by the generalized uncertainty principle (GUP) containing a linear momentum term. Apart from being consistent with the existence of a minimum measurable length scale, this GUP is also consistent with doubly special relativity and hence with the existence of maximum measurable momentum. We use this deformed scalar field theory to analyze the tensor and scalar mode equations in a de Sitter background, and to calculate modifications to the tensor-to-scalar ratio. Finally, we compare our results for the tensor-to-scalar ratio with the Planck data to constrain the minimum length parameter in the GUP.

  12. Reexamination of the Power Spectrum in De Sitter Inflation

    NASA Astrophysics Data System (ADS)

    Agulló, Iván; Navarro-Salas, José; Olmo, Gonzalo J.; Parker, Leonard

    2008-10-01

    We find that the amplitude of quantum fluctuations of the invariant de Sitter vacuum coincides exactly with that of the vacuum of a comoving observer for a massless scalar (inflaton) field. We propose redefining the actual physical power spectrum as the difference between the amplitudes of the above vacua. An inertial particle detector continues to observe the Gibbons-Hawking temperature. However, although the resulting power spectrum is still scale-free, its amplitude can be drastically reduced since now, instead of the Hubble’s scale at the inflationary period, it is determined by the square of the mass of the inflaton fluctuation field.

  13. Geodesic evolution and nucleation of a de Sitter brane

    SciTech Connect

    Davidson, Aharon; Karasik, David; Lederer, Yoav

    2005-09-15

    Within the framework of geodesic brane gravity, the deviation from general relativity is parametrized by the conserved bulk energy. The corresponding geodesic evolution/nucleation of a de Sitter brane is shown to be exclusively driven by a double-well Higgs potential, rather than by a plain cosmological constant. The (hairy) horizon serves then as the locus of unbroken Z{sub 2} symmetry. The quartic structure of the scalar potential, singled out on finiteness grounds of the total (including the dark component) energy density, chooses the Hartle-Hawking no-boundary proposal.

  14. Schwarzschild-De Sitter Black Hole from Entropic Viewpoint

    NASA Astrophysics Data System (ADS)

    Ee, Chang-Young; Eune, Myungseok; Kimm, Kyoungtae; Lee, Daeho

    In a Schwarzschild-de Sitter space, we consider an equipotential surface which consists of two holographic screens. Adapting the Bousso-Hawking's reference point of vanishing force, we divide the space into two regions, which are from the reference point to each holographic screen. These two regions can be treated as independent thermodynamical systems, because the Bousso-Hawking reference point with zero temperature behaves like a thermally insulating wall. The entropy obtained in this way agrees with the conventional results: (i) when the holographic screens lie at the black hole and cosmological horizons, (ii) in the Nariai limit.

  15. Entropy of massive quantum fields in de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Takook, M. V.

    2016-04-01

    Using the quantum states or Hilbert spaces for the quantum field theory in de Sitter ambient space formalism the entropy of the massive quantum field theory is calculated. In this formalism, the homogeneous spaces which are used for construction of the unitary irreducible representation of de Sitter group are compact. The unique feature of this homogeneous space is that by imposing certain physical conditions its total number of quantum one-particle states, N1-p, becomes finite although the Hilbert space has infinite dimensions. N1-p is de Sitter invariant and a continuous function of the Hubble constant H and the eigenvalue of the Casimir operators of de Sitter group. The entropy of the quantum fields is finite and invariant for all inertial observers on de Sitter hyperboloid.

  16. 2.5-D modeling in electromagnetic methods of geophysics

    NASA Astrophysics Data System (ADS)

    Tabarovsky, L. A.; Goldman, M. M.; Rabinovich, M. B.; Strack, K.-M.

    1996-10-01

    Understanding, using, or eliminating three-dimensional (3-D) effects in electromagnetic methods of geophysics are critical requirements. Numerous achievements in 3-D modeling sometimes give the impression that they are widely available today in geophysical practice. This is not necessarily true. Existing 3-D modeling packages prove that we know how to perform 3-D modeling. However, the computer resources and costs involved make the practical application of 3-D EM modeling in geophysical applications very limited. A practical compromise, or even alternative, is represented by 2.5-D modeling characterized by the use of a 3-D source in a 2-D medium. This combination allows one to mathematically describe the related boundary value problem as a sequence of independent two-dimensional problems. The typical technique leading to such a split formulation is Fourier analysis. That is why the individual terms of a split solution are often referred to as harmonics. Although each independent problem is two-dimensional, the algorithmic implementation of finite differences or integral equations for the higher harmonics has some specific features not present in the classical 2-D cases. In this paper, a hybrid scheme consisting of a combination of the finite difference technique with the integral equation approach for transient fields is described. Evaluation of algorithm accuracy is presented and a transient logging technique application is considered. The algorithm is fast and easily implemented on a personal computer

  17. One-loop gravitational wave spectrum in de Sitter spacetime

    SciTech Connect

    Fröb, Markus B.; Verdaguer, Enric

    2012-08-01

    The two-point function for tensor metric perturbations around de Sitter spacetime including one-loop corrections from massless conformally coupled scalar fields is calculated exactly. We work in the Poincare patch (with spatially flat sections) and employ dimensional regularization for the renormalization process. Unlike previous studies we obtain the result for arbitrary time separations rather than just equal times. Moreover, in contrast to existing results for tensor perturbations, ours is manifestly invariant with respect to the subgroup of de Sitter isometries corresponding to a simultaneous time translation and rescaling of the spatial coordinates. Having selected the right initial state for the interacting theory via an appropriate iε prescription is crucial for that. Finally, we show that although the two-point function is a well-defined spacetime distribution, the equal-time limit of its spatial Fourier transform is divergent. Therefore, contrary to the well-defined distribution for arbitrary time separations, the power spectrum is strictly speaking ill-defined when loop corrections are included.

  18. Initial states and infrared physics in locally de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Larjo, Klaus; Lowe, David A.

    2012-02-01

    The long wavelength physics in a de Sitter region depends on the initial quantum state. While such long wavelength physics is under control for massive fields near the Hartle-Hawking vacuum state, such initial states make unnatural assumptions about initial data outside the region of causal contact of a local observer. We argue that a reasonable approximation to a maximum entropy state, one that makes minimal assumptions outside an observer’s horizon volume, is one where a cutoff is placed on a surface bounded by timelike geodesics, just outside the horizon. For sufficiently early times, such a cutoff induces secular logarithmic divergences with the expansion of the region. For massive fields, these effects sum to finite corrections at sufficiently late times. The difference between the cutoff correlators and Hartle-Hawking correlators provides a measure of the theoretical uncertainty due to lack of knowledge of the initial state in causally disconnected regions. These differences are negligible for primordial inflation, but can become significant during epochs with very long-lived de Sitter regions, such as we may be entering now.

  19. Auxiliary ``Massless'' Spin-2 Field in De Sitter Universe

    NASA Astrophysics Data System (ADS)

    Pejhan, H.; Tanhayi, M. R.; Takook, M. V.

    2010-09-01

    For the tensor field of rank-2 there are two unitary irreducible representation (UIR) in de Sitter (dS) space denoted by Pi^{±}_{2,2} and Pi^{±}_{2,1} (Dixmier in Bull Soc. Math. France 89:9, 1961). In the flat limit only the Pi^{±}_{2,2} coincides to the UIR of Poincaré group, the second one becomes important in the study of conformal gravity. In the previous work, Dirac’s six-cone formalism has been utilized to obtain conformally invariant (CI) field equation for the “massless” spin-2 field in dS space (Dehghani et al. in Phys. Rev. D 77:064028, 2008). This equation results in a field which transformed according to Pi^{±}_{2,1}, we name this field the auxiliary field. In this paper this auxiliary field is considered and also related two-point function is calculated as a product of a polarization tensor and “massless” conformally coupled scalar field. This two-point function is de Sitter invariant.

  20. Rotating, radiating mass imbedded in a de Sitter universe

    SciTech Connect

    Hadley, R.H.

    1991-01-01

    This study presents a new solution to the Einstein field equations for a rotating, radiating mass imbedded in a de Sitter universe, the Kerr de Sitter-Vaidya or KDV line element. Solutions presented were precursers to the new solution. One of these, the Vaidya-Mallett or VM metric is used as a starting point to derive the KDV metric by a method called complexification. The mathematical framework for the KDV metric is the Newman-Penrose formalism, a powerful tool that provides insight into the various properties of the space-time geometry and optical properties of the radiation field. Using this formalism, the metric can be expressed in tetrad form and the Newman-Penrose spin coefficient equations solved for tetrad components of the trace-free Ricci tensor, Ricci scalar, Maxwell tensor, and Weyl tensor. Using the tetrad components of the Weyl tensor, the Petrov type for the gravitational and electromagnetic fields are found. The new solution is shown to be a solution to the Einstein-Maxwell equations for a particular choice of energy-momentum tensor which is studied in detail.

  1. de Sitter Space in Non-Critical String Theory

    SciTech Connect

    Silverstein, Eva M

    2002-08-13

    Supercritical string theories in D > 10 dimensions with no moduli are described, generalizing the asymmetric orientifold construction of one of the authors [1]. By taking the number of dimensions to be large and turning on fluxes, dilaton potentials are generated with nontrivial minima at arbitrarily small cosmological constant and D-dimensional string coupling, separated by a barrier from a flat-space linear dilaton region, but possibly suffering from strong coupling problems. The general issue of the decay of a de Sitter vacuum to flat space is discussed. For relatively small barriers, such decays are described by gravitational instantons. It is shown that for a sufficiently large potential barrier, the bubble wall crosses the horizon. At the same time the instanton decay time exceeds the Poincare recurrence time. It is argued that the inclusion of such instantons is neither physically meaningful nor consistent with basic principles such as causality. This raises the possibility that such de Sitter vacua are effectively stable. In the case of the supercritical flux models, decays to the linear dilaton region can be forbidden by such large barriers, but decays to lower flux vacua including AdS minima nevertheless proceed consistently with this criterion. These models provide concrete examples in which cosmological constant reduction by flux relaxation can be explored.

  2. Transition probabilities for 5s-5p, 5p-5d, 4f-5d, and 5d-5f transitions in Ag-like ions with Z = 50-86

    SciTech Connect

    Ivanova, E.P.

    2011-01-15

    The wavelengths, electric dipole transition probabilities, and oscillator strengths are calculated for transitions between low-lying states (5s-5p, 5p-5d, 4f-5d, and 5d-5f) in the silver isoelectronic sequence (50 {<=} Z {<=} 86) using relativistic perturbation theory with a zero-approximation model potential. The results are compared with the corresponding data of the relativistic Hartree-Fock theory and the relativistic many-body perturbation theory. The results of these three theoretical approaches are compared with available experimental data for the level lifetimes. Possible reasons for some disagreements are discussed.

  3. Scale-invariant spectrum of Lee-Wick model in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Moon, Taeyoon

    2015-02-01

    We obtain a scale-invariant spectrum from the Lee-Wick model in de Sitter spacetime. This model is a fourth-order scalar theory whose mass parameter is determined by M2=2H2. The Harrison-Zel'dovich scale-invariant spectrum is obtained by Fourier transforming the propagator in position space as well as by computing the power spectrum directly. It shows clearly that the LW scalar theory provides a truly scale-invariant spectrum in whole de Sitter, while the massless scalar propagation in de Sitter shows a scale-invariant spectrum in the superhorizon region only.

  4. Einstein-Weyl structures and de Sitter supergravity

    NASA Astrophysics Data System (ADS)

    Gutowski, Jan B.; Palomo-Lozano, Alberto; Sabra, W. A.

    2012-05-01

    The geometric structure of the null solutions of de Sitter D = 5 gauged supergravity coupled to vector multiplets is investigated. These solutions are Kundt metrics, constructed from a one-parameter family of three-dimensional Gauduchon-Tod base spaces. We give examples, including the near-horizon geometries previously found in Gutowski and Sabra (2011 J. High Energy Phys. JHEP05(2011)020). In addition, two special cases are considered in detail. In the first case, we consider solutions for which the Gauduchon-Tod base space is the Berger sphere. In the second case, we take the null 1-form Killing spinor bilinear to be recurrent, so that the holonomy of the Lévi-Cività connection is contained in Sim(3).

  5. Exploring special relative locality with de Sitter momentum-space

    NASA Astrophysics Data System (ADS)

    Loret, Niccoló

    2014-12-01

    Relative locality is a recent approach to the quantum-gravity problem which allows the taming of nonlocality effects which may arise in some models which try to describe Planck-scale physics. I here explore the effect of relative locality on basic special-relativistic phenomena. In particular I study the deformations due to relative locality of special-relativistic transformation laws for momenta at all orders in the rapidity parameter ξ . I underline how those transformations also define the relative locality characteristic (momentum-dependent) invariant metric. I focus my analysis on the well studied de Sitter momentum-space framework, and I investigate the differences and similarities between this model and special relativity, from the definition of the boost parameter γ to a first discussion of transverse effects characteristic of relative locality on clocks observables.

  6. de Sitter gauge theory of gravity: an alternative torsion cosmology

    SciTech Connect

    Ao, Xi-Chen; Li, Xin-Zhou E-mail: kychz@shnu.edu.cn

    2011-10-01

    A new cosmological model based on the de Sitter gauge theory (dSGT) is studied in this paper. By some transformations, we find, in the dust universe, the cosmological equations of dSGT could form an autonomous system. We conduct dynamics analysis to this system, and find 9 critical points, among which there exist one positive attractor and one negative attractor. The positive attractor shows us that our universe will enter a exponential expansion phase in the end, which is similar to the conclusion of ΛCDM. We also carry out some numerical calculations, which confirms the conclusion of dynamics analysis. Finally, we fit the model parameter and initial values to the Union 2 SNIa dataset, present the confidence contour of parameters and obtain the best-fit values of parameters of dSGT.

  7. Gauge dependence in QED amplitudes in expanding de Sitter space

    NASA Astrophysics Data System (ADS)

    Nicolaevici, Nistor

    2016-04-01

    We consider first-order transition amplitudes in external fields in QED in the expanding de Sitter space and point out that they are gauge dependent quantities. We examine the gauge variations of the amplitudes assuming a decoupling of the interaction at large times, which allows to conclude that the source of the problem lies in the fact that the frequencies of the modes in the infinite future become independent of the comoving momenta. We show that a possibility to assure the gauge invariance of the external field amplitudes is to restrict to potentials which vanish sufficiently fast at infinite times, and briefly discuss a number of options in the face of the possible gauge invariance violation in the full interacting theory.

  8. Energy, momentum and angular momentum conservations in de Sitter gravity

    NASA Astrophysics Data System (ADS)

    Lu, Jia-An

    2016-08-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity.

  9. Quantum modifications to gravity waves in de Sitter spacetime

    SciTech Connect

    Hsiang, Jen-Tsung; Lee, Da-Shin; Ford, L. H.; Yu, Hoi-Lai

    2011-04-15

    We treat a model in which tensor perturbations of de Sitter spacetime, represented as a spatially flat model, are modified by the effects of the vacuum fluctuations of a massless conformally invariant field, such as the electromagnetic field. We use the semiclassical theory of gravity with the expectation value of the conformal field stress tensor as a source. We first study the stability of de Sitter spacetime by searching for growing, spatially homogeneous modes, and conclude that it is stable within the limits of validity of the semiclassical theory. We next examine the modification of linearized plane gravity waves by the effects of the quantum stress tensor. We find a correction term which is of the same form as the original wave, but displaced in phase by {pi}/2, and with an amplitude which depends upon an initial time. The magnitude of this effect is proportional to the change in scale factor after this time. We discuss alternative interpretations of this time, but pay particular attention to the view that this is the beginning of inflation. So long as the energy scale of inflation and the proper frequency of the mode at the beginning of inflation are well below the Planck scale, the fractional correction is small. However, modes which are trans-Planckian at the onset of inflation can undergo a significant correction. The increase in amplitude can potentially have observable consequences through a modification of the power spectrum of tensor perturbations in inflationary cosmology. This enhancement of the power spectrum depends upon the initial time, and is greater for shorter wavelengths.

  10. Conformally invariant 'massless' spin-2 field in the de Sitter universe

    SciTech Connect

    Dehghani, M.; Rouhani, S.; Takook, M. V.; Tanhayi, M. R.

    2008-03-15

    A massless spin-2 field equation in de Sitter space, which is invariant under the conformal transformation, has been obtained. The framework utilized is the symmetric rank-2 tensor field of the conformal group. Our method is based on the group theoretical approach and six-cone formalism, initially introduced by Dirac. Dirac's six-cone is used to obtain conformally invariant equations on de Sitter space. The solution of the physical sector of massless spin-2 field (linear gravity) in de Sitter ambient space is written as a product of a generalized polarization tensor and a massless minimally coupled scalar field. Similar to the minimally coupled scalar field, for quantization of this sector, the Krein space quantization is utilized. We have calculated the physical part of the linear graviton two-point function. This two-point function is de Sitter invariant and free of pathological large-distance behavior.

  11. Thermal nature of de Sitter spacetime and spontaneous excitation of atoms

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiying; Yu, Hongwei

    2008-02-01

    We consider, in de Sitter spacetime, both freely falling and static two-level atoms in interaction with a conformally coupled massless scalar field in the de Sitter-invariant vacuum, and separately calculate the contributions of vacuum fluctuations and radiation reaction to the atom's spontaneous excitation rate. We find that spontaneous excitations occur even for the freely falling atom as if there is a thermal bath of radiation at the Gibbons-Hawking temperature and we thus recover, in a different physical context, the results of Gibbons and Hawking that reveals the thermal nature of de Sitter spacetime. Similarly, for the case of the static atom, our results show that the atom also perceives a thermal bath which now arises as a result of the intrinsic thermal nature of de Sitter spacetime and the Unruh effect associated with the inherent acceleration of the atom.

  12. Interpretational conflicts between the static and non-static forms of the de Sitter metric.

    PubMed

    Mitra, Abhas

    2012-01-01

    The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter metric from a physical perspective. In particular, while the "Principle of Energy Conservation" is honored in one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special vacuum equation of state pressure = -density which results in the static form even when the vacuum fluid is supposed to be in motion. PMID:23213359

  13. Kapteyn and de Sitter; a rare and special teacher-student and coach-player relationship

    NASA Astrophysics Data System (ADS)

    de Sitter, Wolter Reinold

    Measured along the yardstick of subsequent success, Willem de Sitter [1872-1934] was one of Kapteyn's foremost pupils along with van Rhijn, Schilt and Jan Hendrik Oort. From his appointment as professor at Leiden University in 1908 until Kapteyn's death in 1922, de Sitter maintained in close contact with his teacher. Kapteyn was his trusted sounding board and consultant in scientific and administrative matters, as well as academic politics. De Sitter had his ideas on a complete reorganisation and restructuring of Leiden Observatory scrutinized by Kapteyn's experienced judgement, and together they developed ideas and completed a plan of action, including touchy staffing, salary and budgettary aspects. Together they were a formidable team and operated as such. Notes by de Sitter and many letters from Kapteyn illustrate their fruitful relationship.

  14. Light bending in Reissner-Nordstrom-de Sitter black hole by Rindler-Ishak method

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, M.; Mojahed, S.; Rokni, S. Y.

    2014-05-01

    We investigate the influence of the cosmological constant, Λ, on the bending of light by a charged black hole in a de Sitter spacetime. Despite vanishing of the cosmological constant in the second order null geodesic equation, considering the method introduced by Rindler and Ishak (2007), we obtain an expression for the deflection angle, consistent with previous results for Schwarzschild, Schwarzschild-de Sitter (SdS), and Reissner-Nordstrom (RN) spacetimes.

  15. Contribution of the cosmological constant to the bending of light in Kerr-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph

    2013-08-01

    We examine the effect of the cosmological constant Λ on the angle of deflection of null geodesics in the equatorial plane of the Kerr-de Sitter spacetime. This is done by employing a procedure used recently by Rindler and Ishak to obtain the bending angle of light in the Schwarzschild-de Sitter geometry. We show that this approach yields a contribution from the cosmological constant in the expression for the bending angle.

  16. Graviton emission from simply rotating Kerr-de Sitter black holes: Transverse traceless tensor graviton modes

    SciTech Connect

    Doukas, Jason; Cho, H. T.; Cornell, A. S.; Naylor, Wade

    2009-08-15

    In this article we present results for tensor graviton modes (in seven dimensions and greater, n{>=}3) for gray-body factors of Kerr-de Sitter black holes and for Hawking radiation from simply rotating (n+4)-dimensional Kerr black holes. Although there is some subtlety with defining the Hawking temperature of a Kerr-de Sitter black hole, we present some preliminary results for emissions assuming the standard Hawking normalization and a Bousso-Hawking-like normalization.

  17. Holography and quantum states in elliptic de Sitter space

    NASA Astrophysics Data System (ADS)

    Halpern, Illan F.; Neiman, Yasha

    2015-12-01

    We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in "elliptic" de Sitter space d{S}_4/{Z}_2 , obtained by identifying antipodal points in dS 4. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable d{S}_4/{Z}_2 . We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in d{S}_4/{Z}_2 , in the limit of free bulk fields. We succeed in deriving an observer's operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.

  18. Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach

    PubMed Central

    Jangravi, Zohreh; Najafi, Mohammad; Shabani, Mohammd

    2016-01-01

    Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active gene. In this light, the aim of this study was to investigate isoform/transcript-specific expression profiles of KDM5D in three prostate cancer cell lines, Du-145, LNCaP, and PC3. Methods: Real-time PCR analysis was performed to determine the expression levels of different KDM5D transcripts in the prostate cell lines. A gene regulatory network was established to analyze the gene expression profile. Results: Significantly different expression levels of both isoforms were found among the three cell lines. Interestingly, isoform I was expressed in three cell lines while isoform III did only in DU-145. The expression levels of both isoforms were higher in DU-145 when compared to other cell lines (P<0.0001). The observed expression profile was determined by using regulatory network analyses. Conclusion: The present study, for the first time, not only showed the expression profiles of KDM5D isoforms in prostate cancer cell lines but also evaluated the effects of the gene regulatory network on the expression profile of this gene. PMID:26728332

  19. Pathways to relativistic curved momentum spaces: de Sitter case study

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni; Gubitosi, Giulia; Palmisano, Giovanni

    2016-01-01

    Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called κ-momentum space, with de Sitter (dS) metric and κ-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi-Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.

  20. Riemann correlator in de Sitter including loop corrections from conformal fields

    SciTech Connect

    Fröb, Markus B.; Verdaguer, Enric

    2014-07-01

    The Riemann correlator with appropriately raised indices characterizes in a gauge-invariant way the quantum metric fluctuations around de Sitter spacetime including loop corrections from matter fields. Specializing to conformal fields and employing a method that selects the de Sitter-invariant vacuum in the Poincaré patch, we obtain the exact result for the Riemann correlator through order H{sup 4}/m{sub p}{sup 4}. The result is expressed in a manifestly de Sitter-invariant form in terms of maximally symmetric bitensors. Its behavior for both short and long distances (sub- and superhorizon scales) is analyzed in detail. Furthermore, by carefully taking the flat-space limit, the explicit result for the Riemann correlator for metric fluctuations around Minkowki spacetime is also obtained. Although the main focus is on free scalar fields (our calculation corresponds then to one-loop order in the matter fields), the result for general conformal field theories is also derived.

  1. Monotone-short solutions of the Tolman-Oppenheimer-Volkoff-de Sitter equation

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsiung; Makino, Tetu

    2016-09-01

    It is known that spherically symmetric static solutions of the Einstein equations with a positive cosmological constant for the energy-momentum tensor of a barotropic perfect fluid are governed by the Tolman-Oppenheimer-Volkoff-de Sitter equation. Some sufficient conditions for the existence of monotone-short solutions (with finite radii) of the equation are given in this article. Then we show that the interior metric can extend to the exterior Schwarzschild-de Sitter metric on the exterior vacuum region with twice continuous differentiability. In addition, we investigate the analytic property of the solutions at the vacuum boundary. Our result (Theorem 1) can be considered as the de Sitter version of the result by Rendall and Schmidt [Classical Quantum Gravity 8, 985-1000 (1991)]. Furthermore, one can see that there are different properties of the solutions with those of the Tolman-Oppenheimer-Volkoff equation (with zero cosmological constant) in certain situation.

  2. Entropy in universes evolving from initial to final de Sitter eras

    NASA Astrophysics Data System (ADS)

    Mimoso, José P.; Pavón, Diego

    2014-05-01

    This work studies the behavior of entropy in recent cosmological models that start with an initial de Sitter expansion phase, go through the conventional radiation and matter dominated eras to be followed by a final de Sitter epoch. In spite of their seemingly similarities (observationally they are close to the Λ-CDM model), different models deeply differ in their physics. The second law of thermodynamics encapsulates the underlying microscopic, statistical description, and hence we investigate it in the present work. Our study reveals that the entropy of the apparent horizon plus that of matter and radiation inside it, increases and is a concave function of the scale factor. Thus thermodynamic equilibrium is approached in the last de Sitter era, and this class of models is thermodynamically correct. Cosmological models that do not approach equilibrium appear in conflict with the second law of thermodynamics. (Based on Mimoso & Pavon 2013)

  3. Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy.

    PubMed

    Altman, Alison B; Pacold, Joseph I; Wang, Jian; Lukens, Wayne W; Minasian, Stefan G

    2016-06-14

    The electronic structure in the complete series of stable lanthanide sesquioxides, Ln2O3 (Ln = La to Lu, except radioactive Pm), has been evaluated using oxygen K-edge X-ray absorption spectroscopy (XAS) with a scanning transmission X-ray microscope (STXM). The experimental results agree with recent synthetic, spectroscopic and theoretical investigations that provided evidence for 5d orbital involvement in lanthanide bonding, while confirming the traditional viewpoint that there is little Ln 4f and O 2p orbital mixing. However, the results also showed that changes in the energy and occupancy of the 4f orbitals can impact Ln 5d and O 2p mixing, leading to several different bonding modes for seemingly identical Ln2O3 structures. On moving from left to right in the periodic table, abrupt changes were observed for the energy and intensity of transitions associated with Ln 5d and O 2p antibonding states. These changes in peak intensity, which were directly related to the amounts of O 2p and Ln 5d mixing, were closely correlated to the well-established trends in the chemical accessibility of the 4f orbitals towards oxidation or reduction. The unique insight provided by the O K-edge XAS is discussed in the context of several recent theoretical and physical studies on trivalent lanthanide compounds.

  4. Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy.

    PubMed

    Altman, Alison B; Pacold, Joseph I; Wang, Jian; Lukens, Wayne W; Minasian, Stefan G

    2016-06-14

    The electronic structure in the complete series of stable lanthanide sesquioxides, Ln2O3 (Ln = La to Lu, except radioactive Pm), has been evaluated using oxygen K-edge X-ray absorption spectroscopy (XAS) with a scanning transmission X-ray microscope (STXM). The experimental results agree with recent synthetic, spectroscopic and theoretical investigations that provided evidence for 5d orbital involvement in lanthanide bonding, while confirming the traditional viewpoint that there is little Ln 4f and O 2p orbital mixing. However, the results also showed that changes in the energy and occupancy of the 4f orbitals can impact Ln 5d and O 2p mixing, leading to several different bonding modes for seemingly identical Ln2O3 structures. On moving from left to right in the periodic table, abrupt changes were observed for the energy and intensity of transitions associated with Ln 5d and O 2p antibonding states. These changes in peak intensity, which were directly related to the amounts of O 2p and Ln 5d mixing, were closely correlated to the well-established trends in the chemical accessibility of the 4f orbitals towards oxidation or reduction. The unique insight provided by the O K-edge XAS is discussed in the context of several recent theoretical and physical studies on trivalent lanthanide compounds. PMID:26979662

  5. Graviton two-point function in 3 + 1 static de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Bernar, Rafael P.; Crispino, Luís C. B.; Higuchi, Atsushi

    2016-06-01

    In [R. P. Bernar, L. C. B. Crispino and A. Higuchi, Phys. Rev. D 90 (2014) 024045.] we investigated gravitational perturbations in the background of de Sitter spacetime in arbitrary dimensions. More specifically, we used a gauge-invariant formalism to describe the perturbations inside the cosmological horizon, i.e. in the static patch of de Sitter spacetime. After a gauge-fixed quantization procedure, the two-point function in the Bunch-Davies-like vacuum state was shown to be infrared finite and invariant under time-translation. In this work, we give details of the calculations to obtain the graviton two-point function in 3 + 1 dimensions.

  6. Annihilation of the scalar pair into a photon in a de Sitter universe

    NASA Astrophysics Data System (ADS)

    Băloi, Mihaela-Andreea

    2016-05-01

    The annihilation of massive scalar particles in one photon in de Sitter expanding universe is studied, using perturbative QED. The amplitude and probability corresponding to this process is computed using the exact solutions of the Klein-Gordon and Maxwell equations on de Sitter geometry. Our results show that the expression of the total probability of photon emission is a function dependent on the ratio mass/expansion factor. We perform a graphical study of the total probability in terms of the parameter mass/expansion factor, showing that this effect is significant only in strong gravitational fields. We also obtain that the total probability for this process vanishes in the Minkowski limit.

  7. Gravitationally induced adiabatic particle production: from big bang to de Sitter

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Pan, Supriya

    2016-08-01

    In the background of a flat homogeneous and isotropic space-time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology.

  8. Gravitationally induced adiabatic particle production: from big bang to de Sitter

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Pan, Supriya

    2016-08-01

    In the background of a flat homogeneous and isotropic space–time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology.

  9. More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime

    SciTech Connect

    Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.

    2009-11-15

    In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.

  10. Fermion production in dipolar electric field on de Sitter expanding universe

    SciTech Connect

    Băloi, Mihaela-Andreea Crucean, Cosmin

    2015-12-07

    The production of fermions in dipolar electric fields on de Sitter universe is studied. The amplitude and probability of pair production are computed using the exact solution of the Dirac equation in de Sitter spacetime. The form of the dipolar fields is established using the conformal invariance of the Maxwell equations. We obtain that the momentum conservation law is broken in the process of pair production in dipolar electric fields. Also we establish that there are nonvanishing probabilities for processes in which the helicity is conserved/nonconserved. The Minkowski limit is recovered when the expansion factor becomes zero.

  11. Competitive PCR for Quantification of BM5d Proviral DNA in Mice with AIDS

    PubMed Central

    Casabianca, Anna; Vallanti, Giuliana; Magnani, Mauro

    1998-01-01

    Murine AIDS in C57BL/6 mice is caused by a unique mixture of murine leukemia viruses. We report the use of a competitive PCR to detect and quantitate BM5d proviral DNA. This assay allowed discrimination among endogenous wild-type murine retroviruses and BM5d sequences. Furthermore, the method was subsequently used to evaluate the amount of BM5d in infected mice and in infected AZT (zidovudine)-treated mice, providing an effective way to quantitatively evaluate drug efficacy in the murine AIDS model. PMID:9666028

  12. Unc5D regulates p53-dependent apoptosis in neuroblastoma cells.

    PubMed

    Wang, Hong; Wu, Qiong; Li, Shuang; Zhang, Bin; Chi, Zuofei; Hao, Liangchun

    2014-06-01

    The mechanism of apoptosis via the p53‑dependent pathway remains to be fully understood. In the present study, a novel p53 target gene, Unc5D, was identified and its possible function in human neuroblastoma cells was investigated. The apoptotic effects of Unc5D in SK‑N‑BE (p53‑/‑) and SH‑SY5Y (p53+/+) cells were measured by an 3‑(4,5‑dimethylthiazol‑2‑yl)2,5‑diphenyltetrazolium bromide solution assay. Reverse transcription‑polymerase chain reaction (RT‑PCR) was also performed to detect the endogenous expression of Unc5D. In H1299 (p53‑/‑) cells, following overexpression of p53, RT‑PCR and western blot analysis were used to detect the Unc5D mRNA and protein levels. In order to detect the promoter activity in the Unc5D gene, a luciferase assay was performed. Finally, to confirm the activate site of p53 subsequent to DNA damage, western blot analysis was used to analyze the phosphorylation site of Unc5D stable and mock clones in H1299 cells by co‑expression of p53. Unc5D‑induced apoptosis may be largely dependent on the p53 status. Notably, Unc5D was found to be a direct transcriptional target of p53. During adriamycin‑mediated apoptosis, Unc5D was significantly induced in p53‑proficient SH‑SY5Y cells but not in p53‑deficient SK‑N‑BE cells. Overexpression of p53 resulted in an increase in the expression levels of endogenous Unc5D. Additionally, two elements were identified in the sequence of Unc5D. Notably, Unc5D expression also induced phosphorylation of p53 at serine‑15. Unc5D is thus a newly identified transcriptional target of pro‑apoptotic p53 and may also act upstream of p53 to induce p53‑dependent apoptosis by phosphorylation at ser‑15.

  13. Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds

    SciTech Connect

    Li, Tingwen

    2015-09-25

    The 2.5D model recently proposed by Li et al. (Li, T., Benyahia, S., Dietiker, J., Musser, J., and Sun, X., 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science. 123, 236-246.) was validated for two cylindrical gas-solids bubbling fluidized bed systems. Different types of particles tested under various flow conditions were simulated using the traditional 2D model and the 2.5D model. Detailed comparison against the experimental measurements on solid concentration and velocity were conducted. Comparing to the traditional Cartesian 2D flow simulation, the 2.5D model yielded better agreement with the experimental data especially for the solid velocity prediction in the column wall region.

  14. Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds

    DOE PAGES

    Li, Tingwen

    2015-09-25

    The 2.5D model recently proposed by Li et al. (Li, T., Benyahia, S., Dietiker, J., Musser, J., and Sun, X., 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science. 123, 236-246.) was validated for two cylindrical gas-solids bubbling fluidized bed systems. Different types of particles tested under various flow conditions were simulated using the traditional 2D model and the 2.5D model. Detailed comparison against the experimental measurements on solid concentration and velocity were conducted. Comparing to the traditional Cartesian 2D flow simulation, the 2.5D model yielded better agreement with the experimental data especially for the solidmore » velocity prediction in the column wall region.« less

  15. Physical and geometrical aspects of de sitter interior of a gravastar

    NASA Astrophysics Data System (ADS)

    Morawiec, Pawel Jan

    The principal motivation for the investigations reported in this thesis is the gravastar model for physical black holes. According to this model the final state of the gravitational collapse of cold super-dense stars with the mass greater than some critical value is a non-singular object called a gravastar. This thesis presents results related to the various aspects of the de Sitter interior of a gravastar. The main object of the research was a generalized rotating interior of a gravastar. It was shown that the rotation, characterized by the vorticity, is localized on the vortex line. The metric under considerations is the de Sitter metric, however in some variant of the oblate spheroidal coordinates. Additionally a cosmic string on the rotation axis is present. This new result is the de Sitter version of the Mazur string, which was obtained from the four dimensional Levi-Civita metric as the generalization of the three-dimensional cosmic string by Adler and Jackiw. Also, using analogy between rotation in the superfluid and the magnetic field we gave another example of the Cosmic No Hair Theorem, this time "no magnetic fields in de Sitter space". But we also have shown that when the de Sitter event horizon is replaced by a thin shell (with a finite thickness), as it is in the gravastar model, the non-vanishing magnetic field could be present. To our knowledge these are new results. In this thesis we have studied behavior of the massless Dirac field as an example of a matter field in the de Sitter spacetime in the vicinity of an event horizon. We found convenient to work in the frame of the optical geometry of the de Sitter space as it is related to the metric in the static coordinates through a conformal Weyl rescaling and the dynamics of the massless Dirac fields is conformally invariant. The fact that the spatial part of the metric in the optical geometry of de Sitter space is the constant negative curvature Lobachevski space (the Euclidean ant-de Sitter space

  16. Health-related quality of life (EQ-5D) before and after orthopedic surgery

    PubMed Central

    2011-01-01

    Background and purpose Population data on mortality and life expectancy are generally available for most countries. However, no longitudinal data based on the health-related quality of life outcome from the EQ-5D instrument have been reported for orthopedic patients. We assessed the effect of orthopedic surgery as measured by EQ-5D. Methods We analyzed EQ-5D data from 2,444 patients who were operated at the Department of Orthopedic Surgery at Karolinska University Hospital, 2001–2005. We also made a comparison between results from this cohort and those from a Swedish EQ-5D population survey. Results The mean EQ-5D index score improved from 0.54 to 0.72. Hip and knee arthroplasty, operations related to previous surgery, trauma-related procedures, and rheumatoid arthritis surgeries had preoperative EQ-5D index scores of 0.48 to 0.52. All of these groups showed substantial improvement in scores (0.63 to 0.80). Patients with tumors or diseases of the elbow/hand showed higher preoperative scores (0.66 to 0.77), which were similar postoperatively. In most patients, the EQ-5D index score improved but did not reach the level reported for an age- and sex-matched population sample (mean difference = 0.11). Interpretation Our results can be used as part of the preoperative patient information to increase the level of patient awareness and cooperation, and to facilitate rehabilitation. In future it will be possible—but not easy—to use the EQ-5D instrument as a complementary consideration in clinical priority assessment. PMID:21189112

  17. Chinese Version of the EQ-5D Preference Weights: Applicability in a Chinese General Population

    PubMed Central

    Wu, Chunmei; Gong, Yanhong; Wu, Jiang; Zhang, Shengchao; Yin, Xiaoxv; Dong, Xiaoxin; Li, Wenzhen; Cao, Shiyi; Mkandawire, Naomie; Lu, Zuxun

    2016-01-01

    Objectives This study aimed to test the reliability, validity and sensitivity of Chinese version of the EQ-5D preference weights in Chinese general people, examine the differences between the China value set and the UK, Japan and Korea value sets, and provide methods for evaluating and comparing the EQ-5D value sets of different countries. Methods A random sample of 2984 community residents (15 years or older) were interviewed using a questionnaire including the EQ-5D scale. Level of agreement, convergent validity, known-groups validity and sensitivity of the EQ-5D China, United Kingdom (UK), Japan and Korea value sets were determined. Results The mean EQ-5D index scores were significantly (P<0.05) different among the UK (0.964), Japan (0.981), Korea (0.987), and China (0.985) weights. High level of agreement (intraclass correlations coefficients > 0.75) and convergent validity (Pearson’s correlation coefficients > 0.95) were found between each paired schemes. The EQ-5D index scores discriminated equally well for the four versions between levels of 10 known-groups (P< 0.05). The effect size and the relative efficiency statistics showed that the China weights had better sensitivity. Conclusions The China EQ-5D preference weights show equivalent psychometric properties with those from the UK, Japan and Korea weights while slightly more sensitive to known group differences than those from the Japan and Korea weights. Considering both psychometric and sociocultural issues, the China scheme should be a priority as an EQ-5D based measure of the health related quality of life in Chinese general population. PMID:27711169

  18. Interpretational conflicts between the static and non-static forms of the de Sitter metric

    PubMed Central

    Mitra, Abhas

    2012-01-01

    The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter metric from a physical perspective. In particular, while the “Principle of Energy Conservation” is honored in one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special vacuum equation of state pressure = –density which results in the static form even when the vacuum fluid is supposed to be in motion. PMID:23213359

  19. One-loop quantum electrodynamic correction to the gravitational potentials on de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Wang, C. L.; Woodard, R. P.

    2015-10-01

    We compute the one-loop photon contribution to the graviton self-energy on a de Sitter background and use it to solve the linearized Einstein equation for a point mass. Our results show that a comoving observer sees a logarithmic spatial running Newton's constant. Equivalently, a static observer reports a secular suppression of the Newtonian potential.

  20. A new method of researching fermion tunneling from the Vaidya-Bonner de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shu-Zheng

    2009-06-01

    Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.

  1. Approximate solutions to the nonlinear Klein-Gordon equation in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Yazici, Muhammet; Şengül, Süleyman

    2016-09-01

    We consider initial value problems for the nonlinear Klein-Gordon equation in de Sitter spacetime. We use the differential transform method for the solution of the initial value problem. In order to show the accuracy of results for the solutions, we use the variational iteration method with Adomian's polynomials for the nonlinearity. We show that the methods are effective and useful.

  2. Site-specific strong ground motion prediction using 2.5-D modelling

    NASA Astrophysics Data System (ADS)

    Narayan, J. P.

    2001-08-01

    An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of

  3. Non-local thermodynamic equilibrium 1.5D modeling of red giant stars

    SciTech Connect

    Young, Mitchell E.; Short, C. Ian

    2014-05-20

    Spectra for two-dimensional (2D) stars in the 1.5D approximation are created from synthetic spectra of one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spherical model atmospheres produced by the PHOENIX code. The 1.5D stars have the spatially averaged Rayleigh-Jeans flux of a K3-4 III star while varying the temperature difference between the two 1D component models (ΔT {sub 1.5D}) and the relative surface area covered. Synthetic observable quantities from the 1.5D stars are fitted with quantities from NLTE and local thermodynamic equilibrium (LTE) 1D models to assess the errors in inferred T {sub eff} values from assuming horizontal homogeneity and LTE. Five different quantities are fit to determine the T {sub eff} of the 1.5D stars: UBVRI photometric colors, absolute surface flux spectral energy distributions (SEDs), relative SEDs, continuum normalized spectra, and TiO band profiles. In all cases except the TiO band profiles, the inferred T {sub eff} value increases with increasing ΔT {sub 1.5D}. In all cases, the inferred T {sub eff} value from fitting 1D LTE quantities is higher than from fitting 1D NLTE quantities and is approximately constant as a function of ΔT {sub 1.5D} within each case. The difference between LTE and NLTE for the TiO bands is caused indirectly by the NLTE temperature structure of the upper atmosphere, as the bands are computed in LTE. We conclude that the difference between T {sub eff} values derived from NLTE and LTE modeling is relatively insensitive to the degree of the horizontal inhomogeneity of the star being modeled and largely depends on the observable quantity being fit.

  4. 5d Higgs branch localization, Seiberg-Witten equations and contact geometry

    NASA Astrophysics Data System (ADS)

    Pan, Yiwen

    2015-01-01

    In this paper we apply the idea of Higgs branch localization to 5d supersymmetric theories of vector multiplet and hypermultiplets, obtained as the rigid limit of = 1 supergravity with all auxiliary fields. On supersymmetric K-contact/Sasakian background, the Higgs branch BPS equations can be interpreted as 5d generalizations of the Seiberg-Witten equations. We discuss the properties and local behavior of the solutions near closed Reeb orbits. For U(1) gauge theories, which can be straight-forwardly generalized to theories whose gauge group can be completely broken, we show the suppression of the deformed Coulomb branch, and the partition function is dominated by 5d Seiberg-Witten solutions. For squashed S 5 and Y pq manifolds, we show the matching between poles in the perturbative Coulomb branch matrix model, and the bound on local winding numbers of the BPS solutions.

  5. Comparison between 2.5D and 3D simulations of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; van der Holst, B.; Poedts, S.

    2007-07-01

    Context: The shocks and magnetic clouds related to Coronal Mass Ejections (CMEs) in the solar corona and interplanetary space (IP) play an important role in the study of space weather. In order to study the evolution of these IP shocks, numerical simulations of a simplified CME model were performed. Aims: In an earlier study, the effect of the background wind on the evolution of interplanetary shock waves was investigated, where the computations were carried out under the assumption of axial symmetry. The assumption of axial symmetry might be a good approach for the solar corona under conditions of solar minimum, but for the study of CMEs this assumption is definitely no longer valid as CMEs possess clearly a fully three dimensional (3D) structure. From this perspective, the previous simulations were repeated, but now in a three dimensional set-up in order to point out the differences between the 2.5D and 3D simulations and to check the quality and reliability of the 2.5D simulations. Methods: The computations were performed in the framework of ideal magnetohydrodynamics (MHD) and to advance the ideal MHD equations in time a parallel finite volume code with explicit upwind solver was used. The shock waves are generated in a similar way in both the 3D and 2.5D simulations, namely by a simple density-blob model. The 3D and 2.5D simulations are all performed with the same numerical methods and on comparable grids, such that the differences between the simulations are purely due to the dimensionality of the problem, and/or the initial parameters for the CME generation. Results: Three different axisymmetric simulations of CME propagation are compared with the fully three dimensional computation. The 2.5D simulations differ from each other in the parameters used for CME initiation. In a first simulation, the same initial parameters as for the 3D case were taken, in a second simulation the initial amount of mass in the 2.5D and 3D CME was the same, and in a third

  6. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas.

    PubMed

    Fedichev, Petr O; Fischer, Uwe R

    2003-12-12

    We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature.

  7. Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas.

    PubMed

    Fedichev, Petr O; Fischer, Uwe R

    2003-12-12

    We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature. PMID:14683099

  8. Giant spin-phonon coupling in a 5d NaOsO3

    NASA Astrophysics Data System (ADS)

    Calder, Stuart; Lee, Jun Hee; Stone, Mathew; Lumsden, Mark; Lang, Jonathan; Feygenson, Mikhail; Shi, Youguo; Sun, Ying; Tsugimoto, Yoshihiro; Yamaura, Kazunari; Christianson, Andrew

    2015-03-01

    The coupling of distinct properties offers avenues to multifunctional materials. A limiting factor, however, is the degree that one parameter has to be modified to sufficiently alter the coupled property. Through a neutron scattering and first-principles density functional theory study of the 5d perovskite NaOsO3 we reveal that from only a 0.1% lattice change an unprecedentedly large coupling emerges. The manifestation is a ``giant'' spin-phonon coupled mode shift of Δω =40 cm-1, the largest observed in any material. By identifying the dominant phonon as the octahedral breathing mode we show isosymmetric ordering and cooperation between the lattice and the exotic magnetically driven Slater metal-insulator transition in this material. The occurrence of the dramatic spin-phonon-electronic coupling in NaOsO3 is due to a property common to all 5d materials: the large spatial extent of the 5d ion. Consequently examining 5d materials in a new light offers novel routes for multifunctional devices with enhanced coupled phenomena. A portion of this research at ORNL's High Flux Isotope Reactor and Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  9. Enhanced spin-phonon-electronic coupling in a 5d oxide

    DOE PAGES

    Calder, Stuart A.; Yamaura, K.; Tsujimoto, Y.; Sun, Y. S.; Stone, Matthew B.; Shi, Y. G.; Lang, Jonathan; Christianson, Andrew D.; Lumsden, Mark D.; Lee, Jun Hee; et al

    2015-11-26

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanism formore » the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.« less

  10. Enhanced spin-phonon-electronic coupling in a 5d oxide

    SciTech Connect

    Calder, Stuart A.; Yamaura, K.; Tsujimoto, Y.; Sun, Y. S.; Stone, Matthew B.; Shi, Y. G.; Lang, Jonathan; Christianson, Andrew D.; Lumsden, Mark D.; Lee, Jun Hee; Feygenson, Mikhail; Zhao, Zhiying; Yan, Jiaqiang

    2015-11-26

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.

  11. Simulation of Laser Wake Field Acceleration using a 2.5D PIC Code

    NASA Astrophysics Data System (ADS)

    An, W. M.; Hua, J. F.; Huang, W. H.; Tang, Ch. X.; Lin, Y. Z.

    2006-11-01

    A 2.5D PIC simulation code is developed to study the LWFA( Laser WakeField Acceleration ). The electron self-injection and the generation of mono-energetic electron beam in LWFA is briefly discussed through the simulation. And the experiment of this year at SILEX-I laser facility is also introduced.

  12. Enhanced spin-phonon-electronic coupling in a 5d oxide

    PubMed Central

    Calder, S.; Lee, J. H.; Stone, M. B.; Lumsden, M. D.; Lang, J. C.; Feygenson, M.; Zhao, Z.; Yan, J.-Q.; Shi, Y. G.; Sun, Y. S.; Tsujimoto, Y.; Yamaura, K.; Christianson, A. D.

    2015-01-01

    Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal–insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm−1, the largest measured in any material. The anomalous modes are shown to involve solely Os–O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials. PMID:26608626

  13. Comparison of SF-6D and EQ-5D Scores in Patients With Breast Cancer

    PubMed Central

    Yousefi, Mahmood; Najafi, Safa; Ghaffari, Shahram; Mahboub-Ahari, Alireza; Ghaderi, Hossein

    2016-01-01

    Background Utility values are a key component of a cost-utility analysis. The EQ-5D and SF-6D are two commonly used measures for deriving utilities. Of particular importance is assessing the performance of these instruments in terms of validity. Objectives This study aimed to compare the performance of the EQ-5D and the SF-6D in different states of breast cancer. Patients and Methods This was a cross-sectional study of 163 patients with breast cancer who attended the breast cancer subspecialty clinic affiliated with the breast cancer research center (BCRC) at ACECR, in Tehran, Iran, and were consecutively recruited. Patients completed several questionnaires, including the EQ-5D, SF-36, and general questions regarding their demographic characteristics. Utility values for different states of breast cancer were obtained using predetermined algorithms for the EQ-5D and SF-6D. The distribution of the utility values and the differences between the different states for both instruments were statistically assessed. Furthermore, the agreement between the two instruments was evaluated using intra-class correlation coefficients and Bland-Altman plots. Results The mean and median EQ-5D utility scores for the total sample were 0.685 and 0.761, respectively. The mean SF-6D utility score for the total sample was 0.653, and the median utility score was 0.640. The mean utility values of the EQ-5D for “state P,” “state R,” “state S,” and “state M” were estimated as 0.674, 0.718, 0.730, and 0.552, respectively. The SF-6D provided mean utility values of 0.638, 0.677, 0.681, and 0.587 for those states. Both instruments assigned statistically significant (P < 0.01) scores for different states. The intra-class correlation for the two measures was 0.677 (95% confidence interval (CI): 0.558 - 0.764). The Bland-Altman plot indicated a better agreement on the higher values and that at higher values, the EQ-5D yields a higher score than the SF-6D; this relationship was

  14. On a boundary-localized Higgs boson in 5D theories

    NASA Astrophysics Data System (ADS)

    Barceló, Roberto; Mitra, Subhadip; Moreau, Grégory

    2015-11-01

    In the context of a simple five-dimensional (5D) model with bulk matter coupled to a brane-localized Higgs boson, we point out a non-commutativity in the 4D calculation of the mass spectrum for excited fermion towers: the obtained expression depends on the choice in ordering the limits, N → ∞ (infinite Kaluza-Klein tower) and ɛ → 0 (ɛ being the parameter introduced for regularizing the Higgs Dirac peak). This introduces the question of which one is the correct order; we then show that the two possible orders of regularization (called I and II) are experimentally equivalent, as both can typically reproduce the measured observables, but that the one with less degrees of freedom (I) could be uniquely excluded by future experimental constraints. This conclusion is based on the exact matching between the 4D and 5D analytical calculations of the mass spectrum - via regularizations of type I and II. Beyond a deeper insight into the Higgs peak regularizations, this matching brings another confirmation of the validity of the 5D mixed formalism. All the conclusions, deduced from regularizing the Higgs peak through a brane shift or a smoothed square profile, are expected to remain similar in realistic models with a warped extra-dimension. The complementary result of the study is that the non-commutativity disappears, both in the 4D and the 5D calculations, in the presence of higher order derivative operators. For clarity, the 4D and 5D analytical calculations, matching with each other, are presented in the first part of the paper, while the second part is devoted to the interpretation of the results.

  15. Late-time structure of the Bunch-Davies de Sitter wavefunction

    SciTech Connect

    Anninos, Dionysios; Anous, Tarek; Freedman, Daniel Z.; Konstantinidis, George

    2015-11-30

    We examine the late time behavior of the Bunch-Davies wavefunction for interacting light fields in a de Sitter background. We use perturbative techniques developed in the framework of AdS/CFT, and analytically continue to compute tree and loop level contributions to the Bunch-Davies wavefunction. We consider self-interacting scalars of general mass, but focus especially on the massless and conformally coupled cases. We show that certain contributions grow logarithmically in conformal time both at tree and loop level. We also consider gauge fields and gravitons. The four-dimensional Fefferman-Graham expansion of classical asymptotically de Sitter solutions is used to show that the wavefunction contains no logarithmic growth in the pure graviton sector at tree level. Finally, assuming a holographic relation between the wavefunction and the partition function of a conformal field theory, we interpret the logarithmic growths in the language of conformal field theory.

  16. Perturbative approach to the problem of particle production in electric field on de Sitter universe

    NASA Astrophysics Data System (ADS)

    Crucean, Cosmin; Băloi, Mihaela-Andreea

    2016-04-01

    In this paper, we study the problem of scalar particle production in external electric field in de Sitter geometry. The total probability is calculated using the previously obtained result in [M. A. Băloi, Mod. Phys. Lett. A 29, 1450138 (2014)] for transition amplitude in external electric field on de Sitter space. Then we make a graphical study of the total probability in terms of the ratio mass of the particle/expansion factor. Our results show that the probability depend on the direction in which the particles are emitted and that the probability becomes maximum when particles are emitted on the direction of the electric field. In the Minkowski limit, we obtain that the probability is vanishing.

  17. Evidence for a bound on the lifetime of de Sitter space

    NASA Astrophysics Data System (ADS)

    Freivogel, Ben; Lippert, Matthew

    2008-12-01

    Recent work has suggested a surprising new upper bound on the lifetime of de Sitter vacua in string theory. The bound is parametrically longer than the Hubble time but parametrically shorter than the recurrence time. We investigate whether the bound is satisfied in a particular class of de Sitter solutions, the KKLT vacua. Despite the freedom to make the supersymmetry breaking scale exponentially small, which naively would lead to extremely stable vacua, we find that the lifetime is always less than about exp(1022) Hubble times, in agreement with the proposed bound. This result, however, is contingent on several estimates and assumptions; in particular, we rely on a conjectural upper bound on the Euler number of the Calabi-Yau fourfolds used in KKLT compactifications.

  18. Slipher's Redshifts as Support for de Sitter's Model and the Discovery of the Dynamic Universe

    NASA Astrophysics Data System (ADS)

    Nussbaumer, H.

    2013-04-01

    Of the first two relativistic world models, only the one by de Sitter predicted redshifted spectra from far away astronomical objects. Slipher's redshifts therefore seemed to arbitrate against Einstein's model which made no such predictions. Both models were trying to describe a static universe. However, Lemaître found that de Sitter's construct resulted in a spatially inhomogeneous universe. He then opted for a model that corresponded to Einstein's closed, curved universe but allowed the radius of curvature to change with time. Slipher's redshifts suggested to him that the universe is dynamic and expanding. We also discuss the respective merits of Friedman and Lemaître in revealing the dynamic nature of the universe.

  19. Late-time structure of the Bunch-Davies de Sitter wavefunction

    SciTech Connect

    Anninos, Dionysios; Freedman, Daniel Z.; Konstantinidis, George; Anous, Tarek E-mail: tanous@mit.edu E-mail: cgcoss@stanford.edu

    2015-11-01

    We examine the late time behavior of the Bunch-Davies wavefunction for interacting light fields in a de Sitter background. We use perturbative techniques developed in the framework of AdS/CFT, and analytically continue to compute tree and loop level contributions to the Bunch-Davies wavefunction. We consider self-interacting scalars of general mass, but focus especially on the massless and conformally coupled cases. We show that certain contributions grow logarithmically in conformal time both at tree and loop level. We also consider gauge fields and gravitons. The four-dimensional Fefferman-Graham expansion of classical asymptotically de Sitter solutions is used to show that the wavefunction contains no logarithmic growth in the pure graviton sector at tree level. Finally, assuming a holographic relation between the wavefunction and the partition function of a conformal field theory, we interpret the logarithmic growths in the language of conformal field theory.

  20. Automodelling solutions of the Higgs-field nonlinear wave equation in the de Sitter space.

    NASA Astrophysics Data System (ADS)

    Dyshko, A. L.; Konyukhova, N. B.; Voronov, N. A.

    2000-04-01

    The effect of the expansion of the Universe on such classical physical objects as spherical bubbles is studied. The authors look for automodelling solutions to scalar Higgs-field equation in the de Sitter space and compare them with the bubble type solutions in the thin-wall approximation. The automodelling bubbles could be considered as critical or singular ones because they collapse in an infinite time. Multinodal solutions as enclosed bubbles are discovered numerically.

  1. Point splitting renormalization of Schwinger induced current in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Hayashinaka, Takahiro; Yokoyama, Jun'ichi

    2016-07-01

    The covariant and gauge invariant calculation of the current expectation value in the homogeneous electric field in 1+3 dimensional de Sitter spacetime is shown. The result accords with previous work obtained by using adiabatic subtraction scheme. We therefore conclude the counterintuitive behaviors of the current in the infrared (IR) regime such as IR hyperconductivity and negative current are not artifacts of the renormalization scheme, but are real IR effects of the spacetime.

  2. Quantum Radiation of a Non-stationary Kerr Newman Black Hole in de Sitter Space Time

    NASA Astrophysics Data System (ADS)

    Jiang, Qing-Quan; Yang, Shu-Zheng

    2006-12-01

    Hawking radiation of Klein-Gordon and Dirac particles in a non-stationary Kerr-Newman-de-Sitter black hole is studied by introducing a new tortoise coordinate transformation. The result shows that the Fermi-Dirac radiant spectrum displays a new term that represents the interaction between the spin of spinor particles and the rotation of black holes, which is absent in the Bose-Einstein distribution of Klein-Gordon particles.

  3. Quantum nonthermal effect of the Vaidya-Bonner-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Pan, Wei-Zhen; Yang, Xue-Jun; Yu, Guo-Xiang

    2014-02-01

    Using the Hamilton-Jacobi equation of a scalar particle in the curve space-time and a correct-dimension new tortoise coordinate transformation, the quantum nonthermal radiation of the Vaidya-Bonner-de Sitter black hole is investigated. The energy condition for the occurrence of the Starobinsky-Unruh process is obtained. The event horizon surface gravity and the Hawking temperature on the event horizon are also given.

  4. On the covariant gauge {alpha} of the linearized gravity in de Sitter spacetime

    SciTech Connect

    Cheong, Lee Yen

    2012-09-26

    In previous work, we studied the linearized gravity with covariant gauge {beta}= 2/3 and {alpha}= 5/3. It was found that the sum of the source and initial contributions reproduces the correct field configuration over the whole de Sitter spacetime. In this paper, we extend this work to generalizing the linearized gravitational field in an arbitrary value of the gauge parameter {alpha} but the gauge parameter {beta} remains the same.

  5. Entropy corrections to five-dimensional black holes and de Sitter spaces

    NASA Astrophysics Data System (ADS)

    Wang, Fujun; Gui, Yuanxing; Ma, Chunrui

    2008-12-01

    It is shown that non-rotating black holes in three or four dimensions possess a canonical entropy. Recently study indicated that there were logarithmic corrections to Bekenstein Hawking entropy in area with a uncertain coefficient which depends on specific models. In this paper, the thermal fluctuations on Bekenstein Hawking entropy in five-dimensional topological AdS (TAds)-black holes and topological de Sitter (Tds) spaces will be considered based on a uniformly spaced area spectrum approach.

  6. Lifting of Flat Directions of the MSSM in de Sitter Background

    SciTech Connect

    Garbrecht, Bjoern

    2008-11-23

    We derive one-loop effective potentials in de Sitter background for scalar, fermion and gauge-boson loops. The results are applied to flat directions of the MSSM. It is found that due to Yukawa couplings, a lifting mass term of order of the Hubble rate arises. The lifting contributions mediated by the gauge couplings are found to cancel at leading order in the Hubble rate.

  7. Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime

    SciTech Connect

    Tian, Zehua; Jing, Jiliang

    2014-11-15

    In the framework of open quantum systems, we study the internal dynamics of both freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar field in de Sitter spacetime. We find that the atomic transition rates depend on both the nature of de Sitter spacetime and the motion of atoms, interestingly the steady states for both cases are always driven to being purely thermal, regardless of the atomic initial states. This thermalization phenomenon is structurally similar to what happens to an elementary quantum system immersed in a thermal field, and thus reveals the thermal nature of de Sitter spacetime. Besides, we find that the thermal baths will drive the entanglement shared by the freely falling atom (the static atom) and its auxiliary partner, a same two-level atom which is isolated from external fields, to being sudden death, and the proper time for the entanglement to be extinguished is computed. We also analyze that such thermalization and disentanglement phenomena, in principle, could be understood from the perspective of table-top simulation experiment.

  8. O(N) model in Euclidean de Sitter space: beyond the leading infrared approximation

    NASA Astrophysics Data System (ADS)

    Nacir, Diana López; Mazzitelli, Francisco D.; Trombetta, Leonardo G.

    2016-09-01

    We consider an O( N) scalar field model with quartic interaction in d-dimensional Euclidean de Sitter space. In order to avoid the problems of the standard perturbative calculations for light and massless fields, we generalize to the O( N) theory a systematic method introduced previously for a single field, which treats the zero modes exactly and the nonzero modes perturbatively. We compute the two-point functions taking into account not only the leading infrared contribution, coming from the self-interaction of the zero modes, but also corrections due to the interaction of the ultraviolet modes. For the model defined in the corresponding Lorentzian de Sitter spacetime, we obtain the two-point functions by analytical continuation. We point out that a partial resummation of the leading secular terms (which necessarily involves nonzero modes) is required to obtain a decay at large distances for massless fields. We implement this resummation along with a systematic double expansion in an effective coupling constant √{λ } and in 1 /N . We explicitly perform the calculation up to the next-to-next-to-leading order in √{λ } and up to next-to-leading order in 1 /N . The results reduce to those known in the leading infrared approximation. We also show that they coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large N limit, provided the same renormalization scheme is used.

  9. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms

    NASA Astrophysics Data System (ADS)

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-10-01

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.

  10. Inflation including collapse of the wave function: the quasi-de Sitter case

    NASA Astrophysics Data System (ADS)

    León, Gabriel; Landau, Susana J.; Piccirilli, María Pía

    2015-08-01

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum.

  11. Equivalence between Euclidean and in-in formalisms in de Sitter QFT

    SciTech Connect

    Higuchi, Atsushi; Marolf, Donald; Morrison, Ian A.

    2011-04-15

    We study the relation between two sets of correlators in interacting quantum field theory on de Sitter space. The first are correlators computed using in-in perturbation theory in the expanding cosmological patch of de Sitter space (also known as the conformal patch, or the Poincare patch), and for which the free propagators are taken to be those of the free Euclidean vacuum. The second are correlators obtained by analytic continuation from Euclidean de Sitter; i.e., they are correlators in the fully interacting Hartle-Hawking state. We give an analytic argument that these correlators coincide for interacting massive scalar fields with any m{sup 2}>0. We also verify this result via direct calculation in simple examples. The correspondence holds diagram by diagram, and at any finite value of an appropriate Pauli-Villars regulator mass M. Along the way, we note interesting connections between various prescriptions for perturbation theory in general static spacetimes with bifurcate Killing horizons.

  12. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms

    PubMed Central

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-01-01

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes. PMID:27731419

  13. Optimal design analysis for thermal performance of high power 2.5D package

    NASA Astrophysics Data System (ADS)

    Xiaoyang, Liu; He, Ma; Daquan, Yu; Wenlu, Chen; Xiaolong, Wu

    2016-03-01

    Based on ANSYS and Icepak softwares, the numerical analysis method is used to build up the thermal analysis model of the 2.5D package, which contains a high power CPU chip. The focus of the research is on the determination of the contributing factors and their effects on the thermal resistance and heat distribution of the package. The parametric analysis illustrates that the substrate conductivity, TIM conductivity and fin height are more crucial for heat conduction in the package. Furthermore, these major parameters are compared and analyzed by orthogonal tests, and the optimal solution for 2.5D integration is proposed. The factors' influence patterns on thermal resistance, obtained in this article, could be utilized as a thermal design reference. Project supported by the National S & T Major Projects (No. 2011ZX02709-2) and the China National Science Foundation (No. 61176098).

  14. A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds

    SciTech Connect

    Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff; Musser, Jordan; Sun, Xin

    2015-02-17

    In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore, the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.

  15. [Contribution for the validation of the Portuguese version of EQ-5D].

    PubMed

    Ferreira, Pedro Lopes; Ferreira, Lara Noronha; Pereira, Luis Nobre

    2013-01-01

    Introdução: O EQ-5D permite a junção de duas componentes essenciais de qualquer medida de qualidade de vida relacionada com a saúde a ser usada em avaliações económicas de custo-utilidade: (i) um perfil descrevendo o estado de saúde em termos de domínios ou dimensões; e (ii) um valor numérico associado ao estado de saúde anteriormente descrito.Objectivo: A versão portuguesa do questionário EQ-5D foi finalizada em 1998, com base em normas de orientação definidas pelo Grupo EuroQol, incluindo os procedimentos de tradução e retroversão. Apesar da sua larga utilização em Portugal, até agora ainda não tinham sido publicados os estudos que conduziram inicialmente à versão portuguesa e à garantia de aceitabilidade, fiabilidade e validade. O propósito do presente artigo é, assim, documentar estes primeiros valores referentes à versão portuguesa do EQ-5D.Material e Métodos: Foram utilizadas três amostras diferentes: uma primeira com 1.500 indivíduos representativa da populaçãoportuguesa; uma segunda com 140 indivíduos apenas destinada ao teste da fiabilidade; e uma terceira amostra com 643 indivíduos doentes com cataratas, asma, doença pulmonar obstrutiva crónica ou artrite reumatoide.Resultados: A aceitabilidade foi avaliada pelo número de respostas em falta. Foi também encontrado um marcado efeito de teto com grande parte da amostra a não reportar quaisquer problemas nas dimensões do EQ-5D.Discussão: A validade de construção foi testada pela análise do grau com que valores baixos de EQ-5D estavam positivamente associados ao aumento da idade, ao ser do sexo feminino, e ao estar doente, assim como a valores de dimensões da escala SF-36v2. A validade convergente foi baseada nas correlações entre valores do EQ-5D e outras escalas específicas de condição de saúde. O EQ-5D apresentou correlações moderadas a altas com outras medidas de estado de saúde e de qualidade de vida relacionada com a saúde, específicas de cada

  16. Area functional relation for 5D-Gauss-Bonnet-AdS black hole

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2016-08-01

    We present area (or entropy) functional relation for multi-horizons five dimensional (5D) Einstein-Maxwell-Gauss-Bonnet-AdS black hole. It has been observed by exact and explicit calculation that some complicated function of two or three horizons area is mass-independent whereas the entropy product relation is not mass-independent. We also study the local thermodynamic stability of this black hole. The phase transition occurs at certain condition. Smarr mass formula and first law of thermodynamics have been derived. This mass-independent relation suggests they could turn out to be an universal quantity and further helps us to understanding the nature of black hole entropy (both interior and exterior) at the microscopic level. In the "Appendix", we have derived the thermodynamic products for 5D Einstein-Maxwell-Gauss-Bonnet black hole with vanishing cosmological constant.

  17. Efficient 5D excitation of trapped Rb atoms with pulsed diode-laser light

    SciTech Connect

    Supetitz, W.; Duncan, B.C.; Lee, D.I.; Gould, P.L.

    1996-05-01

    The authors have demonstrated that appropriately time-ordered pulses of diode-laser light can provide efficient population transfer in a three-level cascade system. Laser-trapped Rb atoms are excited from the 5S ground state to the highly-excited 5D level (via the 5P intermediate level) with nearly 100% efficiency. Diode-lasers at 780 nm (5S{yields}5P) and 776 nm (5P{yields}5D) are pulsed with acousto-optic modulators to provide the excitation. The variation of transfer efficiency with relative delay between the two pulses is in good agreement with theoretical expectations. Optimum excitation occurs for the counterintuitive pulse ordering, i.e., when the upper transition is driven first.

  18. NORMATIVE VALUES OF EQ-5D-5L FOR DIABETES PATIENTS FROM SPAIN.

    PubMed

    Collado Mateo, Daniel; García Gordillo, Miguel A; Olivares, Pedro R; Adsuar, José C

    2015-10-01

    Introducción: la diabetes es una enfermedad metabólica que puede conllevar una reducción de la calidad de vida relacionada con la salud. El EQ-5D es un cuestionario genérico de calidad de vida relacionada con la salud basado en preferencias sociales. Este cuestionario ha sido muy utilizado en pacientes con diabetes. Objetivo: el objetivo del presente artículo es informar sobre los valores normativos del cuestionario EQ-5D-5L en personas españolas con diabetes. Métodos: se utilizaron datos de la Encuesta Española de Salud (2011/2012). Un total de 1.857 personas con diabetes participaron en la encuesta. La puntuación del EQ-5D-5L se ha reflejado en función del sexo, región (incluyendo las 17 comunidades autónomas y las 2 ciudades autónomas de España), y 8 grupos de edad. Resultados: la media del índice de utilidad para toda la muestra fue de 0,742. Esta fue mejor para hombres (0,826) que para mujeres (0,673). Resultados similares se observaron en la Escala Visual Analógica. El efecto techo fue mucho mayor en hombres (44,83%) que en mujeres (24,41%). Conclusiones: el presente estudio recoge datos normativos representativos del EQ-5D-5L en España de personas con diabetes.

  19. Dingle and de Sitter Against the Metaphysicians, or Two Ways to Keep Modern Cosmology Physical

    NASA Astrophysics Data System (ADS)

    Gale, George

    It would be hard to find two more radically different personalities than the irascible Herbert Dingle and the courtly Willem de Sitter. Yet, when it came to their philosophy of science, these two otherwise-so-different men were united against a common enemy, those they both called the "metaphysicians." Right from 1917, de Sitter attempted always to keep cosmology tightly bound to real observations made upon a real world. In Kosmos, written near the end of his life, he re-affirms most strongly his principle that "there is nothing an orthodox physicist abhors more than metaphysics." Dingle, for his part, accepts early on the positivist use of the verifiability principle to eliminate metaphysics from science, and continuously wields the principle as a weapon against those errant cosmologists who would sacrifice science for a sort of mysticism. Both men reject the strict and literal use of the term "universe," and for the same reasons: there is no observation, no verification, of statements containing that term. Both men reject the "cosmological principle" as Milne and others use it, on the grounds, as de Sitter puts it, that "we have . . . no means of communicating with other observers, situated on faraway stars." Eddington, although always closely associated with de Sitter personally, comes in for his own fine share of criticism. After de Sitter's death, Dingle carried on the battle alone, always on the bases that he and de Sitter had earlier established. The two peaks in Dingle's long struggle were the notorious 1937 controversy in the pages of Nature, a nasty dogfight which managed to involve almost every single important physicist in Britain; thirteen years later, the long war with the metaphysicians ended with the pyrrhic victory of Dingle's Royal Astronomical Society Presidential Address' invective against the latest and greatest metaphysical creation, Bondi's steady state universe theory. In the end, however, it would be a mistake to believe that the campaign

  20. A comparison of the EQ-5D and SF-6D across seven patient groups.

    PubMed

    Brazier, John; Roberts, Jennifer; Tsuchiya, Aki; Busschbach, Jan

    2004-09-01

    As the number of preference-based instruments grows, it becomes increasingly important to compare different preference-based measures of health in order to inform an important debate on the choice of instrument. This paper presents a comparison of two of them, the EQ-5D and the SF-6D (recently developed from the SF-36) across seven patient/population groups (chronic obstructive airways disease, osteoarthritis, irritable bowel syndrome, lower back pain, leg ulcers, post menopausal women and elderly). The mean SF-6D index value was found to exceed the EQ-5D by 0.045 and the intraclass correlation coefficient between them was 0.51. Whilst this convergence lends some support for the validity of these measures, the modest difference at the aggregate level masks more significant differences in agreement across the patient groups and over severity of illness, with the SF-6D having a smaller range and lower variance in values. There is evidence for floor effects in the SF-6D and ceiling effects in the EQ-5D. These discrepancies arise from differences in their health state classifications and the methods used to value them. Further research is required to fully understand the respective roles of the descriptive systems and the valuation methods and to examine the implications for estimates of the impact of health care interventions.

  1. Automatic 2.5-D Facial Landmarking and Emotion Annotation for Social Interaction Assistance.

    PubMed

    Zhao, Xi; Zou, Jianhua; Li, Huibin; Dellandrea, Emmanuel; Kakadiaris, Ioannis A; Chen, Liming

    2016-09-01

    People with low vision, Alzheimer's disease, and autism spectrum disorder experience difficulties in perceiving or interpreting facial expression of emotion in their social lives. Though automatic facial expression recognition (FER) methods on 2-D videos have been extensively investigated, their performance was constrained by challenges in head pose and lighting conditions. The shape information in 3-D facial data can reduce or even overcome these challenges. However, high expenses of 3-D cameras prevent their widespread use. Fortunately, 2.5-D facial data from emerging portable RGB-D cameras provide a good balance for this dilemma. In this paper, we propose an automatic emotion annotation solution on 2.5-D facial data collected from RGB-D cameras. The solution consists of a facial landmarking method and a FER method. Specifically, we propose building a deformable partial face model and fit the model to a 2.5-D face for localizing facial landmarks automatically. In FER, a novel action unit (AU) space-based FER method has been proposed. Facial features are extracted using landmarks and further represented as coordinates in the AU space, which are classified into facial expressions. Evaluated on three publicly accessible facial databases, namely EURECOM, FRGC, and Bosphorus databases, the proposed facial landmarking and expression recognition methods have achieved satisfactory results. Possible real-world applications using our algorithms have also been discussed. PMID:26316289

  2. Evidence from Lake Baikal for Siberian glaciation during oxygen-isotope substage 5d

    USGS Publications Warehouse

    Karabanov, E.B.; Prokopenko, A.A.; Williams, D.F.; Colman, Steven M.

    1998-01-01

    The paleoclimatic record from bottom sediments of Lake Baikal (eastern Siberia) reveals new evidence for an abrupt and intense glaciation during the initial part of the last interglacial period (isotope substage 5d). This glaciation lasted about 12 000 yr from 117 000 to 105 000 yr BP according to correlation with the SPEC-MAP isotope chronology. Lithological and biogeochemical evidence of glaciation from Lake Baikal agrees with evidence for the advance of ice sheet in northwestern Siberia during this time period and also with cryogenic features within the strata of Kazantzevo soils in Southern Siberia. The severe 5d glaciation in Siberia was caused by dramatic cooling due to the decrease in solar insolation (as predicted by the model of insulation changes for northern Asia according to Milankovich theory) coupled with western atmospheric transport of moisture from the opea areas of Northern Atlantic and Arctic seas (which became ice-free due to the intense warming during preceeding isotope substage 5e). Other marine and continental records show evidence for cooling during 5d, but not for intense glaciation. Late Pleistocene glaciations in the Northern Hemisphere may have begun in northwestern Siberia.

  3. Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang; Zhang, Dong; Jin, Zhaoyu; Chen, Xiaohong; Zu, Shaohuan; Huang, Weilin; Gan, Shuwei

    2016-09-01

    The Cadzow rank-reduction method can be effectively utilized in simultaneously denoising and reconstructing 5-D seismic data that depend on four spatial dimensions. The classic version of Cadzow rank-reduction method arranges the 4-D spatial data into a level-four block Hankel/Toeplitz matrix and then applies truncated singular value decomposition (TSVD) for rank reduction. When the observed data are extremely noisy, which is often the feature of real seismic data, traditional TSVD cannot be adequate for attenuating the noise and reconstructing the signals. The reconstructed data tend to contain a significant amount of residual noise using the traditional TSVD method, which can be explained by the fact that the reconstructed data space is a mixture of both signal subspace and noise subspace. In order to better decompose the block Hankel matrix into signal and noise components, we introduced a damping operator into the traditional TSVD formula, which we call the damped rank-reduction method. The damped rank-reduction method can obtain a perfect reconstruction performance even when the observed data have extremely low signal-to-noise ratio. The feasibility of the improved 5-D seismic data reconstruction method was validated via both 5-D synthetic and field data examples. We presented comprehensive analysis of the data examples and obtained valuable experience and guidelines in better utilizing the proposed method in practice. Since the proposed method is convenient to implement and can achieve immediate improvement, we suggest its wide application in the industry.

  4. Use of 2.5-D and 3-D technology to evaluate control room upgrades

    SciTech Connect

    Hanes, L. F.; Naser, J.

    2006-07-01

    This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

  5. The 4f-5d luminescence transitions in cerium-doped LuF3

    NASA Astrophysics Data System (ADS)

    Guerbous, L.; Krachni, O.

    Emission and excitation spectra of the Ce3+ ion in LuF3 single crystal were measured at 77 K. The broad bands observed in these spectra were attributed to the parity-allowed electric-dipole 4f ← 5d transitions within Ce3+ ion. No zero-phonon lines were observed, which is indicative of a strong electron-phonon coupling in this host. It is shown that Ce3+ 5d excited configuration splits into five crystal-field components in LuF3. The influence of the crystalline environment on the position of the lowest Ce3+ 5d level is investigated. The energy of the lowest level of the 4fN-15d excited configuration was predicted for all the trivalent rare earth ions embedded in LuF3. Positions of crystal field spitting levels of 4fN-15d configuration relative to the host electronic bands were discussed.

  6. 2.5D complex resistivity modeling and inversion using unstructured grids

    NASA Astrophysics Data System (ADS)

    Xu, Kaijun; Sun, Jie

    2016-04-01

    The characteristic of complex resistivity on rock and ore has been recognized by people for a long time. Generally we have used the Cole-Cole Model(CCM) to describe complex resistivity. It has been proved that the electrical anomaly of geologic body can be quantitative estimated by CCM parameters such as direct resistivity(ρ0), chargeability(m), time constant(τ) and frequency dependence(c). Thus it is very important to obtain the complex parameters of geologic body. It is difficult to approximate complex structures and terrain using traditional rectangular grid. In order to enhance the numerical accuracy and rationality of modeling and inversion, we use an adaptive finite-element algorithm for forward modeling of the frequency-domain 2.5D complex resistivity and implement the conjugate gradient algorithm in the inversion of 2.5D complex resistivity. An adaptive finite element method is applied for solving the 2.5D complex resistivity forward modeling of horizontal electric dipole source. First of all, the CCM is introduced into the Maxwell's equations to calculate the complex resistivity electromagnetic fields. Next, the pseudo delta function is used to distribute electric dipole source. Then the electromagnetic fields can be expressed in terms of the primary fields caused by layered structure and the secondary fields caused by inhomogeneities anomalous conductivity. At last, we calculated the electromagnetic fields response of complex geoelectric structures such as anticline, syncline, fault. The modeling results show that adaptive finite-element methods can automatically improve mesh generation and simulate complex geoelectric models using unstructured grids. The 2.5D complex resistivity invertion is implemented based the conjugate gradient algorithm.The conjugate gradient algorithm doesn't need to compute the sensitivity matrix but directly computes the sensitivity matrix or its transpose multiplying vector. In addition, the inversion target zones are

  7. Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.

    2012-09-01

    Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could

  8. Electronic structure and local magnetism of 3d-5d impurity substituted CeFe2

    NASA Astrophysics Data System (ADS)

    Das, Rakesh; Das, G. P.; Srivastava, S. K.

    2016-04-01

    We present here a systematic first-principles study of electronic structure and local magnetic properties of Ce[Fe0.75M0.25]2 compounds, where M is a 3d, 4d or 5d transition or post-transition element, using the generalized gradient approximation of the density functional theory. The d-f band hybridizations existing in CeFe2 get modified by the impurity M in an orderly manner across a period for each impurity series: the hybridization is strongest for the Mn group impurity in the period and gets diminished on either side of it. The weakening of the d-f hybridization strength is also associated with a relative localization of the Ce 4f states with respect to the delocalized 4f states in CeFe2. The above effects are most prominent for 3d impurity series, while for 4d and 5d impurities, the hybridizations and relocalizations are relatively weak due primarily to the relatively extended nature of 4d and 5d wavefunctions. The Ce local moment is found to decrease from the CeFe2 value in proportion to the strength of relocalization, thus following almost the same orderly trend as obeyed by the d-f hybridization. Further, depending on the way the spin-up and spin-down densities of states of an impurity shift relative to the Fermi energy, the impurity local moments are highest for Mn or Fe group, reduce on either side, become zero for Ni to Ga, and are small but negative for V and Ti. The Ce hyperfine field is found to follow the M local moment in a linear fashion, and vice-versa.

  9. Coupling Landform Evolution and Soil Pedogenesis - Initial Results From the SSSPAM5D Model

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Welivitiya, W. D. D. P.; Hancock, G. R.; Cohen, S.

    2015-12-01

    Evolution of soil on a dynamic landform is a crucial next step in landscape evolution modelling. Some attempts have been taken such as MILESD by Vanwalleghem et al. to develop a first model which is capable of simultaneously evolving both the soil profile and the landform. In previous work we have presented physically based models for soil pedogenesis, mARM and SSSPAM. In this study we present the results of coupling a landform evolution model with our SSSPAM5D soil pedogenesis model. In previous work the SSSPAM5D soil evolution model was used to identify trends of the soil profile evolution on a static landform. Two pedogenetic processes, namely (1) armouring due to erosion, and (2) physical and chemical weathering were used in those simulations to evolve the soil profile. By incorporating elevation changes (due to erosion and deposition) we have advanced the SSSPAM5D modelling framework into the realm of landscape evolution. Simulations have been run using elevation and soil grading data of the engineered landform (spoil heap) at the Ranger Uranium Mine, Northern Territory, Australia. The results obtained for the coupled landform-soil evolution simulations predict the erosion of high slope areas, development of rudimentary channel networks in the landform and deposition of sediments in lowland areas, and qualitatively consistent with landform evolution models on their own. Examination of the soil profile characteristics revealed that hill crests are weathering dominated and tend to develop a thick soil layer. The steeper hillslopes at the edge of the landform are erosion dominated with shallow soils while the foot slopes are deposition dominated with thick soil layers. The simulation results of our coupled landform and soil evolution model provide qualitatively correct and timely characterization of the soil evolution on a dynamic landscape. Finally we will compare the characteristics of erosion and deposition predicted by the coupled landform-soil SSSPAM

  10. Symmetry enhancements via 5d instantons, q{W} -algebrae and (1 , 0) superconformal index

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Bonelli, Giulio; Ronzani, Massimiliano; Tanzini, Alessandro

    2016-09-01

    We explore {N}=(1,0) superconformal six-dimensional theories arising from M5 branes probing a transverse A k singularity. Upon circle compactification to 5 dimensions, we describe this system with a dual pq-web of five-branes and propose the spectrum of basic five-dimensional instanton operators driving global symmetry enhancement. For a single M5 brane, we find that the exact partition function of the 5d quiver gauge theory matches the 6d (1, 0) index, which we compute by letter counting. We finally show that S-duality of the pq-web implies new relations among vertex correlators of q{W} algebrae.

  11. EuroQol 5D Quality of Life in Meniere's Disorder Can Be Explained with Symptoms and Disabilities

    ERIC Educational Resources Information Center

    Levo, Hilla; Stephens, Dafydd; Poe, Dennis; Kentala, Erna; Rasku, Jyrki; Pyykko, Ilmari

    2012-01-01

    The purpose of this study was to determine the factors explaining changes in the generic quality of life among patients with Meniere's disorder (MD) and to evaluate the EuroQol 5D (EQ-5D) quality-of-life measures. A questionnaire focusing on symptoms and disabilities caused by MD was collected from 726 individuals. General health-related quality…

  12. Entropy of Reissner-Nordström-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chun; Zhao, Ren; Ma, Meng-Sen

    2016-10-01

    Based on the consideration that the black hole horizon and the cosmological horizon of Reissner-Nordström black hole in de Sitter space are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the entanglement between the two horizons, except for the sum of the two horizon entropies. Making use of the globally effective first law and the effective thermodynamic quantities, we derive the total entropy and find that it will diverge as the two horizons tend to coincide.

  13. The algebra of supertraces for 2+1 super de Sitter gravity

    NASA Technical Reports Server (NTRS)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  14. Spinor Field at the Phase Transition Point of Reissner-Nordström de Sitter Space

    NASA Astrophysics Data System (ADS)

    Lyu, Yan; Zhang, Li-Qing; Zheng, Wei; Pan, Qing-Chao

    2010-08-01

    The radial parts of Dirac equation between the outer black hole horizon and the cosmological horizon are solved in Reissner-Nordström de Sitter (RNdS) space when it is at the phase transition point. We use an accurate polynomial approximation to approximate the modified tortoise coordinate hat{r}_{*} in order to get the inverse function r=r(hat{r}_{*}) and the potential V(hat{r}_{*}). Then we use a quantum mechanical method to solve the wave equation numerically. We consider two cases, one is when the two horizons are lying close to each other, the other is when the two horizons are widely separated.

  15. New tortoise coordinate transformation and Hawking's radiation in de Sitter space

    NASA Astrophysics Data System (ADS)

    Ibohal, N.; Ibungochouba, T.

    2013-01-01

    Hawking's radiation effect of Klein-Gordon equation, Dirac particles and Maxwell's electromagnetic fields in the non-stationary rotating de Sitter cosmological space-time is investigated by using a new method of generalized tortoise coordinate transformation. It is found that the new transformation produces constant additional terms in the expressions of the surface gravities and the Hawking's temperatures. If the constant terms are set to zero, then the surface gravities and Hawking's temperatures will be equal to those obtained from the old generalized tortoise coordinate transformations. This shows that the new transformations are more reasonable. The Fermionic spectrum of Dirac particles displays a new spin-rotation coupling effect.

  16. Real scalar field scattering in the nearly extremal Schwarzschild—de Sitter space

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Hai

    2010-11-01

    Reasonable approximations are introduced to investigate the real scalar field scattering in the nearly extremal Schwarzschild—de Sitter (SdS) space. The approximations naturally lead to the invertible x(r) and the global replacement of the true potential by a Pöshl—Teller one. Meanwhile, the Schrödinger-like wave equation is transformed into a solvable form. Our numerical solutions to the wave equation show that the wave is characteristically similar to the harmonic under the tortoise coordinate x, while the wave piles up near the two horizons and the wavelength tends to its maximum as the potential approaches to the peak under the radial coordinate r.

  17. Hawking radiation of a Reissner-Nordström-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Li, Huai-Fan

    2010-04-01

    Generalizing the method proposed by Damour-Ruffini, we discuss Hawking radiation of a Reissner-Nordström-de Sitter (RNdS) black hole. Under the condition that total energy and charge are conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the interrelation between the event horizon and cosmological horizon, we investigate radiation spectrum of RNdS spacetime by a new Tortoise coordinate transformation. This radiation spectrum is no longer a purely thermal spectrum. It is related to the changes in the Bekenstein-Hawking entropy corresponding the event horizon and cosmological horizon. The result satisfies the unitary principle.

  18. Solution of Dirac equation in Reissner-Nordström de Sitter space

    NASA Astrophysics Data System (ADS)

    Lyu, Yan; Cui, Song

    2009-02-01

    The radial parts of the Dirac equation between the outer black hole horizon and the cosmological horizon are solved in Reissner-Nordström de Sitter (RNdS) space numerically. An accurate approximation, the polynomial approximation, is used to approximate the modified tortoise coordinate \\hat r_* , which leads to the inverse function r = r(\\hat r_* ) and the potential V(\\hat r_* ). The potential V(\\hat r_* ) is replaced by a collection of step functions in sequence. Then the solution of the wave equation as well as the reflection and transmission coefficients is computed by a quantum mechanical method.

  19. One loop graviton self-energy in a locally de Sitter background

    SciTech Connect

    tSAMIS, n.c. |; Woodard, R.P.

    1996-02-01

    The graviton tadpole has recently been computed at two loops in a locally de Sitter background. We apply intermediate results of this work to exhibit the graviton self-energy at one loop. This quantity is interesting both to check the accuracy of the first calculation and to understand the relaxation effect it reveals. In the former context we show that the self-energy obeys the appropriate Ward identity. We also show that its flat space limit agrees with the flat space result obtained by Capper in what should be the same gauge. 15 refs., 4 figs., 10 tabs.

  20. One-loop F(R, P, Q) gravity in de Sitter universe

    NASA Astrophysics Data System (ADS)

    Cognola, Guido; Zerbini, Sergio

    2012-09-01

    Motivated by the dark energy issue, the one-loop quantization approach for a class of relativistic higher order theories is discussed in some detail. A specific F(R, P, Q) gravity model at the one-loop level in a de Sitter universe is investigated, extending the similar program developed for the case of F(R) gravity. The stability conditions under arbitrary perturbations are derived. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  1. Conformally invariant spin-3/2 field equation in de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Fatahi, N.

    2015-09-01

    In the previous paper (Behroozi et al., Phys Rev D 74:124014, 2006; Dehghani et al., Phys Rev D 77:064028, 2008), conformal invariance for massless tensor fields (scalar, vector and spin-2 fields) was studied and the solutions of their wave equations and two-point functions were obtained. In the present paper, conformally invariant wave equation for massless spinor field in de Sitter space-time has been obtained. For this propose, we use Dirac's six-cone formalism. The solutions of massless spin-1/2 and -3/2 equations, in the ambient space notation, have been calculated.

  2. Three-dimensional black hole from a stringy anti{endash}de Sitter background

    SciTech Connect

    Hjelmeland, S.E.

    1997-02-01

    A new black hole solution in 2+1 dimensions is found by taking cosmic strings as part of the vacuum structure of the anti{endash}de Sitter space-time. The solution has a structure that in many ways is similar to that of the Reissner-Nordstroem solution. With a vanishing cosmological constant, a space-time with a black hole of infinite extension appears with the inner horizon playing the role of a cosmological event horizon. The timelike and null geodesics are discussed. In particular it is shown that photons may follow conic sections. {copyright} {ital 1997} {ital The American Physical Society}

  3. Einstein, de Sitter and the beginning of relativistic cosmology in 1917

    NASA Astrophysics Data System (ADS)

    Realdi, Matteo; Peruzzi, Giulio

    2009-02-01

    In 1917, both Einstein and de Sitter proposed a new interpretation of the universe as a whole: the structure of the universe could be described in terms of relativistic field equations. Their contributions marked the beginning of the modern scientific comprehension of the origin and evolution of the universe. Our aim is to propose a critical review paper, based on references in primary sources, on the formulation in 1917 of Einstein’s and de Sitter’s models of the universe, which represents a fundamental chapter in the history of relativistic Cosmology.

  4. Gaussian wave packet states of scalar fields in a universe of de Sitter

    SciTech Connect

    Lopes, C. E. F.; Pedrosa, I. A.; Furtado, C.; Carvalho de M, A. M.

    2009-08-15

    In this work, we study quantum effects of a massive scalar field in the de Sitter spacetime. We reduce the problem to that of a time-dependent harmonic oscillator and use exact linear invariants and the dynamic invariant method to derive the corresponding Schroedinger states in terms of solutions of a second order ordinary differential equation. Afterwards, we construct Gaussian wave packet states and calculate the quantum dispersions as well as the quantum correlations for each mode of the quantized scalar field. It is further shown that the center of the Gaussian wave packet remains trapped in the origin.

  5. On Fayet-Iliopoulos Terms and de Sitter Vacua in Supergravity: Some Easy Pieces

    SciTech Connect

    Catino, Francesca; Villadoro, Giovanni; Zwirner, Fabio; /Padua U. /INFN, Padua

    2012-03-27

    We clarify a number of issues on Fayet-Iliopoulos (FI) terms in supergravity, keeping the formalism at a minimum and making use of explicit examples. We explain why, if the U(1) vector is massive everywhere in field space, FI terms are not genuine and can always be redefined away or introduced when they are not present. We formulate a simple anomaly-free model with a genuine FI term, a classically stable de Sitter (dS) vacuum and no global symmetries. We explore the relation between N = 2 and N = 1 FI terms by discussing N = 1 truncations of N = 2 models with classically stable dS vacua.

  6. Hawking radiation of Kerr-de Sitter black holes using Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.

    2013-05-01

    Hawking radiation of Kerr-de Sitter black hole is investigated using Hamilton-Jacobi method. When the well-behaved Painleve coordinate system and Eddington coordinate are used, we get the correct result of Bekenstein-Hawking entropy before and after radiation but a direct computation will lead to a wrong result via Hamilton-Jacobi method. Our results show that the tunneling probability is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal but it is consistent with underlying unitary theory.

  7. The Stokes phenomenon and quantum tunneling for de Sitter radiation in nonstationary coordinates

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2010-09-01

    We study quantum tunneling for the de Sitter radiation in the planar coordinates and global coordinates, which are nonstationary coordinates and describe the expanding geometry. Using the phase-integral approximation for the Hamilton-Jacobi action in the complex plane of time, we obtain the particle-production rate in both coordinates and derive the additional sinusoidal factor depending on the dimensionality of spacetime and the quantum number for spherical harmonics in the global coordinates. This approach resolves the factor of two problem in the tunneling method.

  8. Hawking radiation of Schwarzschild-de Sitter black hole by Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Rahman, M. Atiqur; Hossain, M. Ilias

    2012-05-01

    We investigate the Hawking radiation of Schwarzschild-de Sitter (SdS) black hole by massive particles tunneling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum when energy and angular momentum are conserved. Our result is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SdS black hole.

  9. Smeared hair and black holes in three-dimensional de Sitter spacetime

    SciTech Connect

    Park, Mu-In

    2009-10-15

    It is known that there is no three-dimensional analog of de Sitter black holes. I show that the analog does exist when non-Gaussian (i.e., ring-type) smearings of point matter hairs are considered. This provides a new way of constructing black hole solutions from hairs. I find that the obtained black hole solutions are quite different from the usual large black holes in that there are (i) large to small black hole transitions which may be considered as inverse Hawking-Page transitions and (ii) solitonlike (i.e., nonperturbative) behaviors. For Gaussian smearing, there is no black hole but a gravastar solution exists.

  10. An Australian discrete choice experiment to value eq-5d health states.

    PubMed

    Viney, Rosalie; Norman, Richard; Brazier, John; Cronin, Paula; King, Madeleine T; Ratcliffe, Julie; Street, Deborah

    2014-06-01

    Conventionally, generic quality-of-life health states, defined within multi-attribute utility instruments, have been valued using a Standard Gamble or a Time Trade-Off. Both are grounded in expected utility theory but impose strong assumptions about the form of the utility function. Preference elicitation tasks for both are complicated, limiting the number of health states that each respondent can value and, therefore, that can be valued overall. The usual approach has been to value a set of the possible health states and impute values for the remainder. Discrete Choice Experiments (DCEs) offer an attractive alternative, allowing investigation of more flexible specifications of the utility function and greater coverage of the response surface. We designed a DCE to obtain values for EQ-5D health states and implemented it in an Australia-representative online panel (n = 1,031). A range of specifications investigating non-linear preferences with respect to time and interactions between EQ-5D levels were estimated using a random-effects probit model. The results provide empirical support for a flexible utility function, including at least some two-factor interactions. We then constructed a preference index such that full health and death were valued at 1 and 0, respectively, to provide a DCE-based algorithm for Australian cost-utility analyses. PMID:23765787

  11. A decomposition of income-related health inequality applied to EQ-5D.

    PubMed

    Gundgaard, Jens; Lauridsen, Jørgen

    2006-12-01

    Income-related inequality in health and its relationship to sociodemographic characteristics have received considerable attention in the health economic literature. Recently a method was suggested for decomposing income-related health inequality to contributions from individual characteristics via additive dimensions, and this was applied to a Finnish case based on 15D health scores, where health is considered to be a sum of 15 individual health dimensions. The present study adds to this literature in several ways. First, we apply the decomposition approach to a Danish case which can be benchmarked to the Finnish. Second, we show how to apply the method to EQ-5D scores, which deviate from 15D scores by expressing health as individual depreciations of an equal endowment of perfect health. Third, we add life-style factors to the determinants of income-related health inequality. The empirical part of the study reveals discrepancies which can be attributed to differences between Finland and Denmark and to differences between the construction of 15D and EQ-5D scores. Finally, evidence of impact of life-style factors on income-related health inequality is found.

  12. First Principles Study of HCN Adsorption on Graphene Doped with 5d Transition Metal

    NASA Astrophysics Data System (ADS)

    Dong, Hai-Kuan; Wang, Yong-Ping; Shi, Li Bin

    2016-11-01

    Hydrogen cyanide (HCN) adsorption on graphene doped with 5d transition metal (TM) is investigated by the first principles based on density functional theory. It is observed that Hg atom cannot be doped into graphene due to saturated valence electron configurations of 5d106s2. Three kinds of HCN adsorption configurations are investigated, in which H, C and N in HCN are close to the adsorption site, respectively. The most stable adsorption configuration is obtained by total energy optimization. HCN adsorption can be studied by adsorption energy and electron density difference. HCN can only be physisorbed on Ir, Pt and Au-doped graphenes, while chemisorption is observed for Lu, Hf, Ta, W, Re and Os-doped graphenes. The band structure is calculated by B3LYP and Generalized gradient approximation (GGA) functionals. It is observed from B3LYP method that the conductivity of Lu, Hf, Re and Os-doped graphenes does not obviously change before and after HCN adsorption. Ta and W-doped graphenes change from semiconductor to metal after adsorption of HCN molecule. The results indicate that Ta and W-doped graphenes may be a promising sensor for detecting HCN. This study provides a useful basis for understanding of a wide variety of physical properties on graphene.

  13. Experimental bandstructure of the 5 d transition metal oxide IrO2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Jason; Nie, Yuefeng; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    2015-03-01

    In the 5 d iridium oxides the close energy scales of spin-orbit coupling and electron-electron correlations lead to emergent quantum phenomena. Much research has focused on the ternary iridium oxides, e.g. the Ruddlesden-Poppers An + 1BnO3 n + 1 , which exhibit behavior from metal to antiferromagnetic insulator ground states, share common features with the cuprates, and may host a number of topological phases. The binary rutile IrO2 is another important 5 d oxide, which has technological importance for spintronics due to its large spin Hall effect and also applications in catalysis. IrO2 is expected to share similar physics as its perovskite-based cousins; however, due to bond-length distortions of the IrO6 octahedra in the rutile structure, the extent of similarities remains an open question. Here we use angle-resolved photoemission spectroscopy to perform momentum-resolved measurements of the electronic structure of IrO2 . IrO2 thin films were grown by molecular beam epitaxy on TiO2 (110) substrates using an Ir e-beam source and distilled ozone. Films were subsequently transferred through ultrahigh vacuum to a connected ARPES system. Combined with first-principles calculations we explore the interplay of spin-orbit coupling and correlations in IrO2 .

  14. 2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, Mark; Greenhalgh, S. A.

    2009-01-01

    We present a new numerical scheme for 2.5-D/3-D direct current resistivity modelling in heterogeneous, anisotropic media. This method, named the `Gaussian quadrature grid' (GQG) method, cooperatively combines the solution of the Variational Principle of the partial differential equation, Gaussian quadrature abscissae and local cardinal functions so that it has the main advantages of the spectral element method. The formulation shows that the GQG method is a modification of the spectral element method but does not employ the constant elements or require the mesh generator to match the Earth's surface. This makes it much easier to deal with geological models having a 2-D/3-D complex topography than using traditional numerical methods. The GQG technique can achieve a similar convergence rate to the spectral element method. We show it transforms the 2.5-D/3-D resistivity modelling problem into a sparse and symmetric linear equation system that can be solved by an iterative or matrix inversion method. Comparison with analytic solutions for homogeneous isotropic and anisotropic models shows that the error depends on the Gaussian quadrature order (abscissa number) and the subdomain size. The higher the order or the smaller the subdomain size that is employed, the more accurate are the results obtained. Several other synthetic examples, both homogeneous and inhomogeneous, incorporating sloping, undulating and severe topography, are presented and found to yield results comparable to finite element solutions involving a dense mesh.

  15. Strain hardening in 2D discrete dislocation dynamics simulations: A new '2.5D' algorithm

    NASA Astrophysics Data System (ADS)

    Keralavarma, S. M.; Curtin, W. A.

    2016-10-01

    The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crystal plasticity. However, the absence of truly three dimensional mechanisms such as junction formation means that forest hardening cannot be modeled, unless additional so-called '2.5D' constitutive rules are prescribed for short-range dislocation interactions. Here, results from three dimensional dislocation dynamics (3D DD) simulations in an FCC material are used to define new constitutive rules for short-range interactions and junction formation between dislocations on intersecting slip systems in 2D. The mutual strengthening effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is also accounted for in the model. The new '2.5D' DD model, with no arbitrary adjustable parameters beyond those obtained from lower scale simulation methods, is shown to predict athermal hardening rates, differences in flow behavior for single and multiple slip, and latent hardening ratios. All these phenomena are well-established in the plasticity of crystals and quantitative results predicted by the model are in good agreement with experimental observations.

  16. The Tolman-Oppenheimer Equations and the Spacetime Properties of the Schwarzschild-De Sitter Constant Density Interior Solution

    NASA Astrophysics Data System (ADS)

    Zou, Li; Li, Fang-Yu; Li, Tao

    2014-11-01

    In this paper, we first deduce the Tolman-Oppenheimer-Volkoff (TOV) equations and Schwarzschild-de Sitter (SdS) constant-density interior solutions of perfect fluid spheres in hydrostatic equilibrium by the Einstein equations with a nonzero cosmological constant. The TOV equations and the spacetime properties of exact solutions inside uniform perfect fluid spheres with different spatial curvature and cosmological constants will be respectively analyzed in detail. Moreover, a brief comparison between the internal static solutions of the SdS type and the dynamical Einstein-Strauss-de Sitter (ESdS) vacuole spacetime is obtained.

  17. Massive gravity on de Sitter and unique candidate for partially massless gravity

    SciTech Connect

    Rham, Claudia de; Renaux-Petel, Sébastien E-mail: srenaux@lpthe.jussieu.fr

    2013-01-01

    We derive the decoupling limit of Massive Gravity on de Sitter in an arbitrary number of space-time dimensions d. By embedding d-dimensional de Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and helicity-0 polarizations of the graviton. The resulting decoupling theory is similar to that obtained around Minkowski. We take great care at exploring the partially massless limit and define the unique fully non-linear candidate theory that is free of the helicity-0 mode in the decoupling limit, and which therefore propagates only four degrees of freedom in four dimensions. In the latter situation, we show that a new Vainshtein mechanism is at work in the limit m{sup 2} → 2H{sup 2} which decouples the helicity-0 mode when the parameters are different from that of partially massless gravity. As a result, there is no discontinuity between massive gravity and its partially massless limit, just in the same way as there is no discontinuity in the massless limit of massive gravity. The usual bounds on the graviton mass could therefore equivalently well be interpreted as bounds on m{sup 2}−2H{sup 2}. When dealing with the exact partially massless parameters, on the other hand, the symmetry at m{sup 2} = 2H{sup 2} imposes a specific constraint on matter. As a result the helicity-0 mode decouples without even the need of any Vainshtein mechanism.

  18. Asymptotics with a positive cosmological constant. II. Linear fields on de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Bonga, Béatrice; Kesavan, Aruna

    2015-08-01

    Linearized gravitational waves in de Sitter spacetime are analyzed in detail to obtain guidance for constructing the theory of gravitational radiation in presence of a positive cosmological constant in full, nonlinear general relativity. Specifically, (i) In the exact theory, the intrinsic geometry of I is often assumed to be conformally flat in order to reduce the asymptotic symmetry group from Diff(I ) to the de Sitter group. Our results show explicitly that this condition is physically unreasonable. (ii) We obtain expressions of energy-momentum and angular momentum fluxes carried by gravitational waves in terms of fields defined at I+ . (iii) We argue that, although energy of linearized gravitational waves can be arbitrarily negative in general, gravitational waves emitted by physically reasonable sources carry positive energy. Finally, (iv) we demonstrate that the flux formulas reduce to the familiar ones in Minkowski spacetime in spite of the fact that the limit Λ →0 is discontinuous (since, in particular, I changes its spacelike character to null in the limit).

  19. Hawking radiation of stationary and non-stationary Kerr-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Singh, T. Ibungochouba

    2015-07-01

    Hawking radiation of the stationary Kerr-de Sitter black hole is investigated using the relativistic Hamilton-Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr-de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.

  20. Long-time asymptotics of a Bohmian scalar quantum field in de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Tumulka, Roderich

    2016-01-01

    We consider a model quantum field theory with a scalar quantum field in de Sitter space-time in a Bohmian version with a field ontology, i.e., an actual field configuration \\varphi (x,t) guided by a wave function on the space of field configurations. We analyze the asymptotics at late times (t→ ∞ ) and provide reason to believe that for more or less any wave function and initial field configuration, every Fourier coefficient \\varphi _k(t) of the field is asymptotically of the form c_k√{1+k^2 exp (-2Ht)/H^2}, where the limiting coefficients c_k=\\varphi _k(∞) are independent of t and H is the Hubble constant quantifying the expansion rate of de Sitter space-time. In particular, every field mode \\varphi _k possesses a limit as t→ ∞ and thus "freezes." This result is relevant to the question whether Boltzmann brains form in the late universe according to this theory, and supports that they do not.

  1. Initial insights from 2.5D hydraulic modeling of floods in Athabasca Valles, Mars

    USGS Publications Warehouse

    Keszthelyi, L.P.; Denlinger, R.P.; O'Connell, D. R. H.; Burr, D.M.

    2007-01-01

    We present the first application of a 2.5D hydraulic model to catastrophic floods on Mars. This model simulates flow over complex topography and incorporates flood dynamics that could not be modeled in the earlier 1D models. We apply this model to Athabasca Valles, the youngest outflow channel on Mars, investigating previous bank-full discharge estimates and utilizing the interpolated Mars Orbiter Laser Altimeter elevation map as input. We confirm that the bank-full assumption does not fit the observed landforms. Instead, the channel appears more deeply incised near the source. Flow modeling also identifies several areas of special interest, including a dry cataract that coincides with a region of predicted high erosion. However, artifacts in the elevation data strongly impacted estimated stages and velocities in other areas. More extensive connection between the flood hydraulics and observed landforms awaits improved topographic data.

  2. Complex self-assembly of pyrimido[4,5-d]pyrimidine nucleoside supramolecular structures

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Guo, Xiurong; He, Shiliang; Zeng, Xin; Zhou, Xinglong; Zhang, Chaoliang; Hu, Jing; Wu, Xiaohua; Xing, Zhihua; Chu, Liangyin; He, Yang; Chen, Qianming

    2014-01-01

    Supramolecular self-assembly is not only one of the chemical roots of biological structure but is also drawing attention in different industrial fields. Here we study the mechanism of the formation of a complex flower-shaped supramolecular structure of pyrimido[4,5-d]pyrimidine nucleosides by dynamic light scattering, scanning electron microscopy, differential scanning calorimetry, nuclear magnetic resonance and X-ray analysis. Upon removing the hydroxyl group of sugars, different flower-shaped superstructures can be produced. These works demonstrate that complex self-assembly can indeed be attained through hierarchical non-covalent interactions of single molecules. Furthermore, chimerical structures built from molecular recognition by these monomers indicate their potential in other fields if combined with other chemical entities.

  3. Mixed Tracking and Projective Synchronization of 5D Hyperchaotic System Using Active Control

    NASA Astrophysics Data System (ADS)

    Ojo, Kayode; Ogunjo, Samuel T.; Williams, Oluwafemi

    2013-08-01

    This paper examines mixed tracking control and hy- brid synchronization of two identical 5-D hyperchaotic Lorenz systems via active control technique. The de- signed control functions for the mixed tracking enable each of the system state variables to stabilize at differ- ent chosen positions as well as control each state vari- ables of the system to track different desired smooth function of time. Also, the active control technique is used to design control functions which achieve projec- tive synchronization between the slave state variables and the master state variables. We also show that the coupling strength is inversely proportional to the syn- chronization time. Numerical simulations are carried out to validate the effectiveness of the analytical tech- nique.

  4. Non-thermal leptogenesis in a simple 5D SO(10) GUT

    SciTech Connect

    Fukuyama, Takeshi; Okada, Nobuchika E-mail: okadan@ua.edu

    2010-09-01

    We discuss non-thermal leptogenesis in the scheme of 5D orbifold SO(10) GUT with the smooth hybrid inflation. With unambiguously determined Dirac Yukawa couplings and an assumption for the neutrino mixing matrix of the tri-bimaximal from, we analyze baryon asymmetry of the universe via non-thermal leptogenesis in two typical cases for the light neutrino mass spectrum, the normal and inverted hierarchical cases. The resultant baryon asymmetry is obtained as a function of the lightest mass eigenvalue of the light neutrinos, and we find that a suitable amount of baryon asymmetry of the universe can be produced in the normal hierarchical case, while in the inverted hierarchical case the baryon asymmetry is too small to be consistent with the observation.

  5. Inhibition of light emission in a 2.5D photonic structure

    SciTech Connect

    Peretti, Romain; Seassal, Christian; Viktorovich, Pierre; Letartre, Xavier

    2014-07-14

    We analyse inhibition of emission in a 2.5D photonic structures made up of a photonic crystal (PhC) and Bragg mirrors using Finite Differences Time Domaine (FDTD) simulations. A comparison is made between an isolated PhC membrane and the same PhC suspended onto a Bragg mirror or sandwiched between 2 Bragg mirrors. Strong inhibition of the Purcell factor is observed in a broad spectral range, whatever the in-plane orientation and location of the emitting dipole. We analysed these results numerically and theoretically by simulating the experimentally observed lifetime of a collection of randomly distributed emitters, showing that their average emission rate is decreased by more than one decade, both for coupled or isolated emitters.

  6. Electronic and mechanical properties of 5d transition metal mononitrides via first principles

    SciTech Connect

    Zhao Erjun; Wu Zhijian

    2008-10-15

    The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, six structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and AuN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN. For LaN, HfN and TaN, the formation enthalpy is negative for all the considered structures, while from WN to AuN, except wurtzite structure in ReN, the formation enthalpy is positive. The calculated density of states shows that they are all metallic. ReN in NiAs structure has the largest bulk modulus, 418 GPa. The largest shear modulus 261 GPa is from TaN in WC structure. Trends are discussed. - Graphical abstract: Formation enthalpy per formula unit {delta}H (eV) for all the considered structures of 5d transition metal mononitrides MN (M=La-Au). It was shown that the formation enthalpy increases from LaN to AuN. The nitrides with negative values indicate that they can be synthesized experimentally at ambient conditions.

  7. 2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Hung, H. H.; Kao, J. C.

    2010-05-01

    The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.

  8. De Sitter vacua from a D-term generated racetrack potential in hypersurface Calabi-Yau compactifications

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Rummel, Markus; Sumitomo, Yoske; Valandro, Roberto

    2015-12-01

    In [1] a mechanism to fix the closed string moduli in a de Sitter minimum was proposed: a D-term potential generates a linear relation between the volumes of two rigid divisors which in turn produces at lower energies a race-track potential with de Sitter minima at exponentially large volume. In this paper, we systematically search for implementations of this mechanism among all toric Calabi-Yau hypersurfaces with h 1,1 ≤ 4 from the Kreuzer-Skarke list. For these, topological data can be computed explicitly allowing us to find the subset of three-folds which have two rigid toric divisors that do not intersect each other and that are orthogonal to h 1,1 - 2 independent four-cycles. These manifolds allow to find D7-brane configurations compatible with the de Sitter uplift mechanism and we find an abundance of consistent choices of D7-brane fluxes inducing D-terms leading to a de Sitter minimum. Finally, we work out a couple of models in detail, checking the global consistency conditions and computing the value of the potential at the minimum.

  9. What matters most? Evidence-based findings of health dimensions affecting the societal preferences for EQ-5D health states.

    PubMed

    Andrade, Monica Viegas; Noronha, Kenya Valeria Micaela de Souza; Maia, Ana Carolina; Kind, Paul

    2013-11-01

    This study analyzes how different health dimensions defined by the EQ-5D-3L instrument affect average individual preferences for health states. This analysis is an important benchmark for the incorporation of health technologies as it takes into consideration Brazilian population preferences in health resource allocation decisions. The EQ-5D instrument defines health in terms of five dimensions (mobility, daily activities, self-care activities, pain/discomfort, and anxiety/depression) each divided into three levels of severity. Data came from a valuation study with 3,362 literate individuals aged between 18 and 64 living in urban areas of Minas Gerais State, Brazil. The main results reveal that health utility decreases as the level of severity increases. With regard to health issues, mobility stands out as the most important EQ-5D dimension. Independently of severity levels of the other EQ-5D-3L dimensions, the highest decrements in utilities are associated with severe mobility problems. PMID:25402251

  10. F5D-1 on ramp with Neil Armstrong preparing to fly a Dyna-Soar simulation

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Douglas F5D-1 Skylancer being pre-flighted by the pilot while the crew chief prepares to pull the wheel chocks on the 'hot gun' ramp at Edwards Air Force Base, California. The aircraft was one of two prototype F5D-1s obtained by NASA Flight Research Center in 1961. The F5D-1 Skylancer (Bu. No. 142350) had a red and white paint pattern with a NASA identification number of 213 which later became NASA 708. The Douglas F5D-1 Skylancer was built by the Navy as an all-weather fighter interceptor that never made the jump to production. Four test aircraft were developed with the same basic airframe as the Douglas F4D Skyray. With increasing modifications the four aircraft were re-designated F5D-1s before their first flights. Future Astronaut Neil Armstrong was one of the NASA research pilots assigned to support duties for the Dyna-Soar program. In addition to working at the Boeing facility in Washington state, Armstrong also tested the Dyna-Soar launch abort profile using this F5D-1, which had a similar wing shape to the Dyna-Soar. The aircraft arrived at the Flight Research Center on June 15, 1961. After the Dyna-Soar program was cancelled in December 1963, this F5D-1 continued to be used, serving as a flying simulator for the M2-F2 and as a chase plane for lifting-body flights (providing the lifting-body pilot with an extra set of eyes to assist in emergencies and avert potential crashes) This F5D-1 left the Flight Research Center (later designated the Dryden Flight Research Center) on May 19, 1970, and was donated to the Neil A. Armstrong Museum in Wapakoneta, Ohio.

  11. Anisotropic magnetic interactions in 5d iridium oxides by many-body quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Katukuri, Vamshi M.; Nishimoto, Satoshi; Yushankhai, Viktor; Rousochatzakis, Ioannis; Hozoi, Liviu; van den Brink, Jeroen

    2014-03-01

    Ir 5d5 oxides are being actively studied due to the realization of novel spin-orbit coupled jeff ~ 1/2 ground states. One remarkable feature in these compounds is the highly anisotropic magnetic interactions, orders of magnitude stronger than in 3d oxides. We address the nature of the anisotropic exchange in the 2D honeycomb (Na/Li)2IrO3 ((Na/Li)213) and square-lattice (Sr/Ba)2IrO4 ((Sr/Ba)213) iridates, by ab initio multireference configuration-interaction calculations on large embedded clusters. For Na213 we find that the Kitaev term is ferromagnetic and defines the dominant energy scale while the nearest-neighbor Heisenberg contribution is antiferromagnetic. Although Li213 is structurally similar, we predict quite different set of interaction parameters in Li213. We further analyze the magnetic order and the essential differences between these two materials by exact diagonalization and density-matrix renormalization-group calculations that additionally include 2nd and 3rd neighbor couplings. Sizable symmetric anisotropic interactions are also computed for Ba214. From the ab initio data, the relevant in-plane spin model for Ba214 turns out to be a Heisenberg-compass effective model. We finally discuss the Dzyaloshinskii-Moriya exchange in Sr214.

  12. A 2.5D Reactive Transport Model for Fracture Alteration Simulation.

    PubMed

    Deng, Hang; Molins, Sergi; Steefel, Carl; DePaolo, Donald; Voltolini, Marco; Yang, Li; Ajo-Franklin, Jonathan

    2016-07-19

    Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the model is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. With an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer. PMID:27357572

  13. 2.5 D Transrotational Microcrystals and Nanostructures Revealed by TEM in Crystallizing Amorphous Films

    NASA Astrophysics Data System (ADS)

    Kolosov, Vladimir

    2015-03-01

    Unexpected transrotational microcrystals can be grown in thin 10-100 nm amorphous films. Crystals of different morphology (from nanowhiskers to spherulites, complex textures) and chemical nature (oxides, chalcogenides, metals and alloys) grown in thin films prepared by various methods are studied by transmission electron microscopy (TEM). We use primarily our TEM bend-contour method and SAED (HREM, AFM are also performed). The phenomenon resides in strong (up to 300 degrees/ μm) regular internal bending of crystal lattice planes in a growing crystal. It can be traced inside TEM in situ. Usual translation is complicated by slight regular rotation of the crystal unit cell (transrotation) most prominent at the mesoscale. Different geometries of transrotation of positive and negative curvature are revealed. Transrotational crystal resembles ideal single crystal enclosed in a curved space. It can be also considered similar to hypothetical endless 2.5 D analogy of MW nanotube/nano-onion halves. Transrotation is strongly increasing as the film gets thinner in the range 100-15 nm. Transrotations supplement dislocations and disclinations. New transrotational nanocrystalline model of amorphous state is proposed. Support of Ministry of Higher Education and Science is acknowledged.

  14. Neutrino masses via the Zee mechanism in the 5D split fermion model

    SciTech Connect

    Chang, We-Fu; Chen, I-Ting; Liou, Siao-Cing

    2011-01-15

    We study the original version of the Zee model, where both of the SU(2){sub L} Higgs doublets are allowed to couple to the leptons, in the framework of the split fermion model in M{sub 4}xS{sub 1}/Z{sub 2} space-time. The neutrino masses are generated through 1-loop diagrams without introducing the right-handed neutrinos. By assuming an order one anarchical complex 5D Yukawa couplings, all the effective 4D Yukawa couplings are determined by the wave function overlap between the split fermions and the bulk scalars in the fifth dimension. The predictability of the Yukawa couplings is in sharp contrast to the original Zee model in 4D where the Yukawa couplings are unknown free parameters. This setup exhibits a geometrical alternative to the lepton flavor symmetry. By giving four explicit sets of the split fermion locations, we demonstrate that it is possible to simultaneously fit the lepton masses and neutrino oscillation data by just a handful free parameters without much fine tuning. Moreover, we are able to make definite predictions for the mixing angle {theta}{sub 13}, the absolute neutrino masses, and the lepton flavor violation processes for each configuration.

  15. An efficient quadrature for 2.5D boundary element calculations

    NASA Astrophysics Data System (ADS)

    Kasess, Christian H.; Kreuzer, Wolfgang; Waubke, Holger

    2016-11-01

    In recent years, the boundary element method has become a widely used tool for calculating the mitigation effects of noise barriers. However, since for large structures calculations in 3D become very inefficient, most of the standard implementations are only in 2D. This means that the noise source is implicitly assumed to be given by a coherent line source, which is not realistic in most cases. By using a Fourier transform with respect to a spatial coordinate along the length of the structure it is possible to reduce the 3D problem to several 2D problems with distinct wavenumbers which allows the simulation of more realistic noise sources and which is typically referred to as 2.5D BEM. To that end, it is necessary to numerically calculate a Fourier-like integral over all the 2D solutions. In this work, an efficient way to calculate this integral is given building on existing approaches using Clenshaw-Curtis-Filon quadrature and demodulation combined with an adaptive order-selection scheme. As BEM calculations are costly, the main focus of the method introduced lies on avoiding too many of these calculations. The efficiency of the method is illustrated using two different examples: a reflecting cylinder and an L-shaped noise barrier.

  16. On Twisted N = 2 5D Super Yang-Mills Theory

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Zabzine, Maxim

    2016-01-01

    On a five-dimensional simply connected Sasaki-Einstein manifold, one can construct Yang-Mills theories coupled to matter with at least two supersymmetries. The partition function of these theories localises on the contact instantons, however, the contact instanton equations are not elliptic. It turns out that these equations can be embedded into the Haydys-Witten equations (which are elliptic) in the same way the 4D anti-self-dual instanton equations are embedded in the Vafa-Witten equations. We show that under some favourable circumstances, the latter equations will reduce to the former by proving some vanishing theorems. It was also known that the Haydys-Witten equations on product manifolds {M_5 = M_4 × R} arise in the context of twisting the 5D maximally supersymmetric Yang-Mills theory. In this paper, we present the construction of twisted N = 2 Yang-Mills theory on Sasaki-Einstein manifolds, and more generally on K-contact manifolds. The localisation locus of this new theory thus provides a covariant version of the Haydys-Witten equation.

  17. I-IMAS: A 1.5D sensor for high-resolution scanning

    NASA Astrophysics Data System (ADS)

    Fant, A.; Gasiorek, P.; Turchetta, R.; Avset, B.; Bergamaschi, A.; Cavouras, D.; Evangelou, I.; French, M. J.; Galbiati, A.; Georgiou, H.; Hall, G.; Iles, G.; Jones, J.; Longo, R.; Manthos, N.; Metaxas, M. G.; Noy, M.; Ostby, J. M.; Psomadellis, F.; Royle, G. J.; Schulerud, H.; Speller, R. D.; van der Stelt, P. F.; Theodoridis, S.; Triantis, F.; Venanzi, C.

    2007-04-01

    We have developed a 1.5 D CMOS active pixel sensor to be used in conjunction with a scintillator for X-ray imaging. Within the Intelligent Imaging Sensors (I-ImaS) project, multiple sensors will be aligned to form a line-scanning system and its performance evaluated with respect to existing sensors in other digital radiography systems. Each sensor contains a 512×32 array of pixels and the electronics to convert the collected amount of charge to a digital output value. These include programmable gain amplifiers (PGAs) and analogue-to-digital converters (ADCs). The gain of the PGA can be switched between one or two, to increase the sensitivity for smaller collected charge; the ADC is a 14-bit successive approximation with a sampling rate of 1.25 MHz. The ASIC includes a programmable column fixed pattern noise mitigation circuit and a digitally controllable pixel reset mode block. Here we will describe the sensor design and the expected performance.

  18. Pressure-induced crossing of the core levels in 5 d metals

    NASA Astrophysics Data System (ADS)

    Tal, Alexey A.; Katsnelson, Mikhail I.; Ekholm, Marcus; Jönsson, H. Johan M.; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Abrikosov, Igor A.

    2016-05-01

    A pressure-induced interaction between core electrons, the core-level crossing (CLC) transition, has been observed in hcp Os at P ≈400 GPa [L. Dubrovinsky et al., Nature (London) 525, 226 (2015)], 10.1038/nature14681. By carrying out a systematic theoretical study for all metals of the 5 d series (Hf, Ta, W, Re, Os, Ir, Pt, Au) we have found that the CLC transition is a general effect for this series of metals. While in Pt it occurs at ≈1500 GPa , at a pressure substantially higher than in Os, in Ir it occurs already at 80 GPa. Moreover, we predict that in Re the CLC transition may take place already at ambient pressure. We explain the effect of the CLC and analyze the shift of the transition pressure across the series within the Thomas-Fermi model. In particular, we show that the effect has many common features with the atomic collapse in rare-earth elements.

  19. Correlation between the spin Hall angle and the structural phases of early 5d transition metals

    SciTech Connect

    Liu, Jun; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro; Hayashi, Masamitsu

    2015-12-07

    We have studied the relationship between the structure and the spin Hall angle of the early 5d transition metals in X/CoFeB/MgO (X = Hf, Ta, W, and Re) heterostructures. Spin Hall magnetoresistance (SMR) is used to characterize the spin Hall angle of the heavy metals. Transmission electron microscopy images show that all underlayers are amorphous-like when their thicknesses are small, however, crystalline phases emerge as the thickness is increased for certain elements. We find that the heavy metal layer thickness dependence of the SMR reflects these changes in structure. The largest spin Hall angle |θ{sub SH}| of Hf, Ta, W, and Re (∼0.11, 0.10, 0.23, and 0.07, respectively) is found when the dominant phase is amorphous-like. We find that the amorphous-like phase not only possesses large resistivity but also exhibits sizeable spin Hall conductivity, which both contribute to the emergence of the large spin Hall angle.

  20. The development of vector based 2.5D print methods for a painting machine

    NASA Astrophysics Data System (ADS)

    Parraman, Carinna

    2013-02-01

    Through recent trends in the application of digitally printed decorative finishes to products, CAD, 3D additive layer manufacturing and research in material perception, [1, 2] there is a growing interest in the accurate rendering of materials and tangible displays. Although current advances in colour management and inkjet printing has meant that users can take for granted high-quality colour and resolution in their printed images, digital methods for transferring a photographic coloured image from screen to paper is constrained by pixel count, file size, colorimetric conversion between colour spaces and the gamut limits of input and output devices. This paper considers new approaches to applying alternative colour palettes by using a vector-based approach through the application of paint mixtures, towards what could be described as a 2.5D printing method. The objective is to not apply an image to a textured surface, but where texture and colour are integral to the mark, that like a brush, delineates the contours in the image. The paper describes the difference between the way inks and paints are mixed and applied. When transcribing the fluid appearance of a brush stroke, there is a difference between a halftone printed mark and a painted mark. The issue of surface quality is significant to subjective qualities when studying the appearance of ink or paint on paper. The paper provides examples of a range of vector marks that are then transcribed into brush stokes by the painting machine.

  1. High-resolution infrared studies of perdeutero-spiropentane, C5D8

    NASA Astrophysics Data System (ADS)

    Erickson, B. A.; Ju, X.; Nibler, J. W.; Beaudry, C. M.; Blake, T. A.

    2016-07-01

    Perdeutero-spiropentane (C5D8) has been synthesized, and infrared and Raman spectra are reported for the first time. Wavenumber assignments are made for most of the fundamental vibrational states. Gas phase infrared spectra were recorded at a resolution (0.002 cm-1) sufficient to resolve individual rovibrational lines and show evidence of strong Coriolis and/or Fermi resonance interactions for most bands. However a detailed rovibrational analysis of the fundamental ν15 (b2) parallel band proved possible, and a fit of more than 1600 lines yielded a band origin of 1053.84465(10) cm-1 and ground state constants (in units of cm-1): B0 = 0.1120700(9), DJ = 1.51(3) × 10-8, DJK = 3.42(15) × 10-8. We note that the B0 value is significantly less than a value of Ba = 0.1140 cm-1 calculated using structural parameters from an earlier electron diffraction (ED) study, whereas one expects Ba to be lower than B0 because of thermal averaging over higher vibrational levels. A similar discrepancy was noted in an earlier study of C5H8 (Price et al., 2011). The structural and spectroscopic results are in good accord with values computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set.

  2. Nature of the insulating ground state of the 5d postperovskite CaIrO3

    DOE PAGES

    Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; Lee, Jun -Ho; Yao, Yongxin; Ho, Kai -Ming; Cho, Jun -Hyung

    2015-08-26

    In this study, the insulating ground state of the 5d transition metal oxide CaIrO3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t2g states to open an insulating gap. These results indicate thatmore » CaIrO3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.« less

  3. Synthesis of new thiazolo[4,5-d]pyrimidines as Corticotropin releasing factor modulators.

    PubMed

    Kuppast, Bhimanna; Spyridaki, Katerina; Lynch, Christophina; Hu, Yueshan; Liapakis, George; Davies, Gareth E; Fahmy, Hesham

    2014-01-01

    Corticotropin-releasing factor (CRF) is a neurohormone that plays a crucial role in integrating the body's overall response to stress. It appears necessary and sufficient for the organism to mount functional, physiological and endocrine responses to stressors. CRF is released in response to various triggers such as chronic stress. The role of CRF and its involvement in these neurological disorders suggest that new drugs that can target the CRF function or bind to its receptors may represent a new development of neuropsychiatric medicines to treat various stress-related disorders including depression, anxiety and addictive disorders. Based on pharmacophore of the CRF1 receptor antagonists, a new series of thiazolo[4,5-d] pyrimidines were synthesized as Corticotropin-releasing factor (CRF) receptor modulators and the prepared compounds carry groups shown to produce optimum binding affinity to CRF receptors. Twenty two compounds were evaluated for their CRF1 receptor binding affinity in HEK 293 cell lines and two compounds 5o and 5s showed approximately 25% binding affinity to CRF1 receptors. Selected compounds (5c and 5f) were also evaluated for their effect on expression of genes associated with depression and anxiety disorders such as CRF1, CREB1, MAO-A, SERT, NPY, DatSLC6a3, and DBH and significant upregulation of CRF1 mRNA has been observed with compound 5c. PMID:25059547

  4. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media

    USGS Publications Warehouse

    Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.

    2009-01-01

    Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.

  5. Energy, momentum and angular momentum conservations in de Sitter special relativity

    NASA Astrophysics Data System (ADS)

    Lu, Jia-An

    2016-01-01

    In de Sitter (dS) special relativity (SR), two kinds of conserved currents are derived. The first kind is a 5-dimensional dS-covariant angular momentum (AM) current, which unites the energy-momentum (EM) and 4d AM current in an inertial-type coordinate system. The second kind is a dS-invariant AM current, which can be generalized to a conserved current for the coupling system of the matter field and gravitational field in dS gravity. Moreover, an inherent EM tensor is predicted, which comes from the spin part of the dS-covariant current. All the above results are compared to the ordinary SR with Lorentz invariance.

  6. The fate of Schwarzschild-de Sitter black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Capozziello, Salvatore

    2016-03-01

    The semiclassical effects of anti-evaporating black holes can be discussed in the framework of f(R) gravity. In particular, the Bousso-Hawking-Nojiri-Odinstov anti-evaporation instability of degenerate Schwarzschild-de Sitter black holes (the so-called Nariai spacetime) leads to a dynamical increasing of black hole horizon in f(R) gravity. This phenomenon causes the following transition: emitting marginally trapped surfaces (TS) become space-like surfaces before the effective Bekenstein-Hawking emission time. As a consequence, Bousso-Hawking thermal radiation cannot be emitted in an anti-evaporating Nariai black hole. Possible implications in cosmology and black hole physics are also discussed.

  7. Fermion production in a magnetic field in a de Sitter universe

    NASA Astrophysics Data System (ADS)

    Crucean, Cosmin; Bǎloi, Mihaela-Andreea

    2016-02-01

    The process of fermion production in the field of a magnetic dipole on a de Sitter expanding universe is analyzed. The amplitude and probability for production of massive fermions are obtained using the exact solution of the Dirac equation written in the momentum-helicity basis. We found that the most probable transitions are those that generate the fermion pair perpendicular to the direction of the magnetic field. The behavior of the probability is graphically studied for large/small values of the expansion factor, and a detailed analysis of the probability in terms of the angle between the momenta vectors of the particle and antiparticle is performed. The phenomenon of fermion production is significant only at a large expansion, which corresponds to the conditions from the early universe. When the expansion factor vanishes, we recover the Minkowski limit where this process is forbidden by the simultaneous energy-momentum conservation.

  8. Constraining the Schwarzschild-de Sitter solution in models of modified gravity

    NASA Astrophysics Data System (ADS)

    Iorio, Lorenzo; Ruggiero, Matteo Luca; Radicella, Ninfa; Saridakis, Emmanuel N.

    2016-09-01

    The Schwarzschild-de Sitter (SdS) solution exists in the large majority of modified gravity theories, as expected, and in particular the effective cosmological constant is determined by the specific parameters of the given theory. We explore the possibility to use future extended radio-tracking data from the currently ongoing New Horizons mission in the outskirts peripheries of the Solar System, at about 40 au, in order to constrain this effective cosmological constant, and thus to impose constrain on each scenario's parameters. We investigate some of the recently most studied modified gravities, namely f(R) and f(T) theories, dRGT massive gravity, and Hořava-Lifshitz gravity, and we show that New Horizons mission may bring an improvement of one-two orders of magnitude with respect to the present bounds from planetary orbital dynamics.

  9. Numerical solution of the Dirac equation in Schwarzschild de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Lyu, Y.; Gui, Y. X.

    2007-02-01

    The radial parts of the Dirac equation between the inner and the outer horizon in Schwarzschild-de Sitter geometry are solved. Two limiting cases are concerned. The first case is when the two horizons are far apart and the second case is when the horizons are close to each other. In each case, a 'tangent' approximation is used to replace the modified 'tortoise' coordinate r*, which leads to a simple analytically invertible relation between r* and the radius r. The potential V(r*) is replaced by a collection of step functions in sequence. Then the solutions of the wave equation as well as the reflection and transmission coefficients are computed by a quantum mechanical method.

  10. Quantum radiation of Maxwell’s electromagnetic field in nonstationary Kerr-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Ibungochouba Singh, T.; Ablu Meitei, I.; Yugindro Singh, K.

    2016-03-01

    Quantum radiation properties of nonstationary Kerr-de Sitter (KdS) black hole is investigated using the method of generalized tortoise coordinate transformation. The locations of horizons and the temperature of the thermal radiation as well as the maximum energy of the nonthermal radiation are derived. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Maxwell’s electromagnetic field equations which is absent in the thermal radiation spectrum of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the nonthermal radiation for KdS black hole. It is also shown that the generalized tortoise coordinate transformation produces a constant term in the expression of the surface gravity and Hawking temperature.

  11. Real scalar field scattering with polynomial approximation around Schwarzschild—de Sitter black-hole

    NASA Astrophysics Data System (ADS)

    Liu, Mo-Lin; Liu, Hong-Ya; Zhang, Jing-Fei; Yu, Fei

    2008-05-01

    As one of the fitting methods, the polynomial approximation is effective to process sophisticated problem. In this paper, we employ this approach to handle the scattering of scalar field around the Schwarzschild—de Sitter black-hole. The complicated relationship between tortoise coordinate and radial coordinate is replaced by the approximate polynomial. The Schrödinger-like equation, the real boundary conditions and the polynomial approximation construct a full Sturm-Liouville type problem. Then this boundary value problem can be solved numerically for two limiting cases: the first one is the Nariai black-hole whose horizons are close to each other, the second one is the black-hole with the horizons widely separated. Compared with previous results (Brevik and Tian), the field near the event horizon and cosmological horizon can have a better description.

  12. The Solution of Dirac Equation in Quasi-Extreme REISSNER-NORDSTRÖM de Sitter Space

    NASA Astrophysics Data System (ADS)

    Lyu, Yan; Cui, Song; Liu, Ling

    The radial parts of Dirac equation between the outer black hole horizon and the cosmological horizon in quasi-extreme Reissner-Nordström de Sitter (RNdS) geometry is solved numerically. We use an accurate polynomial approximation to mimic the modified tortoise coordinate hat r*(r), for obtaining the inverse function r=r(hat r*) and V=V(hat r*). We then use a quantum mechanical method to solve the wave equation and give the reflection and transmission coefficients. We concentrate on two limiting cases. The first case is when the two horizons are close to each other, and the second case is when the horizons are far apart.

  13. Characterization of (asymptotically) Kerr–de Sitter-like spacetimes at null infinity

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.; Simon, Walter

    2016-08-01

    We investigate solutions ({M},g) to Einstein's vacuum field equations with positive cosmological constant Λ which admit a smooth past null infinity {{I}}- à la Penrose and a Killing vector field whose associated Mars–Simon tensor (MST) vanishes. The main purpose of this work is to provide a characterization of these spacetimes in terms of their Cauchy data on {{I}}-. Along the way, we also study spacetimes for which the MST does not vanish. In that case there is an ambiguity in its definition which is captured by a scalar function Q. We analyze properties of the MST for different choices of Q. In doing so, we are led to a definition of ‘asymptotically Kerr–de Sitter-like spacetimes’, which we also characterize in terms of their asymptotic data on {{I}}-. Preprint UWThPh-2016-5.

  14. The Quantum Theory of the Free Maxwell Field on the de Sitter Expanding Universe

    NASA Astrophysics Data System (ADS)

    Cotăescu, I. I.; Crucean, C.

    2010-12-01

    The theory of the free Maxwell field in two moving frames on the de Sitter spacetime is investigated pointing out that the conserved momentum and energy operators do not commute to each other. This leads us to consider new plane waves solutions of the Maxwell equation which are eigenfunctions of the energy operator. Such particular solutions complete the theory in which only the solutions of given momentum were considered so far. The energy eigenfunctions can be obtained thanks to our new time-evolution picture proposed previously for the scalar and Dirac fields. Considering both these types of modes, it is shown that the second quantization of the free electromagnetic potential in the Coulomb gauge can be done in a canonical manner as in special relativity. The principal conserved one-particle operators associated to Killing vectors are derived, concentrating on the energy, momentum and total angular momentum operators.

  15. The structure of perturbative quantum gravity on a de Sitter background

    SciTech Connect

    Tsamis, N.C. . Dept. of Physics); Woodward, R.P. . Dept. of Physics)

    1992-05-01

    Classical gravitation on de Sitter space suffers from a linearization instability. One consequence is that the response to a spatially localized distribution of positive energy cannot be globally regular. We use this fact to show that no causal Green's function can give the correct linearized response to certain bilocalized distributions, even though these distributions obey the constraints of linearization stability. We avoid the problem by working on the open submanifold spanned by conformal coordinates. The retarded Green's function is first computed in a simple gauge, then the rest of the propagator is inferred by analyticity -- up to the usual ambiguity about real, analytic and homogeneous terms. We show that the latter can be chosen so as to give a propagator which does not grow in any direction. The ghost propagator is also given and the interaction vertices are worked out.

  16. The structure of perturbative quantum gravity on a de Sitter background

    SciTech Connect

    Tsamis, N.C.; Woodward, R.P.

    1992-05-01

    Classical gravitation on de Sitter space suffers from a linearization instability. One consequence is that the response to a spatially localized distribution of positive energy cannot be globally regular. We use this fact to show that no causal Green`s function can give the correct linearized response to certain bilocalized distributions, even though these distributions obey the constraints of linearization stability. We avoid the problem by working on the open submanifold spanned by conformal coordinates. The retarded Green`s function is first computed in a simple gauge, then the rest of the propagator is inferred by analyticity -- up to the usual ambiguity about real, analytic and homogeneous terms. We show that the latter can be chosen so as to give a propagator which does not grow in any direction. The ghost propagator is also given and the interaction vertices are worked out.

  17. Corrected Stefan—Boltzmann Law and Lifespan of Schwarzschild-de-sitter Black Hole

    NASA Astrophysics Data System (ADS)

    Yan, Shi; He, Tang-Mei; Zhang, Jing-Yi

    2016-06-01

    In this paper, we correct the Stefan—Boltzmann law by considering the generalized uncertainty principle, and with this corrected Stefan—Boltzmann law, the lifespan of the Schwarzschild-de-sitter black holes is calculated. We find that the corrected Stefan—Boltzmann law contains two terms, the T4 term and the T6 term. Due to the modifications, at the end of the black hole radiation, it will arise a limited highest temperature and leave a residue. It is interesting to note that the mass of the residue and the Planck mass is in the same order of magnitude. The modified Stefan—Boltzmann law also gives a correction to the lifespan of the black hole, although it is very small. Supported by the National Natural Science Foundation of China under Grant Nos. 11273009 and 11303006

  18. Single-step de Sitter vacua from nonperturbative effects with matter

    NASA Astrophysics Data System (ADS)

    Guarino, Adolfo; Inverso, Gianluca

    2016-03-01

    A scenario of moduli stabilization based on the interplay between closed and open string sectors is explored in a bottom-up approach. We study N =1 effective supergravities inspired by type IIB orientifold constructions that include background fluxes and nonperturbative effects. The former generate the standard flux superpotential for the axiodilaton and complex structure moduli. The latter can be induced by gaugino condensation in a non-Abelian sector of D7-branes and involve the overall Kähler modulus of the compactification as well as matter fields. We analyze the dynamics of this coupled system and show that it is compatible with single-step moduli stabilization in a metastable de Sitter vacuum. A novelty of the scenario is that the F-term potential suffices to generate a positive cosmological constant and to stabilize all moduli, except for a flat direction that can be either lifted by a mass term or eaten up by an anomalous U(1).

  19. Decay of a charged scalar and Dirac fields in the Kerr-Newman-de Sitter background

    SciTech Connect

    Konoplya, R. A.; Zhidenko, A.

    2007-10-15

    We find the quasinormal modes of the charged scalar and Dirac fields in the background of the rotating charged black holes, described by the Kerr-Newman-de Sitter solution. The dependence of the quasinormal spectrum upon the black hole parameters mass M, angular momentum a, charge Q, as well as on values of the {lambda}-term and a field charge q is investigated. Special attention is given to the near extremal limit of the black hole charge. In particular, we find that for both scalar and Dirac fields, charged perturbations decay quicker for q>0 and slower for q<0 for values of black holes charge Q less than some threshold value, which is close to the extremal value of charge and depend on parameters of the black holes.

  20. Variation of the fine-structure constant from the de Sitter invariant special relativity

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Xia; Xiao, Neng-Chao; Yan, Mu-Lin

    2008-08-01

    We discuss the variation of the fine-structure constant, α. There are obvious discrepancies among the results of α-variation from recent Quasi-stellar observation experiments and from the Oklo uranium mine analysis. We use dS Sitter invariant Special Relativity (Script SScript Rc,R) and Dirac large number hypothesis to discuss this puzzle, and present a possible solution to the disagreement. By means of the observational data and the discussions presented in this paper, we estimate the radius of the Universe in Script SScript Rc,R which is about ~2√5×1011l.y. Supported by National Natural Science Foundation of China (90403021) and PhD Program Funds of Education Ministry of China (20020358040)

  1. Characterization of (asymptotically) Kerr-de Sitter-like spacetimes at null infinity

    NASA Astrophysics Data System (ADS)

    Mars, Marc; Paetz, Tim-Torben; Senovilla, José M. M.; Simon, Walter

    2016-08-01

    We investigate solutions ({M},g) to Einstein's vacuum field equations with positive cosmological constant Λ which admit a smooth past null infinity {{I}}- à la Penrose and a Killing vector field whose associated Mars-Simon tensor (MST) vanishes. The main purpose of this work is to provide a characterization of these spacetimes in terms of their Cauchy data on {{I}}-. Along the way, we also study spacetimes for which the MST does not vanish. In that case there is an ambiguity in its definition which is captured by a scalar function Q. We analyze properties of the MST for different choices of Q. In doing so, we are led to a definition of ‘asymptotically Kerr-de Sitter-like spacetimes’, which we also characterize in terms of their asymptotic data on {{I}}-. Preprint UWThPh-2016-5.

  2. Examining the incremental impact of long-standing health conditions on subjective well-being alongside the EQ-5D

    PubMed Central

    2014-01-01

    Background Generic preference-based measures such as the EQ-5D and SF-6D have been criticised for being narrowly focused on a sub-set of dimensions of health. Our study aims to explore whether long-standing health conditions have an incremental impact on subjective well-being alongside the EQ-5D. Methods Using data from the South Yorkshire Cohort study (N = 13,591) collected between 2010 and 2012 on the EQ-5D, long-standing health conditions (self-reported), and subjective well-being measure – life satisfaction using a response scale from 0 (completely dissatisfied) to 10 (completely satisfied), we employed generalised logit regression models. We assessed the impact of EQ-5D and long-standing health conditions together on life satisfaction by examining the size and significance of their estimated odds ratios. Results The EQ-5D had a significant association with life satisfaction, in which anxiety/depression and then self-care had the largest weights. Some long-standing health conditions were significant in some models, but most did not have an independent impact on life satisfaction. Overall, none of the health conditions had a consistent impact on life satisfaction alongside the EQ-5D. Conclusions Out study suggests that the impact of long-standing health conditions on life satisfaction is adequately captured by the EQ-5D, although the findings are limited by reliance on self-reported conditions and a single item life satisfaction measure. PMID:24773705

  3. Reducing NPR 7120.5D to Practice: Preparing for a Life-Cycle Review

    NASA Technical Reports Server (NTRS)

    Taylor, Randall L.

    2008-01-01

    In March 2007, NASA issued revised rules for space flight project management, NPR 7120.5D, 'NASA Space Flight Program and Project Management Requirements.' Central to the new rules was the construct of Key Decision Points, maturity gates that the project team must pass in order to continue development. In order that the KDP decision be fully informed, the NPR required, as entrance criteria for the gate, the generation and delivery of specified planning, technical, and cost/schedule documents (gate products) and a life-cycle review, the Preliminary Design Review. Building on JPL experience on the Prometheus and Juno projects, the team successfully organized for and conducted these reviews on an aggressive schedule. Key actions were taken to proactively interact with the SRB, produce high-quality gate products with stakeholder review, generate review presentation materials, and handle a myriad of supporting logistical functions. A review preparation team was established, including a Review Captain and leads for documentation, information systems, and logistics, and their roles, responsibilities and task assignments were identified. Aids were produced, including a detailed review preparation schedule and a comprehensive gate products production table. Institutional support was leveraged early and often. Implementation strategy reflected the needs of a nationally-distributed team, as well as applicable export control and IT security requirements. This paper gives a brief overview of the GRAIL mission and its project management challenges, provides a detailed description of project PMSR and PDR preparation and execution activities, including positive and negative lessons learned, and identifies recommendations for future NASA (and non-NASA) project teams.

  4. 5D model for accurate representation and visualization of dynamic cardiac structures

    NASA Astrophysics Data System (ADS)

    Lin, Wei-te; Robb, Richard A.

    2000-05-01

    Accurate cardiac modeling is challenging due to the intricate structure and complex contraction patterns of myocardial tissues. Fast imaging techniques can provide 4D structural information acquired as a sequence of 3D images throughout the cardiac cycle. To mode. The beating heart, we created a physics-based surface model that deforms between successive time point in the cardiac cycle. 3D images of canine hearts were acquired during one complete cardiac cycle using the DSR and the EBCT. The left ventricle of the first time point is reconstructed as a triangular mesh. A mass-spring physics-based deformable mode,, which can expand and shrink with local contraction and stretching forces distributed in an anatomically accurate simulation of cardiac motion, is applied to the initial mesh and allows the initial mesh to deform to fit the left ventricle in successive time increments of the sequence. The resulting 4D model can be interactively transformed and displayed with associated regional electrical activity mapped onto anatomic surfaces, producing a 5D model, which faithfully exhibits regional cardiac contraction and relaxation patterns over the entire heart. The model faithfully represents structural changes throughout the cardiac cycle. Such models provide the framework for minimizing the number of time points required to usefully depict regional motion of myocardium and allow quantitative assessment of regional myocardial motion. The electrical activation mapping provides spatial and temporal correlation within the cardiac cycle. In procedures which as intra-cardiac catheter ablation, visualization of the dynamic model can be used to accurately localize the foci of myocardial arrhythmias and guide positioning of catheters for optimal ablation.

  5. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    PubMed

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands.

  6. Modeling plasticity of MgO at the mesoscale using 2.5D Dislocation Dynamics.

    NASA Astrophysics Data System (ADS)

    Reali, R.; Cordier, P.; Carrez, P.; Gouriet, K.; Boioli, F.

    2015-12-01

    In the lower mantle, viscosity results from the rheological behavior of the two main constituent minerals, namely (Mg,Fe,Al)SiO3bridgmanite and (Mg,Fe)O ferropericlase. Understanding how these phases deform is thus of primary importance in geophysics. This is also a very challenging task, since the extreme conditions to which the lower mantle aggregate is subjected are not reachable in laboratory experiments. In this study, the contribution of dislocations to the deformation of periclase at the mesoscale is investigated by Dislocation Dynamics (DD) simulations, a modeling tool which considers the collective motion and interaction of dislocations. Dislocations are expected to be one of the most efficient strain producing mechanisms. To model their behavior a so-called 2.5D DD approach is employed. Within this method, dislocations are considered as straight segments perpendicular to a 2D reference plane and local rules are added to mimic 3D behavior [1]. Furthermore, both the glide and climb mechanisms can be taken into account [2]. Before simulating the deformation of MgO under P, T and strain rate conditions of the lower mantle, it is necessary to benchmark the model at ambient pressure, in order to compare the simulated behavior with experiments performed in the same conditions. At high temperatures (1500-1900 K) the strain-controlling mechanism results from the interactions between dislocations. In this regime the influence of climb may be important: to investigate the competition between glide and climb mechanisms, creep simulations in pure glide conditions were performed in a wide range of temperatures and applied stresses and compared to simulations where climb is explicitly included. Power law creep parameters are evaluated and compared with experimental data. [1] D. Ǵomez-Garćıa, B. Devincre, and L. P. Kubin, Phys. Rev. Lett. 96, 125503 (2006). [2] F. Boioli, P. Carrez, P. Cordier, B. Devincre, and , M. Marquille, accepted Phys. Rev. B (2015).

  7. 1.5D quasilinear model and its application on beams interacting with Alfven eigenmodes in DIII-D

    SciTech Connect

    Ghantous, K.; Gorelenkov, N. N.; Berk, H. L.; Heidbrink, W. W.; Van Zeeland, M. A.

    2012-09-15

    We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges no. 142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and no. 127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design.

  8. A comparison of United States and United Kingdom EQ-5D health states valuations using a nonparametric Bayesian method.

    PubMed

    Kharroubi, Samer A; O'Hagan, Anthony; Brazier, John E

    2010-07-10

    Cost-effectiveness analysis of alternative medical treatments relies on having a measure of effectiveness, and many regard the quality adjusted life year (QALY) to be the current 'gold standard.' In order to compute QALYs, we require a suitable system for describing a person's health state, and a utility measure to value the quality of life associated with each possible state. There are a number of different health state descriptive systems, and we focus here on one known as the EQ-5D. Data for estimating utilities for different health states have a number of features that mean care is necessary in statistical modelling.There is interest in the extent to which valuations of health may differ between different countries and cultures, but few studies have compared preference values of health states obtained from different countries. This article applies a nonparametric model to estimate and compare EQ-5D health state valuation data obtained from two countries using Bayesian methods. The data set is the US and UK EQ-5D valuation studies where a sample of 42 states defined by the EQ-5D was valued by representative samples of the general population from each country using the time trade-off technique. We estimate a utility function across both countries which explicitly accounts for the differences between them, and is estimated using the data from both countries. The article discusses the implications of these results for future applications of the EQ-5D and for further work in this field. PMID:20209481

  9. 5D-intravital tomography as a novel tool for non-invasive in-vivo analysis of human skin

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans G.; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; Schwarz, Martin; Riemann, Iris; Stracke, Frank; Huck, Volker; Gorzelanny, Christian; Schneider, Stefan W.

    2010-02-01

    Some years ago, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched. These tomographs provide optical biopsies with submicron resolution based on two-photon excited autofluorescence (NAD(P)H, flavoproteins, keratin, elastin, melanin, porphyrins) and second harmonic generation by collagen. The 3D tomograph was now transferred into a 5D imaging system by the additional detection of the emission spectrum and the fluorescence lifetime based on spatially and spectrally resolved time-resolved single photon counting. The novel 5D intravital tomograph (5D-IVT) was employed for the early detection of atopic dermatitis and the analysis of treatment effects.

  10. DEEP Study: does EQ-5D-5L measure the impacts of persistent oro-facial pain?

    PubMed

    Durham, J; Steele, J G; Breckons, M; Story, W; Vale, L

    2015-09-01

    The EQ-5D-5L is a generic quality of life (QOL) measure widely used throughout the world, which has the advantage that it allows health-state preferences to be elicited. The aim of this study was to examine whether: a) variation in the standardised reference period for EQ-5D-5L from 'today' to 'the last month' had a minimal clinically meaningful difference; (b) EQ-5D-5L had convergent validity with a multidimensional pain measure in quantifying the impacts of pain. As part of a larger study into the effectiveness and efficiency of care pathways for persistent orofacial pain (POFP) (http://research.ncl.ac.uk/deepstudy), participants with POFP (n = 100) completed two versions of the EQ-5D-5L at the same time with different reference periods ('today' vs. 'last month'). Participants also completed the first section of the West Haven-Yale Multidimensional Pain Inventory (v3) to assess convergent validity. Two-tailed nonparametric inferential statistics, intra-class correlation coefficients (ICC), and within-subject change scores were used to compare the two EQ-5D-5L versions. Convergent validity was assessed using Spearman's rho correlation coefficients. Health-state valuations were significantly different (P < 0.01), and there was good similarity between the two versions' ICC 0.86 (95% CI 0.79-0.91). The within-subject mean change was 0.03 (95% CI 0.01-0.06). For convergent validity, all relationships were significant (P < 0.05) and in the expected directions. EQ-5D-5L demonstrates sufficient convergent validity to be used with POFP, and a change in the standard reference period may be unnecessary if a multidimensional pain measure is also used.

  11. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity

  12. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.

    PubMed

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien James; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S; Plett, Darren; Munns, Rana; Tester, Mark; Gilliham, Matthew

    2014-11-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes. PMID:25158883

  13. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat.

    PubMed

    Byrt, Caitlin Siobhan; Xu, Bo; Krishnan, Mahima; Lightfoot, Damien James; Athman, Asmini; Jacobs, Andrew Keith; Watson-Haigh, Nathan S; Plett, Darren; Munns, Rana; Tester, Mark; Gilliham, Matthew

    2014-11-01

    Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.

  14. DEEP Study: does EQ-5D-5L measure the impacts of persistent oro-facial pain?

    PubMed

    Durham, J; Steele, J G; Breckons, M; Story, W; Vale, L

    2015-09-01

    The EQ-5D-5L is a generic quality of life (QOL) measure widely used throughout the world, which has the advantage that it allows health-state preferences to be elicited. The aim of this study was to examine whether: a) variation in the standardised reference period for EQ-5D-5L from 'today' to 'the last month' had a minimal clinically meaningful difference; (b) EQ-5D-5L had convergent validity with a multidimensional pain measure in quantifying the impacts of pain. As part of a larger study into the effectiveness and efficiency of care pathways for persistent orofacial pain (POFP) (http://research.ncl.ac.uk/deepstudy), participants with POFP (n = 100) completed two versions of the EQ-5D-5L at the same time with different reference periods ('today' vs. 'last month'). Participants also completed the first section of the West Haven-Yale Multidimensional Pain Inventory (v3) to assess convergent validity. Two-tailed nonparametric inferential statistics, intra-class correlation coefficients (ICC), and within-subject change scores were used to compare the two EQ-5D-5L versions. Convergent validity was assessed using Spearman's rho correlation coefficients. Health-state valuations were significantly different (P < 0.01), and there was good similarity between the two versions' ICC 0.86 (95% CI 0.79-0.91). The within-subject mean change was 0.03 (95% CI 0.01-0.06). For convergent validity, all relationships were significant (P < 0.05) and in the expected directions. EQ-5D-5L demonstrates sufficient convergent validity to be used with POFP, and a change in the standard reference period may be unnecessary if a multidimensional pain measure is also used. PMID:25818477

  15. 2.5d teleseismic waveform tomography with application to the tien shan

    NASA Astrophysics Data System (ADS)

    Baker, Benjamin Ian

    The analysis of passive source seismic data recorded by quasi-linear deployments of broadband stations at teleseismic distances has proven to be an effective means of probing the subsurface of the Earth. However, current methodologies are far from being able to exploit all the interpretable signal in these data sets. In this thesis, I describe a 2.5D, frequency domain, visco-elastic waveform tomography algorithm for imaging with this type of data. To compute synthetic seismograms (the forward problem), the general equations of motion are discretized with p-adaptive finite elements. This approach allows for geometric flexibility and accurate solutions as a function of wavelength. Artificial force distributions manifesting Huygen's principle for the teleseismic events are introduced locally through a Bielak layer. Because of the relatively low frequency content of teleseismic data, regional scale tectonic settings can be parameterized with a modest number of variables and perturbations can be determined directly from a regularized Gauss-Newton system of equations. Waveforms generated by the forward problem compare well with analytic solutions for simple 1D media and with those generated in heterogeneous structures by a finite difference technique. It is demonstrated through examples that the regularized approximate Hessian is particularly effective at focusing backpropagated residuals to their true location. It is observed that full waveform inversion can provide significantly better vertical resolution than arrival time tomography and significantly better lateral resolution than standard surface wave tomography. Used in tandem in a multi-scale approach, surface wave tomography followed by joint surface wave/body wave tomography is shown to be an effective strategy for image reconstruction from a simple starting model. This inversion strategy is then applied to body and surface wave teleseismic waves recorded in the Tien Shan. The work of previous investigators is

  16. Structures of the dehydrogenation products of methane activation by 5d transition metal cations.

    PubMed

    Lapoutre, V J F; Redlich, B; van der Meer, A F G; Oomens, J; Bakker, J M; Sweeney, A; Mookherjee, A; Armentrout, P B

    2013-05-23

    The activation of methane by gas-phase transition metal cations (M(+)) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H](+) and H2. However, the structure of the dehydrogenation product has not been established unambiguously. Two types of structures have been considered: a carbene structure where an intact CH2 fragment is bound to the metal (M(+)-CH2) and a carbyne (hydrido-methylidyne) structure with both a CH and a hydrogen bound to the metal separately (H-M(+)-CH). For metal ions with empty d-orbitals, an agostic interaction can occur that could influence the competition between carbene and carbyne structures. In this work, the gas phase [M,C,2H](+) (M = Ta, W, Ir, Pt) products are investigated by infrared multiple-photon dissociation (IR-MPD) spectroscopy using the Free-Electron Laser for IntraCavity Experiments (FELICE). Metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream. IR-MPD spectra of the [M,C,2H](+) species are measured in the 300-3500 cm(-1) spectral range by monitoring the loss of H (2H in the case of [Ir,C,2H](+)). For each system, the experimental spectrum closely resembles the calculated spectrum of the lowest energy structure calculated using DFT: for Pt, a classic C(2v) carbene structure; for Ta and W, carbene structures that are distorted by agostic interactions; and a carbyne structure for the Ir complex. The Ir carbyne structure was not considered previously. To obtain this agreement, the calculated harmonic frequencies are scaled with a scaling factor of 0.939, which is fairly low and can be attributed to the strong redshift induced by the IR multiple-photon excitation process of these small molecules. These four-atomic species are among the smallest systems studied by IR-FEL based IR-MPD spectroscopy, and their spectra demonstrate the power of IR

  17. The ν17 band of C2H5D from 770 to 880 cm-1

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Drouin, Brian J.; Pearson, John C.; Sung, Keeyoon; Brown, Linda R.; Mantz, Arlan; Smith, Mary Ann H.

    2015-10-01

    Atmospheric investigations rely heavily on the availability of accurate spectral information of hydrocarbons. To extend the ethane database we recorded a 0.0028 cm-1 resolution spectrum of 12C2H5D from 650 to 1500 cm-1 using a Bruker Fourier Transform spectrometer IFS-125HR at the Jet Propulsion Laboratory. The 98% deuterium-enriched sample was contained in a 0.2038 m absorption cell; one spectrum was obtained with the sample cryogenically cooled to 130.5 K and another at room temperature. From the cold data, we retrieved line positions and intensities of 8704 individual absorption features from 770 to 880 cm-1 using a least squares curve fitting algorithm. From this set of measurements, we assigned 5035 transitions to the v17 fundamental at 805.342729(27) cm-1; this band is a c-type vibration, with often-resolved A and E components arising from internal rotation. The positions were modeled to a 22 term torsional Hamiltonian using SPFIT to fit the spectrum to a standard deviation of 7 × 10-4 cm-1 (21 MHz). The prediction of the 5035 line intensities at 130.5 K agreed with observed intensities, but a small centrifugal distortion type correction to the transition dipole was needed to model the intensity of high Ka R and P transitions. The integrated band intensities of 3.6628 × 10-19 cm-1/(molecule cm-2) at 296 K in the 770-880 cm-1 region was obtained. To predict line intensities at different temperatures, the partition function values were determined at nine temperatures between 9.8 and 300 K by summing individual energy levels up to J = 99 and Ka = 99 for the six states up through ν17 at 805 cm-1. We found the energy of A and E are inverted as compared to ground state (with the E state lower than the A state) and the splitting, -241.8(10) MHz, lies between the ground state value of +74.167(18) MHz and the first torsional state (ν18 = 271.1 cm-1) value of -3382.23(34) MHz. The proximity of the energy splitting to the ground state suggests that the ν17 state

  18. Paleoclimate variability during the Blake geomagnetic excursion (MIS 5d) deduced from a speleothem record

    NASA Astrophysics Data System (ADS)

    Rossi, Carlos; Mertz-Kraus, Regina; Osete, María-Luisa

    2014-10-01

    To evaluate possible connections between climate and the Earth's magnetic field, we examine paleoclimate proxies in a stalagmite (PA-8) recording the Blake excursion (˜112-˜116.4 ka) from Cobre cave (N Spain). Trace element, δ13C, δ18O, δ234U, fluorescent lamination, growth rate, and paleomagnetic records were synchronized using a floating lamina-counted chronology constrained by U-Th dates, providing a high-resolution multi-proxy paleoclimate record for MIS 5d. The alpine cave setting and the combination of proxies contributed to improve the confidence of the paleoclimatic interpretation. Periods of relatively warm and humid climate likely favored forest development and resulted in high speleothem growth rates, arguably annual fluorescent laminae, low δ13C and [Mg], and increased [Sr] and [Ba]. Colder periods limited soil activity and drip water availability, leading to reduced speleothem growth, poor development of fluorescent lamination, enhanced water-rock interaction leading to increased [Mg], δ13C, and δ234U, and episodic flooding. In the coldest and driest period recorded, evaporation caused simultaneous 18O and 13C enrichments and perturbed the trace element patterns. The Blake took place in a relatively warm interestadial at the inception of the Last Glacial period, but during a global cooling trend recorded in PA-8 by an overall decrease of δ18O and growth rate and increasing [Mg]. That trend culminated in the cessation of growth between ˜112 and ˜101 ka likely due to the onset of local glaciation correlated with Greenland stadial 25. That trend is consistent with a link between low geomagnetic intensity and climate cooling, but it does not prove it. Shorter term changes in relative paleointensity (RPI) relate to climate changes recorded in PA-8, particularly a prominent RPI low from ˜114.5 to ˜113 ka coincident with a significant cooling indicated by all proxy records, suggesting a link between geomagnetic intensity and climate at millennial

  19. Simulation of transport in the ignited ITER with 1.5-D predictive code

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1995-01-01

    The confinement in the bulk and scrape-off layer plasmas of the ITER EDA and CDA is investigated with special versions of the 1.5-D BALDUR predictive transport code for the case of peaked density profiles (Cu=1.0). The code self-consistently computes 2-D equilibria and solves 1-D transport equations with empirical transport coefficients for the ohmic, L and ELMy H mode regimes. Self-sustained steady state thermonuclear burn is demonstrated for up to 500 s. It is shown to be compatible with the strong radiation losses for divertor heat load reduction caused by the seeded impurities iron, neon and argon. The corresponding global and local energy and particle transport are presented. The required radiation corrected energy confinement times of the EDA and CDA are found to be close to 4 s, which is attainable according to the ITER ELMy H mode scalings. In the reference cases, the steady state helium fraction is 7%, which already causes significant dilution of the DT fuel. The fractions of iron, neon and argon needed for the prescribed radiative power loss are given. It is shown that high radiative losses from the confinement zone, mainly by bremsstrahlung, cannot be avoided. The radiation profiles of iron and argon are found to be the same, with two thirds of the total radiation being emitted from closed flux surfaces. Fuel dilution due to iron and argon is small. The neon radiation is more peripheral, since only half of the total radiative power is lost within the separatrix. But neon is found to cause high fuel. Dilution. The combined dilution effect by helium and neon conflicts with burn control, self-sustained burn and divertor power reduction. Raising the helium fraction above 10% leads to the same difficulties owing to fuel dilution. The high helium levels of the present EDA design are thus unacceptable. For the reference EDA case, the self-consistent electron density and temperature at the separatrix are 5.6*1019 m-3 and 130 eV, respectively. The bootstrap

  20. Equations of motion with respect to the (1+1+3) threading of a 5 D universe

    NASA Astrophysics Data System (ADS)

    Bejancu, Aurel

    2016-01-01

    We continue our research work started in Bejancu (Eur Phys J C 75:346, 2015), and obtain in a covariant form the equations of motion with respect to the (1+1+3) threading of a 5 D universe (bar{M}, bar{g}). The natural splitting of the tangent bundle of bar{M} leads to the study of three categories of geodesics: spatial geodesics, temporal geodesics, and vertical geodesics. As an application of the general theory, we introduce and study what we call the 5 D Robertson-Walker universe.

  1. 1.5D Quasilinear Model for Alpha Particle-TAE Interaction in ARIES ACT-I

    SciTech Connect

    K. Ghantous, N.N. Gorelenkov, C. Kessel, F. Poli

    2013-01-30

    We study the TAE interaction with alpha particle fusion products in ARIES ACT-I using the 1.5D quasilinear model. 1.5D uses linear analytic expressions for growth and damping rates of TAE modes evaluated using TRANSP pro les to calculates the relaxation of pressure pro les. NOVA- K simulations are conducted to validate the analytic dependancies of the rates, and to normalize their absolute value. The low dimensionality of the model permits calculating loss diagrams in large parameter spaces.

  2. A Comparison between the EQ-5D and the SF-6D in Patients with Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    Chen, Jing; Wong, Carlos K. H.; McGhee, Sarah M.; Pang, Polly K. P.; Yu, Wai-Cho

    2014-01-01

    Background The appropriate use of generic preference-based measures determines the accuracy of disease assessment and further decision on healthcare policy using quality adjusted life years. The discriminative capacity of different instruments would differ across disease groups. Our study was to examine the difference in utility scores for COPD patients measured by EQ-5D and SF-6D and to assist the choice of a proper instrument in this disease group. Methods Differences of mean utility scores of EQ-5D and SF-6D in groups defined by socio-demographic characteristics, comorbidities, health service utilisation and severity of illness were tested using Mann-Whitney test, t-test, Kruskal-Wallis test, Pearson’s correlation coefficient and ANOVA, as appropriate. The discriminative properties of the two instruments were compared against indicators of quality of life using receiver operating characteristic curves. The statistical significance of the area under the curves (AUC) was tested by ANOVA and F-statistics used to compare the efficiency with which each instrument discriminated between disease severity groups. Results Mean utility scores of EQ-5D and SF-6D were 0.644 and 0.629 respectively in the 154 subjects included in the analysis. EQ-5D scores were significantly higher than SF-6D in groups less severe and these differences corresponded to a minimally important difference of greater than 0.03 (p<0.001). EQ-5D and SF-6D scores were strongly correlated across the whole sample (r = 0.677, p<0.001) and in pre-defined groups (r>0.5 and p<0.05 for all correlation coefficients). AUCs were above 0.5 against the indicators of health-related quality of life for both instruments. F-ratios suggested SF-6D was more efficient in discriminating cases of different disease severity than EQ-5D. Conclusions Both EQ-5D and SF-6D appeared to be valid preference-based measures in Chinese COPD patients. SF-6D was more efficient in detecting differences among subgroups with

  3. EQ-5D-3L Derived Population Norms for Health Related Quality of Life in Sri Lanka

    PubMed Central

    Kularatna, Sanjeewa; Whitty, Jennifer A.; Johnson, Newell W.; Jayasinghe, Ruwan; Scuffham, Paul A.

    2014-01-01

    Background Health Related Quality of Life (HRQoL) is an important outcome measure in health economic evaluation that guides health resource allocations. Population norms for HRQoL are an essential ingredient in health economics and in the evaluation of population health. The aim of this study was to produce EQ-5D-3L-derived population norms for Sri Lanka. Method A population sample (n =  780) was selected from four districts of Sri Lanka. A stratified cluster sampling approach with probability proportionate to size was employed. Twenty six clusters of 30 participants each were selected; each participant completed the EQ-5D-3L in a face-to-face interview. Utility weights for their EQ-5D-3L health states were assigned using the Sri Lankan EQ-5D-3L algorithm. The population norms are reported by age and socio-economic variables. Results The EQ-5D-3L was completed by 736 people, representing a 94% response rate. Sixty per cent of the sample reported being in full health. The percentage of people responding to any problems in the five EQ-5D-3L dimensions increased with age. The mean EQ-5D-3L weight was 0.85 (SD 0.008; 95%CI 0.84-0.87). The mean EQ-5D-3L weight was significantly associated with age, housing type, disease experience and religiosity. People above 70 years of age were 7.5 times more likely to report mobility problems and 3.7 times more likely to report pain/discomfort than those aged 18-29 years. Those with a tertiary education were five times less likely to report any HRQoL problems than those without a tertiary education. A person living in a shanty was 4.3 more likely to have problems in usual activities than a person living in a single house. Conclusion The population norms in Sri Lanka vary with socio-demographic characteristics. The socioeconomically disadvantaged have a lower HRQoL. The trends of population norms observed in this lower middle income country were generally similar to those previously reported in high income countries. PMID

  4. Logarithmic corrections to the Bekenstein-Hawking entropy for five-dimensional black holes and de Sitter spaces

    NASA Astrophysics Data System (ADS)

    Myung, Y. S.

    2003-11-01

    We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing k by -k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences.

  5. Scalar field correlator in de Sitter space at next-to-leading order in a 1 /N expansion

    NASA Astrophysics Data System (ADS)

    Gautier, F.; Serreau, J.

    2015-11-01

    We study the dynamics of light quantum scalar fields in de Sitter space on superhorizon scales. We compute the self-energy of an O (N ) symmetric theory at next-to-leading order in a 1 /N expansion in the regime of superhorizon momenta, and we obtain an exact analytical solution of the corresponding Dyson-Schwinger equations for the two-point correlator. This amounts to resumming the infinite series of nonlocal self-energy insertions, which typically generate spurious infrared and/or secular divergences. The potentially large de Sitter logarithms resum into well-behaved power laws from which we extract the field strength and mass renormalization. The nonperturbative 1 /N expansion allows us to discuss the case of vanishing and negative tree-level square mass, which both correspond to strongly coupled effective theories in the infrared.

  6. Quantum radiation from an inertial scalar charge evolving in the de Sitter universe: Weak-field limit

    SciTech Connect

    Blaga, Robert

    2015-12-07

    We investigate the energy radiated by an inertial scalar charge evolving in the expanding Poincaré patch of de Sitter spacetime, in the framework of scalar QED perturbation theory. We approximate the transition amplitude in the small expansion parameter limit and show that the leading contribution to the radiated energy has the form of the energy radiated by an accelerated particle in Minkowski space.

  7. Mechanisms of optical losses in the {sup 5}D{sub 4} and {sup 5}D{sub 3} levels in Tb{sup 3+} doped low silica calcium aluminosilicate glasses

    SciTech Connect

    Santos, J. F. M. dos; Terra, I. A. A.; Nunes, L. A. O.; Catunda, T.; Astrath, N. G. C.; Guimarães, F. B.; Baesso, M. L.

    2015-02-07

    Trivalent Tb-doped materials exhibit strong emission in the green and weak emission in the UV-blue levels. Usually, this behavior is attributed to the cross relaxation (CR) process. In this paper, the luminescence properties of Tb{sup 3+}-doped low silica calcium aluminosilicate glasses are analyzed for UV (λ{sub exc} = 325 nm) and visible (488 nm) excitations. Under 325 nm excitation, the intensity of green luminescence increases proportionally to Tb{sup 3+} concentration. However, the blue luminescence intensity is strongly reduced with the increase of concentration from 0.5–15.0 wt. %. In the case of 488 nm excitation, a saturation behavior of the green emission is observed at intensities two orders of magnitude smaller than expected for bleaching of the ground state population. Using a rate equation model, we showed that this behavior can be explained by an excited state absorption cross section two orders of magnitude larger than the ground state absorption. The blue emission is much weaker than expected from our rate equations (325 nm and 488 nm excitation). We concluded that only the CR process cannot explain the overall feature of measured luminescence quenching in the wide range of Tb{sup 3+} concentrations. Cooperative upconversion from a pair of excited ions ({sup 5}D{sub 3}:{sup 5}D{sub 3} or {sup 5}D{sub 3}:{sup 5}D{sub 4}) and other mechanisms involving upper lying states (4f5d, charge transfer, host matrix, defects, etc.) may play a significant role.

  8. A line source in Minkowski for the de Sitter spacetime scalar Green's function: Massless minimally coupled case

    SciTech Connect

    Chu, Yi-Zen

    2014-09-15

    Motivated by the desire to understand the causal structure of physical signals produced in curved spacetimes – particularly around black holes – we show how, for certain classes of geometries, one might obtain its retarded or advanced minimally coupled massless scalar Green's function by using the corresponding Green's functions in the higher dimensional Minkowski spacetime where it is embedded. Analogous statements hold for certain classes of curved Riemannian spaces, with positive definite metrics, which may be embedded in higher dimensional Euclidean spaces. The general formula is applied to (d ≥ 2)-dimensional de Sitter spacetime, and the scalar Green's function is demonstrated to be sourced by a line emanating infinitesimally close to the origin of the ambient (d + 1)-dimensional Minkowski spacetime and piercing orthogonally through the de Sitter hyperboloids of all finite sizes. This method does not require solving the de Sitter wave equation directly. Only the zero mode solution to an ordinary differential equation, the “wave equation” perpendicular to the hyperboloid – followed by a one-dimensional integral – needs to be evaluated. A topological obstruction to the general construction is also discussed by utilizing it to derive a generalized Green's function of the Laplacian on the (d ≥ 2)-dimensional sphere.

  9. Magneto-structural variety of new 3d-4f-4(5)d heterotrimetallic complexes.

    PubMed

    Visinescu, Diana; Alexandru, Maria-Gabriela; Madalan, Augustin M; Pichon, Céline; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius

    2015-10-14

    also observed in the type 2 series (compounds 8-10 and 12-14) as a result of the magnetic coupling between copper(ii) and lanthanide(iii) ions via the phenoxo-bridge. The magnetic behavior for the La(III) derivatives reveals that weak ferromagnetic interactions are also operative between the Cu(II) and the 4d/5d centers.

  10. Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7.

    PubMed

    Calder, S; Vale, J G; Bogdanov, N A; Liu, X; Donnerer, C; Upton, M H; Casa, D; Said, A H; Lumsden, M D; Zhao, Z; Yan, J-Q; Mandrus, D; Nishimoto, S; van den Brink, J; Hill, J P; McMorrow, D F; Christianson, A D

    2016-01-01

    Much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d(5) iridates (Ir(4+)), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d(3) (Os(5+)) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation. PMID:27273216

  11. Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

    PubMed Central

    Calder, S.; Vale, J. G.; Bogdanov, N. A.; Liu, X.; Donnerer, C.; Upton, M. H.; Casa, D.; Said, A. H.; Lumsden, M. D.; Zhao, Z.; Yan, J. -Q.; Mandrus, D.; Nishimoto, S.; van den Brink, J.; Hill, J. P.; McMorrow, D. F.; Christianson, A. D.

    2016-01-01

    Much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4+), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5+) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation. PMID:27273216

  12. New Insights in 4f(12)5d(1) Excited States of Tm(2+) through Excited State Excitation Spectroscopy.

    PubMed

    de Jong, Mathijs; Biner, Daniel; Krämer, Karl W; Barandiarán, Zoila; Seijo, Luis; Meijerink, Andries

    2016-07-21

    Optical excitation of ions or molecules typically leads to an expansion of the equilibrium bond lengths in the excited electronic state. However, for 4f(n-1)5d(1) excited states in lanthanide ions both expansion and contraction relative to the 4f(n) ground state have been reported, depending on the crystal field and nature of the 5d state. To probe the equilibrium distance offset between different 4f(n-1)5d(1) excited states, we report excited state excitation (ESE) spectra for Tm(2+) doped in CsCaBr3 and CsCaCl3 using two-color excited state excitation spectroscopy. The ESE spectra reveal sharp lines at low energies, confirming a similar distance offset for 4f(n-1)5d(t2g)(1) states. At higher energies, broader bands are observed, which indicate the presence of excited states with a different offset. On the basis of ab initio embedded-cluster calculations, the broad bands are assigned to two-photon d-d absorption from the excited state. In this work, we demonstrate that ESE is a powerful spectroscopic tool, giving access to information which cannot be obtained through regular one-photon spectroscopy. PMID:27347766

  13. Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

    NASA Astrophysics Data System (ADS)

    Calder, S.; Vale, J. G.; Bogdanov, N. A.; Liu, X.; Donnerer, C.; Upton, M. H.; Casa, D.; Said, A. H.; Lumsden, M. D.; Zhao, Z.; Yan, J.-Q.; Mandrus, D.; Nishimoto, S.; van den Brink, J.; Hill, J. P.; McMorrow, D. F.; Christianson, A. D.

    2016-06-01

    Much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4+), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5+) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation.

  14. New Insights in 4f(12)5d(1) Excited States of Tm(2+) through Excited State Excitation Spectroscopy.

    PubMed

    de Jong, Mathijs; Biner, Daniel; Krämer, Karl W; Barandiarán, Zoila; Seijo, Luis; Meijerink, Andries

    2016-07-21

    Optical excitation of ions or molecules typically leads to an expansion of the equilibrium bond lengths in the excited electronic state. However, for 4f(n-1)5d(1) excited states in lanthanide ions both expansion and contraction relative to the 4f(n) ground state have been reported, depending on the crystal field and nature of the 5d state. To probe the equilibrium distance offset between different 4f(n-1)5d(1) excited states, we report excited state excitation (ESE) spectra for Tm(2+) doped in CsCaBr3 and CsCaCl3 using two-color excited state excitation spectroscopy. The ESE spectra reveal sharp lines at low energies, confirming a similar distance offset for 4f(n-1)5d(t2g)(1) states. At higher energies, broader bands are observed, which indicate the presence of excited states with a different offset. On the basis of ab initio embedded-cluster calculations, the broad bands are assigned to two-photon d-d absorption from the excited state. In this work, we demonstrate that ESE is a powerful spectroscopic tool, giving access to information which cannot be obtained through regular one-photon spectroscopy.

  15. The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain

    PubMed Central

    Bessa Pereira, Catarina; Bocková, Markéta; Santos, Rita F.; Santos, Ana Mafalda; Martins de Araújo, Mafalda; Oliveira, Liliana; Homola, Jiří; Carmo, Alexandre M.

    2016-01-01

    The scavenger receptor cysteine-rich (SRCR) family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP) of bacteria, fungi, or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion, which contains five SRCR modules, and a large C-terminal mucin-like domain. Toward establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR) properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSc5D (N-SSc5D), thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein–bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to Escherichia coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively), and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time, and label-free surface plasmon resonance (SPR)-based assay and examined the capacity of N-SSc5D, Spα, sCD5, and sCD6 to bind to different bacteria. We demonstrated that N-SSc5D compares with Spα in the capacity to bind to E. coli and Listeria monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3). Our work thus advocates the

  16. Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome

    NASA Astrophysics Data System (ADS)

    Passalacqua, Olivier; Gagliardini, Olivier; Parrenin, Frédéric; Todd, Joe; Gillet-Chaulet, Fabien; Ritz, Catherine

    2016-07-01

    Three-dimensional ice flow modelling requires a large number of computing resources and observation data, such that 2-D simulations are often preferable. However, when there is significant lateral divergence, this must be accounted for (2.5-D models), and a flow tube is considered (volume between two horizontal flowlines). In the absence of velocity observations, this flow tube can be derived assuming that the flowlines follow the steepest slope of the surface, under a few flow assumptions. This method typically consists of scanning a digital elevation model (DEM) with a moving window and computing the curvature at the centre of this window. The ability of the 2.5-D models to account properly for a 3-D state of strain and stress has not clearly been established, nor their sensitivity to the size of the scanning window and to the geometry of the ice surface, for example in the cases of sharp ridges. Here, we study the applicability of a 2.5-D ice flow model around a dome, typical of the East Antarctic plateau conditions. A twin experiment is carried out, comparing 3-D and 2.5-D computed velocities, on three dome geometries, for several scanning windows and thermal conditions. The chosen scanning window used to evaluate the ice surface curvature should be comparable to the typical radius of this curvature. For isothermal ice, the error made by the 2.5-D model is in the range 0-10 % for weakly diverging flows, but is 2 or 3 times higher for highly diverging flows and could lead to a non-physical ice surface at the dome. For non-isothermal ice, assuming a linear temperature profile, the presence of a sharp ridge makes the 2.5-D velocity field unrealistic. In such cases, the basal ice is warmer and more easily laterally strained than the upper one, the walls of the flow tube are not vertical, and the assumptions of the 2.5-D model are no longer valid.

  17. Aspects of hairy black holes

    SciTech Connect

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  18. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum).

    PubMed

    Akpinar, Bala A; Lucas, Stuart J; Vrána, Jan; Doležel, Jaroslav; Budak, Hikmet

    2015-08-01

    Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.

  19. Massless Fields on Dirac Six-Cone and De Sitter Ambient Space

    NASA Astrophysics Data System (ADS)

    Enayati, M.; Khani, S.

    2016-06-01

    We have proceeded to obtain manifestly conformally invariant (CI) equations for thinkable graviton fields in de Sitter (dS) space-time. The tensor fields are originally considered in 4+2 dimensional conformal space or Dirac's six-cone and then project to dS space which is embedded in 4+1 dimensional ambient space. It will be shown that, by projecting these tensor fields there exists a correspondence between the massless fields on the cone and dS space. Also, we have shown that for rank-2 tensor field the divergenceless condition, which is necessary when we attempt to correspond the tensor field with the unitary irreducible representations (UIRs) of dS group, is not really a condition at all, it is a consequence of ambient space property. Due to the combined occurrences of corresponding fields and divergenceless property, the appropriate CI field equations have obtained in a fairly simple way and without imposing any extra condition.

  20. Einstein-vector gravity, emerging gauge symmetry, and de Sitter bounce

    NASA Astrophysics Data System (ADS)

    Geng, Wei-Jian; Lü, H.

    2016-02-01

    We construct a class of Einstein-vector theories where the vector field couples bilinearly to the curvature polynomials of arbitrary order in such a way that only the Riemann tensor rather than its derivative enters the equations of motion. The theories can thus be ghost free. The U (1 ) gauge symmetry may emerge in the vacuum and also in some weak-field limit. We focus on the two-derivative theory and study a variety of applications. We find that in this theory, the energy-momentum tensor of dark matter provides a position-dependent gauge-violating term to the Maxwell field. We also use the vector as an inflaton and construct cosmological solutions. We find that the expansion can accelerate without a bare cosmological constant, indicating a new candidate for dark energy. Furthermore, we obtain exact solutions of de Sitter bounce, generated by the vector which behaves like a Maxwell field at later times. We also obtain a few new exact black holes that are asymptotic to flat and Lifshitz spacetimes. In addition, we construct exact wormholes and Randall-Sundrum II domain walls.

  1. Group theoretical interpretation of the modified gravity in de Sitter space

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2016-03-01

    A framework has been presented for theoretical interpretation of various modified gravitational models which is based on the group theoretical approach and unitary irreducible representations (UIR's) of de Sitter (dS) group. In order to illustrate the application of the proposed method, a model of modified gravity has been investigated. The background field method has been utilized and the linearized modified gravitational field equation has been obtained in the 4-dimensional dS space-time as the background. The field equation has been written as the eigne-value equation of the Casimir operators of dS space using the flat 5-dimensional ambient space notations. The Minkowskian correspondence of the theory has been obtained by taking the zero curvature limit. It has been shown that under some simple conditions, the linearized modified field equation transforms according to two of the UIR's of dS group labeled by Π 2,1 ± and Π 2,2 ± in the discrete series. It means that the proposed modified gravitational theory can be a suitable one to describe the quantum gravitational effects in its linear approximation on dS space. The field equation has been solved and the solution has been written as the multiplication of a symmetric rank-2 polarization tensor and a massless scalar field using the ambient space notations. Also the two-point function has been calculated in the ambient space formalism. It is dS invariant and free of any theoretical problems.

  2. Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius

    NASA Astrophysics Data System (ADS)

    Rabounski, Dmitri; Borissova, Larissa

    2010-04-01

    Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse (g00 = 0) only if its mass and radius are close to those of the Universe (M = 8.7x10^55 g, a = 1.3x10^28 cm). However if the same mass is presented as a mass-point, the radius of collapse rg (Hilbert radius) is many orders lesser: g00 = 0 realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: a = rg, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein λ = 3/a^2 > 0: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where ρ0 < 0 and p = -ρ0 c^2 > 0 (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, λ = 3/a^2 > 0); it is also calculated.

  3. Regular black holes: Electrically charged solutions, Reissner-Nordstroem outside a de Sitter core

    SciTech Connect

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-06-15

    To have the correct picture of a black hole as a whole, it is of crucial importance to understand its interior. The singularities that lurk inside the horizon of the usual Kerr-Newman family of black hole solutions signal an endpoint to the physical laws and, as such, should be substituted in one way or another. A proposal that has been around for sometime is to replace the singular region of the spacetime by a region containing some form of matter or false vacuum configuration that can also cohabit with the black hole interior. Black holes without singularities are called regular black holes. In the present work, regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several types of solutions: regular nonextremal black holes with a null matter boundary, regular nonextremal black holes with a timelike matter boundary, regular extremal black holes with a timelike matter boundary, and regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed.

  4. Baby de Sitter black holes and dS3/CFT2

    NASA Astrophysics Data System (ADS)

    de Buyl, Sophie; Detournay, Stéphane; Giribet, Gaston; Ng, Gim Seng

    2014-02-01

    Unlike three-dimensional Einstein gravity, three-dimensional massive gravity admits asymptotically de Sitter space (dS) black hole solutions. These black holes present interesting features and provide us with toy models to study the dS/CFT correspondence. A remarkable property of these black holes is that they are always in thermal equilibrium with the cosmological horizon of the space that hosts them. This invites us to study the thermodynamics of these solutions within the context of dS/CFT. We study the asymptotic symmetry group of the theory and find that it indeed coincides with the local two-dimensional conformal algebra. The charge algebra associated to the asymptotic Killing vectors consists of two copies of the Virasoro algebra with non-vanishing central extension. We compute the mass and angular momentum of the dS black holes and verify that a naive application of Cardy's formula exactly reproduces the entropy of both the black hole and the cosmological horizon. By adapting the holographic renormalization techniques to the case of dS space, we define the boundary stress tensor of the dual Euclidean conformal field theory.

  5. Massless Fields on Dirac Six-Cone and De Sitter Ambient Space

    NASA Astrophysics Data System (ADS)

    Enayati, M.; Khani, S.

    2016-10-01

    We have proceeded to obtain manifestly conformally invariant (CI) equations for thinkable graviton fields in de Sitter (dS) space-time. The tensor fields are originally considered in 4+2 dimensional conformal space or Dirac's six-cone and then project to dS space which is embedded in 4+1 dimensional ambient space. It will be shown that, by projecting these tensor fields there exists a correspondence between the massless fields on the cone and dS space. Also, we have shown that for rank-2 tensor field the divergenceless condition, which is necessary when we attempt to correspond the tensor field with the unitary irreducible representations (UIRs) of dS group, is not really a condition at all, it is a consequence of ambient space property. Due to the combined occurrences of corresponding fields and divergenceless property, the appropriate CI field equations have obtained in a fairly simple way and without imposing any extra condition.

  6. Tunneling probability for the birth of an asymptotically de Sitter universe

    SciTech Connect

    Acacio de Barros, J.; Correa Silva, E. V.; Monerat, G. A.; Oliveira-Neto, G.; Ferreira Filho, L. G.; Romildo, P. Jr.

    2007-05-15

    In the present work, we quantize a closed Friedmann-Robertson-Walker model in the presence of a positive cosmological constant and radiation. It gives rise to a Wheeler-DeWitt equation for the scale factor which has the form of a Schroedinger equation for a potential with a barrier. We solve it numerically and determine the tunneling probability for the birth of a asymptotically DeSitter, inflationary universe, initially, as a function of the mean energy of the initial wave function. Then, we verify that the tunneling probability increases with the cosmological constant, for a fixed value of the mean energy of the initial wave function. Our treatment of the problem is more general than previous ones, based on the WKB approximation. That is the case because we take into account the fact that the scale factor (a) cannot be smaller than zero. It means that, one has to introduce an infinity potential wall at a=0, which forces any wave packet to be zero there. That condition introduces new results, in comparison with previous works.

  7. AB022. Validity of the five-level new version of the EQ-5D in asthma patients

    PubMed Central

    Gimena Hernandez, Hernandez; Pont, Àngels; Garin, Olatz; Martí, Marc; Alonso, Jordi; Van Ganse, Eric; Laforest, Laurent; Dima, Alexandra L.; de Bruin, Marijn; Ferrer, Montserrat

    2016-01-01

    Background A previous study evaluating the psychometric properties of the traditional EQ-5D in asthmatic patients showed a high ceiling effect (59% of patients with perfect health) questioning its usefulness in these patients. Therefore, the EuroQol Group developed a new EQ-5D version increasing the number of responses from 3 to 5 levels. This new version, the EQ-5D-5L, has never been tested in asthmatic patients. The aim of this study is to examine the distribution and construct validity of the new EQ-5D-5L in a European cohort of asthmatic adolescents and adults. Methods A subgroup of 316 patients between 12–40 years included in the ASTROLAB cohort who completed EQ-5D-5L in the online questionnaire were analysed. It is a brief, multi-attribute, generic, preference-based health status measure consisting of five dimensions of health-five response options. The index value ranges from 1 (best health possible) to −0.594 (negative values indicate health states worse than death), where 0 is the value assigned to death. Index values were calculated using the preference values from the Rasch Model developed from EQ-5D-3L French. To examine the distribution of the index measures of central tendency, dispersion, ceiling and floor effect, and observed range were calculated. Construct validity was examined by their ability to differentiate between known groups defined by the Asthma Control Questionnaire (ACQ-5) by ANOVA. ACQ-5 measures the presence of asthma symptoms during the previous week in 7 Likert scale response options, with a score ranging from 0 to 6 (lower score better asthma control). Three groups of asthma control were defined according to tertiles: good (ACQ-5 <0.4), intermediate (ACQ-5 0.4–1.2) and bad (ACQ-5 >1.2). Results Mean EQ-5D-5L index was 0.80 (SD=0.17). The observed range was from −0.03 to 1, floor and ceiling effects were 0% and 22.8%, respectively. Mean EQ-5D-5L index for patients with well-controlled asthma was 0.91 (95% CI, 0.89–0.93); 0

  8. Electronic and magnetic behaviors of graphene with 5d series transition metal atom substitutions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Sun, Minglei; Tang, Wencheng; Ren, Qingqiang; Zhao, Yiming; Wang, Sake; Yu, Jin; Du, Yanhui; Hao, Yitong

    2016-06-01

    The electronic structures and magnetic behaviors of graphene with 5d series transition metal atom substitutions are investigated by performing first-principles calculations. All the impurities are tightly bonded to single vacancy in a graphene sheet. The substitutions of La and Ta lead to Fermi level shifting to valence and conduction band, respectively. Both the two substitutions result in metallic properties. Moreover, the Hf, Os and Pt-substituted systems exhibit semiconductor properties, while the Re and Ir-substituted ones exhibit robust half-metallic properties. Interestingly, W-substituted system shows dilute magnetic semiconductor property. On the other hand, the substitution of Ta, W, Re and Ir induce 0.86 μB, 2 μB, 1 μB and 0.99 μB magnetic moment, respectively. Our studies demonstrate that the 5d series transition metal substituted graphene have potential applications in nanoelectronics, spintronics and magnetic storage devices.

  9. Structural and magnetic properties of the 5d2 double perovskites Sr2BReO6 (B = Y, In)

    DOE PAGES

    Aczel, A. A.; Zhao, Z.; Calder, S.; Adroja, D. T.; Baker, P. J.; Yan, J. -Q.

    2016-06-01

    With this study, we have performed magnetic susceptibility, heat capacity, neutron powder diffraction, and muon spin relaxation experiments to investigate the magnetic ground states of the 5$d^2$ double perovskites Sr$_2$YReO$_6$ and Sr$_2$InReO$_6$. We find that Sr$_2$YReO$_6$ is a spin glass, while Sr$_2$InReO$_6$ hosts a non-magnetic singlet state. By making detailed comparisons with other 5$d^2$ double perovskites, we argue that a delicate interplay between spin-orbit coupling, non-cubic crystal fields, and exchange interactions plays a key role in the great variation of magnetic ground states observed for this family of materials.

  10. Uniqueness theorem for black holes with Kaluza-Klein asymptotic in 5D Einstein-Maxwell gravity

    SciTech Connect

    Yazadjiev, Stoytcho

    2010-07-15

    In the present paper, we prove a uniqueness theorem for stationary multi-black hole configurations with Kaluza-Klein asymptotic in a certain sector of 5D Einstein-Maxwell gravity. As a part of the technical assumptions in the theorem, we assume that the Killing vector associated with the compact dimension is orthogonal to the other Killing vectors and that it is also hypersurface orthogonal. About the Maxwell field, we assume that it is invariant under the Killing symmetries and has a nonzero component only along the Killing vector associated with the compact dimension. We show that such multi-black hole configurations are uniquely specified by the interval structure, angular momenta of the horizons, magnetic charges, and the magnetic flux. A straightforward generalization of the uniqueness theorem for 5D Einstein-Maxwell-dilaton gravity is also given.

  11. Finite Element Analysis of 2.5D Woven Composites, Part II: Damage Behavior Simulation and Strength Prediction

    NASA Astrophysics Data System (ADS)

    Song, Jian; Wen, Weidong; Cui, Haitao; Zhang, Hongjian; Xu, Ying

    2016-02-01

    In the first part of the work, a new 2.5D woven composites finite element model (2.5D WCFEM) which took into consideration the impact of face structures and can accurately predict the main elastic performances has been established. In this part, the stress-strain behavior and the damage characteristic of this material under uniaxial tension are simulated using nonlinear progressive damage analysis based on damage mechanics. Meanwhile, experimental investigation and fracture analysis are conducted to evaluate the validity of the proposed method. Finally, the influence of woven parameters on the mechanical behavior is discussed. Compared with the test results, a good agreement between the computational and experimental results has been obtained. The progressive damage characteristic and main failure modes are also revealed.

  12. Spectroscopic analysis of the ν17 band of C2H5D at 770 - 850 cm-1

    NASA Astrophysics Data System (ADS)

    Daly, Adam; Drouin, Brian J.; Brown, Linda R.; Pearson, John C.; Sung, Keeyoon; Groner, Peter; Mantz, Arlan W.; Smith, Mary Ann H.

    2014-11-01

    To support planetary investigations of hydrocarbons, we analyzed the high resolution spectrum of C2H5D from 680 to 880 cm-1 in order to enable its detection in the atmospheres of Titan, Neptune and Uranus. Ethane, methane and acetylene are regarded as important organic molecules in the analysis of atmospheres and have been observed by ground based and satellite observations. The isotopes of ethane contain strong bands within the commonly viewed window of ethane’s ν9 band at 800 cm-1. Detailed analyses of d1-ethane and 13C-ethane provide unique insight into the isotopic fractionation and can be used to refine models of hydrocarbons in organic rich atmospheres. We present the analyses of the strong ν17 band of C2H5D at 805 cm-1 which lies within the often-measured "12 micron" window utilized by many present and past surveys of planetary atmospheres. Using the FTIR Bruker IFS 125HR at the Jet Propulsion Laboratory, the spectrum of 98% deuterium-enriched sample of C2H5D at high resolution (Resolving power ~ 320,000) was recorded at 130 K using a 0.20 m absorption cell. Over 10000 individual line frequencies and intensities were retrieved between 690 and 870 cm-1. Improved quantum mechanical models permitted over 4700 quantum assignments to be determined for the ν17 band at 805 cm-1, and the corresponding measured line positions were reproduced with a standard deviation of 4 x 10-4 cm-1. We will describe the resulting linelist for the ν17 band of C2H5D that enable this species to be identified in planetary atmospheres.Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley under contract with the National Aeronautics and Space Administration.

  13. 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jiulong; Zhang, Xue; Zhang, Xiaoqun; Zhao, Hongkai; Gao, Yu; Thomas, David; Low, Daniel A.; Gao, Hao

    2015-11-01

    4D cone-beam computed tomography (4DCBCT) reconstructs a temporal sequence of CBCT images for the purpose of motion management or 4D treatment in radiotherapy. However the image reconstruction often involves the binning of projection data to each temporal phase, and therefore suffers from deteriorated image quality due to inaccurate or uneven binning in phase, e.g., under the non-periodic breathing. A 5D model has been developed as an accurate model of (periodic and non-periodic) respiratory motion. That is, given the measurements of breathing amplitude and its time derivative, the 5D model parametrizes the respiratory motion by three time-independent variables, i.e., one reference image and two vector fields. In this work we aim to develop a new 4DCBCT reconstruction method based on 5D model. Instead of reconstructing a temporal sequence of images after the projection binning, the new method reconstructs time-independent reference image and vector fields with no requirement of binning. The image reconstruction is formulated as a optimization problem with total-variation regularization on both reference image and vector fields, and the problem is solved by the proximal alternating minimization algorithm, during which the split Bregman method is used to reconstruct the reference image, and the Chambolle's duality-based algorithm is used to reconstruct the vector fields. The convergence analysis of the proposed algorithm is provided for this nonconvex problem. Validated by the simulation studies, the new method has significantly improved image reconstruction accuracy due to no binning and reduced number of unknowns via the use of the 5D model.

  14. Population-Based Preference Weights for the EQ-5D Health States Using the Visual Analogue Scale (VAS) in Iran

    PubMed Central

    Goudarzi, Reza; Zeraati, Hojjat; Akbari Sari, Ali; Rashidian, Arash; Mohammad, Kazem

    2016-01-01

    Background Health-related quality of life (HRQoL) is used as a measure to valuate healthcare interventions and guide policy making. The EuroQol EQ-5D is a widely used generic preference-based instrument to measure Health-related quality of life. Objectives The objective of this study was to develop a value set of the EQ-5D health states for an Iranian population. Patients and Methods This study is a cross-sectional study of Iranian populations. Our sample from Iranian populations consists out of 869 participants, who were selected for this study using a stratified probability sampling method. The sample was taken from individuals living in the city of Tehran and was stratified by age and gender from July to November 2013. Respondents valued 13 health states using the visual analogue scale (VAS) of the EQ-5D. Several fixed effects regression models were tested to predict the full set of health states. We selected the final model based on the logical consistency of the estimates, the sign and magnitude of the regression coefficients, goodness of fit, and parsimony. We also compared predicted values with a value set from similar studies in the UK and other countries. Results Our results show that the HRQoL does not vary among socioeconomic groups. Models at the individual level resulted in an additive model with all coefficients being statistically significant, R2 = 0.55, a value of 0.75 for the best health state (11112), and a value of -0.074 for the worst health state (33333). The value set obtained for the study sample remarkably differs from those elicited in developed countries. Conclusions This study is the first estimate for the EQ-5D value set based on the VAS in Iran. Given the importance of locally adapted value set the use of this value set can be recommended for future studies in Iran and In the EMRO regions. PMID:27186384

  15. Orbital-selective singlet dimer formation and suppression of double exchange in 4d and 5d systems

    NASA Astrophysics Data System (ADS)

    Streltsov, Sergey; Cao, Gang; Khomskii, Daniel

    One of the main mechanisms of ferromagnetic ordering in conducting materials is the double exchange (DE). It is usually supposed in DE model that the Hund's coupling JH is much larger than electron hopping t; in this case one stabilizes the state with maximum spin per pair of ions, which finally leads to ferromagnetism in bulk systems. We show that in the dimerized 4 d / 5 d transition metal oxides for which JH is reduced and t is in contrast enhanced, another situation is possible, when formation of the spin-singlets on delocalized orbitals is more favorable. This leads to suppression of the DE and to a strong decrease of the total spin. The model calculations using the dynamical mean-field theory show that this effect survives even in the extended systems, not only for dimers. Such a situation is realized, e.g., in Y5Mo2O12, CrO2 under pressure and in many other 4 d / 5 d based materials. Another mechanism, which may suppress DE and which is also typical for 4 d / 5 d compounds is the spin-orbit coupling (SOC). We show on the example of Ba5AlIr2O11, that in this system it is the combination of molecular-orbital formation and SOC that strongly decreases magnetic moment on Ir. Civil Research and Development Foundation via FSCX-14-61025-0.

  16. Professor Wheeler and the crack of doom: Closed cosmologies in the 5-d Kaluza-Klein theory

    SciTech Connect

    Matzner, R.A.; Mezzacappa, A.

    1986-03-01

    We study the classical and the quantum structures of certain 5-d Kaluza-Klein cosmologies. These models were chosen because their 4-d restriction is a closed, radiation-dominated, homogeneous, isotropic cosmology in the usual sense. The extra (field) dimension is taken to be a circle. In these models the solution starts from a 5-d curvature singularity with infinite circumference for the circle and zero volume for the 3-space. It evolves in finite proper time to a solution with zero dimension for the extra field direction. In the 5-vacuum case this is not a curvature singularity, but is a singularity of the congruence describing the physics, and in particular, the solution cannot causally be extended to the future of this point. In the 5-vacuum case this event coincides with the maximum of expansion of the 5-space. In the 5-dust cases, this point is a real 5-d curvature singularity. By adjustment it can be made to occur before or after the maximum of 3-expansion. The solution stops at that instant, but the 4-cosmology reveals no pathology up to the crack of doom. The quantum behavior is identical in these respects to the classical one.

  17. Dithiazolo[5,4-b:4',5'-d]phosphole: a highly luminescent electron-accepting building block.

    PubMed

    He, Xiaoming; Woo, Alva Y Y; Borau-Garcia, Javier; Baumgartner, Thomas

    2013-06-01

    A family of highly emissive dithiazolo[5,4-b:4',5'-d]phospholes has been designed and synthesized. The structures of two trivalent P species, as well as their corresponding P oxides, have been confirmed by X-ray crystallography. The parent dithiazolo[5,4-b:4',5'-d]phosphole oxide exhibits strong blue photoluminescence at λem = 442 nm, with an excellent quantum yield efficiency of ϕPL = 0.81. The photophysical properties of these compounds can be easily tuned by extension of the conjugation and modification of the phosphorus center. Compared with the established dithieno[3,2-b:2',3'-d]phosphole system, the incorporation of electronegative nitrogen atoms leads to significantly lowered frontier orbital energy levels, as validated by both electrochemistry and theoretical calculations, thus suggesting that the dithiazolo[5,4-b:4',5'-d]phospholes are valuable, air-stable, n-type conjugated materials. These new building blocks have been further applied to the construction of an extended oligomer with fluorene. Extension of the dithiazolophosphole core with triazole units through click reactions also provides a suitable N,N-chelating moiety for metal binding and a representative molecular species was successfully used as a selective colorimetric and fluorescent sensor for Cu(II) ions.

  18. De Novo Missense Variants in PPP2R5D Are Associated with Intellectual Disability, Macrocephaly, Hypotonia, and Autism

    PubMed Central

    Shang, Linshan; Henderson, Lindsay B.; Cho, Megan T.; Petrey, Donald S.; Fong, Chin-To; Haude, Katrina M.; Shur, Natasha; Lundberg, Julie; Hauser, Natalie; Carmichael, Jason; Innis, Jeffrey; Schuette, Jane; Wu, Yvonne W.; Asaikar, Shailesh; Pearson, Margaret; Folk, Leandra; Retterer, Kyle; Monaghan, Kristin G.; Chung, Wendy K.

    2016-01-01

    Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and GSK3β-mediated cell growth, chromatin remodeling and gene transcriptional regulation. Using WES, we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with ID and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures and dysmorphic features. Among the four variant, two have been previously reported, and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K), and are predicted to disrupt the PP2A subunits binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID. PMID:26576547

  19. Study of Thermally Enhanced 2.5D Packages with Multi-chips Molded on Silicon Interposer

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Zhang, X. W.

    2015-07-01

    The 2.5D package with distributed vias on silicon interposer has received great attention due to its potential for heterogeneous integration. The overmolded 2.5D package protects the silicon die and interposer from environmental damage, which, on the other hand, induces undesirable thermal resistance due to low thermal conductivity of the molding compound. In this paper, a thermally enhanced 2.5D package with exposed die is proposed, fabricated and examined from the thermal enhancement viewpoint. The high power thermal test die was first assembled on a silicon interposer with through silicon vias and connected to the substrate, which was followed by the overmolding and back-grinding processes to form the partially molded (PM) package with exposed die for direct heat sink attachments. Experiments were conducted to examine the thermal performance under different thermal conditions. Under natural convection without thermal enhancement, there was no performance difference between the PM package and the overmolded package. However, when the package top was mounted with a thermally enhanced structure such as a pin fin heat sink, the thermal resistance of PM package was significantly reduced. The advantage was more prominent with the attachment of a high performance liquid cooling heat sink. Thermal simulation models were also constructed to examine the thermal performances under different test conditions, and the realistic thermal interface resistance of 0.5 Kcm2/W was estimated based on the package warpage. The computed thermal resistances agreed with measurement results.

  20. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism.

    PubMed

    Shang, Linshan; Henderson, Lindsay B; Cho, Megan T; Petrey, Donald S; Fong, Chin-To; Haude, Katrina M; Shur, Natasha; Lundberg, Julie; Hauser, Natalie; Carmichael, Jason; Innis, Jeffrey; Schuette, Jane; Wu, Yvonne W; Asaikar, Shailesh; Pearson, Margaret; Folk, Leandra; Retterer, Kyle; Monaghan, Kristin G; Chung, Wendy K

    2016-01-01

    Protein phosphatase 2A (PP2A) is a heterotrimeric protein serine/threonine phosphatase and is involved in a broad range of cellular processes. PPP2R5D is a regulatory B subunit of PP2A and plays an important role in regulating key neuronal and developmental regulation processes such as PI3K/AKT and glycogen synthase kinase 3 beta (GSK3β)-mediated cell growth, chromatin remodeling, and gene transcriptional regulation. Using whole-exome sequencing (WES), we identified four de novo variants in PPP2R5D in a total of seven unrelated individuals with intellectual disability (ID) and other shared clinical characteristics, including autism spectrum disorder, macrocephaly, hypotonia, seizures, and dysmorphic features. Among the four variants, two have been previously reported and two are novel. All four amino acids are highly conserved among the PP2A subunit family, and all change a negatively charged acidic glutamic acid (E) to a positively charged basic lysine (K) and are predicted to disrupt the PP2A subunit binding and impair the dephosphorylation capacity. Our data provides further support for PPP2R5D as a genetic cause of ID.

  1. Scalar Casimir densities induced by a cylindrical shell in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Saharian, A. A.; Manukyan, V. F.

    2015-01-01

    We evaluate the positive-frequency Wightman function, the vacuum expectation values (VEVs) of the field squared, and the energy-momentum tensor for a massive scalar field with general curvature coupling for a cylindrical shell in the background of de Sitter (dS) spacetime. The field is prepared in the Bunch-Davies vacuum state and on the shell, and the corresponding operator obeys the Robin boundary condition (BC). In the region inside the shell and for non-Neumann BC, the Bunch-Davies vacuum is a physically realizable state for all values of the mass and curvature coupling parameter. For both interior and exterior regions, the VEVs are decomposed into boundary-free dS and shell-induced parts. We show that the shell-induced part of the vacuum energy-momentum tensor has a nonzero off-diagonal component corresponding to the energy flux along the radial direction. Unlike in the case of a shell in Minkowski bulk, for the dS background, the axial stresses are not equal to the energy density. In dependence of the mass and the coefficient in the BC, the vacuum energy density and the energy flux can be either positive or negative. The influence of the background gravitational field on the boundary-induced effects is crucial at distances from the shell larger than the dS curvature scale. In particular, the decay of the VEVs with distance is power-law (monotonic or oscillatory with dependence of the mass) for both massless and massive fields. For the Neumann BC, the decay is faster than that for non-Neumann conditions.

  2. Structure, electronic and magnetic properties of hexagonal boron nitride sheets doped by 5d transition metal atoms: First-principles calculations and molecular orbital analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaofu; Geng, Zhaohui; Cai, Danyun; Pan, Tongxi; Chen, Yixin; Dong, Liyuan; Zhou, Tiege

    2015-01-01

    A first-principles calculation based on density functional theory is carried out to reveal the geometry, electronic structures and magnetic properties of hexagonal boron nitride sheets (h-BNSs) doped by 5d transitional mental atoms (Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg) at boron-site (B5d) and nitrogen-site (N5d). Results of pure h-BNS, h-BNS with B vacancy (VB) and N vacancy (VN) are also given for comparison. It is shown that all the h-BNSs doped with 5d atoms possess a C3v local symmetry except for NLu and NHg which have a clear deviation. For the same 5d dopant, the binding energy of B5d is larger than that of N5d, which indicates the substitution of a 5d atom for B is preferred. The total densities of states are presented, where impurity energy levels exist. Besides, the total magnetic moments (TMMs) change regularly with the increment of the 5d atomic number. Theoretical analyses by molecular orbital under C3v symmetry explain the impurity energy levels and TMMs.

  3. Hawking Radiation from Horizons of Reissner Nordström de Sitter Black Hole with a Global Monopole via Anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Wu; Liu, Xiong-Wei; Lin, Kai; Zeng, Xiao-Xiong; Yang, Shu-Zheng

    2008-08-01

    Hawking radiation from cosmological horizon and event horizon of the Reissner Nordström de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.

  4. Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: The de Sitter case

    NASA Astrophysics Data System (ADS)

    Brizuela, David; Kiefer, Claus; Krämer, Manuel

    2016-05-01

    We present detailed calculations for quantum-gravitational corrections to the power spectra of gauge-invariant scalar and tensor perturbations during inflation. This is done by performing a semiclassical Born-Oppenheimer type of approximation to the Wheeler-DeWitt equation, from which we obtain a Schrödinger equation with quantum-gravitational correction terms. As a first step, we perform our calculation for a de Sitter universe and find that the correction terms lead to an enhancement of power on the largest scales.

  5. Real Scalar Field Scattering Around the Extreme Reissner-Nordström Black Hole in de Sitter Spacetime

    NASA Astrophysics Data System (ADS)

    Guo, Guanghai; Yan, Pengfei; Wang, Suojie

    2015-02-01

    The real scalar field scattering of the extreme Reissner-Nordström black hole in de Sitter spacetime is investigated numerically via the polynomial approximation. It is found that the scalar field behaves like harmonic waves under the tortoise coordinate, while piles up near the outer event horizon and the cosmological horizon. The abnormity in previous work is eliminated by appropriate application of the boundary conditions in numerical calculations. Substituting the continuous effective potential with a stair potential of n steps, we evaluate the transmission and reflection coefficients of the scalar field in high and low energy regimes, where an asymptotical formula is derived.

  6. Hartree approximation to the one loop quantum gravitational correction to the graviton mode function on de Sitter

    SciTech Connect

    Mora, P.J.; Woodard, R.P.; Tsamis, N.C. E-mail: tsamis@physics.uoc.gr

    2013-10-01

    We use the Hartree approximation to the Einstein equation on de Sitter background to solve for the one loop correction to the graviton mode function. This should give a reasonable approximation to how the ensemble of inflationary gravitons affects a single external graviton. At late times we find that the one loop correction to the plane wave mode function u(η,k) goes like GH{sup 2}ln (a)/a{sup 2}, where a is the inflationary scale factor. One consequence is that the one loop corrections to the ''electric'' components of the linearized Weyl tensor grow compared to the tree order result.

  7. Comparing the performance of the SF-6D and the EQ-5D in different patient groups.

    PubMed

    Ferreira, Lara N; Ferreira, Pedro L; Pereira, Luis N

    2014-01-01

    Introdução: O objectivo geral deste artigo consiste em comparar o desempenho do EQ-5D e do SF-6D em quatro grupos de doentes que sofrem de asma, doença pulmonar obstrutiva crónica, cataratas e artrite reumatóide. Em particular, este artigo tem dois objectivos específicos: 1) estudar o nível de concordância entre os índices e os sistemas descritivos das dimensões do SF-6D e EQ-5D, e 2) analisar a capacidade de discriminação dos instrumentos.Material e Métodos: Uma amostra de 643 doentes respondeu ao SF-36v2 e ao EQ-5D. Foram analisados a capacidade de discriminação dos instrumentos, bem como o nível de concordância entre os índices e os sistemas descritivos das dimensões do SF-6D e EQ-5D. O nível de concordância entre os instrumentos foi estudado com base em coeficientes de correlação e nos gráficos de Bland-Altman, enquanto a influência da condição médica e de outras variáveis de natureza sociodemográfica nos índices foi analisada com o recurso a testes não paramétricos. Utilizaram-se também testes para amostras emparelhadas para identificar diferenças entre osscores finais dos instrumentos.Resultados e Discussão: Verificou-se a existência de uma correlação forte e de uma concordância elevada entre os dois índices. Em termos globais, os índices diferem por condição médica e por grupo sociodemográfico e ambos os instrumentos demonstraram uma capacidade discriminativa semelhante entre grupos sociodemográficosConclusão: Confirmou-se a hipótese de que o SF-6D gera valores de utilidade superiores em populações com doenças. O SF-6D e o EQ-5D parecem comportar-se de forma diferente em cada uma das doenças analisadas, uma vez que as medidas descritivas diferem entre instrumentos e os coeficientes de correlação não são uniformes. Os resultados demonstraram que o EQ-5D e o SF-6D geram valores de utilidade diferentes, mas que existe uma concordância elevada entre os dois instrumentos. Pode-se concluir que os resultados

  8. A 2.5D boundary element formulation for modeling damped waves in arbitrary cross-section waveguides and cavities

    SciTech Connect

    Mazzotti, M.; Bartoli, I.; Marzani, A.; Viola, E.

    2013-09-01

    Highlights: •Dispersive properties of viscoelastic waveguides and cavities are computed using a regularized 2.5D BEM. •Linear viscoelasticity is introduced at the constitutive level by means of frequency dependent complex moduli. •A contour integral algorithm is used to solve the nonlinear eigenvalue problem. •The Sommerfeld radiation condition is used to select the permissible Riemann sheets. •Attenuation of surface waves in cavities approaches the attenuation of Rayleigh waves. -- Abstract: A regularized 2.5D boundary element method (BEM) is proposed to predict the dispersion properties of damped stress guided waves in waveguides and cavities of arbitrary cross-section. The wave attenuation, induced by material damping, is introduced using linear viscoelastic constitutive relations and described in a spatial manner by the imaginary component of the axial wavenumber. The discretized dispersive wave equation results in a nonlinear eigenvalue problem, which is solved obtaining complex axial wavenumbers for a fixed frequency using a contour integral algorithm. Due to the singular characteristics and the multivalued feature of the wave equation, the requirement of holomorphicity inside the contour region over the complex wavenumber plane is fulfilled by the introduction of the Sommerfeld branch cuts and by the choice of the permissible Riemann sheets. A post processing analysis is developed for the extraction of the energy velocity of propagative guided waves. The reliability of the method is demonstrated by comparing the results obtained for a rail and a bar with square cross-section with those obtained from a 2.5D Finite Element formulation also known in literature as Semi Analytical Finite Element (SAFE) method. Next, to show the potential of the proposed numerical framework, dispersion properties are predicted for surface waves propagating along cylindrical cavities of arbitrary cross-section. It is demonstrated that the attenuation of surface waves

  9. First principle study of AlX (X=3d, 4d, 5d elements and Lu) dimer.

    PubMed

    Ouyang, Yifang; Wang, Jianchuan; Hou, Yuhua; Zhong, Xiaping; Du, Yong; Feng, Yuanping

    2008-02-21

    The ground state equilibrium bond length, harmonic vibrational frequency, and dissociation energy of AlX (X=3d,4d,5d elements and Lu) dimers are investigated by density functional method B3LYP. The present results are in good agreement with the available experimental and other theoretical values except the dissociation energy of AlCr. The present calculations show that the late transition metal can combine strongly with aluminum compared with the former transition metal. The present calculation also indicates that it is more reasonable to replace La with Lu in the Periodic Table and that the bonding strengths of zinc, cadmium, and mercury with aluminum are very weak.

  10. A systematic study of thermodynamic and transport properties of layered 4d and 5d correlated electron systemsph.d

    NASA Astrophysics Data System (ADS)

    Chikara, Shalinee

    Correlated electron materials have been at the forefront of condensed matter research in the past couple of decades. Correlation in materials, especially, with open d and f electronic shells often lead to very exciting and intriguing phenomenon like high temperature superconductivity, Mott metal-insulator transition, colossal magnetoresistance (CMR). This thesis focuses on triple-layered Sr4Ru3O10, Sr substituted double layered (Ca1 - xAx) 3Ru2O7 (A = Ba, Sr) and 5d system Sr2IrO4 and Sr3Ir2O7. Triple-layered Sr4Ru3O10 displays interesting phenomena ranging from quantum oscillations, tunneling magnetoresistance, unusual low temperature specific heat, strong spin-lattice coupling to switching behavior. The central feature, however, is the unique borderline magnetism: along the c-axis. Sr4Ru3O10 shows spontaneous ferromagnetism, indicating a strong Coulomb exchange interaction, U and a large density of states at the Fermi surface, g( EF), hence Ug(EF) ≥ 1 (Stoner criterion). But within the ab-plane it features a pronounced peak in magnetization and a first-order metamagnetic transition. The coexistence of the interlayer ferromagnetism and the intralayer metamagnetism makes Sr4Ru3O10 a really unique system. Also, in this thesis the spin-valve behavior exhibited by impurity doping at the Ca site by Ba and Sr in the double layered Ca3Ru2O 7 is reported. Spin valve effect is a phenomenon only realized in multilayer thin films. Here, spin valve is observed in bulk single crystals of impurity doped Ca3Ru2O7, Ca3(Ru 1-xCrx) 2O7 and (Ca1 - xAx) 3Ru2O7 (A = Ba, Sr). 5d Iridates are expected to be more metallic and less magnetic than their 3d and 4f counterparts because of the extended 5d orbitals. In marked contrast, many iridates are magnetic insulators with exotic properties. The focus in this thesis is on Sr2IrO4 which diplays a novel Jeff = 1=2 Mott state. Magnetic, electrical, and thermal measurements on single-crystals of Sr2IrO4, reveal a novel giant magneto

  11. Role of magnetism in superconductivity of BaFe2As2: Study of 5d Au-doped crystals

    DOE PAGES

    Li, Li; Cao, Huibo; McGuire, Michael A.; Kim, J. S.; Stewart, G. R.; Sefat, Athena Safa

    2015-09-09

    We investigate properties of BaFe2As2 (122) single crystals upon gold doping, which is the transition metal with the highest atomic weight. The Au substitution into the FeAs-planes of 122 crystal structure (Au-122) is only possible up to a small amount of ~3%. We find that 5d is more effective in reducing magnetism in 122 than its counter 3d Cu, and this relates to superconductivity. We provide evidence of short-range magnetic fluctuations and local lattice inhomogeneities that may prevent strong percolative superconductivity in Ba(Fe1-xAux)2As2.

  12. Compatible operation of the power system for steady state and pulse modes in a magnetic torus KT-5D

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Wang, Zhi-jiang; Xu, Min; Zhu, Zhen-hua; Lu, Rong-hua; Wen, Yi-zhi; Yu, Chang-xuan; Wan, Shu-de; Liu, Wan-dong; Wang, Jun; Xu, Xiao-yuan; Hu, Ling-ying

    2006-12-01

    Compatible operation of steady state mode and pulse mode is realized in the KT-5D device. New power supplies with the operation control systems for the steady state toroidal magnetic field as well as for the vertical field are added, and the rf wave injection systems for sustaining steady state plasmas are upgraded. After the modification, the device now can work not only as a tokomak with pulsed plasma currents as it was but also as a simple magnetized torus with steady state plasma discharges. It allows more flexible and efficient experimental researches on the magnetically confined plasmas to be carried on in the same device.

  13. Compatible operation of the power system for steady state and pulse modes in a magnetic torus KT-5D

    SciTech Connect

    Yu Yi; Wang Zhijiang; Xu Min; Zhu Zhenhua; Lu Ronghua; Wen Yizhi; Yu Changxuan; Wan Shude; Liu Wandong; Wang Jun; Xu Xiaoyuan; Hu Lingying

    2006-12-15

    Compatible operation of steady state mode and pulse mode is realized in the KT-5D device. New power supplies with the operation control systems for the steady state toroidal magnetic field as well as for the vertical field are added, and the rf wave injection systems for sustaining steady state plasmas are upgraded. After the modification, the device now can work not only as a tokomak with pulsed plasma currents as it was but also as a simple magnetized torus with steady state plasma discharges. It allows more flexible and efficient experimental researches on the magnetically confined plasmas to be carried on in the same device.

  14. A 5D gyrokinetic full- f global semi-Lagrangian code for flux-driven ion turbulence simulations

    NASA Astrophysics Data System (ADS)

    Grandgirard, V.; Abiteboul, J.; Bigot, J.; Cartier-Michaud, T.; Crouseilles, N.; Dif-Pradalier, G.; Ehrlacher, Ch.; Esteve, D.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Mehrenberger, M.; Norscini, C.; Passeron, Ch.; Rozar, F.; Sarazin, Y.; Sonnendrücker, E.; Strugarek, A.; Zarzoso, D.

    2016-10-01

    This paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic GYSELA code is one of the few international 5D gyrokinetic codes able to perform global, full- f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the GYSELA code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties.

  15. A line source in Minkowski for the de Sitter spacetime scalar Green’s function: massive case

    NASA Astrophysics Data System (ADS)

    Chu, Yi-Zen

    2015-07-01

    For certain classes of space(time)s embeddable in a higher dimensional flat space(time), it appears possible to compute the minimally coupled massless scalar Green’s function in the former by convolving its cousin in the latter with an appropriate scalar charge density. The physical interpretation is that beings residing in the higher dimensional flat space(time) may set up sources to fool the observer confined on the lower dimensional curved submanifold that she is detecting the field generated by a space(time) point source in her own world. In this paper we extend the general formula to include a non-zero mass. We then employ it to derive the Green’s function of the massive wave operator in (d≥slant 2)-dimensional de Sitter spacetime and that of the Helmholtz differential operator—the Laplacian plus a ‘mass term’—on the (d≥slant 2)-sphere. For both cases, the trajectories of the scalar sources are the same as that of the massless case, while the required scalar charge densities are determined by solving an eigenvalue equation. To source these massive Green’s functions, we show that the (d+1)-dimensional Minkowski/Euclidean experimentalists may choose to use either massive or massless scalar line charges. In de Sitter spacetime, the embedding method employed here leads directly to a manifest separation between the null cone versus tail terms of the Green’s functions.

  16. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  17. Instability of D-dimensional extremally charged Reissner-Nordstrøm (-de Sitter) black holes: Extrapolation to arbitrary D

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2014-01-01

    In our earlier work [Phys. Rev. Lett. 103, 161101 (2009)], it was shown that nonextremal highly charged Reissner-Nordstrøm-de Sitter black holes are gravitationally unstable in D>6-dimensional space-times. Here, we find accurate threshold values of the Λ term at which the instability of the extremally charged black holes starts. The larger D is, the smaller is the threshold value of Λ. We have shown that the ratio ρ =rh/rcos (where rcos and rh are the cosmological and event horizons) is proportional to e-(D -4)/2 at the onset of instability for D=7,8,…11, implying that the same law should fulfill for arbitrary D. This is numerical evidence that extremally charged Reissner-Nordstrøm-de Sitter black holes are gravitationally unstable for D>6, while asymptotically flat extremally charged Reissner-Nordstrøm black holes are stable for all D. The instability is not connected to the horizon instability discussed recently in the literature, and, unlike the later one, develops also outside the event horizon; that is, it can be seen by an external observer. In addition, for the nonextremal case through fitting of the numerical data, we obtained an approximate analytical formula which relates values of charge and the Λ term at the onset of instability.

  18. Magnetocrystalline anisotropy of 4d/5d transition metals on a Co(0001) surface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Taivansaikhan, P.; Odkhuu, D.; Rhim, S. H.; Hong, S. C.

    2015-05-01

    Magnetism and magnetocrystalline anisotropy (MCA) of 4d and 5d transition metal monolayers have been investigated in the presence of a Co(0001) substrate using first-principles electronic structure calculations. Magnetization of Co-group elements undergoes a transition from an in-plane to perpendicular MCA on Co(0001), whose energies (EMCA) are +0.75 meV/cell and +3.67 meV/cell for Rh/Co(0001) and Ir/Co(0001), respectively. On the other hand, the Fe-group Ru/Co(0001) and Os/Co(0001) exhibit the in-plane MCA with antiparallel spin moments to that of the Co substrate. From band analysis, enhancement of MCA in the Ir/Co(0001) is mainly due to the Ir atom by ⟨ m = 0 | l x | m = ± 1 ⟩ matrix in the ↑↓-channel, where negative MCA found in Os/Co(0001) is due to Co with dominant contribution from ⟨ m = 0 | l x | m = ± 1 ⟩ and ⟨ m = ± 2 | l x | m = ± 1 ⟩ matrices in the ↓↓- and ↑↓-channel, respectively. The significant enhancement of EMCA in Rh/ and Ir/ Co(0001) is ascribed to larger spin-orbit coupling of 4d and 5d orbitals, mainly by coupling between m = 0 and m = ±1 states.

  19. EQ-5D-5L in the General German Population: Comparison and Evaluation of Three Yearly Cross-Section Surveys.

    PubMed

    Huber, Manuel B; Reitmeir, Peter; Vogelmann, Martin; Leidl, Reiner

    2016-03-21

    Health-related quality of life (HRQoL) is a key measure for evaluating health status in populations. Using the recent EQ-5D-5L for measurement, this study analyzed quality of life results and their stability over consecutive population surveys. Three cross-section surveys for representative samples of the general German population from 2012, 2013, and 2014 were evaluated using the EQ-5D-5L descriptive system and valuation by the Visual Analog Scale (VAS). Aggregated sample size reached 6074. The dimension with the highest prevalence of problems was pain/discomfort (31.7%). Compared with 2012 (59.3%), the percentage of participants in the best health state increased slightly in 2013 (63.4%) and 2014 (62%). Over the 3-year period, diabetes and heart disease had the strongest negative influence on mean VAS result. The number of reported chronic diseases cumulatively reduced mean VAS. Extreme problems in one or more dimensions were stated by only 0.1%-0.2% of patients. Of the potential 247 health states with a problem score ≥ 20, only six were observed in the aggregated sample. HRQoL results were fairly stable over the 3 years, but the share of the population with no problems was not. Results from the aggregated sample may serve as updated reference values for the general German population.

  20. Location and identification of the collagen found in the 14.5-d rat embryo visceral yolk sac

    PubMed Central

    1982-01-01

    The collagens associated with 14.5-d rat visceral yolk sacs were localized and identified by a variety of procedures. Morphological examination showed that both the visceral epithelium and mesothelium rested upon thin basement membranes, whereas the majority of the extracellular matrix consisted of a stroma containing occasional cells and abundant banded fibrils. Immunohistochemistry at the electron microscope level showed that the basement membranes specifically cross- reacted with antibodies directed against mouse basement membrane components, whereas the stroma specifically cross-reacted with antibodies directed against rat type I collagen. Extractions of acellular visceral yolk sacs and subsequent analyses showed that type I collagen components were prevalent. Furthermore, in vitro biosynthetic studies showed only the presence of type I procollagen components (or their conversion products) and alpha-fetoprotein. These findings, taken together with our previous studies on the 14.5-d rat parietal yolk sac, provide us with protein markers for studying the origin of cells in rat parietovisceral yolk sac carcinomas. PMID:7096438

  1. Conforming the measured lifetimes of the 5 d 2D3 /2 ,5 /2 states in Cs with theory

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2016-02-01

    We find very good agreement between our theoretically evaluated lifetimes of the 5 d 2D3 /2 and 5 d 2D5 /2 states of Cs with the experimental values reported by DiBerardino et al. [Phys. Rev. A 57, 4204 (1998), 10.1103/PhysRevA.57.4204], which were demonstrated to disagree with an earlier rigorous theoretical study [Safronova and Clark, Phys. Rev. A 69, 040501(R) (2004), 10.1103/PhysRevA.69.040501] and with the other available precise measurement [Hoeling et al., Opt. Lett. 21, 74 (1996), 10.1364/OL.21.000074]. In this work, we carry out calculations of the radiative transition matrix elements using many variants of relativistic many-body methods, mainly in the coupled-cluster theory framework, and analyze the propagation of electron correlation effects to elucidate their roles in accurate evaluations of the matrix elements. We also demonstrate contributions explicitly from Dirac-Coulomb interactions, frequency-independent Breit interaction, and lower order quantum electrodynamics effects. Uncertainties in these matrix elements due to different possible sources of errors are estimated. By combining our calculated radiative matrix elements with the experimental values of the transition wavelengths, we obtain the transition probabilities due to both the allowed and the lower order forbidden channels. Adding these quantities together, the lifetimes of the above two states are determined precisely and plausible reasons for the reported inconsistencies between the earlier theoretical calculations and the experimental results are pointed out.

  2. Health-Related Quality of Life Using the EuroQol 5D Questionnaire in Korean Patients with Type 2 Diabetes

    PubMed Central

    Lee, Woo Je; Song, Kee-Ho; Noh, Jung Hyun; Choi, Yon Jong

    2012-01-01

    We aimed; 1) to determine the validity of the EuroQol 5D (EQ-5D) for the health-related quality of life (HRQOL) of Korean patients with type 2 diabetes, and 2) to identify associated factors of the HRQOL of these patients. Follow-up surveys were conducted for consecutive patients with type 2 diabetes. HRQOL was assessed using the EQ-5D and the Short Form-36 (SF-36). The validity of EQ-5D was assessed with the perspectives of known group, convergent and discriminant validity. Additionally, a linear mixed model using a backward elimination was used for identify associated factors. Of the 1,072 patients included in the first survey, 858 (80.0%) completed the questionnaires in the follow-up. In the known group validity, the problem rates in each EQ-5D dimension were highest among women, elderly people, and less-educated subjects. The Spearman's ρ between the EQ-5D and the SF-36 scales were larger in the comparable dimensions than those in the less comparable dimensions. In the final model, we found that sex, age, education, body mass index, atrial fibrillation, stroke, and retinopathy were statistically significant. Our data suggest that the EQ-5D is a valid tool for Korean patients with type 2 diabetes and that various factors could affect their HRQOL. PMID:22379335

  3. Coherent excitation of the 5D{sub 5/2} level of ultra-cold rubidium atoms with short laser pulses

    SciTech Connect

    Snigirev, S A; Golovizin, A A; Vishnyakova, G A; Akimov, A V; Sorokin, V N; Kolachevskii, N N

    2012-08-31

    We demonstrate the use of stimulated Raman adiabatic passage (STIRAP) for population transfer from the ground state to the 5D{sub 5/2} level (5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 5D{sub 5/2}) in laser-cooled {sup 87}Rb atoms and examine the influence of the time delay between laser pulses, pulse height, pulse duration and frequency detuning from resonance on the efficiency of Rb atom excitation to the 5D{sub 5/2} level. In our experiments, the pulse duration was varied widely (30 - 200 ns), which allowed us to assess the effect of spontaneous decay on the population of the 5D{sub 5/2} level (natural lifetime, 300 ns). We performed numerical calculations with allowance for spontaneous decay from the 5P{sub 3/2} and 5D{sub 5/2} levels and compared the results to experimental data, which allowed the population of the 5D{sub 5/2} level to be determined. The maximum population of the 5D{sub 5/2} level in the region under excitation was 80 % of the total number of rubidium atoms. (cooling of atoms)

  4. Field-emission properties of patterned ZnO nanowires on 2.5D MEMS substrate

    NASA Astrophysics Data System (ADS)

    Park, Seung-Beum; Kim, Byeong-Guk; Kim, Jeong-Yeon; Jung, Tae-Hwan; Lim, Dong-Gun; Park, Jae-Hwan; Park, Jae-Gwan

    2011-01-01

    We fabricated a nanowire-based field-emission display (FED) device on a 2.5D substrate using a photolithography, lift-off, thermal-evaporation, and plasma-etching process. We first fabricated a 3×3 array of microholes (diameter = 400 μm and depth = 50 μm) on a Si substrate and fabricated ZnO nanowires inside the microholes by using a thermal CVD process. The field-emission pattern image of the 3×3 array of microholes was clearly apparent. The threshold emission field was ca. 5.6 V/μm and we obtained considerable brightness when the applied voltage was 1900 V (i.e. 6.3 V/μm). Because the fabrication processes used in this study are standard semiconductor fabrication routes, the study suggests the feasibility of mass producing a nanowire-based FED device.

  5. Borel Summability of Perturbative Series in 4D N=2 and 5D N=1 Supersymmetric Theories.

    PubMed

    Honda, Masazumi

    2016-05-27

    We study weak coupling perturbative series in 4D N=2 and 5D N=1 supersymmetric gauge theories with Lagrangians. We prove that the perturbative series of these theories in the zero-instanton sector are Borel summable for various observables. Our result for the 4D N=2 case supports an expectation from a recent proposal on a semiclassical realization of infrared renormalons in QCD-like theories, where the semiclassical solution does not exist in N=2 theories and the perturbative series are unambiguous, namely, Borel summable. We also prove that the perturbative series in an arbitrary number of instanton sectors are Borel summable for a wide class of theories. It turns out that exact results can be obtained by summing over the Borel resummations with every instanton number.

  6. Magnetic order and electronic structure of the 5 d3 double perovskite Sr2ScOsO6

    NASA Astrophysics Data System (ADS)

    Taylor, A. E.; Morrow, R.; Singh, D. J.; Calder, S.; Lumsden, M. D.; Woodward, P. M.; Christianson, A. D.

    2015-03-01

    The magnetic susceptibility, crystal and magnetic structures, and electronic structure of the double perovskite Sr2ScOsO6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P 21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92 K , one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6 (1 ) μB , close to half the spin-only value for a crystal field split 5 d electron state with a t2g 3 ground state. Density functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ˜0.1 μB reduction in the moment.

  7. Finite Element Analysis of 2.5D Woven Composites, Part I: Microstructure and 3D Finite Element Model

    NASA Astrophysics Data System (ADS)

    Song, Jian; Wen, Weidong; Cui, Haitao; Zhang, Hongjian; Xu, Ying

    2016-02-01

    A new parameterized finite element model, called the Full-cell model, has been established based on the practical microstructure of 2.5D angle-interlock woven composites. This model considering the surface layer structure can predict the mechanical properties and estimate the structural performance such as the fiber volume fraction and inclination angle. According to introducing a set of periodic boundary condition, a reasonable overall stress field and periodic deformation are obtained. Furthermore, the model investigates the relationships among the woven parameters and elastic moduli, and shows the structural variation along with the corresponding woven parameters. Comparing the results calculated by FEM with the experiments, the veracity of calculation and reasonability based on the Full-cell model are confirmed. In the meantime, the predicted results based on the Full-cell model are more closed to the test results compared to those based on the Inner-cell model.

  8. Estimating the burden of disease in chronic pain with and without neuropathic characteristics: does the choice between the EQ-5D and SF-6D matter?

    PubMed

    Torrance, Nicola; Lawson, Kenny D; Afolabi, Ebenezer; Bennett, Michael I; Serpell, Michael G; Dunn, Kate M; Smith, Blair H

    2014-10-01

    The EQ-5D and Short Form (SF)12 are widely used generic health-related quality of life (HRQoL) questionnaires. They can be used to derive health utility index scores, on a scale where 0 is equivalent to death and 1 represents full health, with scores less than zero representing states "worse than death." We compared EQ-5D or SF-6D health utility index scores in patients with no chronic pain, and chronic pain with and without neuropathic characteristics (NC), and to explore their discriminant ability for pain severity. Self-reported health and chronic pain status was collected as part of a UK general population survey (n=4451). We found moderate agreement between individual dimensions of EQ-5D and SF-6D, with most highly correlated dimensions found for mental health and anxiety/depression, role limitations and usual activities, and pain and pain/discomfort. Overall 43% reported full health on the EQ-5D, compared with only 4.2% on the SF-6D. There were significant differences in mean utilities for chronic pain with NC (EQ-5D 0.47 vs SF-6D 0.62) and especially for severe pain (EQ-5D 0.33 vs SF-6D 0.58). On the EQ-5D, 17% of those with chronic pain with NC and 3% without NC scored "worse than death," a state which is not possible using the SF-6D. Health utilities derived from EQ-5D and SF-12/36 can discriminate between group differences for chronic pain with and without NC and greater pain severity. However, the instruments generate widely differing HRQoL scores for the same patient groups. The choice between using the EQ-5D or SF-6D matters greatly when estimating the burden of disease. PMID:25020004

  9. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  10. Magnetocrystalline anisotropy of 4d/5d transition metals on a Co(0001) surface: A first-principles study

    SciTech Connect

    Taivansaikhan, P.; Rhim, S. H. E-mail: schong@ulsan.ac.kr; Hong, S. C. E-mail: schong@ulsan.ac.kr; Odkhuu, D.

    2015-05-07

    Magnetism and magnetocrystalline anisotropy (MCA) of 4d and 5d transition metal monolayers have been investigated in the presence of a Co(0001) substrate using first-principles electronic structure calculations. Magnetization of Co-group elements undergoes a transition from an in-plane to perpendicular MCA on Co(0001), whose energies (E{sub MCA}) are +0.75 meV/cell and +3.67 meV/cell for Rh/Co(0001) and Ir/Co(0001), respectively. On the other hand, the Fe-group Ru/Co(0001) and Os/Co(0001) exhibit the in-plane MCA with antiparallel spin moments to that of the Co substrate. From band analysis, enhancement of MCA in the Ir/Co(0001) is mainly due to the Ir atom by 〈m=0| l{sub x} |m=±1〉 matrix in the ↑↓-channel, where negative MCA found in Os/Co(0001) is due to Co with dominant contribution from 〈m=0| l{sub x} |m=±1〉 and 〈m=±2| l{sub x} |m=±1〉 matrices in the ↓↓- and ↑↓-channel, respectively. The significant enhancement of E{sub MCA} in Rh/ and Ir/ Co(0001) is ascribed to larger spin-orbit coupling of 4d and 5d orbitals, mainly by coupling between m = 0 and m = ±1 states.

  11. A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan; Pan, Supriya

    2016-09-01

    If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FLRW background a U(1) self-gravitating scalar field coupled to a gauge field without bulk matter. It turns out that brane fluctuations can be formed dynamically, due to the modified energy-momentum tensor components of the scalar-gauge field ("cosmic string"). As a result, we find that the late-time behavior could significantly deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warpfactor with two branches of the form ± 1/√{τ r}√{(c_1e^{√{2τ } t}+c_2e^{-√{2τ } t})(c_3e^{√{2τ } r}+c_4e^{-√{2τ } r})} ( with τ , c_i constants) and the modified brane equations comparable with a dark energy effect. This is a brane-world mechanism, not present in standard 4D FLRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string can build up a huge angle deficit (or mass per unit length) by the warpfactor and can induce massive KK-modes felt on the brane. Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space and warpfactor. They could survive the natural damping due to the expansion of the universe. It turns out that one of the metric components becomes singular at the moment the warp factor develops an extremum. This behavior could have influence on the possibility of a transition from acceleration to deceleration or vice versa.

  12. A New Fate of a Warped 5D FLRW Model with a U(1) Scalar Gauge Field

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan; Pan, Supriya

    2016-03-01

    If we live on the weak brane with zero effective cosmological constant in a warped 5D bulk spacetime, gravitational waves and brane fluctuations can be generated by a part of the 5D Weyl tensor and carries information of the gravitational field outside the brane. We consider on a cylindrical symmetric warped FLRW background a U(1) self-gravitating scalar field coupled to a gauge field without bulk matter. It turns out that brane fluctuations can be formed dynamically, due to the modified energy-momentum tensor components of the scalar-gauge field ("cosmic string"). As a result, we find that the late-time behavior could significantly deviate from the standard evolution of the universe. The effect is triggered by the time-dependent warpfactor with two branches of the form ± 1/√{τ r}√{(c_1e^{√{2τ } t}+c_2e^{-√{2τ } t})(c_3e^{√{2τ } r}+c_4e^{-√{2τ } r})} ( with τ c_i constants) and the modified brane equations comparable with a dark energy effect. This is a brane-world mechanism, not present in standard 4D FLRW, where the large disturbances are rapidly damped as the expansion proceed. Because gravity can propagate in the bulk, the cosmic string can build up a huge angle deficit (or mass per unit length) by the warpfactor and can induce massive KK-modes felt on the brane. Disturbances in the spatial components of the stress-energy tensor cause cylindrical symmetric waves, amplified due to the presence of the bulk space and warpfactor. They could survive the natural damping due to the expansion of the universe. It turns out that one of the metric components becomes singular at the moment the warp factor develops an extremum. This behavior could have influence on the possibility of a transition from acceleration to deceleration or vice versa.

  13. A socially organized basis for displays of cognition: procedural orientation to evidential turns in psychic-sitter interaction.

    PubMed

    Wooffitt, R

    2001-12-01

    Discursive psychology has been concerned with investigating how aspects of mind--cognitions, personality, identity, memory, attitudes, attributions, etc.--are warrantably invoked and indexed in the particulars of language use in a variety of discursive contexts. By drawing upon the method and findings of conversation analysis (CA), researchers have been able to show how displays of mind may be achieved with respect to the speakers' production of discursive activities, such as warranting versions of events. One of the key features of CA is the identification of sequences of conversational actions and their oriented-to-properties. This study argues that a focus on sequential activity can be harnessed to discursive psychological investigations to reveal how the relevance of displays of mind is embedded in the structure of verbal activities. To illustrate this methodological recommendation, the study describes a recurrent interactional episode in consultations between psychics and their clients, or sitters, in which participants realize collaboratively the demonstration of (albeit parapsychological) cognition.

  14. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  15. SU-D-17A-03: 5D Respiratory Motion Model Based Iterative Reconstruction Method for 4D Cone-Beam CT

    SciTech Connect

    Gao, Y; Thomas, D; Low, D; Gao, H

    2014-06-01

    Purpose: The purpose of this work is to develop a new iterative reconstruction method for 4D cone-beam CT (CBCT) based on a published time-independent 5D respiratory motion model. The proposed method will offer a single high-resolution image at a user-selected breathing phase and the 5D motion model parameters, which could be used to generate the breathing pattern during the CT acquisition. Methods: 5D respiratory motion model was proposed for accurately modeling the motion of lung and lung tumor tissues. 4D images are then parameterized by a reference image, measured breathing amplitude, breathing rate, two time-independent vector fields that describe the 5D model parameters, and a scalar field that describes the change in HU as a function of breathing amplitude. In contrast with the traditional method of reconstructing multiple temporal image phases to reduce respiratory artifact, 5D model based method simplify the problem into the reconstruction of a single reference image and the 5D motion model parameters. The reconstruction formulation of the reference image and scalar and vector fields is a nonlinear least-square optimization problem that consists of solving the reference image and fields alternately, in which the reference image is regularized with the total variation sparsity transform and the vector fields are solved through linearizations regularized by the H1 norm. 2D lung simulations were performed in this proof-of-concept study. Results: The breathing amplitude, its rate, and the corresponding scalar and vector fields were generated from a patient case. Compared with filtered backprojection method and sparsity regularized iterative method for the phase-by-phase reconstruction, the proposed 5D motion model based method yielded improved image quality. Conclusion: Based on 5D respiratory motion model, we have developed a new iterative reconstruction method for 4D CBCT that has the potential for improving image quality while providing needed on

  16. Design, Synthesis and Biological Evaluation of Novel Pyrimido[4,5-d]pyrimidine CDK2 Inhibitors as Anti-Tumor Agents

    PubMed Central

    El-Moghazy, Samir M.; Ibrahim, Diaa A.; Abdelgawad, Nagwa M.; Farag, Nahla A. H.; El-Khouly, Ahmad S.

    2011-01-01

    A series of 2,5,7-trisubstituted pyrimido[4,5-d]pyrimidine cyclin-dependent kinase (CDK2) inhibitors is designed and synthesized. 6-Amino-2-thiouracil is reacted with an aldehyde and thiourea to prepare the pyrimido[4,5-d]-pyrimidines. Alkylation and amination of the latter ones give different amino derivatives. These compounds show potent and selective CDK inhibitory activities and inhibit in vitro cellular proliferation in cultured human tumor cells. PMID:21886895

  17. Modeling Ranking, Time Trade-Off and Visual Analogue Scale Values for EQ-5D Health States

    PubMed Central

    Craig, Benjamin M.; Busschbach, Jan J. V.; Salomon, Joshua A.

    2009-01-01

    Background There is rising interest in eliciting health state valuations using rankings. Due to their relative simplicity, ordinal measurement methods may offer an attractive practical alternative to cardinal methods, such as time trade-off (TTO) and visual analog scale (VAS). In this paper, we explore alternative models for estimating cardinal health state values from rank responses in a unique multi-country database. We highlight an estimation challenge pertaining to health states just below perfect health (the ‘non-optimal gap’) and propose an analytic solution to ameliorate this problem. Methods Using rank, a standardized protocol developed by the EuroQol Group, TTO and VAS responses were collected for 43 health states in eight countries: Slovenia, Argentina, Denmark, Japan, Netherlands, Spain, United Kingdom, and United States, yielding a sample of 179,431 state responses from 11,483 subjects. States were described using the EQ-5D system, which allows for three different possible levels on five different dimensions of health. We estimated conditional logit and probit regression models for rank responses. The regressions included 17 health-state attribute variables reflecting specific levels on each dimension and counts of different levels across dimensions. This flexible specification accommodates previously published valuation models, such as models applied in the United Kingdom and United States. In addition to fitting standard conditional logit and probit models, which assume equal variance across health states (homoskedasticity), we examined a heteroskedastic probit model that assumes no variance for the two points anchoring the scale (“optimal health” and “dead”) and relaxes the equal-variance assumption for all other states. Rank-based predictions for the 243 unique states defined by the EQ-5D system were compared to predictions from conventional linear models fitted to TTO and VAS responses. Results By construction, the TTO and VAS models

  18. Design, analysis and test of high-frequency interconnections in 2.5D package with silicon interposer

    NASA Astrophysics Data System (ADS)

    Xiaoli, Ren; Cheng, Pang; Zheng, Qin; Ye, Ping; Feng, Jiang; Kai, Xue; Haiyan, Liu; Daquan, Yu

    2016-04-01

    An interposer test vehicle with TSVs (through-silicon vias) and two redistribute layers (RDLs) on the top side for 2.5D integration was fabricated and high-frequency interconnections were designed in the form of coplanar waveguide (CPW) and micro strip line (MSL) structures. The signal transmission structures were modeled and simulated in a 3D EM tool to estimate the S-parameters. The measurements were carried out using the vector network analyzer (VNA). The simulated results of the transmission lines on the surface of the interposer without TSVs showed good agreement with the simulated results, while the transmission structures with TSVs showed significant offset between simulation and test results. The parameters of the transmission structures were changed, and the results were also presented and discussed in this paper. Project supported by the National S&T Major Projects (No. 2011ZX02709) and the National Natural Science Foundation of China (No. 61176098). Daquan Yu also appreciates the support from the 100 Talents Program of The Chinese Academy of Sciences.

  19. Fluence-dependent dynamics of the 5d6s exchange splitting in Gd metal after femtosecond laser excitation

    NASA Astrophysics Data System (ADS)

    Frietsch, Björn; Carley, Robert; Gleich, Markus; Teichmann, Martin; Bowlan, John; Weinelt, Martin

    2016-07-01

    We investigate the fluence-dependent dynamics of the exchange-split 5d6s valence bands of Gd metal after femtosecond, near-infrared (IR) laser excitation. Time- and angle-resolved photoelectron spectroscopy (tr-ARPES) with extreme ultraviolet (XUV) probe pulses is used to simultaneously map the transient binding energies of the minority and majority spin valence bands. The decay constant of the exchange splitting increases with fluence. This reflects the slower response of the occupied majority-spin component, which we attribute to Elliot–Yafet spin-flip scattering in accordance with the microscopic three-temperature model (M3TM). In contrast, the time constant of the partly unoccupied minority-spin band stays unaffected by a change in pump fluence. Here, we introduce as an alternative to superdiffusive spin transport exchange scattering, which is an ultrafast electronic mechanism explaining the observed dynamics. Exchange scattering can reduce the spin polarization in the partially unoccupied minority-spin band and thus its energetic position without effective demagnetization.

  20. Hydrate frameworks involving the pyridazino[4,5-d]pyridazine unit as a multiple hydrogen-bond acceptor.

    PubMed

    Zhylenko, Iryna S; Solntsev, Pavlo V; Rusanov, Eduard B; Chernega, Alexander N; Domasevitch, Konstantin V

    2008-04-01

    1,4,5,8-Tetramethylpyridazino[4,5-d]pyridazine trihydrate, C(10)H(12)N(4) x 3 H(2)O, (I), and 1,2,3,6,7,8-hexahydrocinnolino[5,4,3-cde]cinnoline tetrahydrate, C(12)H(12)N(4) x 4 H(2)O, (II), exhibit exceptional functionality of the condensed N(4)-heteroaromatic frame as a symmetric acceptor of four hydrogen bonds [N...O = 2.843 (2)-2.8716 (10) A]. Thus, all the N atoms of the electron-deficient and highly pi-acidic polynitrogen heterocycles function as lone-pair donors. In (I), all the molecular components lie on or across special positions; the site symmetry is 2/m for the organic and m2m and m for the two water molecules. In (II), the organic polycycle lies across a crystallographic inversion center. Both structures involve a hydrogen-bonded centrosymmetric water-pyridazine dimer as the basic supramolecular unit, which is integrated into two-dimensional [in (I)] and three-dimensional [in (II)] hydrate frameworks by hydrogen bonding with the additional water molecules [O...O = 2.744 (2)-2.8827 (19) A]. The hydrate connectivity exists in the form of an (H(2)O)(3) trimer in (I) and as a one-dimensional zigzag (H(2)O)(n) chain in (II).

  1. Code interoperability and standard data formats in quantum chemistry and quantum dynamics: The Q5/D5Cost data model.

    PubMed

    Rossi, Elda; Evangelisti, Stefano; Laganà, Antonio; Monari, Antonio; Rampino, Sergio; Verdicchio, Marco; Baldridge, Kim K; Bendazzoli, Gian Luigi; Borini, Stefano; Cimiraglia, Renzo; Angeli, Celestino; Kallay, Peter; Lüthi, Hans P; Ruud, Kenneth; Sanchez-Marin, José; Scemama, Anthony; Szalay, Peter G; Tajti, Attila

    2014-03-30

    Code interoperability and the search for domain-specific standard data formats represent critical issues in many areas of computational science. The advent of novel computing infrastructures such as computational grids and clouds make these issues even more urgent. The design and implementation of a common data format for quantum chemistry (QC) and quantum dynamics (QD) computer programs is discussed with reference to the research performed in the course of two Collaboration in Science and Technology Actions. The specific data models adopted, Q5Cost and D5Cost, are shown to work for a number of interoperating codes, regardless of the type and amount of information (small or large datasets) to be exchanged. The codes are either interfaced directly, or transfer data by means of wrappers; both types of data exchange are supported by the Q5/D5Cost library. Further, the exchange of data between QC and QD codes is addressed. As a proof of concept, the H + H2 reaction is discussed. The proposed scheme is shown to provide an excellent basis for cooperative code development, even across domain boundaries. Moreover, the scheme presented is found to be useful also as a production tool in the grid distributed computing environment.

  2. Magnetic order and electronic structure of 5d3 double perovskite Sr2ScOsO6

    DOE PAGES

    Taylor, A. E.; Morrow, R.; Singh, D. J.; Calder, S.; Lumsden, M. D.; Woodward, P. M.; Christianson, A. D.

    2015-03-01

    The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr2ScOsO6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92 K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Density functional calculationsmore » show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.« less

  3. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate.

    PubMed

    Studzian, Maciej; Bartosz, Grzegorz; Pulaski, Lukasz

    2015-08-01

    ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods.

  4. Nature of the insulating ground state of the 5d postperovskite CaIrO3

    SciTech Connect

    Kim, Sun -Woo; Liu, Chen; Kim, Hyun -Jung; Lee, Jun -Ho; Yao, Yongxin; Ho, Kai -Ming; Cho, Jun -Hyung

    2015-08-26

    In this study, the insulating ground state of the 5d transition metal oxide CaIrO3 has been classified as a Mott-type insulator. Based on a systematic density functional theory (DFT) study with local, semilocal, and hybrid exchange-correlation functionals, we reveal that the Ir t2g states exhibit large splittings and one-dimensional electronic states along the c axis due to a tetragonal crystal field. Our hybrid DFT calculation adequately describes the antiferromagnetic (AFM) order along the c direction via a superexchange interaction between Ir4+ spins. Furthermore, the spin-orbit coupling (SOC) hybridizes the t2g states to open an insulating gap. These results indicate that CaIrO3 can be represented as a spin-orbit Slater insulator, driven by the interplay between a long-range AFM order and the SOC. Such a Slater mechanism for the gap formation is also demonstrated by the DFT + dynamical mean field theory calculation, where the metal-insulator transition and the paramagnetic to AFM phase transition are concomitant with each other.

  5. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate.

    PubMed

    Studzian, Maciej; Bartosz, Grzegorz; Pulaski, Lukasz

    2015-08-01

    ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods. PMID:25918011

  6. Addition of vasopressin synthetic analogue [V(4)Q(5)]dDAVP to standard chemotherapy enhances tumour growth inhibition and impairs metastatic spread in aggressive breast tumour models.

    PubMed

    Garona, Juan; Pifano, Marina; Pastrian, Maria B; Gomez, Daniel E; Ripoll, Giselle V; Alonso, Daniel F

    2016-08-01

    [V(4)Q(5)]dDAVP is a novel 2nd generation vasopressin analogue with robust antitumour activity against metastatic breast cancer. We recently reported that, by acting on vasopressin V2r membrane receptor present in tumour cells and microvascular endothelium, [V(4)Q(5)]dDAVP inhibits angiogenesis and metastatic progression of the disease without overt toxicity. Despite chemotherapy remaining as a primary therapeutic option for aggressive breast cancer, its use is limited by low selectivity and associated adverse effects. In this regard, we evaluated potential combinational benefits by adding [V(4)Q(5)]dDAVP to standard-of-care chemotherapy. In vitro, combination of [V(4)Q(5)]dDAVP with sub-IC50 concentrations of paclitaxel or carmustine resulted in a cooperative inhibition of breast cancer cell growth in comparison to single-agent therapy. In vivo antitumour efficacy of [V(4)Q(5)]dDAVP addition to chemotherapy was first evaluated using the triple-negative MDA-MB-231 breast cancer xenograft model. Tumour-bearing mice were treated with i.v. injections of [V(4)Q(5)]dDAVP (0.3 μg/kg, thrice weekly) in combination with weekly cycles of paclitaxel (10 mg/kg i.p.). After 6 weeks of treatment, combination regimen resulted in greater tumour growth inhibition compared to monotherapy. [V(4)Q(5)]dDAVP addition was also associated with reduction of local aggressiveness, and impairment of tumour invasion and infiltration of the skin. Benefits of combined therapy were confirmed in the hormone-independent and metastatic F3II breast cancer model by combining [V(4)Q(5)]dDAVP with carmustine (25 mg/kg i.p.). Interestingly, [V(4)Q(5)]dDAVP plus cytotoxic agents severely impaired colony forming ability of tumour cells and inhibited breast cancer metastasis to lung. The present study shows that [V(4)Q(5)]dDAVP may complement conventional chemotherapy by modulating metastatic progression and early stages of microtumour establishment, and thus supports further preclinical testing of

  7. Addition of vasopressin synthetic analogue [V(4)Q(5)]dDAVP to standard chemotherapy enhances tumour growth inhibition and impairs metastatic spread in aggressive breast tumour models.

    PubMed

    Garona, Juan; Pifano, Marina; Pastrian, Maria B; Gomez, Daniel E; Ripoll, Giselle V; Alonso, Daniel F

    2016-08-01

    [V(4)Q(5)]dDAVP is a novel 2nd generation vasopressin analogue with robust antitumour activity against metastatic breast cancer. We recently reported that, by acting on vasopressin V2r membrane receptor present in tumour cells and microvascular endothelium, [V(4)Q(5)]dDAVP inhibits angiogenesis and metastatic progression of the disease without overt toxicity. Despite chemotherapy remaining as a primary therapeutic option for aggressive breast cancer, its use is limited by low selectivity and associated adverse effects. In this regard, we evaluated potential combinational benefits by adding [V(4)Q(5)]dDAVP to standard-of-care chemotherapy. In vitro, combination of [V(4)Q(5)]dDAVP with sub-IC50 concentrations of paclitaxel or carmustine resulted in a cooperative inhibition of breast cancer cell growth in comparison to single-agent therapy. In vivo antitumour efficacy of [V(4)Q(5)]dDAVP addition to chemotherapy was first evaluated using the triple-negative MDA-MB-231 breast cancer xenograft model. Tumour-bearing mice were treated with i.v. injections of [V(4)Q(5)]dDAVP (0.3 μg/kg, thrice weekly) in combination with weekly cycles of paclitaxel (10 mg/kg i.p.). After 6 weeks of treatment, combination regimen resulted in greater tumour growth inhibition compared to monotherapy. [V(4)Q(5)]dDAVP addition was also associated with reduction of local aggressiveness, and impairment of tumour invasion and infiltration of the skin. Benefits of combined therapy were confirmed in the hormone-independent and metastatic F3II breast cancer model by combining [V(4)Q(5)]dDAVP with carmustine (25 mg/kg i.p.). Interestingly, [V(4)Q(5)]dDAVP plus cytotoxic agents severely impaired colony forming ability of tumour cells and inhibited breast cancer metastasis to lung. The present study shows that [V(4)Q(5)]dDAVP may complement conventional chemotherapy by modulating metastatic progression and early stages of microtumour establishment, and thus supports further preclinical testing of

  8. 2.5D real waveform and real noise simulation of receiver functions in 3D models

    NASA Astrophysics Data System (ADS)

    Schiffer, Christian; Jacobsen, Bo; Balling, Niels

    2014-05-01

    There are several reasons why a real-data receiver function differs from the theoretical receiver function in a 1D model representing the stratification under the seismometer. Main reasons are ambient noise, spectral deficiencies in the impinging P-waveform, and wavefield propagation in laterally varying velocity variations. We present a rapid "2.5D" modelling approach which takes these aspects into account, so that a given 3D velocity model of the crust and uppermost mantle can be tested more realistically against observed recordings from seismometer arrays. Each recorded event at each seismometer is simulated individually through the following steps: A 2D section is extracted from the 3D model along the direction towards the hypocentre. A properly slanted plane or curved impulsive wavefront is propagated through this 2D section, resulting in noise free and spectrally complete synthetic seismometer data. The real vertical component signal is taken as a proxy of the real impingent wavefield, so by convolution and subsequent addition of real ambient noise recorded just before the P-arrival we get synthetic vertical and horizontal component data which very closely match the spectral signal content and signal to noise ratio of this specific recording. When these realistic synthetic data undergo exactly the same receiver function estimation and subsequent graphical display we get a much more realistic image to compare to the real-data receiver functions. We applied this approach to the Central Fjord area in East Greenland (Schiffer et al., 2013), where a 3D velocity model of crust and uppermost mantle was adjusted to receiver functions from 2 years of seismometer recordings and wide angle crustal profiles (Schlindwein and Jokat, 1999; Voss and Jokat, 2007). Computationally this substitutes tens or hundreds of heavy 3D computations with hundreds or thousands of single-core 2D computations which parallelize very efficiently on common multicore systems. In perspective

  9. Reducing NPR 7120.5D to Practice: Transitioning from Design Reviews to the SIR Hardware Review

    NASA Technical Reports Server (NTRS)

    Taylor, Randall

    2011-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission was the first Jet Propulsion Laboratory (JPL) project initiated under NASA's revised rules for space flight project management, NPR 7120.5D, "NASA Space Flight Program and Project Management Requirements." NASA selected GRAIL through a competitive Announcement of Opportunity process and funded its Phase B Preliminary Design effort. The team's first major milestone was a JPL institutional milestone, the Project Mission System Review (PMSR), which proved an excellent tune-up for the end-of-Phase-B NASA life-cycle review, the Preliminary Design Review (PDR). Building on JPL experience on the Prometheus and Juno projects, the team successfully organized for and conducted these reviews on an aggressive schedule. For the Project Critical Design Review (CDR), lessons learned from the PDR and updated Standing Review Board (SRB) practices from the Agency were factored into the review preparation effort. Additionally, the review was held at the Principal Investigator's institution, the Massachusetts Institute of Technology, rather than at the project management center (JPL), which necessitated additional cross-country coordination steps. The PMSR, PDR, and CDR were design reviews and largely paper-oriented. For the System Integration Review (SIR), the project needed to transition to a hardware review and deal with paper in a very different manner. While many of the practices employed for the design reviews were modified and retained (e.g., review preparation team, gate products management, pre-reviews, SRB coordination), the review agenda, presentation style, and slide templates were significantly changed. A key success factor concerned the handling of project open paper, which was succinctly and effectively communicated to the SRB in presentations.This paper provides a brief overview of the GRAIL mission and its project management challenges, provides a detailed description of project SIR preparation and execution

  10. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations.

    PubMed

    Roth, Holger R; Lu, Le; Seff, Ari; Cherry, Kevin M; Hoffman, Joanne; Wang, Shijun; Liu, Jiamin; Turkbey, Evrim; Summers, Ronald M

    2014-01-01

    Automated Lymph Node (LN) detection is an important clinical diagnostic task but very challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this paper, we first operate a preliminary candidate generation stage, towards -100% sensitivity at the cost of high FP levels (-40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, via scale, random translations, and rotations with respect to the VOI centroid coordinates. These random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In testing, the CNN is employed to assign LN probabilities for all N random views that can be simply averaged (as a set) to compute the final classification probability per VOI. We validate the approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-art work.

  11. cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), its properties and initiation reactivity.

    PubMed

    Klasovitý, Dusan; Zeman, Svatopluk; Růzicka, Ales; Jungová, Marcela; Rohác, Michal

    2009-05-30

    Using the (15)N NMR chemical shifts of nitrogen atoms in nitramino groups of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (bicyclo-HMX or BCHMX) and additional 10 nitramines, we have assessed its reactivity in detonation, under the influence of impact, and by action of electric spark. It is stated that the thermal stability of BCHMX is higher than that of 1,3,5-trinitro-1,3,5-triazinane (RDX). The longest NN bond in the BCHMX molecule (1.412(4)A) is the cause for its higher impact reactivity, which is at the level of that of penterythritol tetranitrate (PETN). In the experimentally determined detonation velocity, BCMX can be slightly better performing than RDX. From the standpoint of friction sensitivity, BCHMX is similar to 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). Attention was also focused on the solubility-temperature dependence of BCHMX in acetone, acetonitrile, ethyl acetate, dimethyl sulfoxide, tetrahydrofurane, and nitromethane. X-ray crystallographic study of BCHMX (C(4)H(6)N(8)O(8), M(r)=294.17), has been carried out at the temperature of 150K with the following results: a=8.5430(8), b=6.9480(6), c=8.7780(8)A, alpha=90.0(7) degrees , beta=102.452(11) degrees , gamma=90.0(9) degrees , V=508.777(8)A(3), Z=2, D(x)=1.920 g cm(-3), lambda(Mo Ka)=0.71073A, micro=0.169 cm(-1), F(000)=856, final R=0.0414 for 1254 independent observed reflections. In the BCHMX crystal there were found more short contacts in the molecular crystal of BCHMX data of Gilardi creating extensive supramolecular architecture.

  12. Magnetic properties of (Fe1 -xCox )2B alloys and the effect of doping by 5 d elements

    NASA Astrophysics Data System (ADS)

    Edström, A.; Werwiński, M.; Iuşan, D.; Rusz, J.; Eriksson, O.; Skokov, K. P.; Radulov, I. A.; Ener, S.; Kuz'min, M. D.; Hong, J.; Fries, M.; Karpenkov, D. Yu.; Gutfleisch, O.; Toson, P.; Fidler, J.

    2015-11-01

    We have explored, computationally and experimentally, the magnetic properties of (Fe1 -xCox )2B alloys. Calculations provide a good agreement with experiment in terms of the saturation magnetization and the magnetocrystalline anisotropy energy with some difficulty in describing Co2B , for which it is found that both full potential effects and electron correlations treated within dynamical mean field theory are of importance for a correct description. The material exhibits a uniaxial magnetic anisotropy for a range of cobalt concentrations between x =0.1 and x =0.5 . A simple model for the temperature dependence of magnetic anisotropy suggests that the complicated nonmonotonic behavior is mainly due to variations in the band structure as the exchange splitting is reduced by temperature. Using density functional theory based calculations we have explored the effect of substitutionally doping the transition metal sublattice by the whole range of 5 d transition metals and found that doping by Re or W elements should significantly enhance the magnetocrystalline anisotropy energy. Experimentally, W doping did not succeed in enhancing the magnetic anisotropy due to formation of other phases. On the other hand, doping by Ir and Re was successful and resulted in magnetic anisotropies that are in agreement with theoretical predictions. In particular, doping by 2.5 at. % of Re on the Fe/Co site shows a magnetocrystalline anisotropy energy which is increased by 50% compared to its parent (Fe0.7Co0.3 )2B compound, making this system interesting, for example, in the context of permanent magnet replacement materials or in other areas where a large magnetic anisotropy is of importance.

  13. Photoeffect in the 5d, 6s, and 6p subshells of atomic lead between 25 and 110 eV

    SciTech Connect

    Krause, M.O.; Gerard, P.; Fahlman, A.; Carlson, T.A.; Svensson, A.

    1986-05-01

    Partial cross sections sigma and angular distribution parameters ..beta.. were measured for the 5d subshell of atomic lead between 25 and 110 eV, and for the major components of the 6s and 6p subshells between 25 and 55 eV. Data are compared with Dirac-Slater (DS) calculations. Good agreement is found for the ..beta.. values of both the 5d and 6p subshells. However, as characteristic for single-particle models, the 5d delayed cross-section maximum is seen to be too high. The theoretical DS cross section sigma(6p/sub 1/2/) follows our data satisfactorily, but the DS sigma(6s) and the DS ..beta..(6s) do not. Earlier experimental data for Pb are in satisfactory agreement with the present 5d and 6p data. A comparison of our Pb data with experimental data for Hg and relativistic random-phase approximation results for the 5d and 6s subshells of Hg shows a generally satisfactory accord.

  14. 1.5D quasilinear model and its application on beams interacting with Alfvén eigenmodes in DIII-D

    NASA Astrophysics Data System (ADS)

    Ghantous, K.; Gorelenkov, N. N.; Berk, H. L.; Heidbrink, W. W.; Van Zeeland, M. A.

    2012-09-01

    We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP pressure profile. Local theory is improved from previous study by including more sophisticated damping and drive mechanisms such as the numerical computation of the effect of the EP finite orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges #142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and #127112 [W. W. Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with the experimental results on the EP pressure profiles redistribution and measured losses. This agreement of the 1.5D model with experimental results allows the use of this code as a guide for ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as limited by the design.

  15. How do medical students value health on the EQ-5D? Evaluation of hypothetical health states compared to the general population

    PubMed Central

    Barbist, Maria-Theresa; Renn, Daniela; Noisternig, Bianca; Rumpold, Gerhard; Höfer, Stefan

    2008-01-01

    Background Medical students gain a particular perspective on health problems during their medical education. This article describes how medical students value 10 hypothetical health states using the EQ-5D compared to the general population. Methods Based on a sample of 161 medical students (male: 41%) we compared valuations of 10 hypothetical EQ-5D health states collected in face to face interviews with the valuations of the general population. Self-reported health on the EQ-5D was also collected. Results Every third health state was valuated higher by the medical students compared to data of the general population. The differences were independent of the severity of the hypothetical health state. Concerning the self-reported health, the majority of the students (66%) reported no problems in the five EQ-5D domains (EQ-5D VAS M = 87.3 ± 9.6 SD). However, when compared to an age-matched sample the medical students show significantly more problems in the area of pain/discomfort and anxiety/depression. Conclusion Medical students have a tendency to value health states higher than the general public. Medical professionals should be continuously aware that their assessment of the patients health state can differ from the valuations of the general population. PMID:19077240

  16. Bond lengths of 4f{sup 1} and 5d{sup 1} states of Ce{sup 3+} hexahalides

    SciTech Connect

    Barandiaran, Zoila; Edelstein, Norman M.; Ordejon, Belen; Ruiperez, Fernando; Seijo, Luis . E-mail: luis.seijo@uam.es

    2005-02-15

    Ligand and solvent effects on the bond length shift experienced by complexes of lanthanide ions upon 4f->5d excitation, addressed by means of ab initio embedded cluster calculations, are presented on the clusters (CeF{sub 6}){sup 3-}, (CeCl{sub 6}){sup 3-}, and (CeBr{sub 6}){sup 3-}in solid elpasolites, in liquid acetonitrile and in vacuo. Previous predictions of bond length shortening upon 4f->5d(t{sub 2g}) excitation seem to be general and, in particular, chloride and bromide compounds in liquid solution are predicted to be good candidates for excited-state EXAFS measurements of the distortion signs. A quantitative analysis of contributions to the bond length shifts is presented, which shows the importance of ligand field effects and points out insufficiencies in the Judd-Morrison model proposed to account for 4f->5d transitions in crystals.

  17. Luminescence from the 5D1,2,3 excited states of Eu3+ in Y4Al2O9 crystal

    NASA Astrophysics Data System (ADS)

    Kaczkan, Marcin

    2016-09-01

    The site-selective emission originating from 5D1,2,3 energy levels of Eu3+ in Y4Al2O9 (YAM) monoclinic bulk crystal is investigated. Energy and Stark splitting of excited states of europium in YAM are determined based on the low temperature absorption and emission spectra. Luminescence decays of three different sites of Eu3+ ions are measured as a function of temperature and europium concentration. The cross-relaxation among the Eu3+ ions are observed and discussed. Non-resonant mechanisms responsible for the temperature quenching of 5D1 emission are proposed.

  18. Doppler-free approach to optical pumping dynamics in the 6S_1/2‑5D_5/2 electric quadrupole transition of cesium vapor

    NASA Astrophysics Data System (ADS)

    Chan, Eng Aik; Aljunid, Syed Abdullah; Zheludev, Nikolay I.; Wilkowski, David; Ducloy, Martial

    2016-05-01

    The $6S_{1/2}-5D_{5/2}$ electric quadrupole transition is investigated in Cesium vapor at room temperature via nonlinear Doppler-free 6P-6S-5D three-level spectroscopy. Frequency-resolved studies of individual E2 hyperfine lines allow one to analyze optical pumping dynamics, polarization selection rules and line intensities. It opens the way to studies of transfer of light orbital angular momentum to atoms, and the influence of metamaterials on E2 line spectra.

  19. Doppler-free approach to optical pumping dynamics in the 6S_1/2-5D_5/2 electric quadrupole transition of cesium vapor

    NASA Astrophysics Data System (ADS)

    Chan, Eng Aik; Aljunid, Syed Abdullah; Zheludev, Nikolay I.; Wilkowski, David; Ducloy, Martial

    2016-05-01

    The $6S_{1/2}-5D_{5/2}$ electric quadrupole transition is investigated in Cesium vapor at room temperature via nonlinear Doppler-free 6P-6S-5D three-level spectroscopy. Frequency-resolved studies of individual E2 hyperfine lines allow one to analyze optical pumping dynamics, polarization selection rules and line intensities. It opens the way to studies of transfer of light orbital angular momentum to atoms, and the influence of metamaterials on E2 line spectra.

  20. The novel desmopressin analogue [V4Q5]dDAVP inhibits angiogenesis, tumour growth and metastases in vasopressin type 2 receptor-expressing breast cancer models

    PubMed Central

    GARONA, JUAN; PIFANO, MARINA; ORLANDO, ULISES D.; PASTRIAN, MARIA B.; IANNUCCI, NANCY B.; ORTEGA, HUGO H.; PODESTA, ERNESTO J.; GOMEZ, DANIEL E.; RIPOLL, GISELLE V.; ALONSO, DANIEL F.

    2015-01-01

    Desmopressin (dDAVP) is a safe haemostatic agent with previously reported antitumour activity. It acts as a selective agonist for the V2 vasopressin membrane receptor (V2r) present on tumour cells and microvasculature. The purpose of this study was to evaluate the novel peptide derivative [V4Q5]dDAVP in V2r-expressing preclinical mouse models of breast cancer. We assessed antitumour effects of [V4Q5]dDAVP using human MCF-7 and MDA-MB-231 breast carcinoma cells, as well as the highly metastatic mouse F3II cell line. Effect on in vitro cancer cell growth was evaluated by cell proliferation and clonogenic assays. Cell cycle distribution was analysed by flow cytometry. In order to study the effect of intravenously administered [V4Q5]dDAVP on tumour growth and angiogenesis, breast cancer xenografts were generated in athymic mice. F3II cells were injected into syngeneic mice to evaluate the effect of [V4Q5]dDAVP on spontaneous and experimental metastatic spread. In vitro cytostatic effects of [V4Q5]dDAVP against breast cancer cells were greater than those of dDAVP, and associated with V2r-activated signal transduction and partial cell cycle arrest. In MDA-MB-231 xenografts, [V4Q5]dDAVP (0.3 μg/kg, thrice a week) reduced tumour growth and angiogenesis. Treatment of F3II mammary tumour-bearing immunocompetent mice resulted in complete inhibition of metastatic progression. [V4Q5]dDAVP also displayed greater antimetastatic efficacy than dDAVP on experimental lung colonisation by F3II cells. The novel analogue was well tolerated in preliminary acute toxicology studies, at doses ≥300-fold above that required for anti-angiogenic/antimetastatic effects. Our data establish the preclinical activity of [V4Q5]dDAVP in aggressive breast cancer, providing the rationale for further clinical trials. PMID:25846632