Science.gov

Sample records for 5f electron states

  1. Challenges in superconductivity involving 5f electron states

    NASA Astrophysics Data System (ADS)

    Lander, G. H.

    2004-03-01

    The extent and variety of superconductivity in 5f electron systems has not been properly appreciated or investigated due to their scarcity, difficulty in handling, and (for transuranium materials) their self-heating. I will cover three examples of our current research effort. (1) Following the famous discovery of superconductivity at 18 K in PuCoGa5 we have now found the Rh analogue to be superconducting (9 K), and the Ir compound magnetic. Tc of both the Co and Rh compounds increase with pressure and exist still at 25 GPa. Particular attention will be given to experiments on the series AnCoGa5, with An = U, Np, Pu, and Am. (2) Am is superconducting at 0.8 K at ambient pressure and appears to be type-I with a low (Hc = 0.05 T) critical field. With increasing pressure the localized 5f states in Am become itinerant and Tc increases to 2.3 K, with Hc 1.3 T. We propose Am goes through a Mott transition at 7 GPa and the 5f states start to participate strongly in the superconductivity. (3) UPd2Al3 is an antiferromagnet (TN = 14 K) and exhibits a transition to bulk superconductivity at 2 K within the AF state. Using neutron inelastic scattering we have probed the low-energy excitations within the superfluid state, and show the results of new experiments using high magnetic fields (15 T) that do not destroy the AF state, but strongly modify the low-energy dynamics. The role of the strongly correlated 5f states in all these systems continues to present a challenge to our understanding of unconventional superconductivity. I acknowledge the work performed by many colleagues in both Karlsruhe and Grenoble: N. Bernhoeft, E. Blackburn, P. Boulet, E. Colineau, J-C. Griveau, A. Hiess, J. Rebizant, and F. Wastin.

  2. Beyond Spin-Orbit: Probing Electron Correlation in the Pu 5f States

    SciTech Connect

    Tobin, J G

    2006-05-08

    Experiments planned to address the issue of electron correlation in the Pu 5f states are described herein. The key is the utilization of the Fano Effect, the observation of spin polarization in nonmagnetic systems, using chiral excitation such as circularly polarized X-rays.

  3. Electronic Structure, Localization and 5f Occupancy in Pu Materials

    SciTech Connect

    Joyce, John J.; Beaux, Miles F.; Durakiewicz, Tomasz; Graham, Kevin S.; Bauer, Eric D.; Mitchell, Jeremy N.; Tobash, Paul H.; Richmond, Scott

    2012-05-03

    The electronic structure of delta plutonium ({delta}-Pu) and plutonium compounds is investigated using photoelectron spectroscopy (PES). Results for {delta}-Pu show a small component of the valence electronic structure which might reasonably be associated with a 5f{sup 6} configuration. PES results for PuTe are used as an indication for the 5f{sup 6} configuration due to the presence of atomic multiplet structure. Temperature dependent PES data on {delta}-Pu indicate a narrow peak centered 20 meV below the Fermi energy and 100 meV wide. The first PES data for PuCoIn5 indicate a 5f electronic structure more localized than the 5fs in the closely related PuCoGa{sub 5}. There is support from the PES data for a description of Pu materials with an electronic configuration of 5f{sup 5} with some admixture of 5f{sup 6} as well as a localized/delocalized 5f{sup 5} description.

  4. Magnetic properties of actinide elements having the 5f/sup 6/ and 5f/sup 7/ electronic configurations

    SciTech Connect

    Nave, S.E.; Haire, R.G.; Huray, P.G.

    1983-09-01

    Magnetic susceptibility measurements have been made on multimicrogram quantities of /sup 243/AmF/sub 3/, /sup 248/CmF/sub 4/, /sup 248/CmO/sub 2/, and /sup 248/CmBaO/sub 3/ samples (nominally the 5f/sup 6/ electronic configuration) and on /sup 248/Cm/sub 2/O/sub 3/, /sup 248/CmF/sub 3/, /sup 249/BkF/sub 4/, and /sup 249/BkO/sub 2/ (nominally the 5f/sup 7/ electronic configuration) in the temperature range 4.2--300 K and in magnetic fields up to 1650 G. The experimentally determined effective magnetic moments and the Curie-Weiss constants for these compounds are presented. The deviation of the moments for the 5f/sup 6/ compounds from those expected from classic theory is discussed in terms of low-lying excited states, chemical composition, crystal-field perturbations, and realistic electronic structure.

  5. Electronic structure of ThRu2Si2 studied by angle-resolved photoelectron spectroscopy: Elucidating the contribution of U 5 f states in URu2Si2

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Matsumoto, Yuji; Yamamoto, Etsuji; Tateiwa, Naoyuki; Haga, Yoshinori

    2017-09-01

    The electronic structure of ThRu2Si2 was studied using angle-resolved photoelectron spectroscopy (ARPES) with incident photon energies of h ν =655 -745 eV. Detailed band structure and the three-dimensional shapes of Fermi surfaces were derived experimentally, and their characteristic features were mostly explained by means of band-structure calculations based on density-functional theory. Comparison of the experimental ARPES spectra of ThRu2Si2 with those of URu2Si2 shows that they have considerably different spectral profiles, particularly in the energy range of 1 eV from the Fermi level, suggesting that U 5 f states are substantially hybridized in these bands. The relationship between the ARPES spectra of URu2Si2 and ThRu2Si2 is very different from the one between the ARPES spectra of CeRu2Si2 and LaRu2Si2 , where the intrinsic difference in their spectra is limited only in the very vicinity of the Fermi energy. The present result suggests that the U 5 f electrons in URu2Si2 have strong hybridization with ligand states and have an essentially itinerant character.

  6. Spin-orbit configuration interaction study of the electronic structure of the 5f (2) manifold of U(4+) and the 5f manifold of U(5+).

    PubMed

    Danilo, Cécile; Vallet, Valérie; Flament, Jean-Pierre; Wahlgren, Ulf

    2008-04-21

    The energy levels of the 5f configuration of U(5+) and 5f(2) configuration of U(4+) have been calculated in a dressed effective Hamiltonian relativistic spin-orbit configuration interaction framework. Electron correlation is treated in the scalar relativistic scheme with either the multistate multireference second-order multiconfigurational perturbation theory (MS-CASPT2) or with the multireference single and double configuration interaction (MRCI) and its size-extensive Davidson corrected variant. The CASPT2 method yields relative energies which are lower than those obtained with the MRCI method, the differences being the largest for the highest state (1)S(0) of the 5f(2) manifold. Both valence correlation effects and spin-orbit polarization of the outer-core orbitals are shown to be important. The satisfactory agreement of the results with experiments and four-component correlated calculations illustrates the relevance of dressed spin-orbit configuration interaction methods for spectroscopy studies of heavy elements.

  7. The degree of 5f electron localization in URu2Si2: electron energy-loss spectroscopy and spin-orbit sum rule analysis

    SciTech Connect

    Jeffries, J R; Moore, K T; Butch, N P; Maple, M B

    2010-05-19

    We examine the degree of 5f electron localization in URu{sub 2}Si{sub 2} using spin-orbit sum rule analysis of the U N{sub 4,5} (4d {yields} 5f) edge. When compared to {alpha}-U metal, US, USe, and UTe, which have increasing localization of the 5f states, we find that the 5f states of URu{sub 2}Si{sub 2} are more localized, although not entirely. Spin-orbit analysis shows that intermediate coupling is the correct angular momentum coupling mechanism for URu{sub 2}Si{sub 2} when the 5f electron count is between 2.6 and 2.8. These results have direct ramifications for theoretical assessment of the hidden order state of URu{sub 2}Si{sub 2}, where the degree of localization of the 5f electrons and their contribution to the Fermi surface are critical.

  8. Probing ultrafast dynamics of 5f electrons in crystalline UO2

    SciTech Connect

    An, Yong Q; Taylor, Antoinette J; Durakiewicz, Tomasz; Rodriguez, George

    2010-01-01

    The electronic structure and ultrafast dynamics of photoexcited carriers of Mott insulators attracts considerable attention in modern condensed matter physics. Cubic structured UO{sub 2} is a model system for understanding the physics of strongly correlated electrons in Mott insulators. Its 5f electrons may produce special electronic states and dynamics because of their complex nature. It shows an anti ferromagnetic transition at T{sub N} = 30.8 K. Several recent theoretical works have predicted the ground states and Mott characteristics of crystalline UO{sub 2}. It is believed that the band gap of UO{sub 2} is on the order of {approx} 2 eV and excitations across the gap are of the f-f character. We have performed ultrafast optical studies of carrier dynamics related to the Mott gap and its Hubbard bands with femtosecond pump-probe transient reflection measurements. From pump-probe reflectance measurements, we find the lifetimes of photoexcited 5f electrons in crystalline UO{sub 2}, {approx} 1.2 ns for midgap states and {approx} 2 {mu}s for upper Hubbard band states at low temperatures, and identify magnetic transitions.

  9. Electrical resistivity of 5 f -electron systems affected by static and dynamic spin disorder

    NASA Astrophysics Data System (ADS)

    Havela, L.; Paukov, M.; Buturlim, V.; Tkach, I.; Drozdenko, D.; Cieslar, M.; Mašková, S.; Dopita, M.; Matěj, Z.

    2017-06-01

    Metallic 5 f materials have very strong coupling of magnetic moments and electrons mediating electrical conduction. It is caused by strong spin-orbit interaction, coming with high atomic number Z , together with involvement of the 5 f states in metallic bonding. We have used the recently discovered class of uranium (ultra)nanocrystalline hydrides, which are ferromagnets with high ordering temperature, to disentangle the origin of negative temperature coefficient of electrical resistivity. In general, the phenomenon of electrical resistivity decreasing with increasing temperature in metals can have several reasons. The magnetoresistivity study of these hydrides reveals that quantum effects related to spin-disorder scattering can explain the resistivity behavior of a broad class of actinide compounds.

  10. Probing the 5f electrons: A relativistic DFT study of americium surfaces

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik Pankajkumar

    Surface chemistry and physics have been and continues to be very active fields of research because of the obvious scientific and technological implications and consequent importance of such research. One of the many motivations for this burgeoning effort has been the desire to understand surface corrosion, metallurgy and catalytic activity in order to address environmental concerns. In particular, such efforts are important for a group of strongly correlated and heavy fermion systems like the actinides, for which experimental work is relatively difficult to perform due to material problems and toxicity. These metals are among the most complex of the long-lived elements, and in their solid state, they display some of the most unusual behaviors of any series in the periodic table, including very low melting temperatures, large anisotropic thermal expansion coefficients, very low symmetry crystal structures, and many solid-to-solid phase transitions. Radioactive and highly electropositive, the actinides are characterized by the gradual filling of the 5f electron shell with the degree of localization increasing with the atomic number Z along the last series of the periodic table and are divided into two subgroups. The first subgroup consisting of Th to Pu, where the atomic volumes decrease with increasing 5f electron population, generally consists of delocalized 5f electrons. The second subgroup starting from Am onwards, shows increasing atomic volume with increasing 5f electrons, with the 5f electrons being localized. The open shell of the 5f electrons determines the magnetic and solid state properties of the actinide elements and their compounds. However, these properties of the actinides, particularly the transuranium actinides, are still not clearly understood. This stems primarily from the inherent difficulty in understanding the behavior of the 5 f electrons, whose spatial extent and tendency to interact with electrons on ligand sites gives rise to the chemically

  11. Probing the population of the spin-orbit split levels in the actinide 5f states.

    PubMed

    Moore, K T; van der Laan, G; Tobin, J G; Chung, B W; Wall, M A; Schwartz, A J

    2006-03-01

    Spin-orbit interaction in the 5f states is believed to strongly influence exotic behaviors observed in actinide metals and compounds. Understanding these interactions and how they relate to the actinide series is of considerable importance. To address this issue, the branching ratio of the white-line peaks of the N4,5 edge for the light actinide metals, alpha-Th, alpha-U, and alpha-Pu were recorded using electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM) and synchrotron-radiation-based X-ray absorption spectroscopy (XAS). Using the spin-orbit sum rule and the branching ratios from both experimental spectra and many-electron atomic spectral calculations, accurate values of the spin-orbit interaction, and thus the relative occupation of the j = 5/2 and 7/2 levels, are determined for the actinide 5f states. Results show that the spin-orbit sum rule works very well with both EELS and XAS spectra, needing little or no correction. This is important, since the high spatial resolution of a TEM can be used to overcome the problems of single-crystal growth often encountered with actinide metals, allowing acquisition of EELS spectra, and subsequent spin-orbit analysis, from nm-sized regions. The relative occupation numbers obtained by our method have been compared with recent theoretical results and they show a good agreement in their trend.

  12. Electron correlation and relativity of the 5f electrons in the U-Zr alloy system

    NASA Astrophysics Data System (ADS)

    Söderlind, P.; Sadigh, B.; Lordi, V.; Landa, A.; Turchi, P. E. A.

    2014-01-01

    ] and VASP [4] codes. The Wien2K computations are set up with an APW + lo basis for the expansion of the wave functions within the muffin-tin spheres (with radius RMT = 2.5 a.u.) in partial waves with angular momenta up to l = 3, and an LAPW basis for all higher angular momenta up to l = 10. The plane-wave cutoff (Kmax) for the expansion of the wave functions in the interstitial region is chosen such that RMT × Kmax = 10. We apply the LSDA + U scheme proposed by Anisimov et al. [5] (Wien2K) and Dudarev et al. [6] (VASP) to the uranium f orbitals, which approximately corrects for their electron self interaction. An effective Ueff = U - J is chosen to be 2 eV (J = 0), which appears to be realistic for uranium systems [7]. The spin-orbit interaction is included using the second-variation method with scalar-relativistic orbitals as basis. This basis includes all Eigen states with energy less than 70 eV. For reason to improve the description of the relativistic orbitals, the p1/2 local orbitals are added to the basis set. For actinide metals, this technique for the spin-orbit coupling equals, with good approximation, that of the complete four-spinor Dirac formalism [8-10]. All calculations use a 12 × 12 × 12 Monkhorst-Pack k-point grid and a plane-wave cutoff of 23 Ry.In Table 1 we show our calculated equilibrium volumes (V) and bulk moduli (B) obtained with and without spin-orbit coupling (SOC) for bcc (γ) uranium metal using the Wien2K (VASP) codes. (The other component, Zr, is a light metal where relativistic effects are not important). The changes in V and B due to SOC are indeed quite small, consistent with results from previous studies [9,11], and within the scatter of the experimental data. The reason why the volume expands slightly is that the separation of the 5f5/2 and 5f7/2 states, due to spin-orbit coupling, weakens the cohesion of the bonding electrons. The separation is very small, as seen in Fig. 1[11] where we plot the total electronic density-of-states

  13. 5f band dispersion in the highly correlated electronic structure of uranium compounds

    NASA Astrophysics Data System (ADS)

    Moore, D. P.; Joyce, J. J.; Arko, A. J.; Morales, L.; Sarrao, J.

    2000-07-01

    Despite the fact that the 5f shell of the light actinides is less than half filled, the relatively short radial extent of 5f-electron wave functions yields at most minimal f-f overlap (the critical actinide-actinide spacing for which f-f overlap is no longer viable was first quantified by H. Hill and found to be 3.4 Å. The spacing for both USb2 and UAsSe is about 4.5. Å) and results in a myriad of phenomena collectively called correlated electron behavior. We present data from angle resolved photoemission studies of USb2 and UAsSe on correlated electron behavior.

  14. Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom model

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Wang, Zhigang

    2016-08-01

    5f-elements encaged in a gold superatomic cluster are capable of giving rise to unique optical properties due to their hyperactive valence electrons and great radial components of 5f/6d orbitals. Herein, we review our first-principles studies on electronic structures and spectroscopic properties of a series of actinide-embedded gold superatomic clusters with different dimensions. The three-dimensional (3D) and two-dimensional (2D) superatom clusters possess the 18-electron configuration of 1S21P61D10 and 10-electron configuration of 1S21P41D4, respectively. Importantly, their electronic absorption spectra can also be effectively explained by the superatom orbitals. Specifically, the charge transfer (CT) transitions involved in surface-enhance Raman spectroscopy (SERS) spectra for 3D and 2D structures are both from the filled 1D orbitals, providing the enhancement factors of the order of ˜ 104 at 488 nm and ˜ 105 at 456 nm, respectively. This work implies that the superatomic orbital transitions involved in 5f-elements can not only lead to a remarkable spectroscopic performance, but also a new direction for optical design in the future. Project supported by the National Natural Science Foundation of China (Grant No. 11374004), the Science and Technology Development Program of Jilin Province, China (Grant No. 20150519021JH), the Fok Ying Tung Education Foundation, China (Grant No. 142001), and the Support from the High Performance Computing Center (HPCC) of Jilin University, China.

  15. Electron Attachment and Detachment, and the Electron Affinities of C(5)F(5)N and C(5)HF(4)N

    DTIC Science & Technology

    2005-09-19

    detachment rate at 303 K was 520 ± 180 s-1. The attachment/detachment equilibrium yielded experimental electron affinities EA(CsF 5N) = 0.70-0.05 eV and EA...are in good agreement with the present experimental results. 15. SUBJECT TERMS Electron attachment Electron affinity Electron detachment Rate constant...attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5 N)=0.70±0.05 eV and EA(2,3,5,6-C5HF 4N)=0.40±0.08 eV. Electronic

  16. Itinerant ferromagnetism in actinide 5 f -electron systems: Phenomenological analysis with spin fluctuation theory

    NASA Astrophysics Data System (ADS)

    Tateiwa, Naoyuki; Pospíšil, Jiří; Haga, Yoshinori; Sakai, Hironori; Matsuda, Tatsuma D.; Yamamoto, Etsuji

    2017-07-01

    We have carried out an analysis of magnetic data in 69 uranium, 7 neptunium, and 4 plutonium ferromagnets with the spin fluctuation theory developed by Takahashi [Y. Takahashi, J. Phys. Soc. Jpn. 55, 3553 (1986), 10.1143/JPSJ.55.3553]. The basic and spin fluctuation parameters of the actinide ferromagnets are determined and the applicability of the spin fluctuation theory to actinide 5 f system has been discussed. Itinerant ferromagnets of the 3 d transition metals and their intermetallics follow a generalized Rhodes-Wohlfarth relation between peff/ps and TC/T0 , viz., peff/ps∝(TC/T0) -3 /2 . Here, ps, peff, TC, and T0 are the spontaneous and effective magnetic moments, the Curie temperature, and the width of spin fluctuation spectrum in energy space, respectively. The same relation is satisfied for TC/T0<1.0 in the actinide ferromagnets. However, the relation is not satisfied in a few ferromagnets with TC/T0˜1.0 that corresponds to local moment system in the spin fluctuation theory. The deviation from the theoretical relation may be due to several other effects not included in the spin fluctuation theory such as the crystalline electric field effect on the 5 f electrons from ligand atoms. The value of the spontaneous magnetic moment ps increases linearly as a function of TC/T0 in the uranium and neptunium ferromagnets below (TC/T0)kink=0.32 ±0.02 , where a kink structure appears in relation between the two quantities. ps increases more weakly above (TC/T0)kink. A possible interpretation with the TC/T0 dependence of ps is given.

  17. Electron attachment and detachment, and the electron affinities of C5F5N and C5HF4N

    NASA Astrophysics Data System (ADS)

    Van Doren, Jane M.; Kerr, Donna M.; Miller, Thomas M.; Viggiano, A. A.

    2005-09-01

    Rate constants have been measured for electron attachment to C5F5N (297-433K) and to 2,3,5,6-C5HF4N (303K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8±0.5×10-7 and 7±3×10-10cm-3s-1, respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530±890s-1 at 433K. For 2,3,5,6-C5HF4N-, the detachment rate at 303K was 520±180s-1. The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N )=0.70±0.05eV and EA(2,3,5,6-C5HF4N )=0.40±0.08eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)‖B3LYP compound method. The EAs are found to decrease by 0.25eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.

  18. Electron attachment and detachment, and the electron affinities of C5F5N and C5HF4N.

    PubMed

    Van Doren, Jane M; Kerr, Donna M; Miller, Thomas M; Viggiano, A A

    2005-09-15

    Rate constants have been measured for electron attachment to C5F5N (297-433 K) and to 2, 3, 5, 6-C5HF4N (303 K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133 Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8 +/- 0.5 X 10(-7) and 7 +/- 3 X 10(-10) cm(-3) s(-1), respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530 +/- 890 s(-1) at 433 K. For 2, 3, 5, 6-C5HF4N-, the detachment rate at 303 K was 520 +/- 180 s(-1). The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N)=0.70 +/- 0.05 eV and EA(2, 3, 5, 6-C5HF4N)=0.40 +/- 0.08 eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)//B3LYP compound method. The EAs are found to decrease by 0.25 eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.

  19. Localized 5f electrons in superconducting PuCoIn₅: consequences for superconductivity in PuCoGa₅.

    PubMed

    Bauer, E D; Altarawneh, M M; Tobash, P H; Gofryk, K; Ayala-Valenzuela, O E; Mitchell, J N; McDonald, R D; Mielke, C H; Ronning, F; Griveau, J-C; Colineau, E; Eloirdi, R; Caciuffo, R; Scott, B L; Janka, O; Kauzlarich, S M; Thompson, J D

    2012-02-08

    The physical properties of the first In analog of the PuMGa(5) (M = Co, Rh) family of superconductors, PuCoIn(5), are reported. With its unit cell volume being 28% larger than that of PuCoGa(5), the characteristic spin-fluctuation energy scale of PuCoIn(5) is three to four times smaller than that of PuCoGa(5), which suggests that the Pu 5f electrons are in a more localized state relative to PuCoGa(5). This raises the possibility that the high superconducting transition temperature T(c) = 18.5 K of PuCoGa(5) stems from the proximity to a valence instability, while the superconductivity at T(c) = 2.5 K of PuCoIn(5) is mediated by antiferromagnetic spin fluctuations associated with a quantum critical point.

  20. Pou5f3.2-induced proliferative state of embryonic cells during gastrulation of Xenopus laevis embryo.

    PubMed

    Nishitani, Eriko; Li, Chong; Lee, Jaehoon; Hotta, Hiroyo; Katayama, Yuta; Yamaguchi, Masahiro; Kinoshita, Tsutomu

    2015-12-01

    POU class V (POU-V) transcription factors play the important role in maintenance of pluripotency and cell differentiation. Pou5f3.2 (Oct25), one of Xenopus POU-V transcription factors, shows the zygotic expression prior to gastrulation. In order to know the molecular mechanism of pou5f3.2 expression at gastrula stage, we examined a responsiveness of pou5f3.2 to Nodal signaling. Animal cap assay demonstrated that Xnr2 activates the gene expression of pou5f3.2. In comparative analysis of the 5'-flanking region of pou5f3.2 between Xenopus laevis and X. tropicalis, two conserved regions were detected within the flanking region. Reporter analyses showed that one of the conserved regions contained an enhancer region, which had several Smad2/3 and FoxH1 binding motifs. ChIP assay demonstrated that Smad2 binds to the enhancer region. These results suggest that Nodal signaling induces zygotic expression of pou5f3.2 at gastrula stage. To understand a role of pou5f3.2 in gastrula embryos, morpholino oligo DNA of pou5f3.2 was injected into the lateral side of one blastomere at the 2-cell stage. The morphant embryos showed diminution of Xbra1 expression and gastrulation defect in the injection side, suggesting the essential role of pou5f3.2 at the gastrula stage. Xbra1 expression and gastrulation were also inhibited by injecting with the synthesized RNAs of pou5f3.2. Furthermore, in the pou5f3.2-injected embryo, gene expression of p27Xic1 was drastically suppressed, and the number of dividing cells increased in the injection side. These results suggest that one role of pou5f3.2 is to keep the embryonic cells in undifferentiated and proliferative state during gastrulation.

  1. Adsorption of 5f-electron atoms (ThCm) on graphene surface: An all-electron ZORA-DFT study.

    PubMed

    Du, Jiguang; Jiang, Gang

    2017-12-15

    All-electron calculations were performed to investigate the adsorption of 5f-electron atoms (An=ThCm) on graphene surface. The hollow site is energetically preferred for the An-graphene complexes studied. The interaction strengths between An and C decrease in the order of Th>Pa>U>Np>Pu>Cm>Am. The AnC interactions show predominately closed-shell characteristics, meanwhile ThC chemical bond formed through orbital overlaps of Th (6d) and C (2p) possesses partial covalent nature. The participation of 6d(5f)-electron into bonding orbitals are gradually weakened (enhanced) from Th to Pu because the 5f electrons are more and more diffuse. The physisorption nature of Am on graphene was observed by the weak orbital overlaps between Am (6d) and C(2p) and the half-fill 5f occupancy. The magnetic moments of An-graphene species are mainly derived from the 5f-electron due to its high delocalization. The molecular orbital (MO) and charge decomposition analysis (CDA) indicate that the 6d orbitals of An atoms play a more important role in participation of bonds relative to the 5f orbital, as well as the strong linear correlation between 6d occupancy numbers and adsorption energy highlights the significant role of 6d-electron of An in the interaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Observation of 5f states in U/W (110) films by means of scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Berbil-Bautista, Luis; Hänke, Torben; Getzlaff, Mathias; Wiesendanger, Roland; Opahle, Ingo; Koepernik, Klaus; Richter, Manuel

    2004-09-01

    We have performed scanning tunneling spectroscopy (STS) investigations on clean metallic uranium epitaxially grown on the (110) surface of a tungsten single crystal at room temperature. This system is known to exhibit an hcp phase with the band structure close to the Fermi level dominated by 5f states. The STS spectra are found to be in good agreement with the results of relativistic band structure calculations based on the local density approximation. The calculated density of states of the Uranium film indicates that the features in the STS spectra are related to 5f -states.

  3. Influence of cell physiological state on gene delivery to T lymphocytes by chimeric adenovirus Ad5F35

    PubMed Central

    Zhang, Wen-feng; Shao, Hong-wei; Wu, Feng-lin; Xie, Xin; Li, Zhu-Ming; Bo, Hua-Ben; Shen, Han; Wang, Teng; Huang, Shu-lin

    2016-01-01

    Adoptive transfer of genetically-modified T cells is a promising approach for treatment of both human malignancies and viral infections. Due to its ability to efficiently infect lymphocytes, the chimeric adenovirus Ad5F35 is potentially useful as an immunotherapeutic for the genetic modification of T cells. In previous studies, it was found that the infection efficiency of Ad5F35 was significantly increased without enhanced expression of the viral receptor after T cell stimulation; however, little is known about the underlying mechanism. Nonetheless, cell physiology has long been thought to affect viral infection. Therefore, we aimed to uncover the physiologic changes responsible for the increased infection efficiency of Ad5F35 following T cell stimulation. Given the complexity of intracellular transport we analyzed viral binding, entry, and escape using a Jurkat T cell model and found that both cell membrane fluidity and endosomal escape of Ad5F35 were altered under different physiological states. This, in turn, resulted in differences in the amount of virus entering cells and reaching the cytoplasm. These results provide additional insight into the molecular mechanisms underlying Ad5F35 infection of T cells and consequently, will help further the clinical application of genetically-modified T cells for immunotherapy. PMID:26972139

  4. Probing 5f -state configurations in URu2Si2 with U LIII -edge resonant x-ray emission spectroscopy

    DOE PAGES

    Booth, C. H.; Medling, S. A.; Tobin, J. G.; ...

    2016-07-15

    Resonant x-ray emission spectroscopy (RXES) was employed at the U LIII absorption edge and the Lα1 emission line to explore the 5f occupancy, nf, and the degree of 5f-orbital delocalization in the hidden-order compound URu2Si2. By comparing to suitable reference materials such as UF4, UCd11, and α-U, we conclude that the 5f orbital in URu2Si2 is at least partially delocalized with nf=2.87±0.08, and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring a localized f2 ground state.

  5. Response to letter "Electron correlation and relativity of the 5f electrons in the Usbnd Zr alloy system"

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Marianetti, Chris A.; Morgan, Dane

    2016-08-01

    In the Letter [Söderlind et al., J. Nucl. Mater. 444, 356 (2014)], Söderlind et al. state their interpretation that 1) we view electron correlation to be strong and including spin-orbit coupling (SOC) to be necessary for U metal and Usbnd Zr alloy in our article [Xiong et al., J. Nucl. Mater. 443, 331 (2013)]. Further, they argue that 2) density functional theory (DFT) without adding the Hubbard U potential, especially when solved using all electron methods, already models U and Usbnd Zr accurately, and 3) adding the Hubbard U potential to DFT in DFT + U models U and Usbnd Zr worse than DFT according to volume, bulk modulus, and magnetic moments predicted from their calculations of the γU phase of elemental U metal. With respect to Söderlind et al.'s interpretation 1), we clarify that our opinions are that U and Usbnd Zr are not strongly, but weakly to moderately correlated and that including SOC is beneficial but not necessary for modeling most ground state properties of U and Usbnd Zr. With respect to Söderlind et al.'s argument 2) we demonstrate that previously neglected and very recent experimental data suggest that DFT in Söderlind's full-potential linear muffin-tin orbital calculations [Söderlind, Phys. Rev. B 66, 085113 (2002)] in fact models the bulk modulus and elastic constants of αU with errors considerably larger than other related elements, e.g., most transition metals. With respect to Söderlind et al.'s argument 3) we argue that they have inappropriately focused on just one phase (the BCC γU phase of U metal), neglecting the other phases which represent the majority of our evidence, and made overgeneralizations based on results at only one Ueff value of 2 eV. We therefore maintain our original conclusion that the accuracy of DFT for modeling U and Usbnd Zr has room for improvement and DFT + U can be of value for this purpose on at least some ground state properties.

  6. Geometry and electronic structure of impurity-trapped excitons in Cs2GeF6:U4+ crystals. The 5f17s1 manifold.

    PubMed

    Ordejón, Belén; Seijo, Luis; Barandiarán, Zoila

    2007-05-21

    Excitons trapped at impurity centers in highly ionic crystals were first described by McClure and Pedrini [Phys. Rev. B 32, 8465 (1985)] as excited states consisting of a bound electron-hole pair with the hole localized on the impurity and the electron on nearby lattice sites, and a very short impurity-ligand bond length. In this work the authors present a detailed microscopic characterization of impurity-trapped excitons in U(4+)-doped Cs(2)GeF(6). Their electronic structure has been studied by means of relativistic ab initio model potential embedded cluster calculations on (UF(6))(2-) and (UF(6)Cs(8))(6+) clusters embedded in Cs(2)GeF(6), in combination with correlation methods based on multireference wave functions. The local geometry of the impurity-trapped excitons, their potential energy curves, and their multielectronic wave functions have been obtained as direct, nonempirical results of the methods. The calculated excited states appear to be significantly delocalized outside the UF(6) volume and their U-F bond length turns out to be very short, closer to that of a pentavalent uranium defect than to that of a tetravalent uranium defect. The wave functions of these excited states show a dominant U 5f(1)7s(1) configuration character. This result has never been anticipated by simpler models and reveals the unprecedented ability of diffuse orbitals of f-element impurities to act as electron traps in ionic crystals.

  7. Design, fabrication, and evaluation of a 5 F-5 V prototype of solid-state PANI based supercapacitor

    NASA Astrophysics Data System (ADS)

    Khandpekar, M. M.; Kushwaha, R. K.; Pati, S. P.

    2011-08-01

    A 5 F-5 V prototype of solid state supercapacitor based on polymer electrolyte (PANI) and XSPEEK composing of six single cells stacked in series has been fabricated. The scale-up from a small single cell to a larger stack prototype of a solid-state electrochemical supercapacitor is discussed in this paper. The developed prototype showed a higher series resistance than estimated in our previous study on individual cell supercapacitor. The fabricated prototype achieved a specific capacitance of 480 F/g. The assembled capacitor has been characterized by cyclic voltammetry, impedance spectroscopy and galvanostatic charging/discharging. The performances of the electrodes have been compared with that of the single cell electrodes of area 4 cm 2.

  8. Electron-phonon superconductivity in LaO{sub 0.5}F{sub 0.5}BiSe{sub 2}

    SciTech Connect

    Feng, Yanqing; Du, Yongping; Wan, Xiangang Wang, Bogen; Ding, Hang-Chen; Savrasov, Sergey Y.; Duan, Chun-Gang

    2014-06-21

    We report density functional calculations of the electronic structure, Fermi surface, phonon spectrum and electron–phonon coupling for the newly discovered superconductor LaO{sub 0.5}F{sub 0.5}BiSe{sub 2}. It is confirmed that there is a strong Fermi surface nesting at (π,π,0), which results in unstable phonon branches. Combining the frozen phonon total energy calculations and an anharmonic oscillator model, we find that the quantum fluctuation prevents the appearance of static long–range order. The calculation shows that LaO{sub 0.5}F{sub 0.5}BiSe{sub 2} is highly anisotropic, and same as its cousin LaO{sub 0.5}F{sub 0.5}BiS{sub 2}, this compound is also a conventional electron-phonon coupling induced superconductor.

  9. Gas-phase reactions of doubly charged actinide cations with alkanes and alkenes--probing the chemical activity of 5f electrons from Th to Cm.

    PubMed

    Marçalo, Joaquim; Santos, Marta; Gibson, John K

    2011-11-07

    Small alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) were used to probe the gas-phase reactivity of doubly charged actinide cations, An(2+) (An = Th, Pa, U, Np, Pu, Am, Cm), by means of Fourier transform ion cyclotron resonance mass spectrometry. Different combinations of doubly and singly charged ions were observed as reaction products, comprising species formed via metal-ion induced eliminations of small molecules, simple adducts and ions resulting from electron, hydride or methide transfer channels. Th(2+), Pa(2+), U(2+) and Np(2+) preferentially yielded doubly charged products of hydrocarbon activation, while Pu(2+), Am(2+) and Cm(2+) reacted mainly through transfer channels. Cm(2+) was also capable of forming doubly charged products with some of the hydrocarbons whereas Pu(2+) and Am(2+) were not, these latter two ions conversely being the only for which adduct formation was observed. The product distributions and the reaction efficiencies are discussed in relation to the electronic configurations of the metal ions, the energetics of the reactions and similar studies previously performed with doubly charged lanthanide and transition metal cations. The conditions for hydrocarbon activation to occur as related to the accessibility of electronic configurations with one or two 5f and/or 6d unpaired electrons are examined and the possible chemical activity of the 5f electrons in these early actinide ions, particularly Pa(2+), is considered. This journal is © the Owner Societies 2011

  10. Fermi energy 5f spectral weight variation in uranium alloys

    SciTech Connect

    Denlinger, J.D.; Clack, J.; Allen, J.W.

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varying degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.

  11. Probing the magnetic 5f density of states above the Fermi level in metallic uranium compounds by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    de Réotier, P. Dalmas; Yaouanc, A.; van der Laan, G.; Kernavanois, N.; Sanchez, J.-P.; Smith, J. L.; Hiess, A.; Huxley, A.; Rogalev, A.

    1999-10-01

    We present x-ray magnetic circular dichroism (XMCD) measurements performed at the uranium M4,5 edges of the heavy-fermion superconductors UBe13 and UPt3. Unexpectedly, the dichroic signal at the M5 edge exhibits a double-lobe structure, comprised of a positive and negative peak. Therefore, out of the eight metallic uranium compounds so far investigated by XMCD, five exhibit a single-lobe and three a double-lobe structure at the M5 edge. The existence of this structure points to the importance of the influence of the hybridization, Coulomb and exchange, and crystal-field interactions. The observed line shape can be used to access the magnetic character of the j=7/2 level of the empty 5f density of states.

  12. Energy up-conversion and trapping: Dynamics of 5f states of Bk sup 4+ in CeF sub 4

    SciTech Connect

    Liu, G.K.; Beitz, J.V.

    1991-01-01

    Energy transfer mechanisms of excited 5f states of Bk{sup 4+} (0.05 atom %) in CeF{sub 4} containing circa 0.95 atom % Cf{sup 4+} have been investigated at 4 K. The observed anti-Stokes fluorescence arises from both up-conversion and two-photon excitation. Nonexponential decays of Stokes fluorescence are ascribed to both excitation-excitation annihilation and site-dependent trapping processes and, therefore, are not describable by the Inokuti-Hirayama or exciton annihilation models. Based on the Forster-Dexter energy transfer theory, a new model is developed to fit the observed fluorescence decay data. 16 refs., 3 figs.

  13. Photophysical Dynamics and Relaxation Pathways of Ligand-to-Metal Charge-Transfer States in the 5f(1) [Np(VI)O2Cl4](2-) Anion.

    PubMed

    Barker, Beau J; Berg, John M; Kozimor, Stosh A; Wozniak, Nicholas R; Wilkerson, Marianne P

    2017-03-30

    Although several publications report on the electronic structure of the neptunyl ion, experimental measurements to detail the photophysical dynamics of this open-shell actinyl system are limited in number. Time-resolved photoluminescence has been a useful experimental approach for understanding photophysical dynamics and relaxation pathways of a variety of other molecular and ionic systems, including gaseous plutonium hexafluoride and solid-state uranyl compounds. Here, we investigate time-resolved photoluminescence emission of the 5f(1) neptunyl tetrachloride ([Np(VI)O2Cl4](2-)) dianion following visible excitation. Photoemission of the lowest energy neptunyl ligand-to-metal charge-transfer (LMCT) transitions to both the ground and first electronically excited states is observed. Analyses of the decay lifetimes of the excited states suggest different relaxation pathways as a function of excitation energy. Vibronic progressions associated with the Np-oxo symmetric stretching mode are measured in emission spectra, and the energies from these progressions are compared with energies of vibronic progressions associated with the excitation spectra of [Np(VI)O2Cl4](2-). This study expands our understanding of this open-shell actinyl system beyond identification of excited states, allowing characterization of photophysical properties and evidence for the electronic character of the ground state, and suggests that this approach may be applicable to more complex actinide systems.

  14. 5f3 --> 5f 26d1 absorption spectrum analysis of U3+-SrCl2.

    PubMed

    Karbowiak, Mirosław

    2005-04-28

    The 5f3--> 5f26d1 absorption spectra of the U3+ ions incorporated in SrCl2 single crystals were recorded at 4.2 K in the 15,000-50,000 cm(-1) spectral range. From an analysis of the vibronic structure, 32 zero-phonon lines corresponding to transitions from the 4I9/2 ground multiplet of the 5f3 configuration to the 5f26d(eg)1 excited levels were assigned. A theoretical model proposed by Reid et al. (Reid, H. F.; van Pieterson, L.; Wegh, R. T.; Meijerink, A. Phys. Rev. B 2000, 62, 14744) that extends the established model for energy-level calculations of nf N states has been applied for analysis of the spectrum. The Fk(ff) (k = 2, 4), zeta(5f)(ff), B0(4)(ff), B0(6)(ff), Fk(fd) (k = 2, 4), and Gj(fd) (j = 1, 3) Hamiltonian parameters were determined by a least-squares fitting of the calculated energies to the experimental data. A good overall agreement between the calculated and experimentally observed energy levels has been achieved, with the root-mean-square (rms) deviation equal to 95 cm(-1) for 32 fitted levels and 9 varied parameters. Adjusted values of Fk(ff) and zeta(5f)(ff) parameters for the 5f2 core electrons are closer to the values characteristic of the 5f2 (U4+) configuration than to those of the 5f3 (U3+) configuration. For the U3+ ion, the f-d Coulomb interaction parameters are significantly more reduced from the values calculated using Cowan's computer code than they are for lanthanide ions. Moreover, because of weaker f-d Coulomb interactions for the U3+ ion than for the isoelectronic Nd3+ lanthanide ion, the very simple model assuming the coupling of crystal-field levels of the 6d1 electron with the lattice and the multiplet structure of the 5f2 configuration may be employed for the qualitative description of the general structure of the U3+ ion f-d spectrum.

  15. Rampant changes in 5f 5/2 and 5f 7/2 filling across the light and middle actinide metals

    SciTech Connect

    Moore, K; der Lann, G v; Wall, M; Schwartz, A; Haire, R

    2007-04-03

    We examine the branching ratio of the N{sub 4,5} (4d {yields} 5f ) spectra of Th, U, Np, Pu, Am, and Cm metal using electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM), together with many-electron atomic spectral calculations and the spin-orbit sum rule. Our results show that: (1) The actinide metals Pu, Am, and Cm exhibit intermediate coupling. (2) The intermediate coupling values for the 5f states as calculated using a many-electron atomic model are correct for the actinides, this being proven by our new results for curium. (3) The EELS branching ratio is sensitive to the degree of 5f electron delocalization, which is illustrated by the transition from LS to intermediate coupling between U and Pu.

  16. Electronic energy states

    NASA Technical Reports Server (NTRS)

    1976-01-01

    One-electron wave functions are reviewed and approximate solutions of two-electron systems are given in terms of these one-electron functions. The symmetry effects associated with electron spin are reviewed and the effects of electron exchange on energy levels of the two-electron system are given. The coupling of electronic orbital and spin angular momentum is considered next and the Lande interval rule for Russell-Saunders or LS coupling is derived. The configurations possible for various multi-electron LS couplings are enumerated (examples from the first two rows of the periodic table are given), and the meaning of the spectroscopic nomenclature is discussed, particularly with respect to the degeneracies of the electron states involved. Next the nomenclature, symmetries, and degeneracies for electron states of diatomic molecules are discussed, and some examples for N2, O2, and NO are presented. The electronic partition functions and derivative thermodynamic properties are expressed in terms of these energies and degeneracies, and examples are given for some of the simple gas species encountered in the earth's atmosphere.

  17. Electronic states of WH

    NASA Astrophysics Data System (ADS)

    Ma, Zhongxin; Balasubramanian, K.

    1991-07-01

    Spectroscopic constants and potential energy curves of 15 electronic states of WH are obtained using the complete-active-space multi-configuration self-consistent field (CAS MCSCF) followed by full second-order configuration-interaction (SOCI) calculations. The spin-orbit effects are introduced using the relativistic-configuration-interaction (RCI) method. Our computations confirm the assignment of the observed emission spectrum at 6800 Å but yield different vibrational frequencies for the two observed states.

  18. The 5f2-->5f16d1 absorption spectrum of Cs2GeF6:U4+ crystals: A quantum chemical and experimental study.

    PubMed

    Ordejón, Belén; Karbowiak, Miroslaw; Seijo, Luis; Barandiarán, Zoila

    2006-08-21

    Single crystals of U(4+)-doped Cs2GeF6 with 1% U4+ concentration have been obtained by the modified Bridgman-Stockbarger method in spite of the large difference in ionic radii between Ge4+ and U4+ in octahedral coordination. Their UV absorption spectrum has been recorded at 7 K, between 190 and 350 nm; it consists of a first broad and intense band peaking at about 38,000 cm(-1) followed by a number of broad bands of lower intensity from 39,000 to 45,000 cm(-1). None of the bands observed shows appreciable fine vibronic structure, so that the energies of experimental electronic origins cannot be deduced and the assignment of the experimental spectrum using empirical methods based on crystal field theory cannot be attempted. Alternatively, the profile of the absorption spectrum has been obtained theoretically using the U-F bond lengths and totally symmetric vibrational frequencies of the ground 5f2 - 1A(1g) and 5f16d(t(2g))1 - iT(1u) excited states, their energy differences, and their corresponding electric dipole transition moments calculated using the relativistic ab initio model potential embedded cluster method. The calculations suggest that the observed bands are associated with the lowest five 5f2 - 1A(1g)-->5f16d(t(2g))1 - iT(1u) (i = 1-5) dipole allowed electronic origins and their vibrational progressions. In particular, the first broad and intense band peaking at about 38,000 cm(-1) can be safely assigned to the 0-0 and 0-1 members of the a(1g) progression of the 5f2 - 1A(1g)-->5f16d(t(2g))1 - 1T(1u) electronic origin. The electronic structure of all the states with main configurational character 5f16d(t(2g))1 has been calculated as well. The results show that the lowest crystal level of this manifold is 5f16d(t(2g))1 - 1E(u) and lies about 6200 cm(-1) above the 5f2 level closest in energy, which amounts to some 11 vibrational quanta. This large energy gap could result in low nonradiative decay and efficient UV emission, which suggest the interest of

  19. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th-Cm; Cp = η(5)-C5H5).

    PubMed

    Kirker, Ian; Kaltsoyannis, Nikolas

    2011-01-07

    The title compounds are studied with scalar relativistic, gradient-corrected (PBE) and hybrid (PBE0) density functional theory. The metal-Cp centroid distances shorten from ThCp(3) to NpCp(3), but lengthen again from PuCp(3) to CmCp(3). Examination of the valence molecular orbital structures reveals that the highest-lying Cp π(2,3)-based orbitals transform as 1e + 2e + 1a(1) + 1a(2). Above these levels come the predominantly metal-based 5f orbitals, which stabilise across the actinide series such that in CmCp(3) the 5f manifold is at more negative energy than the Cp π(2,3)-based levels. Mulliken population analysis shows metal d orbital participation in the e symmetry Cp π(2,3)-based orbitals. Metal 5f character is found in the 1a(1) and 1a(2) levels, and this contribution increases significantly from ThCp(3) to AmCp(3). This is in agreement with the metal spin densities, which are enhanced above their formal value in NpCp(3), PuCp(3) and especially AmCp(3) with both PBE and PBE0. However, atoms-in-molecules analysis of the electron densities indicates that the An-Cp bonding is very ionic, increasingly so as the actinide becomes heavier. It is concluded that the large metal orbital contributions to the Cp π(2,3)-based levels, and enhanced metal spin densities toward the middle of the actinide series arise from a coincidental energy match of metal and ligand orbitals, and do not reflect genuinely increased covalency (in the sense of appreciable overlap between metal and ligand levels and a build up of electron density in the region between the actinide and carbon nuclei).

  20. Investigations of electron attachment to the perfluorocarbon molecules c-C4F8, 2-C4F8, 1,3 C4F6, and c-C5F8

    NASA Astrophysics Data System (ADS)

    Feil, Stefan; Märk, Tilmann D.; Mauracher, Andreas; Scheier, Paul; Mayhew, Chris A.

    2008-11-01

    Non-dissociative and dissociative electron attachment to a series of gas-phase perfluorocarbons (PFCs), namely octafluorocyclobutane, c-C4F8, octafluorobut-2-ene (perfluoro-2-butene), 2-C4F8, hexafluorobuta-1,3-diene (1,3 perfluorobutadiene), 1,3 C4F6, and octafluorocyclopentene (perfluorocyclopentene), c-C5F8, of importance to technological plasmas, have been investigated using two different, but complimentary, instruments available in Innsbruck over the electron energy range 0-20 eV. Anion yields as a function of electron energy have been recorded, with the positions and intensities of the electron attachment resonances being determined. One of these instruments is a double focusing sector field mass spectrometer (VG-ZAB-2SEQ), which has been used for measurements requiring high sensitivity and for obtaining accurate relative anion yields. It has also been used to determine the electron detachment lifetimes of the parent anions under various accelerating voltages, and these results are also presented. The second instrument (CELIA) is a trochoidal electron monochromator coupled to a quadrupole mass filter with a pulse counting system for detecting product anionic species. This provides a much higher energy resolution than the VG-ZAB, which makes it a better instrument to investigate narrow energy resonances close to 0 eV. The results of anion yields, peak positions and the relative intensities presented in this paper are compared with previous data of electron attachment to the above PFCs, including investigations by Professor Eugen Illenberger.

  1. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy.

    PubMed

    Fujimori, Shin-ichi

    2016-04-20

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are

  2. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  3. Excited state reaction dynamics of Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O studied by a crossed-beam velocity map imaging technique

    SciTech Connect

    Honma, Kenji Tanaka, Yuhki

    2015-04-21

    Oxidation reactions of the gas-phase titanium atom in its excited state with oxygen molecule, Ti(a{sup 5}F{sub J}) + O{sub 2} → TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ) + O, were studied by a crossed-beam velocity map imaging technique at 14.3 kJ/mol of collision energy. Metastable excited Ti, Ti(a{sup 5}F{sub J}), was generated by an optical pumping method and the reaction products were detected by single photon-ionization followed by a time-of-flight mass analysis and a two dimensional detection. Three wavelengths were selected to ionize electronically excited TiO{sup ∗}, TiO(A{sup 3}Φ, B{sup 3}Π, C{sup 3}Δ). Time sliced images were measured, and angular and speed distributions of TiO{sup ∗} were determined. In all three ionization wavelengths, the angular distributions showed a forward-backward symmetry with low intensity at the sideway direction. The speed distributions were represented by the distributions based on the statistical energy partition into products. These results suggested that the reaction of Ti(a{sup 5}F{sub J}) to form TiO(B) and TiO(C) proceeds via a long-lived intermediate and confirmed that the mechanism proposed by the previous chemiluminescence study.

  4. Single electron states in polyethylene

    SciTech Connect

    Wang, Y.; MacKernan, D.; Cubero, D. E-mail: n.quirke@imperial.ac.uk; Coker, D. F.; Quirke, N. E-mail: n.quirke@imperial.ac.uk

    2014-04-21

    We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

  5. Electron transfer to continuum states

    SciTech Connect

    Macek, J.H. |

    1994-12-31

    Gene Rudd`s analysis of doubly differential cross sections for the ionization of He atoms by proton impact suggested that electrons were being carried along by the proton for a short period of time after being ejected from the target region. Normally, this would represent an electron capture event in which an excited state of atomic hydrogen is formed. Because the electron ends up ionized it was recognized that these states of the proton must be continuum states. This insight was confirmed by observations of the continuum electron capture (CEC) cusp when the electron velocity equals the proton velocity in the final state. The impact of this idea upon the theory of ionization at high energies is reviewed.

  6. 5-F catheter in cerebral angiography

    SciTech Connect

    O'Reilly, G.V.; Naheedy, M.H.; Colucci, V.M.; Hammerschlag, S.B.

    1981-11-01

    Although the 5-F catheter is reputed to cause less vascular trauma than larger catheters, subintimal injections of contrast material have occurred following intimal damage by the catheter tip. Microscopic studies of the tips of two widely used 5-F polyethylene catheters have revealed a difference in configuration resulting in one of the catheters becoming markedly damaged during angiography. The authors make recommendations for finishing and protecting the catheter tip.

  7. Tamm states in electron plasma

    NASA Astrophysics Data System (ADS)

    2013-11-01

    Researchers have fabricated a voltage-tunable plasmonic crystal in a two-dimensional electron gas that operates at terahertz frequencies. Nature Photonics spoke to Eric Shaner, Greg Dyer and Greg Aizin about the observation of Tamm states at the crystal's edge.

  8. Orbital selective Mott transition in 3D and 5F materials

    NASA Astrophysics Data System (ADS)

    Toropova, Antonina

    We study two types of strongly correlated electron systems in the example of the transition oxide CrO2 and actinide series. We found that the physics of both types of materials can be interpreted and discussed using concept of orbital selective Mott transition (OSMT). The theory of OSMT is discussed in framework of the multiorbital Hubbard model applied to the description of t2g orbitals of Cr atoms in chromium dioxide as well as in the framework of a more generalized model for 5f materials containing both Hubbard-like and Anderson-like contributions. The electronic structure, transport, and magnetic properties of selected compounds are investigated by means of Ab Initio calculations. The many body techniques such as LDA+U and dynamical mean field theory (DMFT) have been used in addition to density functional based local density approximation (LDA) method. The half-metallic ferromagnet CrO2 has been shown to demonstrate effectively weakly correlated behavior in ordered state due to big exchange splitting within t2g orbitals. The detailed DMFT study with Quantum Monte Carlo (QMC) impurity solver revealed that in the paramagnetic state this compound was on the edge of a quantum transition. In the case of the actinide series we first demonstrated the choice of basis which optimum for DMFT based calculations. By means of detailed one-electron band structure analysis we showed that hybridization term of 5f-orbitals with conduction electrons must be included in the actinide Hamiltonian due to permanent presence of uncorrelated states at Fermi level. We conclude study of 5f-materials presenting tight-binding parametrization and exploring magnetic characteristics.

  9. Electronic structure and magnetic state of transuranium metals under pressure.

    PubMed

    Lukoyanov, A V; Shorikov, A O; Bystrushkin, V B; Dyachenko, A A; Kabirova, L R; Tsiovkin, Yu Yu; Povzner, A A; Dremov, V V; Korotin, M A; Anisimov, V I

    2010-12-15

    The electronic structures of bcc Np, fcc Pu, Am, and Cm pure metals under pressure have been investigated employing the LDA + U method with spin-orbit coupling (LDA + U + SO). The magnetic state of the actinide ions was analyzed in both LS and jj coupling schemes to reveal the applicability of corresponding coupling bases. It was demonstrated that whereas Pu and Am are well described within the jj coupling scheme, Np and Cm can be described appropriately neither in a {mσ}, nor in a {jmj} basis, due to intermediate coupling scheme realization in these metals that requires some finer treatment. The LDA + U + SO results for the considered transuranium metals reveal band broadening and gradual 5f electron delocalization under pressure.

  10. 5f Resonant photoemission from plutonium

    NASA Astrophysics Data System (ADS)

    Terry, J.; Schulze, R. K.; Farr, J. D.; Zocco, T.; Heinzelman, K.; Rotenberg, E.; Shuh, D. K.; Van der Laan, G.; Arena, D. A.; Tobin, J. G.

    2002-02-01

    Experimental resonant photoemission (ResPes) results for α-Pu and δ-Pu bulk samples are presented and compared to the results of an atomic model calculation. Both Pu samples exhibit limited agreement with the atomic model calculations. As expected, α-Pu appears to have more 5f valence band delocalization than δ-Pu. Evidence of an enhanced sensitivity to surface corruption, by using synchrotron radiation as the excitation, is presented.

  11. Multiconfigurational nature of 5f orbitals in uranium and plutonium and their intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Booth, Corwin

    2013-03-01

    The structural, electronic, and magnetic properties of U and Pu elements and intermetallics remain poorly understood despite decades of effort, and currently represent an important scientific frontier toward understanding matter. The last decade has seen great progress both due to the discovery of superconductivity in PuCoGa5 and advances in theory that finally can explain fundamental ground state properties in elemental plutonium, such as the phonon dispersion curve, the non-magnetic ground state, and the volume difference between the α and δ phases. A new feature of the recent calculations is the presence not only of intermediate valence of the Pu 5f electrons, but of multiconfigurational ground states, where the different properties of the α and δ phases are primarily governed by the different relative weights of the 5f4, 5f5, and 5f6 electronic configurations. The usual method for measuring multiconfigurational states in the lanthanides is to measure the lanthanide LIII-edge x-ray absorption near-edge structure (XANES), a method that is severely limited for the actinides because the spectroscopic features are not well enough separated. Advances in resonant x-ray emission spectroscopy (RXES) have now allowed for spectra with sufficient resolution to resolve individual resonances associated with the various actinide valence states. Utilizing a new spectrometer at the Stanford Synchrotron Radiation Lightsource (SSRL), RXES data have been collected that show, for the first time, spectroscopic signatures of each of these configurations and their relative changes in various uranium and plutonium intermetallic compounds. In combination with conventional XANES spectra on related compounds, these data indicate such states may be ubiquitous in uranium and plutonium intermetallics, providing a new framework toward understanding properties ranging from heavy fermion behavior, superconductivity, and intermediate valence to mechanical and fundamental bonding behavior in

  12. Direct bulk-sensitive probe of 5f symmetry in URu2Si2

    PubMed Central

    Sundermann, Martin; Haverkort, Maurits W.; Agrestini, Stefano; Al-Zein, Ali; Moretti Sala, Marco; Huang, Yingkai; Golden, Mark; de Visser, Anne; Thalmeier, Peter; Tjeng, Liu Hao; Severing, Andrea

    2016-01-01

    The second-order phase transition into a hidden order phase in URu2Si2 goes along with an order parameter that is still a mystery, despite 30 years of research. However, it is understood that the symmetry of the order parameter must be related to the symmetry of the low-lying local electronic f-states. Here, we present results of a spectroscopic technique, namely core-level nonresonant inelastic X-ray scattering (NIXS). This method allows for the measurement of local high-multipole excitations and is bulk-sensitive. The observed anisotropy of the scattering function unambiguously shows that the 5f ground-state wave function is composed mainly of the Γ1 with majority Jz = |4⟩ + |−4⟩ and/or Γ2 singlet states. The incomplete dichroism indicates the possibility that quantum states of other irreducible representation are mixed into the ground state. PMID:27872287

  13. Direct bulk-sensitive probe of 5f symmetry in URu2Si2

    NASA Astrophysics Data System (ADS)

    Sundermann, Martin; Haverkort, Maurits W.; Agrestini, Stefano; Al-Zein, Ali; Moretti Sala, Marco; Huang, Yingkai; Golden, Mark; de Visser, Anne; Thalmeier, Peter; Hao Tjeng, Liu; Severing, Andrea

    2016-12-01

    The second-order phase transition into a hidden order phase in URu2Si2 goes along with an order parameter that is still a mystery, despite 30 years of research. However, it is understood that the symmetry of the order parameter must be related to the symmetry of the low-lying local electronic f-states. Here, we present results of a spectroscopic technique, namely core-level nonresonant inelastic X-ray scattering (NIXS). This method allows for the measurement of local high-multipole excitations and is bulk-sensitive. The observed anisotropy of the scattering function unambiguously shows that the 5f ground-state wave function is composed mainly of the Γ1 with majority Jz = |4> + |-4> and/or Γ2 singlet states. The incomplete dichroism indicates the possibility that quantum states of other irreducible representation are mixed into the ground state.

  14. Northrop F-5F shark nose development

    NASA Technical Reports Server (NTRS)

    Edwards, O. R.

    1978-01-01

    During spin susceptibility testing of the Northrop F-5F airplane, two erect spin entries were obtained from purely longitudinal control inputs at low speed. Post flight analysis of the data showed that the initial yaw departure occurred at zero sideslip, and review of wind tunnel data showed significant yawing moments present at angles of attack well above stall. Further analysis of this wind tunnel data indicated that the yawing moments were being generated by the long slender nose of the airplane. Redesign of the nose was accomplished, resulting in a nose configuration which completely alleviated the asymmetric yawing moments.

  15. Correlated Diskoid-like Electronic States

    PubMed Central

    Baskin, Artem; Sadeghpour, Hossein R.; Král, Petr

    2014-01-01

    We study highly excited diskoid-like electronic states formed in the vicinity of charged and strongly polarizable diskotic nanostructures, such as circular graphene flakes. First, we study the nature of such extended states in a simple two-electron model. The two electrons are attached to a point-like nucleus with a charge 2+, where the material electron is forced to move within a 2D disk area centered at the nucleus, while the extended electron is free to move in 3D. Pronounced and complex correlations are revealed in the diskoid-like states. We also develop semiclassical one-electron models of such diskotic systems and explain how the one-electron and many-electron solutions are related. PMID:25081595

  16. Theoretical studies of electronically excited states

    SciTech Connect

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  17. Electronic states of GeCl +

    NASA Astrophysics Data System (ADS)

    Dai, Dingguo; Xu, Hua; Balasubramanian, K.

    1995-11-01

    Twenty-eight electronic states of GeCl + are studied using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) methods. Spectroscopic constants of electronic states exhibiting minima are computed.

  18. Anomalous confined electron states in graphene superlattices

    SciTech Connect

    Anh Le, H.; Chien Nguyen, D.; Nam Do, V.

    2014-07-07

    We show that periodic scalar potentials can induce the localization of some electronic states in graphene. Particularly, localized states are found at energies outside the potential variation range and embedded in the continuum spectrum of delocalized ones. The picture of the connection of wave functions with typical symmetries defined in relevant-edge nanoribbons is employed to explain the formation of the electronic structure and to characterize/classify eigen-states in graphene superlattices.

  19. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics.

    PubMed

    Booth, C H; Jiang, Yu; Wang, D L; Mitchell, J N; Tobash, P H; Bauer, E D; Wall, M A; Allen, P G; Sokaras, D; Nordlund, D; Weng, T-C; Torrez, M A; Sarrao, J L

    2012-06-26

    Uranium and plutonium's 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials.

  20. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    PubMed Central

    Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.

    2012-01-01

    Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643

  1. Manipulation of electronic states and photonic states in nanosilicon

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qi; Huang, Zhong-Mei; Miao, Xin-Jian; Qin, Chao-Jian; Lv, Quan

    2014-04-01

    On different size hierarchy, period symmetry provides energy band structure, and symmetry breaking produces localized states in gap, for example nanostructures open electronic band gap by confining electrons, but defects in symmetry system produce localized electronic states in gap. The experimental results demonstrate that controlling localized states in gap by changing passivation environment can manipulate emission wavelength, such as stimulated emission at 700 nm due to oxygen passivation and enhanced electroluminescence near 1600 nm due to ytterbium passivation on nanosilicon. In same way, modulating filling fraction and period parameters in photonic crystal enlarges width of photonic band gap (PBG) by confining photons. Symmetry breaking due to defects is effective in manipulating photonic states. New applications for selecting modes in nanolaser and for building single photon source in quantum information are explored by manipulating and coupling between electronic states and photonic states.

  2. State electronic disease surveillance systems --- United States, 2007 and 2010.

    PubMed

    2011-10-21

    The National Electronic Disease Surveillance System (NEDSS) is a web-based infrastructure for public health surveillance data exchange between CDC and the 50 states. In 2007, the Council of State and Territorial Epidemiologists (CSTE) conducted an assessment to evaluate states' electronic disease surveillance capacity. In 2010, CSTE conducted a follow-up assessment to evaluate the operational status and progress of integration, interoperability, and capacity of state electronic disease surveillance systems. This report summarizes the results of that assessment, which indicated a 17.5% increase from 40 states in 2007 to 47 states in 2010 with fully operational general communicable disease (GCD) electronic surveillance systems, a 211.5% increase from 13 to 39 states in the number of systems that were interoperable, a 22.4% increase from 23 to 34 states in the number with integrated systems, and a 20.0% increase to 42 states with the capacity to receive electronic laboratory reports (ELRs). New Centers for Medicare and Medicaid Services rules for meaningful use of health information technology encourage data exchange between electronic health record systems and public health agencies, including submission of ELRs. To meet national goals for health information exchange to improve population health, variation in disease surveillance systems should decrease, and functionality should increase.

  3. The role of the 5f valence orbitals of early actinides in chemical bonding

    PubMed Central

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-01-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848

  4. The role of the 5f valence orbitals of early actinides in chemical bonding.

    PubMed

    Vitova, T; Pidchenko, I; Fellhauer, D; Bagus, P S; Joly, Y; Pruessmann, T; Bahl, S; Gonzalez-Robles, E; Rothe, J; Altmaier, M; Denecke, M A; Geckeis, H

    2017-07-06

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  5. The role of the 5f valence orbitals of early actinides in chemical bonding

    NASA Astrophysics Data System (ADS)

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-07-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  6. Louisiana State University Libraries' Electronic Imaging Laboratory.

    ERIC Educational Resources Information Center

    Phillips, Faye; Condrey, Richard

    1994-01-01

    Describes Louisiana State University Libraries' Electronic Imaging Laboratory for preservation. The project uses digital imaging technology to reformat rare book materials for access. This technology can exist with traditional conservation procedures. (JLB)

  7. Total cross sections of electron scattering by C4H8O, C5H10O2, C6H5F, C6H5Cl, C6F5Cl, C6H4(CHO)F and C4H8O2 at 30-5000 eV

    NASA Astrophysics Data System (ADS)

    Shi, D. H.; Liu, Y. F.; Ma, H.; Yu, B. H.; Sun, J. F.; Zhu, Z. L.

    2008-08-01

    Total cross sections for electron scattering by large molecules C4H8O, C5H10O2, C6H5F, C6H5Cl, C6F5Cl, C6H4(CHO)F and C4H8O2 are calculated at the Hartree-Fork level using the modified additivity rule approach. The modified additivity rule approach, which was proposed by Shi et al. [Eur. Phys. J. D 45, 253 (2007); Nucl. Instrum. Meth. B 254, 205 (2007)], takes into consideration that the contributions of the geometric shielding effect vary with the energy of the incident electrons, the target’s molecular dimension and the atomic and electronic numbers of the molecule. The present calculations cover the collision energies ranging from 30 to 5000 eV. The quantitative total cross sections are compared with those obtained by experiments and other theories. Good agreement is obtained even at energies of several tens of eV. It shows that the modified additivity rule approach is applicable to calculate the total cross sections of electron scattering by so large molecules at intermediate and high energies, especially above 100 eV. The total cross sections for electron scattering by the C4H8O2 molecule are predicted although no experimental and theoretical data are available for comparison over the present energy region.

  8. Quasi-relativistic SCF X. cap alpha. study of octahedral 5f/sup 1/ complexes

    SciTech Connect

    Thornton, G.; Roesch, N.; Edelstein, N.

    1980-05-01

    Quasi-relativistic SCF X..cap alpha.. calculations have been carried out for the octahedral 5f/sup 1/ complexes Pa/sup IV/X/sub 6//sup 2 -/, U/sup V/X/sub 6//sup -/(X = F, Cl, Br, I), and Np/sup VI/F/sub 6/. The 5f ..-->.. 5f excitation energies calculated by using the transition-state method agree well with the available absorption spectra. Ionic effects appear to dominate the trends observed in the f-orbital ligand field splitting.

  9. Electronic Information Services, Louisiana State University Libraries.

    ERIC Educational Resources Information Center

    Bolner, Smittie; And Others

    Reports prepared by the Louisiana State University (LSU) Libraries Task Force on Electronic Services examine the present level of automated services at the LSU libraries and make recommendations for both long- and short-term plans to handle information in electronic format. The reports, each of which is followed by a list of recommendations, focus…

  10. Nearly free electron states in MXenes

    NASA Astrophysics Data System (ADS)

    Khazaei, Mohammad; Ranjbar, Ahmad; Ghorbani-Asl, Mahdi; Arai, Masao; Sasaki, Taizo; Liang, Yunye; Yunoki, Seiji

    2016-05-01

    Using a set of first-principles calculations, we studied the electronic structures of two-dimensional transition metal carbides and nitrides, so called MXenes, functionalized with F, O, and OH. Our projected band structures and electron localization function analyses reveal the existence of nearly free electron (NFE) states in a variety of MXenes. The NFE states are spatially located just outside the atomic structure of MXenes and are extended parallel to the surfaces. Moreover, we found that the OH-terminated MXenes offer the NFE states energetically close to the Fermi level. In particular, the NFE states in some of the OH-terminated MXenes, such as T i2C (OH) 2,Z r2C (OH) 2,Z r2N (OH) 2,H f2C (OH) 2,H f2N (OH) 2,N b2C (OH) 2 , and T a2C (OH) 2 , are partially occupied. This is in remarkable contrast to graphene, graphane, and Mo S2 , in which their NFE states are located far above the Fermi level and thus they are unoccupied. As a prototype of such systems, we investigated the electron transport properties of H f2C (OH) 2 and found that the NFE states in H f2C (OH) 2 provide almost perfect transmission channels without nuclear scattering for electron transport. Our results indicate that these systems might find applications in nanoelectronic devices. Our findings provide new insights into the unique electronic band structures of MXenes.

  11. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  12. Experimental Study of Electronic States at Interfaces.

    DTIC Science & Technology

    1987-01-01

    relaxation time of 4 to 20 conduction band back to the bound states is long nsec is obtained, inspection of the phonon density-of- enough then the Is...AiBI 929 EXPERIMENTAL STUDY OF ELECTRONIC STATES AT INTERFACES 1/1 STATE PNVSICS A J SIEVERS 1987 AFOSR-TR-87-0851 U LSIFIE D AFOSR-8885 - FG 2112 L...NAME OF MONITORING ORGANIZATION i (~able) AORN Cornell University 9 e) AFOSR/NE 6c. ADDRESS (City, State , and ZIP Code) 7b ADDRESS (City, State , and

  13. Proteins as solid-state electronic conductors.

    PubMed

    Ron, Izhar; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2010-07-20

    Protein structures can facilitate long-range electron transfer in solution. But a fundamental question remains: can these structures also serve as solid-state electronic conductors? Answering this question requires methods for studying conductivity of the "dry" protein (which only contains tightly bound structured water molecules) sandwiched between two electronic conductors in a solid-state type configuration. If successful, such systems could serve as the basis for future, bioinspired electronic device technology. In this Account, we survey, analyze, and compare macroscopic and nanoscopic (scanning probe) solid-state conductivities of proteins, noting the inherent constraints of each of these, and provide the first status report on this research area. This analysis shows convincing evidence that "dry" proteins pass orders of magnitude higher currents than saturated molecules with comparable thickness and that proteins with known electrical activity show electronic conductivity, nearly comparable to that of conjugated molecules ("wires"). These findings suggest that the structural features of proteins must have elements that facilitate electronic conductivity, even if they do not have a known electron transfer function. As a result, proteins could serve not only as sensing, polar,or photoactive elements in devices (such as field-effect transistor configurations) but also as electronic conductors. Current knowledge of peptide synthesis and protein modification paves the way toward a greater understanding of how changes in a protein's structure affect its conductivity. Such an approach could minimize the need for biochemical cascades in systems such as enzyme-based circuits, which transduce the protein's response to electronic current. In addition, as precision and sensitivity of solid-state measurements increase, and as knowledge of the structure and function of "dry" proteins grows, electronic conductivity may become an additional approach to study electron

  14. TCEQ State of Texas Environmental Electronic Reporting System (STEERS)

    EPA Pesticide Factsheets

    TCEQ's State of Texas Environmental Electronic Reporting System (STEERS) is an existing electronic document receiving system for collecting numerous reports required under the state's EPA-authorized programs.

  15. Electronics: State of the Art No. 2.

    ERIC Educational Resources Information Center

    Gosling, W.

    1979-01-01

    Reviewed is a brief history of electronics technology, from the early beginnings of vacuum devices to development of solid state devices, silicon fabrication in the use of transistors, and integrated circuits. Educational needs at the university or polytechnic level are discussed. (CS)

  16. Electronics: State of the Art No. 2.

    ERIC Educational Resources Information Center

    Gosling, W.

    1979-01-01

    Reviewed is a brief history of electronics technology, from the early beginnings of vacuum devices to development of solid state devices, silicon fabrication in the use of transistors, and integrated circuits. Educational needs at the university or polytechnic level are discussed. (CS)

  17. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  18. MHD Equation of State with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Däppen, Werner; Zejda, Ladislav

    2001-01-01

    The Mihalas-Däppen-Hummer (MHD) equation of state does not include the effect of relativistic partially degenerate electrons, although nonrelativistic partial degeneracy is taken into account. The discovery of a relativistic correction in helioseismology forces us to perform an appropriate upgrade of the MHD equation of state. We have adopted the method of J. M. Aparicio to evaluate the relativistic Fermi-Dirac functions. Our calculations confirm the validity of the approximation used, which works well for the weakly relativistic electrons under solar-center conditions. However, our results will also provide reliable thermodynamic quantities in the stronger relativistic regime as found in more massive stars. Since a particular feature of the original MHD papers was an explicit list of the adopted free energy and its first- and second-order analytical derivatives, we give the corresponding relativistic quantities in the Appendix.

  19. Electronic ground state of Ni2+

    NASA Astrophysics Data System (ADS)

    Zamudio-Bayer, V.; Lindblad, R.; Bülow, C.; Leistner, G.; Terasaki, A.; v. Issendorff, B.; Lau, J. T.

    2016-11-01

    The 9/2 4Φ ground state of the Ni2+ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of 7.4 ±0.2 K was reached by buffer gas cooling of the molecular ion. The contribution of the spin dipole operator to the x-ray magnetic circular dichroism spin sum rule amounts to 7 Tz =0.17 ± 0.06 μB per atom, approximately 11% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of 3d transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  20. Electronic States in Capped Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yaguchi, Tatsuya; Ando, Tsuneya

    2001-05-01

    Scattering of an electron wave at various caps closing an armchair nanotube is studied. The reflection coefficients can be understood as an effective shift in boundary position and phase shift at the boundary. The phase shift is approximately given by π for states with parity + and 0 for states with parity -, respectively. The effective position is approximated by (1/4)P, where P is the height of an equilateral triangle having a base line determined by neighboring five-membered rings located at the boundary between the tube and the cap. The electronic structure of a finite-length armchair nanotube closed by a cap can be calculated with the use of the phase shifts.

  1. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    SciTech Connect

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; Duignan, T. J.; Autschbach, J.; Kogerler, P.

    2016-05-31

    The electronic structures of 4f3/5f3 Cp"3M and Cp"3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienyl complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5fxz2 and 5fyz2-orbitals, spin–orbit coupling greatly reduces the population of 5fxz2 and 5fyz2 in the ground state.

  2. 5f{sup N} configurations and x-ray spectra of actinides

    SciTech Connect

    Kulagin, N.A.

    1995-04-01

    The electronic structure of 5f{sup N} configurations and the characteristic X-ray radiation energies for an entire actinium series are calculated using the Hartree-Fock-Pauli approximation, and the variations obtained are analyzed. The electrostatic and magnetic parameters of these ions, as well as energies of their K and L lines, exhibit essentially nonlinear dependence on the nuclear charge and number of electrons. This fact evidences that simplified models of atomic structure are inapplicable to heavy ions.

  3. Selected ion flow tube cation-molecule reaction studies and threshold photoelectron photoion coincidence spectroscopy of cyclic-C5F8.

    PubMed

    Parkes, Michael A; Ali, Sahangir; Tuckett, Richard P; Mikhailov, Victor A; Mayhew, Chris A

    2007-10-14

    The product ion branching ratios and rate coefficients have been measured using a selected ion flow tube (SIFT) at 298 K for the bimolecular reactions of cyclic-C5F8 with several atomic and molecular cations. The majority of reactions occur at the collisional rate calculated by the modified average dipole orientation theory, with the exception of H2O+ for which the reaction efficiency is only 55%. Apart from H2O+ and N+, the similarity of the product ion branching ratios determined from threshold photoelectron photoion coincidence (TPEPICO) and ion-molecule data suggests that long-range electron transfer is the dominant mechanism for reactions involving ions with recombination energies between 12 and 17 eV. For N+, the product ion branching ratios are very different to those produced by photoionisation; this result may be explained if some of the N-atom products are formed electronically excited. The onset of an ionisation signal of c-C5F8 measured by TPEPICO spectroscopy occurs at 12.25 +/- 0.05 eV. This is much higher than the value of the first adiabatic ionisation energy determined from electron ionisation (11.24 +/- 0.10 eV), He (I) photoionisation (11.30 +/- 0.05 eV), and an independent high resolution threshold photoelectron spectrum (11.237 +/- 0.002 eV). The ground electronic state of c-C5F8+ has very weak intensity under threshold electron conditions. The TPEPICO spectrum of c-C5F8 recorded from 12-23 eV shows detection of the parent ion and the daughter ions C4F6+ and C5F7+, with their appearance energies increasing in this order. Ion yield curves and branching ratios have been determined. Using Gaussian 03, the enthalpy of formation of c-C5F8 at 298 K has been determined to be -1495 kJ mol(-1).

  4. Localized 5f antiferromagnetism in cubic UIn3 : I115n-NMR/NQR study

    NASA Astrophysics Data System (ADS)

    Sakai, Hironori; Kambe, Shinsaku; Tokunaga, Yo; Chudo, Hiroyuki; Tokiwa, Yoshifumi; Aoki, Dai; Haga, Yoshinori; Ōnuki, Yoshichika; Yasuoka, Hiroshi

    2009-03-01

    I115n nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed on an antiferromagnet UIn3 with the cubic AuCu3 -type structure. The NQR frequency (νQ) and Knight shift (K) of I115n in UIn3 have been estimated in the paramagnetic state from NMR experiments under applied field. The perpendicular component of transferred hyperfine coupling constant (A⊥) has been deduced from scaled behavior of K to the static susceptibility (χ) . Under zero field, the observation of the NQR spectrum has led to an estimated νQ of 11.8 MHz at 90 K. The temperature variation in the NQR relaxation rates (1/T1) far above the Néel temperature TN=88K approaches a constant value, which indicates a localized nature for the 5f electrons in this system. On the other hand, in the antiferromagnetically ordered state at 4 K (well below TN ), the I115n -NMR spectrum has been scanned over frequencies ranging from ˜20 to ˜70MHz under zero applied field. From the analysis of the NMR spectrum, we propose that the most plausible direction of antiferromagnetic U moments may be ⟨110⟩ among the possible orientations of ⟨100⟩ , ⟨110⟩ , or ⟨111⟩ .

  5. Recoherence by squeezed states in electron interferometry

    SciTech Connect

    Hsiang, J.-T.; Ford, L. H.

    2008-09-15

    Coherent electrons coupled to the quantized electromagnetic field undergo decoherence which can be viewed as due either to fluctuations of the Aharonov-Bohm phase or to photon emission. When the electromagnetic field is in a squeezed vacuum state, it is possible for this decoherence to be reduced, leading to the phenomenon of recoherence. This recoherence effect requires electrons which are emitted at selected times during the cycle of the excited mode of the electromagnetic field. We show that there are bounds on the degree of recoherence which are analogous to quantum inequality restriction on negative energy densities in quantum field theory. We make some estimates of the degree of recoherence, and show that although small, it is in principle observable.

  6. Metastable and spin-polarized states in electron systems with localized electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Sablikov, Vladimir A.; Shchamkhalova, Bagun S.

    2014-05-01

    We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron-electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.

  7. ANALYSIS OF THE TANK 5F FINAL CHARATERIZATION SAMPLES-2011

    SciTech Connect

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-01-20

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  8. ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011

    SciTech Connect

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-08-03

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  9. Analysis Of The Tank 5F Final Characterization Samples-2011

    SciTech Connect

    Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  10. Imaging of localized electronic states at a nonconducting surface by single-electron tunneling force microscopy.

    PubMed

    Bussmann, Ezra B; Zheng, Ning; Williams, Clayton C

    2006-11-01

    Localized electronic states near a nonconducting SiO(2) surface are imaged on a approximately 1 nm scale by single-electron tunneling between the states and a scanning probe tip. Each tunneling electron is detected by electrostatic force. The images represent the number of tunneling electrons at each spatial location. The spatial resolution of the single electron tunneling force microscope is determined by quantum mechanical tunneling, providing new atomic-scale access to electronic states in dielectric surfaces and nonconducting nanostructures.

  11. Electron correlations in solid state physics

    SciTech Connect

    Freericks, J.K.

    1991-04-01

    Exactly solvable models of electron correlations in solid state physics are presented. These models include the spinless Falicov- Kimball model, the t-t{prime}-J model, and the Hubbard model. The spinless Falicov-Kimball model is analyzed in one-dimension. Perturbation theory and numerical techniques are employed to determine the phase diagram at zero temperature. A fractal structure is found where the ground-state changes (discontinuously) at each rational electron filling. The t-t{prime}-J model (strongly interacting limit of a Hubbard model) is studied on eight-site small clusters in the simple-cubic, body-centered-cubic, face-centered-cubic, and square lattices. Symmetry is used to simplify the problem and determine the exact many-body wavefunctions. Ground states are found that exhibit magnetic order or heavy-fermionic character. Attempts to extrapolate to the thermodynamic limit are also made. The Hubbard model is examined on an eight-site square-lattice cluster in the presence of and in the absence of a magnetic field'' that couples only to orbital motion. A new magnetic phase is discovered for the ordinary Hubbard model at half-filling. In the magnetic field'' case, it is found that the strongly frustrated Heisenberg model may be studied from adiabatic continuation of a tight-binding model (from weak to strong coupling) at one point. The full symmetries of the Hamiltonian are utilized to make the exact diagonalization feasibile. Finally, the presence of hidden'' extra symmetry for finite size clusters with periodic boundary conditions is analyzed for a variety of clusters. Moderately sized systems allow nonrigid transformations that map a lattice onto itself preserving its neighbor structure; similar operations are not present in smaller or larger systems. The additional symmetry requires particular representations of the space group to stick together explaining many puzzling degeneracies found in exact diagonalization studies.

  12. Motor vehicle collisions caused by the 'super-strength' synthetic cannabinoids, MAM-2201, 5F-PB-22, 5F-AB-PINACA, 5F-AMB and 5F-ADB in Japan experienced from 2012 to 2014.

    PubMed

    Kaneko, Shuji

    2017-01-01

    From 2012 to 2014 in Japan, 214 cases of motor vehicle collisions were attributed to the use of illegal drugs. In 93 out of 96 investigated cases, the causative agents were a variety of synthetic cannabinoids (SCs). These SCs can be classified into three groups according to the lineage of the chemical structures: (1) naphthoyl indoles, such as MAM-2201, (2) quinolinyl ester indoles, such as 5F-PB-22, and (3) indazole carboxamides, such as 5F-AB-PINACA, 5F-AMB, and 5F-ADB. These SCs became available sequentially with increasing cannabinoid CB1 agonist potencies and reached a nationwide outbreak in the summer of 2014. They caused acute intoxication with impaired consciousness, anterograde amnesia (impaired memory), catalepsy with muscle rigidity, tachycardia, and vomiting or drooling soon after smoking. Drivers who had abused one of these SCs might unexpectedly experience the acute intoxication that caused uncontrolled driving. These SCs were generally difficult to detect from body fluid samples. It is thought that the highly lipophilic SCs disappear from the blood via rapid degradation by liver enzymes and selective accumulation into adipose tissues. Thus, much effort should be directed to the development of fast and sensitive chemical detection of the drug usage.

  13. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  14. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  15. Electronically shielded solid state charged particle detector

    DOEpatents

    Balmer, David K.; Haverty, Thomas W.; Nordin, Carl W.; Tyree, William H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  16. Electronically shielded solid state charged particle detector

    SciTech Connect

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1995-12-31

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  17. Nonadiabatic evolution of electronic states by electron nuclear dynamics theory

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank

    The problem of how to determine the nonadiabatic content of any given dynamic process involving molecular motion is addressed in the context of Electron Nuclear Dynamics (END) theory. Specifically, it is proposed to cast the dynamic END wave function into the language of static electronic configurations with time dependent complex-valued amplitudes. This is achieved by adiabatic transport of an electronic basis along the classical nuclear trajectories of the studied molecular system, as yielded by END simulation. Projecting the dynamic wave function on this basis yields a natural distinction between adiabatic and nonadiabatic components of the motion considered. Tracing the evolution of the leading configurations is shown to be a helpful device for clarifying the physical nature of electronic excitation processes. For illustration of these concepts, dynamic configuration analysis is applied to the scattering of a proton by a lithium atom.

  18. Importance of electronic state of two-dimensional electron gas for electron injection process in nano-electronic devices

    NASA Astrophysics Data System (ADS)

    Muraguchi, M.; Endoh, T.; Takada, Y.; Sakurai, Y.; Nomura, S.; Shiraishi, K.; Ikeda, M.; Makihara, K.; Miyazaki, S.; Shigeta, Y.

    2010-09-01

    We report the unexpected temperature dependence of electron tunneling from the two-dimensional electron gas (2DEG) to the Si-dot in a Si-dots floating gate metal-oxide-semiconductor (MOS) capacitor. We indicate that this temperature dependence of the electron tunneling cannot be explained by the conventional one-dimensional tunneling model, and show that it is necessary for a new model which includes the geometrical factor of the system. To extract a mechanism of the electron injection process from the 2DEG to the nano-structure, we have employed the numerical simulation, which includes both the geometrical condition of the system and the experimental setup. We suggest in our new tunneling model that the main contribution to the electron tunneling is induced by the wave-packet-like state of the electron below the Si-dots. We successfully show that the temperature dependence of the electron injection voltage in the Si-dots floating gate MOS capacitor fits our model. This indicates that the spatial distribution of electron density in the two-dimensional electron gas would play a crucial role in the electron tunneling.

  19. Electronic states of coupled graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hashimoto, Futo; Mori, Nobuya; Kubo, Osamu; Katayama, Mitsuhiro

    2017-04-01

    Electronic states of laterally coupled graphene nanoribbons (GNRs) have been calculated within a nearest-neighbor tight-binding approximation with varying inter-GNR coupling strength γ from γ = 0 to t (intra-GNR transfer integral). For a coupled zigzag-edge GNR array, both almost flat bands and anisotropic Dirac cones appear near the Fermi level. For a coupled armchair-edge GNR array with a ribbon width N = 3n or 3n + 1, the system is semiconducting with a finite bandgap at γ = 0, which decreases as γ increases. For N = 3n, it becomes metallic with a zero bandgap only at γ = t. On the other hand, for N = 3n + 1, it becomes metallic when γ ≥ t/2. At γ = t/2, a peculiar energy dispersion emerges; the energy dispersion is parabolic perpendicular to the GNR axis and linear parallel to the GNR axis. When N = 3n + 2, the system is always metallic regardless of γ.

  20. Electronic excited states of CO/sub 2/: An electron impact investigation

    SciTech Connect

    McDiarmid, R.; Doering, J.P.

    1984-01-15

    The electronic excited states of CO/sub 2/ were restudied by variable incident energy, variable angle electron impact spectroscopy. In this study, valence states of mixed configurations were distinguished from pure Rydberg states. Our results are incompatible with the theoretical description of CO/sub 2/, in which only two valence singlet states are located.

  1. An Alternative Model for Electron Correlation in Pu

    SciTech Connect

    Yu, S; Tobin, J; Soderlind, P

    2007-10-23

    Using a density functional theory based approach that treats the 5f electrons relativistically, a Pu electronic structure with zero net magnetic moment is obtained, where the 5f orbital and 5f spin moments cancel each other. By combining the spin and orbital specific densities of states with state, spin and polarization specific transition moments, it is possible to reconstruct the experimentally observed photoemission spectra from Pu. Extrapolating to a spin-resolving Fano configuration, it is shown how this would resolve the extant controversy over Pu electronic structure.

  2. Minimal parametrization of an n -electron state

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner; Mukherjee, Debashis

    2005-02-01

    The Hamiltonian H for an n -electron system in a finite one-electron basis of dimension m is characterized by d=O(m4) matrix elements. The eigenstates of this Hamiltonian—i.e., the full-CI states Ψ —depend, however, on the usually much larger set of N=O(mn) parameters. One can, nevertheless, write a full-CI state as Ψ=eSΦ with Φ a reference function and S an operator familiar from traditional coupled cluster (TCC) theory. The “exact” operator S can be expressed (though in an implicit and rather complicated way) in terms of d parameters. An alternative ansatz Ψ=eTΦ with T depending in a very simple way on d parameters only (namely, with T having the same structure in Fock space as H ) has been studied by Nooijen and by Nakatsuji and been called coupled-cluster with generalized single and double excitations (CCGSD). Nooijen has conjectured that the full-CI equations can be fulfilled with this ansatz. This paper is devoted to a comprehensive analysis of the Nooijen conjecture (NC). Several features make this analysis difficult and even intriguing. (a) One deals with coupled nonlinear systems of equations, for which theorems concerning the existence of their solution are hardly available. (b) There are different possible interpretations of the NC, especially as far as the choice of the reference function Φ is concerned. (c) There are solutions of the CCGSD equations, for which some elements of T becomes negative infinite, and eT becomes a projection operator. Such solutions are undesired but difficult to eliminate. We show by direct comparison of the exact wave operator with that of CCGSD theory, for a closed-shell state with Φ a single Slater determinant, using a perturbation expansion, that CCGSD cannot be exact. This required a reformulation of the CCGSD operator eT to an equivalent exponential form eR , with R similar to the S of TCC theory, but with constraints on the cluster amplitudes, such that these depend on d parameters only. The CCGSD ansatz

  3. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  4. F-5F Shark Nose radome lightning test

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1980-01-01

    A unique F-5F radome wtih a geometry similar to a Shark Nose profile was tested with a high voltage Marx generator, 1,200,000 volts in order to demonstrate the effectiveness of the lightning protection system with currents from 5,000 amperes or greater. An edge discontinuity configuration is a characteristic feature in the forward region of the radome and occasionally serves as an attachment point. The results of nineteen attachment tests at various aspect angles with an air gap of one meter indicated that no damage occurred to the dielectric material of the radom. The test proved the effectiveness of the lightning protection system.

  5. Anisotropic electronic states in the fractional quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2017-05-01

    Recent experiments indicate the presence of new anisotropic fractional quantum Hall states at regimes not anticipated before. These experiments raise many fundamental questions regarding the inner nature of the electronic system that leads to such anisotropic states. Interplay between electron mass anisotropy and electron-electron correlation effects in a magnetic field can create a rich variety of possibilities. Several anisotropic electronic states ranging from anisotropic quantum Hall liquids to anisotropic Wigner solids may stabilize due to such effects. The electron mass anisotropy in a two-dimensional electron gas effectively leads to an anisotropic Coulomb interaction potential between electrons. An anisotropic interaction potential may strongly influence the stability of various quantum phases that are close in energy since the overall stability of an electronic system is very sensitive to local order. As a result there is a possibility that various anisotropic electronic phases may emerge even in the lowest Landau level in regimes where one would not expect them. In this work we study the state with filling factor 1/6 in the lowest Landau level, a state which is very close to the critical filling factor where the liquid-solid transition takes place. We investigate whether an anisotropic Coulomb interaction potential is able to stabilize an anisotropic electronic liquid state at this filling factor. We describe such an anisotropic state by means of a liquid crystalline wave function with broken rotational symmetry which can be adiabatically connected to the actual wave function for the corresponding isotropic phase. We perform quantum Monte Carlo simulations in a disk geometry to study the properties of the anisotropic electronic liquid state under consideration. The findings indicate stability of liquid crystalline order in presence of an anisotropic Coulomb interaction potential. The results are consistent with the existence of an anisotropic electronic

  6. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  7. Photodissociation dynamics of fluorobenzene (C{sub 6}H{sub 5}F) at 157 and 193 nm: Branching ratios and distributions of kinetic energy

    SciTech Connect

    Lee, S.-H.; Wu, C.-Y.; Yang, S.-K.; Lee, Y.-P.

    2006-10-14

    Following photodissociation of fluorobenzene (C{sub 6}H{sub 5}F) at 193 and 157 nm, we detected the products with fragmentation-translational spectroscopy by utilizing a tunable vacuum ultraviolet beam from a synchrotron for ionization. Between two primary dissociation channels observed upon irradiation at 193 (157) nm, the HF-elimination channel C{sub 6}H{sub 5}F{yields}HF+C{sub 6}H{sub 4} dominates, with a branching ratio of 0.94{+-}0.02 (0.61{+-}0.05) and an average release of kinetic energy of 103 (108) kJ mol{sup -1}; the H-elimination channel C{sub 6}H{sub 5}F{yields}H+C{sub 6}H{sub 4}F has a branching ratio of 0.06{+-}0.02 (0.39{+-}0.05) and an average release of kinetic energy of 18.6 (26.8) kJ mol{sup -1}. Photofragments H, HF, C{sub 6}H{sub 4}, and C{sub 6}H{sub 4}F produced via the one-photon process have nearly isotropic angular distributions. Both the HF-elimination and the H-elimination channels likely proceed via the ground-state electronic surface following internal conversion of C{sub 6}H{sub 5}F; these channels exhibit small fractions of kinetic energy release from the available energy, indicating that the molecular fragments are highly internally excited. We also determined the ionization energy of C{sub 6}H{sub 4}F to be 8.6{+-}0.2 eV.

  8. Electronic states in systems of reduced dimensionality

    SciTech Connect

    Ulloa, S.E.

    1992-04-15

    This report briefly discusses the following research: magnetically modulated systems, inelastic magnetotunneling, ballistic transport review, screening in reduced dimensions, raman and electron energy loss spectroscopy; and ballistic quantum interference effects. (LSP).

  9. Spectroscopic Imaging of Strongly Correlated Electronic States

    NASA Astrophysics Data System (ADS)

    Yazdani, Ali; da Silva Neto, Eduardo H.; Aynajian, Pegor

    2016-03-01

    The study of correlated electronic systems from high-Tc cuprates to heavy-fermion systems continues to motivate the development of experimental tools to probe electronic phenomena in new ways and with increasing precision. In the past two decades, spectroscopic imaging with scanning tunneling microscopy has emerged as a powerful experimental technique. The combination of high energy and spatial resolutions provided by this technique reveals unprecedented detail of the electronic properties of strongly correlated metals and superconductors. This review examines specific experiments, theoretical concepts, and measurement methods that have established the application of these techniques to correlated materials. A wide range of applications, such as the study of collective responses to single atomic impurities, the characterization of quasiparticle-like excitations through their interference, and the identification of competing electronic phases using spectroscopic imaging, are discussed.

  10. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured

  11. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...

    2016-05-31

    The electronic structures of 4f3/5f3 Cp"3M and Cp"3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienyl complexes and their isocyanidemore » adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5fxz2 and 5fyz2-orbitals, spin–orbit coupling greatly reduces the population of 5fxz2 and 5fyz2 in the ground state.« less

  12. Electron and electron-hole quasiparticle states in a driven quantum contact

    NASA Astrophysics Data System (ADS)

    Vanević, Mihajlo; Gabelli, Julien; Belzig, Wolfgang; Reulet, Bertrand

    2016-01-01

    We study the many-body electronic state created by a time-dependent drive of a mesoscopic contact. The many-body state is expressed manifestly in terms of single-electron and electron-hole quasiparticle excitations with the amplitudes and probabilities of creation which depend on the details of the applied voltage. We experimentally probe the time dependence of the constituent electronic states by using an analog of the optical Hong-Ou-Mandel correlation experiment where electrons emitted from the terminals with a relative time delay collide at the contact. The electron wave packet overlap is directly related to the current noise power in the contact. We have confirmed the time dependence of the electronic states predicted theoretically by measurements of the current noise power in a tunnel junction under harmonic excitation.

  13. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  14. Experimental Bench-marking of Pu Electronic Structure

    SciTech Connect

    Lawrence Livermore National Laboratory

    2007-07-31

    Our plan is to do Ce (as a Pu surrogate) this year and be ready to do Pu next year. The Fano (Spin-resolved Photoelectron Spectroscopy) measurements are essential to testing electron correlation in the occupied 5f states. BIS (Bremstrahlung Isochromat Spectroscopy or high energy Inverse Photoelectron Spectroscopy) experiments are crucial to a quantitative determination of the 5f unoccupied density of states (5f-UDOS). The 5f UDOS is the key to differentiation between a myriad of models of 5f electronic structure. During this time, we will work to converge to a solution for the Pu safety issues, with the plan to implement these in the next FY. Acceleration of this schedule and implementation of the safety plan in this FY will require a very significant increase in funding. Ultimately, results from the Pu experiments will be fed into calculations performed by P. Soderlind, A. Landa, and others.

  15. Single-electron tunneling through discrete semiconductor impurity states

    NASA Astrophysics Data System (ADS)

    Deshpande, Mandar Ramesh

    With the advent of epitaxial crystal growth techniques such as molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), and the development of microfabrication and nanoscale lithography techniques (like electron-beam lithography), the design and implementation of many new experimental systems has become possible. The realization of granular electronic systems, which exhibit single electron effects, such as low dimensional semiconductor and ultra small metallic systems, has focused attention on the basic physical properties of the discrete electronic states. In this dissertation I investigate one such system consisting of individual semiconductor impurities with discrete electronic states. These impurities are located in the quantum well regions of a semiconductor heterostructure resonant tunneling diode and their eigenstates are probed by measuring the electron tunneling current through these states. Quantum effects due to the narrow well width of these diodes change the energy and other physical properties of all the electronic states (including the impurity states) in this region. I focus on one particular physical property, the effective spin g*\\ factor, of electrons in this region and accurately determine it by studying the spin splitting of the impurity states in an applied magnetic field. An analysis of the electron tunneling current through this two state system enables the determination of the tunneling rates of the two potential barriers of the resonant tunneling diode individually. I also investigate a time dependent phenomenon observed in this tunneling system. A two level fluctuating current (random telegraph signal) associated with individual single electron tunneling channels is observed. Possible mechanisms for these fluctuations are discussed. Once the physical properties of the impurity are understood, it can be used as a probe to investigate the local properties of the semiconductor contacts. The impurity states serve as

  16. Microscopic theory of the insulating electronic ground states of the actinide dioxides AnO2 (An = U, Np, Pu, Am, and Cm)

    NASA Astrophysics Data System (ADS)

    Suzuki, M.-T.; Magnani, N.; Oppeneer, P. M.

    2013-11-01

    The electronic states of the actinide dioxides AnO2 (with An = U, Np, Pu, Am, and Cm) are investigated employing first-principles calculations within the framework of the local density approximation +U (LDA+U) approach, implemented in a full-potential linearized augmented plane-wave scheme. A systematic analysis of the An-5f states is performed which provides intuitive connections between the electronic structures and the local crystalline fields of the f states in the AnO2 series. Particularly the mechanisms leading to the experimentally observed insulating ground states are investigated. These are found to be caused by the strong spin-orbit and Coulomb interactions of the 5f orbitals; however, as a result of the different configurations, this mechanism works in distinctly different ways for each of the AnO2 compounds. In agreement with experimental observations, the nonmagnetic states of plutonium and curium dioxide are computed to be insulating, whereas those of uranium, neptunium, and americium dioxides require additional symmetry breaking to reproduce the insulator ground states, a condition which is met with magnetic phase transitions. We show that the occupancy of the An-f orbitals is closely connected to each of the appearing insulating mechanisms. We furthermore investigate the detailed constitution of the noncollinear multipolar moments for transverse 3q magnetic ordered states in UO2 and longitudinal 3q high-rank multipolar ordered states in NpO2 and AmO2.

  17. Pressure-induced changes in the electronic structure of americium metal

    SciTech Connect

    Soderlind, P; Moore, K T; Landa, A; Bradley, J A

    2011-02-25

    We have conducted electronic-structure calculations for Am metal under pressure to investigate the behavior of the 5f-electron states. Density-functional theory (DFT) does not reproduce the experimental photoemission spectra for the ground-state phase where the 5f electrons are localized, but the theory is expected to be correct when 5f delocalization occurs under pressure. The DFT prediction is that peak structures of the 5f valence band will merge closer to the Fermi level during compression indicating presence of itinerant 5f electrons. Existence of such 5f bands is argued to be a prerequisite for the phase transitions, particularly to the primitive orthorhombic AmIV phase, but does not agree with modern dynamical-mean-field theory (DMFT) results. Our DFT model further suggests insignificant changes of the 5f valence under pressure in agreement with recent resonant x-ray emission spectroscopy, but in contradiction to the DMFT predictions. The influence of pressure on the 5f valency in the actinides is discussed and is shown to depend in a non-trivial fashion on 5f band position and occupation relative to the spd valence bands.

  18. Electrostatic potential barrier for electron emission at graphene edges induced by the nearly free electron states

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Okada, Susumu

    2017-05-01

    Using the density functional theory, we studied the electronic structures of zigzag graphene nanoribbons with hydroxyl, H, ketone, aldehyde, or carboxyl terminations under a lateral electric field. The critical electric field for electron emission is proportional to the work function of the functionalized edges except the hydroxylated edge, which leads to the anomalous electric field outside the edge, owing to the electrons in the nearly free electron (NFE) state in the vacuum region. The strong electric field also causes a potential barrier for the electron emission from the H-terminated edge owing to the downward shift of the NFE state.

  19. On the electron wavepacket dynamics of photoionizing states

    NASA Astrophysics Data System (ADS)

    Takatsuka, Kazuo

    2014-06-01

    To study electron wavepacket dynamics of photoionizing states in polyatomic molecules, we discuss two crucial issues to be overcome in the theory of molecular electronic wavepacket dynamics in an intense laser field (Takatsuka and Yonehara 2011 Phys. Chem. Chem. Phys. 13 4987). One is about the description of the ionization process from electronically excited states composed of many multiply excited configuration-state functions. The other is how to reconstruct the electronic states remaining in the molecular site while electrons are flowing out of the molecular bounds. These are both critical to extend the realm of the theories of electron dynamics based on the so-called expansion (algebraic) method in terms of basis functions. To calculate the photoionization amplitude and thereby to estimate the time-dependent amount of electron loss from a molecule, we extract the electron flux (probability current density) from the electron wavepackets without use of scattering theory. This is justified by the success of the recent works by Bandrauk’s group for attosecond photoionization dynamics from the hydrogen molecule ion, who performed numerical integration of the relevant Schrödinger equation (Yuan et al 2013 J. Chem. Phys. 138 134316). A key feature in the present study, on the other hand, is to calculate the electron flux in terms of complex-valued NOs, which arise from the complex electronic wavepackets. Through the change of these NOs, we reconstruct the involved electronic configurations during the flow of electrons out of molecular regions. These repopulated electronic wavefunctions are (non-adiabatically) evolved in time under laser fields.

  20. CHARACTERIZATION AND ACTUAL WASTE TEST WITH TANK 5F SAMPLES

    SciTech Connect

    Hay, M. S.; Crapse, K. P.; Fink, S. D.; Pareizs, J. M.

    2007-08-30

    The initial phase of bulk waste removal operations was recently completed in Tank 5F. Video inspection of the tank indicates several mounds of sludge still remain in the tank. Additionally, a mound of white solids was observed under Riser 5. In support of chemical cleaning and heel removal programs, samples of the sludge and the mound of white solids were obtained from the tank for characterization and testing. A core sample of the sludge and Super Snapper sample of the white solids were characterized. A supernate dip sample from Tank 7F was also characterized. A portion of the sludge was used in two tank cleaning tests using oxalic acid at 50 C and 75 C. The filtered oxalic acid from the tank cleaning tests was subsequently neutralized by addition to a simulated Tank 7F supernate. Solids and liquid samples from the tank cleaning test and neutralization test were characterized. A separate report documents the results of the gas generation from the tank cleaning test using oxalic acid and Tank 5F sludge. The characterization results for the Tank 5F sludge sample (FTF-05-06-55) appear quite good with respect to the tight precision of the sample replicates, good results for the glass standards, and minimal contamination found in the blanks and glass standards. The aqua regia and sodium peroxide fusion data also show good agreement between the two dissolution methods. Iron dominates the sludge composition with other major contributors being uranium, manganese, nickel, sodium, aluminum, and silicon. The low sodium value for the sludge reflects the absence of supernate present in the sample due to the core sampler employed for obtaining the sample. The XRD and CSEM results for the Super Snapper salt sample (i.e., white solids) from Tank 5F (FTF-05-07-1) indicate the material contains hydrated sodium carbonate and bicarbonate salts along with some aluminum hydroxide. These compounds likely precipitated from the supernate in the tank. A solubility test showed the material

  1. First observation of intra-5f fluorescence from an actinyl center: Np(VI) near-IR emission in Cs[sub 2]U(Np)O[sub 2]CI[sub 4

    SciTech Connect

    Wilkerson, M. P.; Berg, J. M.; Dewey, H. J.; Hopkins, T. A.

    2004-01-01

    We have identified the first example of 5f-5f luminescence by an actinyl ion. NpO{sub 2}Cl{sub 4}{sup 2-} luminesces with reasonable intensity at both liquid nitrogen temperature, and more notably, it luminesces strongly at room temperature. Relaxation pathways from the second excited state is competitive with radiationless deactivation pathways to a large number of vibronic states accessible at room temperature. Excitation spectra show correlation with absorption spectra. We plan to investigate 5f-5f luminescence from other more complex (5f{sup n}, N > 1) actinyl molecular species.

  2. Two state electron model for geminate recombination of electron-ion pairs in liquid isooctane

    NASA Astrophysics Data System (ADS)

    Lukin, L. V.; Yakovlev, B. S.

    2011-04-01

    Recombination kinetics of geminate electron-ion pairs is considered in the framework of the two state model for electron transport in liquid hydrocarbons. It is shown that the model well reproduces recent experimental data on the subpicosecond geminate recombination obtained in liquid isooctane. The life time of electrons in a localized state in isooctane is estimated to lie in the range between 0.14 ps and 0.57 ps at room temperature.

  3. Timekeeping with electron spin states in diamond

    NASA Astrophysics Data System (ADS)

    Hodges, J. S.; Yao, N. Y.; Maclaurin, D.; Rastogi, C.; Lukin, M. D.; Englund, D.

    2013-03-01

    Frequency standards based on atomic states, such as Rb or Cs vapors, or single-trapped ions, are the most precise measures of time. Here we propose and analyze a precision oscillator approach based upon spins in a solid-state system, in particular, the nitrogen-vacancy defect in single-crystal diamond. We show that this system can have stability approaching portable atomic standards and is readily incorporable as a chip-scale device. Using a pulsed spin-echo technique, we anticipate an Allan deviation of σy=10-7τ-1/2 limited by thermally-induced strain variations; in the absence of such thermal fluctuations, the system is limited by spin dephasing and harbors an Allan deviation nearing ˜10-12τ-1/2. Potential improvements based upon advanced diamond material processing, temperature stabilization, and nanophotonic engineering are discussed.

  4. Imaging the dynamics of free-electron Landau states

    NASA Astrophysics Data System (ADS)

    Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco

    2014-08-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.

  5. Imaging the dynamics of free-electron Landau states.

    PubMed

    Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco

    2014-08-08

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.

  6. Electronic aperture control devised for solid state imaging system

    NASA Technical Reports Server (NTRS)

    Anders, R. A.; Callahan, D. E.; Mc Cann, D. H.

    1968-01-01

    Electronic means of performing the equivalent of automatic aperture control has been devised for the new class of television cameras that incorporates a solid state imaging device in the form of phototransistor mosaic sensors.

  7. Electronic states of the diatomic antimony fluoride (SbF)

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1996-07-01

    The potential energy curves of 21 electronic states of SbF and spectroscopic properties of bound states among these have been computed using the complete active space self-consistent field (CASSCF) followed by first- and second-order configuration interaction (FOCI, SOCI) and multireference singles and doubles configuration interaction (MRSDCI) methods. The computed results are in good agreement with the observed values for six states, while the properties of four other states have been computed which are yet to be observed.

  8. 26 CFR 5f.103-1 - Obligations issued after December 31, 1982, required to be in registered form.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 103 (a) or any other provision of law, exclusive of any treaty obligation of the United States, unless... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Obligations issued after December 31, 1982... EQUITY AND FISCAL RESPONSIBILITY ACT OF 1982 § 5f.103-1 Obligations issued after December 31,...

  9. Electronic states of doped semiconductors: A multiple scattering approach

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Serre, J.

    1983-03-01

    The electronic structure of doped (and compensated) semiconductors is studied by using the Klauder's best multiple-scattering approximation. Electron correlations are also included. It is shown that as the impurity concentration is decreased, the band tail gradually splits off from the main band giving an impurity band. The domains of existence of extended states and localized states have been recognized by analyzing the shape of spectral densities. Lastly, our results are confronted with various experiments.

  10. Electron states and electron Raman scattering in semiconductor step-quantum well: Electric field effect

    NASA Astrophysics Data System (ADS)

    Betancourt-Riera, Ri.; Betancourt-Riera, Re.; Ferrer-Moreno, L. A.; Jalil, J. M. Nieto

    2017-04-01

    In this work we determine and show the expressions of the electron states of a step-quantum well with the presence of an external electric field, developed in a GaAs / AlGaAs matrix. The electron states are obtained using the envelope function approximation. In this work it is only necessary to consider a single conduction band, which due to the confinement is divided into a subband system, with T = 0K . Expressions for the electron states and the differential cross-section for an intraband electron Raman scattering process of are presented, the net Raman gain is also calculated. In addition, the interpretation of the singularities found in the emission or excitation spectra is given, since several dispersion configurations are discussed. Furthermore, the effects of an electric field on the electron states and on the differential cross section are studied.

  11. REFLECTIONS ON THE TWO-STATE ELECTRON TRANSFER MODEL.

    SciTech Connect

    Brunschwig, B.S.

    2000-01-12

    There is general agreement that the two most important factors determining electron transfer rates in solution are the degree of electronic interaction between the donor and acceptor sites, and the changes in the nuclear configurations of the donor, acceptor, and surrounding medium that occur upon the gain or loss of an electron Ll-51. The electronic interaction of the sites will be very weak, and the electron transfer slow, when the sites are far apart or their interaction is symmetry or spin forbidden. Since electron motion is much faster than nuclear motion, energy conservation requires that, prior to the actual electron transfer, the nuclear configurations of the reactants and the surrounding medium adjust from their equilibrium values to a configuration (generally) intermediate between that of the reactants and products. In the case of electron transfer between , two metal complexes in a polar solvent, the nuclear configuration changes involve adjustments in the metal-ligand and intraligand bond lengths and angles, and changes in the orientations of the surrounding solvent molecules. In common with ordinary chemical reactions, an electron transfer reaction can then be described in terms of the motion of the system on an energy surface from the reactant equilibrium configuration (initial state) to the product equilibrium configuration (final state) via the activated complex (transition state) configuration.

  12. Surface-electronic-state effects in electron emission from the Be(0001) surface

    SciTech Connect

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  13. Probing the electronic structures of low oxidation-state uranium fluoride molecules UFx- (x=2-4)

    SciTech Connect

    Li, Wei-Li; Hu, Hanshi; Jian, Tian; Lopez, Gary V.; Su, Jing; Li, Jun; Wang, Lai-Sheng

    2013-12-28

    We report the experimental observation of gaseous UFx- (x = 2-4) anions, which are investigated using photoelectron spectroscopy and relativistic quantum chemistry. Vibrationally resolved photoelectron spectra are obtained for all three species and the electron affinities of UFx (x = 2-4) are measured to be 1.16(3), 1.09(3), and 1.58(3) eV, respectively. Significant multi-electron transitions are observed in the photoelectron spectra of U(5f(3)7s(2)) F-2(-), as a result of strong electron correlation effects of the two 7s electrons. The U-F symmetric stretching vibrational modes are resolved for the ground states of all UFx (x = 2-4) neutrals. Theoretical calculations are performed to qualitatively understand the photoelectron spectra. The entire UFx- and UFx (x = 1-6) series are considered theoretically to examine the trends of U-F bonding and the electron affinities as a function of fluorine coordination. The increased U-F bond lengths and decreased bond orders from UF2- to UF4- indicate that the U-F bonding becomes weaker as the oxidation state of U increases from I to III. (C) 2013 AIP Publishing LLC.

  14. Electron-Electron Interaction in Ion-Atom Collisions Studied by Projectile State-Resolved Auger Electron Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lee, Do-Hyung

    1990-01-01

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KLL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O^{q+} and F^ {q+} incident on H_2 and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionized by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180^circ Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross sections of the electron -electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron -electron ionization (eeI) were determined. Projectile 2l capture with 1s to 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory. Projectile 1s to 2p excitation by a target electron was observed an an eeE process with Li-like projectiles. Projectile 1s ionization by a target electron was observed as an eeI process with Be-like projectiles

  15. Devil's staircase of incompressible electron states in a nanotube.

    PubMed

    Novikov, Dmitry S

    2005-08-05

    It is shown that a periodic potential applied to a nanotube can lock electrons into incompressible states. Depending on whether electrons are weakly or tightly bound to the potential, excitation gaps open up either due to the Bragg diffraction enhanced by the Tomonaga-Luttinger correlations, or via pinning of the Wigner crystal. Incompressible states can be detected in a Thouless pump setup, in which a slowly moving periodic potential induces quantized current, with a possibility to pump on average a fraction of an electron per cycle as a result of interactions.

  16. Study of the Electronic Surface State of III - V Compounds

    DTIC Science & Technology

    1976-03-15

    Critical Reviews in Solid State Sciences 5. 7:31 (1975), "Surface and interface electronic structure of GaAs and other III-V compounds ." (Invited...STUDY OF THE ELECTRONIC SURFACE STATE OF TIT - V COMPOUNDS . CO o EMI-ANNUAL TECHNICAL PROGRESS REPlll»; YpTceFI Principal Investigator Telephone...Chapter 2 «^Synchrotron Radiation Studies of Electronic Structure and Surface Chemistry of GaAs, GaSb, and InP-.j^ .... 4 I. Introduction 4 II. Core

  17. Excited electronic state of a cluster formed from self-trapped electrons

    SciTech Connect

    Mukhomorov, V.K.

    1995-12-01

    The possibility of spontaneous clustering of self-trapped electrons in an excited electronic state is discussed. The pair interaction potential corresponds to the excited terms {sup 1}{Sigma}{sub g}(1s2s) in the single spin state and {sup 3}{Sigma}{sub u}(1s2s) in the triplet spin state. The energy interval corresponding to a pair of excited quasi-particles is calculated. Quantitative calculations are presented for electrons solvated in ammonia. 9 refs., 4 figs.

  18. Molecular electronics with single molecules in solid-state devices.

    PubMed

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  19. Alternative ground states enable pathway switching in biological electron transfer.

    PubMed

    Abriata, Luciano A; Álvarez-Paggi, Damián; Ledesma, Gabriela N; Blackburn, Ninian J; Vila, Alejandro J; Murgida, Daniel H

    2012-10-23

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.

  20. Theory and applications of free-electron vortex states

    NASA Astrophysics Data System (ADS)

    Bliokh, K. Y.; Ivanov, I. P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M. A.; Schattschneider, P.; Nori, F.; Verbeeck, J.

    2017-05-01

    Both classical and quantum waves can form vortices : entities with helical phase fronts and circulating current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translating theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.

  1. Extending Quantum Chemistry of Bound States to Electronic Resonances

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.

    2017-05-01

    Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.

  2. Search for bound-state electron+positron pair decay

    NASA Astrophysics Data System (ADS)

    Bosch, F.; Hagmann, S.; Hillenbrand, P.-M.; Lane, G. J.; Litvinov, Yu. A.; Reed, M. W.; Sanjari, M. S.; Stöhlker, Th.; Torilov, S. Yu.; Tu, X. L.; Walke, P. M.

    2016-09-01

    The heavy ion storage rings coupled to in-flight radioactive-ion beam facilities, namely the ability to produce and store for extended periods of time radioactive nuclides in high atomic charge states, for the searchof yet unobserved decay mode - bound-state electron-positron pair decay.

  3. Electronic Religion and the Separation of Church and State.

    ERIC Educational Resources Information Center

    Jackson, Gordon

    An examination of the rise of "electronic religion" (religious broadcasting on radio and television) in the United States and the movement's fusing of religious and political issues during the 1980 election year lends credibility to the argument that a clash between church and state is inherent in the political aspects of these…

  4. Electronic states in hybrid boron nitride and graphene structures

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Huang, Y. H.; Ma, F.; Hu, T. W.; Xu, K. W.; Chu, Paul K.

    2013-08-01

    The energy bands and electronic states of hybrid boron nitride (BN) and graphene structures are studied by first principle calculations. The electronic states change from semi-metallic to insulating depending on the number of B and N atoms as well as domain symmetry. When there are unequal numbers of B and N atoms, mid-gap states usually appear around the Fermi level and the corresponding hybrid structure possesses magnetic and semi-metallic properties. However, when the numbers of B and N atoms are equal, a band gap exists indicative of a semiconducting or insulating nature which depends on the structural symmetry.

  5. Reverse quantum state engineering using electronic feedback loops

    NASA Astrophysics Data System (ADS)

    Kießlich, Gerold; Emary, Clive; Schaller, Gernot; Brandes, Tobias

    2012-12-01

    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and, in particular, a single-electron transistor. We provide a general scheme for stabilizing pure states in the quantum system and use an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example, we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.

  6. Fast electronic resistance switching involving hidden charge density wave states

    NASA Astrophysics Data System (ADS)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  7. Fast electronic resistance switching involving hidden charge density wave states.

    PubMed

    Vaskivskyi, I; Mihailovic, I A; Brazovskii, S; Gospodaric, J; Mertelj, T; Svetin, D; Sutar, P; Mihailovic, D

    2016-05-16

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  8. Fast electronic resistance switching involving hidden charge density wave states

    PubMed Central

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-01-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T–TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states. PMID:27181483

  9. Photophysical properties of ESIPT inspired fluorescent 2-(2-hydroxyphenyl)-6-methylimidazo[4,5-f]isoindole-5,7(1H,6H)-dione and its derivative: Experimental and DFT based approach

    NASA Astrophysics Data System (ADS)

    Deshmukh, Mininath S.; Sekar, Nagaiyan

    2015-01-01

    The excited-state intramolecular proton transfer chromophores 2-(2-hydroxyphenyl)-6-methylimidazo[4,5-f]isoindole-5,7(1H,6H)-dione and 2-(4-(diethylamino)-2-hydroxyphenyl)-6-methylimidazo[4,5-f]isoindole-5,7(1H,6H)-dione are synthesized from 4,5-diamino-N-methylphthalimide. The photophysical behavior of the synthesized chromophores was studied using UV-visible and fluorescence spectroscopy in the polar and non-polar solvents. The synthesized o-hydroxyphenyl benzimidazole derivatives are fluorescent and very sensitive to the solvent polarity. These dyes are thermally stable up to 317 °C. Density Functional Theory computations have been used to understand the structural, molecular, electronic and photophysical properties of the chromophores. The experimental absorption and emission wavelengths are in good agreement with the computed vertical excitation and theoretical emission obtained by Density Functional Theory and Time Dependant Density Functional Theory.

  10. Electronic Ground and Excited State Spectral Diffusion of a Photocatalyst

    NASA Astrophysics Data System (ADS)

    Kiefer, Laura M.; King, John T.; Kubarych, Kevin J.

    2014-06-01

    Re(bpy)(CO)_3Cl is a well studied CO_2 reduction catalyst, known for its ability as both a photosensitizer and a catalyst with a high quantum yield and product selectivity. The catalysis reaction is initiated by a 400 nm excitation, followed by an intersystem crossing (ISC) and re-equilibration in the lowest triplet state. We utilize the quasi-equilibrium nature of this long-lived triplet metal-to-ligand charge-transfer (3MLCT) state to completely characterize the solvent dynamics using the technique of transient two-dimensional infrared (t-2DIR) spectroscopy to extract observables such as the frequency-frequency correlation function (FFCF), an equilibrium function. The electronic ground state solvent dynamics are characterized using equilibrium two-dimensional infrared spectroscopy (2D IR). Our technique allows us to independently observe the solvent dynamics of different electronic states and compare them. In this study, three carbonyl stretching modes were utilized to probe both the intramolecular and solvent environments in each electronic state. In the electronic ground state, the totally symmetric mode exhibits pure homogeneous broadening and a lack of spectral dynamics, while the two other modes have similar FFCF decay times of ˜ 1.5 ps. In the 3MLCT, however, all three modes experience similar spectral dynamics and have a FFCF decay time of ˜ 4.5 ps, three times slower than in the electronic ground state. Our technique allows us to directly observe the differences in spectral dynamics of the ground and excited electronic states and allows us to attribute the differences to specific origins such as solvent-solute coupling and molecular flexibility.

  11. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  12. Alternative ground states enable pathway switching in biological electron transfer

    SciTech Connect

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.

  13. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  14. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    SciTech Connect

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S.

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for the Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.

  15. Schedules of Controlled Substances: Temporary Placement of Six Synthetic Cannabinoids (5F-ADB, 5F-AMB, 5F-APINACA, ADB-FUBINACA, MDMB-CHMICA and MDMB-FUBINACA) into Schedule I. Temporary Scheduling Order.

    PubMed

    2017-04-10

    The Administrator of the Drug Enforcement Administration is issuing this temporary scheduling order to schedule six synthetic cannabinoids: methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [5F-ADB; 5F-MDMB-PINACA]; methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3-methylbutanoate [5F-AMB]; N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide [5F-APINACA, 5F-AKB48]; N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide [ADB-FUBINACA]; methyl 2-(1-(cyclohexylmethyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-CHMICA, MMB-CHMINACA] and methyl 2-(1-(4-fluorobenzyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-FUBINACA], and their optical, positional, and geometric isomers, salts, and salts of isomers into schedule I pursuant to the temporary scheduling provisions of the Controlled Substances Act. This action is based on a finding by the Administrator that the placement of these synthetic cannabinoids into schedule I of the Controlled Substances Act is necessary to avoid an imminent hazard to the public safety. As a result of this order, the regulatory controls and administrative, civil, and criminal sanctions applicable to schedule I controlled substances will be imposed on persons who handle (manufacture, distribute, reverse distribute, import, export, engage in research, conduct instructional activities or chemical analysis, or possess), or propose to handle, 5F-ADB, 5F-AMB, 5F-APINACA, ADB-FUBINACA, MDMB-CHMICA or MDMB-FUBINACA.

  16. Computing electronic structures: A new multiconfiguration approach for excited states

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Galicher, Hervé; Lewin, Mathieu

    2006-02-01

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latters. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H2 molecule.

  17. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  18. The electronic states of TeH(+): a theoretical contribution.

    PubMed

    Gonçalves dos Santos, Levi; de Oliveira-Filho, Antonio Gustavo S; Ornellas, Fernando R

    2015-01-14

    This work reports the first theoretical characterization of a manifold of electronic states of the as yet experimentally unknown monotellurium monohydride cation, TeH(+). Both Λ + S and Ω representations were described showing the twelve states correlating with the three lowest (Λ + S) dissociation channels, and the twenty five states associated with the five lowest Ω channels. The X (3)Σ(-) state is split into X1 0(+) and X2 1 separated by 1049 cm(-1); they are followed by the states a 2 (a (1)Δ) and b 0(+) (b (1)Σ(+)) higher in energy by 8554 and 17 383 cm(-1), respectively. These states can accommodate several vibrational energy levels. The potential energy curves of the Ω states arising from the bound A (3)Π, the weakly bound (1)Π, and the repulsive (5)Σ(-) states have a complex structure as shown by the very close avoided crossings just above ∼30 000 cm(-1). In particular, a double minima potential results for the state A1 2 that in principle could be probed experimentally through the A1 2-X2 1 system transitions. The states A2 1, b 0(+), and A4 0(+) offer possible routes to experimental investigations involving the ground state X1 0(+). Higher energy states are very dense and mostly repulsive. The high-level of the electronic structure calculations, by providing a global view of the electronic states and reliable spectroscopic parameters, is expected to further guide and motivate experimental studies on this species. Additional discussions on dipole and transition dipole moments, transition probabilities, radiative lifetimes, and a simulation of the single ionization spectrum complement the characterization of this system.

  19. Circularly polarized luminescence of curium: a new characterization of the 5f actinide complexes.

    PubMed

    Law, Ga-Lai; Andolina, Christopher M; Xu, Jide; Luu, Vinh; Rutkowski, Philip X; Muller, Gilles; Shuh, David K; Gibson, John K; Raymond, Kenneth N

    2012-09-19

    A key distinction between the lanthanide (4f) and the actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, spectra of the highly luminescent complexes showed significant emission peak shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra.

  20. Circularly Polarized Luminescence of Curium: A New Characterization of the 5f Actinide Complexes

    PubMed Central

    Law, Ga-Lai; Andolina, Christopher M.; Xu, Jide; Luu, Vinh; Rutkowski, Philip X.; Muller, Gilles; Shuh, David K.; Gibson, John K.; Raymond, Kenneth N.

    2012-01-01

    A key distinction between the lanthanide (4f) and actinide (5f) transition elements is the increased role of f-orbital covalent bonding in the latter. Circularly polarized luminescence (CPL) is an uncommon but powerful spectroscopy which probes the electronic structure of chiral, luminescent complexes or molecules. While there are many examples of CPL spectra for the lanthanides, this report is the first for an actinide. Two chiral, octadentate chelating ligands based on orthoamide phenol (IAM) were used to complex curium(III). While the radioactivity kept the amount of material limited to micromole amounts, the spectra of the highly luminescent complexes showed significant emission peak-shifts between the different complexes, consistent with ligand field effects previously observed in luminescence spectra. PMID:22920726

  1. Charge transfer to ground-state ions produces free electrons

    NASA Astrophysics Data System (ADS)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  2. Charge transfer to ground-state ions produces free electrons

    PubMed Central

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  3. Ti(3+) Aqueous Solution: Hybridization and Electronic Relaxation Probed by State-Dependent Electron Spectroscopy.

    PubMed

    Seidel, Robert; Atak, Kaan; Thürmer, Stephan; Aziz, Emad F; Winter, Bernd

    2015-08-20

    The electronic structure of a Ti(3+) aqueous solution is studied by liquid-jet soft X-ray photoelectron (PE) spectroscopy. Measured valence and Ti 2p core-level binding energies, together with the Ti 2p resonant photoelectron (RPE) spectra and the derived partial electron-yield L-edge X-ray absorption (PEY-XA) spectra, reveal mixing between metal 3d and water orbitals. Specifically, ligand states with metal character are identified through the enhancement of signal intensities in the RPE spectra. An observed satellite 3d peak structure is assigned to several different metal-ligand states. Experimental energies and the delocalized nature of the respective orbitals are supported by ground-state electronic structure calculations. We also show that by choice of the detected Auger-electron-decay channel, from which different PEY-XA spectra are obtained, the experimental sensitivity to the interactions of the metal 3d electrons with the solvent can be varied. The effect of such a state-dependent electronic relaxation on the shape of the PEY-XA spectra is discussed in terms of different degrees of electron delocalization.

  4. Fragmentation pathwaysfor selected electronic states of theacetylene dication

    SciTech Connect

    Osipov, Timur; Rescigno, Thomas N.; Weber, Thorsten; Miyabe,Shungo; Jahnke, T.; Alnaser, A.; Hertlein, Markus P.; Jagutzki, O.; Schmidt, L.Ph.H.; Schoffler, M.; Foucar, L.; Schossler, S.; Havermeier,T.; Odenweller,M.; Voss, S.; Feinberg, Ben; Landers, Alan; Prior, MichaelH.; Dorner, Reinhart; Cocke, C.L.; Belkacem, Ali

    2007-12-18

    Coincident measurement of the Auger electron and fragmention momenta emitted after carbon core-level photoionization of acetylenehas yielded new understanding of how the dication fragments. Ab initiocalculations and experimental data, including body-frame Auger angulardistributions, are used to identify the parent electronic states andtogether yield a comprehensive map of the dissociation pathways whichinclude surface crossings and barriers to direct dissociation. The Augerangular distributions show evidence of core-holelocalization.

  5. Microwave zero-resistance states in a bilayer electron system.

    PubMed

    Wiedmann, S; Gusev, G M; Raichev, O E; Bakarov, A K; Portal, J C

    2010-07-09

    Magnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature. Experimental results are compared with a theory demonstrating that the conditions for absolute negative resistivity correlate with the appearance of ZRS.

  6. Electronic states of moiré modulated Cu films.

    PubMed

    Moras, P; Sheverdyaeva, P M; Carbone, C; Topwal, D; Ferrari, L; Bihlmayer, G; Ouazi, S; Rusponi, S; Lehnert, A; Brune, H

    2012-08-22

    We examined by low-energy electron diffraction and scanning tunneling microscopy the surface of thin Cu films on Pt(111). The Cu/Pt lattice mismatch induces a moiré modulation for films from 3 to about 10 ML thickness. We used angle-resolved photoemission spectroscopy to examine the effects of this structural modulation on the electronic states of the system. A series of hexagonal- and trigonal-like constant energy contours is found in the proximity of the Cu(111) zone boundaries. These electronic patterns are generated by Cu sp-quantum well state replicas, originating from multiple points of the reciprocal lattice associated with the moiré superstructure. Layer-dependent strain relaxation and hybridization with the substrate bands concur to determine the dispersion and energy position of the Cu Shockley surface state.

  7. Electron-impact excitation of the low-lying electronic states of formaldehyde

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1974-01-01

    Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.

  8. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    SciTech Connect

    Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Blanco, F.; García, G.; Ratnavelu, K.; Brunger, M. J.

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  9. Alternative ground states enable pathway switching in biological electron transfer

    DOE PAGES

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less

  10. TOPICAL REVIEW Electronic states of graphene nanoribbons and analytical solutions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsunori; Sasaki, Ken-ichi; Nakanishi, Takeshi; Enoki, Toshiaki

    2010-10-01

    Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron-electron interaction are briefly discussed.

  11. Electronically Excited States and Their Role in Affecting Thermodynamic and Transport Properties of Thermal Plasmas

    DTIC Science & Technology

    2009-09-01

    electrons between the two ionic cores. The exchange interaction has an analytical expression [64], depending on the quantum numbers characterizing...Capitelli, D. Bruno, G. Colonna, C. Catalfamo and A. Laricchiuta Dept Chemistry University of Bari, via Orabona 4, 70125 Bari Italy CNR IMIP Bari...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dept Chemistry University of Bari, via

  12. Two-electron photoionization of ground-state lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.

    2009-12-15

    We apply the convergent close-coupling (CCC) formalism to single-photon two-electron ionization of the lithium atom in its ground state. We treat this reaction as single-electron photon absorption followed by inelastic scattering of the photoelectron on a heliumlike Li{sup +} ion. The latter scattering process can be described accurately within the CCC formalism. We obtain integrated cross sections of single photoionization leading to the ground and various excited states of the Li{sup +} ion as well as double photoionization extending continuously from the threshold to the asymptotic limit of infinite photon energy. Comparison with available experimental and theoretical data validates the CCC model.

  13. Pharmacology of Valinate and tert-Leucinate Synthetic Cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and Their Analogues.

    PubMed

    Banister, Samuel D; Longworth, Mitchell; Kevin, Richard; Sachdev, Shivani; Santiago, Marina; Stuart, Jordyn; Mack, James B C; Glass, Michelle; McGregor, Iain S; Connor, Mark; Kassiou, Michael

    2016-09-21

    Indole and indazole synthetic cannabinoids (SCs) featuring l-valinate or l-tert-leucinate pendant group have recently emerged as prevalent recreational drugs, and their use has been associated with serious adverse health effects. Due to the limited pharmacological data available for these compounds, 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues were synthesized and assessed for cannabimimetic activity in vitro and in vivo. All SCs acted as potent, highly efficacious agonists at CB1 (EC50 = 0.45-36 nM) and CB2 (EC50 = 4.6-128 nM) receptors in a fluorometric assay of membrane potential, with a general preference for CB1 activation. The cannabimimetic properties of two prevalent compounds with confirmed toxicity in humans, 5F-AMB and MDMB-FUBINACA, were demonstrated in vivo using biotelemetry in rats. Bradycardia and hypothermia were induced by 5F-AMB and MDMB-FUBINACA doses of 0.1-1 mg/kg (and 3 mg/kg for 5F-AMB), with MDMB-FUBINACA showing the most dramatic hypothermic response recorded in our laboratory for any SC (>3 °C at 0.3 mg/kg). Reversal of hypothermia by pretreatment with a CB1, but not CB2, antagonist was demonstrated for 5F-AMB and MDMB-FUBINACA, consistent with CB1-mediated effects in vivo. The in vitro and in vivo data indicate that these SCs act as highly efficacious CB receptor agonists with greater potency than Δ(9)-THC and earlier generations of SCs.

  14. Putting a new spin on unoccupied electronic states

    NASA Astrophysics Data System (ADS)

    Donath, Markus

    2015-03-01

    Inverse photoemission provides experimental information on the unoccupied electronic states, which is complementary to that obtained by photoemission about the occupied states. The first experimental demonstration of inverse photoemission in the vacuum ultraviolet energy range in 1977 was followed by an important add-on in 1982, the use of spin-polarized electrons. This pioneering experiment opened the way to reveal the spin character of unoccupied electron states in ferromagnets. In this contribution, I will describe the technical development of spin-resolved inverse photoemission with respect to efficiency as well as energy, momentum and spin resolution since the beginning until today. I will give a review about important results obtained by this technique. For about three decades, exchange-split electron states of majority and minority spin character at ferromagnetic surfaces and in ultrathin films were the topics of interest. Since recently, spin textures in momentum space caused by spin-orbit interaction in Rashba systems and topological insulators offer a new field of application for spin-resolved inverse photoemission. I will present a selection of examples, from small and giant Rashba splittings to rotating spins with chiral texture, influenced by the specific symmetry of the system and the orbital character of the respective states.

  15. Electronic State Decomposition of Energetic Materials and Model Systems

    DTIC Science & Technology

    2010-11-17

    tetrazine1,4-dioxde ( DATO ), is investigated. Although these molecules are based on N -oxides of a tetrazine aromatic heterocyclic ring, their...nitramines, furazan, tetrazines, tetrazine-N oxides, terazoles, PETN, RDX,HMX,CL-20,DAATO,ACTO, DATO ,conical intersections Elliot R Bernstein Colorado State...Tetrazine-N-Oxide Based High Nitrogen Content Energetic Materials from Excited Electronic States," J. Chem. Phys. 131, 194304 (2009). A

  16. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  17. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved.

  18. Experimental Studies of Interacting Electronic States in NaCs

    NASA Astrophysics Data System (ADS)

    Faust, Carl E.

    This dissertation describes methods and results of spectroscopic studies of the NaCs molecule. NaCs is of particular interest in many labs where experimental studies of ultra-cold molecules are being conducted. Data obtained in the present work will also be useful as benchmarks for various theoretical calculations. Our goals in studying this molecule were to map out high lying electronic states and to understand how these states interact with one another. Sodium and cesium metal were heated in a heat-pipe oven to form a vapor of NaCs molecules. These molecules were excited using narrow band, continuous wave (cw), tunable lasers. We employed the optical-optical double resonance (OODR) technique to obtain Doppler-free spectra of transitions to rotational and vibrational levels of high lying electronic states. One state of particular interest was the 12(0+) electronic state. Rovibrational level energies corresponding to this state were measured and used to generate a potential energy curve using computer programs to implement both the Rydberg-Klein-Rees (RKR) method and the inverted perturbation approach (IPA). By observing fluorescence from the 12(0+) state resolved as a function of wavelength, we determined that this state interacts with the nearby 11(0+) electronic state, which was previously mapped out by Ashman et al. A two-stage coupling model was devised to describe the resolved fluorescence originating from these two interacting states. The electronic states interact via spin-orbit coupling, while the individual rovibrational levels interact via a second mechanism, likely nonadiabatic coupling. This two-stage coupling between the levels of these states causes quantum interference between fluorescence pathways associated with different components of the wavefunctions describing these levels. This interference results in more complicated resolved fluorescence spectra. The model was used to fit parameters describing these interactions so that the resolved

  19. A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states

    NASA Astrophysics Data System (ADS)

    Dou, Wenjie; Subotnik, Joseph E.

    2016-08-01

    We present a very general form of electronic friction as present when a molecule with multiple orbitals hybridizes with a metal electrode. To develop this picture of friction, we embed the quantum-classical Liouville equation (QCLE) within a classical master equation (CME). Thus, this article extends our previous work analyzing the case of one electronic level, as we may now treat the case of multiple levels and many electronic molecular states. We show that, in the adiabatic limit, where electron transitions are much faster than nuclear motion, the QCLE-CME reduces to a Fokker-Planck equation, such that nuclei feel an average force as well as friction and a random force—as caused by their interaction with the metallic electrons. Finally, we show numerically and analytically that our frictional results agree with other published results calculated using non-equilibrium Green's functions. Numerical recipes for solving this QCLE-CME will be provided in a subsequent paper.

  20. A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states.

    PubMed

    Dou, Wenjie; Subotnik, Joseph E

    2016-08-07

    We present a very general form of electronic friction as present when a molecule with multiple orbitals hybridizes with a metal electrode. To develop this picture of friction, we embed the quantum-classical Liouville equation (QCLE) within a classical master equation (CME). Thus, this article extends our previous work analyzing the case of one electronic level, as we may now treat the case of multiple levels and many electronic molecular states. We show that, in the adiabatic limit, where electron transitions are much faster than nuclear motion, the QCLE-CME reduces to a Fokker-Planck equation, such that nuclei feel an average force as well as friction and a random force-as caused by their interaction with the metallic electrons. Finally, we show numerically and analytically that our frictional results agree with other published results calculated using non-equilibrium Green's functions. Numerical recipes for solving this QCLE-CME will be provided in a subsequent paper.

  1. Schedules of Controlled Substances: Temporary Placement of Six Synthetic Cannabinoids (5F-ADB, 5F-AMB, 5F-APINACA, ADB-FUBINACA, MDMB- CHMICA and MDMB-FUBINACA) Into Schedule I. Notice of Intent.

    PubMed

    2016-12-21

    The Administrator of the Drug Enforcement Administration is issuing this notice of intent to temporarily schedule six synthetic cannabinoids: methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [5F-ADB; 5F-MDMB-PINACA]; methyl 2-(1-(5-fluoropentyl)-1H-indazole-3-carboxamido)-3-methylbutanoate [5F-AMB]; N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide [5F-APINACA, 5F-AKB48]; N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide [ADB-FUBINACA]; methyl 2-(1-(cyclohexylmethyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-CHMICA, MMB-CHMINACA] and methyl 2-(1-(4-fluorobenzyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate [MDMB-FUBINACA], into schedule I pursuant to the temporary scheduling provisions of the Controlled Substances Act (CSA). This action is based on a finding by the Administrator that the placement of these synthetic cannabinoids into schedule I of the Controlled Substances Act is necessary to avoid an imminent hazard to the public safety. Any final order will impose the administrative, civil, and criminal sanctions and regulatory controls applicable to schedule I substances under the Controlled Substances Act on the manufacture, distribution, possession, importation, exportation of, and research and conduct with, instructional activities of these synthetic cannabinoids.

  2. Electronic states of graphene nanoribbons and analytical solutions

    PubMed Central

    Wakabayashi, Katsunori; Sasaki, Ken-ichi; Nakanishi, Takeshi; Enoki, Toshiaki

    2010-01-01

    Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed. PMID:27877361

  3. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron

    SciTech Connect

    Paul F. Barbara

    2005-09-28

    Research under support of this grant has been focused on the understanding of highly delocalized ''conduction-band-like'' excited states of solvated electrons in bulk water, in water trapped in the core of reverse micelles, and in alkane solvents. We have strived in this work to probe conduction-band-like states by a variety of ultrafast spectroscopy techniques. (Most of which were developed under DOE support in a previous funding cycle.) We have recorded the optical spectrum of the hydrated electron for the first time. This was accomplished by applying a photo-detrapping technique that we had developed in a previous funding cycle, but had not yet been applied to characterize the actual spectrum. In the cases of reverse micelles, we have been investigating the potential role of conduction bands in the electron attachment process and the photoinduced detrapping, and have published two papers on this topic. Finally, we have been exploring solvated electrons in isooctane from various perspectives. All of these results strongly support the conclusion that optically accessible, highly delocalized electronic states exist in these various media.

  4. (39)K NMR and EPR study of multiferroic K(3)Fe(5)F(15).

    PubMed

    Blinc, R; Zalar, B; Cevc, P; Gregorovič, A; Zemva, B; Tavčar, G; Laguta, V; Scott, J F; Dalal, N

    2009-01-28

    (39)K NMR spectra and relaxation times of polycrystalline K(3)Fe(5)F(15) have been used as a microscopic detector of the local magnetic fields at the magnetic transition at T(N) = 123 K. The NMR lineshape widens abruptly upon crossing T(N) due to the onset of internal magnetic fields, while we find no significant lineshift. The paraelectric to ferroelectric transition at T(c) = 490 K and the magnetic transition at T(N) have also been studied using X-band EPR (electron paramagnetic resonance). An increase and subsequent decrease in the EPR susceptibilities is observed on approaching T(N) from above. There is also a significant increase in the linewidth. At the same time the g-factor first decreases and then increases with decreasing temperature. The local magnetic field is different at different K sites and is much smaller than the magnetic field around the Fe sites. This seems to be consistent with the behaviour of a weak ferrimagnet. The ferrimagnetism does not seem to be due to spin canting as the lattice is disordered, but may arise from thermal blocking of superparamagnetic percolation clusters. The ferroelectric transition at T(c) shows no electronic anomaly, demonstrating that we are dealing with a classical phonon anomaly as found in conventional oxides rather than an electronic transition.

  5. Status of state electronic disease surveillance systems--United States, 2007.

    PubMed

    2009-07-31

    The National Electronic Disease Surveillance System (NEDSS) is a web-based system that uses standard health information technology (IT) codes to integrate disease surveillance systems, enabling them to transfer public health, laboratory, and clinical data securely from health-care providers to public health departments. Each jurisdictions' system consists of a base system and modules that can be used for specific surveillance purposes. States also use NEDSS-like or other electronic systems to conduct surveillance on specific diseases or conditions. Until recently, no assessment had been done to describe the status and characteristics of state electronic disease surveillance systems. The Council of State and Territorial Epidemiologists (CSTE) conducted such an assessment in August 2007 in all 50 states. This report presents the results of that assessment, which indicated that, in 2007, state electronic disease surveillance systems varied widely and were in various stages of implementation. Each state had either custom-built systems or purchased systems that were customizable, with associated disease modules to meet its own surveillance needs. As interoperability becomes the standard for electronic data sharing, more states will face customization costs and the need to hire more technical specialists who can manage health information and exchange. Further collaboration and support from surveillance and health-care IT stakeholders with public health will be needed to improve the efficacy and quality of electronic disease surveillance systems.

  6. 45 CFR 265.6 - Must States file reports electronically?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Must States file reports electronically? 265.6 Section 265.6 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  7. Determining the Origins of Electronic States in Semiconductor Nanostructures

    SciTech Connect

    Goldman, Rachel S.; Johnson, H. T.

    2014-12-15

    With support from this program, we have generated key results in quantum dot (QD) formation, strain/electronic coupling, measurement and modeling of confined states, and examination of the influence of QDs on thermoelectric and photovoltaic properties of nanocomposite structures. This final report contains a description of our key findings followed by a list of personnel supported and publications generated.

  8. OhioLINK Electronic Journal Use at Ohio State University

    ERIC Educational Resources Information Center

    Connell, Tschera Harkness; Rogers, Sally A.; Diedrichs, Carol Pitts

    2005-01-01

    A five-question survey randomly presented to users at Ohio State University (OSU) as they viewed articles in OhioLINK's Electronic Journal Center (EJC) in fall 2002 probed the user's status, academic unit, reason for viewing, path to the article, and frequency of EJC use. Usage by faculty and graduate students, by frequent users, and by those in…

  9. Imaging the dynamics of free-electron Landau states

    PubMed Central

    Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco

    2014-01-01

    Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563

  10. Controlling autoionization in strontium two-electron-excited states

    NASA Astrophysics Data System (ADS)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  11. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  12. Observation of electron capture into continuum states of neutral atoms

    SciTech Connect

    Sarkadi, L.; Palinkas, J.; Koever, A.; Berenyi, D.; Vajnai, T.

    1989-01-30

    Energy spectra of electrons ejected in the forward direction from 75-keV/amu He/sup 0/-He,Ar collisions have been measured in coincidence with the charge-state--selected outgoing projectiles He/sup 0/, He/sup +/, and He/sup 2+/. The appearance of the cusp-shaped peak in the electron spectrum in coincidence with He/sup 0/ gives the first clear experimental evidence that electron capture into the continuum states (ECC) occurs in collisions where the projectile is a neutral atom. The ECC for He/sup 0/ impact is characterized by a considerably smaller width of the cusp peak than for He/sup +/ impact.

  13. Trapped electronic states in YAG crystal excited by femtosecond radiation

    NASA Astrophysics Data System (ADS)

    Zavedeev, E. V.; Kononenko, V. V.; Konov, V. I.

    2017-07-01

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index ( n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for {˜}150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schrödinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs.

  14. Internal conversion from excited electronic states of 229Th ions

    NASA Astrophysics Data System (ADS)

    Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana

    2017-03-01

    The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.

  15. Electronic density of states in sequence dependent DNA molecules

    NASA Astrophysics Data System (ADS)

    de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S.

    2006-09-01

    We report in this work a numerical study of the electronic density of states (DOS) in π-stacked arrays of DNA single-strand segments made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin-Shapiro (RS) as well as a Fibonacci (FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective inflation rules. Our theoretical method uses Dyson's equation together with a transfer-matrix treatment, within an electronic tight-binding Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remarkable concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states, as well as a striking self-similar aspect.

  16. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation

    SciTech Connect

    Yin, Hsien-Sheng; Wen, Xiaolin; Paterson, Reay G.; Lamb, Robert A.; Jardetzky, Theodore S.

    2010-03-08

    Enveloped viruses have evolved complex glycoprotein machinery that drives the fusion of viral and cellular membranes, permitting entry of the viral genome into the cell. For the paramyxoviruses, the fusion (F) protein catalyses this membrane merger and entry step, and it has been postulated that the F protein undergoes complex refolding during this process. Here we report the crystal structure of the parainfluenza virus 5 F protein in its prefusion conformation, stabilized by the addition of a carboxy-terminal trimerization domain. The structure of the F protein shows that there are profound conformational differences between the pre- and postfusion states, involving transformations in secondary and tertiary structure. The positions and structural transitions of key parts of the fusion machinery, including the hydrophobic fusion peptide and two helical heptad repeat regions, clarify the mechanism of membrane fusion mediated by the F protein.

  17. Dissipative relaxation of a low-energy intermediate electronic state in three-level electron transfer

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Aleksandr M.; Ulstrup, Jens

    1991-11-01

    Long-range electron transfer (ET) in molecular and solid state systems always involves intermediate "environmental" electronic states. These participate in the superexchange mode if their energies are high, or sequentially when the energy is low and the states temporarily populated. The intermediate state nuclear motion can, however, be partially unrelaxed prior to the second ET step and the latter mechanism therefore differs from that of consecutive independent ET steps. We have analyzed the effect of intermediate state vibrational damping in a three-level process by a one-dimensional model and simple trajectory calculations. Damping is most reflected in the diabatic limit. Complete absence of damping gives a quadratic dependence on the electron exchange matrix elements. This differs from the fourth-order dependence obtained by second-order perturbation theory and a single reactive attempt at the intermediate-final state crossing. Vibrational damping drastically modifies this and the dependence on the electronic factor can now be of either second or fourth order, depending on the energies of the two crossing regions. This can have profound effects on the reaction free energy profile, external field dependence, etc. We finally discuss the first two ET steps in the bacterial photosynthetic reaction centre in terms of these views.

  18. Site-selective electronic correlation in α-plutonium metal.

    PubMed

    Zhu, Jian-Xin; Albers, R C; Haule, K; Kotliar, G; Wills, J M

    2013-01-01

    An understanding of the phase diagram of elemental plutonium (Pu) must include both, the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. Here we present electronic-structure calculations of the full 16-atom per unit cell α-phase structure within the framework of density functional theory together with dynamical mean-field theory. Our calculations demonstrate that Pu atoms sitting on different sites within the α-Pu crystal structure have a strongly varying site dependence of the localization-delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, α-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material.

  19. Total electron scattering and electronic state excitations cross sections for O2, CO, and CH4

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Trajmar, S.; Nickel, J. C.

    1993-01-01

    Available electron collision cross section data concerning total and elastic scattering, vibrational excitation, and ionization for O2, CO, and CH4 have been critically reviewed, and a set of cross sections for modeling of planetary atmospheric behavior is recommended. Utilizing these recommended cross sections, we derived total electronic state excitation cross sections and upper limits for dissociation cross sections, which in the case of CH4 should very closely equal the actual dissociation cross section.

  20. Foucault's Pendulum, Analog for an Electron Spin State

    NASA Astrophysics Data System (ADS)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  1. The low-lying electronic states of ReB.

    PubMed

    Borin, Antonio Carlos; Gobbo, João Paulo; Castro, César Augusto Milani

    2014-07-01

    The ground and low-lying electronic states of ReB were studied at the CASPT2//CASSCF level (multiconfigurational second-order perturbation theory) and quadruple-ζ ANO-RCC basis sets. Spectroscopic constants, potential energy curves, wavefunctions, and Mulliken population analysis are given. The ground state of ReB is of X(5)Σ(+) symmetry (R e  = 1.817 Å, ω e  = .909 cm(-1), and μ = 2.87 D), giving rise to a Ω = 0(+) ground state after including spin-orbit coupling.

  2. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  3. Targeting excited states in all-trans polyenes with electron-pair states

    NASA Astrophysics Data System (ADS)

    Boguslawski, Katharina

    2016-12-01

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  4. The Electronic Properties of Superatom States of Hollow Molecules

    SciTech Connect

    Feng, Min; Zhao, Jin; Huang, Tian; Zhu, Xiaoyang; Petek, Hrvoje

    2011-05-17

    Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp2 hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C60 dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound

  5. The electronic properties of superatom states of hollow molecules.

    PubMed

    Feng, Min; Zhao, Jin; Huang, Tian; Zhu, Xiaoyang; Petek, Hrvoje

    2011-05-17

    Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp(2) hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C(60) dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound

  6. Foucault's pendulum, a classical analog for the electron spin state

    NASA Astrophysics Data System (ADS)

    Linck, Rebecca A.

    Spin has long been regarded as a fundamentally quantum phenomena that is incapable of being described classically. To bridge the gap and show that aspects of spin's quantum nature can be described classically, this work uses a classical Lagrangian based on the coupled oscillations of Foucault's pendulum as an analog for the electron spin state in an external magnetic field. With this analog it is possible to demonstrate that Foucault's pendulum not only serves as a basis for explaining geometric phase, but is also a basis for reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured electron spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  7. Calculation of electron scattering from the ground state of ytterbium

    SciTech Connect

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2011-05-15

    We report on the application of the convergent close-coupling method, in both relativistic and nonrelativistic formulations, to electron scattering from ytterbium. Angle-differential and integrated cross sections are presented for elastic scattering and excitation of the states (6s6p){sup 3}P{sub 0,1,2}, (6s6p){sup 1}P{sub 1}{sup o}, (6s7p){sup 1}P{sub 1}{sup o}, and (6s5d){sup 1}D{sub 2}{sup e} for a range of incident electron energies. We also present calculations of the total cross section, and angle-differential Stokes parameters for excitation of the (6s6p){sup 3}P{sub 1}{sup o} state from the ground state. A comparison is made with the relativistic distorted-wave method and experiments.

  8. Electronic states of PF 2 and PF +2

    NASA Astrophysics Data System (ADS)

    Latifzadeh, Lida; Balasubramanian, K.

    1994-10-01

    The ground and excited electronic states of PF 2 and PF +2 have been investigated using the complete active space self-consistent field (CASSCF) followed by multi-reference singles and doubles configuration interaction (MRSDCI) methods that include up to 1.2 million configurations. These states include X 2B 1, 4A 2, 2A 1(I), 2A 1(II), 2A 2, 2B 2(I), 2B 2(II), 4B 1, 2B 1(II) for PF 2 and 1A 1, 3B 1, 1B 1 for PF +2. Both all-electron computations employing large basis sets and relativistic effective core potentials using valence basis sets were carried out. The spectroscopic properties were determined for the bound states. The dissociation energy of PFF is obtained using the full second-order configuration interaction (SOCI) and CASSCF/MRSDCI methods.

  9. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect

    Levy, Mel E-mail: mlevy@tulane.edu; Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W. E-mail: mlevy@tulane.edu

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  10. Optical limiting and picosecond relaxation of carbocyanines upper electronic states

    NASA Astrophysics Data System (ADS)

    Oulianov, D. A.; Dvornikov, A. S.; Rentzepis, P. M.

    2002-05-01

    Nonlinear absorption, anomalous fluorescence and relaxation of high-lying electronic states in six carbocyanine dyes, including cryptocyanine (DCI), DDI, DTDCI, DTTCI, DOTCI and HDIDCI, in solution and in polymer, were studied by means of picosecond transient absorption spectroscopy and nonlinear transmission experiments. Absorption cross-sections of the S 1→S n transition, and decay rates of the second singlet excited state, S 2, were measured. All dyes showed strong reverse saturable absorption in the 450-600 nm region with large excited to ground state absorption cross-section ratios. For DTDCI this ratio, at 470 nm, was measured to be 350, which is the largest ever reported. All molecules have shown strong optical limiting effect. However, in all molecules except DCI a saturation of the optical limiting process was observed as expected, owing to relatively long, up to 17.5 ps, lifetime of the S 2 state. The S 2 state fluorescence quantum yields were also measured.

  11. Signatures of Non-integer 5f Occupancy in Pu Systems: Magnetic Properties and Photoelectron Spectroscopy Studies

    SciTech Connect

    Havela, Ladislav; Shick, Alexander; Gouder, Thomas; Wastin, Franck; Rebizant, Jean

    2008-07-01

    Very diverse Pu compounds exhibit strikingly universal features in their valence-band photoemission (PES) spectra. The conjecture that such features represent the 5f{sup 5} final state multiplet has been corroborated by LDA+Hubbard calculations, meaning that the ground state has a mixed 5f{sup 5}-5f{sup 6} character. Later on, more elaborated DMFT techniques (one crossing approximation, QMC) led to similar conclusions, providing quantitative explanation of such intermediate-valent situation in more details. Analogies in PES spectra of {delta}-Pu and other Pu systems suggest that the situation envisaged for {delta}-Pu is relevant for a large group of Pu compounds. Here we show that the around mean field LDA+U in conjunction with the Hubbard I approximation, which describes well the non-magnetic ground state for {delta}-Pu, captures in reality properties of a large group of Pu (as well as e.g. Am) compounds, reproducing correctly the onset of magnetism and size of magnetic moments. (authors)

  12. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA.

    PubMed

    Banister, Samuel D; Moir, Michael; Stuart, Jordyn; Kevin, Richard C; Wood, Katie E; Longworth, Mitchell; Wilkinson, Shane M; Beinat, Corinne; Buchanan, Alexandra S; Glass, Michelle; Connor, Mark; McGregor, Iain S; Kassiou, Michael

    2015-09-16

    Synthetic cannabinoid (SC) designer drugs based on indole and indazole scaffolds and featuring l-valinamide or l-tert-leucinamide side chains are encountered with increasing frequency by forensic researchers and law enforcement agencies and are associated with serious adverse health effects. However, many of these novel SCs are unprecedented in the scientific literature at the time of their discovery, and little is known of their pharmacology. Here, we report the synthesis and pharmacological characterization of AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, 5F-ADBICA, and several analogues. All synthesized SCs acted as high potency agonists of CB1 (EC50 = 0.24-21 nM) and CB2 (EC50 = 0.88-15 nM) receptors in a fluorometric assay of membrane potential, with 5F-ADB-PINACA showing the greatest potency at CB1 receptors. The cannabimimetic activities of AB-FUBINACA and AB-PINACA in vivo were evaluated in rats using biotelemetry. AB-FUBINACA and AB-PINACA dose-dependently induced hypothermia and bradycardia at doses of 0.3-3 mg/kg, and hypothermia was reversed by pretreatment with a CB1 (but not CB2) antagonist, indicating that these SCs are cannabimimetic in vivo, consistent with anecdotal reports of psychoactivity in humans.

  13. Low-lying electronic states of LiF molecule with inner electrons correlation

    NASA Astrophysics Data System (ADS)

    Wan, Ming-jie; Huang, Duo-hui; Yang, Jun-sheng; Cao, Qi-long; Jin, Cheng-guo; Wang, Fan-hou

    2015-06-01

    The potential energy curves and dipole moments of the low-lying electronic states of LiF molecule are performed by using highly accurate multi-reference configuration interaction with Awcv5z basis sets. 1s, the inner shell of Li is considered as the closed orbit, which is used to characterise the spectroscopic properties of a manifold of singlet and triplet states. 16 electronic states correlate with two lowest dissociation channels Li(2S)+F(2P) and Li(2P)+F(2P) are investigated. Spectroscopic parameters of the ground state X1Σ+ have been evaluated and critically compared with the available experimental values and the other theoretical data. However, spectroscopic parameters of 13Π, 11Δ, 11Σ-, 11Π, 13Σ+, 23Σ+, 13Δ, 13Σ-, 23Π, 21Π, 33Π, 31Π and 33Σ+ states are studied for the first time. These 13 excited states have shallow potential wells, and the dispersion coefficients of these excited states are predicted. In additional, oscillator strengths of excited states at equilibrium distances are also predicted.

  14. Localized Electron States Near a Metal-SemiconductorNanocontact

    SciTech Connect

    Demchenko, Denis O.; Wang, Lin-Wang

    2007-04-25

    The electronic structure of nanowires in contact withmetallic electrodes of experimentally relevant sizes is calculated byincorporating the electrostatic polarization potential into the atomisticsingle particle Schrodinger equation. We show that the presence of anelectrode produces localized electron/hole states near the electrode, aphenomenon only exhibited in nanostructures and overlooked in the past.This phenomenon will have profound implications on electron transport insuch nanosystems. We calculate several electrode/nanowire geometries,with varying contact depths and nanowire radii. We demonstrate the changein the band gap of up to 0.5 eV in 3 nm diameter CdSe nanowires andcalculate the magnitude of the applied electric field necessary toovercome the localization.

  15. Electronically excited states of sodium-water clusters

    NASA Astrophysics Data System (ADS)

    Schulz, Claus Peter; Bobbert, Christiana; Shimosato, Taku; Daigoku, Kota; Miura, Nobuaki; Hashimoto, Kenro

    2003-12-01

    The lowest electronically excited state of small Na(H2O)n clusters has been investigated experimentally and theoretically. The excitation energy as determined by the depletion spectroscopy method drops from 16 950 cm-1 for the sodium atom down to 9670 cm-1 when only three water molecules are attached to the Na atom. For larger clusters the absorption band shifts back towards higher energies and reaches 10 880 cm-1 for n=12. The experimental data are compared to quantum-chemical calculations at the Møeller-Plesset second-order perturbation and multireference single and double excitation configuration interaction levels. We found that the observed size dependence of the transition energy is well reproduced by the interior structure where the sodium atom is surrounded by water molecules. The analysis of the radial charge distribution of the unpaired electron in these interior structures gives a new insight into the formation of the "solvated" electron.

  16. Inhibitory effect of 5F on development of lung cancer in A/J mice

    PubMed Central

    Ye, Hua; Yang, Xiaoqing; Wu, Kefeng; Li, Li; Lv, Yingnian; Liu, Yi; Zheng, Xuebao

    2015-01-01

    The purpose of the study is to investigate the effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F) on the model of induced A/J mice lung cancer in A/J mice. The expressions of tumor-related molecules including P65 and Bcl-2 at protein level were examined using the immunohistochemical method (IHC). Side effects of 5F were also monitored. The results indicated that 5F significantly suppressed the development of B[a]P and NNK-induced lung cancer in vivo by facilitating cell apoptosis with minimal side effects. Compared to the expressions of P65 and Bcl-2 in model group, the levels were strongly attenuated both in blank and 5F injection groups. Moreover, P65 and Bcl-2 levels varied among different groups receiving 5F treatment. The expressions of P65 and Bcl-2 were much lower in groups receiving high-concentration 5F treatment than those with low-concentration 5F injection. Findings revealed that 5F inhibited the pathogenesis of lung cancer through accelerating apoptosis in a dose-dependent manner. PMID:26097604

  17. 26 CFR 5f.103-2 - Public approval of industrial development bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Public approval of industrial development bonds. 5f.103-2 Section 5f.103-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... years and to pay reasonable incidental costs of the refunding (e.g., legal and accounting fees,...

  18. Controlled interaction of surface quantum-well electronic states.

    PubMed

    Seufert, Knud; Auwärter, Willi; García de Abajo, F J; Ecija, David; Vijayaraghavan, Saranyan; Joshi, Sushobhan; Barth, Johannes V

    2013-01-01

    We report on the construction of well-defined surface quantum well arrangements by combining self-assembly protocols and molecular manipulation procedures. After the controlled removal of individual porphyrin molecules from dense-packed arrays on Ag(111), the surface state electrons are confined at the bare silver patches. These act as quantum wells that show well-defined unoccupied bound surface states. Scanning tunneling spectroscopy and complementary boundary element method calculations are performed to characterize the interaction between the bound states of adjacent quantum wells and reveal a hybridization of wave functions resulting in bonding and antibonding states. The interwell coupling can be tuned by the deliberate choice of the molecules acting as potential barriers. The fabrication method is shown to be ideally suited to engineer specific configurations as one-dimensional chains or two-dimensional artificial molecules.

  19. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed.

  20. Electron teleportation via Majorana bound states in a mesoscopic superconductor.

    PubMed

    Fu, Liang

    2010-02-05

    Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.

  1. Electronic spectrum and localization of electronic states in aperiodic quantum dot chains

    NASA Astrophysics Data System (ADS)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2014-02-01

    The electronic energy spectra of aperiodic Thue-Morse, Rudin-Shapiro, and double-periodic quantum dot chains are investigated in the tight-binding approximation. The dependence of the spectrum on all parameters of a "mixed" aperiodic chain model is studied: the electronic energy at quantum dots and the hopping integrals. The electronic degree of localization in the chains under consideration is determined by analyzing the inverse participation ratio. Its spectral distribution and the dependence of the band-averaged degree of localization on these model parameters have been calculated. It is shown that a transition of the system's sites to a resonant state in which the degree of electron localization decreases, while an overlap between the subbands occurs in the spectrum is possible when the parameters are varied.

  2. Evolution of electronic states in fullerenes with size

    NASA Astrophysics Data System (ADS)

    Dong, Jianjun; Drabold, David A.

    1996-04-01

    The electronic density of states (DOS) of fullerenes is studied in this paper. The DOS of small fullerences (C_60 and C_240) is computed with exact diagonalization, while the DOS of large fullerences (C_540, C_960, C_2169 and C_3840) is computed with a newly developed ``Order N" electronic structure method: the maximum entropy method (Maxent) footnote D.A. Drabold, O.F. Sankey, Phys. Rev. Lett. 70 3631,(1995). The projected DOS at different types of sites (pentagon site and facet center hexagon site) is also computed with Maxent. We illustrate the size dependence and the cluster to crystal evolution. footnote D.A. Drabold, P.Ordejón, J. Dong and R.M. Martin, Solid State Commun.,96 833, (1995). We observe that the DOS closely approximates graphite for relaxed C_2160 and C_3840.

  3. Theoretical characterization of low-lying electronic states of FCO

    NASA Astrophysics Data System (ADS)

    Francisco, Joseph S.; Goldstein, Avery N.; Robb, Michael A.; Williams, Ian H.

    1992-03-01

    The electronic and vibrational spectra of the fluoroformyl radical FCO are discussed in the light of ab initio (CASSCF(5 in 4)/6-31+G* and UMP2/6-311G*) calculated adiabatic and vertical transition energies, and vibrational frequencies, for the X 2A', A 2A″, B 2A', and C 2A″ states. Results for the formyl radical HCO are also presented for comparison.

  4. Electronic thermal conductivity in a superconducting vortex state

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Miranovic, P.; Ichioka, M.; Machida, K.

    2007-10-01

    The longitudinal component of the electronic thermal conductivity κxx in a superconducting vortex state is calculated as a function of magnetic field B. Calculations are performed by taking account of the spatial dependence of normal Green's function g, which was neglected in the previous studies using the Brandt-Pesch-Tewordt method. We discuss the possibility of using κxx(B) as a probe of the pair potential symmetry.

  5. Electronic and ground state properties of ThTe

    SciTech Connect

    Bhardwaj, Purvee Singh, Sadhna

    2016-05-06

    The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.

  6. Understanding x-ray driven impulsive electronic state redistribution using a three-state model

    NASA Astrophysics Data System (ADS)

    Ware, Matthew R.; Cryan, James; Bucksbaum, Philip H.

    2016-05-01

    The natural timescale for electron motion is extremely fast; electrons can move across molecular bonds in less than a femtosecond. To understand this fast motion and the role of electronic coherence, we are interested in creating a superposition of valence excited states through excitation with a broad bandwidth (>5eV) laser pulse. In the x-ray regime, the molecular ground state can couple to valence-excited states through an intermediate autoionizing resonance in a process known as stimulated x-ray Raman scattering (SXRS). X-rays excite electrons from the highly localized K-shells in a molecule, creating a superposition of valence-excited states initially localized around a target atom in the molecule. Coherences between states in the superposition will subsequently drive charge transfer as the wavepacket spreads out across the molecule. We use an effective 3-state model coupling the ground, auto-ionizing, and valence-excited states in diatomic systems to study the cross-section of SXRS as function of x-ray intensity, central frequency, bandwidth, and chirp. We also make observations on how the x-ray parameters affect the degree of initial localization to an atom of the wavepacket created in SXRS. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  7. Glycine in an electronically excited state: ab initio electronic structure and dynamical calculations.

    PubMed

    Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel

    2007-06-21

    The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.

  8. Engineering electronic states of periodic and quasiperiodic chains by buckling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amrita; Nandy, Atanu; Chakrabarti, Arunava

    2017-07-01

    The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, bending the segments more) absolutely continuous density of states is retained towards the edges of the band, while the central portion becomes fragmented and host subbands of narrowing widths containing extended, current carrying states, and multiple isolated bound states formed as a result of the bending. A switching ;on; and ;off; of the electronic transmission can thus be engineered by buckling. On the other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. We present exact results based on a real space renormalization group analysis, that is corroborated by explicit calculation of the two terminal electronic transport.

  9. Liquid-state polaron theory of the hydrated electron revisited

    NASA Astrophysics Data System (ADS)

    Donley, James P.; Heine, David R.; Tormey, Caleb A.; Wu, David T.

    2014-07-01

    The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.

  10. Liquid-state polaron theory of the hydrated electron revisited.

    PubMed

    Donley, James P; Heine, David R; Tormey, Caleb A; Wu, David T

    2014-07-14

    The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the "two-chain" equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.

  11. Liquid-state polaron theory of the hydrated electron revisited

    SciTech Connect

    Donley, James P.; Heine, David R.; Tormey, Caleb A.; Wu, David T.

    2014-07-14

    The quantum path integral/classical liquid-state theory of Chandler and co-workers, created to describe an excess electron in solvent, is re-examined for the hydrated electron. The portion that models electron-water density correlations is replaced by two equations: the range optimized random phase approximation (RO-RPA), and the Donley, Rajasekaran, and Liu (DRL) approximation to the “two-chain” equation, both shown previously to describe accurately the static structure and thermodynamics of strongly charged polyelectrolyte solutions. The static equilibrium properties of the hydrated electron are analyzed using five different electron-water pseudopotentials. The theory is then compared with data from mixed quantum/classical Monte Carlo and molecular dynamics simulations using these same pseudopotentials. It is found that the predictions of the RO-RPA and DRL-based polaron theories are similar and improve upon previous theory, with values for almost all properties analyzed in reasonable quantitative agreement with the available simulation data. Also, it is found using the Larsen, Glover, and Schwartz pseudopotential that the theories give values for the solvation free energy that are at least three times larger than that from experiment.

  12. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  13. Model for primary electron transfer and coupling of electronic states at reaction centers of purple bacteria

    NASA Astrophysics Data System (ADS)

    Pavlovich, V. S.

    2006-05-01

    A detailed derivation is presented for relations making it possible to describe the effect of temperature on the halfwidth of the P960 and P870 absorption bands and also on the electron transfer (ET) rate at reaction centers (RCs) of the purple bacteria Rps. viridis and Rb. sphaeroides. Primary electron transfer is considered as a resonant nonradiative transition between P* and P+B L - states (where P is a special pair, BL is an additional bacteriochlorophyll in the L branch of the reaction center). It has been shown that the vibrational hα mode with frequency 130 150 cm-1 controls primary electron transfer. It has been found that the matrix element of the electronic transition between the states P* and P+B L - is equal to 12.7 ± 0.9 and 12.0 ± 1.2 cm-1 for Rps. viridis and Rb. sphaeroides respectively. The mechanism is discussed for electron transport from P* and BL and then to bacteriopheophytin HL.

  14. Theory of electron transfer and molecular state in DNA

    NASA Astrophysics Data System (ADS)

    Endres, Robert Gunter

    2002-09-01

    In this thesis, a mechanism for long-range electron transfer in DNA and a systematic search for high conductance DNA are developed. DNA is well known for containing the genetic code of all living species. On the other hand, there are some experimental indications that DNA can mediate effectively long-range electron transfer leading to the concept of chemistry at a distance. This can be important for DNA damage and healing. In the first part of the thesis, a possible mechanism for long-range electron transfer is introduced. The weak distance dependent electron transfer was experimentally observed using transition metal intercalators for donor and acceptor. In our model calculations, the transfer is mediated by the molecular analogue of a Kondo bound state well known from solid state physics of mixed-valence rare-earth compounds. We believe this is quite realistic, since localized d orbitals of the transition metal ions could function as an Anderson impurity embedded in a reservoir of rather delocalized molecular orbitals of the intercalator ligands and DNA pi orbitals. The effective Anderson model is solved with a physically intuitive variational ansatz as well as with the essentially exact DMRG method. The electronic transition matrix element, which is important because it contains the donor-acceptor distance dependence, is obtained with the Mulliken-Hush algorithm as well as from Born-Oppenheimer potential energy surfaces. Our possible explanation of long-range electron transfer is put in context to other more conventional mechanisms which also could lead to similar behavior. Another important issue of DNA is its possible use for nano-technology. Although DNA's mechanical properties are excellent, the question whether it can be conducting and be used for nano-wires is highly controversial. Experimentally, DNA shows conducting, semi-conducting and insulating properties. Motivated by these wide ranging experimental results on the conductivity of DNA, we have

  15. 75 FR 3463 - Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of North...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... AGENCY Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of North...'s approval, under regulations for Cross-Media Electronic Reporting, of the State of North Carolina's..., the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR...

  16. 75 FR 1617 - Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... AGENCY Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of New...'s approval, under regulations for Cross-Media Electronic Reporting, of the State of New York's..., the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70...

  17. Exploring the electronic states of iodocarbyne: a theoretical contribution.

    PubMed

    Alves, Tiago Vinicius; Ornellas, Fernando R

    2014-05-28

    A manifold of electronic states correlating with the two lowest-lying dissociation channels of the iodocarbyne (CI) species is theoretically characterized for the first time in the literature. A contrast between the Λ + S and the relativistic (Ω) descriptions clearly shows the effect of perturbations on electronic states above 20 000 cm(-1) and the potential difficulties to detect them experimentally. For the bound states, spectroscopic parameters were evaluated, as well as the dipole moment functions. Similarly to CO, the polarity predicted for this iodocarbyne is C(δ-)I(δ+); as illustrated in the text, this is also the case for the other halocarbynes. As a potential mechanism for the experimental spectroscopic characterization of CI, we suggest the radiative association between C and I atoms, with light emitted in the red region of the visible spectra. Transition probabilities were also evaluated predicting very weak intensities. For the states 1/2(II) and 3/2(II), we have estimated radiative lifetimes of 7.1 and 714 ms, respectively.

  18. Single electron probes of fractional quantum hall states

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Vivek

    When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta (nu) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an

  19. Squeezed states of electrons and transitions of the density of states

    NASA Technical Reports Server (NTRS)

    Lee, Seung Joo; Um, Chung IN

    1993-01-01

    Electron systems which have low dimensional properties have been constructed by squeezing the motion in zero, one, or two-directions. An isolated quantum dot is modeled by a potential box with delta-profiled, penetrable potential walls embedded in a large outer box with infinitely high potential walls which represent the world function with respect to vacuum. We show the smooth crossover of the density of states from the three-dimensional to the quasi-zero dimensional electron gas.

  20. Benzonitrile: Electron affinity, excited states, and anion solvation.

    PubMed

    Dixon, Andrew R; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-07

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X̃(1)A1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, ã(3)A1, is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet Ã(1)A1, is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  1. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    , we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  2. A new designer drug 5F-ADB activates midbrain dopaminergic neurons but not serotonergic neurons.

    PubMed

    Asaoka, Nozomi; Kawai, Hiroyuki; Nishitani, Naoya; Kinoshita, Haruko; Shibui, Norihiro; Nagayasu, Kazuki; Shirakawa, Hisashi; Kaneko, Shuji

    2016-01-01

    N-[[1-(5-fluoropentyl)-1H-indazol-3-yl]carbonyl]-3-methyl-D-valine methyl ester (5F-ADB) is one of the most potent synthetic cannabinoids and elicits severe psychotic symptoms in humans, sometimes causing death. To investigate the neuronal mechanisms underlying its toxicity, we examined the effects of 5F-ADB on midbrain dopaminergic and serotonergic systems, which modulate various basic brain functions such as those in reward-related behavior. 5F-ADB-induced changes in spontaneous firing activity of dopaminergic and serotonergic neurons were recorded by ex vivo electrophysiological techniques. In dopaminergic neurons, 5F-ADB (1 μM) significantly increased the spontaneous firing rate, while 5F-ADB failed to activate dopaminergic neurons in the presence of the CB1 antagonist AM251 (1 μM). However, the same concentration of 5F-ADB did not affect serotonergic-neuron activity. These results suggest that 5F-ADB activates local CB1 receptors and potentiates midbrain dopaminergic systems with no direct effects on midbrain serotonergic systems.

  3. On the Electron Gas Heat Capacity in Undergraduate Solid State

    NASA Astrophysics Data System (ADS)

    Hasbun, Javier

    2013-03-01

    In undergraduate solid state physics the electronic energy, Uel, is calculated through the Fermi distribution function while the energy is weighted with the density of states. The electronic heat capacity is the derivative of the electronic energy with respect to temperature. Through this process, it is possible to obtain a low temperature approximation for the heat capacity, Cel that's proportional to the temperature. It is of interest to do a numerical calculation of Uel from which the numerical Cel is extracted. However, the result obtained, while agreeing with the low temperature approximation, has a slope that's substantially different. The disagreement appears large as the temperature is increased from zero K. Here we show that the reason has to do with the constancy of the Fermi level. By including the self consistent behavior of the chemical potential, the deviation from zero Kelvin is much improved and the result seems to make better sense. The lesson learned is significant enough to be of great pedagogical importance as regards the heat capacity calculation and the behavior of the chemical potential with temperature.

  4. Imaging electronic states on topological semimetals using scanning tunneling microscopy

    DOE PAGES

    Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun; ...

    2016-10-18

    Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions.Weemployed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. Bymore » mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd3As2 and Na3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface projected Weyl nodes.« less

  5. Imaging electronic states on topological semimetals using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Gyenis, András; Inoue, Hiroyuki; Jeon, Sangjun; Zhou, Brian B.; Feldman, Benjamin E.; Wang, Zhijun; Li, Jian; Jiang, Shan; Gibson, Quinn D.; Kushwaha, Satya K.; Krizan, Jason W.; Ni, Ni; Cava, Robert J.; Bernevig, B. Andrei; Yazdani, Ali

    2016-10-01

    Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a condensed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions. We employed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. By mapping the quasiparticle interference (QPI) and emerging Landau levels at high magnetic field in Dirac semimetals Cd3As2 and Na3Bi, we observed extended Dirac-like bulk electronic bands. QPI imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface-projected Weyl nodes.

  6. Electron states and electron Raman scattering in a semiconductor step-quantum well wire

    NASA Astrophysics Data System (ADS)

    Betancourt-Riera, Ri.; Betancourt-Riera, Re.; Munguía-Rodríguez, M.

    2017-06-01

    The differential cross-section for an electron Raman scattering process in a semiconductor GaAs / AlGaAs step-quantum well wire is calculated and expressions for the electron states are presented. The system is modeled by considering T = 0 K and also by a single parabolic conduction band, which is split into a sub-band system due to confinement. The net Raman gain for an electron Raman scattering process is obtained. Also, the emission spectra for several scattering configurations are discussed, and the interpretation of the singularities found in the spectra is given. The results obtained in this study are compared with those obtained for other structures, and so it has been demonstrated that the wire shows greater efficiency.

  7. Electronic States of Silicene Allotropes on Ag(111).

    PubMed

    Sheverdyaeva, Polina M; Mahatha, Sanjoy Kr; Moras, Paolo; Petaccia, Luca; Fratesi, Guido; Onida, Giovanni; Carbone, Carlo

    2017-01-24

    Silicene, a honeycomb lattice of silicon, presents a particular case of allotropism on Ag(111). Silicene forms multiple structures with alike in-plane geometry but different out-of-plane atomic buckling and registry to the substrate. Angle-resolved photoemission and first-principles calculations show that these silicene structures, with (4×4), (√13×√13)R13.9°, and (2√3×2√3)R30° lattice periodicity, display similar electronic bands despite the structural differences. In all cases the interaction with the substrate modifies the electronic states, which significantly differ from those of free-standing silicene. Complex photoemission patterns arise from surface umklapp processes, varying according to the periodicity of the silicene allotropes.

  8. Efficient numerical simulation of electron states in quantum wires

    NASA Technical Reports Server (NTRS)

    Kerkhoven, Thomas; Galick, Albert T.; Ravaioli, Umberto; Arends, John H.; Saad, Youcef

    1990-01-01

    A new algorithm is presented for the numerical simulation of electrons in a quantum wire as described by a two-dimensional eigenvalue problem for Schroedinger's equation coupled with Poisson's equation. Initially, the algorithm employs an underrelaxed fixed point iteration to generate an approximation which is reasonably close to the solution. Subsequently, this approximate solution is employed as an initial guess for a Jacobian-free implementation of an approximate Newton method. In this manner the nonlinearity in the model is dealt with effectively. The effectiveness of this approach is demonstrated in a set of numerical experiments which study the electron states on the cross section of a quantum wire structure based on III-V semiconductors at 4.2 and 77 K.

  9. Invisible Electronic States and Their Dynamics Revealed by Perturbations

    NASA Astrophysics Data System (ADS)

    Merer, Anthony J.

    2011-06-01

    Sooner or later everyone working in the field of spectroscopy encounters perturbations. These can range in size from a small shift of a single rotational level to total destruction of the vibrational and rotational patterns of an electronic state. To some workers perturbations are a source of terror, but to others they are the most fascinating features of molecular spectra, because they give information about molecular dynamics, and about states that would otherwise be invisible as a result of unfavorable selection rules. An example of the latter is the essentially complete characterization of the tilde{b}^3A_2 state of SO_2 from the vibronic perturbations it causes in the tilde{a}^3B_1 state. The S_1-trans state of acetylene is a beautiful example of dynamics in action. The level patterns of the three bending vibrations change dramatically with increasing vibrational excitation as a result of the vibrational angular momentum and the approach to the isomerization barrier. Several vibrational levels of the S_1-cis isomer, previously thought to be unobservable, can now be assigned. They obtain their intensity through interactions with nearby levels of the trans isomer.

  10. The electronic states of 2-furanmethanol (furfuryl alcohol) studied by photon absorption and electron impact spectroscopies

    NASA Astrophysics Data System (ADS)

    Giuliani, A.; Walker, I. C.; Delwiche, J.; Hoffmann, S. V.; Limão-Vieira, P.; Mason, N. J.; Heyne, B.; Hoebeke, M.; Hubin-Franskin, M.-J.

    2003-10-01

    The photoelectron spectrum of 2-furanmethanol (furfuryl alcohol) has been measured for ionization energies between 8 and 11.2 eV and the first three ionization bands assigned to π3, π2, and no ionizations in order of increasing binding energy. The photoabsorption spectrum has been recorded in the gas phase using both a synchrotron radiation source (5-9.91 eV, 248-125 nm) and electron energy-loss spectroscopy under electric-dipole conditions (5-10.9 eV, 248-90 nm). The (UV) absorption spectrum has also been recorded in solution (4.2-6.36 eV, 292-195 nm). The electronic excitation spectrum appears to be dominated by transitions between π and π* orbitals in the aromatic ring, leading to the conclusion that the frontier molecular orbitals of furan are affected only slightly on replacement of a H atom by the -CH2OH group. Additional experiments investigating electron impact at near-threshold energies have revealed two low-lying triplet states and at least one electron/molecule shape resonance. Dissociative electron attachment also shows to be widespread in furfuryl alcohol.

  11. Direct Imaging of Electron States in Open Quantum Dots

    NASA Astrophysics Data System (ADS)

    Aoki, N.; Brunner, R.; Burke, A. M.; Akis, R.; Meisels, R.; Ferry, D. K.; Ochiai, Y.

    2012-03-01

    We use scanning gate microscopy to probe the ballistic motion of electrons within an open GaAs/AlGaAs quantum dot. Conductance maps are recorded by scanning a biased tip over the open quantum dot while a magnetic field is applied. We show that, for specific magnetic fields, the measured conductance images resemble the classical transmitted and backscattered trajectories and their quantum mechanical analogue. In addition, we prove experimentally, with this direct measurement technique, the existence of pointer states. The demonstrated direct imaging technique is essential for the fundamental understanding of wave function scarring and quantum decoherence theory.

  12. Electronic states of semiconductor/metal/semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Maserjian, J.

    Quantum size effects are calculated in thin layered semiconductor-metal-semi-conductor structures using an ideal free-electron model for the metal layer. The physical insight thereby gained is used to make projections for the behavior of real material systems. The results suggest new quantum well structures having device applications. Structures with sufficiently high quality interfaces should exhibit effects such as negative differential resistance due to tunneling between allowed states. Similarly, optical detection by intersubband absorption may be possible. We also predict that ultrathin metal layers can behave as high density dopant sheets.

  13. The electronic states of pyrimidine studied by VUV photoabsorption and electron energy-loss spectroscopy.

    PubMed

    da Silva, F Ferreira; Almeida, D; Martins, G; Milosavljević, A R; Marinković, B P; Hoffmann, S V; Mason, N J; Nunes, Y; Garcia, G; Limão-Vieira, P

    2010-07-07

    The electronic state spectroscopy of pyrimidine C(4)H(4)N(2) has been investigated using both high resolution VUV photoabsorption in the energy range 3.7 to 10.8 eV (335 to 115 nm) and lower resolution electron energy loss in the range 2 to 15 eV. The low energy absorption band, assigned to the (pi*) <-- 7b(2)(n(N)) (1(1)B(1)<-- 1(1)A(1)) transition, at 3.85(4) eV and the vibrational progressions superimposed upon it have been observed for the first time, due to the availability of a high-resolution photon beam (0.075 nm), corresponding to 3 meV at the midpoint of the energy range studied. Vibronic coupling has been shown to play an important role dictating the nature of the observed excited states, especially for the lowest (1)B(1) state. The 2(1)B(1) state is proposed to have its origin at 7.026 eV according to the vibrational excitation reported in this energy region (7.8-8.4 eV). New experimental evidence of 4(1)A(1) state with a maximum cross section at 8.800 eV is supported by previous ab initio quantum chemical calculations. Rydberg series have been assigned converging to the three lowest ionisation energy limits, 9.32 eV ((2)B(2)), 10.41 eV ((2)B(1)) and 11.1 eV ((2)A(1) + (2)A(2)) with new members reported for the first time and classified according to the magnitude of the quantum defects (delta). Additionally, the absolute differential cross section for inelastic electron scattering has been measured for the most intense band from 6.9 to 7.8 eV assigned to (1)pipi* (3(1)A(1) + 2(1)B(2)).

  14. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    SciTech Connect

    Nenov, Artur Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K.; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco E-mail: marco.garavelli@ens-lyon.fr

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  15. Launch mission summary: Intelsat 5 (F3) Atlas/Centaur-55

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Intelsat 5 (F3) spacecraft, launch vehicle, and mission are described. Information relative to launch windows, flight plan, radar and telemetry coverage, selected trajectory information, and a brief sequence of flight events is provided.

  16. Superconductivity of alpha-uranium and the role of 5f electrons.

    PubMed

    Geballe, T H; Matthias, B T; Andres, K; Fisher, E S; Smith, T F; Zachariasen, W H

    1966-05-06

    A much sharper and lower superconducting transition has been found for alpha-uranium than any reported previously. A model that explains the unusual volume dependence of alpha-uranium below 43 degrees K and the unusual pressure dependence of its superconducting transition temperature is presented.

  17. Semiclassical dynamics of electron wave packet states with phase vortices.

    PubMed

    Bliokh, Konstantin Yu; Bliokh, Yury P; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schrödinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) variant Planck's over 2pil (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  18. Electronic states of InSe/GaSe superlattice

    NASA Astrophysics Data System (ADS)

    Erkoç, Ş.; Allahverdi, K.; Ibrahim, Z.

    1994-06-01

    Analysis of recent publications revealed an increasing interest in epitaxial growth of InSe/GaSe superlattice. Within the effective mass theory we carried out self-consistent calculations of the confined and itinerant electronic states, potential profile and charge density distribution of InSe/GaSe superlattice, where the InSe layers are the well and the GaSe layers the barrier. Calculations were performed for three types of doping: uniform, modulated in the well, and modulated in the barrier. It has been found that the Coulomb interaction in the well and barrier forces the formation of localized states in the barrier region. The possibility of an insulator-metal transition in InSe/GaSe superlattice is predicted for modulation doping in the barrier and for a doping level n = 10 19cm-3. A decrease of the barrier height has been found for modulation doping in the well.

  19. Detection of pulsed neutrons with solid-state electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  20. Electronic structure and localized states in a model amorphous silicon

    NASA Astrophysics Data System (ADS)

    Allan, G.; Delerue, C.; Lannoo, M.

    1998-03-01

    The electronic structure of a model amorphous silicon (a-Si) represented by a supercell of 4096 silicon atoms [B.R. Djordjevic, M.F. Thorpe, and F. Wooten, Phys. Rev. B 52, 5685 (1995)] and of a model hydrogenated amorphous silicon (a-Si:H) that we have built from the a-Si model are calculated in the tight-binding approximation. The band edges near the gap are characterized by exponential tails of localized states induced mainly by the variations in bond angles. The spatial localization of the states is compared between a-Si and a-Si:H. Comparison with experiments suggests that the structural models give good descriptions of the amorphous materials.

  1. Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices

    SciTech Connect

    Bliokh, Konstantin Yu.; Bliokh, Yury P.; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schroedinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) ({Dirac_h}/2{pi})l (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  2. Benchmarking electronic-state excitation cross sections for electron-N{sub 2} collisions

    SciTech Connect

    Kato, Hidetoshi; Suzuki, Daisuke; Ohkawa, Mizuha; Hoshino, Masamitsu; Tanaka, Hiroshi; Campbell, Laurence; Brunger, Michael J.

    2010-04-15

    We report differential cross sections for electron impact excitation of the a {sup 1{Pi}}{sub g}, C {sup 3{Pi}}{sub u}, E {sup 3{Sigma}}{sub g}{sup +}, a{sup ''} {sup 1{Sigma}}{sub g}{sup +}, b {sup 1{Pi}}{sub u}, c{sub 3} {sup 1{Pi}}{sub u}, o{sub 3} {sup 1{Pi}}{sub u}, b{sup '} {sup 1{Sigma}}{sub u}{sup +}, c{sub 4}{sup '} {sup 1{Sigma}}{sub u}{sup +}, G {sup 3{Pi}}{sub u}, and F {sup 3{Pi}}{sub u} electronic states in N{sub 2}. The incident electron energies are 20, 30, and 40 eV, while the scattered electron angles are 10 deg. and 20 deg. These kinematic conditions were specifically targeted in order to try and shed new light on the worrying discrepancies that exist in the literature for the a {sup 1{Pi}}{sub g}, C {sup 3{Pi}}{sub u}, E {sup 3{Sigma}}{sub g}{sup +}, and a{sup ''} {sup 1{Sigma}}{sub g}{sup +} cross sections, and in general the present measurements confirm that those from the more recent results of the University of California, Fullerton, and the Jet Propulsion Laboratory [M. A. Khakoo, P. V. Johnson, I. Ozkay, P. Yan, S. Trajmar, and I. Kanik, Phys. Rev. A 71, 062703 (2005); C. P. Malone, P. V. Johnson, I. Kanik, B. Ajdari, and M. A. Khakoo, Phys. Rev. A 79, 032704 (2009)] are reliable. In addition, we provide a rigorous cross-check for the remaining seven electronic states, where the only recent comprehensive study is from Khakoo and colleagues [Phys. Rev. A 77, 012704 (2008)]. Here, however, some of those cross sections are confirmed and others are not, suggesting that further work is still needed.

  3. Precursor anion states in dissociative electron attachment to chlorophenol isomers

    NASA Astrophysics Data System (ADS)

    Kossoski, F.; Varella, M. T. do N.

    2016-07-01

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl ∗ , one σOH ∗ , and three π∗ shape resonances. We show that electron capture into the two lower lying π∗ orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π∗ resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 ∗ anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl ∗ state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl ∗ resonance and destabilizing the σOH ∗ resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH ∗ orbital.

  4. Decomposition Mechanism of C5F10O: An Environmentally Friendly Insulation Medium.

    PubMed

    Zhang, Xiaoxing; Li, Yi; Xiao, Song; Tang, Ju; Tian, Shuangshuang; Deng, Zaitao

    2017-09-05

    SF6, the most widely used electrical-equipment-insulation gas, has serious greenhouse effects. C5F10O has attracted much attention as an alternative gas in recent two years, but the environmental impact of its decomposition products is unclear. In this work, the decomposition characteristics of C5F10O were studied based on gas chromatography-mass spectrometry and density functional theory. We found that the amount of decomposition products of C5F10O, namely, CF4, C2F6, C3F6, C3F8, C4F10, and C6F14, increased with increased number of discharges. Under a high-energy electric field, the C-C bond of C5F10O between carbonyl carbon and α-carbon atoms was most likely to break and generate CF3CO•, C3F7• or C3F7CO•, CF3• free radicals. CF3•, and C3F7• free radicals produced by the breakage more easily recombined to form small molecular products. By analyzing the ionization parameters, toxicity, and environmental effects of C5F10O and its decomposition products, we found that C5F10O gas mixtures exhibit great decomposition and environmental characteristics with low toxicity, with great potential to replace SF6.

  5. Interaction of Pd electron states with adsorbed hydrogen

    NASA Astrophysics Data System (ADS)

    Solov'ev, S. M.; Pettenkofer, C.; Pronin, I. I.; Potekhina, N. D.; Petrov, V. N.

    2013-02-01

    Investigations of electrons excited into image states (IS) of Pd clusters and their interaction with adsorbed hydrogen using photoelectron (PE) spectroscopy with synchrotron radiation is presented. Pd clusters were deposited on pyrolytic graphite surfaces which were used as inert substrates. PE spectra measured for Pd clusters at low photon energies show additional peaks at energies of ~ 4.7 and 5.25 eV that corresponds to Pd image states at energies EIS - Evac ≈ - 0.75 ± 0.1 eV and EIS - Evac ≈ - 0.2 ± 0.1 eV. After hydrogen adsorption on graphite with Pd clusters the H-induced features: positive peaks at energy - 2 eV, - 3.5 eV, - 7 eV and a small negative peak at - 4.6 eV, were observed in the valence band spectra of Pd below EF. While the peaks at - 3.5 eV and - 2 eV are the result of the formation of H-induced states in the SBZ the - 7 eV peak is due to strong interaction of Pd clusters with hydrogen producing a H―Pd bonding adsorbate state. It is proposed that a charge transfer from IS2 to Pd-H bond dominates over the H- anion neutralization via transfer of excess charge from H- to IS1.

  6. Electronic spin state of iron in lower mantle perovskite

    PubMed Central

    Li, Jie; Struzhkin, Viktor V.; Mao, Ho-kwang; Shu, Jinfu; Hemley, Russell J.; Fei, Yingwei; Mysen, Bjorn; Dera, Przemek; Prakapenka, Vitali; Shen, Guoyin

    2004-01-01

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O3 under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior. PMID:15377786

  7. Electronic States of IC60BA and PC71BM

    NASA Astrophysics Data System (ADS)

    Sheng, Chun-Qi; Wang, Peng; Shen, Ying; Li, Wen-Jie; Zhang, Wen-Hua; Zhu, Jun-Fa; Lai, Guo-Qiao; Li, Hong-Nian

    2013-11-01

    We investigate the electronic states of IC60BA and PC71BM using first-principles calculations and photoelectron spectroscopy (PES) measurements. The energy level structures for all possible isomers are reported and compared with those of C60, C70 and PC61BM. The attachment of the side chains can raise the LUMO energies and decrease the HOMO-LUMO gaps, and thus helps to increase the power-conversion efficiency of bulk heterojunction solar cells. In the PES studies, we prepared IC60BA and PC71BM films on Si:H(111) substrates to construct adsorbate/substrate interfaces describable with the integer charge-transfer (ICT) model. Successful measurements then revealed that one of the most important material properties for an electron acceptor, the energy of the negative integer charge-transfer state (EICT-), is 4.31 eV below the vacuum level for PC71BM. The EICT- of IC60BA is smaller than 4.14 eV.

  8. Photodissociation of CCH: classical trajectory calculations involving seven electronic states.

    PubMed

    Apaydin, Gökşin; Fink, William H; Jackson, William M

    2004-11-15

    The photodissociation dynamics of ethynyl radical, C(2)H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1 x 10(-6)-1.4 x 10(-5) and 1.7 x 10(-3)-3.8 x 10(-3) hartrees, respectively. The photofragments of C(2) and H are produced mainly in the X (1)Sigma(g) (+), a (3)Pi(u), b (3)Sigma(g) (-), c (3)Sigma(u) (+), A (1)Pi(u), B (1)Delta(g) electronic states of C(2) as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C(2)H(2) into C(2) and H is a two step process involving C(2)H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

  9. Photodissociation of CCH: Classical trajectory calculations involving seven electronic states

    NASA Astrophysics Data System (ADS)

    Apaydın, Gökşin; Fink, William H.; Jackson, William M.

    2004-11-01

    The photodissociation dynamics of ethynyl radical, C2H, involving seven electronic states is studied by classical trajectory calculations. Initial values of the trajectories are selected based on relative absorption intensities calculated by Mebel et al. The energies and the derivatives are interpolated by three-dimensional cubic spline interpolator using an extended data pool. Mean square errors and standard deviations in interpolation of energies for 450 data points are found to be in the range 3.1×10-6-1.4×10-5 and 1.7×10-3-3.8×10-3 hartrees, respectively. The photofragments of C2 and H are produced mainly in the X 1Σg+, a 3Πu, b 3Σg-, c 3Σu+, A 1Πu, B 1Δg electronic states of C2 as product. The avoided crossings do not appear to be in the main dissociation pathways. The internal distributions are in good accord with the experimental results where comparison is possible, suggesting that the fragmentation mechanism of C2H2 into C2 and H is a two step process involving C2H radical as an intermediate with a life time long enough to allow complete collection of the phase space in the experiments.

  10. Electronic states and spin-orbit splitting of lanthanum dimer

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wu, Lu; Zhang, Chang-Hua; Krasnokutski, Serge A.; Yang, Dong-Sheng

    2011-07-01

    Lanthanum dimer (La2) was studied by mass-analyzed threshold ionization (MATI) spectroscopy and a series of multi-configuration ab initio calculations. The MATI spectrum exhibits three band systems originating from ionization of the neutral ground electronic state, and each system shows vibrational frequencies of the neutral molecule and singly charged cation. The three ionization processes are La2+ (a2∑g+) ← La2 (X1∑g+), La2+ (b2Π3/2, u) ← La2 (X1∑g+), and La2+ (b2Π1/2, u) ← La2 (X1∑g+), with the ionization energies of 39 046, 40 314, and 40 864 cm-1, respectively. The vibrational frequency of the X1Σg+ state is 207 cm-1, and those of the a2Σg+, b2Π3/2, u and b2Π1/2, u are 235.7, 242.2, and 240 cm-1. While X1Σg+ is the ground state of the neutral molecule, a2Σg+ and b2Πu are calculated to be the excited states of the cation. The spin-orbit splitting in the b2Πu ion is 550 cm-1. An X4Σg- state of La2+ was predicted by theory, but not observed by the experiment. The determination of a singlet ground state of La2 shows that lanthanum behaves differently from scandium and yttrium.

  11. Electronic spin state of iron in lower mantle perovskite

    SciTech Connect

    Li, J.; Struzhkin, V.; Mao, H.-k.; Shu, J.; Hemley, R.; Fei, Y.; Mysen, B.; Dera, P.; Parapenka, V.; Shen, G.

    2010-11-16

    The electronic spin state of iron in lower mantle perovskite is one of the fundamental parameters that governs the physics and chemistry of the most voluminous and massive shell in the Earth. We present experimental evidence for spin-pairing transition in aluminum-bearing silicate perovskite (Mg,Fe)(Si,Al)O{sub 3} under the lower mantle pressures. Our results demonstrate that as pressure increases, iron in perovskite transforms gradually from the initial high-spin state toward the final low-spin state. At 100 GPa, both aluminum-free and aluminum-bearing samples exhibit a mixed spin state. The residual magnetic moment in the aluminum-bearing perovskite is significantly higher than that in its aluminum-free counterpart. The observed spin evolution with pressure can be explained by the presence of multiple iron species and the occurrence of partial spin-paring transitions in the perovskite. Pressure-induced spin-pairing transitions in the perovskite would have important bearing on the magnetic, thermoelastic, and transport properties of the lower mantle, and on the distribution of iron in the Earth's interior. The lower mantle constitutes more than half of the Earth's interior by volume (1), and it is believed to consist predominantly (80-100%) of (Mg,Fe)(Si,Al)O{sub 3} perovskite (hereafter called perovskite), with up to 20% (Mg,Fe)O ferropericlase (2). The electronic spin state of iron has direct influence on the physical properties and chemical behavior of its host phase. Hence, knowledge on the spin state of iron is important for the interpretation of seismic observations, geochemical modeling, and geodynamic simulation of the Earth's deep interior (3, 4). Crystal field theory (4, 5) and band theory (6) predicted that a high-spin to low-spin transition would occur as a result of compression. To date, no experimental data exist on the spin sate of iron in Al-bearing perovskite. To detect possible spinpairing transition of iron in perovskite under the lower mantle

  12. Differential cross sections for electron-impact excitation of the electronic states of pyrimidine

    NASA Astrophysics Data System (ADS)

    Brunger, Michael; Jones, Darryl; Bellm, Susan

    2012-06-01

    Pyrimidine (C4N2H4) is an important molecule, as it forms the basis of larger biomolecules, such as the DNA bases thymine, cytosine and uracil. There is a pressing demand for low-energy electron scattering data from such biological analogs in order to model radiation induced damage [1]. We therefore present the first measurements for absolute differential cross section data for low-energy electron-impact excitation of the electronic states of pyrimidine. The present measurements were performed using a crossed-beam apparatus [2] for incident electron energies ranging between 15 to 50eV while covering a 10 to 90^o angular range. Here the absolute scale has been determined through a normalisation to the recently measured elastic scattering differential cross section data for pyrimidine [3]. [1] F. Ferreira da Silva, D. Almeida, G. Martins, A. R. Milosavljevic, B. P. Marinkovic, S. V. Hoffmann, N. J. Mason, Y. Nunes, G. Garcia and P. Limao-Vieira, Phys Chem Chem Phys 12, 6717 (2010). [2] M. J. Brunger and P. J. O. Teubner, Phys Rev A 41, 1413 (1990). [3] P. Palihawadana, J. Sullivan, M. Brunger, C. Winstead, V. McKoy, G. Garcia, F. Blanco and S. Buckman, Phys Rev A 84, 062702 (2011).

  13. Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential

    NASA Astrophysics Data System (ADS)

    Hai, Guo-Qiang; Peeters, François M.

    2015-01-01

    Based on the metastable electron-pair energy band in a two-dimensional (2D) periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens. Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many electrons consisting of single electrons and electron pairs in the 2D system. The electron-pair states are metastable of energies higher than those of the single-electron states at low electron density. We assume two different scenarios for the single-electron band. When it is considered as the lowest conduction band of a crystal, we compare the obtained Hamiltonian with the phenomenological model Hamiltonian of a boson-fermion mixture proposed by Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair and electron-pair-electron-pair interaction terms appear in our Hamiltonian and the interaction potentials can be determined from the electron-electron Coulomb interactions. When we consider the single-electron band as the highest valence band of a crystal, we show that holes in this valence band are important for stabilization of the electron-pair states in the system.

  14. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    PubMed

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  15. Ultrafast excited state relaxation dynamics of electron deficient porphyrins: Conformational and electronic factors

    NASA Astrophysics Data System (ADS)

    Okhrimenko, Albert N.

    Metallo-tetrapyrroles (MTP) are highly stable macrocyclic pi-systems that display interesting properties that make them potential candidates for various applications. Among these applications are optoelectronics, magnetic materials, photoconductive materials, non-linear optical materials and photo tumor therapeutic drugs. These applications are generally related to their high stability and efficient light absorption ability in the visible and near-infrared region of the optical spectrum. Metallo porphyrins are well known and widely studied representatives of metallotetrapyrroles. Electron deficient substituents in the meso positions are well known to greatly influence the interaction between the metal d-orbitals and the nitrogen orbitals of the tetrapyrrole macrocycle. In this work, a series of electron deficient porphyrins has been studied to gain some knowledge about the change in the excited state dynamics with structural and electronic modifications. Among these porphyrins is nickel and iron modified species bearing perfluoro-, perprotio-, p-nitrophenyl- and perfluorophenyl-meso substituents. Ultrafast transient absorption spectrometry has been used as the main research instrument along with other spectroscopic and electrochemical methods. A new technique has been employed to study the photophysical properties of zinc (II) tetraphenylporphine cation radical. It employs a combination of controlled potential coulometry and femtosecond absorption spectrometry. The fast transient lifetime of 17 ps of the pi-cation species originates in very efficient mixing of the a2u HOMO cation orbital that places electronic density mainly on pyrrolic nitrogens and metal d-orbitals. That explains the lack of any emission of the cationic species. This non-radiative decay process might elucidate the processes taking place in photosynthetic systems when electron is removed from porphyrinic moiety and the hole is produced. In this work zinc(II) meso-tetraphenylporphine radial cation

  16. Electron impact excitation and assignment of the low-lying electronic states of CO2

    NASA Technical Reports Server (NTRS)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  17. Electronic states of cuprate superconductors containing halogen or carbon

    NASA Astrophysics Data System (ADS)

    Tohiyama, Takami; Shibata, Yasumasa; Maekawa, Sadamichi

    1996-12-01

    The electronic states of the halo-oxocuprate and oxycarbonate superconductors are examined by means of the ionic and cluster models. The oxycarbonates examined contain the CO3 group on one side of the CuO2 plane. The superconducting critical temperature Tc is found to be correlated with the stability of the Zhang-Rice local singlet in the CuO2 plane. The stability is generally determined by two factors: (1) the energy-level separation between apical ion and in-plane oxygen and (2) the hybridization between apical pz and in-plane orbitals. The former is dominant for the oxycarbonates. It is also found that the CO3 group has no effect on the stabilization. For the halo-oxocuprates, the latter is crucial to stabilize the singlet.

  18. Steady-state and transient electronic dynamics in granular metals

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    In this thesis two very different approaches, steady state and transient, are taken to help understand the electronic dynamics in the nanogranular Cux(SiO2)1-x composite thin films. The electrical conductivity and thermopower are measured from 2 K to room temperature with the Cu volume fraction x varying from 1 down to 0.43. At low temperatures, a T dependence of the electrical conductivity is observed well above the percolation threshold due to the disorder-enhanced electron-electron interaction and as the metal-insulator transition is approached, the electrical conductivity assumes a T1/3 dependence. The thermopower is found to be small and rather insensitive to the degree of disorder in the system. It varies linearly with temperatures at both low and high temperatures. Annealing has considerable influence to the behavior of the electrical conductivity while introducing little changes to the thermopower. Femtosecond pump-probe experiments were performed on a series of Cu x(SiO2)1-x composite films with volume fraction x varying from 0.7 to 1.0 to study the reflectivity change DeltaR/R as a function of composition and temperature. It is discovered that DeltaR/R undergoes drastic changes as the metal content is lowered. Very small amount of SiO 2 inclusions can start to result in qualitatively different Delta R/R behavior from pure Cu. Changes in the dielectric constant of Cu are investigated and possible explanations for the DeltaR/R behaviors in the composite films are discussed.

  19. Laser-induced fluorescence studies of excited Sr reactions: II. Sr(3P1)+CH3F, C2H5F, C2H4F2

    NASA Astrophysics Data System (ADS)

    Teule, J. M.; Janssen, M. H. M.; Bulthuis, J.; Stolte, S.

    1999-06-01

    The vibrational and rotational energy distributions of ground state SrF(X 2Σ) formed in the reactions of electronically excited Sr(3P1) with methylfluoride, ethylfluoride, and 1,1-difluoroethane have been studied by laser-induced fluorescence. Although the reactions of ground state Sr with these reactants are exothermic, no SrF products are observed for those reactions in this study. The fraction of available energy disposed into the sum of rotational and vibrational energy of the SrF(X 2Σ) product is approximately the same for all three reactions, i.e., 40%. The reaction of Sr(3P1) with CH3F results in very low vibrational excitation in the SrF reaction product. The product vibration increases in going to C2H5F and C2H4F2. It is concluded that the alkyl group influences the energy disposal mechanism in these reactions, and some suggestions are given for a partial explanation of the observations.

  20. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  1. Electron transport in multiterminal networks of Majorana bound states

    NASA Astrophysics Data System (ADS)

    Weithofer, Luzie; Recher, Patrik; Schmidt, Thomas L.

    2014-11-01

    We investigate electron transport through multiterminal networks hosting Majorana bound states (MBS) in the framework of full counting statistics. In particular, we apply our general results to T-shaped junctions of two Majorana nanowires. When the wires are in the topologically nontrivial regime, three MBS are localized near the outer ends of the wires, while one MBS is localized near the crossing point, and when the lengths of the wires are finite adjacent MBS can overlap. We propose a combination of current and cross-correlation measurements to reveal the predicted coupling of four Majoranas in a topological T junction. Interestingly, we show that the elementary transport processes at the central lead are different compared to the outer leads, giving rise to characteristic nonlocal signatures in electronic transport. We find quantitative agreement between our analytical model and numerical simulations of a tight-binding model. Using the numerical simulations, we discuss the effect of weak disorder on the current and the cross-correlation functions.

  2. Experimental Realization of Nearly Steady-State Toroidal Electron Plasmas

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.

    2008-11-01

    Non-neutral plasmas are routinely confined in the uniform magnetic field of a Penning-Malmberg trap for arbitrarily long times and approach thermal equilibrium. Theory predicts that dynamically stable and therefore long-lived equilibria exist for non-neutral plasmas confined in the curved, non-uniform field of a toroidal trap, but that ultimately thermal equilibrium states do not exist. On long timescales, the poloidal ExB rotation through the non-uniform toroidal magnetic field leads to magnetic pumping transport. A new experiment has, for the first time, demonstrated the existence of a stable, long-lived (i.e. nearly steady-state) toroidal equilibrium for pure electron plasmas and is poised to observe the magnetic pumping transport mechanism. Electron plasmas with densities of order 10^6 cm-3 are trapped in the Lawrence Non-neutral Torus II for several seconds. LNT II is a high aspect ratio (Ro/a 10), partially toroidal trap (a 270^o arc with Bo=670 G). The m=1 diocotron mode is launched and detected using isolated segments of a fully-sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ( 3 s) approaches the theoretical limit ( 6 s) set by the magnetic pumping transport mechanism of Crooks and O'Neil. We also present equilibrium modeling and numerical simulation of the toroidal m=1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m=2 mode frequency, and development of a strategy for making a transition to fully toroidal confinement. J.P. Marler and M.R. Stoneking, Phys. Rev. Lett. 100, 155001 (2008). S.M. Crooks and T.M. O'Neil, Phys Plamas 3, 2533 (1996).

  3. Heavy metal phosphate nanophases in silica: influence of radiolysis probed via f-electron state properties

    SciTech Connect

    Beitz, James V. . E-mail: beitz@anl.gov; Williams, C.W.; Hong, K.-S.; Liu, G.K.

    2005-02-15

    We have assessed the feasibility of carrying out time- and wavelength-resolved laser-induced fluorescence measurements of radiation damage in glassy silica. The consequences of alpha decay of Es-253 in LaPO{sub 4} nanophases embedded in silica were probed based on excitation of 5f states of Cm{sup 3+}, Bk{sup 3+}, and Es{sup 3+} ions. The recorded emission spectra and luminescence decays showed that alpha decay of Es-253 ejected Bk-249 decay daughter ions into the surrounding silica and created radiation damage within the LaPO{sub 4} nanophases. This conclusion is consistent with predictions of an ion transport code commonly used to model ion implantation. Luminescence from the {sup 6}D{sub 7/2} state of Cm{sup 3+}was used as an internal standard. Ion-ion energy transfer dominated the dynamics of the observed emitting 5f states and strongly influenced the intensity of observed spectra. In appropriate sample materials, laser-induced fluorescence provides a powerful method for fundamental investigation of alpha-induced radiation damage in silica.

  4. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    SciTech Connect

    Morini, Filippo; Deleuze, Michael Simon; Watanabe, Noboru; Kojima, Masataka; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  5. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state.

    PubMed

    Morini, Filippo; Watanabe, Noboru; Kojima, Masataka; Deleuze, Michael Simon; Takahashi, Masahiko

    2015-10-07

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b1, 6a1, 4b2, and 1a2 orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point out in particular the most appreciable role which is played by a few specific molecular vibrations of A1, B1, and B2 symmetries, which correspond to C-H stretching and H-C-H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  6. The electron-furfural scattering dynamics for 63 energetically open electronic states

    NASA Astrophysics Data System (ADS)

    da Costa, Romarly F.; do N. Varella, Márcio T.; Bettega, Márcio H. F.; Neves, Rafael F. C.; Lopes, Maria Cristina A.; Blanco, Francisco; García, Gustavo; Jones, Darryl B.; Brunger, Michael J.; Lima, Marco A. P.

    2016-03-01

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at either the static-exchange (Nopen ch-SE) or the static-exchange-plus-polarisation (Nopen ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.

  7. Final Version: Orbital Specificity in the Unoccupied States of UO2 from Resonant Inverse Photoelectron Spectroscopy

    SciTech Connect

    Tobin, J G; Yu, S W

    2012-03-12

    One of the crucial questions of all actinide electronic structure determinations is the issue of 5f versus 6d character and the distribution of these components across the density of states. Here, a break-though experiment is discussed, which has allowed the direct determination of the U5f and U6d contributions to the unoccupied density of states (UDOS) in Uranium Dioxide. A novel Resonant Inverse Photoelectron (RIPES) and X-ray Emission Spectroscopy (XES) investigation of UO{sub 2} is presented. It is shown that the U5f and U6d components are isolated and identified unambiguously.

  8. A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid-base and photoelectric properties.

    PubMed

    Fan, Su-Hua; Zhang, An-Guo; Ju, Chuan-Chuan; Gao, Li-Hua; Wang, Ke-Zhi

    2010-04-19

    A new heteroleptic ruthenium(II) complex of [Ru(Hipdpa)(Hdcbpy)(NCS)(2)](-).0.5H(+).0.5[N(C(4)H(9))(4)](+) Ru(Hipdpa) {where Hdcbpy = monodeprotonated 4,4'-dicarboxy-2,2'-bipyridine and Hipdpa = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline} was synthesized and characterized by elementary analysis, standard spectroscopy techniques, and cyclic voltammetry. The ground- and excited-state acid-base properties of Ru(Hipdpa) were studied by means of UV-vis absorption spectrophotometric and spectrofluorimetric titrations in 4:1(v/v) Britton-Robinson/dimethylformamide buffer solution. The four-step separate protonation/deprotonation processes were found in the ground states, and one of which taking place near the physiological pH range. The two observable excited-state protonation/deprotonation processes were found for the Ru(Hipdpa), constituting pH-induced "off-on-off" emission switches. The performance of the complexes as photosensitizers in nanocrystalline TiO(2)-based liquid solar cells containing an electrolyte solution (0.05 M I(2), 0.5 M LiI, and 0.5 M 4-tert-butylpyridine in 50% acetonitrile and 50% propylene carbonate) was investigated and found to achieve a much improved device performance (a short-circuit photocurrent density of 18.7 mA cm(-2), an open-circuit voltage of 630 mV, and an overall conversion efficiency of 6.85%) compared to a triphenylamine-free parent complex [Ru(Hpip)(Hdcbpy)(NCS)(2)](-).[N(C(4)H(9))(4)](+)-based device {Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline} and a comparable performance to that of cis-bis(isothiocyanato)bis(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) (N3) under identical experimental conditions. A density functional theory calculation of the molecular structures and electronic properties of the complexes was also carried out in an effort to understand their effectiveness in TiO(2)-based solar cells.

  9. High-lying electronic states of the rubidium dimer—Ab initio predictions and experimental observation of the 5 1 Σu + and 51Πu states of Rb2 by polarization labelling spectroscopy

    NASA Astrophysics Data System (ADS)

    Jastrzebski, Wlodzimierz; Kowalczyk, Pawel; Szczepkowski, Jacek; Allouche, Abdul-Rahman; Crozet, Patrick; Ross, Amanda J.

    2015-07-01

    Two-colour polarization labelling experiments have been used to explore the excitation spectrum of the rubidium dimer in the region 25 500-27 000 cm-1, probing two mutually interacting states, identified from ab initio calculations as the 5 1 Σu + and 51Πu states whose atomic dissociation products are Rb(5s) + Rb(5d). Treating the rather irregular progressions observed in the excitation spectra as transitions to single states with (numerous) local perturbations, we propose spectroscopic parameters and potential energy curves to describe the investigated levels. Observations cover more than 20 vibrational levels in the inner minima of both the 51Πu and 5 1 Σu + states. Analysis was guided by ab initio calculations performed to describe the 1,3Λg,u electronic states of Rb2 up to the Rb(5s) + Rb(5f) atomic asymptote. The theoretical potential energy curves are given in ASCII format in an electronic supplement to this paper.

  10. Pseudopotential and full-electron DFT calculations of thermodynamic properties of electrons in metals and semiempirical equations of state.

    PubMed

    Levashov, P R; Sin'ko, G V; Smirnov, N A; Minakov, D V; Shemyakin, O P; Khishchenko, K V

    2010-12-22

    In the present work, we compare the thermal contribution of electrons to thermodynamic functions of metals in different models at high densities and electron temperatures. One of the theoretical approaches, the full-potential linear-muffin-tin-orbital method, treats all electrons in the framework of density functional theory (DFT). The other approach, VASP, uses projector-augmented-wave pseudopotentials for the core electrons and considers the valent electrons also in the context of DFT. We analyze the limitations of the pseudopotential approach and compare the DFT results with a finite-temperature Thomas-Fermi model and two semiempirical equations of state.

  11. Pseudopotential and full-electron DFT calculations of thermodynamic properties of electrons in metals and semiempirical equations of state

    NASA Astrophysics Data System (ADS)

    Levashov, P. R.; Sin'ko, G. V.; Smirnov, N. A.; Minakov, D. V.; Shemyakin, O. P.; Khishchenko, K. V.

    2010-12-01

    In the present work, we compare the thermal contribution of electrons to thermodynamic functions of metals in different models at high densities and electron temperatures. One of the theoretical approaches, the full-potential linear-muffin-tin-orbital method, treats all electrons in the framework of density functional theory (DFT). The other approach, VASP, uses projector-augmented-wave pseudopotentials for the core electrons and considers the valent electrons also in the context of DFT. We analyze the limitations of the pseudopotential approach and compare the DFT results with a finite-temperature Thomas-Fermi model and two semiempirical equations of state.

  12. 75 FR 983 - Cross-Media Electronic Reporting Rule State Approved Program Revision/Modification Approvals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... AGENCY Cross-Media Electronic Reporting Rule State Approved Program Revision/Modification Approvals... announces EPA's approval, under regulations for Cross-Media Electronic Reporting, of the State of...@epa.gov . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting...

  13. 75 FR 69660 - Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of Hawaii

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... Rule State Authorized Program Revision Approval: State of Hawaii AGENCY: Environmental Protection...-Media Electronic Reporting, of the State of Hawaii's request to revise certain of its EPA-authorized... receiving systems that meet the applicable subpart D requirements. On February 16, 2010, the State of Hawaii...

  14. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    PubMed

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  15. Analysis of the Tank 5F Feed and Bleed Residual Solids

    SciTech Connect

    Poirier, M.; Diprete, D.: Coleman, C.; Washington, A.

    2011-07-07

    Savannah River Remediation (SRR) is preparing Tank 5F for closure. As part of Tank 5F Closure Mechanical Cleaning, SRR conducted a 'Feed and Bleed' process in Tank 5F. Following this 'Feed and Bleed' Mechanical Cleaning in Tank 5F, SRR collected two tank heel samples (referred to as sample 1 and sample 2) under Riser 5 to determine the composition of the material remaining in the tanks. This document describes sample analysis results. The conclusions from this analysis follow. (1) The anions measured all had a concentration less than 250 mg/kg, except for oxalate, which had a concentration of 2100-2400 mg/kg. (2) The measured cations with the highest concentration were iron (432,000-519,000 mg/kg), nickel (54,600-69,300 mg/kg), and manganese (35,200-42,100 mg/kg). All other cations measured less than 13,000 mg/kg. (3) The radionuclides present in the highest concentration are {sup 90}Sr (3.0 x 10{sup 10} dpm/g), {sup 137}Cs (6.8 x 10{sup 8} dpm/g), and {sup 241}Am (1.4 x 10{sup 8} - 1.8 x 10{sup 8} dpm/g). (4) The particle size analysis shows a large fraction of particles greater than 100 {micro}.

  16. 48 CFR 47.303-5 - F.o.b. origin, with differentials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. origin, with... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-5 F.o.b. origin, with differentials. (a) Explanation of delivery term. F.o.b. origin, with differentials means— (1) Free of expense...

  17. 48 CFR 47.303-5 - F.o.b. origin, with differentials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false F.o.b. origin, with... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-5 F.o.b. origin, with differentials. (a) Explanation of delivery term. F.o.b. origin, with differentials means— (1) Free of expense...

  18. Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway.

    PubMed

    Nakatsu, Fubito; Messa, Mirko; Nández, Ramiro; Czapla, Heather; Zou, Yixiao; Strittmatter, Stephen M; De Camilli, Pietro

    2015-04-13

    The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL-Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin.

  19. 26 CFR 5f.103-2 - Public approval of industrial development bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Public approval of industrial development bonds... RESPONSIBILITY ACT OF 1982 § 5f.103-2 Public approval of industrial development bonds. (a) General rule. An industrial development bond (within the meaning of § 1.103-7(b)(1) issued after December 31, 1982, shall...

  20. Theory of electronic states and excitations in PPV

    NASA Astrophysics Data System (ADS)

    Brazovskii, S.; Kirova, N.; Bishop, A. R.

    1998-01-01

    We present a consistent theoretical picture for optical properties of phenyl based polymers, especially for the PPV family. The model is based upon an analytical solution for the band structure of PPV oligomers, while invoking the dominant Coulomb corrections for electron-hole interactions. The adjustable parameters are only the common shift for the bands centers of gravity and a dielectric susceptibility at small distances. Our picture gives a clear understanding for the origin of all possible transitions in linear and nonlinear optics. We describe both tightly bound localized excitons and excitons of intermediate range (i.e. of both the Frenkel and Wannier-Mott types). The quantitative description of excitons is obtained from the long range Coulomb interactions, We emphasize where the ring torsion plays a role in the overall energy minimization of the excited state. This article provides theory details for the joint article [S. Brazovskii, N. Kirova, A.R. Bishop, V. Klimov, D. McBranch, N.N. Barashkov, J.P. Ferraris, Opt. Mater. 9 (1998) 472], where a complete picture was outlined.

  1. Minimal parametrization of an n-electron state

    SciTech Connect

    Kutzelnigg, Werner; Mukherjee, Debashis

    2005-02-01

    The Hamiltonian H for an n-electron system in a finite one-electron basis of dimension m is characterized by d=O(m{sup 4}) matrix elements. The eigenstates of this Hamiltonian - i.e., the full-CI states {psi} - depend, however, on the usually much larger set of N=O(m{sup n}) parameters. One can, nevertheless, write a full-CI state as {psi}=e{sup S}{phi} with {phi} a reference function and S an operator familiar from traditional coupled cluster (TCC) theory. The 'exact' operator S can be expressed (though in an implicit and rather complicated way) in terms of d parameters. An alternative ansatz {psi}=e{sup T}{phi} with T depending in a very simple way on d parameters only (namely, with T having the same structure in Fock space as H) has been studied by Nooijen and by Nakatsuji and been called coupled-cluster with generalized single and double excitations (CCGSD). Nooijen has conjectured that the full-CI equations can be fulfilled with this ansatz. This paper is devoted to a comprehensive analysis of the Nooijen conjecture (NC). Several features make this analysis difficult and even intriguing. (a) One deals with coupled nonlinear systems of equations, for which theorems concerning the existence of their solution are hardly available. (b) There are different possible interpretations of the NC, especially as far as the choice of the reference function {phi} is concerned. (c) There are solutions of the CCGSD equations, for which some elements of T becomes negative infinite, and e{sup T} becomes a projection operator. Such solutions are undesired but difficult to eliminate. We show by direct comparison of the exact wave operator with that of CCGSD theory, for a closed-shell state with {phi} a single Slater determinant, using a perturbation expansion, that CCGSD cannot be exact. This required a reformulation of the CCGSD operator e{sup T} to an equivalent exponential form e{sup R}, with R similar to the S of TCC theory, but with constraints on the cluster amplitudes

  2. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos.

    PubMed

    Cauffman, Greet; Liebaers, Inge; Van Steirteghem, André; Van de Velde, Hilde

    2006-12-01

    The contribution of the POU domain, class 5, transcription factor-1 (POU5F1) in maintaining totipotency in human embryonic stem cells (hESCs) has been repeatedly proven. In humans, two isoforms are encoded: POU5F1_iA and POU5F1_iB. So far, no discrimination has been made between the isoforms in POU5F1 studies, and it is unknown which isoform contributes to the undifferentiated phenotype. Using immunocytochemistry, expression of POU5F1_iA and POU5F1_iB was examined in hESCs and all stages of human preimplantation development to look for differences in expression, biological activity, and relation to totipotency. POU5F1_iA and POU5F1_iB displayed different temporal and spatial expression patterns. During human preimplantation development, a significant POU5F1_iA expression was seen in all nuclei of compacted embryos and blastocysts and a clear POU5F1_iB expression was detected from the four-cell stage onwards in the cytoplasm of all cells. The cytoplasmic localization might imply no or other biological functions beyond transcription activation for POU5F1_iB. The stemness properties of POU5F1 can be assigned to POU5F1_iA because hESCs expressed POU5F1_iA but not POU5F1_iB. However, POU5F1_iA is not the appropriate marker to identify totipotent cells, because POU5F1_iA was also expressed in the nontotipotent trophectoderm and was not expressed in zygotes and early cleavage stage embryos, which are assumed to be totipotent. The expression pattern of POU5F1_iA may suggest that POU5F1_iA alone cannot sustain totipotency and that coexpression with other stemness factors might be the key to totipotency.

  3. Separating the Spin States of a Free Electron Beam

    NASA Astrophysics Data System (ADS)

    Rifkin, Neil

    2008-10-01

    In 1922 Otto Stern and Walther Gerlach set out to test the spacial quantization of the electron by passing a beam of neutral silver atoms through a transverse magnetic field. The interaction of the two projections of the electron's magnetic moment with the magnetic field resulted in a splitting of the beam. However, for some sixty years it was generally accepted that the spin of free electrons, and thus their magnetic moment, could not be measured with an experiment similar to that of Stern and Gerlach. The reason being that the lorentz force on charged particles is far greater than the force due to the magnetic moment of the electron, thus blurring any desired results. To reduce the lorentz force, the electrons could be passed through a magnetic field whose gradient is in the direction of the electrons' momentum. This longitudinal Stern-Gerlach device, with a superconducting magnet, could polarize the tails of a low energy electron beam.

  4. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    SciTech Connect

    Kulagin, N. . E-mail: nkulagin@bestnet.kharkov.ua

    2005-02-15

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f{sup N} and excited 5f{sup N}n'l'{sup N'} configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC{sup +1}-AC{sup +4} show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC{sup +n}:[L]{sub k} are compared, too.

  5. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  6. Implementation of Inverse Photoelectron Spectroscopy for Measuring the Empty Electronic States of Metal Oxide Surfaces

    DTIC Science & Technology

    2014-11-05

    and initial results on oxidized zirconium have been performed. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers...the electronic states of the surface with changes in the photoluminescence spectrum. The results of some of our first experiments on zirconium ...clean” zirconium oxide. The occupied valence electronic states are mainly composed of oxygen 2p electrons. The unoccupied states are zirconium 4d

  7. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  8. Sad State of Phage Electron Microscopy. Please Shoot the Messenger

    PubMed Central

    Ackermann, Hans-W.

    2013-01-01

    Two hundred and sixty publications from 2007 to 2012 were classified according to the quality of electron micrographs; namely as good (71); mediocre (21); or poor (168). Publications were from 37 countries; appeared in 77 journals; and included micrographs produced with about 60 models of electron microscopes. The quality of the micrographs was not linked to any country; journal; or electron microscope. Main problems were poor contrast; positive staining; low magnification; and small image size. Unsharp images were frequent. Many phage descriptions were silent on virus purification; magnification control; even the type of electron microscope and stain used. The deterioration in phage electron microscopy can be attributed to the absence of working instructions and electron microscopy courses; incompetent authors and reviewers; and lenient journals. All these factors are able to cause a gradual lowering of standards. PMID:27694773

  9. Modeling of free electronic state density in hydrogenic plasmas based on nearest neighbor approximation

    SciTech Connect

    Nishikawa, Takeshi

    2014-07-15

    Most conventional atomic models in a plasma do not treat the effect of the plasma on the free-electron state density. Using a nearest neighbor approximation, the state densities in hydrogenic plasmas for both bound and free electrons were evaluated and the effect of the plasma on the atomic model (especially for the state density of the free electron) was studied. The model evaluates the electron-state densities using the potential distribution formed by the superposition of the Coulomb potentials of two ions. The potential from one ion perturbs the electronic state density on the other. Using this new model, one can evaluate the free-state density without making any ad-hoc assumptions. The resulting contours of the average ionization degree, given as a function of the plasma temperature and density, are shifted slightly to lower temperatures because of the effect of the increasing free-state density.

  10. Structural evolution and valence electron-state change during ultra thin silicon-oxide growth

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Abe, S.; Nakayama, H.; Nishino, T.; Iida, S.

    2000-06-01

    We have studied valence electron-state changes of Si during initial oxidation of Si(111) clean surface, HF-treated Si(001) and Si(111) surfaces by Auger valence electron spectroscopy (AVES). The results showed that the valence electron-state changes during initial oxidation were sensitively reflected in Si[2s,2p,V] (V=3s,3p) AVES spectra and that they depended on both initial surface treatment and surface orientation. The local valence electron-states, local density of states in other words, showed the characteristic-structure evolution depending on the initial surface treatment and surface orientation.

  11. Time-bin state transfer to electron spin coherence in solids

    SciTech Connect

    Kosaka, Hideo; Inagaki, Takahiro; Hitomi, Ryuta; Izawa, Fumishige; Mitsumori, Yasuyoshi; Edamatsu, Keiichi; Rikitake, Yoshiaki; Imamura, Hiroshi

    2014-12-04

    We demonstrate that a coherent superposition state of two temporally separated optical pulses, called a time-bin state, can be transferred to that of up/down electron spins in a semiconductor by synchronizing the time separation to the precession period of either electrons or holes. The time-bin transfer scheme does not require polarization mode degeneracy and can map the time-bin state to the electron spin state that is not accessible directly using only polarization. The scheme offers a new approach for quantum interfaces between photons and electron spins.

  12. Two-electron bound states near a Coulomb impurity in gapped graphene

    NASA Astrophysics Data System (ADS)

    De Martino, Alessandro; Egger, Reinhold

    2017-02-01

    We formulate and solve the perhaps simplest two-body bound-state problem for interacting Dirac fermions in two spatial dimensions. A two-body bound state is predicted for gapped graphene monolayers in the presence of weakly repulsive electron-electron interactions and a Coulomb impurity with charge Z e >0 , where the most interesting case corresponds to Z =1 . We introduce a variational Chandrasekhar-Dirac spinor wave function and show the existence of at least one bound state. This state leaves clear signatures accessible by scanning tunneling microscopy. One may thereby obtain direct information about the strength of electron-electron interactions in graphene.

  13. Pulsed-field ionization zero electron kinetic energy spectrum of the ground electronic state of BeOBe+.

    PubMed

    Antonov, Ivan O; Barker, Beau J; Heaven, Michael C

    2011-01-28

    The ground electronic state of BeOBe(+) was probed using the pulsed-field ionization zero electron kinetic energy photoelectron technique. Spectra were rotationally resolved and transitions to the zero-point level, the symmetric stretch fundamental and first two bending vibrational levels were observed. The rotational state symmetry selection rules confirm that the ground electronic state of the cation is (2)Σ(g)(+). Detachment of an electron from the HOMO of neutral BeOBe results in little change in the vibrational or rotational constants, indicating that this orbital is nonbonding in nature. The ionization energy of BeOBe [65480(4) cm(-1)] was refined over previous measurements. Results from recent theoretical calculations for BeOBe(+) (multireference configuration interaction) were found to be in good agreement with the experimental data.

  14. Nonadiabtic electron dynamics in densely quasidegenerate states in highly excited boron cluster

    NASA Astrophysics Data System (ADS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2016-04-01

    Following the previous study on nonadiabatic reaction dynamics including boron clusters [T. Yonehara and K. Takatsuka, J. Chem. Phys. 137, 22A520 (2012)], we explore deep into highly excited electronic states of the singlet boron cluster (B12) to find the characteristic features of the densely quasi-degenerate electronic state manifold, which undergo very frequent nonadiabatic transitions and thereby intensive electronic state mixing among very many of the relevant states. So much so, isolating the individual adiabatic states and tracking the expected potential energy surfaces both lose the physical sense. This domain of molecular situation is far beyond the realm of the Born-Oppenheimer approximation. To survey such a violent electronic state-mixing, we apply a method of nonadiabatic electron wavepacket dynamics, the semiclassical Ehrenfest method. We have tracked those electron wavepackets and found the electronic state mixing looks like an ultrafast diffusion in the Hilbert space, which results in huge fluctuation. Furthermore, due to such a violent mixing, the quantum phases associated with the electronic states are swiftly randomized, and consequently the coherence among the electronic states are lost quickly. Besides, these highly excited states are mostly of highly poly-radical nature, even in the spin singlet manifold and the number of radicals amounts up to 10 electrons in the sense of unpaired electrons. Thus the electronic states are summarized to be poly-radical and decoherent with huge fluctuation in shorter time scales of vibrational motions. The present numerical study sets a theoretical foundation for unknown molecular properties and chemical reactivity of such densely quasi-degenerate chemical species.

  15. Some Chemical and Electronic Considerations of Solid State Semiconductor Crystals.

    ERIC Educational Resources Information Center

    Hinitz, Herman J.

    1986-01-01

    Describes the trend toward the use of electronic instrumentation to monitor and measure various parameters in chemical reactions. Stresses that a knowledge of the operational relationships involved in such instruments is essential for students beginning in science. Discusses electrostatic charges, semiconductor crystals, electronic conductors,…

  16. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  17. Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field

    NASA Astrophysics Data System (ADS)

    Spisak, B. J.; Wołoszyn, M.

    2009-07-01

    The electronic energy levels of one-dimensional aperiodic systems driven by a homogeneous electric field are studied by means of a phase-space description based on the Wigner distribution function. The formulation provides physical insight into the quantum nature of the electronic states for the aperiodic systems generated by the Fibonacci and Thue-Morse sequences. The nonclassical parameter for electronic states is studied as a function of the magnitude of homogeneous electric field to achieve the main result of this work, which is to prove that the nonclassical properties of the electronic states in the aperiodic systems determine the transition probability between electronic states in the region of anticrossings. The localization properties of electronic states and the uncertainty product of momentum and position variables are also calculated as functions of the electric field.

  18. Electron transport in micro to nanoscale solid state networks

    NASA Astrophysics Data System (ADS)

    Fairbanks, Matthew Stetson

    This dissertation focuses on low-dimensional electron transport phenomena in devices ranging from semiconductor electron 'billiards' to semimetal atomic clusters to gold nanoparticles. In each material system, the goal of this research is to understand how carrier transport occurs when many elements act in concert. In the semiconductor electron billiards, magnetoconductance fluctuations, the result of electron quantum interference within the device, are used as a probe of electron transport through arrays of one, two, and three connected billiards. By combining two established analysis techniques, this research demonstrates a novel method for determining the quantum energy level spacing in each of the arrays. That information in turn shows the extent (and limits) of the phase-coherent electron wavefunction in each of the devices. The use of the following two material systems, the semimetal atomic clusters and the gold nanoparticles, is inspired by the electron billiard results. First, the output of the simple, rectangular electron billiards, the magnetoconductance fluctuations, is quite generally found to be fractal. This research addresses the question of what output one might expect from a device with manifestly fractal geometry by simulating the electrical response of fractal resistor networks and by outlining a method to implement such devices in fractal aggregates of semimetal atomic clusters. Second, in gold nanoparticle arrays, the number of array elements can increase by orders of magnitude over the billiard arrays, all with the potential to stay in a similar, phase-coherent transport regime. The last portion of this dissertation details the fabrication of these nanoparticle-based devices and their electrical characteristics, which exhibit strong evidence for electron transport in the Coulomb-blockade regime. A sketch for further 'off-blockade' experiments to realize magnetoconductance fluctuations, i.e. phase-coherent electron phenomena, is presented.

  19. Excited state electron transfer after visible light absorption by the Co(I) state of vitamin B12.

    PubMed

    Achey, Darren; Brigham, Erinn C; DiMarco, Brian N; Meyer, Gerald J

    2014-11-11

    The first example of excited state electron transfer from cob(I)alamin is reported herein. Vitamin B12 was anchored to a mesoporous TiO2 thin film and electrochemically reduced to the cob(I)alamin form. Pulsed laser excitation resulted in rapid excited state electron transfer, ket > 10(8) s(-1), followed by microsecond interfacial charge recombination to re-form cob(I)alamin. The supernucleophilic cob(I)alamin was found to be a potent photoreductant. The yield of excited state electron transfer was found to be excitation wavelength dependent. The implications of this dependence are discussed.

  20. The current state of electronic consultation and electronic referral systems in Canada: an environmental scan.

    PubMed

    Liddy, Clare; Hogel, Matthew; Blazkho, Valerie; Keely, Erin

    2015-01-01

    Access to specialist care is a point of concern for patients, primary care providers, and specialists in Canada. Innovative e-health platforms such as electronic consultation (eConsultation) and referral (eReferral) can improve access to specialist care. These systems allow physicians to communicate asynchronously and could reduce the number of unnecessary referrals that clog wait lists, provide a record of the patient's journey through the referral system, and lead to more efficient visits. Little is known about the current state of eConsultation and eReferral in Canada. The purpose of this work was to identify current systems and gain insight into the design and implementation process of existing systems. An environmental scan approach was used, consisting of a systematic and grey literature review, and targeted semi-structured key informant interviews. Only three eConsultation/eReferral systems are currently in operation in Canada. Four themes emerged from the interviews: eReferral is an end goal for those provinces without an active eReferral system, re-organization of the referral process is a necessity prior to automation, engaging the end-user is essential, and technological incompatibilities are major impediments to progress. Despite the acknowledged need to improve the referral system and increase government spending on health information technology, eConsultation and eReferral systems remain scarce as Canada lags behind the rest of the developed world.

  1. First-principles study of electronic states in LiBe{sub 2}

    SciTech Connect

    Galav, K. L.; Joshi, K. B.

    2016-05-23

    By coupling structure prediction methods with first-principles total energy calculations we find lattice constant and bulk modulus of hcp LiBe{sub 2}. Structural and electronic properties are investigated using Linear Combination of Atomic Orbital’s method. The generalized gradient approximation based density functional calculations are attempted to look for the ground state. Thereafter ground state electronic band structure, total density of states and anisotropies in directional Compton profiles are computed. Step like behavior seen broadly in density of states (DOS) is appreciated by band structure suggesting 2D features. Anisotropic behavior of electronic states around Fermi level is also reflected in anisotropies of directional Compton profiles.

  2. Diagnostics of many-particle electronic states: non-stationary currents and residual charge dynamics

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Mantsevich, V. N.; Arseyev, P. I.

    2017-01-01

    We propose the method for identifying many particle electronic states in the system of coupled quantum dots (impurities) with Coulomb correlations. We demonstrate that different electronic states can be distinguished by the complex analysis of localized charge dynamics and non-stationary characteristics. We show that localized charge time evolution strongly depends on the properties of initial state and analyze different time scales in charge kinetics for initially prepared singlet and triplet states. We reveal the conditions for existence of charge trapping effects governed by the selection rules for electron transitions between the states with different occupation numbers.

  3. Diagnostics of many-particle electronic states: Non-stationary currents and residual charge dynamics

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Mantsevich, V. N.; Arseyev, P. I.

    2017-01-01

    We propose the method for identifying many particle electronic states in the system of coupled quantum dots (impurities) with Coulomb correlations. We demonstrate that different electronic states can be distinguished by the complex analysis of localized charge dynamics and non-stationary characteristics. We show that localized charge time evolution strongly depends on the properties of initial state and analyze different time scales in charge kinetics for initially prepared singlet and triplet states. We reveal the conditions for existence of charge trapping effects governed by the selection rules for electron transitions between the states with different occupation numbers.

  4. Nqrs Data for C10H5F6IO4 (Subst. No. 1206)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C10H5F6IO4 (Subst. No. 1206)

  5. Evidence for the involvement of 5f orbitals in the bonding and reactivity of organometallic actinide compounds: thorium(IV) and uranium(IV) bis(hydrazonato) complexes.

    PubMed

    Cantat, Thibault; Graves, Christopher R; Jantunen, Kimberly C; Burns, Carol J; Scott, Brian L; Schelter, Eric J; Morris, David E; Hay, P Jeffrey; Kiplinger, Jaqueline L

    2008-12-24

    Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C(5)Me(5))(2)AnR(2) yields the first f-element bis(hydrazonato) complexes (C(5)Me(5))(2)An[eta(2)-(N,N')-R-N-N=CPh(2)](2) [An = Th, R = CH(3) (18), PhCH(2) (15), Ph (16); An = U, R = CH(3) (17), PhCH(2) (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an eta(2)-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C(5)H(5))(2)Zr(CH(3))(2) or (C(5)Me(5))(2)Hf(CH(3))(2) with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C(5)R(5))(2)M[eta(2)-(N,N')-CH(3)-N-N=CPh(2)](CH(3)) (M = Zr, R = H or M = Hf, R = CH(3)). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C(5)H(5))(2)M[eta(2)-(N,N')-CH(3)-N-N=CH(2)](2) (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C(5)H(5))(2)ML(3) species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C(5)H(5))(2)ML(4). DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the sigma and pi electrons of the two eta(2)-coordinated hydrazonato ligands. In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis

  6. Involvement of 5f-orbitals in the bonding and reactivity of organoactinide compounds: thorium(IV) and uranium(IV) bis (hydrazonato) complexes

    SciTech Connect

    Cantat, Thibault; Graves, Christopher R; Morris, David E; Kiplinger, Jaqueline L

    2008-01-01

    Migratory insertion of diphenyldiazomethane into both metal-carbon bonds of the bis(alkyl) and bis(aryl) complexes (C5Me5)2AnR2 yields the first f-element bis(hydrazonato) complexes (C5Me5)2An[2-(N,N')-R-N-NCPh2]2 [An = Th, R = CH3 (18), PhCH2 (15), Ph (16); An = U, R = CH3 (17), PhCH2 (14)], which have been characterized by a combination of spectroscopy, electrochemistry, and X-ray crystallography. The two hydrazonato ligands adopt an 2-coordination mode leading to 20-electron (for Th) and 22-electron (for U) complexes that have no transition-metal analogues. In fact, reaction of (C5H5)2Zr(CH3)2 or (C5Me5)2Hf(CH3)2 with diphenyldiazomethane is limited to the formation of the corresponding mono(hydrazonato) complex (C5R5)2M[2-(N,N')-CH3-N-NCPh2](CH3) (M = Zr, R = H or M = Hf, R = CH3). The difference in the reactivities of the group 4 metal complexes and the actinides was used as a unique platform for investigating in depth the role of 5f orbitals on the reactivity and bonding in actinide organometallic complexes. The electronic structure of the (C5H5)2M[2-(N,N')-CH3-N-NCH2]2 (M = Zr, Th, U) model complexes was studied using density functional theory (DFT) calculations and compared to experimental structural, electrochemical, and spectroscopic results. Whereas transition-metal bis(cyclopentadienyl) complexes are known to stabilize three ligands in the metallocene girdle to form saturated (C5H5)2ML3 species, in a bis(hydrazonato) system, a fourth ligand is coordinated to the metal center to give (C5H5)2ML4. DFT calculations have shown that 5f orbitals in the actinide complexes play a crucial role in stabilizing this fourth ligand by stabilizing both the s and p electrons of the two 2-coordinated hydrazonato ligands. In contrast, the stabilization of the hydrazonato ligands was found to be significantly less effective for the putative bis(hydrazonato) zirconium(IV) complex, yielding a higher energy structure. However, the difference in the reactivities of the group 4

  7. Binding sites and electronic states of group 3 metal-aniline complexes probed by high-resolution electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumari, Sudesh; Sohnlein, Bradford R.; Hewage, Dilrukshi; Roudjane, Mourad; Sup Lee, Jung; Yang, Dong-Sheng

    2013-06-01

    Group 3 metal-aniline complexes, M(aniline) (M = Sc, Y, and La), are produced in a pulsed laser-vaporization molecular beam source, identified by photoionization time-of-flight mass spectrometry, and investigated by pulsed-field ionization zero electron kinetic energy (ZEKE) spectroscopy and quantum chemical calculations. Adiabatic ionization energies and several low-frequency vibrational modes are measured for the first time from the ZEKE spectra. Metal binding sites and electronic states are determined by combining the ZEKE measurements with the theoretical calculations. The ionization energies of the complexes decrease down the metal group. An out-of-plane ring deformation mode coupled with an asymmetric metal-carbon stretch is considerably anharmonic. Although aniline has various possible sites for metal coordination, the preferred site is the phenyl ring. The metal binding with the phenyl ring yields syn and anti conformers with the metal atom and amino hydrogens on the same and opposite sides of the ring, respectively. The anti conformer is determined to be the spectral carrier. The ground electronic state of the anti conformer of each neutral complex is a doublet with a metal-based electron configuration of nd2(n + 1)s1, and the ground electronic state of each ion is a singlet with a metal-based electron configuration of nd2. The formation of the neutral complexes requires the nd2(n + 1)s1 ← nd1(n + 1)s2 electron excitation in the metal atoms.

  8. The Low-Lying Electronic States of LiB

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the triplet and singlet states of LiB below about 30 000/ cm are determined using an internally contracted multireference configuration interaction approach in conjunction with [6s 5p 3d 2f] atomic natural orbital basis sets. The ground state is (sup 3)Pi as found in previous work. No excited triplet states are found to be ideal for characterizing the ground state; the (1)(sup 3)Sigma(sup -) state has a transition energy that is too small for many experimental approaches and the (2)(sup 3)Pi and (3)(sup 3)Pi states have bond lengths that are significantly longer than the ground state, resulting in transition intensities that are spread out over many vibrational levels of the ground state.

  9. Characterization of the POU5F1 Homologue in Nile Tilapia: From Expression Pattern to Biological Activity.

    PubMed

    Xiaohuan, Huang; Yang, Zhao; Linyan, Liu; Zhenhua, Fan; Linyan, Zhou; Zhijian, Wang; Ling, Wei; Deshou, Wang; Jing, Wei

    2016-09-15

    POU5F1 (OCT4) is a crucial transcription factor for induction and maintenance of cellular pluripotency, as well as survival of germ cells in mammals. However, the homologues of POU5F1 in teleost fish, including zebrafish and medaka, now named Pou5f3, exhibit considerable differences in expression pattern and pluripotency-maintaining activity. To what extent the POU5F1 homologues are conserved in vertebrates has been unclear. In this study, we report that the POU5F1 homologue from the Nile tilapia (Oreochromis niloticus), OnPou5f3, displays an expression pattern and biological activity somewhat different from those in zebrafish or medaka. The expression of Onpou5f3 at both mRNA and protein levels was abundant in early development embryos until blastula stages, barely detectable as proceeding, and then displayed a transiently strong expression domain in the brain region during neurula stages similar to zebrafish but not medaka. Afterward, OnPou5f3 appeared as germline-restricted (including primordial germ cells and female and male gonad germ cells) expression just like medaka. Notably, OnPou5f3 depletion through morpholino oligos caused blastula blockage or lethality and failure of survival and proliferation of blastula cell-derived cells. These findings indicate that equivalent POU5F1-like expression and activity of Pou5f3 might be conserved accompanying with species-specific expression pattern during evolution. Our study provides insight into the evolutionary conservation of the POU5F1 homologues across vertebrates.

  10. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    SciTech Connect

    Booth, C. H.; Medling, S. A.; Jiang, Yu; Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Veirs, D. K.; Wall, M. A.; Allen, P. G.; Kas, J. J.; Sokaras, D.; Nordlund, D.; Weng, T. -C.

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These new results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.

  11. Electron impact spectroscopy. [for atom and molecule quantum state investigation

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1980-01-01

    The concepts of electron impact spectroscopy are discussed, comparing the electron spectroscopy techniques with those of the optical spectroscopy. The main advantage of the electron spectroscopy is to be found in the elimination of optical selection rules in excitation processes and the ability to scan the spectrum from the infrared to the X-ray region. The range of the method is indicated through a review of several examples, including electron impact excitation of Ba and rotational excitation of H2. The sensitivity of the method is demonstrated by vibrational excitation spectrum of N2. It is shown that the application of the method to the inner-shell excitation allows to obtain information about molecular species which are not commonly available, while spectroscopy of negative ions yields information about their energy and symmetry properties. However, the techniques are still under development and more data are expected to become available in the coming years.

  12. Dynamics of photoionization from molecular electronic wavepacket states in intense pulse laser fields: A nonadiabatic electron wavepacket study

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2017-04-01

    A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.

  13. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  14. State of the Art in Electronic Dosemeters for Neutrons

    NASA Astrophysics Data System (ADS)

    Luszik-Bhadra, Marlies

    2011-05-01

    The paper presents an overview of electronic personal dosemeters for neutrons in mixed neutron/photon fields. The energy response of commercially available electronic dosemeters in quasi-monoenergetic neutron fields and their performance in working places is discussed. The response curves are extended to high-energy neutrons up to 100 MeV, new prototype dosemeters are described and discussed especially for use at high-energy accelerators and in space.

  15. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  16. Microwave-resonance-induced resistivity: evidence of ultrahot surface-state electrons on liquid 3He.

    PubMed

    Konstantinov, Denis; Isshiki, Hanako; Monarkha, Yuriy; Akimoto, Hikota; Shirahama, Keiya; Kono, Kimitoshi

    2007-06-08

    Measurements of the dc resistivity of surface-state electrons on liquid helium exposed to microwave radiation are reported. It is shown that the resonant microwave excitation of surface-state electrons is accompanied by a strong increase in their resistivity, which is opposite to the result expected from the previously used two-level model. We show that even a very small fraction of electrons excited to the first excited state and decaying back due to vapor-atom scattering strongly heat the electron system, causing a population of higher subbands. The calculated resistivity change is in good agreement with the observed data.

  17. Surface electron states on the quasi-two-dimensional excess-electron compounds Ca2N and Y2C

    NASA Astrophysics Data System (ADS)

    Inoshita, Takeshi; Takemoto, Seiji; Tada, Tomofumi; Hosono, Hideo

    2017-04-01

    Compounds having excess electrons from the formal valence viewpoint (electrides) are a new class of materials, which often take low-dimensional structures. We studied the (001) surface electronic structures of quasi-two-dimensional electrides Ca2N and Y2C by density functional theory using a slab model. Both materials were found to have a clean surface state well separated in energy from the bulk states. Furthermore, this state virtually floats above the surface and may be considered to be a hallmark of two-dimensional electrides. For Ca2N , a tight-binding model in the Wannier representation was derived and analyzed, from which we concluded that the surface state, described by extra-surface s -like orbitals, is a Tamm state originating from an abrupt increase in potential energy at the surface.

  18. Electron-impact excitation of the low-lying electronic states of HCN

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.

    1977-01-01

    The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.

  19. Nonadiabatic Evolution of Electronic States by Electron Nuclear Dynamics Theory: Application to Atom-Molecule Scattering Problems.

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank

    2004-03-01

    In this contribution, we address the problem how to determine accurately the nonadiabatic content of any given dynamic process involving molecular motion. More specifically, we generate a dynamic electronic wave function using Electron Nuclear Dynamics (END) theory^2 and cast this wave function into the language of electronic excitations. This is achieved by adiabatic transport of an electronic basis along the classical nuclear trajectories of the studied molecular system. This basis is chosen as the static UHF molecular ground state determinant of the system in conjunction with all determinants that arise from the ground state by single, double and triple substitutions. Projecting the dynamic wave function into this basis, we arrive at a natural distinction between adiabatic and nonadiabatic components of the motion considered. We will discuss this concept by the examples of various scattering problems, among them the interaction of proton projectiles with methylene targets. ^2E. Deumens et al., Rev. Mod. Phys. 1994, 66, 917.

  20. Coherent-state description of free-electron lasers

    NASA Astrophysics Data System (ADS)

    Lee, Ching Tsung

    1990-12-01

    It is generally accepted that the overall performance of free-electron lasers (FEL) can be understood without quantum mechanics. However, there are features of FEL such as photon statistics which can only be described quantum-mechanically. Although the majority of quantum-mechanical studies of FEL are devoted to one-particle models, there are also many studies on many-body effects of FEL. Unfortunately, the mathematical derivations of these studies are so complicated that it is not easy to follow the developments with a clearer picture in mind. The origin of the problem is the quantum recoils of the electrons. So we try to gain a clearer picture of the many-body effects by making the recoilless approximation. A simple model of FEL consists of a beam of relativistic electrons propagating through a spatially periodic magnetostatic wiggler field. The resulting laser output is propagating along the same direction as that of the electron beam. Quantum-mechanical analysis of FEL are usually based on the Bambini-Renieri frame which moves in the same direction as the propagating laser beam with a relativistic speed so that: (1) the wiggler field appears almost as a plane-wave radiation, (2) the frequency of the wiggler field coincides with that of the laser, and (3) the electron motion is nonrelativistic. Although in reality the laser beam can only derive its energy at the expense of the kinetic energy of the electrons, it appears in the Bambini-Renieri frame as if the photons of the laser were scattered from the fictitious photons of the wiggler field by the electrons.

  1. Co-Assignment of the Molecular Vibrational Frequencies in Different Electronic States

    NASA Astrophysics Data System (ADS)

    Panchenko, Yurii; Abramenkov, Alexander

    2016-06-01

    Ultrafast electron diffraction experimental data for the structural parameters of molecules in excited electronic states are comparatively uncommon, hence these parameters are largely unknown. However, because differences between the molecular geometries of excited and ground electronic states cause differences in their experimental vibrational spectra it is important to establish a correspondence between the molecular vibrational frequencies in the ground state and those of the excited state of interest. The correct co-assignment of the experimental vibrational frequencies between two different electronic states of a molecule may be determined by the analog of the Duschinsky matrix D. This matrix D is defined as D = (LI)-1LII where LI and LII are the matrices of the vibrational modes of the two states of the molecule under investigation. They are obtained by solving the vibrational problems in the I and II electronic states, respectively. Choosing the dominant elements in columns of the D matrix and permuting these columns to arrange these elements along the diagonal of the transformed matrix Dast makes it possible to establish the correct co-assignment of the calculated frequencies in the two electronic states. The rows of Dast are for the vibrations in the I electronic state, whereas the columns are for vibrations in the II electronic state. The results obtained may be tested by analogous calculations of Dast for isotopologues. The feasibility of co-assignments of the vibrational frequencies in the ground and T_1 and S_1 excited electronic states are demonstrated for trans-C_2O_2F_2. The analogs of the Duschinsky matrix Dast were used to juxtapose the vibrational frequencies of this molecule calculated at the CASPT2/cc-pVTZ level in the S_0, T_1 and S_1 states. F. Duschinsky, Acta Physicochim. URSS, 7(4), 551-566 (1937). Yu. N. Panchenko, Vibrational spectroscopy, 68, 236-240 (2013).

  2. The electronic excited states of green fluorescent protein chromophore models

    NASA Astrophysics Data System (ADS)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  3. Electron density dynamics in the electronic ground state: motion along the Kekulé mode of benzene.

    PubMed

    Schild, Axel; Choudhary, Deepanshu; Sambre, Vaibhav D; Paulus, Beate

    2012-11-26

    If the Born-Oppenheimer approximation is invoked for the description of chemical reactions, the electron density rearranges following the motion of the nuclei. Even though this approach is central to theoretical chemistry, the explicit time dependence of the electron density is rarely studied, especially if the nuclei are treated quantum mechanically. In this article, we model the motion of benzene along the Kekulé vibrational coordinate to simulate the nuclear dynamics and electron density dynamics in the electronic ground state. Details of the change of core, valence, and π electrons are determined and analyzed. We show how the pictures anticipated by drawing Lewis structures of the rearrangement correlate with the time-dependent quantum description of the process.

  4. Enhanced electron attachment to Rydberg states in molecular hydrogen volume discharges

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, L. A.; Ding, W. X.; McCorkle, D. L.; Lin, S. H.; Mebel, A. M.; Garscadden, A.

    1999-05-01

    We review recent studies on negative ion formation and studies in other areas that are relevant to the role of high-Rydberg states of H2 and H3 in hydrogen negative ion sources. Possible mechanisms for the formation of these excited states are discussed, including the formation of long-lived superexcited (core-excited) Rydberg states. Experimental evidence for negative ion formation via electron attachment to core-excited Rydberg states in a glow discharge apparatus is presented. An expression for the dissociative electron attachment rate constant for Rydberg molecules is derived based on electron capture by a Rydberg molecule due to polarization interaction.

  5. On the electronic configuration in Pu: spectroscopy and theory

    SciTech Connect

    Tobin, J G; Soderlind, P; Landa, A; Moore, K T; Schwartz, A J; Chung, B W; Wall, M; Wills, J M; Eriksson, O; Haire, R; Kutepov, A L

    2006-10-11

    Photoelectron spectroscopy, synchrotron-radiation-based x-ray absorption, electron energy-loss spectroscopy, and density-functional calculations within the mixed-level and magnetic models, together with canonical band theory have been used to study the electron configuration in Pu. These methods suggest a 5f{sup n} configuration for Pu of 5 {le} n < 6, with n {ne} 6, contrary to what has recently been suggested in several publications. We show that the n = 6 picture is inconsistent with the usual interpretation of photoemission and x-ray absorption spectra. Instead, these spectra support the traditional conjecture of a 5f{sup 5} configuration in Pu as is obtained by density-functional theory. We further argue, based on 5f-band filling, that an n = 6 hypothesis is incompatible with the position of Pu in the actinide series and its monoclinic ground-state phase.

  6. The low-lying electronic states of MgO

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W.; Schwenke, David W.

    2017-09-01

    The low-lying singlet and triplet states of MgO have been studied using a SA-CASCF/IC-MRCI approach using the aug-cc-pV5Z basis set. The spectroscopic constants (re,ωe , and Te) are in good agreement with the available experimental data. The computed lifetime for the B state is in excellent agreement with two of the three experimental results. The d state lifetime is in good agreement with experiment, while the computed D state lifetime is about twice as long as experiment.

  7. Present State of Electron Backscatter Diffraction and Prospective Developments

    SciTech Connect

    Schwarzer, R A; Field, D P; Adams, B L; Kumar, M; Schwartz, A J

    2008-10-24

    Electron backscatter diffraction (EBSD), when employed as an additional characterization technique to a scanning electron microscope (SEM), enables individual grain orientations, local texture, point-to-point orientation correlations, and phase identification and distributions to be determined routinely on the surfaces of bulk polycrystals. The application has experienced rapid acceptance in metallurgical, materials, and geophysical laboratories within the past decade (Schwartz et al. 2000) due to the wide availability of SEMs, the ease of sample preparation from the bulk, the high speed of data acquisition, and the access to complementary information about the microstructure on a submicron scale. From the same specimen area, surface structure and morphology of the microstructure are characterized in great detail by the relief and orientation contrast in secondary and backscatter electron images, element distributions are accessed by energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy (WDS), or cathodoluminescence analysis, and the orientations of single grains and phases can now be determined, as a complement, by EBSD.

  8. State of the art of electronic personal dosimeters for neutrons

    NASA Astrophysics Data System (ADS)

    d'Errico, Francesco; Luszik-Bhadra, Marlies; Lahaye, Thierry

    2003-06-01

    Despite a widely recognised need, electronic devices for personal dosimetry of neutrons or mixed neutron-photon fields are still far less established than systems for photon or beta radiations. A large research project is in progress to evaluate different methods currently used or under development for electronic personal dosimetry in mixed neutron-photon fields. The study includes testing in calibration fields as well as in representative workplaces of the nuclear industry. This paper describes the commercial and laboratory systems under investigation and their response characteristics. These were determined so far with measurements using ISO standard monoenergetic beams up to 19 MeV at the PTB in Braunschweig, Germany.

  9. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    PubMed

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  10. Electronic absorption and ground state structure of carotenoid molecules.

    PubMed

    Mendes-Pinto, Maria M; Sansiaume, Elodie; Hashimoto, Hideki; Pascal, Andrew A; Gall, Andrew; Robert, Bruno

    2013-09-26

    Predicting the complete electronic structure of carotenoid molecules remains an extremely complex problem, particularly in anisotropic media such as proteins. In this paper, we address the electronic properties of nine relatively simple carotenoids by the combined use of electronic absorption and resonance Raman spectroscopies. Linear carotenoids exhibit an excellent correlation between (i) the inverse of their conjugation chain length N, (ii) the energy of their S0 → S2 electronic transition, and (iii) the position of their ν1 Raman band (corresponding to the stretching mode of their conjugated C═C bonds). For cyclic carotenoids such as β-carotene, this correlation is also observed between the latter two parameters (S0 → S2 energy and ν1 frequency), whereas their "nominal" conjugation length N does not follow the same relationship. We conclude that β-carotene and cyclic carotenoids in general exhibit a shorter effective conjugation length than that expected from their chemical structure. In addition, the effect of solvent polarizability on these molecular parameters was investigated for four of the carotenoids used in this study. We demonstrate that resonance Raman spectroscopy can discriminate between the different effects underlying shifts in the S0 → S2 transition of carotenoid molecules.

  11. Understanding the nuclear initial state with an electron ion collider

    NASA Astrophysics Data System (ADS)

    Toll, Tobias

    2013-09-01

    In these proceedings I describe how a future electron-ion collider will allow us to directly measure the initial spatial distribution of gluons in heavy ions, as well as its variance ("lumpiness") in exclusive diffraction. I show the feasibility of such a measurement by means of simulated data from the novel event generator Sartre.

  12. Strongly separated pairs of core electrons in computed ground states of small molecules.

    PubMed

    Gottlieb, Alex D; Weishäupl, Rada M

    2013-03-01

    We have performed full configuration interaction computations of the ground states of the molecules Be, BeH2, Li, LiH, B, and BH and verified that the core electrons constitute "separated electron pairs." These separated pairs of core electrons have nontrivial structure; the core pair does not simply occupy a single spatial orbital. Our method of establishing the presence of separated electron pairs is direct and conclusive. We do not fit a separated pair model; we work with the wavefunctions of interest directly. To establish that a given group of spin-orbitals contains a quasi-separated pair, we verify by direct computation that the quantum state of the electrons that occupy those spin-orbitals is nearly a pure 2-electron state.

  13. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  14. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  15. The Low-Lying Electronic States of YCu

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the singlet and triplet states of YCu below about 15 000 per centimeter are determined using an internally contracted multireference configuration-interaction approach. These calculations are calibrated by studies of fewer states using higher levels of correlation treatment and/or larger basis sets. The computed T(sub e) values and radiative lifetimes are in reasonable agreement with experiment. The calculations confirm the previous experimental assignment for all but one state, where theory helps resolve between two possible assignments.

  16. Electronic states in epitaxial graphene fabricated on silicon carbide

    SciTech Connect

    Davydov, S. Yu.

    2011-08-15

    An analytical expression for the density of states of a graphene monolayer interacting with a silicon carbide surface (epitaxial graphene) is derived. The density of states of silicon carbide is described within the Haldane-Anderson model. It is shown that the graphene-substrate interaction results in a narrow gap of {approx}0.01-0.06 eV in the density of states of graphene. The graphene atom charge is estimated; it is shown that the charge transfer from the substrate is {approx}10{sup -3}-10{sup -2}e per graphene atom.

  17. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2013-09-01

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π*) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  18. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes.

    PubMed

    Itoh, Takao

    2013-09-07

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π∗) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  19. Mapping unoccupied electronic states of freestanding graphene by angle-resolved low-energy electron transmission

    NASA Astrophysics Data System (ADS)

    Wicki, Flavio; Longchamp, Jean-Nicolas; Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2016-08-01

    We report angle-resolved electron transmission measurements through freestanding graphene sheets in the energy range of 18 to 30 eV above the Fermi level. The measurements are carried out in a low-energy electron point source microscope, which allows simultaneously probing the transmission for a large angular range. The characteristics of low-energy electron transmission through graphene depend on its electronic structure above the vacuum level. The experimental technique described here allows mapping of the unoccupied band structure of freestanding two-dimensional materials as a function of the energy and probing angle, respectively, in-plane momentum. Our experimental findings are consistent with theoretical predictions of a resonance in the band structure of graphene above the vacuum level [V. U. Nazarov, E. E. Krasovskii, and V. M. Silkin, Phys. Rev. B 87, 041405 (2013), 10.1103/PhysRevB.87.041405].

  20. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    NASA Astrophysics Data System (ADS)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  1. A multi-state fragment charge difference approach for diabatic states in electron transfer: extension and automation.

    PubMed

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-21

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  2. Topologically nontrivial electronic states in CaSn3

    NASA Astrophysics Data System (ADS)

    Gupta, Sunny; Juneja, Rinkle; Shinde, Ravindra; Singh, Abhishek K.

    2017-06-01

    Based on the first-principles calculations, we theoretically propose topologically non-trivial states in a recently experimentally discovered superconducting material CaSn3. When the spin-orbit coupling (SOC) is ignored, the material is a host to three-dimensional topological nodal-line semimetal states. Drumhead like surface states protected by the coexistence of time-reversal and mirror symmetry emerge within the two-dimensional regions of the surface Brillouin zone connecting the nodal lines. When SOC is included, unexpectedly, each nodal line evolves into two Weyl nodes (W1 and W2) in this centrosymmetric material. Berry curvature calculations show that these nodes occur in a pair and act as either a source or a sink of Berry flux. This material also has unique surface states in the form of Fermi arcs, which unlike other known Weyl semimetals forms closed loops of surface states on the Fermi surface. Our theoretical realization of topologically non-trivial states in a superconducting material paves the way towards unraveling the interconnection between topological physics and superconductivity.

  3. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    SciTech Connect

    Huang, Danhong; Gumbs, Godfrey; Abranyos, Yonatan; Pepper, Michael; Kumar, Sanjeev

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  4. Characterization of the electronic states of the biological relevant SSNO molecule

    NASA Astrophysics Data System (ADS)

    Ayari, Tarek; Hochlaf, Majdi; Mogren Al-Mogren, Muneerah; Francisco, Joseph S.

    2017-02-01

    Using configuration interaction ab initio methods, we investigate the lowest electronic states of doublet and quartet spin multiplicities of SSNO where the one-dimensional cuts of the six-dimensional potential energy surfaces of these electronic states along the stretching and bending coordinates are computed. Mainly, these electronic states are found to be repulsive along the central SN distance. A high density of electronic states is computed even at low excitation energies that may favor their couplings. Therefore, the dynamics of the SSNO electronic states is expected to be very complex. We also characterized the bound electronic states spectroscopically where we derived their equilibrium structures and vibrational frequencies. Our calculations show the importance of taking into account of dynamical correlation, in addition to static correlation, for the accurate description of SSNO electronic excited states and more generally for those of R-NO molecular species. Finally, we highlighted the potential role of SSNO in light-induced NO delivery from SSNO related species in biological media.

  5. Development of Solid State Electronics for a Spark Chamber

    NASA Astrophysics Data System (ADS)

    Gross, Eisen; Gray, Frederick

    2013-04-01

    Spark chambers have been used to detect charged particles in physics since the early part of the 20^th century. This very crude method can still be very useful in a classroom, museum, or outreach setting to show evidence of such particles. Older electronics such as vacuum tubes and spark gaps have been still used in recent designs, but they are resource-consuming to maintain and are becoming difficult to procure. These designs also used obsolescent electronics for the discriminators in the trigger circuit. A new design will be presented that uses a fast high voltage transistor switch along with modern comparators and programmable logic. Lower trigger latency has been achieved than in the traditional design. The muon imaging efficiency will be presented.

  6. Electron impact excitation of autoionising states of krypton

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Trajmar, S.

    1978-01-01

    Energy-loss spectra of krypton in the region between 21 and 29 eV have been obtained at electron impact energies of 30, 60 and 100 eV. For each energy, the angular distribution of intensities has been measured at 5, 10 and 15 deg scattering angles. Assignments of spectral features found in this region are suggested and a comparison is made with previous measurements.

  7. Study of the Electronic Surface State of 3 - 5 Compounds

    DTIC Science & Technology

    1975-09-15

    to be much less sensitive to oxygen coverage than Auger spectroscopy . Luth and Russell report that the exposure required...sputter cleaning. The chamber will include provision for Auger electron spectroscopy to monitor sample cleanliness, as well as the usual photoemission...conductors and to faces other than the (110) face. ^ Ultraviolet photoemi-sion spectroscopy (UPS) wUhNw < 12 eV was used to study 0?, CO and H2

  8. Quasi-One-Dimensional Electronic States Inside and Outside Helium-Plated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Motta, M.; Galli, D. E.; Liebrecht, M.; Del Maestro, A.; Cole, M. W.

    2016-10-01

    About one-half a century ago, it was realized that electrons experience a repulsive barrier when approaching the surface of condensed phases of helium, hydrogen, and neon. This led to the proposal and subsequent observation of image-potential surface-bound electronic states, which exhibit intriguing quasi-two-dimensional behavior. In the present work, we report similar quasi-one-dimensional electronic states by exploring single-wall carbon nanotubes coated both inside and outside by thin helium films. Electrons near such structures are localized in the radial direction, but free to move along the nanotube axis. The many-body aspects of the system are discussed qualitatively.

  9. Entangled electron and nuclear spin states in 15N@C60: Density matrix tomography

    NASA Astrophysics Data System (ADS)

    Scherer, Werner; Mehring, Michael

    2008-02-01

    Procedures of the preparation and detection of entangled electron-nuclear spin states in N15@C60 by combining electron spin resonance and electron nuclear double resonance pulse techniques are presented. A quantitative evaluation of the complete density matrix is obtained by a special density matrix tomography. All four Bell states of a two qubit subsystem were analyzed and experimental decoherence times are presented. In addition, we estimate a quantum critical temperature of Tq=7.76K for this system at an electron spin resonance frequency of 95GHz.

  10. Electronic structure and chemical bonding in the lowest electronic states of TcN.

    PubMed

    Borin, Antonio Carlos; Gobbo, João Paulo

    2009-11-12

    Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given. The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 A and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.

  11. The low-lying electronic states of LiC

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the doublet and quartet states of LiC below about 30,000/cm are determined using an internally contracted multireference configuration-interaction approach in conjunction with a [6s 5p 3d 2f] atomic natural orbital basis sets. All of the strongly bound states, X(sup 4)(SIGMA)(sup -),(1)(sup 2)(DELTA), (1)(sup 2)(SIGMA)(sup +), and (2)(sup 2) II, very ionic in character. The only bound-bound quartet transition in this energy range is (2)(sup 4)SIGMA(sup -) and Franck-Condon factors, Einstein A values, and lifetimes are reported for this transition.

  12. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    DTIC Science & Technology

    2014-01-01

    in transistors, solar cells , LEDs, and diode lasers. They have also investigated quantum dots as agents for medical imaging and as possible qubits in... solar cells .” Chemical reviews 110.11 (2010): 6873-6890. [9] Bonadeo, Nicolas H., et al. ”Coherent optical control of the quantum state of a single...dots on GaAs /InP , (inset) a single InAs quantum dot. two reasons. First, the superposition of the ground and excited states de- phases more slowly in

  13. Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Löffler, Stefan; Eder, Franz; Meyer, Jannik C.; Su, Dangsheng; Schattschneider, Peter

    2013-11-14

    Both the unoccupied and ground electronic states of graphite have been studied by electron energy-loss spectroscopy in a transmission electron microscope. Electron energy-loss near-edge structures of the K-edge of carbon have been investigated in detail for scattering angles from 0 to 2.8 mrad. The π{sup *} and σ{sup *} components were separated. The angular and energy dependences of the π{sup *} and σ{sup *} structures were in fair agreement with theory. Electron energy loss Compton spectra of graphite were recorded at scattering angles from 45 to 68 mrad. One Compton scattering spectrum was obtained in 1 min compared with several hours or days using photons. The contributions of core electrons were calculated by the exact Hartree-Slater method in the Compton scattering region. The electron Compton profile for graphite is in good agreement with other conventional Compton profile measurements, as well as with theory, thus establishing the validity of the technique.

  14. Quantitative Electron Probe Microanalysis: State of the Art

    NASA Technical Reports Server (NTRS)

    Carpernter, P. K.

    2005-01-01

    Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete

  15. Quantitative Electron Probe Microanalysis: State of the Art

    NASA Technical Reports Server (NTRS)

    Carpernter, P. K.

    2005-01-01

    Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete

  16. Ozone absorption spectroscopy in search of low-lying electronic states

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Mauersberger, K.

    1995-01-01

    A spectrometer capable of detecting ozone absorption features 9 orders of magnitude weaker than the Hartley band has been employed to investigate the molecule's near-infrared absorption spectrum. At this sensitivity a wealth of information on the low-lying electronically excited states often believed to play a role in atmospheric chemistry is available in the form of vibrational and rotational structure. We have analyzed these spectra using a combination of digital filtering and isotope substitution and find evidence for three electronically excited states below 1.5 eV. The lowest of these states is metastable, bound by approximately 0.1 eV and probably the (3)A2 rather than the (3)B2 state. Its adiabatic electronic energy is 1.24 +/- 0.01 eV, slightly above the dissociation energy of the ground state. Two higher states, at 1.29 +/- 0.03 and 1.48 +/- 0.03 eV are identified as the (3)B2 and the (3)B1, respectively. Combined with other recent theoretical and experimental data on the low-lying electronic states of ozone, these results imply that these are, in fact, the lowest three excited states; that is, there are no electronically excited states of ozone lying below the energy of O(3P) + O2((3)Sigma(-), v = 0). Some of the implications for atmospheric chemistry are considered.

  17. The Low-Lying Electronic States of Mg2(+)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.

    1994-01-01

    The low-lying doublet and quartet states of Mg+ have been studied using a multireference configuration interaction approach. The effect of inner-shell correlation has been included using the core-polarization potential method. The computed spectroscopic constants, lifetimes, and oscillator strengths should help resolve the difference between the recent experiments and previous theoretical calculations.

  18. Electronic Timekeeping: North Dakota State University Improves Payroll Processing.

    ERIC Educational Resources Information Center

    Vetter, Ronald J.; And Others

    1993-01-01

    North Dakota State University has adopted automated timekeeping to improve the efficiency and effectiveness of payroll processing. The microcomputer-based system accurately records and computes employee time, tracks labor distribution, accommodates complex labor policies and company pay practices, provides automatic data processing and reporting,…

  19. Many-Body Electronic Structure of Curium metal

    NASA Astrophysics Data System (ADS)

    Toropova, Antonina; Haule, Kristjan; Kotliar, Gabriel

    2006-03-01

    We report computer-based simulations for the many-body electronic structure of Curium metal. Cm belongs to the actinide series and has a half-filled shell with seven 5f electrons. As a function of pressure, curium exhibits five different crystallographic phases. At low temperatures all phases demonstrate either antiferromagnetic or ferrimagnetic ordering. In this study we perform LDA+DMFT calculations for the antiferromagnetic state of high-pressure fcc modification of Curium metal.

  20. Ab initio electronic structure, magnetism, and magnetocrystalline anisotropy of UGa2

    NASA Astrophysics Data System (ADS)

    Diviš, Martin; Richter, Manuel; Eschrig, Helmut; Steinbeck, Lutz

    1996-04-01

    Ab initio electronic structure calculations for the intermetallic compound UGa2 were performed using an optimized linear combination of atomic orbitals method based on the local spin density approximation. Three separate calculations were done treating the uranium 5f states as band states and as localized states with occupation two and three, respectively. In the itinerant approach, spin and orbital moments, magnetocrystalline anisotropy, and the Sommerfeld constant were calculated and found to deviate significantly from the related experimental data. In the localized approach, crystal field parameters were obtained for the 5f states, which have been treated by self-interaction corrected local-density theory. This approach with 5f2 occupation is shown to provide reasonable results for the anisotropy of the susceptibility, for the field dependence of the magnetic moments, and for the Sommerfeld constant.

  1. Electronic states and electrical conductivity of the Si(111) native oxide surface adsorbed with electron donor tetrakis(dimethylamino)ethylene

    SciTech Connect

    Yoshimoto, Shinya Shiozawa, Yuichiro; Koitaya, Takanori; Noritake, Hiroyuki; Mukai, Kozo; Yoshinobu, Jun

    2016-08-28

    Electronic states and electrical conductivity of the native oxide Si(111) surface adsorbed with an electron donor tetrakis(dimethylamino)ethylene (TDAE) were investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy (XPS), and independently driven four-probe conductivity measurements. The formation of positively charged TDAE species is confirmed by the downward shift of the vacuum level by 1.45 eV, the absence of HOMO level in the valence band, and observation of the positively charged state in the N 1s XPS spectra. Si 2p XPS spectra and four-probe conductivity measurements revealed that TDAE adsorption induces an increase in downward band bending and a reduction in electrical resistance of the surface, respectively. The sheet conductivity and the electron density of the surface are 1.1 μS/◻ and 4.6 × 10{sup 9} cm{sup −2}, respectively, after TDAE adsorption, and they are as high as 350% of the original surface. These results demonstrate that the electron density of the semiconductor surface is successfully controlled by the electron donor molecule TDAE.

  2. Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish

    PubMed Central

    Perez-Camps, Mireia; Tian, Jing; Chng, Serene C; Sem, Kai Pin; Sudhaharan, Thankiah; Teh, Cathleen; Wachsmuth, Malte; Korzh, Vladimir; Ahmed, Sohail; Reversade, Bruno

    2016-01-01

    Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 PMID:27684073

  3. Three electronic state model of the primary phototransformation of bacteriorhodopsin.

    PubMed Central

    Humphrey, W; Lu, H; Logunov, I; Werner, H J; Schulten, K

    1998-01-01

    The primary all-trans --> 13-cis photoisomerization of retinal in bacteriorhodopsin has been investigated by means of quantum chemical and combined classical/quantum mechanical simulations employing the density matrix evolution method. Ab initio calculations on an analog of a protonated Schiff base of retinal in vacuo reveal two excited states S1 and S2, the potential surfaces of which intersect along the reaction coordinate through an avoided crossing, and then exhibit a second, weakly avoided, crossing or a conical intersection with the ground state surface. The dynamics governed by the three potential surfaces, scaled to match the in situ level spacings and represented through analytical functions, are described by a combined classical/quantum mechanical simulation. For a choice of nonadiabatic coupling constants close to the quantum chemistry calculation results, the simulations reproduce the observed photoisomerization quantum yield and predict the time needed to pass the avoided crossing region between S1 and S2 states at tau1 = 330 fs and the S1 --> ground state crossing at tau2 = 460 fs after light absorption. The first crossing follows after a 30 degrees torsion on a flat S1 surface, and the second crossing follows after a rapid torsion by a further 60 degrees. tau1 matches the observed fluorescence lifetime of S1. Adjusting the three energy levels to the spectral shift of D85N and D212N mutants of bacteriorhodospin changes the crossing region of S1 and S2 and leads to an increase in tau1 by factors 17 and 10, respectively, in qualitative agreement with the observed increase in fluorescent lifetimes. PMID:9746511

  4. Geometric phase and fractional orbital-angular-momentum states in electron vortex beams

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Pratul; Basu, Banasri; Chowdhury, Debashree

    2017-01-01

    We study here fractional orbital-angular-momentum (OAM) states in electron vortex beams (EVBs) from the perspective of the geometric phase. We consider the skyrmionic model of an electron, where it is depicted as a scalar electron orbiting around the vortex line, which gives rise to the spin degrees of freedom. The geometric phase acquired by the scalar electron orbiting the vortex line induces the spin-orbit interaction. This leads to the fractional OAM states when we have a nonquantized monopole charge associated with the corresponding geometric phase. This involves a tilted vortex in EVBs. The monopole charge undergoes renormalization-group flow, which incorporates a length scale dependence making the fractional OAM states unstable upon propagation. It is pointed out that when EVBs move in an external magnetic field, the Gouy phase associated with the Laguerre-Gaussian modes modifies the geometric phase factor and a proper choice of the radial index helps to have a stable fractional OAM state.

  5. Microwave Spectroscopic Study of NiF in the Electronic Ground and Lowest Excited States.

    PubMed

    Tanimoto, Mitsutoshi; Sakamaki, Toru; Okabayashi, Toshiaki

    2001-05-01

    The rotational spectra of NiF in the electronic ground (2)Pi state and the lowest electronically excited (2)Sigma state have been observed. The source of nickel atom was sputtering from a nickel electrode or nickel powder placed on a stainless steel electrode. The molecular constants have been determined by a least-squares analysis of the observed transition frequencies. The rapid increase in the Lambda-type splittings in the ground state reveals that the observed rotational transitions are ascribed to the spin substate (2)Pi(3/2). The rotational transitions corresponding to the other substate,(2)Pi(1/2), have not been observed. The large spin-rotation interaction constant gamma in the electronically excited (2)Sigma state is consistent with that from the electronic spectroscopy. Copyright 2001 Academic Press.

  6. Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals.

    PubMed

    Niwa, Hitoshi; Sekita, Yoko; Tsend-Ayush, Enkhjargal; Grützner, Frank

    2008-01-01

    Uterine nourishment of embryos by the placenta is a key feature of mammals. Although a variety of placenta types exist, they are all derived from the trophectoderm (TE) cell layer of the developing embryo. Egg-laying mammals (platypus and echidnas) are distinguished by a very short intrauterine embryo development, in which a simple placenta forms from TE-like cells. The Pou5f1 gene encodes a class V POU family transcription factor Oct3/4. In mice, Oct3/4 together with the highly conserved caudal-related homeobox transcription factor Cdx2, determines TE fate in pre-implantation development. In contrast to Cdx2, Pou5f1 has only been identified in eutherian mammals and marsupials, whereas, in other vertebrates, pou2 is considered to be the Pou5f1 ortholog. Here, we show that platypus and opossum genomes contain a Pou5f1 and pou2 homolog, pou2-related, indicating that these two genes are paralogues and arose by gene duplication in early mammalian evolution. In a complementation assay, we found that platypus or human Pou5f1, but not opossum or zebrafish pou2, restores self-renewal in Pou5f1-null mouse ES cells, showing that platypus possess a fully functional Pou5f1 gene. Interestingly, we discovered that parts of one of the conserved regions (CR4) is missing from the platypus Pou5f1 promoter, suggesting that the autoregulation and reciprocal inhibition between Pou5f1 and Cdx2 evolved after the divergence of monotremes and may be linked to the development of more elaborate placental types in marsupial and eutherian mammals.

  7. In Vitro Antitumor Effects of AHR Ligands Aminoflavone (AFP 464) and Benzothiazole (5F 203) in Human Renal Carcinoma Cells.

    PubMed

    Luzzani, Gabriela A; Callero, Mariana A; Kuruppu, Anchala I; Trapani, Valentina; Flumian, Carolina; Todaro, Laura; Bradshaw, Tracey D; Loaiza Perez, Andrea I

    2017-05-04

    We investigated activity and mechanism of action of two AhR ligand antitumor agents, AFP 464 and 5F 203 on human renal cancer cells, specifically examining their effects on cell cycle progression, apoptosis, and migration. TK-10, SN12C, Caki-1, and ACHN human renal cancer cell lines were treated with AFP 464 and 5F 203. We evaluated cytotoxicity by MTS assays, cell cycle arrest, and apoptosis by flow cytometry and corroborated a mechanism of action involving AhR signal transduction activation. Changes in migration properties by wound healing assays were investigated: 5F 203-sensitive cells show decreased migration after treatment, therefore, we measured c-Met phosphorylation by Western blot in these cells. A 5F 203 induced a decrease in cell viability which was more marked than AFP 464. This cytotoxicity was reduced after treatment with the AhR inhibitor α-NF for both compounds indicating AhR signaling activation plays a role in the mechanism of action. A 5F 203 is sequestered by TK-10 cells and induces CYP1A1 expression; 5F 203 potently inhibited migration of TK-10, Caki-1, and SN12C cells, and inhibited c-Met receptor phosphorylation in TK-10 cells. AhR ligand antitumor agents AFP 464 and 5F 203 represent potential new candidates for the treatment of renal cancer. A 5F 203 only inhibited migration of sensitive cells and c-Met receptor phosphorylation in TK-10 cells. c-Met receptor signal transduction is important in migration and metastasis. Therefore, we consider that 5F 203 offers potential for the treatment of metastatic renal carcinoma. J. Cell. Biochem. 9999: 1-10, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Spectroscopic properties and potential energy curves of low-lying electronic states of RuC.

    PubMed

    Guo, Rui; Balasubramanian, K

    2004-04-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multiconfiguration self-consistent field followed by multireference configuration interaction methods that included up to 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38,000 cm(-1). We find two very closely low-lying electronic states for RuC, viz., 1Sigma+ and 3Delta with the 1Sigma+ being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound 1Sigma+ state with a large dipole moment which is most likely the experimentally observed ground state and an energetically close 3Delta state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18,000 cm(-1) agree quite well with those of the corresponding observed states.

  9. Teleportation of electronic many-qubit states encoded in the electron spin of quantum dots via single photons.

    PubMed

    Leuenberger, Michael N; Flatté, Michael E; Awschalom, D D

    2005-03-18

    We propose a teleportation scheme that relies only on single-photon measurements and Faraday rotation, for teleportation of many-qubit entangled states stored in the electron spins of a quantum dot system. The interaction between a photon and the two electron spins, via Faraday rotation in microcavities, establishes Greenberger-Horne-Zeilinger entanglement in the spin-photon-spin system. The appropriate single-qubit measurements, and the communication of two classical bits, produce teleportation. This scheme provides the essential link between spintronic and photonic quantum information devices by permitting quantum information to be exchanged between them.

  10. Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.

    DTIC Science & Technology

    1980-08-15

    excited atom concentration by atomic absorption spectroscopy in the vacuum ultraviolet (6). Relatively efficient electronic to vibrational energy transfer...by the use of atomic absorption spectroscopy , permitted observation of both ground and electronically excited state bromine atoms. The deactivation of

  11. Records for Electronic Databases in the Online Catalog at Middle Tennessee State University

    ERIC Educational Resources Information Center

    Geckle, Beverly J.; Pozzebon, Mary Ellen; Williams, Jo

    2008-01-01

    This article recounts a project at the Middle Tennessee State University library to include records for electronic databases in the online catalog. Although electronic databases are accessible via the library's Databases A-Z list and related subject guides, cataloging these resources also provides access via the online catalog, allowing more of…

  12. 77 FR 68770 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Vermont

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9752-3] Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Vermont AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY... 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal...

  13. 77 FR 13123 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Ohio

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Ohio AGENCY..., seeh.karen@epa.gov . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic...

  14. 77 FR 71792 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Georgia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Georgia AGENCY...@epa.gov . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting...

  15. 76 FR 24020 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Illinois AGENCY... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was...

  16. 77 FR 65379 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Wyoming AGENCY... 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal...

  17. 78 FR 32386 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Arkansas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Arkansas AGENCY..., the final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR...

  18. 76 FR 76971 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Indiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Indiana AGENCY... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was...

  19. 76 FR 25333 - Cross-Media Electronic Reporting: Authorized Program Revision/Modification Approvals, State of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision/ Modification Approvals, State of... final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR 59848...

  20. 78 FR 77121 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of New York AGENCY...-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR 59848) and...

  1. 77 FR 25474 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Florida

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Florida AGENCY... final Cross-Media Electronic Reporting Rule (CROMERR) was published in the Federal Register (70 FR 59848...

  2. 76 FR 76970 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Montana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Montana AGENCY... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was...

  3. 78 FR 35030 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Nevada AGENCY... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was...

  4. 77 FR 58131 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Mississippi

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Mississippi... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was...

  5. 76 FR 25334 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Maryland

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Maryland AGENCY... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR) was...

  6. 76 FR 76971 - Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Arkansas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Cross-Media Electronic Reporting: Authorized Program Revision Approval, State of Arkansas AGENCY... . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic Reporting Rule (CROMERR)...

  7. A geometrical crossover in excited states of two-electron quantum dots in a magnetic field

    NASA Astrophysics Data System (ADS)

    Nazmitdinov, R. G.; Simonović, N. S.; Plastino, A. R.; Chizhov, A. V.

    2012-11-01

    We use the entanglement measure to study the evolution of quantum correlations in two-electron axially-symmetric parabolic quantum dots under a perpendicular magnetic field. We found that the entanglement indicates on the shape transition in the density distribution of two electrons in the lowest state with zero angular momentum projection at the specific value of the applied magnetic field.

  8. Electronic coupling between ligand and core energy states in dithiolate-monothiolate stabilized Au clusters.

    PubMed

    Ahuja, Tarushee; Wang, Dengchao; Tang, Zhenghua; Robinson, Donald A; Padelford, Jonathan W; Wang, Gangli

    2015-07-15

    Electron transfer activities of metal clusters are fundamentally significant and have promising potential in catalysis, charge or energy storage, sensing, biomedicine and other applications. Strong resonance coupling between the metal core energy states and the ligand molecular orbitals has not been established experimentally, albeit exciting progress has been achieved in the composition and structure determination of these types of nanomaterials recently. In this report, the coupling between core and ligand energy states is demonstrated by the rich electron transfer activities of Au130 clusters. Quantized electron transfers to the core and multi-electron transfers involving the durene-dithiolate ligands were observed at lower and higher potentials, respectively, in voltammetric studies. After a facile multi-electron oxidation from +1.34 to +1.40 V, several reversal reduction processes at more negative potentials, i.e. +0.91 V, +0.18 V and -0.34 V, were observed in an electrochemically irreversible fashion or with sluggish kinetics. The number of electrons and the shifts of the respective reduction potentials in the reversal process were attributed to the electronic coupling or energy relaxation processes. The electron transfer activities and subsequent relaxation processes are drastically reduced at lower temperatures. The time- and temperature-dependent relaxation, involving multiple energy states in the reversal reduction processes upon the oxidation of ligands, reveals the coupling between core and ligand energy states.

  9. Records for Electronic Databases in the Online Catalog at Middle Tennessee State University

    ERIC Educational Resources Information Center

    Geckle, Beverly J.; Pozzebon, Mary Ellen; Williams, Jo

    2008-01-01

    This article recounts a project at the Middle Tennessee State University library to include records for electronic databases in the online catalog. Although electronic databases are accessible via the library's Databases A-Z list and related subject guides, cataloging these resources also provides access via the online catalog, allowing more of…

  10. Configuring Electronic States in an Atomically Precise Array of Quantum Boxes.

    PubMed

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Piquero-Zulaica, Ignacio; Nowakowski, Jan; Kawai, Shigeki; Wäckerlin, Christian; Matena, Manfred; Nijs, Thomas; Fatayer, Shadi; Popova, Olha; Ahsan, Aisha; Mousavi, S Fatemeh; Ivas, Toni; Meyer, Ernst; Stöhr, Meike; Ortega, J Enrique; Björk, Jonas; Gade, Lutz H; Lobo-Checa, Jorge; Jung, Thomas A

    2016-07-01

    A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

  11. Coherent electron - hole state and femtosecond cooperative emission in bulk GaAs

    SciTech Connect

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T

    2002-12-31

    The conditions for obtaining a collective coherent electron - hole state in semiconductors are discussed. The results of the experimental study of the regime of cooperative recombination of high-density electrons and holes (more than 3 x 10{sup 18} cm{sup -3}) in bulk GaAs at room temperature are presented. It is shown that the collective pairing of electrons and holes and their condensation cause the formation of a short-living coherent electron - hole BCS-like state, which exhibits radiative recombination in the form of high-power femtosecond optical pulses. It is experimentally demonstrated that almost all of the electrons and holes available are condensed at the very bottoms of the bands and are at the cooperative state. The average lifetime of this state is measured to be of about 300 fs. The dependences of the order parameter (the energy gap of the spectrum of electrons and holes) and the Fermi energy of the coherent BCS state on the electron - hole concentration are obtained. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  12. A new organic-inorganic hybrid oxyfluorotitanate [Hgua]2·(Ti5O5F12) as a transparent UV filter.

    PubMed

    Lhoste, J; Rocquefelte, X; Adil, K; Dessapt, R; Jobic, S; Leblanc, M; Maisonneuve, V; Bujoli-Doeuff, M

    2011-06-20

    A new generation UV absorber is obtained by microwave-heating-assisted hydrothermal synthesis: [Hgua](2)·(Ti(5)O(5)F(12)). The structure of this hybrid titanium(IV) oxyfluoride is ab initio determined from powder X-ray data by combining a direct space method, Rietveld refinement [orthorhombic, Cmm2, a = 22.410(1) Å, b = 11.191(1) Å, c = 3.802(1) Å], and density functional theory geometry optimization. The three-dimensional network is built up from infinite inorganic layers (∞)(Ti(5)O(5)F(12)) separated by guanidinium cations. The theoretical optical gap (3.2 eV) estimated from density of state calculations is in good agreement with the experimental gap (3.3 eV) obtained by UV-vis diffuse reflectivity. The optical absorption is mainly due to O(2p) → Ti(3d) and F(2p) → Ti(3d) transitions at higher energies. The refraction index is low in the visible range (n ≈ 1.9) compared to that of TiO(2) and, consequently, [Hgua](2)·(Ti(5)O(5)F(12)) shows a good transparency adapted to UV shielding. Under UV irradiation at 254 nm for 40 h, the white microcrystalline powder turns to light purple-gray. This color change is caused by the reduction of Ti(IV) to Ti(III), confirmed by magnetic measurements. © 2011 American Chemical Society

  13. Electron Impact Excitation of Xenon from the Ground State and the Metastable State to the 5p57p Levels

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Xie, Lu-You; Jiang, Jun

    2014-03-01

    Electron impact excitation cross sections from the ground state and the lowest metastable state 5p56s J = 2 to the excited states of the 5p57p configuration of xenon are calculated systematically using the fully relativistic distorted wave method. Special attention is paid to the configuration interaction effects in the wave-function expansion of target states. The results are in good agreement with the recent experimental data by Jung et al. [Phys. Rev. A 80 (2009) 062708] over the measured energy range. These accurate theoretical results can be used in the modeling and diagnosis of plasmas containing xenon.

  14. Experimental Study of Electronic States at Metal-Dielectric Interfaces.

    DTIC Science & Technology

    1985-12-23

    interface states but also to explore the magnetic field dependence of the energy levels in n-type InSb - NiSb eutectic. From past experience with donors...bare surface plasmon by an order of magnitude. C. p-type InSb - NiSb Eutectic (1) Spectroscopic Results To grow the two phase semiconductor crystal, one...starts with a eutectic mixture of InSb - NiSb heated above the melting point and then lowers it at constant velocity (e.g., 1 cm/hr) through a steep

  15. Total electron scattering cross-sections and negative ion states of halogenated methanes

    SciTech Connect

    Underwood-Lemons, T.; Winkler, D.C.; Moore, J.H.; Tossell, J.A.

    1993-12-01

    The interaction of low energy electrons with halogenated methanes plays an important role in both their atmospheric and plasma processing chemistry. In this work, the total electron scattering cross-sections of mixed fluorohalomethanes (CF{sub n}X{sub 4-n}) were measured for incident electrons in the energy range of 0.2-12 eV using electron transmission spectroscopy. Resonances in the scattering cross-sections may be interpreted as the capture of low energy electrons into unoccupied molecular orbitals. To aid in the assignments of the resulting negative ion states, the authors performed quantum mechanical calculations of the electron attachment energies and measured the dissociative attachment cross-sections. The effect of halogen substitution on the orbitals participating in electron capture are examined.

  16. The Investigation of The Relationship Electronic Energy ˜ 1/ (Internuclear Distance) Regarding The Vibrational Electronic States of Hydrogen Molecule

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Yarman, Faruk; Ozaydin, Fatih

    2003-05-01

    The first author has previously shown the following [1]: Theorem 1: In a ``real" atomic or molecular wave-like description (i.e. a description embodying potential energy terms, in only Coulombian form), if different masses involved by the object are all over multiplied by the arbitrary number C, then the size of space R in which this object is installed, shrinks as much, and the total energy E of the object, is increased as much. We shall call M, the characteristic mass, a compound mass carrying the labour delineated by the internal motion of the object in hand. Since this is a mass, multiplying all of the different particles masses taking place in the object by C, makes it that M too is multiplied by C. This leads Theorem 2, as well as Theorem 3. Theorem 2: For any real wave like object, the product EMR^2 remains invariant, were M multiplied by the arbitrary number C. Theorem 3: The quantity EMR^2 is strapped to h^2. Thus, EMR^2 ˜ h^2 (1). Herein, we consider the cast EMR^2 , along the Born and Oppenheimer (B and O) Approximation [2], applied to the Schrodinger description of a diatomic molecule. It is known that, through the B and O Approximation, the nuclei motion of a diatomic molecule on the one hand, and the electronic motion associated with it on the other hand, can be handled through separate descriptions. In this work we are interested in only the electronic motion, for which the Schrodinger equation embodies only one mass, that of the electron mass; furthermore the overall potential energy input to this equation is made of just Coulomb potential energy terms, which makes that the description of concern is a real one. Thus Eq.(1), for the electronic motion of the bond in consideration, becomes 8π^2Emg_(in)R=n_in_jh^2 (2) ; m is the electron mass (here playing the role of the characteristic mass); E is the magnitude of the electronic energy of the molecule in hand, at the given state, and R the internuclear distance of the molecule at this state; ni and

  17. Acute intoxication caused by synthetic cannabinoids 5F-ADB and MMB-2201: A case series.

    PubMed

    Barceló, Bernardino; Pichini, Simona; López-Corominas, Victoria; Gomila, Isabel; Yates, Christopher; Busardò, Francesco Paolo; Pellegrini, Manuela

    2017-04-01

    Synthetic cannabinoids are relatively new substances of abuse. Recently, abuse of synthetic cannabinoids has been increasingly reported in the lay press and medical literature. When new compounds are introduced, their use is initially not restricted by prohibition therefore their consumption cannot be verified by standard drug tests. The use of these compounds among adolescents and young adults is constantly growing, making it important for emergency services to be familiar with the signs and symptoms of intoxication present. Overdose and chronic use of these substances can cause adverse effects including altered mental status, tachycardia, and loss of consciousness. Here, we report five cases of acute intoxication by synthetic cannabinoids 5F-ADB and MMB-2201 with analytical confirmation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hyperglycemia induces apoptosis and p53 mobilization to mitochondria in RINm5F cells.

    PubMed

    Ortega-Camarillo, C; Guzmán-Grenfell, A M; García-Macedo, R; Rosales-Torres, A M; Avalos-Rodríguez, A; Durán-Reyes, G; Medina-Navarro, R; Cruz, M; Díaz-Flores, M; Kumate, J

    2006-01-01

    The mechanisms related to hyperglycemia-induced pancreatic beta-cell apoptosis are poorly defined. Rat insulin-producing cells (RINm5F) cultured in high glucose concentrations (30 mM) showed increased apoptosis and protein p53 translocation to mitochondria. In addition, hyperglycemia induced both the disruption of mitochondrial membrane potential (Delta psi (m)), and an increase in reactive oxygen species (ROS), as shown by fluorescence changes of JC-1 and dichlorodihydrofluorescein-diacetate (DCDHF-DA), respectively. The increased intracellular ROS by high glucose exposure was blunted by mitochondrial-function and NADPH-oxidase inhibitors. We postulate that the concomitant mobilization of p53 protein to the mitochondria and the subsequent changes on the Delta psi (m), lead to an important pancreatic beta-cell apoptosis mechanism induced by oxidative stress caused by hyperglycemia.

  19. Differentiation and identification of 5F-PB-22 and its isomers.

    PubMed

    Tang, Angeline S Y; Loh, Samuel W X; Koh, Hui Boon; Tan, Sylvia; Yap, Angeline T W; Zhang, Shu-Hua

    2017-10-01

    Quinolin-8-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate (5-Fluoro-PB-22 or 5F-PB-22; QUPIC N-(5-fluoropentyl) analog), is a synthetic cannabinoid which mimics the effects of cannabis. Several countries have reported numerous detections of this compound and its abuse has led to adverse effects including death. The aim of this study was to separate and identify the fluoropentyl positional isomers of fluoro-PB-22 using gas chromatography-mass spectrometry, solid deposition gas chromatography-infrared detection spectroscopy and (1)H and (13)C nuclear magnetic resonance spectroscopy. Data acquired from these multiple techniques can assist forensic laboratories lacking the reference drug standard(s) to identify the specific isomer of fluoro-PB-22 in seized material. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Self-Assembly of Hexanuclear Clusters of 4f and 5f Elements with Cation Specificity

    SciTech Connect

    Diwu, J.; Good, Justin J.; DiStefano, Victoria H.; Albrecht-Schmitt, Thomas E.

    2011-02-10

    Six hexanuclear clusters of 4f and 5f elements were synthesized by room-temperature slow concentration experiments. Cerium(IV), thorium(IV), and plutonium(IV) each form two different hexanuclear clusters, among which the cerium and plutonium clusters are isotypic, whereas the thorium clusters show more diversity. The change in ionic radii of approximately 0.08 Å between these different metal ions tunes the cavity size so that NH{sub 4}{sup +} (1.48 Å) has the right dimensions to assemble the cerium and plutonium clusters, whereas Cs{sup +} (1.69 Å) is necessary to assemble the thorium clusters. If these cations are not used in the reactions, only amorphous material is obtained.

  1. Improved Detection of Fast Neutrons with Solid-State Electronics

    NASA Astrophysics Data System (ADS)

    Chatzakis, J.; Hassan, S. M.; Clark, E. L.; Talebitaher, A.; Lee, P.

    2014-02-01

    There is an increasing requirement for alternative and improved detection of fast neutrons due to the renewed interest in neutron diagnostics applications. Some applications require heavily shielded neutron sources that emit a substantial proportion of their emission as fast neutrons and so require high performance fast neutron detectors. In some applications, the detection of neutron bursts from pulsed neutron sources has to be synchronized to the repetition rate of the source. Typical fast neutron detectors incorporate scintillators that are sensitive to all kinds of ionizing radiations as well as neutrons, and their efficiency is low. In this paper, we present a device based on the principle of neutron activation coupled to solid-state p-i-n diodes connected to a charge amplifier. The charge amplifier is specially developed to operate with high capacitance detectors and has been optimized by the aid of the SPICE program. A solid-state pulse shaping filter follows the charge amplifier, as an inexpensive solution, capable to provide pulses that can be counted by a digital counter.

  2. Vertically aligned carbon nanofibers: interconnecting solid state electronics with biosystems.

    PubMed

    Cassell, Alan M; Li, Jun; Nguyen-Vu, Thuy-Duong Barbara; Koehne, Jessica E; Chen, Hua; Andrews, Russell; Meyyappan, M

    2009-08-01

    Vertically aligned carbon nanofibers (VACNFs) are grown directly on prefabricated electronic circuits with nanoscale precision. Utilizing the free-standing nanofiber array geometry, we have demonstrated the detection of nucleic acids to construct an ultrasensitive electrochemical sensor. Extending this technology towards in vivo applications, we have modified the free-standing VACNF arrays in order to achieve a multifunctional three dimensional (3-D) matrix that interpenetrates the neuronal network of PC12 cells. We found that PC12 cells cultured on the nanofiber arrays can form an extended neural network upon proper chemical and biochemical modification. The soft 3-D nanofiber array architecture provides a novel platform to fine-tune the topographical, mechanical, chemical, and electrical cues at sub-cellular scales. This biomaterial platform can be used for both fundamental studies of nanomaterial-cell interactions and the development of multifunctional, chronically stable implantable devices. The application of these devices and potential utility as a multifunctional platform for neurophysiology and biochemical studies will be discussed.

  3. Experimental realization of nearly steady-state toroidal electron plasmas

    SciTech Connect

    Stoneking, M. R.; Ha, B. N.; Smoniewski, J.; Marler, J. P.

    2009-05-15

    Electron plasmas with densities of 5x10{sup 6} cm{sup -3} are trapped in the Lawrence Non-neutral Torus II (LNT II) for times exceeding 1 s. LNT II is a high aspect ratio (R{sub 0}/a > or approx.10) partially toroidal trap (270 deg. arc, B{sub 0}=670 G). The m=1 diocotron mode is launched and detected using isolated segments of a fully sectored conducting boundary and its frequency is used to determine the total trapped charge as a function of time. The observed confinement time ({approx_equal}3 s) approaches the theoretical limit ({approx_equal}6 s) set by the magnetic pumping transport mechanism of Crooks and O'Neil [Phys. Plasmas 3, 2533 (1996)]. We also present equilibrium modeling and numerical simulations of the toroidal m=1 mode constrained by experimental data. Future work includes the identification of the dominant transport mechanisms via confinement scaling experiments and measurement of the m=2 mode frequency and development of a strategy for making a transition to fully toroidal confinement.

  4. Spectroscopic Properties and Potential Energy Curves of Low-lying electronic States of RuC

    SciTech Connect

    Balasubramanian, K; Guo, R

    2003-12-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multi-configuration self-consistent field (CASSCF) followed by multireference configuration interaction (MRCI) methods that included up 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38 000 cm{sup -1}. We find two very closely low-lying electronic states for RuC, viz., {sup 1}{Sigma}{sup +} and {sup 3}{Delta} with the {sup 1}{Sigma}{sup +} being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound X{sup 1}{Sigma}{sup +} state with a large dipole moment and an energetically close {sup 3}{Delta} state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18000 cm{sup -1} agree quite well with those of the corresponding observed states.

  5. Interface states in two-dimensional electron systems with spin-orbital interaction.

    PubMed

    Sukhanov, Aleksei A; Sablikov, Vladimir A

    2011-10-05

    Interface states at a boundary between regions with different spin-orbit interactions (SOIs) in two-dimensional (2D) electron systems are investigated within the one-band effective mass method with generalized boundary conditions for envelope functions. We have found that the interface states unexpectedly exist even if the effective interface potential equals zero. Depending on the system parameters, the energy of these states can lie in either or both forbidden and conduction bands of bulk states. The interface states have chiral spin texture similar to that of the edge states in 2D topological insulators. However, their energy spectrum is more sensitive to the interfacial potential, the largest effect being produced by the spin-dependent component of the interfacial potential. We have also studied the size quantization of the interface states in a strip of 2D electron gas with SOI and found an unusual (non-monotonic) dependence of the quantization energy on the strip width.

  6. Theoretical study of the electronic states of Rhn+ (n=3-5)

    NASA Astrophysics Data System (ADS)

    Majumdar, D.; Balasubramanian, K.

    1998-02-01

    Geometries and energy separations of the various low-lying electronic states of Rh3+, Rh4+, and Rh5+ clusters with different structural arrangements have been investigated. The complete active space multiconfiguration self-consistent field method, (CASMCSCF) followed by large scale multireference singles plus doubles configuration interaction (MRSDCI) computations that included up to 1.6 million configurations for Rh3+, 1.5 million configurations for Rh4+, and 2.7 million configurations for Rh5+, were used. Four nearly degenerate electronic states were found for Rh3+. The 6A' electronic state of the pyramidal structure of Rh4+ was found to be the ground state. Although the 6A″ electronic state of Rh4+ with the same geometry was found to be close in energy at the CASMCSCF level, it is 0.5 eV higher at the higher level of theory. Two nearly degenerate electronic states (5A″ and 5A″) of the distorted edge capped tetrahedron structure of Rh5+ were found as candidates for the ground state of this cluster. Mulliken population analysis has been carried out on these cationic clusters to investigate their bonding properties.

  7. Electron emission from nanometer-size metallic clusters: Electronic states and structural stability of supported Au clusters

    SciTech Connect

    Lin, M.E.; Ramachandra, A.; Andres, R.P.; Reifenberger, R.

    1992-12-31

    Techniques developed to measure the thermodynamic and electronic properties of a single metallic cluster with nanometer-size dimensions are described. Using these techniques, experiments that resolve the quantized energy spectrum of electrons in a nanometer-size cluster of metallic atoms at room temperature have been performed. Studies on the stability of the electron emission current from an individual nanometer-size cluster supported on a tungsten tip have been performed to learn more about the intrinsic stability of these nanometer-size objects. The data show abrupt jumps between different emission states that are revisited as time progresses. This phenomenon is attributed to a rearrangement of the duster structure and/or orientation on the substrate and provides new evidence of multiple `isomeric` structures for small clusters of metallic atoms.

  8. Ferroelectric-like metallic state in electron doped BaTiO3

    PubMed Central

    Fujioka, J.; Doi, A.; Okuyama, D.; Morikawa, D.; Arima, T.; Okada, K. N.; Kaneko, Y.; Fukuda, T.; Uchiyama, H.; Ishikawa, D.; Baron, A. Q. R.; Kato, K.; Takata, M.; Tokura, Y.

    2015-01-01

    We report that a ferroelectric-like metallic state with reduced anisotropy of polarization is created by the doping of conduction electrons into BaTiO3, on the bases of x-ray/electron diffraction and infrared spectroscopic experiments. The crystal structure is heterogeneous in nanometer-scale, as enabled by the reduced polarization anisotropy. The enhanced infrared intensity of soft phonon along with the resistivity reduction suggests the presence of unusual electron-phonon coupling, which may be responsible for the emergent ferroelectric structure compatible with metallic state. PMID:26289749

  9. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  10. Probing strongly hybridized nuclear-electronic states in a model quantum ferromagnet

    NASA Astrophysics Data System (ADS)

    Kovacevic, I.; Babkevich, P.; Jeong, M.; Piatek, J. O.; Boero, G.; Rønnow, H. M.

    2016-12-01

    We present direct local-probe evidence for strongly hybridized nuclear-electronic spin states of an Ising ferromagnet LiHoF4 in a transverse magnetic field. The nuclear-electronic states are addressed via a magnetic resonance in the GHz frequency range using coplanar resonators and a vector network analyzer. The magnetic resonance spectrum is successfully traced over the entire field-temperature phase diagram, which is remarkably well reproduced by mean-field calculations. Our method can be directly applied to a broad class of materials containing rare-earth ions for probing the substantially mixed nature of the nuclear and electronic moments.

  11. Nonadiabatic excited-state molecular dynamics: Treatment of electronic decoherence

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.; Tretiak, Sergei

    2013-06-01

    Within the fewest switches surface hopping (FSSH) formulation, a swarm of independent trajectories is propagated and the equations of motion for the quantum coefficients are evolved coherently along each independent nuclear trajectory. That is, the phase factors, or quantum amplitudes, are retained. At a region of strong coupling, a trajectory can branch into multiple wavepackets. Directly following a hop, the two wavepackets remain in a region of nonadiabatic coupling and continue exchanging population. After these wavepackets have sufficiently separated in phase space, they should begin to evolve independently from one another, the process known as decoherence. Decoherence is not accounted for in the standard surface hopping algorithm and leads to internal inconsistency. FSSH is designed to ensure that at any time, the fraction of classical trajectories evolving on each quantum state is equal to the average quantum probability for that state. However, in many systems this internal consistency requirement is violated. Treating decoherence is an inherent problem that can be addressed by implementing some form of decoherence correction to the standard FSSH algorithm. In this study, we have implemented two forms of the instantaneous decoherence procedure where coefficients are reinitialized following hops. We also test the energy-based decoherence correction (EDC) scheme proposed by Granucci et al. and a related version where the form of the decoherence time is taken from Truhlar's Coherent Switching with Decay of Mixing method. The sensitivity of the EDC results to changes in parameters is also evaluated. The application of these computationally inexpensive ad hoc methods is demonstrated in the simulation of nonradiative relaxation in two conjugated oligomer systems, specifically poly-phenylene vinylene and poly-phenylene ethynylene. We find that methods that have been used successfully for treating small systems do not necessarily translate to large polyatomic

  12. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    NASA Astrophysics Data System (ADS)

    Obukhov, A. E.

    2016-12-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  13. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    SciTech Connect

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z.; Duque, H. V.; Silva, G. B. da; Limão-Vieira, P.; Duflot, D.; Hubin-Franskin, M.-J.; Delwiche, J.; Blanco, F.; García, G.; and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  14. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Electronic States of Elliptical Quantum Rings Subjected to a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Hai-Tao; Liu, Li-Zhe; Liu, Jian-Jun

    2008-11-01

    We calculate the energy states and Aharonov-Bohm oscillations of an electron in elliptical quantum rings in the presence of a uniform magnetic Geld by using an exact numerical diagonalization. The calculated results show that the elliptical quantum rings are flatter, larger amplitudes and periods of the Aharonov-Bohm oscillations are observed. In addition, in the limits of a circular quantum ring, the results of our approach are in good agreement with those of earlier theories.

  15. Resonant charge exchange involving electronically excited states of nitrogen atoms and ions

    SciTech Connect

    Kosarim, A. V.; Smirnov, B. M.; Laricchiuta, A.

    2006-12-15

    Within the framework of the asymptotic theory the matrices for the exchange interaction potentials of the nitrogen ion, with electron shell p{sup 2}, and nitrogen atom, with electron shell p{sup 3}, are constructed. The hierarchy of interactions in the nitrogen molecular ion at large internuclear distances is constructed for different electronic states. On the basis of these interaction potentials, the cross sections of resonant charge exchange in slow collisions are evaluated for different values of electron momentum projections and then averaged over these momentum projections. The mobilities of nitrogen ions in atomic nitrogen are also derived.

  16. Steady-state hollow electron temperature profiles in the Rijnhuizen Tokamak Project

    SciTech Connect

    Hogeweij, G.M.; Oomens, A.A.; Barth, C.J.; Beurskens, M.N.; Chu, C.C.; van Gelder, J.F.; Lok, J.; Lopes Cardozo, N.J.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.

    1996-01-01

    In the Rijnhuizen Tokamak Project steady-state hollow electron temperature ({ital T}{sub {ital e}}) profiles have been sustained with strong off-axis electron cyclotron heating, creating a region of reversed magnetic shear. In this region the effective electron thermal diffusivity ({chi}{sub {ital e}}{sup {ital pb}}) is close to neoclassical in high density plasmas. For medium density, {chi}{sub {ital e}}{sup {ital pb}} is lower than neoclassical and may even be negative, indicating that off-diagonal elements in the transport matrix drive an electron heat flux up the {ital T}{sub {ital e}} gradient. {copyright} {ital 1996 The American Physical Society.}

  17. Electron impact excitation and dissociation of N2 via the b 1Pi(u) state

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; James, G. K.; Trajmar, S.; Ajello, J. M.; Shemansky, D. E.

    1991-01-01

    Electron impact excitation of the b 1Pi(u) state in N2 plays a prominent role in the dissociation of the molecule and thus in the production of atomic nitrogen in planetary atmospheres. Electron impact excitation cross sections combined with electron-impact-induced fluorescence measurements can yield the corresponding dissociation cross sections. Serious discrepancies exist among excitation cross sections reported in the literature. To clarify the situation, these cross sections were measured at two impact energies using electron energy loss spectroscopy. The new results are in agreement with recent values deduced from optical measurements and fall midway between previous results which are too high or low by factors of 2.

  18. Electronic and structural ground state of heavy alkali metals at high pressure

    SciTech Connect

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  19. Cyclic electron flow is redox-controlled but independent of state transition

    PubMed Central

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna. PMID:23760547

  20. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zdyb, Agata; Krawczyk, Stanisław

    2016-03-01

    Adsorption of quercetin on colloidal titanium dioxide nanoparticles in ethanol and its excited-state electronic structure were investigated by means of electronic and vibrational spectroscopies. The changes in electronic charge redistribution as reflected by the dipole moment difference, ∆μ, between the ground and excited electronic states were measured with electroabsorption spectroscopy and analyzed using results of TD DFT computations. Adsorption of quercetin causes a red shift of its absorption spectrum. Raman spectra of quercetin analyzed with reference to analogous data for morin indicate binding of quercetin through the hydroxy groups of the catechol moiety. The difference dipole moment, which is 5.5 D in free quercetin, increases to 11.8 D in opposite direction in adsorbed quercetin, and is associated with charge-transfer to the Ti atom. The computed transition energy, intensity, vector Δμ and molecular orbitals involved in the electronic transition at different molecular configurations indicate a bidentate chelating mode of binding of quercetin.

  1. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  2. Cyclic electron flow is redox-controlled but independent of state transition.

    PubMed

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  3. Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope

    SciTech Connect

    Chang Hung; Iqbal, Samir M.; Stach, Eric A.; King, Alexander H.; Zaluzec, Nestor J.; Bashir, Rashid

    2006-03-06

    The fabrication of solid-state nanopores using the electron beam of a transmission electron microscope (TEM) has been reported in the past. Here, we report a similar method to fabricate solid-state nanopores using the electron source of a conventional field-emission scanning electron microscope (FESEM) instead. Micromachining was used to create initial pore diameters between 50 nm and 200 nm, and controlled pore shrinking to sub 10 nm diameters was performed subsequently during in situ processing in the FESEM. Noticeably, different shrinking behavior was observed when using irradiation from the electron source of the FESEM than the TEM. Unlike previous reports of TEM mediated pore shrinkage, the mechanism of pore shrinkage when using the FESEM could be a result of surface defects generated by radiolysis and subsequent motion of silicon atoms to the pore periphery.

  4. Entanglement Concentration of Partially Entangled Multi-electron Spin W States with CNOT Gates

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Huang, Yugai; Fang, Xia; Wang, Haibin

    2014-04-01

    We propose a novel entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled W state, resorting to an ancillary single electron and controlled-not gates. Compared with other ECPs for W states, our ECP has some illustrious advantages. First, each N-electron entangled system can be used to complete the entanglement concentration with only an ancillary electron. It does not require that there are two copies of N-electron entangled systems in each round of entanglement concentration. Second, only one of the users, say Charlie, needs to perform the protocol, while all parties should perform the same operations as Charlie in other ECPs for W-class states. Third, only Charlie asks other parities to retain or discard their electrons, and they do not need to check their measurement results, which greatly simplifies the complication of classical communication. Fourth, our ECP has a higher success probability than other ECPs for W-class states as its success probability equals to the limit value of an ECP for a W state in theory. These advantages maybe make our ECP more useful in practical applications.

  5. Electron energy-loss spectroscopy of excited states of the pyridine molecules

    NASA Astrophysics Data System (ADS)

    Linert, Ireneusz; Zubek, Mariusz

    2016-04-01

    Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  6. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  7. Human Hepatocyte Metabolism of Novel Synthetic Cannabinoids MN-18 and Its 5-Fluoro Analog 5F-MN-18.

    PubMed

    Diao, Xingxing; Carlier, Jeremy; Zhu, Mingshe; Huestis, Marilyn A

    2017-08-18

    In 2014, 2 novel synthetic cannabinoids, MN-18 and its 5-fluoro analog, 5F-MN-18, were first identified in an ongoing survey of novel psychoactive substances in Japan. In vitro pharmacological assays revealed that MN-18 and 5F-MN-18 displayed high binding affinities to human CB1 and CB2 receptors, with Ki being 1.65-3.86 nmol/L. MN-18 and 5F-MN-18 were scheduled in Japan and some other countries in 2014. Despite increasing prevalence, no human metabolism data are currently available, making it challenging for forensic laboratories to confirm intake of MN-18 or 5F-MN-18. We incubated 10 μ mol/L of MN-18 and 5F-MN-18 in human hepatocytes for 3 h and analyzed the samples on a TripleTOF 5600(+) high-resolution mass spectrometer to identify appropriate marker metabolites. Data were acquired via full scan and information-dependent acquisition-triggered product ion scans with mass defect filter. In total, 13 MN-18 metabolites were detected, with the top 3 abundant metabolites being 1-pentyl-1H-indazole-3-carboxylic acid, pentyl-carbonylated MN-18, and naphthalene-hydroxylated MN-18. For 5F-MN-18, 20 metabolites were observed, with the top 3 abundant metabolites being 5`-OH-MN-18, MN-18 pentanoic acid, and 1-(5-fluoropentyl)-1H-indazole-3-carboxylic acid. We have characterized MN-18 and 5F-MN-18 metabolism with human hepatocytes and high-resolution mass spectrometry, and we recommend characteristic major metabolites for clinical and forensic laboratories to identify MN-18 and 5F-MN-18 intake and link observed adverse events to these novel synthetic cannabinoids. © 2017 American Association for Clinical Chemistry.

  8. Balancing Quality and Access: Reducing State Policy Barriers to Electronically Delivered Higher Education Programs.

    ERIC Educational Resources Information Center

    Johnstone, Sally M.

    This project was designed to increase student access by addressing Western states' regulations on higher education programs delivered electronically across state lines, and to develop and get region-wide agreement on basic quality standards for distance education programs. The project achieved agreement on a set of "Principles of Good…

  9. High-Resolution Laser Spectroscopy of Free Radicals in Nearly Degenerate Electronic States

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2017-06-01

    Rovibronic structure of molecules in orbitally degenerate electronic states including Renner-Teller (RT) and Jahn-Teller (JT) active molecules has been extensively studied. Less is known about rotational structure of polyatomic molecules in nearly degenerate states, especially those with low (e.g., C_s) symmetry that are subject to the pseudo-Jahn-Teller (pJT) effect. In the case of free radicals, the unpaired electron further complicates energy levels by inducing spin-orbit (SO) and spin-rotation (SR) splittings. Asymmetric deuteration or methyl substitution of C_{3v} free radicals such as CH_3O, CaCH_3, and CaOCH_3 lowers the molecular symmetry, lifts the vibronic degeneracy, and reduces the JT effect to the pJT effect. New spectroscopic models are required to reproduce the rovibronic structure and simulate the experimentally obtained spectra of pJT-active free radicals. It has been found that rotational and fine-structure analysis of spectra involving nearly degenerate states may aid in vibronic analysis and interpretation of effective molecular constants. Especially, SO and Coriolis interactions that couple the two states can be determined accurately from fitting the experimental spectra. Coupling between the two electronic states also affects the intensities of rotational and vibronic transitions. The study on free radicals in nearly degenerate states provides a promising avenue of research which may bridge the gap between symmetry-induced degenerate states and the Born-Oppenheimer (BO) limit of unperturbed electronic states.

  10. Balancing Quality and Access: Reducing State Policy Barriers to Electronically Delivered Higher Education Programs.

    ERIC Educational Resources Information Center

    Johnstone, Sally M.

    This project was designed to increase student access by addressing Western states' regulations on higher education programs delivered electronically across state lines, and to develop and get region-wide agreement on basic quality standards for distance education programs. The project achieved agreement on a set of "Principles of Good…

  11. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  12. Electronic interconnects and devices with topological surface states and methods for fabricating same

    DOEpatents

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  13. Satellites and solid state electronics test concrete pressure water pipelines

    NASA Astrophysics Data System (ADS)

    Fumo, John; Worthington, Will

    2000-06-01

    Like all structures, water pressure pipelines have a finite life. Pipelines will eventually begin to fail, leaving the pipeline owner to deal with the quandary: what caused this to happen, can we prevent future failures, must we replace this structure now? The causes for pipeline failure include defects and anomalies which may occur in any phase of a pipeline's life: during the engineering, the manufacture, the construction, or the operation. Failure may simply be the result of environmental conditions or old age. In the past five years, passive acoustic emission detection technology has been adapted to concrete pressure pipelines. This method of inspection is based on the caustic emissions made by the prestressed reinforcing wire as it releases its energy. A recently patented method of using this technology relies on a series of remote, independent test stations to detect, record and time-stamp these acoustic emissions. A low-powered, high- performance embedded processor system makes use of global positioning system time signals to synchronize multiple stations. These methods are re-defining the standard of care of water pressure pipelines. This paper describes pipeline failure mechanisms and a state-of-the-art data sampling system which has been developed to evaluate pipeline structural integrity.

  14. Electronic states at transition metal dichalcogenide lateral heterointerfaces

    NASA Astrophysics Data System (ADS)

    Avalos-Ovando, Oscar; Mastrogiuseppe, Diego; Ulloa, Sergio

    Materials with different band gaps are typically used to create heterostructures that enable band sculpting, depending on different shape and boundaries of the systems. These are used in diode lasers and high-speed transistors devices. Potential material candidates for such heterostructures at the monolayer level are the family of transition-metal dichalcogenides, MX2 (with M=Mo,W and X=S,Se), especially interesting materials with strong spin-orbit coupling and valley degrees of freedom. We consider lateral interfaces between pairs of these materials, and study the effect of different boundary geometries, motivated by recent experimental reports of the growth of such interfaces with different geometries. Using an effective 3-orbital tight-binding model, we focus our attention on monolayer ribbons and triangular flakes. We analyze the formation of edge/interface states for different gap nesting materials. We study the spatial distribution and orbital character of the wave functions throughout, as well as their dependence on interface termination. Supported by NSF DMR-1508325.

  15. Electronic Properties of Bimetallic Metal-Organic Frameworks (MOFs): Tailoring Density of Electronic States Through MOF Modularity.

    PubMed

    Dolgopolova, Ekaterina A; Brandt, Amy J; Ejegbavwo, Otega; Duke, Audrey S; Maddumapatabandi, Thathsara D; Galhenage, Randima P; Larson, Bryon W; Reid, Obadiah; Ammal, Salai Cheettu; Heyden, Andreas; Chandrashekhar, Mvs; Stavila, Vitalie; Chen, Donna A; Shustova, Natalia B

    2017-03-18

    Development of porous well-defined hybrid materials (e.g., metal-organic frameworks (MOFs)) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to "smart" membranes and thermoelectrics. From this perspective, understanding and tailoring electronic properties of MOFs is a key fundamental challenge that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, Mx-yM'y-MOFs, MxM'y-MOFs, and Mx(ligand-M'y)-MOFs, in which the second metal (M') incorporation occurs through: (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spec-troscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental pre-screening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or presence of unsaturated metal sites while preserving framework porosity and structural integrity. These studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.

  16. Electronic properties of bimetallic metal–organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity

    DOE PAGES

    Dolgopolova, Ekaterina A.; Brandt, Amy J.; Ejegbavwo, Otega A.; ...

    2017-03-18

    The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to 'smart' membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, Mx-yM'y-MOFs, MxM'y- MOFs, and Mx(ligand-M'y)-MOFs, in which the second metal (M') incorporation occurs through (i) metal (M) replacement in themore » framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. Finally, these studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.« less

  17. SiO2 Film Etching Process Using Environment-Friendly New Gas C5F7H

    NASA Astrophysics Data System (ADS)

    Miyawaki, Yudai; Takeda, Keigo; Ito, Azumi; Nakamura, Masahiro; Sekine, Makoto; Hori, Masaru

    2009-10-01

    With the continuous miniaturization of semiconductor memory devices, a much precise etching process for a high aspect ratio contact hole in SiO2 film is indispensable. Furthermore, deterioration of the SiO2 selectivity over a fragile, thin ArF photoresist would cause the sidewall roughness and poor pattern-width definition. In this study, we utilized a newly designed C5F7H gas. We compared the etch performances between the new gas and conventional C5F8 . Ar and O2 were introduced with the each fluorocarbon gas to controll the etching rate. A dual frequency (60 MHz / 2 MHz) capacitively coupled plasma was employed. The SiO2 etching rate and selectivity to ArF photoresist were investigated as a function of O2 flow rate. The maximum selectivity of only 3.7 and the SiO2 etching rate of 416 nm/min were obtained at O2 flow rate of 20 sccm for the C5F8/O2/Ar plasma. For the newly developed C5F7H/O2/Ar plasma, the maximum selectivity of 13.5 with the etching rate of 356 nm/min was achieved at 25-sccm O2 flow rate. From these results, it was confirmed that almost four times higher selectivity than that of the conventional C5F8 gas was obtained by using the new C5F7H gas.

  18. Electronic states of InAs/GaAs quantum dots by scanning tunneling spectroscopy

    SciTech Connect

    Gaan, S.; He, Guowei; Feenstra, R. M.; Walker, J.; Towe, E.

    2010-09-20

    InAs/GaAs quantum-dot (QD) heterostructures grown by molecular-beam epitaxy are studied using cross-sectional scanning tunneling microscopy and spectroscopy. Individual InAs QDs are resolved in the images. Tunneling spectra acquired 3-4 nm from the QDs show a peak located in the upper part of the GaAs band gap originating from the lowest electron confined state, together with a tail extending out from the valence band from hole confined states. A line-shape analysis is used to deduce the binding energies of the electron and hole QD states.

  19. Influences of Quantum Mechanically Mixed Electronic and Vibrational Pigment States in 2D Electronic Spectra of Photosynthetic Systems: Strong Electronic Coupling Cases

    SciTech Connect

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-09-07

    In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures. However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this paper, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. Finally, the electronic-vibrational quantum mixtures do not

  20. Localized electron states in the continuous spectrum of the Cu(001) monolayer

    NASA Astrophysics Data System (ADS)

    Wolf, G. V.; Chuburin, Yu. P.

    2010-11-01

    The results of the calculation of electron bands of bound states that cross the edge of the continuous spectrum for the (001) fcc copper monolayer are presented for the first time. The calculations are performed in the local approximation for the exchange and correlations using the film variant of the Green's function technique. Symmetry of electron states near the edge of the continuous spectrum is explored. It is found that there are bound states along the bar sum direction of the two-dimensional Brillouin zone of the Cu(001) monolayer that are embedded in the continuum of delocalized states of the continuous spectrum. Along the bar Δ and bar Y directions, bands of bound states turn into resonance states after crossing the edge of the continuous spectrum.

  1. Spectroscopic properties and potential energy curves of thirty-six electronic states of ZrH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Wang, J. Z.

    1989-02-01

    Complete active space MCSCF (CASSCF) followed by second-order configuration interaction (SOCI) and relativistic configuration interaction (RCI) calculations are carried out on thirty-six electronic states of ZrH. The spectroscopic properties of these states are calculated which lie below 14000 cm -1. The ground state is found to be a 2Δ 3/2 state with low-lying 2Δ 5/2, 2Π 1/23/2 and 4Φ 3/2, 5/2, 7/2, 9/2 states. The dissociation energy of ZrH is calculated to be 2.64 eV. The ZrH bonding exhibits considerable ionic character and 4d5s5p hybridization in all the electronic states.

  2. Spectroscopic properties and potential energy curves of 28 electronic states of NbH

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Balasubramanian, K.

    1990-12-01

    State-averaged complete active space MCSCF (CASSCF) followed by second-order configuration interaction (SOCI) calculations are carried out on 28 low-lying electronic states of NbH. The ground state of NbH is found to be of 5Δ symmetry ( R e = 1.787 Å, ωe = 1750 cm -1, μe = 2.20 D, De = 2.67 eV) with a very low-lying excited state of 5Π symmetry ( Te = 720 cm -1). There are 14 low-lying bound states below 10 000 cm -1. Many dipole-allowed transitions are predicted for NbH which are yet to be observed. An intense 5Δ(II) ↔ 5Δ transition is predicted in the 21 000 ± 2000 cm -1 region. Mulliken population analyses reveal that the low-lying electronic states of NbH are very ionic (Nb +H -).

  3. Exact many-electron ground states on the diamond Hubbard chain

    NASA Astrophysics Data System (ADS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  4. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    SciTech Connect

    Eremko, Alexander; Brizhik, Larissa; Loktev, Vadim

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  5. Study on the steady operating state of a micro-pulse electron gun

    SciTech Connect

    Kui, Zhou; Xing, Luo; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Ziqin, Yang

    2014-09-15

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.

  6. Electronic states of monatomic layers of alkali and rare earth metals adsorbed on graphene surfaces

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.

    2013-02-01

    The electronic states of ordered layers of alkali and rare earth metals adsorbed on graphene surfaces are examined using an Anderson model. The behavior of the density of states of these systems is analyzed. The case of an adsorbed metallic nanolayer with a discrete energy spectrum is discussed. A system whose electronic states can be controlled by an applied electric field is proposed and is of great practical interest. The qualitative difference between the existing theoretical approach to this problem and the present paper is that the former uses a "single adatom" formalism that does not deal with the band structure of the metallic adlayer. A way of describing the electronic states of an adsorbed layer of Gd and other metallic layers which form a fractal structure on a graphene surface is also examined.

  7. Spin-Orbit Coupling Controlled J =3 /2 Electronic Ground State in 5 d3 Oxides

    NASA Astrophysics Data System (ADS)

    Taylor, A. E.; Calder, S.; Morrow, R.; Feng, H. L.; Upton, M. H.; Lumsden, M. D.; Yamaura, K.; Woodward, P. M.; Christianson, A. D.

    2017-05-01

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3 LiOsO6 and Ba2 YOsO6 , which reveals a dramatic spitting of the t2 g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5 d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J =3 /2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5 d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

  8. Low-lying singlet and triplet electronic states of RhB.

    PubMed

    Borin, Antonio Carlos; Gobbo, João Paulo

    2008-05-08

    The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.

  9. Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State

    NASA Astrophysics Data System (ADS)

    Ding, Shang-Ping; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-06-01

    Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes many physical qubits in a logic qubit will have important applications in both quantum communication and computation. In this paper, we will describe an entanglement concentration protocol (ECP) for electronic C-GHZ state, by exploiting the electronic polarization beam splitters (PBSs) and charge detection. This protocol has several advantages. First, the parties do not need to know the exact coefficients of the initial less-entangled C-GHZ state, which makes this protocol feasible. Second, with the help of charge detection, the distilled maximally entangled C-GHZ state can be remained for future application. Third, this protocol can be repeated to obtain a higher success probability. We hope that this protocol can be useful in future quantum computation based on electrons.

  10. Theoretical calculations on electronic transitions for H/sub 3/, including Rydberg and transition state spectra

    SciTech Connect

    Petsalakis, I.D.; Theodorakopoulos, G.; Wright, J.S.

    1988-12-01

    MRD-CI calculations have been carried out on the ground and excited electronic states of H/sub 3/ for D/sub 3//sub h/, D/sub infinity//sub h/, C/sub infinity//sub v/, and C/sub 2//sub v/ geometries. Dipole transition moments between the various electronic states have been also obtained at the different geometries calculated. The present work provides accurate theoretical information relevant to the transition state spectroscopy of H+H/sub 2/ along a collinear path and also along a perpendicular path. In addition, the present work is the first all-electron configuration interaction treatment of the Rydberg states of H/sub 3/, and the results are in excellent agreement with the observed spectra.

  11. Electron impact excitation and assignment of the low-lying electronic states of N2O

    NASA Technical Reports Server (NTRS)

    Hall, R. I.; Chutjian, A.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of nitrous oxide are reported in the 5- to 10-eV energy-loss range at scattering angles of 20, 30, 90, and 130 deg at a residual energy of 7.0 eV; and at residual energies of 10.0, 2.0, 1.0, 0.6, and 0.2 eV at a scattering angle of 90 deg. Several new distinct and overlapping continua are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of semiempirical INDO calculations of Chutjian and Segal (1972) of the vertical transition energies of N2O. An assignment of the symmetries of the observed excitations consistent with the experimental and theoretical data is suggested.

  12. Multi-bit dark state memory: Double quantum dot as an electronic quantum memory

    NASA Astrophysics Data System (ADS)

    Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2016-12-01

    Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.

  13. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  14. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGES

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  15. Sulfur-Bridged Terthiophene Dimers: How Sulfur Oxidation State Controls Interchromophore Electronic Coupling.

    PubMed

    Cruz, Chad D; Christensen, Peter R; Chronister, Eric L; Casanova, David; Wolf, Michael O; Bardeen, Christopher J

    2015-10-07

    Symmetric dimers have the potential to optimize energy transfer and charge separation in optoelectronic devices. In this paper, a combination of optical spectroscopy (steady-state and time-resolved) and electronic structure theory is used to analyze the photophysics of sulfur-bridged terthiophene dimers. This class of dimers has the unique feature that the interchromophore (intradimer) electronic coupling can be modified by varying the oxidation state of the bridging sulfur from sulfide (S), to sulfoxide (SO), to sulfone (SO2). Photoexcitation leads to the formation of a delocalized charge resonance state (S1) that relaxes quickly (<10 ps) to a charge-transfer state (S1*). The amount of charge-transfer character in S1* can be enhanced by increasing the oxidation state of the bridging sulfur group as well as the solvent polarity. The S1* state has a decreased intersystem crossing rate when compared to monomeric terthiophene, leading to an enhanced photoluminescence quantum yield. Computational results indicate that electrostatic screening by the bridging sulfur electrons is the key parameter that controls the amount of charge-transfer character. Control of the sulfur bridge oxidation state provides the ability to tune interchromophore interactions in covalent assemblies without altering the molecular geometry or solvent polarity. This capability provides a new strategy for the design of functional supermolecules with applications in organic electronics.

  16. Spectroscopic constants and potential energy curves for 16 electronic states of AsH

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Nannegari, V.

    1989-12-01

    Relativistic complete active space multi-configuration SCF (CASSCF) followed by full secondorder configuration interaction (SOCI) calculations are carried out on 16 electronic states of AsH. Among these are found 11 bound states for which spectroscopic constants are reported. Potential energy curves of all 16 electronic states are computed. Spectroscopic constants of nine new electronic states of AsH which are yet to be observed are reported. The experimentally observed predissociation and Λ-doubling in the A3Π ← X3Σ - system are explained based on theoretical potential energy curves. The dipole moment curves for the low-lying states are presented. The nature of the lowlying electronic states is analyzed through CI wave functions and Mulliken population analyses. The theoretical spectroscopic constants of the X3Σ - state are R e = 1.528 Å, ωe = 2194 cm -1, De = 2.71 eV, μe = 0.18 D, in excellent agreement with the experimental values of R e = 1.535 Å, ωe = 2130 cm -1, and De = 2.80 eV.

  17. Detection of dark states in two-dimensional electronic photon-echo signals via ground-state coherence

    SciTech Connect

    Egorova, Dassia

    2015-06-07

    Several recent experiments report on possibility of dark-state detection by means of so called beating maps of two-dimensional photon-echo spectroscopy [Ostroumov et al., Science 340, 52 (2013); Bakulin et al., Ultrafast Phenomena XIX (Springer International Publishing, 2015)]. The main idea of this detection scheme is to use coherence induced upon the laser excitation as a very sensitive probe. In this study, we investigate the performance of ground-state coherence in the detection of dark electronic states. For this purpose, we simulate beating maps of several models where the excited-state coherence can be hardly detected and is assumed not to contribute to the beating maps. The models represent strongly coupled electron-nuclear dynamics involving avoided crossings and conical intersections. In all the models, the initially populated optically accessible excited state decays to a lower-lying dark state within few hundreds femtoseconds. We address the role of Raman modes and of interstate-coupling nature. Our findings suggest that the presence of low-frequency Raman active modes significantly increases the chances for detection of dark states populated via avoided crossings, whereas conical intersections represent a more challenging task.

  18. Detection of dark states in two-dimensional electronic photon-echo signals via ground-state coherence.

    PubMed

    Egorova, Dassia

    2015-06-07

    Several recent experiments report on possibility of dark-state detection by means of so called beating maps of two-dimensional photon-echo spectroscopy [Ostroumov et al., Science 340, 52 (2013); Bakulin et al., Ultrafast Phenomena XIX (Springer International Publishing, 2015)]. The main idea of this detection scheme is to use coherence induced upon the laser excitation as a very sensitive probe. In this study, we investigate the performance of ground-state coherence in the detection of dark electronic states. For this purpose, we simulate beating maps of several models where the excited-state coherence can be hardly detected and is assumed not to contribute to the beating maps. The models represent strongly coupled electron-nuclear dynamics involving avoided crossings and conical intersections. In all the models, the initially populated optically accessible excited state decays to a lower-lying dark state within few hundreds femtoseconds. We address the role of Raman modes and of interstate-coupling nature. Our findings suggest that the presence of low-frequency Raman active modes significantly increases the chances for detection of dark states populated via avoided crossings, whereas conical intersections represent a more challenging task.

  19. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors

    PubMed Central

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-01-01

    A major problem in the field of high-transition temperature (Tc) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high–energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba1−xKxFe2As2. We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high-Tc superconductivity in the iron-based superconductors. PMID:28875162

  20. Aryl Hydrocarbon Receptor Ligand 5F 203 Induces Oxidative Stress That Triggers DNA Damage in Human Breast Cancer Cells

    PubMed Central

    McLean, Lancelot S.; Watkins, Cheri N.; Campbell, Petreena; Zylstra, Dain; Rowland, Leah; Amis, Louisa H.; Scott, Lia; Babb, Crystal E.; Livingston, W. Joel; Darwanto, Agus; Davis, Willie L.; Senthil, Maheswari; Sowers, Lawrence C.; Brantley, Eileen

    2015-01-01

    Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth. We found that 5F 203 induced single-strand break formation. 5F 203 enhanced oxidative DNA damage that was specific to breast cancer cells sensitive to its cytotoxic actions, as it did not increase oxidative DNA damage or ROS formation in nontumorigenic MCF-10A breast epithelial cells. In contrast, AhR agonist and procarcinogen benzo[a]pyrene and its metabolite, 1,6-benzo[a]pyrene quinone, induced oxidative DNA damage and ROS formation, respectively, in MCF-10A cells. In sensitive breast cancer cells, 5F 203 activated ROS-responsive kinases: c-Jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38). AhR antagonists (alpha-naphthoflavone, CH223191) or antioxidants (N-acetyl-l-cysteine, EUK-134) attenuated 5F 203-mediated JNK and p38 activation, depending on the cell type. Pharmacological inhibition of AhR, JNK, or p38 attenuated 5F 203-mediated increases in intracellular ROS, apoptosis, and single-strand break formation. 5F 203 induced the expression of cytoglobin, an oxidative stress-responsive gene and a putative tumor suppressor, which was diminished with AhR, JNK, or p38 inhibition. Additionally, 5F 203-mediated increases in ROS production and cytoglobin were suppressed in AHR100 cells (AhR ligand-unresponsive MCF-7 breast cancer cells). Our data demonstrate 5F 203 induces ROS-mediated DNA damage at least in part via AhR, JNK, or p38 activation and modulates the expression of oxidative stress-responsive genes such as cytoglobin to confer its anticancer action. PMID:25781201

  1. Electronic Structure and Oxidation State Changes in the Mn4Ca Cluster of Photosystem II

    SciTech Connect

    Yano, Junko; Pushkar, Yulia; Messinger, Johannes; Bergmann, Uwe; Glatzel, Pieter; Yachandra, Vittal K

    2007-08-03

    Oxygen-evolving complex (Mn4Ca cluster) of Photosystem II cycles through five intermediate states (Si-states, i =0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn4(III2,IV2) and Mn4(III,IV3) for S1 and S2 states, while it is still controversial for the S0 and S3 states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn4Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mncomplexes. The spectral changes in the Mn 1s2p3/2 RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S0 to S1, and S1 to S2 transitions is twice as large as that during the S2 to S3 transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

  2. Electronic Structure and Oxidation State Changes in the Mn (4) Ca Cluster of Photosystem II

    SciTech Connect

    Yano, J.; Pushkar, Y.; Messinger, J.; Bergmann, U.; Glatzel, P.; Yachandra, V.K.; /SLAC

    2012-08-17

    Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i = 0-4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra (metal spin state) simultaneously. We have collected data from PSII samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states were compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms.

  3. Electronic surface and dielectric interface states on GaN and AlGaN

    NASA Astrophysics Data System (ADS)

    Eller, Brianna S.; Yang, Jialing; Nemanich, Robert J.

    2013-09-01

    GaN and AlGaN have shown great potential in next-generation high-power electronic devices; however, they are plagued by a high density of interface states that affect device reliability and performance, resulting in large leakage current and current collapse. In this review, the authors summarize the current understanding of the gate leakage current and current collapse mechanisms, where awareness of the surface defects is the key to controlling and improving device performance. With this in mind, they present the current research on surface states on GaN and AlGaN and interface states on GaN and AlGaN-based heterostructures. Since GaN and AlGaN are polar materials, both are characterized by a large bound polarization charge on the order of 10(13) charges/cm(2) that requires compensation. The key is therefore to control the compensation charge such that the electronic states do not serve as electron traps or affect device performance and reliability. Band alignment modeling and measurement can help to determine the electronic state configuration. In particular, band bending can determine how the polarization bound charge is compensated; however, the band bending is extremely sensitive to the specific processing steps such as cleaning, dielectric or metal deposition, postdeposition or postmetallization treatments, which affect oxygen coverage, carbon contamination, structural defects, bonding configurations, defect states, absorbates, and Fermi pinning states. In many cases, the specific effects of these treatments on the surface and interface states are not entirely clear as the nature of the electronic states has been obscured in complexity and subtlety. Consequently, a more systematic and methodical approach may be required.

  4. 26 CFR 5f.103-2 - Public approval of industrial development bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... State constitution, charter or statute) by or under which the governmental unit is created, (B... the United States, the District of Columbia, or any political subdivision thereof. The term “political... governmental unit within a State (counting the State as a governmental unit within such State), then any one...

  5. Electron-Hole Asymmetric Chiral Breakdown of Reentrant Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Rossokhaty, A. V.; Baum, Y.; Folk, J. A.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.

    2016-10-01

    Reentrant integer quantum Hall (RIQH) states are believed to be correlated electron solid phases, although their microscopic description remains unclear. As bias current increases, longitudinal and Hall resistivities measured for these states exhibit multiple sharp breakdown transitions, a signature unique to RIQH states. A comparison of RIQH breakdown characteristics at multiple voltage probes indicates that these signatures can be ascribed to a phase boundary between broken-down and unbroken regions, spreading chirally from source and drain contacts as a function of bias current and passing voltage probes one by one. The chiral sense of the spreading is not set by the chirality of the edge state itself, instead depending on electron- or holelike character of the RIQH state.

  6. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  7. Configuration interaction with Kohn Sham orbitals and their relation to excited electronic states

    NASA Astrophysics Data System (ADS)

    Bouř, Petr

    2001-09-01

    Kohn-Sham (KS) orbitals in CH 2, formaldehyde and acetone molecules were used as reference states for configuration interaction (CI) instead of the usual Hartree-Fock (HF) orbitals. A little difference in overall accuracy of electronic excitation energies was found between these schemes. However, analysis of the wave functions indicated that Slater determinant with the KS orbitals is more suitable for construction of the electronic states. Typically, the main expansion coefficients for the CI/KS procedure were closer to unity than those for HF. The difference was most pronounced for the lowest-energy transitions, while the two methods provided more comparable results for the higher-energy states. Similar behaviour of singlet and triplet states was observed. The results justify the common practice of using the KS determinant as a wave function, for example in sum-over-states theories.

  8. Electron impact ionization of helium from its ground and metastable states

    NASA Astrophysics Data System (ADS)

    Zhang-jin, Chen; Ke-zun, Xu

    1999-05-01

    The triple differential cross sections for the ionization of helium from its ground state 1 1S and metastable states 2 1S and 2 3S in coplanar asymmetric geometry by 150, 250 and 400 eV electrons have been calculated in the BBK model. The present results are compared with the experimental data and/or the other theoretical ones. It has been found that the structures for the metastable states differ markedly from those for the ground state. The collision mechanisms for the new structures appearing in the cross sections for the ionization from metastable states have been analysed. And it has been shown how the intensity of recoil peak changes due to the size of the electron orbital. In addition, the optimal kinematical situations for the cross sections are explored for future experiment.

  9. Coexistence of Midgap Antiferromagnetic and Mott States in Undoped, Hole- and Electron-Doped Ambipolar Cuprates.

    PubMed

    Yin, Xinmao; Zeng, Shengwei; Das, Tanmoy; Baskaran, G; Asmara, Teguh Citra; Santoso, Iman; Yu, Xiaojiang; Diao, Caozheng; Yang, Ping; Breese, Mark B H; Venkatesan, T; Lin, Hsin; Ariando; Rusydi, Andrivo

    2016-05-13

    We report the first observation of the coexistence of a distinct midgap state and a Mott state in undoped and their evolution in electron and hole-doped ambipolar Y_{0.38}La_{0.62}(Ba_{0.82}La_{0.18})_{2}Cu_{3}O_{y} films using spectroscopic ellipsometry and x-ray absorption spectroscopies at the O K and Cu L_{3,2} edges. Supported by theoretical calculations, the midgap state is shown to originate from antiferromagnetic correlation. Surprisingly, while the magnetic state collapses and its correlation strength weakens with dopings, the Mott state in contrast moves toward a higher energy and its correlation strength increases. Our result provides important clues to the mechanism of electronic correlation strengths and superconductivity in cuprates.

  10. Spectroscopic Properties and Potential Energy Curves for 21 Electronic States of CrH

    NASA Astrophysics Data System (ADS)

    Dai, D. G.; Balasubramanian, K.

    1993-10-01

    Spectroscopic constants and potential energy curves of 21 electronic states of CrH are obtained using the all-electron complete active space multiconfiguration self-consistent field (CASMCSCF) followed by first-order configuration interaction (FOCI) and full second-order CI (SOCI) and multireference CI including Rydberg states calculations. The ground state of CrH is found to be of 6Σ+ symmetry with re = 1.690 Å, ωe = 1592 cm-1, De = 2.11 eV, and μe = 3.864 D at the SOCI level. Several optical transitions for CrH are predicted. Our computations support the reassignment of the state perturbing the A-X system to 4Σ+ suggested by Ram et al. Our computed spectroscopic constants for the A, X, and a 4Σ+ state are in excellent agreement with the experimental values reported by Ram et al.

  11. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  12. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  13. Manifestation of topological surface electron states in the photoelectromagnetic effect induced by terahertz laser radiation

    NASA Astrophysics Data System (ADS)

    Galeeva, A. V.; Egorova, S. G.; Chernichkin, V. I.; Tamm, M. E.; Yashina, L. V.; Rumyantsev, V. V.; Morozov, S. V.; Plank, H.; Danilov, S. N.; Ryabova, L. I.; Khokhlov, D. R.

    2016-09-01

    We demonstrate that measurements of the photoelectromagnetic effect using terahertz laser radiation may provide a unique opportunity to discriminate between the topological surface states and other highly conductive surface electron states. We performed a case study of mixed (Bi{}1-xIn x )2Se3 crystals undergoing a topological phase transformation due to the transition from the inverse to the direct electron energy spectrum in the crystal bulk at variation of the composition x. We show that for the topological insulator phase, the photoelectromagnetic effect amplitude is defined by the number of incident radiation quanta, whereas for the trivial insulator phase, it depends on the power in a laser pulse irrespective of its wavelength. We assume that such behavior is attributed to a strong damping of the electron-electron interaction in the topological insulator phase compared to the trivial insulator.

  14. Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anand; Skinner, Brian; Khalsa, Guru; Suslov, Alexey V.

    2016-09-01

    When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate. Our experiments probe deeply into the regime where theory has long predicted an interaction-driven charge density wave or Wigner crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current-voltage characteristics. We discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons.

  15. Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate.

    PubMed

    Bhattacharya, Anand; Skinner, Brian; Khalsa, Guru; Suslov, Alexey V

    2016-09-29

    When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate. Our experiments probe deeply into the regime where theory has long predicted an interaction-driven charge density wave or Wigner crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current-voltage characteristics. We discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons.

  16. Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H2 Molecules

    NASA Astrophysics Data System (ADS)

    Mi, Yonghao; Camus, Nicolas; Fechner, Lutz; Laux, Martin; Moshammer, Robert; Pfeifer, Thomas

    2017-05-01

    Channel-selective electron emission from strong-field photoionization of H2 molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H2 molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

  17. Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H_{2} Molecules.

    PubMed

    Mi, Yonghao; Camus, Nicolas; Fechner, Lutz; Laux, Martin; Moshammer, Robert; Pfeifer, Thomas

    2017-05-05

    Channel-selective electron emission from strong-field photoionization of H_{2} molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H_{2} molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

  18. Third-order polynomial model for analyzing stickup state laminated structure in flexible electronics

    NASA Astrophysics Data System (ADS)

    Meng, Xianhong; Wang, Zihao; Liu, Boya; Wang, Shuodao

    2017-05-01

    Laminated hard-soft integrated structures play a significant role in the fabrication and development of flexible electronics devices. Flexible electronics have advantageous characteristics such as soft and light-weight, can be folded, twisted, flipped inside-out, or be pasted onto other surfaces of arbitrary shapes. In this paper, an analytical model is presented to study the mechanics of laminated hard-soft structures in flexible electronics under a stickup state. Third-order polynomials are used to describe the displacement field, and the principle of virtual work is adopted to derive the governing equations and boundary conditions. The normal strain and the shear stress along the thickness direction in the bi-material region are obtained analytically, which agree well with the results from finite element analysis. The analytical model can be used to analyze stickup state laminated structures, and can serve as a valuable reference for the failure prediction and optimal design of flexible electronics in the future.

  19. Studying dissociative electron attachment through formation of heavy-Rydberg ion-pair states

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Buathong, Sitti; Dunning, F. Barry

    2016-05-01

    Following dissociative electron transfer in collisions between Rydberg atoms and electron-attaching targets, it is possible for the resulting pair of ions to remain electrostatically bound, forming heavy-Rydberg ion-pair states. Precise measurement of the velocity distributions of such ion-pair states provides information concerning the dissociation dynamics of the excited intermediates initially created by electron transfer. Here, electric-field-induced dissociation is used to detect the product ion pairs and observe their velocity distributions. These distributions are analyzed with the aid of a Monte Carlo collision code that models the electron transfer. Measurements with a number of different target species show that through this analysis, dissociation energetics, the branching ratios into different dissociation products, and the lifetimes of the excited intermediates can be examined. Research supported by the Robert A. Welch Foundation.

  20. Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate

    PubMed Central

    Bhattacharya, Anand; Skinner, Brian; Khalsa, Guru; Suslov, Alexey V.

    2016-01-01

    When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate. Our experiments probe deeply into the regime where theory has long predicted an interaction-driven charge density wave or Wigner crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current–voltage characteristics. We discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons. PMID:27680386