Science.gov

Sample records for 6 solar mass

  1. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate. PMID:25719667

  2. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate.

  3. An Unusual Coronal Mass Ejection: First Solar Wind Electron, Proton, Alpha Monitor (SWEPAM) Results from the Advanced Composition Explorer. Appendix 6

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Bame, S. J.; Barker, P. L.; Delapp, D. M.; Gosling, J. T.; Skoug, R. M.; Tokar, R. L.; Riley, P.; Feldman, W. C.; Santiago, E.

    2001-01-01

    This paper reports the first scientific results from the Solar Wind Electron Proton Alpha Monitor (SWEPAM) instrument on board the Advanced Composition Explorer (ACE) spacecraft. We analyzed a coronal mass ejection (CME) observed in the solar wind using data from early February, 1998. This event displayed several of the common signatures of CMEs, such as counterstreaming halo electrons and depressed ion and electron temperatures, as well as some unusual features. During a portion of the CME traversal, SWEPAM measured a very large helium to proton abundance ratio. Other heavy ions, with a set of ionization states consistent with normal (1 to 2x10(exp 6) K) coronal temperatures, were proportionately enhanced at this time. These observations suggest a source for at least some of the CME material, where heavy ions are initially concentrated relative to hydrogen and then accelerated up into the solar wind, independent of their mass and first ionization potential.

  4. 6Li from Solar Flares.

    PubMed

    Ramaty; Tatischeff; Thibaud; Kozlovsky; Mandzhavidze

    2000-05-10

    By introducing a hitherto ignored 6Li producing process, due to accelerated 3He reactions with 4He, we show that accelerated particle interactions in solar flares produce much more 6Li than 7Li. By normalizing our calculations to gamma-ray data, we demonstrate that the 6Li produced in solar flares, combined with photospheric 7Li, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare-produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.

  5. The Solar Mass Ejection Imager

    NASA Technical Reports Server (NTRS)

    Jackson, B. V.; Buffington, A.; Hick, P. L.; Kahler, S. W.; Altrock, R. C.; Gold, R. E.; Webb, D. F.

    1995-01-01

    We are designing a Solar Mass Ejection Imager (SMEI) capable of observing the Thomson-scattered signal from transient density features in the heliosphere from a spacecraft situated near AU. The imager is designed to trace these features, which include coronal mass ejections. corotating structures and shock waves, to elongations greater than 90 deg from the Sun. The instrument may be regarded as a progeny of the heliospheric imaging capability shown possible by the zodiacal-light photometers of the HELIOS spacecraft. The instrument we are designing would make more effective use of in-situ solar wind data from spacecraft in the vicinity of the imager by extending these observations to the surrounding environment. The observations from the instrument should allow deconvolution of these structures from the perspective views obtained as they pass the spacecraft. An imager at Earth could allow up to three days warning of the arrival of a mass ejection from the Sun .

  6. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  7. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    SciTech Connect

    Willott, Chris J.; Omont, Alain; Bergeron, Jacqueline

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  8. Solar mass emission and climate

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi

    2016-07-01

    The properties of the solar wind and the heliospheric magnetic field (HMF) have been directly measured by satellite observations since the early 1960s, thus covering only the declining phase of the Grand modern maximum (GMM) of solar activity. The information on the properties of solar wind and HMF in the earlier decades is based on different indices of geomagnetic activity, based on observations of the geomagnetic field since the 1840s. While the 19th century is covered by a rather small number of observations, there are several independent series of observations from the early 1900s onwards, yielding a fairly reliable view of solar wind and HMF over the whole GMM. Geomagnetic activity is mainly produced by two major solar wind structures: coronal mass ejections (CME) and high-speed solar wind streams (HSS), whose properties and occurrences differ notably. While CMEs cause the most dramatic individual storms, HSSs are the most effective long-term driver of magnetospheric energetic particles, for which homogeneous, long-term databases of fluxes have recently become available. The new long-term information also allows interesting possibilities to more reliably study the long-term evolution of solar effects in the Earth's atmosphere and climate. E.g., there is evidence that processes related to HSSs may modulate regional/hemispheric climate patterns, in particular the NAO/NAM oscillation. Moreover, other, independent climate effects due to the HMF have been suggested. We review the different approaches used to obtain information on the centennial solar wind and HMF, as well as their suggested atmospheric and climatic effects.

  9. Discovery of a 12 billion solar mass black hole at redshift 6.3 and its challenge to the black hole/galaxy co-evolution at cosmic dawn

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-08-01

    To date about 40 quasars with redshifts z>6 have been discovered. Each quasar harbors a black hole with a mass of about one billion solar masses. The existence of such black holes when the Universe was less than one billion years after the Big Bang presents significant challenges to theories of the formation and growth of black holes and the black hole/galaxy co-evolution. I will report a recent discovery of an ultra-luminous quasar at redshift z=6.30, which has an observed optical and near-infrared luminosity a few times greater than those of previously known z>6 quasars. With near-infrared spectroscopy, we obtain a black hole mass of about 12 billion solar masses, which is well consistent with the mass derived by assuming an Eddington-limited accretion. This ultra-luminous quasar with a 12 billion solar mass black hole at z>6 provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes in the early Universe. It raises further challenges to the black hole/galaxy co-evolution in the epoch of cosmic reionization because the black hole needs to grow much faster than the host galaxy.

  10. Mass ejections. [during solar flares

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.

    1980-01-01

    Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.

  11. Solar mass-varying neutrino oscillations.

    PubMed

    Barger, V; Huber, Patrick; Marfatia, Danny

    2005-11-18

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

  12. Early solar mass loss, element diffusion, and solar oscillation frequencies

    SciTech Connect

    Guzik, J.A.; Cox, A.N.

    1994-07-01

    Swenson and Faulkner, and Boothroyd et al. investigated the possibility that early main-sequence mass loss via a stronger early solar wind could be responsible for the observed solar lithium and beryllium depiction. This depletion requires a total mass loss of {approximately}0.1 M{circle_dot}, nearly independent of the mass loss timescale. We have calculated the evolution and oscillation frequencies of solar models including helium and element diffusion, and such early solar mass loss. We show that extreme mass loss of 1 M{circle_dot} is easily ruled out by the low-degree p-modes that probe the solar center and sense the steeper molecular weight gradient produced by the early phase of more rapid hydrogen burning. The effects on central structure are much smaller for models with an initial mass of 1.1 M{circle_dot} and exponentially-decreasing mass loss irate with e-folding timescale 0.45 Gyr. While such mass loss slightly worsens the agreement between observed and calculated low-degree modes, the observational uncertainties of several tenths of a microhertz weaken this conclusion. Surprisingly, the intermediate-degree modes with much smaller observational uncertainties that probe the convection zone bottom prove to be the key to discriminating between models: The early mass loss phase decreases the total amount of helium and heavier elements diffused from the convection zone, and the extent of the diffusion produced composition gradient just below the convection zone, deteriorating the agreement with observed frequencies for these modes. Thus it appears that oscillations can also rule out this smaller amount of gradual early main-sequence mass loss in the young Sun. The mass loss phase must be confined to substantially under a billion years, probably 0.5 Gyr or less, to simultaneously solve the solar Li/Be problem and avoid discrepancies with solar oscillation frequencies.

  13. Electric solar wind sail mass budget model

    NASA Astrophysics Data System (ADS)

    Janhunen, P.; Quarta, A. A.; Mengali, G.

    2013-02-01

    The electric solar wind sail (E-sail) is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  14. The solar cycle variation of coronal mass ejections and the solar wind mass flux

    NASA Technical Reports Server (NTRS)

    Webb, David F.; Howard, Russell A.

    1994-01-01

    Coronal mass ejections (CMEs) are an important aspect of coronal physics and a potentially significant contributor to perturbations of the solar wind, such as its mass flux. Sufficient data on CMEs are now available to permit study of their longer-term occurrency patterns. Here we present the results of a study of CME occurrence rates over more than a complete 11-year solar sunspot cycle and a comparison of these rates with those of other activity related to CMEs and with the solar wind particle flux at 1 AU. The study includes an evaluation of correlations to the CME rates, which include instrument duty cycles, visibility functions, mass detection thresholds, and geometrical considerations. The main results are as follows: (1) The frequency of occurrence of CMEs tends to track the solar activity cycle in both amplitude and phase; (2) the CME rates from different instruments, when corrected for both duty cycles and visibility functions, are reasonably consistent; (3) considering only longer-term averages, no one class of solar activity is better correlated with CME rate than any other; (4) the ratio of the annualized CME to solar wind mass flux tends to track the solar cycle; and (5) near solar maximum, CMEs can provide a significant fraction (i.e., approximately equals 15%) of the average mass flux to the near-ecliptic solar wind.

  15. Mass properties survey of solar array technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  16. Solar Eruptions: Coronal Mass Ejections and Flares

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    This lecture introduces the topic of Coronal mass ejections (CMEs) and solar flares, collectively known as solar eruptions. During solar eruptions, the released energy flows out from the Sun in the form of magnetized plasma and electromagnetic radiation. The electromagnetic radiation suddenly increases the ionization content of the ionosphere, thus impacting communication and navigation systems. Flares can be eruptive or confined. Eruptive flares accompany CMEs, while confined flares hav only electromagnetic signature. CMEs can drive MHD shocks that accelerate charged particles to very high energies in the interplanetary space, which pose radiation hazard to astronauts and space systems. CMEs heading in the direction of Earth arrive in about two days and impact Earth's magnetosphere, producing geomagnetic storms. The magnetic storms result in a number of effects including induced currnts that can disrupt power grids, railroads, and underground pipelines

  17. Status of the Solar Mass Ejection Imager

    NASA Astrophysics Data System (ADS)

    Johnston, J. C.; Radick, R. R.; Webb, D. F.

    2001-05-01

    The Solar Mass Ejection Imager (SMEI) is a proof-of-concept experiment designed to detect and track coronal mass ejections (CMEs) as they propagate from the Sun through interplanetary space to the Earth and beyond. SMEI will Image CMEs by sensing sunlight scattered from the free electrons in these structures (Thomson scattering). SMEI will be launched by a Titan II rocket into a circular, sun-synchronous (830 km) orbit in 2002 as part of the Space Test Program's CORIOLIS mission. SMEI will image the entire sky once per spacecraft orbit over a mission lifetime of three years. The major subsystems of SMEI are three electronic camera assemblies and a data-handling unit. Each camera consists of a baffle, a radiator, a bright object sensor, an electronics box, and a strongbox containing a shutter, optics and a CCD. Each camera images a 3x60 degree field. Together, they view a 180-degree slice of sky, and sweep over the entire sky once per orbit. SMEI's basic data product will be a 100-minute cadence of all-sky maps of heliospheric brightness, with stars removed, having an angular resolution of about one degree and a photometric precision of about 0.1%. Successful operation of SMEI will represent a major step in improving space weather forecasts. When combined with in-situ solar wind measurements from upstream monitors such as WIND and ACE, SMEI will provide one- to three-day predictions of impending geomagnetic storms at the Earth. SMEI will complement missions such as SoHO, GOES SXI, Solar-B, and STEREO by providing data relating solar drivers to terrestrial effects. Other benefits of SMEI will include observations of variable stars, extra-Solar planetary transits, novae and supernovae, comets and asteroids. The SMEI experiment is being designed and constructed by a team of scientists and engineers from the Air Force Research Laboratory, the University of Birmingham (UB) in the United Kingdom, the University of California at San Diego (UCSD), and Boston University. The

  18. Solar Mass Ejection Imager (SMEI) space experiment

    NASA Astrophysics Data System (ADS)

    Radick, Richard R.

    2001-12-01

    The Solar Mass Ejection Imager (SMEI) is a proof-of-concept space experiment designed to observe solar coronal mass ejections (CMEs) and forecast their arrival at Earth. SMEI will image CMEs by sensing sunlight scattered from the free electrons in these ejecta (i.e., Thomson scattering). SMEI will be launched by a Titan II rocket into a circular, 830-km, sun-synchronous orbit in mid-2002 as part of the Space Test Program's CORIOLIS mission. SMEI will image nearly the entire sky once per spacecraft orbit over a mission lifetime of three years. Successful operation of SMEI will represent a major step in improving space weather forecasts by providing one- to three-day predictions of geomagnetic storms at the Earth. The SMEI experiment is being designed and constructed by a team of scientists and engineers from the Air Force Research Laboratory, the University of Birmingham (UB) in the United Kingdom, the University of California at San Diego (UCSD), and Boston University. The Air Force, NASA, and UB are providing financial support.

  19. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3–10), {{{C}}}n{{{H}}}2n-2 (n = 3–10), and {{{C}}}n{{{H}}}2n-4 (n = 4–6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  20. Complex Hydrocarbon Chemistry in Interstellar and Solar System Ices Revealed: A Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry Analysis of Ethane (C2H6) and D6-Ethane (C2D6) Ices Exposed to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-08-01

    The irradiation of pure ethane (C2H6/C2D6) ices at 5.5 K, under ultrahigh vacuum conditions was conducted to investigate the formation of complex hydrocarbons via interaction with energetic electrons simulating the secondary electrons produced in the track of galactic cosmic rays. The chemical modifications of the ices were monitored in situ using Fourier transform infrared spectroscopy (FTIR) and during temperature-programmed desorption via mass spectrometry exploiting a quadrupole mass spectrometer with electron impact ionization (EI-QMS) as well as a reflectron time-of-flight mass spectrometer coupled to a photoionization source (PI-ReTOF-MS). FTIR confirmed previous ethane studies by detecting six molecules: methane (CH4), acetylene (C2H2), ethylene (C2H4), the ethyl radical (C2H5), 1-butene (C4H8), and n-butane (C4H10). However, the TPD phase, along with EI-QMS, and most importantly, PI-ReTOF-MS, revealed the formation of at least 23 hydrocarbons, many for the first time in ethane ice, which can be arranged in four groups with an increasing carbon-to-hydrogen ratio: C n H2n+2 (n = 3, 4, 6, 8, 10), C n H2n (n = 3-10), {{{C}}}n{{{H}}}2n-2 (n = 3-10), and {{{C}}}n{{{H}}}2n-4 (n = 4-6). The processing of simple ethane ices is relevant to the hydrocarbon chemistry in the interstellar medium, as ethane has been shown to be a major product of methane, as well as in the outer solar system. These data reveal that the processing of ethane ices can synthesize several key hydrocarbons such as C3H4 and C4H6 isomers, which ha­ve been found to synthesize polycyclic aromatic hydrocarbons like indene (C9H8) and naphtha­lene (C10H8) in the ISM and in hydrocarbon-rich atmospheres of planets and their moons such as Titan.

  1. Bringing an Effective Solar Sail Design Toward TRL 6

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; West, John; Reinert, Rich; Belvin, Keith; Pappa, Richard; Derbes, Billy

    2003-01-01

    Solar sails reflect photons streaming from the sun and convert some of the energy into thrust. This thrust, though small, is continuous and acts for the life of the mission without the need for propellant ( I ) . Recent advances in sail materials and ultra-low mass structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of NASA, has been developing a solar sail configuration to address NASA s future space propulsion needs. Utilizing inflatably deployed and Sub Tg rigidized boom components, this 10,000 sq m sailcraft achieves an areal density of 14.1 g/sq m and a characteristic acceleration of 0.58 mm/s . The entire configuration released by the upper stage has a mass of 232.9 kg and requires just 1.7 d of volume in the booster. After deployment, 92.2 kg of non-flight required equipment is jettisoned resulting in a sailcraft mass, including payload and control system, of 140.7 kg. This document outlines the accomplishments of a Phase 1 effort to advance the technology readiness level (TRL) of the concept from 3 toward a TRL of 6. The Phase 1 effort, the first of three proposed phases, addressed the design of the solar sail, its application to several missions currently under review at NASA, and developed a ground tes plan to bring the technology toward a TRL of 6.

  2. Solar origins of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  3. Isotopic Mass Fractionation of Solar Wind: Evidence from Fast and Slow Solar Wind Collected by the Genesis mission

    NASA Astrophysics Data System (ADS)

    Heber, Veronika S.; Baur, Heinrich; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wieler, Rainer; Wiens, Roger C.

    2012-11-01

    NASA's Genesis space mission returned samples of solar wind collected over ~2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 ± 2.1‰ for He, 4.2 ± 0.5‰ amu-1 for Ne and 2.6 ± 0.5‰ amu-1 for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  4. E sub 6 leptoquarks and the solar neutrino problem

    NASA Technical Reports Server (NTRS)

    Roulet, Esteban

    1991-01-01

    The possibility that non-conventional neutrino oscillations take place in the superstring inspired E sub 6 models is considered. In this context, the influence of leptoquark mediated interactions of the neutrinos with nucleons in the resonant flavor conversion is discussed. It is shown that this effect can be significant for v sub e - v sub tau oscillations if these neutrinos have masses required in the ordinary Mikheyev-Smirnov-Wolfenstein (MSW) effect, and may lead to a solution of the solar neutrino problem even in the absence of vacuum mixings. On the other hand, this model cannot lead to a resonant behavior in the sun if the neutrinos are massless.

  5. Mass-losing M supergiants in the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Jura, M.; Kleinmann, S. G.

    1990-01-01

    A list of the 21 mass-losing red supergiants (20 M type, one G type; L greater than 100,000 solar luminosities) within 2.5 kpc of the sun is compiled. These supergiants are highly evolved descendants of main-sequence stars with initial masses larger than 20 solar masses. The surface density is between about 1 and 2/sq kpc. As found previously, these stars are much less concentrated toward the Galactic center than W-R stars, which are also highly evolved massive stars. Although with considerable uncertainty, it is estimated that the mass return by the M supergiants is somewhere between 0.00001 and 0.00003 solar mass/sq kpc yr. In the hemisphere facing the Galactic center there is much less mass loss from M supergiants than from W-R stars, but, in the anticenter direction, the M supergiants return more mass than do the W-R stars. The duration of the M supergiant phase appears to be between 200,000 and 400,000 yr. During this phase, a star of initially at least 20 solar masses returns perhaps 3-10 solar masses into the interstellar medium.

  6. The mass-luminosity relation for stars of mass 1.0 to 0.08 solar mass

    NASA Technical Reports Server (NTRS)

    Henry, Todd J.; Mccarthy, Donald W., Jr.

    1993-01-01

    Mass-luminosity relations determined at IR wavelengths are presented for stars with masses 1.0 to 0.08 solar mass. Using IR speckle imaging techniques on a sample of nearby binaries, we have been able to concentrate on the lower main sequence, for which an accurate mass-luminosity calibration has remained problematic. In addition, the mass-visual luminosity relation for stars with 2.0-0.08 solar mass is produced by implementing new photometric relations linking V to JHK wavelengths for the nearby stars, supplemented with eclipsing binary information. These relations predict that objects with masses of about 0.08 solar mass have M(K) of about 10 and M(V) of about 18.

  7. High temperature - low mass solar blanket

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1979-01-01

    Interconnect materials and designs for use with ultrathin silicon solar cells are discussed, as well as the results of an investigation of the applicability of parallel-gap resistance welding for interconnecting these cells. Data relating contact pull strength and cell electrical degradation to variations in welding parameters such as time, voltage and pressure are presented. Methods for bonding ultrathin cells to flexible substances and for bonding thin (75 micrometers) covers to these cells are described. Also, factors influencing fabrication yield and approaches for increasing yield are discussed. The results of vacuum thermal cycling and thermal soak tests on prototype ultrathin cell test coupons and one solar module blanket are presented.

  8. MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING

    SciTech Connect

    Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Backer, D. C.; Bailes, M.; Bhat, N. D. R.; Van Straten, W.; Coles, W.; Demorest, P. B.; Ferdman, R. D.; Purver, M. B.; Folkner, W. M.; Hotan, A. W.; Kramer, M.; Lommen, A. N.; Nice, D. J.; Stairs, I. H.

    2010-09-10

    High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x10{sup -4} M {sub sun}, being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.

  9. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. V. A LOW ECCENTRICITY BROWN DWARF FROM THE DRIEST PART OF THE DESERT, MARVELS-6b

    SciTech Connect

    De Lee, Nathan; Stassun, Keivan G.; Cargile, Phillip; Ge, Jian; Fleming, Scott W.; Lee, Brian L.; Chang Liang; Crepp, Justin R.; Eastman, Jason; Gaudi, B. Scott; Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Allende Prieto, Carlos; Ghezzi, Luan; Wisniewski, John P.; Wood-Vasey, W. Michael; Agol, Eric; Barnes, Rory; Bizyaev, Dmitry; and others

    2013-06-15

    We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 {+-} 2.0 M{sub Jup} to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M{sub Sun }, and thus it is a high-confidence BD companion. It has a moderately long orbital period of 47.8929{sup +0.0063}{sub -0.0062} days with a low eccentricity of 0.1442{sup +0.0078}{sub -0.0073}, and a semi-amplitude of 1644{sup +12}{sub -13} m s{sup -1}. Moderate resolution spectroscopy of the host star has determined the following parameters: T{sub eff} = 5598 {+-} 63, log g = 4.44 {+-} 0.17, and [Fe/H] = +0.40 {+-} 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M{sub *} = 1.11 {+-} 0.11 M{sub Sun} and R{sub *} = 1.06 {+-} 0.23 R{sub Sun} with an age consistent with less than {approx}6 Gyr at a distance of 219 {+-} 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7.''7 from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs. It also exists in an underdense region in both period/eccentricity and metallicity/eccentricity space.

  10. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-01

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes.

  11. INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Temmer, Manuela; Rollett, Tanja; Moestl, Christian; Veronig, Astrid M.; Vrsnak, Bojan; Odstrcil, Dusan

    2011-12-20

    We study three coronal mass ejection (CME)/interplanetary coronal mass ejection (ICME) events (2008 June 1-6, 2009 February 13-18, and 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of Solar Terrestrial Relations Observatory Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propagation in interplanetary (IP) space that is governed by two forces: the propelling Lorentz force and the drag force. We address the question: which heliospheric distance range does the drag become dominant and the CME adjust to the solar wind flow. To this end, we analyze speed differences between ICMEs and the ambient solar wind flow as a function of distance. The evolution of the ambient solar wind flow is derived from ENLIL three-dimensional MHD model runs using different solar wind models, namely, Wang-Sheeley-Arge and MHD-Around-A-Sphere. Comparing the measured CME kinematics with the solar wind models, we find that the CME speed becomes adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 R{sub Sun }, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to obtain greater insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite for predicting their 1 AU transit times.

  12. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-11-20

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  13. Defining a solar-ozone response for CMIP6

    NASA Astrophysics Data System (ADS)

    Maycock, Amanda; Matthes, Katja; Tegtmeier, Susann; Thieblemont, Remi; Hood, Lon

    2016-04-01

    Variations in solar irradiance affect stratospheric ozone abundances through effects on photolysis rates and temperatures. This solar-ozone feedback enhances the warming of the upper stratosphere at solar maximum and is a key part of the atmospheric response to solar variability. The potential to constrain the magnitude and structure of the solar-ozone feedback is partly limited by the paucity of long-term continuous satellite measurements. This raises issues around how to include the solar-ozone feedback in climate models. For CMIP5, models lacking interactive chemistry were recommended to use the SPARC AC&C ozone dataset. This included a solar-ozone feedback derived from SAGE II version 6.2 volume mixing ratio (vmr) data. We highlight that the solar-ozone signal in the new SAGE II v7.0 vmr data show a smaller peak near the tropical stratopause than in v6.2. However, the two versions show greater consistency in native number density coordinates, demonstrating that differences in the temperature data used for conversion to vmr must account for the major differences. Analysis of an ensemble of chemistry-climate models reveals greater similarities across individual models than is found for the different satellite datasets. We therefore propose that the solar-ozone signal for CMIP6 be derived from these model simulations given their complete spatial and temporal sampling. This study is in support of the SolarMIP taskforce aimed at defining a solar-ozone feedback for the CMIP6 ozone database.

  14. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    NASA Astrophysics Data System (ADS)

    Telloni, Daniele; Carbone, Vincenzo; Lepreti, Fabio; Antonucci, Ester

    2016-03-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  15. Rocket calibration of the Nimbus 6 solar constant measurements

    NASA Technical Reports Server (NTRS)

    Duncan, C. H.; Harrison, R. G.; Hickey, J. R.; Kendall, J. M., Jr.; Thekaekara, M. P.; Willson, R. C.

    1977-01-01

    Total solar irradiance was observed simultaneously outside the earth's atmosphere by three types of absolute cavity radiometers and duplicates of four of the Nimbus 6 Earth Radiation Budget (ERB) solar channels in a June 1976 sounding rocket experiment. The preliminary average solar constant result from the cavity radiometers is 1367 Wm (-2) with an uncertainty of less than + or - 0.5% in S.I. units. The duplicate ERB channel 3 on the rocket gave a value of 1389 Wm (-2) which agreed exactly with the Nimbus 6 ERB channel 3 measurement made simultaneously with the rocket flight.

  16. Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Goldstein, Richard M.

    1994-01-01

    Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.

  17. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    An investigation is conducted concerning the mass-fractionation effects produced in connection with the bombardment of the moon by the solar wind. Most of the material ejected by sputtering escapes the moon's gravity, but some returning matter settles back onto the lunar surface. This material, which is somewhat richer in heavier atoms than the starting surface, is incorporated into the heavily radiation-damaged outer surfaces of grains. The investigation indicates that sputtering of the lunar surface by the solar wind will give rise to significant surface heavy atom enrichments if the grain surfaces are allowed to come into sputtering equilibrium.

  18. Solar System Portrait - Views of 6 Planets

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length).

  19. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  20. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  1. Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Rayl, G.

    1978-01-01

    A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.

  2. Mass fractionation of the lunar surface by solar wind sputtering

    NASA Technical Reports Server (NTRS)

    Switkowski, Z. E.; Haff, P. K.; Tombrello, T. A.; Burnett, D. S.

    1975-01-01

    The sputtering of the lunar surface by the solar wind is examined as a possible mechanism of mass fractionation. Simple arguments based on current theories of sputtering and the ballistics of the sputtered atoms suggest that most ejected atoms will have sufficiently high energy to escape lunar gravity. However, the fraction of atoms which falls back to the surface is enriched in the heavier atomic components relative to the lighter ones. This material is incorporated into the heavily radiation-damaged outer surfaces of grains where it is subject to resputtering. Over the course of several hundred years an equilibrium surface layer, enriched in heavier atoms, is found to form. The dependence of the calculated results upon the sputtering rate and on the details of the energy spectrum of sputtered particles is investigated. It is concluded that mass fractionation by solar wind sputtering is likely to be an important phenomenon on the lunar surface.

  3. Early solar mass loss, opacity uncertainties, and the solar abundance problem

    SciTech Connect

    Guzik, Joyce Ann; Keady, John; Kilcrease, David

    2009-01-01

    Solar models calibrated with the new element abundance mixture of Asplund et al. published in 2005 no longer produce good agreement with the sound speed, convection zone depth, and convection zone helium abundance inferred from solar oscillation data. Attempts to modify the input physics of the standard model, for example, by including enhanced diffusion, increased opacities, accretion, convective overshoot, or gravity waves have not restored the good agreement attained with the prior abundances. Here we present new models including early mass loss via a stronger solar wind. Early mass loss has been investigated prior to the solar abundance problem to deplete lithium and resolve the 'faint early sun problem'. We find that mass loss modifies the core structure and deepens the convection zone, and so improves agreement with oscillation data using the new abundances: however the amount of mass loss must be small to avoid destroying all of the surface lithium, and agreement is not fully restored. We also considered the prospects for increasing solar interior opacities. In order to increase mixture opacities by the 30% required to mitigate the abundance problem, the opacities of individual elements (e.g., O, N, C, and Fe) must be revised by a factor of two to three for solar interior conditions: we are investigating the possibility of broader calculated line wings for bound-bound transitions at the relevant temperatures to enhance opacity. We find that including all of the elements in the AGS05 opacity mixture (through uranium at atomic number Z=92) instead of only the 17 elements in the OPAL opacity mixture increases opacities by a negligible 0.2%.

  4. Energetic Correlation Between Solar Flares and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Medlin, Drew A.; Haga, Leah; Schwartz, Richard a.; Tolbert, A. Kimberly

    2007-01-01

    We find a strong correlation between the kinetic energies (KEs) of the coronal mass ejections (CMEs) and the radiated energies of the associated solar flares for the events that occurred during the period of intense solar activity between 18 October and 08 November 2003. CME start times, speeds, mass and KEs were taken from Gopalswamy et al. (2005), who used SOHO/LASCO observations. The GOES observations of the associated flares were analyzed to find the peak soft X-ray (SXR) flux, the radiated energy in SXRs (L(sub sxR)), and the radiated energy from the emitting plasma across all wavelengths (L(sub hot)). RHESSI observations were also used to find the energy in non-thermal electrons, ions, and the plasma thermal energy for some events. For two events, SORCE/TIM observations of the total solar irradiance during a flare were also available to give the total radiated flare energy (L(sub total)).W e find that the total flare energies of the larger events are of the same order of magnitude as the CME KE with a stronger correlation than has been found in the past for other time intervals.

  5. Effect of solar Coronal Mass Ejections on the ionosphere

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Fridman, Vladimir; Rakhlin, Alexander; Pershin, Alexsander; Vybornov, Feodor

    The influence of solar processes on the state of near-earth space is constantly the object of serious study. First of all the solar radiation affects the parameters of the ionosphere and ionizing processes in it. The basic level indicator of the ionized particles is the critical frequency f0F2 of the reflection of radio signal during sounding of ionosphere. Understanding of the role of Coronal Mass Ejections (CME) in global solar-terrestrial processes allow us to put up the problem about their possible influence on near Earth’ processes and ionosphere behavior. Earlier the authors proposed the procedure of the detection the influence of CMEs on the differential parameters of the upper ionosphere Deltaf0F2 as more sensitive in comparison with the traditional methods. First results were based on the data of regular observations of critical frequency f0F2 during the cycle of solar activity (1975-1986). To verify the relationship discovered we used in the proposed study the data of critical frequency f0F2, determined from uniform ionograms obtained with the modern digital Ionosonde CADI. This ionosonde is installed at the landfill NIRFI "Vasilsursk" (near Nizhny Novgorod), and working program of regular observations allowed to obtain ionograms at least once in 1 minutes. The accuracy of determining the critical frequency was less than ± 50 kHz. There are many examples of time coincidence between the periods of CMEs existence and negative deflection in Deltaf0F2 behaviour.

  6. AN IMPROVEMENT ON MASS CALCULATIONS OF SOLAR CORONAL MASS EJECTIONS VIA POLARIMETRIC RECONSTRUCTION

    SciTech Connect

    Dai, Xinghua; Wang, Huaning; Huang, Xin; Du, Zhanle; He, Han

    2015-03-01

    The mass of a coronal mass ejection (CME) is calculated from the measured brightness and assumed geometry of Thomson scattering. The simplest geometry for mass calculations is to assume that all of the electrons are in the plane of the sky (POS). With additional information like source region or multiviewpoint observations, the mass can be calculated more precisely under the assumption that the entire CME is in a plane defined by its trajectory. Polarization measurements provide information on the average angle of the CME electrons along the line of sight of each CCD pixel from the POS, and this can further improve the mass calculations as discussed here. A CME event initiating on 2012 July 23 at 2:20 UT observed by the Solar Terrestrial Relations Observatory is employed to validate our method.

  7. Formation of planets around stars of various masses. I - Formulation and a star of one solar mass

    NASA Astrophysics Data System (ADS)

    Nakano, T.

    1987-01-01

    The processes of planet formation are investigated both in a gaseous nebula and after the gaseous nebula has been blown away. It is shown that a protoplanet of mass more than about 100 times the representative mass of the planetesimal rapidly captures the planetesimals whose orbital semimajor axes are near its own. Therefore the growth of the protoplanet is determined by the migration rate of planetesimals to the region where they can be captured. The growth and capture of planetesimals is investigated and the time of planet formation is determined as a function of distance from the central star. As an example, planet formation around a star of 1 solar mass is investigated. The earth is found to form at t of about 2 x 10 to the 6th yr in the gaseous nebula. The protoplanets at Jovian and Saturnian orbits grow to 10 times the earth mass at 2 x 10 to the 7th yr and 5 x 10 to the 7th yr, respectively, in the gaseous nebula. Therefore they can capture large amounts of gas and grow to giant planets as long as the gaseous nebula survives for 5 x 10 to the 7th yr in these regions. The formation time of Neptune in a gas-free state is found to be 3 x 10 to the 9th yr, which is shorter than the age of the solar system.

  8. Identification of Interplanetary Coronal Mass Ejections at 1 AU Using Multiple Solar Wind Plasma Composition Anomalies

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2004-01-01

    We investigate the use of multiple simultaneous solar wind plasma compositional anomalies, relative to the composition of the ambient solar wind, for identifying interplanetary coronal mass ejection (ICME) plasma. We first summarize the characteristics of several solar wind plasma composition signatures (O(+7)/O(+6), Mg/O, Ne/O, Fe charge states, He/p) observed by the ACE and WIND spacecraft within the ICMEs during 1996 - 2002 identsed by Cane and Richardson. We then develop a set of simple criteria that may be used to identify such compositional anomalies, and hence potential ICMEs. To distinguish these anomalies from the normal variations seen in ambient solar wind composition, which depend on the wind speed, we compare observed compositional signatures with those 'expected' in ambient solar wind with the same solar wind speed. This method identifies anomalies more effectively than the use of fixed thresholds. The occurrence rates of individual composition anomalies within ICMEs range from approx. 70% for enhanced iron and oxygen charge states to approx. 30% for enhanced He/p (> 0.06) and Ne/O, and are generally higher in magnetic clouds than other ICMEs. Intervals of multiple anomalies are usually associated with ICMEs, and provide a basis for the identification of the majority of ICMEs. We estimate that Cane and Richardson, who did not refer to composition data, probably identitied approx. 90% of the ICMEs present. However, around 10% of their ICMEs have weak compositional anomalies, suggesting that the presence of such signatures does not provide a necessary requirement for an ICME. We note a remarkably similar correlation between the Mg/O and O(7)/O(6) ratios in hourly-averaged data both within ICMEs and the ambient solar wind. This 'universal' relationship suggests that a similar process (such as minor ion heating by waves inside coronal magnetic field loops) produces the first-ionization potential bias and ion freezing-in temperatures in the source regions

  9. Solar Energetic Particle Production by Coronal Mass Ejection-driven Shocks in Solar Fast-Wind Regions

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Reames, D. V.

    2003-02-01

    Gradual solar energetic particle (SEP) events at 1 AU are produced by coronal/interplanetary shocks driven by coronal mass ejections (CMEs). Fast (vCME>~900 km s-1) CMEs might produce stronger shocks in solar slow-wind regions, where the flow and fast-mode MHD wave speeds are low, than in fast-wind regions, where those speeds are much higher. At 1 AU the O+7/O+6 ratios distinguish between those two kinds of wind streams. We use the 20 MeV proton event intensities from the EPACT instrument on Wind, the associated CMEs observed with the LASCO coronagraph on SOHO, and the ACE SWICS solar wind values of O+7/O+6 to look for variations of peak SEP intensities as a function of O+7/O+6. No significant dependence of the SEP intensities on O+7/O+6 is found for either poorly connected or well-connected CME source regions or for different CME speed ranges. However, in the 3 yr study period we find only five cases of SEP events in fast wind, defined by regions of O+7/O+6<0.15. We suggest that in coronal holes SEP acceleration may take place only in the plume regions, where the flow and Alfvén speeds are low. A broad range of angular widths are associated with fast (vCME>=900 km s-1) CMEs, but we find that no fast CMEs with widths less than 60° are associated with SEP events. On the other hand, nearly all fast halo CMEs are associated with SEP events. Thus, the CME widths are more important in SEP production than previously thought, but the speed of the solar wind source regions in which SEPs are produced may not be a factor.

  10. Impurity characterization of solar wind collectors for the genesis discovery mission by resonance ionization mass spectrometry.

    SciTech Connect

    Calaway, W. F.

    1999-02-01

    NASA's Genesis Discovery Mission is designed to collect solar matter and return it to earth for analysis. The mission consists of launching a spacecraft that carries high purity collector materials, inserting the spacecraft into a halo orbit about the L1 sun-earth libration point, exposing the collectors to the solar wind for two years, and then returning the collectors to earth. The collectors will then be made available for analysis by various methods to determine the elemental and isotopic abundance of the solar wind. In preparation for this mission, potential collector materials are being characterized to determine baseline impurity levels and to assess detection limits for various analysis techniques. As part of the effort, potential solar wind collector materials have been analyzed using resonance ionization mass spectrometry (RIMS). RIMS is a particularly sensitivity variation of secondary neutral mass spectrometry that employs resonantly enhanced multiphoton ionization (REMPI) to selectively postionize an element of interest, and thus discriminates between low levels of that element and the bulk material. The high sensitivity and selectivity of RIMS allow detection of very low concentrations while consuming only small amounts of sample. Thus, RIMS is well suited for detection of many heavy elements in the solar wind, since metals heavier than Fe are expected to range in concentrations from 1 ppm to 0.2 ppt. In addition, RIMS will be able to determine concentration profiles as a function of depth for these implanted solar wind elements effectively separating them from terrestrial contaminants. RIMS analyses to determine Ti concentrations in Si and Ge samples have been measured. Results indicate that the detection limit for RIMS analysis of Ti is below 100 ppt for 10{sup 6} averages. Background analyses of the mass spectra indicate that detection limits for heavier elements will be similar. Furthermore, detection limits near 1 ppt are possible with higher

  11. Mass motion in upper solar chromosphere detected from solar eclipse observation

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang

    2016-05-01

    The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.

  12. Solar wind control of magnetospheric pressure (CDAW 6)

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1985-01-01

    The CDAW 6 data base is used to compare solar wind and magnetospheric pressures. The flaring angle of the tail magnetopause is determined by assuming that the component of solar wind pressure normal to the tail boundary is equal to the total pressure within the tail. Results indicate an increase in the tail flaring angle from 18 deg to 32 deg prior to the 1055 substorm onset and a decrease to 25 deg after the onset. This behavior supports the concept of tail energy storage before the substorm and subsequent release after the onset.

  13. Understanding the Global Structure and Evolution of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2004-01-01

    This report summarizes the technical progress made during the first six months of the second year of the NASA Living with a Star program contract Understanding the global structure and evolution of coronal mass ejections in the solar wind, between NASA and Science Applications International Corporation, and covers the period November 18, 2003 - May 17,2004. Under this contract SAIC has conducted numerical and data analysis related to fundamental issues concerning the origin, intrinsic properties, global structure, and evolution of coronal mass ejections in the solar wind. During this working period we have focused on a quantitative assessment of 5 flux rope fitting techniques. In the following sections we summarize the main aspects of this work and our proposed investigation plan for the next reporting period. Thus far, our investigation has resulted in 6 refereed scientific publications and we have presented the results at a number of scientific meetings and workshops.

  14. The distribution of mass and angular momentum in the solar system

    SciTech Connect

    Marochnik, L.S.; Mukhin, L.M.; Sagdeev, R.Z. )

    1989-01-01

    This book describes the contribution of the comets in the Oort cloud to the angular momentum of the solar system. Topics covered include: Nuclear mass of the new comets observed, Mass of the Oort cloud, Mass distribution in the solar system, Zone of comet formation, Angular momentum of the Oort cloud, and Angular momentum of the Hills cloud.

  15. The structures, mass motions and footpoints of solar filaments

    NASA Astrophysics Data System (ADS)

    Venkataramanasastry, Aparna

    This thesis focuses on identifying the mechanism by which solar filaments acquire mass. Some of the speculations for how a filament gets its mass are 1) injection of mass from the chromosphere into the filament structure, and 2) condensation of mass from the corona into the region of the filament channel. Mass motion at the footpoints of the filaments is studied to detect mass entering and leaving the filament body. The magnetic properties of the footpoints of the filaments are also studied. Recommendations are drawn by comparing observational properties obtained in this study with the features used in some of the previously developed models. The datasets used for this study are high-resolution image sets of centerline and Doppler wings of Halpha, obtained using the Dutch Open Telescope (DOT). The data were obtained on Oct 30, 2010. The data set contains three filaments in an active region in the northern hemisphere of the Sun. The images in each wavelength are aligned and made into movies to find the footpoints of the filaments through which the mass goes into and comes out of the filaments from and to the chromosphere, respectively. The magnetic properties of the footpoints are studied by overlaying the magnetogram images with the DOT images by using full-disk Halpha images for matching the features in the two. Of the three filaments, one of the filaments is observed to be stable throughout the duration of the observations; another filament erupts after about two hours of the beginning of observations; and the third filament is in its early stages of formation. The ends of the stable filament are clearly observed whereas the ends of the erupting filament and the forming filament are observed clearly intermittently during the duration of the observations. The animations of the region near the ends of filament 1 reveal definite injection and draining of mass via the footpoints into and out of the filament. The mass motion into and out of the filaments are observed

  16. Ion composition experiment. [ISEE-C solar wind ion mass spectroscopy

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Ogilvie, K. W.; Bochsler, P. A.; Geiss, J.

    1978-01-01

    An investigation using a novel ion mass spectrometer for measuring the ionic composition of the solar wind from the ISEE-C spacecraft is described. The resolution and dynamic range of the instrument are sufficient to be able to resolve up to twelve individual ions or groups of ions. This will permit the solution of a number of fundamental problems related to solar abundances and the formation of the solar wind. The spectrometer is composed of a stigmatic Wien filter and hemispherical electrostatic energy analyzer. The use of curved electric field plates in the filter results in a substantial saving of weight with respect to a conventional filter of the same resolution and angular acceptance. The spectrometer is controlled by a microprocessor based on a special purpose computer which has three modes of operations: full and partial survey modes and a search mode. In the search mode, the instrument locks on to the solar wind. This allows four times the time resolution of the full survey mode and yields a full mass spectrum every 12.6 min.

  17. Magnetic structure and origin of counter-streaming mass flows in solar prominences

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng

    2015-08-01

    The magnetic structure and origin of counter-streaming mass flows in solar prominences are hitherto unknown, however, these issues are vitally important for understanding the instability and eruption of solar and stellar prominences, as well as the associated coronal mass ejections (CMEs). Here we report high-resolution observations of a quiescent solar prominence that clearly manifests the magnetic structure and origin of counter-streaming mass flows in solar prominences. Based on the observational results, we propose a new prominence model in the present paper, which can reconcile many discrepancies in previous studies, for example, the distribution of magnetic fields in solar prominences, the relationship between the photospheric magnetic fields and the ends of prominence feet, as well as the origin of counterstreaming mass flows in solar prominences. In addition, we also find that the photospheric pressure-driven three and five minutes oscillations can effectively modulate the kinematics of solar prominences.

  18. Interaction between Two Coronal Mass Ejections in the 2013 May 22 Large Solar Energetic Particle Event

    NASA Astrophysics Data System (ADS)

    Ding, Liu-Guan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao; Xu, Fei; Gu, Bin; Zhang, Ya-Nan

    2014-10-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ~08:48 UT and ~13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ~6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ~20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event.

  19. INTERACTION BETWEEN TWO CORONAL MASS EJECTIONS IN THE 2013 MAY 22 LARGE SOLAR ENERGETIC PARTICLE EVENT

    SciTech Connect

    Ding, Liu-Guan; Xu, Fei; Gu, Bin; Zhang, Ya-Nan; Li, Gang; Jiang, Yong; Le, Gui-Ming; Shen, Cheng-Long; Wang, Yu-Ming; Chen, Yao

    2014-10-01

    We investigate the eruption and interaction of two coronal mass ejections (CMEs) during the large 2013 May 22 solar energetic particle event using multiple spacecraft observations. Two CMEs, having similar propagation directions, were found to erupt from two nearby active regions (ARs), AR11748 and AR11745, at ∼08:48 UT and ∼13:25 UT, respectively. The second CME was faster than the first CME. Using the graduated cylindrical shell model, we reconstructed the propagation of these two CMEs and found that the leading edge of the second CME caught up with the trailing edge of the first CME at a height of ∼6 solar radii. After about two hours, the leading edges of the two CMEs merged at a height of ∼20 solar radii. Type II solar radio bursts showed strong enhancement during this two hour period. Using the velocity dispersion method, we obtained the solar particle release (SPR) time and the path length for energetic electrons. Further assuming that energetic protons propagated along the same interplanetary magnetic field, we also obtained the SPR time for energetic protons, which were close to that of electrons. These release times agreed with the time when the second CME caught up with the trailing edge of the first CME, indicating that the CME-CME interaction (and shock-CME interaction) plays an important role in the process of particle acceleration in this event.

  20. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    NASA Technical Reports Server (NTRS)

    Gosling, Jack T.

    1994-01-01

    Ulysses provided the first direct measurements of coronal mass ejections (CME's) in the solar wind at high heliographic latitudes. An overview of new results from the plasma experiment on Ulysses and magnetic field measurements, during the spacecraft's first excursion to high solar latitudes are summarized. A striking aspect of the high-latitude CME's observed is that they all had high speeds, with the overall average speed being 730 km/sec. A new class of forward-reverse shock pairs, associated with expansion of CME's was discovered at high latitudes. Of six certain CME's observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CME's results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CME's.

  1. Coronal mass ejections in the solar wind at high solar latitudes: An overview

    SciTech Connect

    Gosling, J.T.

    1994-10-01

    Ulysses has provided the first direct measurements of coronal mass ejections, CMES, in the solar wind at high heliographic latitudes. This paper provides an overview of new and unexpected results from the plasma experiment on Ulysses, supplemented with magnetic field measurements, during the spacecraft`s first excursion to high solar latitudes. A striking aspect of the high-latitude CMEs observed is that they all had high speeds, with the overall average speed being 730 km s{sup {minus}1}. A new class of forward-reverse shock pairs, associated with expansion of CMES, has been discovered at high latitudes. Of six certain CMEs observed at high latitudes, three have associated shock pairs of this nature. Combined Ulysses and Yohkoh observations suggest that the flux rope topology characteristic of some CMEs results from reconnection within the legs of neighboring magnetic loops embedded within the escaping CMES.

  2. Circumstellar discs around solar mass stars in NGC 6611

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.; Jeffries, R. D.; van Loon, J. Th.; Littlefair, S. P.; Naylor, T.

    2005-03-01

    We have performed IZJHKL' observations in NGC 6611, the young cluster that ionizes the Eagle Nebula. We have discovered a rich pre-main sequence concentrated around the O-stars in the cluster. As measured by their L'-band excesses, at least 58+/-5 per cent of the pre-main sequence objects (0.45 < M < 2Msolar) have circumstellar discs. By comparing this disc frequency with frequencies determined for regions where the pre-main sequence stars are subject to less ionizing radiation, we find no evidence that the harsher environment of NGC 6611 (approximately an order of magnitude more ionizing Lyman continuum radiation than the Trapezium cluster) significantly hastens the dissipation of circumstellar discs around solar mass stars.

  3. CORONAL MASS EJECTIONS AND SUNSPOTS-SOLAR CYCLE PERSPECTIVE

    SciTech Connect

    Ramesh, K. B.

    2010-03-20

    Recent studies have indicated that the occurrence of the maxima of coronal mass ejection (CME) rate and sunspot number (SSN) were nearly two years apart. We find that the two-year lag of CME rate manifests only when the SSN index is considered and the lag is minimal (two-three months) when the sunspot area is considered. CMEs with speeds greater than the average speed follow the sunspot cycle much better than the entire population of CMEs. Analysis of the linear speeds of CMEs further indicates that during the descending phase of the solar cycle the loss of magnetic flux is through more frequent and less energetic CMEs. We emphasize that the magnetic field attaining the nonpotentiality that represents the free energy content, rather than the flux content as measured by the area of the active region, plays an important role in producing CMEs.

  4. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  5. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes. PMID:27049949

  6. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  7. Reduction of Martian Sample Return Mission Launch Mass with Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany E.; Heaton, Andy F.; Young, Roy; Baysinger, Mike; Schnell, Andrew R.

    2013-01-01

    Solar sails have the potential to provide mass and cost savings for spacecraft traveling within the innter solar system. Companies like L'Garde have demonstrated sail manufacturability and various i-space development methods. The purpose of this study was to evaluate a current Mars sample return architecture and to determine how cost and mass would be reduced by incorporating a solar sail propulsion system. The team validated the design proposed by L'Garde, and scaled the design based on a trajectory analysis. Using the solar sail design reduced the required mass, eliminating one of the three launches required in the original architecture.

  8. Reduction of Martian Sample Return Mission Launch Mass with Solar Sail Propulsion

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany E.; Heaton, Andrew; Thomas, Scott; Thomas, Dan; Young, Roy; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2013-01-01

    Solar sails have the potential to provide mass and cost savings for spacecraft traveling within the inner solar system. Companies like L'Garde have demonstrated sail manufacturability and various in-space deployment methods. The purpose of this study was to evaluate a current Mars sample return architecture and to determine how cost and mass would be reduced by incorporating a solar sail propulsion system. The team validated the design proposed by L'Garde, and scaled the design based on a trajectory analysis. Using the solar sail design reduced the required mass, eliminating one of the three launches required in the original architecture.

  9. Shielding Calculations for the BDMS UF6 Mass Flow Meter

    SciTech Connect

    Radev, R; Hall, J

    2001-09-13

    We performed Monte Carlo calculations of the neutron and gamma ray spectra and neutron and gamma dose rates outside the shielding of the UF{sub 6} mass flowmeter. The UF{sub 6} mass flowmeter and the UF{sub 6} mass flowmeter are the two main components of the Blend Down Monitoring System (BDMS) equipment. The BDMS equipment is designed to continuously monitor the UF{sub 6} enrichment and mass flow rates in processing pipes at uranium facilities. The UF{sub 6} mass flowmeter incorporates four {sup 252}Cf neutron sources, surrounded by a polyethylene shielding block. The uranium fission products generated by the {sup 252}Cf neutrons are detected down the pipe, thus confirming the UF{sub 6} mass flow rate. The dose calculations used both U.S. and Russian gamma and neutron fluence-to-dose conversion coefficients. The purpose of these calculations was to facilitate proper interpretation of the neutron dose rate measurements from rem meters (e.g., rem balls) outside of BDMS shielding. An accurate determination of the dose rate is particular interest in that it enables dose rates to be compared with the applicable regulatory limit. The calculations show that neutrons outside of BDMS shielding are significantly reduced in energy, i.e., the spectrum is shifted (i.e., moderated) towards lower energies and contains significantly larger amount of neutrons in the energy range below 100 keV. Results of the calculations indicate that neutron dose rate measurements taken outside of BDMS shielding are overestimated by 25% to 55%, depending on the location around BDMS, when using either Russian or U.S. dose conversion coefficients. For an accurate neutron dose rate evaluation, application of an appropriate correction factor to the neutron dose rate measurements is necessary.

  10. A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION

    SciTech Connect

    Liu, Jiajia; Wang, Yuming; Shen, Chenglong; Liu, Kai; Pan, Zonghao; Wang, S.

    2015-11-10

    In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggering mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.

  11. Evidence for mass outflow in the low solar corona over a large sunspot

    NASA Technical Reports Server (NTRS)

    Neupert, Werner M.; Brosius, Jeffrey W.; Thomas, Roger J.; Thompson, William T.

    1992-01-01

    Spatially resolved EUV coronal emission-line profiles have been obtained in a solar active region, including a large sunspot, using an EUV imaging spectrograph. Relative Doppler velocities were measured in the lines of Mg IX, Fe XV, and Fe XVI with a sensitivity of 2-3 km/s at 350 A. The only significant Doppler shift occurred over the umbra of the large sunspot, in the emission line of Mg IX (at Te of about 1.1 x 10 exp 6 K). The maximum shift corresponded to a peak velocity toward the observer of 14 +/- 3 km/s relative to the mean of measurements in this emission line made elsewhere over the active region. The magnetic field in the low corona was aligned to within 10 deg of the line of sight at the location of maximum Doppler shift. Depending on the closure of the field, such a mass flow could either contribute to the solar wind or reappear as a downflow of material in distant regions on the solar surface. The site of the source, near a major photospheric field boundary, was consistent with origins of low-speed solar wind typically inferred from interplanetary plasma observations.

  12. Solution-processed small-molecule solar cells with 6.7% efficiency

    SciTech Connect

    Sun, Yanming; Welch, Gregory C.; Leong, Wei Lin; Takacs, Christopher J.; Bazan, Guillermo C.; Heeger, Alan J.

    2011-11-06

    Organic photovoltaic devices that can be fabricated by simple processing techniques are under intense investigation in academic and industrial laboratories because of their potential to enable mass production of flexible and cost-effective devices. Most of the attention has been focused on solution-processed polymer bulk-heterojunction (BHJ) solar cells. A combination of polymer design, morphology control, structural insight and device engineering has led to power conversion efficiencies (PCEs) reaching the 6–8% range for conjugated polymer/fullerene blends. Solution-processed small-molecule BHJ (SM BHJ) solar cells have received less attention, and their efficiencies have remained below those of their polymeric counterparts. Here, we report efficient solution-processed SM BHJ solar cells based on a new molecular donor, DTS(PTTh₂)₂. A record PCE of 6.7% under AM 1.5 G irradiation (100 mW cm⁻²) is achieved for small-molecule BHJ devices from DTS(PTTh₂)₂:PC₇₀BM (donor to acceptor ratio of 7:3). This high efficiency was obtained by using remarkably small percentages of solvent additive (0.25% v/v of 1,8-diiodooctane, DIO) during the film-forming process, which leads to reduced domain sizes in the BHJ layer. These results provide important progress for solution-processed organic photovoltaics and demonstrate that solar cells fabricated from small donor molecules can compete with their polymeric counterparts.

  13. 1.6 m Off-Axis Solar Telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Goode, P. R.; BBSO/NJIT Team; Mees Solar Obs./U. Hawaii Team

    2003-05-01

    New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather -- an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Hα observations) and Singer-Link (full disk Hα , Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) -- all three are off-axis designs. The highest resolution solar telescopes currently operating are in the sub-meter class, and have diffraction limits which allow them to resolve features larger than 100 km in size on the sun. They are often photon-starved in the study of dynamic events because of the competing need for diffraction limited spatial resolution, short exposure times to minimize seeing effects, and high spectral resolution to resolve line profiles. Thus, understanding many significant and dynamic solar phenomena remains tantalizingly close, but just beyond our grasp. Research supported in part by NASA grant NAG5-12782 and NSF grant ATM-0086999.

  14. Mars Solar Balloon Landed Gas Chromatograph Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Harpold, D.; Niemann, H.; Atreya, S.; Gorevan, S.; Israel, G.; Bertaux, J. L.; Jones, J.; Owen, T.; Raulin, F.

    1999-01-01

    A Mars surface lander Gas Chromatograph Mass Spectrometer (GCMS) is described to measure the chemical composition of abundant and trace volatile species and isotope ratios for noble gases and other elements. These measurements are relevant to the study of atmospheric evolution and past climatic conditions. A Micromission plan is under study where a surface package including a miniaturized GCMS would be delivered to the surface by a solar heated hot air balloon based system. The balloon system would be deployed about 8 km above the surface of Mars, wherein it would rapidly fill with Martian atmosphere and be heated quickly by the sun. The combined buoyancy and parachuting effects of the solar balloon result in a surface package impact of about 5 m/sec. After delivery of the package to the surface, the balloon would ascend to about 4 km altitude, with imaging and magnetometry data being taken for the remainder of the daylight hours as the balloon is blown with the Martian winds. Total atmospheric entry mass of this mission is estimated to be approximately 50 kg, and it can fit as an Ariane 5 piggyback payload. The GCMS would obtain samples directly from the atmosphere at the surface and also from gases evolved from solid phase material collected from well below the surface with a Sample Acquisition and Transport Mechanism (SATM). The experiment envisioned in the Mars Micromission described would obtain samples from a much greater depth of up to one meter below the surface, and would search for organic molecules trapped in ancient stratified layers well below the oxidized surface. Insitu instruments on upcoming NASA missions working in concert with remote sensing measurement techniques have the potential to provide a more detailed investigation of mineralogy and the extent of simple volatiles such as CO2 and H2O in surface and subsurface solid phase materials. Within the context of subsequent mission opportunities such as those provided by the Ariane 5 piggyback

  15. A Historic View of Solar Coronal Mass Ejections (CMEs)

    NASA Technical Reports Server (NTRS)

    SaintCyr, Orville C.

    2010-01-01

    We present a historic overview of CME observations, ending with concepts for future measurement capabilities. One of the first detections of what we now call a CME was provided by instrumentation on OSO-7 and reported by Tousey (1973); but the phrase "corona) mass ejection" was coined after the Skylab/ATM coronagraph detected dozens of the transients over its nine month observing run (e.g., Munro et al., 1979). Pre-discovery identification of likely CMEs were then reported in historic eclipse photographs and drawings (e.g., Eddy, 1974; Cliver, 1989). Multi-year observations followed with groundbased MLSO MK3/4 coronagraph (1980-present), and spacebased missions: Solwind (1979-1985), SMM (1980-1989), SOHO LASCO/EIT (1996-present), SMEI (2003-present), and STEREO SECCHI (2006-present). The Spartan 201 coronagraph flew in space multiple times. The influential Gosling (1993) "solar flare myth" manuscript identified CMEs as the cause of the most severe geomagnetic storms, thus cementing their importance in Sun-Earth connection studies. A new window into CMEs was opened with the launch of SOHO in 1995 when the UVCS spectrometer began returning plasma diagnostics of a significant number of events (e.g., Ciaravella et al., 2006). What about the future for CME research? Statistical properties of the UVCS CME observations are forthcoming; the STEREO mission should continue to return views of CMEs from unique vantage points; and the recent launch of SDO should provide new insights into the small spatial scale dynamics of activity associated with CMEs. Several new observing techniques have been demonstrated at total eclipses, and inclusion on spacebased platforms in the future could also prove valuable for understanding CMEs. A common element of several recent proposals is to image the white-light corona with extremely high spatial resolution. The momentary glimpses of the corona during total solar eclipses have shown fine structure that is not captured by global models, and

  16. Ground Level Enhancement in the 2014 January 6 Solar Energetic Particle Event

    NASA Technical Reports Server (NTRS)

    Thakur, N.; Gopalswamy, N.; Xie, H.; Makela, P.; Yashiro, S.; Akiyama, S.; Davila, J. M.

    2014-01-01

    We present a study of the 2014 January 6 solar energetic particle event which produced a small ground level enhancement (GLE), making it the second GLE of this unusual solar cycle 24. This event was primarily observed by the South Pole neutron monitors (increase of approximately 2.5 percent) while a few other neutron monitors recorded smaller increases. The associated coronal mass ejection (CME) originated behind the western limb and had a speed of 1960 kilometers per second. The height of the CME at the start of the associated metric type II radio burst, which indicates the formation of a strong shock, was measured to be 1.61 solar radii using a direct image from STEREO-A/EUVI. The CME height at the time of the GLE particle release (determined using the South Pole neutron monitor data) was directly measured as 2.96 solar radii based on STEREO-A/COR1 white-light observations. These CME heights are consistent with those obtained for GLE71, the only other GLE of the current cycle, as well as cycle-23 GLEs derived using back-extrapolation. GLE72 is of special interest because it is one of only two GLEs of cycle 24, one of two behind-the-limb GLEs, and one of the two smallest GLEs of cycles 23 and 24.

  17. Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus

    NASA Technical Reports Server (NTRS)

    Murawski, K.; Steinolfson, R. S.

    1996-01-01

    Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.

  18. X1.6 Class Solar Flare on Sept. 10, 2014

    NASA Video Gallery

    An X1.6 class solar flare flashes in the middle of the sun on Sept. 10, 2014. These images were captured by NASA's Solar Dynamics Observatory. It first shows the flare in the 171 Angstrom wavelengt...

  19. Eddy viscosity and flow properties of the solar wind: Co-rotating interaction regions, coronal-mass-ejection sheaths, and solar-wind/magnetosphere coupling

    SciTech Connect

    Borovsky, Joseph E.

    2006-05-15

    The coefficient of magnetohydrodynamic (MHD) eddy viscosity of the turbulent solar wind is calculated to be {nu}{sub eddy}{approx_equal}1.3x10{sup 17} cm{sup 2}/s: this coefficient is appropriate for velocity shears with scale thicknesses larger than the {approx}10{sup 6} km correlation length of the solar-wind turbulence. The coefficient of MHD eddy viscosity is calculated again accounting for the action of smaller-scale turbulent eddies on smaller scale velocity shears in the solar wind. This eddy viscosity is quantitatively tested with spacecraft observations of shear flows in co-rotating interaction regions (CIRs) and in coronal-mass-ejection (CME) sheaths and ejecta. It is found that the large-scale ({approx}10{sup 7} km) shear of the CIR fractures into intense narrow ({approx}10{sup 5} km) slip zones between slabs of differently magnetized plasma. Similarly, it is found that the large-scale shear of CME sheaths also fracture into intense narrow slip zones between parcels of differently magnetized plasma. Using the solar-wind eddy-viscosity coefficient to calculate vorticity-diffusion time scales and comparing those time scales with the {approx}100-h age of the solar-wind plasma at 1 AU, it is found that the slip zones are much narrower than eddy-viscosity theory says they should be. Thus, our concept of MHD eddy viscosity fails testing. For the freestream turbulence effect in solar-wind magnetosphere coupling, the eddy-viscous force of the solar wind on the Earth's magnetosphere is rederived accounting for the action of turbulent eddies smaller than the correlation length, along with other corrections. The improved derivation of the solar-wind driver function for the turbulence effect fails to yield higher correlation coefficients between measurements of the solar-wind driver and measurements of the response of the Earth's magnetosphere.

  20. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    SciTech Connect

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-10

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65 Degree-Sign (ahead) and -70 Degree-Sign (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  1. LITHIUM ABUNDANCE AS A PREDICTOR OF MASS AND AGE IN SOLAR-ANALOG STARS

    SciTech Connect

    Li, T. D.; Bi, S. L.; Liu, K.; Tian, Z. J.; Ge, Z. S.; Chen, Y. Q.

    2012-02-20

    In order to estimate the mass and age of stars, we construct a grid of stellar models for eight solar-analog stars including diffusion and rotation-induced mixing for the given ranges of stellar mass, metallicity, and rotational rate. By combining stellar models with observational data including lithium abundance, we obtain more accurate estimations of mass and age for solar-analog stars. The results indicate that stars HIP 56948, HIP 73815, and HIP 78399 are three possible solar twins. Furthermore, we find that lithium depletion due to extra-mixing in solar analogs strongly depends on mass, metallicity, and rotational history. Therefore, lithium abundance can be used as a good constraint in stellar modeling.

  2. The Solar Atmosphere at Three Temperatures During a Coronal Mass Ejection

    NASA Technical Reports Server (NTRS)

    Zhitnik, I.; Pertzov, A.; Oparin, S.; Oraevsky, V.; Slemzin, V.; Sobelman, I.; Feynman, J.; Goldstein, B.

    1998-01-01

    On April 14, 1994 a major coronal mass ejection (CME) occured while the solar atmosphere was being observed in XUV by the Terek C instrument aboard the CORONAS spacecraft. We here compare the TEREK data before and after the CME with the Yohkoh soft x-ray data and the National Solar Observatory He I 10830 data from April 13 and 14.

  3. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core

    NASA Astrophysics Data System (ADS)

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J.; Greene, Jenny E.; Blakeslee, John P.; Janish, Ryan

    2016-04-01

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day ‘dormant’ descendants of this population of ‘active’ black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall—the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600—a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  4. Interplanetary Coronal Mass Ejections in the Near-Earth Solar Wind During 1996-2002

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Richardson, I. G.

    2003-01-01

    We summarize the occurrence of interplanetary coronal mass injections (ICMEs) in the near-Earth solar wind during 1996-2002, corresponding to the increasing and maximum phases of solar cycle 23. In particular, we give a detailed list of such events. This list, based on in-situ observations, is not confined to subsets of ICMEs, such as magnetic clouds or those preceded by halo CMEs observed by the SOHO/LASCO coronagraph, and provides an overview of 214 ICMEs in the near-Earth solar wind during this period. The ICME rate increases by about an order of magnitude from solar minimum to solar maximum (when the rate is approximately 3 ICMEs/solar rotation period). The rate also shows a temporary reduction during 1999, and another brief, deeper reduction in late 2000-early 2001, which only approximately track variations in the solar 10 cm flux. In addition, there are occasional periods of several rotations duration when the ICME rate is enhanced in association with high solar activity levels. We find an indication of a periodic variation in the ICME rate, with a prominent period of approximately 165 days similar to that previously reported in various solar phenomena. It is found that the fraction of ICMEs that are magnetic clouds has a solar cycle variation, the fraction being larger near solar minimum. For the subset of events that we could associate with a CME at the Sun, the transit speeds from the Sun to the Earth were highest after solar maximum.

  5. Ultra-narrow Negative Flare Front Observed in Helium-10830 Å Using the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Cao, Wenda; Ding, Mingde; Kleint, Lucia; Su, Jiangtao; Liu, Chang; Ji, Haisheng; Chae, Jongchul; Jing, Ju; Cho, Kyuhyoun; Cho, Kyungsuk; Gary, Dale; Wang, Haimin

    2016-03-01

    Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles that have adverse effects on the near-Earth environment. By definition, flares are usually referred to as bright features resulting from excess emission. Using the newly commissioned 1.6 m New Solar Telescope at Big Bear Solar Observatory, we show a striking “negative” flare with a narrow but unambiguous “dark” moving front observed in He i 10830 Å, which is as narrow as 340 km and is associated with distinct spectral characteristics in Hα and Mg ii lines. Theoretically, such negative contrast in He i 10830 Å can be produced under special circumstances by nonthermal electron collisions or photoionization followed by recombination. Our discovery, made possible due to unprecedented spatial resolution, confirms the presence of the required plasma conditions and provides unique information in understanding the energy release and radiative transfer in astronomical objects.

  6. Listening to the beat of a 400 solar-mass, middle-weight black hole

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard

    2015-01-01

    Accreting X-ray point sources with luminosities exceeding the Eddington limit of a 20 solar mass black hole are referred to as ultraluminous X-ray sources. The brightest of these have long been suspected to host intermediate-mass black holes (mass range of a few 100-1000 solar masses). On such object is M82 X-1, thought to be an intermediate-mass black hole because of its extremely high X-ray luminosity and variability characteristics, although some models suggested that its mass may be only of the order of 20 solar masses. The previous mass estimates were based on scaling relations which used low-frequency characteristic timescales which have large intrinsic uncertainties. In stellar-mass black holes we know that the high frequency quasi-periodic oscillations that occur in a 3:2 frequency ratio (100-450 Hz) are stable and scale inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous mass determination for intermediate-mass black holes, but has hitherto not been realized. I will discuss the discovery of stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at the frequencies of 3.32 Hz and 5.07 Hz and how this helps overcome the systematic uncertainties present in previous studies. Assuming we can extend the stellar-mass relationship, I estimate its black hole mass to be 428+-105 solar masses. This work was recently published in Nature (DOI:10.1038/nature13710). I will also discuss future prospects of detecting more of such oscillations to weigh other intermediate-mass black hole candidates.

  7. A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.

    PubMed

    Geller, Aaron M; Mathieu, Robert D

    2011-10-20

    In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass. PMID:22012393

  8. A 400-solar-mass black hole in the galaxy M82.

    PubMed

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-01

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses. PMID:25132552

  9. A 400-solar-mass black hole in the galaxy M82.

    PubMed

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-01

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses.

  10. Core-collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Ertl, T.; Woosley, S. E.; Brown, Justin M.; Janka, H.-T.

    2016-04-01

    Nucleosynthesis, light curves, explosion energies, and remnant masses are calculated for a grid of supernovae (SNe) resulting from massive stars with solar metallicity and masses from 9.0 to 120 {M}⊙ . The full evolution is followed using an adaptive reaction network of up to 2000 nuclei. A novel aspect of the survey is the use of a one-dimensional neutrino transport model for the explosion. This explosion model has been calibrated to give the observed energy for SN 1987A, using five standard progenitors, and for the Crab SN using a 9.6 {M}⊙ progenitor. As a result of using a calibrated central engine, the final kinetic energy of the SN is variable and sensitive to the structure of each pre-SN star. Many progenitors with extended core structures do not explode, but become black holes (BHs), and the masses of exploding stars do not form a simply connected set. The resulting nucleosynthesis agrees reasonably well with the Sun provided that a reasonable contribution from SNe Ia is also allowed, but with a deficiency of light s-process isotopes. The resulting neutron star initial mass function has a mean gravitational mass near 1.4 {M}⊙ . The average BH mass is about 9 {M}⊙ if only the helium core implodes, and 14 {M}⊙ if the entire pre-SN star collapses. Only ˜10% of SNe come from stars over 20 {M}⊙ , and some of these are Type Ib or Ic. Some useful systematics of Type IIp light curves are explored.

  11. Gradual solar energetic particle events observed by SOHO/EPHIN on November 4 and 6, 1997

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; del Peral, L.; Rodríguez-Frías, M. D.; Sequeiros, J.; Müller-Mellin, R.; Kunow, H.

    2002-03-01

    In November 1997, EPHIN (Electron, Proton, Helium Instrument) aboard Solar and Heliospheric Observatory (SOHO) detected Solar Energetic Particles (SEP) from a multiple large event. Composition, temporal profiles, and energy spectra of electrons, hydrogen and helium have been analysed. The SEP events show, in general, gradual characteristics related to acceleration in the shocks driven by the associated Coronal Mass Ejections (CMEs).

  12. Measurements of Zodiacal-light brightness from the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, A.; Bisi, M. M.; Clover, J. M.; Hick, P. P.; Jackson, B.

    2009-12-01

    Observations from the Solar Mass Ejection Imager (SMEI), now spanning over 6 years, provide unprecedented near-full-sky photometric maps each 102-minute orbit, using data from 3 unfiltered CCD cameras. SMEI’s 0.1% photometric precision enables observation of heliospheric structures with surface brightness down to several S10’s (an S10 is the equivalent brightness of a 10th magnitude star spread over one square degree). When individual bright stars and an empirical residual sidereal background are removed from the maps, the residue is dominated by the zodiacal light (ZL). The present work combines individual SMEI sky maps to produce daily average maps, and uses the sequence of these for both an empirical characterization of the ZL and an investigation of its variation over time scales from several days to several years.

  13. Advanced solar concentrator mass production, operation, and maintenance cost assessment

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. A.; Bedard, R. J.; Bell, D. M.

    1981-01-01

    The object of this assessment was to estimate the costs of the preliminary design at: production rates of 100 to 1,000,000 concentrators per year; concentrators per aperture diameters of 5, 10, 11, and 15 meters; and various receiver/power conversion package weights. The design of the cellular glass substrate Advanced Solar Concentrator is presented. The concentrator is an 11 meter diameter, two axis tracking, parabolic dish solar concentrator. The reflective surface of this design consists of inner and outer groups of mirror glass/cellular glass gores.

  14. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    NASA Technical Reports Server (NTRS)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  15. On the deficit problem of mass and energy of solar coronal mass ejections connected with interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Ivanchuk, V. I.; Pishkalo, N. I.

    1995-01-01

    Mean values of a number of parameters of the most powerful coronal mass ejections (CMEs) and interplanetary shocks generated by these ejections are estimated using an analysis of data obtained by the cosmic coronagraphs and spacecrafts, and geomagnetic storm measurements. It was payed attention that the shock mass and mechanical energy, averaging 5 x 10(exp 16) grm and 2 x 10(exp 32) erg respectively, are nearly 10 times larger than corresponding parameters of the ejections. So, the CME energy deficit problem seems to exist really. To solve this problem one can make an assumption that the process of the mass and energy growth of CMEs during their propagation out of the Sun observed in the solar corona is continued in supercorona too up to distances of 10-30 solar radii. This assumption is confirmed by the data analysis of five events observed using zodiacal light photometers of the HELIOS- I and HELIOS-2 spacecrafts. The mass growth rate is estimated to be equal to (1-7) x 10(exp 11) grm/sec. It is concluded that the CME contribution to mass and energy flows in the solar winds probably, is larger enough than the value of 3-5% adopted usually.

  16. MDAC solar cosmic ray experiment on OGO-6

    NASA Technical Reports Server (NTRS)

    Masley, A. J.

    1973-01-01

    The instrumentation of the OGO-F solar cosmic ray experiment is described and results of data obtained during the satellite lifetime from launch on June 5, 1969, through September, 1970, and discussed.

  17. Improvement and extension of data from ATS-6 Solar Cell Radiation Damage Experiment (SCRDE)

    NASA Technical Reports Server (NTRS)

    Goldhammer, L. J.

    1979-01-01

    The ATS 6 solar cell radiation damage experiment data through 2 1/3 years of synchronous orbit operation are presented. Comparisons are made of the performances of the 13 different types of solar cell/cover configurations, including solar cell and cover thickness variations, base resistivity variation, new cover processes and materials, and the COMSAT violet cell. These performances are also compared to the performance of the LES 6 solar cell experiment, the ATS 6 main solar arrays, and laboratory spectrum electron irradiations. It is found that the cells of the ATS 6 experiment generally performed as expected through 6 to 9 months in orbit, but that at 2 1/3 years they were severely degraded in current. The short circuit current degradation after 2 1/3 years in orbit appears to exhibit an anomalous additional degradation of 5 to 9 percent over what was experienced in synchronous orbit operation.

  18. APT mass spectrometry and SEM data for CdTe solar cells

    DOE PAGES

    Li, Chen; Paudel, Naba R.; Yan, Yanfa; Pennycook, Stephen J.; Poplawsky, Jonathan D.; Guo, Wei

    2016-03-16

    Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl2 treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl2-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. As a result, these data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solar cell, preparationmore » of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.« less

  19. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    SciTech Connect

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  20. Coronal Mass Ejections and Solar Proton Events During the Great March 1989 Disturbances

    NASA Technical Reports Server (NTRS)

    Feynman, J.

    1995-01-01

    The great active region of March 1989 was the most prolific in X- rays in the preceding 15 years, and produced very large bright optical solar flares. The accompanying solar energetic particle event was one of the four most intense episodes since 1963. These increases in particle fluxes are compared to the major X-ray and optical flares and to the major coronal mass ejections in order to test hypothesis.

  1. New mass measurement of {sup 6}Li and ppb-level systematic studies of the Penning trap mass spectrometer TITAN

    SciTech Connect

    Brodeur, M.; Ettenauer, S.; Smith, M.; Dilling, J.; Brunner, T.; Champagne, C.; Lapierre, A.; Ringle, R.; Ryjkov, V. L.; Delheij, P.; Audi, G.; Lunney, D.

    2009-10-15

    The frequency ratio of {sup 6}Li to {sup 7}Li was measured using the TITAN Penning trap mass spectrometer. This measurement resolves a 16-ppb discrepancy between the {sup 6}Li mass of 6.015 122 795(16) u from the Atomic Mass Evaluation 2003 (AME03), which is based on a measurement by JILATRAP, and the more recent measurement of 6.015 122 890(40) u by SMILETRAP. Our measurement agrees with SMILETRAP and a more precise mass value for {sup 6}Li of 6.015 122 889(26) u is presented along with systematic evaluations of the measurement uncertainties. This result makes {sup 6}Li a solid anchor point for future mass measurements on highly charged ions with m/q{approx}6.

  2. Influence of a stellar wind on the evolution of a star of 30 solar masses

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.

    1980-01-01

    A coarse grid of theoretical evolutionary tracks was calculated for a 30 solar mass star to determine the role of mass loss in the evolution of the star during core He burning. The Cox-Stewart opacities were applied, and the rate of mass loss, criterion for convection, and initial chemical composition were taken into consideration. Using the Schwarzschild criterion, the star undergoes little mass loss during core He burning and remains a blue supergiant separated from main sequence stars on the H-R diagram. The stellar remnant consists of the original He core and may appear bluer than equally luminous main sequence stars; a variety of possible evolutionary tracks can be obtained for an initial solar mass of 30 with proper choices of free parameters.

  3. Solar Energetic Particle Events recorded aboard SOHO on December 24, 1996 and on May 6, 1998

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, Susan M. P.; Kecskeméty; K.; Bothmer, V.; Rodriguez-Pacheco, J.; Facskó, G.; St. Cyr, C.

    The LION experiment on SOHO (which records protons from 44 keV-6 MeV and electrons from 44 keV-300 keV), and the energetically complementary EPHIN experiment (which measures protons + helium ions to >53 MeV/n and electrons to >5 MeV), each detected many energetic particle events (SEPs) in the early rising phase of Solar Cycle 23 (from ~ July 1996) - a period commonly associated with Coronal Mass Ejections (CMEs). The present paper contains an account of two representative rapid intensity increases recorded simultaneously by LION and EPHIN, each of which was accompanied by a CME and by impulsive type flaring. The SEPs have characteristics typical of both Gradual and Impulsive events and may be described as `Mixed'.

  4. Mass study for modular approaches to a solar electric propulsion module

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Cake, J. E.; Oglebay, J. C.; Shaker, F. J.

    1977-01-01

    The propulsion module comprises six to eight 30-cm thruster and power processing units, a mercury propellant storage and distribution system, a solar array ranging in power from 18 to 25 kW, and the thermal and structure systems required to support the thrust and power subsystems. Launch and on-orbit configurations are presented for both modular approaches. The propulsion module satisfies the thermal design requirements of a multimission set including: Mercury, Saturn, and Jupiter orbiters, a 1-AU solar observatory, and comet and asteroid rendezvous. A detailed mass breakdown and a mass equation relating the total mass to the number of thrusters and solar array power requirement is given for both approaches.

  5. FAR-ULTRAVIOLET CONTINUUM EMISSION: APPLYING THIS DIAGNOSTIC TO THE CHROMOSPHERES OF SOLAR-MASS STARS

    SciTech Connect

    Linsky, Jeffrey L.; Bushinsky, Rachel; Ayres, Tom; France, Kevin; Fontenla, Juan

    2012-01-20

    The far-ultraviolet (FUV) continuum flux is recognized as a very sensitive diagnostic of the temperature structure of the Sun's lower chromosphere. Until now analysis of the available stellar FUV data has shown that solar-type stars must also have chromospheres, but quantitative analyses of stellar FUV continua require far higher quality spectra and comparison with new non-LTE chromosphere models. We present accurate far-ultraviolet (FUV, 1150-1500 A) continuum flux measurements for solar-mass stars, made feasible by the high throughput and very low detector background of the Cosmic Origins Spectrograph on the Hubbble Space Telescope. We show that the continuum flux can be measured above the detector background even for the faintest star in our sample. We find a clear trend of increasing continuum brightness temperature at all FUV wavelengths with decreasing rotational period, which provides an important measure of magnetic heating rates in stellar chromospheres. Comparison with semiempirical solar flux models shows that the most rapidly rotating solar-mass stars have FUV continuum brightness temperatures similar to the brightest faculae seen on the Sun. The thermal structure of the brightest solar faculae therefore provides a first-order estimate of the thermal structure and heating rate for the most rapidly rotating solar-mass stars in our sample.

  6. Solar Radio Emission as a Prediction Technique for Coronal Mass Ejections' registration

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Fridman, Vladimir

    2016-07-01

    The concept of solar Coronal Mass Ejections (CMEs) as global phenomenon of solar activity caused by the global magnetohydrodynamic processes is considered commonly accepted. These processes occur in different ranges of emission, primarily in the optical and the microwave emission being generated near the surface of the sun from a total of several thousand kilometers. The usage of radio-astronomical data for CMEs prediction is convenient and promising. Actually, spectral measurements of solar radio emission cover all heights of solar atmosphere, sensitivity and accuracy of measurements make it possible to record even small energy changes. Registration of the radio emission is provided by virtually all-weather ground-based observations, and there is the relative cheapness to obtain the corresponding information due to a developed system of monitoring observations. On the large statistical material there are established regularities of the existence of sporadic radio emission at the initial stage of CMEs' formation and propagation in the lower layers of the solar atmosphere during the time interval from 2-3 days to 2 hours before registration of CMEs on coronagraph. In this report we present the prediction algorithm and scheme of short-term forecasting developed on the base of statistical analysis regularities of solar radio emission data prior to "isolated" solar Coronal Mass Ejections registered in 1998, 2003, 2009-2013.

  7. Characteristic Times of Gradual Solar Energetic Particle Events and Their Dependence on Associated Coronal Mass Ejection Properties

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2005-08-01

    We use 20 MeV proton intensities from the EPACT instrument on Wind and coronal mass ejections (CMEs) from the LASCO coronagraph on SOHO observed during 1998-2002 to statistically determine three characteristic times of gradual solar energetic particle (SEP) events as functions of solar source longitude: (1) TO, the time from associated CME launch to SEP onset at 1 AU, (2) TR, the rise time from SEP onset to the time when the SEP intensity is a factor of 2 below peak intensity, and (3) TD, the duration over which the SEP intensity is within a factor of 2 of the peak intensity. Those SEP event times are compared with associated CME speeds, accelerations, and widths to determine whether and how the SEP event times may depend on the formation and dynamics of coronal/interplanetary shocks driven by the CMEs. Solar source longitudinal variations are clearly present in the SEP times, but TR and TD are significantly correlated with CME speeds only for SEP events in the best-connected longitude range. No significant correlations between the SEP times and CME accelerations are found except for TD in one longitude range, but there is a weak correlation of TR and TD with CME widths. We also find no correlation of any SEP times with the solar wind O+7/O+6 values, suggesting no dependence on solar wind stream type. The SEP times of the small subset of events occurring in interplanetary CMEs may be slightly shorter than those of all events.

  8. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  9. Search for sub-eV mass solar axions by the CERN Axion Solar Telescope with 3He buffer gas.

    PubMed

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Ezer, C; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Gazis, E N; Geralis, T; Giomataris, I; Gninenko, S; Gómez, H; Gruber, E; Guthörl, T; Hartmann, R; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Laurent, J M; Liolios, A; Ljubičić, A; Lozza, V; Lutz, G; Luzón, G; Morales, J; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Rashba, T; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J A; Vogel, J K; Yildiz, S C; Zioutas, K

    2011-12-23

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using (3)He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with (4)He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV≲m(a)≲0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g(aγ)≲2.3×10(-10) GeV(-1) at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m(a)≲1.15 eV, comfortably overlapping with cosmological hot dark matter bounds. PMID:22243149

  10. Mass and Energy Transfer Between the Solar Photosphere and Corona

    NASA Astrophysics Data System (ADS)

    Peter, H.

    2015-12-01

    The problem of chromospheric and coronal heating is also a problem of mass supply to the corona. On average we see redshifts at transition region temperatures of the order of 10 km/s. If interpreted as downflows, this would quickly empty the corona, and fresh material has to be transported into the corona. Several models have been proposed to understand this mass cycle between the different atmospheric layers. However, as of yet all these proposals have serious shortcomings. On the observational side open questions remain, too. With the new IRIS mission we can observe the transition region at unprecedented spatial and spectral resolution, but the observational results are still puzzling. In particular the finding that the spatial distribution of line widths and Doppler shifts do not change with increasing resolution is against physical intuition. This shows that even with IRIS we still have significant velocity gradients along the line-of-sight, indicating that shocks might play a significant role. Likewise the temporal evolution might be a key for our understanding of the mass cycle. It might well be that the filling and draining of hot plasma occurs on significantly different time scales, which might be part of the difficulty to arrive at a conclusive observational picture. Considering the progress made for the quiet Sun, it seems clear that the processes responsible for the mass exchange are not resolved (yet). Therefore one might wonder to what extent one could use larger and resolved individual events in more active parts of the Sun to understand the details of the mass transport. In particular a common understanding of reconnection events such as Ellerman bombs in the photosphere, explosive events in the transition region and the recently discovered IRIS bombs in-between might provide the key to better understand the mass cycle throughout the atmospheric layers from the photosphere to the corona.

  11. Probing Cloud-Driven Variability on Two of the Youngest, Lowest-Mass Brown Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Schneider, Adam; Cushing, Michael; Kirkpatrick, J. Davy

    2016-08-01

    Young, late-type brown dwarfs share many properties with directly imaged giant extrasolar planets. They therefore provide unique testbeds for investigating the physical conditions present in this critical temperature and mass regime. WISEA 1147-2040 and 2MASS 1119-1137, two recently discovered late-type (~L7) brown dwarfs, have both been determined to be members of the ~10 Myr old TW Hya Association (Kellogg et al. 2016, Schneider et al. 2016). Each has an estimated mass of 5-6 MJup, making them two of the youngest and lowest-mass free floating objects yet found in the solar neighborhood. As such, these two planetary mass objects provide unparalleled laboratories for investigating giant planet-like atmospheres far from the contaminating starlight of a host sun. Condensate clouds play a critical role in shaping the emergent spectra of both brown dwarfs and gas giant planets, and can cause photometric variability via their non-uniform spatial distribution. We propose to photometrically monitor WISEA 1147-2040 and 2MASS 1119-1137 in order to search for the presence of cloud-driven variability to 1) investigate the potential trend of low surface gravity with high-amplitude variability in a previously unexplored mass regime and 2) explore the angular momentum evolution of isolated planetary mass objects.

  12. Axisymmetric Ab Initio Core-Collapse Supernova Simulations of 12--25 Solar Mass Stars

    SciTech Connect

    Bruenn, S. W.; Mezzacappa, Anthony; Hix, William Raphael; Lentz, E. J.; Messer, Bronson; Lingerfelt, Eric J; Blondin, J. M.; Endeve, Eirik; Marronetti, Pedro; Yakunin, Konstantin

    2013-01-01

    We present an overview of four ab initio axisymmetric core-collapse supernova simulations employing detailed spectral neutrino transport computed with our CHIMERA code and initiated from Woosley & Heger (2007) progenitors of mass 12, 15, 20, and 25 M_sun. All four models exhibit shock revival over ~ 200 ms (leading to the possibility of explosion), driven by neutrino energy deposition. Hydrodynamic instabilities that impart substantial asymmetries to the shock aid these revivals, with convection appearing first in the 12 solar mass model and the standing accretion shock instability (SASI) appearing first in the 25 solar mass model. Three of the models have developed pronounced prolate morphologies (the 20 solar mass model has remained approximately spherical). By 500 ms after bounce the mean shock radii in all four models exceed 3,000 km and the diagnostic explosion energies are 0.33, 0.66, 0.65, and 0.70 Bethe (B=10^{51} ergs) for the 12, 15, 20, and 25 solar mass models, respectively, and are increasing. The three least massive of our models are already sufficiently energetic to completely unbind the envelopes of their progenitors (i.e., to explode), as evidenced by our best estimate of their explosion energies, which first become positive at 320, 380, and 440 ms after bounce. By 850 ms the 12 solar mass diagnostic explosion energy has saturated at 0.38 B, and our estimate for the final kinetic energy of the ejecta is ~ 0.3 B, which is comparable to observations for lower-mass progenitors.

  13. Gas chromatographic-mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine

    SciTech Connect

    Francis, P.L.; Leone, A.M.; Young, I.M.; Stovell, P.; Silman, R.E.

    1987-04-01

    Circulating melatonin is hydroxylated to 6-hydroxymelatonin and excreted in urine as the sulfate and glucuronide conjugates. We extracted these two compounds from urine by using octadecylsilane-bonded silica cartridges to eliminate most of the urea and electrolytes, and silica cartridges to separate the sulfate and glucuronide conjugates. After hydrolyzing the separated conjugates enzymically, we determined the free hydroxymelatonin by gas chromatography-mass spectrometry. Though recoveries were low and variable, we were able to quantify the analyte in the original sample by adding deuterated sulfate and glucuronide conjugates to the urines before extraction.

  14. Fabrication of organic solar cells with design blend P3HT: PCBM variation of mass ratio

    NASA Astrophysics Data System (ADS)

    Supriyanto, Agus; Mustaqim, Amrina; Agustin, Maya; Ramelan, Ari H.; Suyitno; Septa Rosa, Erlyta; Yofentina; Nurosyid, Fahru

    2016-02-01

    Organic solar cells of FTO/PEDOT: PSS/P3HT: PCBM/Al has been fabricated, and its performance has been tested in dark and under various illumination of light intensity 1000 W/m2. The active materials used in this study are poly (3- hexylthiophene) (P3HT) and [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM). P3HT is the donor while PCBM acts as an acceptor. Variation of PCBM and P3HT are 1:1, 1:2, 1:3, 1:4 and 1:5. P3HT: PCBM was mixed by chlorobenzene solvents. The mixing was done by using the ultrasonic cleaner. The absorbance characterization using by UV-Visible Spectrometer Lambda 25 instrument and I-V characterization has been tested using a set of 2602A Keithley instrument. Absorbance characterization shows that two peaks are formed. The first peak in the range of 300 to 350 nm which is a range of PCBM and the second peak range from 450 to 600 nm which is a range of P3HT. As the mass ratio increases, the second peak of P3HT increases while the first peak does not change. The gap energy estimated by the Tauc method is 2.0 eV. I-V characterization of the efficiency was obtained. The efficiency of sample 1, 2, 3, 4, and 5 are 5.80x10-2%; 6.46x10-2%; 7.72x10-2%; 8.25x10-2% and 9.81x10-2%, respectively. The highest value of efficiency was obtained at mass ratio 1:5.

  15. A ∼0.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system.

    PubMed

    Tobin, John J; Hartmann, Lee; Chiang, Hsin-Fang; Wilner, David J; Looney, Leslie W; Loinard, Laurent; Calvet, Nuria; D'Alessio, Paola

    2012-12-01

    In their earliest stages, protostars accrete mass from their surrounding envelopes through circumstellar disks. Until now, the smallest observed protostar-to-envelope mass ratio was about 2.1 (ref. 1). The protostar L1527 IRS is thought to be in the earliest stages of star formation. Its envelope contains about one solar mass of material within a radius of about 0.05 parsecs (refs 3, 4), and earlier observations suggested the presence of an edge-on disk. Here we report observations of dust continuum emission and (13)CO (rotational quantum number J = 2 → 1) line emission from the disk around L1527 IRS, from which we determine a protostellar mass of 0.19 ± 0.04 solar masses and a protostar-to-envelope mass ratio of about 0.2. We conclude that most of the luminosity is generated through the accretion process, with an accretion rate of about 6.6 × 10(-7) solar masses per year. If it has been accreting at that rate through much of its life, its age is approximately 300,000 years, although theory suggests larger accretion rates earlier, so it may be younger. The presence of a rotationally supported disk is confirmed, and significantly more mass may be added to its planet-forming region as well as to the protostar itself in the future.

  16. GROUND LEVEL ENHANCEMENT IN THE 2014 JANUARY 6 SOLAR ENERGETIC PARTICLE EVENT

    SciTech Connect

    Thakur, N.; Gopalswamy, N.; Xie, H.; Mäkelä, P.; Yashiro, S.; Akiyama, S.; Davila, J. M.

    2014-07-20

    We present a study of the 2014 January 6 solar energetic particle event which produced a small ground level enhancement (GLE), making it the second GLE of this unusual solar cycle 24. This event was primarily observed by the South Pole neutron monitors (increase of ∼2.5%) while a few other neutron monitors recorded smaller increases. The associated coronal mass ejection (CME) originated behind the western limb and had a speed of 1960 km s{sup –1}. The height of the CME at the start of the associated metric type II radio burst, which indicates the formation of a strong shock, was measured to be 1.61 Rs using a direct image from STEREO-A/EUVI. The CME height at the time of the GLE particle release (determined using the South Pole neutron monitor data) was directly measured as 2.96 Rs based on STEREO-A/COR1 white-light observations. These CME heights are consistent with those obtained for GLE71, the only other GLE of the current cycle, as well as cycle-23 GLEs derived using back-extrapolation. GLE72 is of special interest because it is one of only two GLEs of cycle 24, one of two behind-the-limb GLEs, and one of the two smallest GLEs of cycles 23 and 24.

  17. Mass-independent isotope effects in planetary atmospheres and the early solar system.

    PubMed

    Thiemens, M H

    1999-01-15

    A class of isotope effects that alters isotope ratios on a mass-independent basis provides a tool for studying a wide range of processes in atmospheres of Earth and other planets as well as early processes in the solar nebula. The mechanism for the effect remains uncertain. Mass-independent isotopic compositions have been observed in O3, CO2, N2O, and CO in Earth's atmosphere and in carbonate from a martian meteorite, which suggests a role for mass-independent processes in the atmosphere of Mars. Observed mass-independent meteoritic oxygen and sulfur isotopic compositions may derive from chemical processes in the presolar nebula, and their distributions could provide insight into early solar system evolution.

  18. Mass Loss Rates for Solar-like Stars Measured from Lyα Absorption

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Müller, H.-R.; Linsky, J. L.

    2003-10-01

    We present a number of mass loss rate measurements for solar-like stars with coronal winds, computed using a Lyα absorption technique. The collision between the solar wind and the interstellar wind seen by the Sun defines the large scale structure of our heliosphere. Similar structures, ``astrospheres,'' exist around other solar-like stars. The deceleration of the interstellar wind at the solar or stellar bow shock heats the interstellar material. Heated neutral hydrogen in the outer astrosphere (and/or heliosphere) produces a broad Lyα absorption profile that is often detectable in high resolution Hubble Space Telescope spectra. The amount of absorption is dependent upon the strength of the stellar wind. With guidance from hydrodynamic models of astrospheres, we use detected astrospheric Lyα absorption to estimate the stellar mass loss rates. For the solar-like GK stars in our sample, mass loss appears to increase with stellar activity, suggesting that young, active stars have stronger winds than old, inactive stars. However, Proxima Cen (M5.5 Ve) and λ And (G8 IV-III+M V) appear to be inconsistent with this relation.

  19. Solar cycle variation of some mass dependent characteristics of upflowing beams of terrestrial ions

    NASA Technical Reports Server (NTRS)

    Collin, H. L.; Peterson, W. K.; Shelley, E. G.

    1987-01-01

    Examination of the S3-3 and DE ion composition data spread over a solar cycle indicates that some characteristics of energetic upflowing terrestrial ion beams above the auroral zone show dependence on solar cycle. At solar maximum the different ion beam mass components have comparable mean energies, and O(+) dominates the beam composition. The ion energies are consistent with having been acquired from the potential drop below the satellite inferred from the electron loss cone distributions. At solar minimum the beam composition is dominated by H(+), but the O(+) has a higher mean energy and is hotter than the H(+) component. Also, the O(+) has more energy than it could itself have acquired from the potential drop. These observations are qualitatively consistent with the ion beams having acquired their energies from a parallel electric field and being partially thermalized through the two-stream instability between the two ion species, with this effect being modulated by the beam composition.

  20. Solar energetic particle events and coronal mass ejections: New insights from SOHO

    NASA Technical Reports Server (NTRS)

    Bothmer, V.; Posner, A.; Kunow, H.; Mueller-Mellin, R.; Heber, B.; Pick, M.; Thompson, B. J.; Delaboudiniere, J.-P.; Brueckner, G. E.; Howard, R. A.; Michels, D. J.; St.Cyr, C.; Szabo, A.; Hudson, H. S.; Mann, G.; Classen, H.-T.; McKenna-Lawlor, S.

    1997-01-01

    The scientific payload of SOHO, launched in December 1995, enables comprehensive studies of the sun from its interior, to the outer corona and solar wind. In its halo orbit around the Lagrangian point of the sun-earth system, the comprehensive suprathermal and energetic particle analyzer (COSTEP) measures in situ energetic partiles in the energy range 44 keV/particle to greater than 53 MeV/n. Although solar activity was at minimum, COSTEP detected from mid December 1995 until the end of July 1997, 30 solar energetic particle (SEP) events, including both gradual and implusive type SEPs. These minimum phase SEP events are unique in the sense that their associated solar source phenomena can be investigated in detail without interference by other simultaneous solar events as is usually the case at times around solar activity maximum. Simultaneous observations of the solar corona are provided by the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT). From the correlated SOHO observations, a one to one correspondence of SEP events with coronal mass ejections (CMEs) was found. Most of the SEP events were associated with west-limb CMEs, some with halo CMEs that later passed the SOHO spacecraft and with Moreton-like disturbances in the lower solar atmosphere as observed by the EIT. Many SEP events were detected at sector boundaries of the interplanetary magnetic field (IMF) suggesting a magnetic connection to coronal streamers at the sun as supported by LASCO observations of mass ejections at the base of helmet streamers. Energetic particle and LASCO white-light observations yield evidence that CMEs often lead to large-scale disturbances of the sun's corona, probably affecting at times areas all around the sun.

  1. HAT-P-26b: A Neptune-mass Exoplanet with Primordial Solar Heavy Element Abundance

    NASA Astrophysics Data System (ADS)

    Wakeford, Hannah; Sing, David; Deming, Drake; Kataria, Tiffany; Lopez, Eric

    2016-10-01

    A trend in giant planet mass and atmospheric heavy elemental abundance was first noted last century from observations of planets in our own solar system. These four data points from Jupiter, Saturn, Uranus, and Neptune have served as a corner stone of planet formation theory. Here we add another point in the mass-metallicity trend from a detailed observational study of the extrasolar planet HAT-P-26b, which inhabits the critical mass regime near Neptune and Uranus. Neptune-sized worlds are among the most common planets in our galaxy and frequently exist in orbital periods very different from that of our own solar system ice giants. Atmospheric studies are the principal window into these worlds, and thereby into their formation and evolution, beyond those of our own solar system. Using the Hubble Space Telescope and Spitzer, from the optical to the infrared, we conducted a detailed atmospheric study of the Neptune-mass exoplanet HAT-P-26b over 0.5 to 4.5 μm. We detect prominent H2O absorption at 1.4 μm to 525 ppm in the atmospheric transmission spectrum. We determine that HAT-P-26b's atmosphere is not rich in heavy elements (≈1.8×solar), which goes distinctly against the solar system mass-metallicity trend. This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime with little contamination from metal-rich planetesimals.

  2. Solar technology assessment project. Volume 6: Photovoltaic technology assessment

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1981-04-01

    Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.

  3. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 - 2009): Catalog and Summary of Properties

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2010-01-01

    In a previous study (Cane and Richardson, J. Geophys. Res. l08(A4), SSH6-1, we investigated the occurrence of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 - 2002, corresponding to the increasing and maximum phases of solar cycle 23, and provided a "comprehensive" catalog of these events. In this paper, we present a revised and updated catalog of the approx. =300 near-Earth ICMEs in 1996-2009, encompassing the complete cycle 23, and summarize their basic properties and geomagnetic effects. In particular, solar wind .. composition and charge state observations are now considered when identifying the ICMEs. In general, these additional data confirm the earlier identifications based predominantly on other solar wind plasma and magnetic field parameters. However, the boundaries of ICME-like plasma based on charge state/composition data may deviate significantly from those based on conventional plasma/magnetic field parameters. Furthermore, the much studied "magnetic clouds", with flux-rope-like magnetic field configurations, may form just a substructure of the total ICME interval.

  4. Mass breakdown model of solar-photon sail shuttle: The case for Mars

    NASA Astrophysics Data System (ADS)

    Vulpetti, Giovanni; Circi, Christian

    2016-02-01

    The main aim of this paper is to set up a many-parameter model of mass breakdown to be applied to a reusable Earth-Mars-Earth solar-photon sail shuttle, and analyze the system behavior in two sub-problems: (1) the zero-payload shuttle, and (2) given the sailcraft sail loading and the gross payload mass, find the sail area of the shuttle. The solution to the subproblem-1 is of technological and programmatic importance. The general analysis of subproblem-2 is presented as a function of the sail side length, system mass, sail loading and thickness. In addition to the behaviors of the main system masses, useful information for future work on the sailcraft trajectory optimization is obtained via (a) a detailed mass model for the descent/ascent Martian Excursion Module, and (b) the fifty-fifty solution to the sailcraft sail loading breakdown equation. Of considerable importance is the evaluation of the minimum altitude for the rendezvous between the ascent rocket vehicle and the solar-photon sail propulsion module, a task performed via the Mars Climate Database 2014-2015. The analysis shows that such altitude is 300 km; below it, the atmospheric drag prevails over the solar-radiation thrust. By this value, an example of excursion module of 1500 kg in total mass is built, and the sailcraft sail loading and the return payload are calculated. Finally, the concept of launch opportunity-wide for a shuttle driven by solar-photon sail is introduced. The previous fifty-fifty solution may be a good initial guess for the trajectory optimization of this type of shuttle.

  5. A 2000 Solar Mass Rotating Molecular Disk Around NGC 6334A

    NASA Technical Reports Server (NTRS)

    Kraemer, Kathleen E.; Jackson, James M.; Paglione, A. D.; Bolatto, Alberto D.

    1997-01-01

    We present millimeter and centimeter wave spectroscopic observations of the H II region NGC 6334A. We have mapped the source in several transitions of CO, CS, and NH3. The molecular emission shows a distinct flattened structure in the east-west direction. This structure is probably a thick molecular disk or torus (2.2 x 0.9 pc) responsible for the bipolarity of the near-infrared (NIR) and radio continuum emission which extends in two "lobes" to the north and south of the shell-like H II region. The molecular disk is rotating from west to east (omega approximately equals 2.4 km/s.pc) about an axis approximately parallel to the radio and NIR emission lobes. By assuming virial equilibrium, we find that the molecular disk contains approximately 2000 solar mass. Single-component gas excitation model calculations show that the molecular gas in the disk is warmer and denser (T(sub k) approximately equals 60 K, n approximately equals 3000/cc) than the gas to the north and south (T(sub k) approximately equals 50 K, n approximately equals 400/cc). High resolution (approximately 5 sec) NH3 (3, 3) images of NGC 6334A reveal several small (approximately 0.1 pc) clumps, one of which lies southwest of the radio continuum shell, and is spatially coincident with a near-infrared source, IRS 20. A second NH3 clump is coincident with an H2O maser and the center of a molecular outflow. The dense gas tracers, CS J = 5 approaches 4 and 7 approaches 6, peak near IRS 20 and the H2O maser, not at NGC 6334A. IRS 20 has a substantial far-infrared (FIR) luminosity L(sub FIR) approximately 10(exp 5) solar luminosity, which indicates the presence of an O 7.5 star but has no detected radio continuum (F(sub 6 cm) < 0.02 Jy). The combination of dense gas, a large FIR luminosity and a lack of radio continuum can best be explained if IRS 20 is a protostar. A third clump of NH3 emission lies to the west of IRS 20 but is not associated with any other molecular or continuum features. The star formation

  6. Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Peter

    1999-01-01

    This investigation is concerned with the large-scale evolution and topology of Coronal Mass Ejections (CMEs) in the solar wind. During this reporting period we have analyzed a series of low density intervals in the ACE (Advanced Composition Explorer) plasma data set that bear many similarities to CMEs. We have begun a series of 3D, MHD (Magnetohydrodynamics) coronal models to probe potential causes of these events. We also edited two manuscripts concerning the properties of CMEs in the solar wind. One was re-submitted to the Journal of Geophysical Research.

  7. Modelling the evolution of solar-mass stars with a range of metallicities using MESA

    NASA Astrophysics Data System (ADS)

    Jones, E. F.; Gore, P. M.

    2015-05-01

    The nuclides 1,2H, 3,4He, 7Li, 7Be, 8B, 12,13C, 13-15N, 14-18O, 17-19F, 18-22Ne, 22Mg, and 24Mg were used in the code package MESA (Modules for Experiments in Stellar Astrophysics)[Paxton] to model a one-solar-mass star with a range of metallicities, z, from 0 to 0.1. On HR diagrams of each star model's luminosity and effective temperature from before zero-age main sequence (pre-ZAMS) to white dwarf, oscillations were noted in the horizontal branch at intervals from z = 0 to 0.0070. At z, = 0, the calculated stellar lifetime is 6.09x109 years. The calculated lifetime of the model stars increases to a maximum of 1.25x1010 years at z = 0.022 and then decreases to 2.59x109 years at z = 0.1. A piecewise fit of the model lifetimes vs. metallicity was obtained.

  8. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  9. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  10. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  11. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  12. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  13. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope.

    PubMed

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-04-13

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  14. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  15. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes. PMID:25297432

  16. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  17. Anomalous Expansion of Coronal Mass Ejections During Solar Cycle 24 and Its Space Weather Implications

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Akiyama, Sachiko; Yashiro, Seiji; Xie, Hong; Makela, Pertti; Michalek, Grzegorz

    2014-01-01

    The familiar correlation between the speed and angular width of coronal mass ejections (CMEs) is also found in solar cycle 24, but the regression line has a larger slope: for a given CME speed, cycle 24 CMEs are significantly wider than those in cycle 23. The slope change indicates a significant change in the physical state of the heliosphere, due to the weak solar activity. The total pressure in the heliosphere (magnetic + plasma) is reduced by approximately 40%, which leads to the anomalous expansion of CMEs explaining the increased slope. The excess CME expansion contributes to the diminished effectiveness of CMEs in producing magnetic storms during cycle 24, both because the magnetic content of the CMEs is diluted and also because of the weaker ambient fields. The reduced magnetic field in the heliosphere may contribute to the lack of solar energetic particles accelerated to very high energies during this cycle.

  18. OBSERVATIONAL EVIDENCE OF A CORONAL MASS EJECTION DISTORTION DIRECTLY ATTRIBUTABLE TO A STRUCTURED SOLAR WIND

    SciTech Connect

    Savani, N. P.; Owens, M. J.; Forsyth, R. J.; Rouillard, A. P.; Davies, J. A.

    2010-05-01

    We present the first observational evidence of the near-Sun distortion of the leading edge of a coronal mass ejection (CME) by the ambient solar wind into a concave structure. On 2007 November 14, a CME was observed by coronagraphs onboard the STEREO-B spacecraft, possessing a circular cross section. Subsequently the CME passed through the field of view of the STEREO-B Heliospheric Imagers where the leading edge was observed to distort into an increasingly concave structure. The CME observations are compared to an analytical flux rope model constrained by a magnetohydrodynamic solar wind solution. The resultant bimodal speed profile is used to kinematically distort a circular structure that replicates the initial shape of the CME. The CME morphology is found to change rapidly over a relatively short distance. This indicates an approximate radial distance in the heliosphere where the solar wind forces begin to dominate over the magnetic forces of the CME influencing the shape of the CME.

  19. The HELCATS Project: Characterising the Evolution of Coronal Mass Ejections Observed During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Harrison, R. A.; Davies, J. A.; Perry, C. H.; Moestl, C.; Rouillard, A. P.; Bothmer, V.; Rodriguez, L.; Eastwood, J. P.; Kilpua, E.; Gallagher, P.; Odstrcil, D.

    2014-12-01

    Understanding the evolution of coronal mass ejections (CMEs) is fundamental to advancing our knowledge of energy and mass transport in the solar system, thus also rendering it crucial to space weather and its prediction. The advent of truly wide-angle heliospheric imaging has revolutionised the study of CMEs, by enabling their direct and continuous observation as they propagate from the Sun out to 1 AU and beyond. The recently initiated EU-funded FP7 Heliospheric Cataloguing, Analysis and Technique Service (HELCATS) project combines European expertise in the field of heliospheric imaging, built up over the last decade in particular through lead involvement in NASA's STEREO mission, with expertise in such areas as solar and coronal imaging as well as the interpretation of in-situ and radio diagnostic measurements of solar wind phenomena. The goals of HELCATS include the cataloguing of CMEs observed in the heliosphere by the Heliospheric Imager (HI) instruments on the STEREO spacecraft, since their launch in late October 2006 to date, an interval that covers much of the historically weak solar cycle 24. Included in the catalogue will be estimates of the kinematic properties of the imaged CMEs, based on a variety of established, and some more speculative, modelling approaches (geometrical, forward, inverse, magneto-hydrodynamic); these kinematic properties will be verified through comparison with solar disc and coronal imaging observations, as well as through comparison with radio diagnostic and in-situ measurements made at multiple points throughout the heliosphere. We will provide an overview of the HELCATS project, and present initial results that will seek to illuminate the unusual nature of solar cycle 24.

  20. Influence of mass moment of inertia on normal modes of preloaded solar array mast

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Lin, Paul

    1992-01-01

    Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Because of weight and cost considerations, the structures supporting the spacecraft appendages are extremely light and flexible; therefore, it is vital to investigate the influence of all physical and structural parameters that may influence the dynamic behavior of the overall structure. The study primarily focuses on the mast for the space station solar arrays, but the formulations and the techniques developed in this study apply to any large and flexible mast in zero gravity. Furthermore, to determine the influence on the circular frequencies, the mass moment of inertia of the mast was incorporated into the governing equation of motion for bending. A finite element technique (MSC/NASTRAN) was used to verify the formulation. Results indicate that when the mast is relatively flexible and long, the mass moment inertia influences the circular frequencies.

  1. Determination of Comet Halley gas emission characteristics from mass loading of the solar wind

    NASA Astrophysics Data System (ADS)

    Huddleston, D. E.; Johnstone, A. D.; Coates, A. J.

    1990-01-01

    The velocity profile of the solar wind during Giotto's approach to Comet Halley is fitted with the mass loading produced by a simple model of the neutral particle distribution. The model is used to calculate the implanted ion flux at Giotto for any given time and position along the spacecraft trajectory. Comparing the added flux with Giotto's solar wind proton data from the inbound leg outside the bow shock, the ratio of the total mass-loaded ion flux to the solar wind flux at the spacecraft is computed. Hence, using equations given by Galeev et al. (1985) values of the solar wind velocity, u-infinity, far upstream from the comet are inferred. Imposing the condition that u-infinity should be as nearly as possible constant in time, values of gas production rate and the ratio between radial expansion velocity and ionization rate required to fit the model to data are derived. The values obtained are consistent with those derived by more direct methods.

  2. Fine Magnetic Structure and Origin of Counter-streaming Mass Flows in a Quiescent Solar Prominence

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Liu, Yu; Liu, Ying D.; Chen, P. F.; Su, Jiangtao; Xu, Zhi; Liu, Zhong

    2015-11-01

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

  3. FINE MAGNETIC STRUCTURE AND ORIGIN OF COUNTER-STREAMING MASS FLOWS IN A QUIESCENT SOLAR PROMINENCE

    SciTech Connect

    Shen, Yuandeng; Liu, Yu; Xu, Zhi; Liu, Zhong; Liu, Ying D.; Chen, P. F.; Su, Jiangtao

    2015-11-20

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottom of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.

  4. Nonequilibrium ionization due to thermal diffusion and mass flows. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1980-01-01

    Recent calculations of diffusion coefficients are used in the continuity equation to compute ion populations of carbon in the solar transition region. Thermal diffusion causes strong departures from ionization equilibrium in the region where the temperature gradient is steepest. Mass-conserving flows are also included in our calculations. These dominate over thermal diffusion depending on the magnitude of the flows and also lead to departures from ionization equilibrium. These results have important implications for the interpretation of EUV line emission.

  5. Variability of Mass Dependence of Auroral Acceleration Processes with Solar Activity

    NASA Technical Reports Server (NTRS)

    Ghielmetti, Arthur G.

    1997-01-01

    The objectives of this investigation are to improve understanding of the mass dependent variability of the auroral acceleration processes and so to clarify apparent discrepancies regarding the altitude and local time variations with solar cycle by investigating: (1) the global morphological relationships between auroral electric field structures and the related particle signatures under varying conditions of solar activity, and (2) the relationships between the electric field structures and particle signatures in selected events that are representative of the different conditions occurring during a solar cycle. The investigation is based in part on the Lockheed UFI data base of UpFlowing Ion (UFI) events in the 5OO eV to 16keV energy range and associated electrons in the energy range 7O eV to 24 keV. This data base was constructed from data acquired by the ion mass spectrometer on the S3-3 satellite in the altitude range of I to 1.3 Re. The launch of the POLAR spacecraft in early 1996 and successful operation of its TIMAS ion mass spectrometer has provided us with data from within the auroral acceleration regions during the current solar minimum. The perigee of POLAR is at about 1 Re, comparable to that of S3-3. The higher sensitivity and time resolution of TIMAS compared to the ion mass spectrometer on S3-3 together with its wider energy range, 15 eV to 33 keV, facilitate more detailed studies of upflowing ions.

  6. Non-mass-analyzed ion implantation equipment for high volume solar cell production

    NASA Technical Reports Server (NTRS)

    Armini, A. J.; Bunker, S. N.; Spitzer, M. B.

    1982-01-01

    Equipment designed for junction formation in silicon solar cells is described. The equipment, designed for a production level of approximately one megawatt per year, consists of an ion implanter and annealer. Low cost is achieved by foregoing the use of mass analysis during the implantation, and by the use of a belt furnace for annealing. Results of process development, machine design and cost analysis are presented.

  7. Solar neutrino limit on axions and keV-mass bosons

    SciTech Connect

    Gondolo, Paolo; Raffelt, Georg G.

    2009-05-15

    The all-flavor solar neutrino flux measured by the Sudbury Neutrino Observatory constrains nonstandard energy losses to less than about 10% of the Sun's photon luminosity, superseding a helioseismological argument and providing new limits on the interaction strength of low-mass particles. For the axion-photon coupling strength we find g{sub a{gamma}}<7x10{sup -10} GeV{sup -1}. We also derive explicit limits on the Yukawa coupling to electrons of pseudoscalar, scalar, and vector bosons with keV-scale masses.

  8. Ground state mass of 81Kr and the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Kouzes, R. T.; Lowry, M. M.; Bennett, C. L.

    1982-02-01

    The 81Br(3He,t)81Kr, reaction has been used to determine an improved value for the ground state mass of 81Kr. A comparison is made with 51V(3He,t)51Cr and the implications for calibration of the proposed bromine solar neutrino detector are presented. NUCLEAR REACTIONS 81Br(3He,t)81Kr, 51V(3He,t)51Cr, 87Rb(3He,t)87Sr, 85Rb(3He,t)85Sr, E(3He)=24.7 MeV; Q values measured, ground state 81Kr mass inferred.

  9. Combined Ulysses Solar Wind and SOHO Coronal Observations of Several West Limb Coronal Mass Ejections. Appendix 8

    NASA Technical Reports Server (NTRS)

    Funsten, H. O.; Gosling, J. T.; Riley, P.; St.Cyr, O. C.; Forsyth, R. J.; Howard, R. A.; Schwenn, R.

    2001-01-01

    From October 1996 to January 1997, Ulysses was situated roughly above the west limb of the Sun as observed from Earth at a heliocentric distance of about 4.6 AU and a latitude of about 25 deg. This presents the first opportunity to compare Solar and Heliospheric Observatory (SOHO) limb observations of coronal mass ejections (CMEs) directly with their solar wind counterparts far from the Sun using the Ulysses data. During this interval, large eruptive events were observed above the west limb of the Sun by the Large Angle Spectrometric Coronagraph (LASCO) on SOHO on October 5, November 28, and December 21-25, 1996. Using the combined plasma and magnetic field data from Ulysses, the October 5 event was clearly identified by several distinguishing signatures as a CME. The November 28 event was also identified as a CME that trailed fast ambient solar wind, although it was identified only by an extended interval of counterstreaming suprathermal electrons. The December 21 event was apparently characterized by a six-day interval of nearly radial field and a plasma rarefaction. For the numerous eruptive events observed by the LASCO coronagraph during December 23-25, Ulysses showed no distinct, CMEs, perhaps because of intermingling of two or more of the eruptive events. By mapping the Ulysses observations back in time to the Sun assuming a constant flow speed, we have identified intervals of plasma that were accelerated or decelerated between the LASCO and Ulysses observations.

  10. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago.

    PubMed

    Neff, U; Burns, S J; Mangini, A; Mudelsee, M; Fleitmann, D; Matter, A

    2001-05-17

    Variations in the amount of solar radiation reaching the Earth are thought to influence climate, but the extent of this influence on timescales of millennia to decades is unclear. A number of climate records show correlations between solar cycles and climate, but the absolute changes in solar intensity over the range of decades to millennia are small and the influence of solar flux on climate is not well established. The formation of stalagmites in northern Oman has recorded past northward shifts of the intertropical convergence zone, whose northward migration stops near the southern shoreline of Arabia in the present climate. Here we present a high-resolution record of oxygen isotope variations, for the period from 9.6 to 6.1 kyr before present, in a Th-U-dated stalagmite from Oman. The delta18O record from the stalagmite, which serves as a proxy for variations in the tropical circulation and monsoon rainfall, allows us to make a direct comparison of the delta18O record with the Delta14C record from tree rings, which largely reflects changes in solar activity. The excellent correlation between the two records suggests that one of the primary controls on centennial- to decadal-scale changes in tropical rainfall and monsoon intensity during this time are variations in solar radiation.

  11. Lithium Inventory of 2 Solar Mass Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    NASA Technical Reports Server (NTRS)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-01-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 solar mass experience a shortlived phase of Li-richness at the onset of core He-burning. Many of these stars have low C-12/C-13, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 solar mass. We find six Li-rich stars (A(Li) greater than or equal to 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low C-12/C-13. Such low C-12/C-13, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be less than 47%, based on stars that have low C-12/C-13 for their observed A(Li).

  12. Cluster of solar active regions and onset of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Wang, JingXiu; Zhang, YuZong; He, Han; Chen, AnQin; Jin, ChunLan; Zhou, GuiPing

    2015-09-01

    Abstract round-the-clock solar observations with full-disk coverage of vector magnetograms and multi-wavelength images demonstrate that solar active regions (ARs) are ultimately connected with magnetic field. Often two or more ARs are clustered, creating a favorable magnetic environment for the onset of coronal mass ejections (CMEs). In this work, we describe a new type of magnetic complex: cluster of solar ARs. An AR cluster is referred to as the close connection of two or more ARs which are located in nearly the same latitude and a narrow span of longitude. We illustrate three examples of AR clusters, each of which has two ARs connected and formed a common dome of magnetic flux system. They are clusters of NOAA (i.e., National Oceanic and Atmospheric Administration) ARs 11226 & 11227, 11429 & 11430, and 11525 & 11524. In these AR clusters, CME initiations were often tied to the instability of the magnetic structures connecting two partner ARs, in the form of inter-connecting loops and/or channeling filaments between the two ARs. We show the evidence that, at least, some of the flare/CMEs in an AR cluster are not a phenomenon of a single AR, but the result of magnetic interaction in the whole AR cluster. The observations shed new light on understanding the mechanism(s) of solar activity. Instead of the simple bipolar topology as suggested by the so-called standard flare model, a multi-bipolar magnetic topology is more common to host the violent solar activity in solar atmosphere.

  13. Maximum Coronal Mass Ejection Speed as an Indicator of Solar and Geomagnetic Activities

    NASA Astrophysics Data System (ADS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Gopalswamy, N.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.

  14. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  15. The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3.

    PubMed

    Fu, Hai; Cooray, Asantha; Feruglio, C; Ivison, R J; Riechers, D A; Gurwell, M; Bussmann, R S; Harris, A I; Altieri, B; Aussel, H; Baker, A J; Bock, J; Boylan-Kolchin, M; Bridge, C; Calanog, J A; Casey, C M; Cava, A; Chapman, S C; Clements, D L; Conley, A; Cox, P; Farrah, D; Frayer, D; Hopwood, R; Jia, J; Magdis, G; Marsden, G; Martínez-Navajas, P; Negrello, M; Neri, R; Oliver, S J; Omont, A; Page, M J; Pérez-Fournon, I; Schulz, B; Scott, D; Smith, A; Vaccari, M; Valtchanov, I; Vieira, J D; Viero, M; Wang, L; Wardlow, J L; Zemcov, M

    2013-06-20

    Stellar archaeology shows that massive elliptical galaxies formed rapidly about ten billion years ago with star-formation rates of above several hundred solar masses per year. Their progenitors are probably the submillimetre bright galaxies at redshifts z greater than 2. Although the mean molecular gas mass (5 × 10(10) solar masses) of the submillimetre bright galaxies can explain the formation of typical elliptical galaxies, it is inadequate to form elliptical galaxies that already have stellar masses above 2 × 10(11) solar masses at z ≈ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive submillimetre bright galaxies at z = 2.3. The system is seen to be forming stars at a rate of 2,000 solar masses per year. The star-formation efficiency is an order of magnitude greater than that of normal galaxies, so the gas reservoir will be exhausted and star formation will be quenched in only around 200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of about 4 × 10(11) solar masses. We conclude that gas-rich major galaxy mergers with intense star formation can form the most massive elliptical galaxies by z ≈ 1.5.

  16. SPITZER OBSERVATIONS OF THE {lambda} ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    SciTech Connect

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J. E-mail: muzerol@stsci.ed

    2010-10-20

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young ({approx}5 Myr) {lambda} Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M{sub sun} to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from {approx}6% for K-type stars (R{sub C} - J < 2) to {approx}27% for stars with spectral-type M5 or later (R{sub C} - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the {lambda} Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as {approx}5 Myr.

  17. General structure of democratic mass matrix of quark sector in E6 model

    NASA Astrophysics Data System (ADS)

    Ciftci, R.; ćiftci, A. K.

    2016-03-01

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  18. The soft X-ray coronal mass ejection above solar limb of 1998 April 23

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-juan

    Using the observational materials of SXT/HXT aboard satellite Yohkoh and the Nobeyama Radioheliograph (NoRH) on 1998-04-23, a comprehensive study of the soft X-ray coronal mass ejection (CME) above solar SE limb shows that there were two magnetic dipolar sources (MDSs), one magnetic capacity belt (MCB) between the MDSs, one neutral current sheet (NCS) and some rare activation sources (ASs). When the MCB was changed by the ASs to become a magnetic energy belt (MEB), both mass and energy were concentrated to form the NCS. When the MDSs were connected by the MEB, the NCS was formed and the CME occurred. Mass was ejected not only from the NCS, but also from the whole MEB. The expanding loop of the CME had the two MDSs as footpoints. The top of the loop was always inclined towards the footpoint of the weaker source, and its locus marks the NCS.

  19. KINEMATIC TREATMENT OF CORONAL MASS EJECTION EVOLUTION IN THE SOLAR WIND

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Crooker, N. U.

    2004-01-01

    We present a kinematic study of the evolution of coronal mass ejections (CMEs) in the solar wind. Specifically, we consider the effects of (1) spherical expansion and (2) uniform expansion due to pressure gradients between the interplanetary CME (ICME) and the ambient solar wind. We compare these results with an MHD model that allows us to isolate these effects h m the combined kinematic and dynamical effects, which are included in MHD models. They also provide compelling evidence that the fundamental cross section of so-called "force-free" flux ropes (or magnetic clouds) is neither circular or elliptical, but rather a convex-outward, "pancake" shape. We apply a force-free fit to the magnetic vectors from the MHD simulation to assess how the distortion of the flux rope affects the fit. In spite of these limitations, force-free fits, which are straightforward to apply, do provide an important description of a number of parameters, including the radial dimension, orientation, and chirality of the ICME. Subject headings: MHD - solar wind - Sun: activity - Sun: corona - Sun: coronal mass ejections (CMEs) - On-line material color figures Sun: magnetic fields

  20. Plasma Characteristic Determination During the Coronal Mass Ejection Associated with the January 27, 2012 Solar Storm

    NASA Astrophysics Data System (ADS)

    Frahm, Rudy A.; Howard, Timothy; DeForest, Craig; Odstrcil, Dusan; Kallio, Esa; Mckenna-Lawler, Susan; Barabash, Stas; Winningham, J. David; Sharber, James R.; Elliott, Heather A.

    2013-04-01

    On January 27, 2012, an X-class flare was launched from the Sun at 18:15 UT. The X-class flare generated a high-energy particle stream flowing along the Interplanetary Magnetic Field (IMF) which arrived at Mars in about 39 minutes, with the resulting Coronal Mass Ejection (CME) arriving at Mars several days later. The Electron Spectrometer (ELS), part of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment on the European Mars Express (MEx) Spacecraft, is used to show that the effect of the CME plasma caused an increase in the intensity of the energy flux within the Martian magnetosheath. Models of this event predicted the speed of the CME, which is used to identify which increase of the magnetosheath signature is due to the CME relating to this flare as several increases in Martian magnetosheath plasma are observed during the flare period. The Mars reaction, being an induced magnetosphere, responds to changes in solar wind conditions by continually self adjusting its magnetosheath to stand off the solar wind. Since the ion component of the solar wind interaction carries momentum away from the Sun, it is the electrons which must self adjust in order to maintain charge neutrality within the plasma and the proper induced current flow in order to stand-off changes in the solar wind. Here we examine the electron plasma properties during the forward CME shock in the Martian magnetosheath and describe the plasma conditions.

  1. Mass Communication in Singapore: An Annotated Bibliography. Asian Mass Communication Bibliography Series 6.

    ERIC Educational Resources Information Center

    Espejo, Cristina Y., Ed.; Fontgalland, Guy de, Ed.

    This bibliography lists and describes published and unpublished material relating to mass communications in Singapore, from 1945 to 1973. Most of the items listed are written in English; a limited number are in Chinese. The bibliography is divided into 18 sections: bibliography and reference material; communication theory and research methods;…

  2. The speeds of coronal mass ejections in the solar wind at mid heliographic latitudes: Ulysses

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.; Goldstein, B.E.; Neugebauer, M.

    1994-06-15

    Six CMEs have been detected in the Ulysses plasma observations poleward of S31{degrees}. The most striking aspect of these mid-latitude CMEs was their high speeds; the overall average speed of these CMEs was {approximately}740 km s{sup {minus}1}, which was comparable to that of the rest of the solar wind at these latitudes. This average CME speed is much higher than average CME speeds observed in the solar wind in the ecliptic or in the corona close to the Sun. The evidence indicates that the CMEs were not pushed up to high speeds in interplanetary space by interaction with trailing high-speed plasma. Rather, they simply seem to have received the same basic acceleration as the rest of the solar wind at these mid-latitudes. These results suggest that the basic acceleration process for many CMEs at all latitudes is essentially the same as for the normal solar wind. Frequently most of this acceleration must occur well beyond 6 solar radii from Sun`sj center. 18 refs., 4 figs.

  3. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures

    NASA Astrophysics Data System (ADS)

    Lee, Kangmin; Hwang, Inchan; Kim, Namwoo; Choi, Deokjae; Um, Han-Don; Kim, Seungchul; Seo, Kwanyong

    2016-07-01

    We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm2 exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm-2 because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells.We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm2 exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm-2 because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the

  4. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overalll system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1880 kg/cu m.

  5. Impact of thermal energy storage properties on solar dynamic space power conversion system mass

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Coles-Hamilton, Carolyn E.; Lacy, Dovie E.

    1987-01-01

    A 16 parameter solar concentrator/heat receiver mass model is used in conjunction with Stirling and Brayton Power Conversion System (PCS) performance and mass computer codes to determine the effect of thermal energy storage (TES) material property changes on overall PCS mass as a function of steady state electrical power output. Included in the PCS mass model are component masses as a function of thermal power for: concentrator, heat receiver, heat exchangers (source unless integral with heat receiver, heat sink, regenerator), heat engine units with optional parallel redundancy, power conditioning and control (PC and C), PC and C radiator, main radiator, and structure. Critical TES properties are: melting temperature, heat of fusion, density of the liquid phase, and the ratio of solid-to-liquid density. Preliminary results indicate that even though overall system efficiency increases with TES melting temperature up to 1400 K for concentrator surface accuracies of 1 mrad or better, reductions in the overall system mass beyond that achievable with lithium fluoride (LiF) can be accomplished only if the heat of fusion is at least 800 kJ/kg and the liquid density is comparable to that of LiF (1800 kg/cu m).

  6. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  7. Abundance and composition of solar KR in the H3-H6 chondrite ACFER111

    NASA Technical Reports Server (NTRS)

    Pedroni, A.

    1993-01-01

    He/Ne, Ne/Ar, and Ar/Kr abundance ratios of solar gases extracted by stepped heating, stepped oxidation, and stepped etching of lunar and meteoritic regoliths are significantly lower than ratios measured directly or predicted by model estimates. Of these, the differences in the He/Ne and Ne/Ar ratios are explained to be owing to diffusive fractionation losses from the host minerals. In contrast, it remains controversial if the Ar/Kr and Kr/Xe ratios were fractionated prior to or after the implantation of the gases into the minerals. In the H3-H6 chondritic regolith breccia ACFER 111, measured He/Ne and Ne/Ar ratios appear to be of nearly unfractionated solar composition. The Ar/Kr ratio of ACFER 111, might thus be also unfractionated. We examined by stepped etching a metal sample of ACFER 111 and obtained an average solar 36Ar/84Kr = 3150 plus or minus 300 which is in agreement with the model predictions. The isotopic composition of solar Kr was observed to change in the course of the etching in a way very similar to that report for lunar ilmenites by the Zurich group. This can be interpreted as a change of the mixing ratio of Solar Wind (SW) and Solar Energetic Particles (SEP). The isotopic composition of the SEP component obtained from our Kr data, however, is distinct from that reported by the Zurich group.

  8. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    NASA Astrophysics Data System (ADS)

    Falkenberg, T. V.; Vršnak, B.; Taktakishvili, A.; Odstrcil, D.; MacNeice, P.; Hesse, M.

    2010-06-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time-dependent 3-D MHD model that can simulate the propagation of cone-shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position, and initial velocity), all remaining parameters are varied, resulting in more than 20 runs investigated here. The output parameters considered are velocity, density, magnetic field strength, and temperature. We find that the largest effects on the model output are the input parameters of upper limit for ambient solar wind velocity, CME density, and elongation factor, regardless of whether one's main interest is arrival time, signal shape, or signal amplitude of the ICME. We find that though ENLILv2.5b currently does not include the magnetic cloud of the ICME, it replicates the signal at L1 well in the studied event. The arrival time difference between satellite data and the ENLILv2.5b baseline run of this study is less than 30 min.

  9. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

  10. A polymer tandem solar cell with 10.6% power conversion efficiency

    PubMed Central

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590

  11. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590

  12. Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures

    NASA Astrophysics Data System (ADS)

    Odstrcil, D.; Pizzo, V. J.; Arge, C. N.

    2005-02-01

    Recently, we simulated the 12 May 1997 coronal mass ejection (CME) event with a numerical three-dimensional magnetohydrodynamic model (Odstrcil et al., 2004), in which the background solar wind was determined from the Science Applications International Corporation (SAIC) coronal model (Riley et al., 2001) and the transient disturbance was determined from the cone model (Zhao et al., 2002). Although we reproduced with some fidelity the arrival of the shock and interplanetary CME at Earth, detailed analysis of the simulations showed a poorly defined shock and discrepancies in the standoff distance between the shock and the driving ejecta and in the inclination of the shock with respect to the Sun-Earth line. In this paper, we investigate these problems in more detail. First, we use an alternative coronal outflow model, the so-called Wang-Sheeley-Arge-Mount Wilson Observatory (WSA-MWO) model (Arge and Pizzo, 2000; Arge et al., 2002; Arge et al., 2004), to assess the effect of using synoptic, full rotation coronal maps that differ in method of preparation. Second, we investigate how differences in the presumed evolution of the coronal stream structure affect the propagation of the disturbance. We incorporate two time-dependent boundary conditions for the ambient solar wind as determined by the WSA model, one derived from pseudo daily updated maps and one derived from artificially modified full rotation maps. Numerical results from these different scenarios are compared with solar wind observations at Earth. We find that heliospheric simulations with the SAIC and WSA full rotation models provide qualitatively similar parameters of the background solar wind and transient disturbances at Earth. Improved agreement with the observations is achieved by artificially modified maps that simulate the rapid displacement of the coronal hole boundary after the CME eruption. We also consider how multipoint temporal profiles of solar wind parameters and multiperspective synthetic

  13. Influence of the Solar Wind Speed on the Propagation of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Yashiro, S.; Tokumaru, M.; Fujiki, K.; Iju, T.; Akiyama, S.; Makela, P. A.; Gopalswamy, N.

    2015-12-01

    We investigate the influence of the solar wind (SW) on the propagation of a set of 191 coronal mass ejections (CMEs) near the Sun during the period 1996-2013. The CMEs were observed by LASCO on board SOHO and their source regions were identified using the CME-associated eruptive features (flares, filament eruptions, dimmings) in X-ray, EUV, microwave, and Hα observations. The SW speeds above the CME source regions were estimated from the interplanetary scintillation (IPS) observations from the Solar Terrestrial Environ Laboratory, Nagoya University. We considered only CMEs from close to the limb in order to avoid the projection effects. We also considered CMEs with at least 10 height-time measurements in order to avoid the large uncertainty in the acceleration measurements. We confirm the well-known CME-SW relationship that the CMEs propagating faster (slower) than the ambient solar wind are likely to decelerate (accelerate). The correlation between the acceleration and the difference of the CME and the SW speeds is high with a correlation coefficient of -0.74, slightly lower compared to the one for CMEs associated with interplanetary radio bursts (Gopalswamy et al. 2001, JGR, 106, 29219). There are many accelerating CMEs in our sample with a speed similar to the ambient solar wind speed. This could be due to selection effect because accelerating CMEs tend to remain visible longer than decelerating ones. We also found that CMEs originating from around the sources of the fast solar wind tend to be faster, indicating that the open magnetic fields above the CME source regions affect the CME propagation.

  14. Coronal mass ejections and major solar flares: The great active center of March 1989

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Hundhausen, Arthur J.

    1994-01-01

    The solar flare and coronal mass ejection (CME) events associated with the large and complex March 1989 active region are discussed. This active region gave us a chance to study the relation of CME with truly major solar flares. The work concentrates on questions of the relation of CMEs and flares to one another and to other types of activity on the Sun. As expected, some major (X-3B class) flares had associated CMEs. However, an unexpected finding is that others did not. In fact, there is strong evidence that the X4-4B flare of March 9th had no CME. This lack of a CME for such an outstanding flare event has important implications to theories of CME causation.Apparently, not all major flares cause CMEs or are caused by CMEs. The relations between CMEs and other types of solar activity are also discussed. No filament disappearances are reported for major CMEs studied here. Comparing these results with other studies, CMEs occur in association with flares and with erupting prominences, but neither are required for a CME. The relation between solar structures showing flaring without filament eruptions and structures showing filament eruptions without flares becomes important. The evolutionary relation between an active flaring sunspot region and extensive filaments without sunspots is reviewed, and the concept of an 'evolving magnetic structure' (EMS) is introduced. It is suggested that all CMEs arise in EMSs and that CMEs provide a major path through which azimuthal magnetic fields escape form the Sun during the solar cycle.

  15. THE EVOLUTION OF THE SOLAR NEBULA I. EVOLUTION OF THE GLOBAL PROPERTIES AND PLANET MASSES

    SciTech Connect

    Jin Liping; Sui Ning E-mail: suining@email.jlu.edu.c

    2010-02-20

    We investigate the formation, structure, and evolution of the solar nebula by including nonuniform viscosity and the mass influx from the gravitational collapse of the molecular cloud core. The calculations are done by using currently accepted viscosity, which is nonuniform, and probable mass influx from star formation theory. In the calculation of the viscosity, we include the effect of magnetorotational instability. The radial distributions of the surface density and other physical quantities of the nebula are significantly different from nebula models with constant alpha viscosity and the models which do not include the mass influx. We find that the nebula starts to form from the inner boundary because of the inside-out collapse and then expands due to viscosity. The surface density is not a monotonic function of the radius like the case of uniform viscosity. There are minimums near 1.5 AU due to nonuniform viscosity. The general shape of the surface density is sustained before the mass influx stops because the mass supply offsets mass loss accreted onto the protosun and provides the mass needed for the nebula expansion. We show that not all protoplanetary disks experience gravitational instability during some periods of their lifetime. We find that the nebula becomes gravitationally unstable in some durations when the angular momentum of the cloud core is high. Our numerical calculations confirm Jin's early suggestion that nonuniform viscosity explains the differences in mass and gas content among Jovian planets. Our calculations of nebular evolution show that the nebula temperature is less than 1200 K. Even in the inner portion of the nebula, refractory material from the molecular cloud may survive and refractory condensates may form.

  16. Multipoint Observations of Coronal Mass Ejection and Solar Energetic Particle Events on Mars and Earth During November 2001

    NASA Technical Reports Server (NTRS)

    Falkenberg, T. V.; Vennerstrom, S.; Brain, D. A.; Delory, G.; Taktakishvili, A.

    2011-01-01

    Multipoint spacecraft observations provide unique opportunities to constrain the propagation and evolution of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere. Using Mars Global Surveyor (MGS) data to study both ICME and solar energetic particle (SEP) events at Mars and OMNI and Geostationary Operational Environmental Satellite (GOES) data to study ICMEs and SEPs at Earth, we present a detailed study of three CMEs and flares in late November 2001. In this period, Mars trailed Earth by 56deg solar longitude so that the two planets occupied interplanetary magnetic field lines separated by only approx.25deg. We model the interplanetary propagation of CME events using the ENLIL version 2.6 3-D MHD code coupled with the Wang-Sheeley-Arge version 1.6 potential source surface model, using Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) images to determine CME input parameters. We find that multipoint observations are essential to constrain the simulations of ICME propagation, as two very different ICMEs may look very similar in only one observational location. The direction and width of the CME as parameters essential to a correct estimation of arrival time and amplitude of the ICME signal. We find that these are problematic to extract from the analysis of SOHO/LASCO images commonly used for input to ICME propagation models. We further confirm that MGS magnetometer and electron reflectometer data can be used to study not only ICME events but also SEP events at Mars, with good results providing a consistent picture of the events when combined with near-Earth data.

  17. Compressive Acceleration of Solar Energetic Particles within Coronal Mass Ejections: Observations and Theory Relevant to the Solar Probe Plus and Solar Orbiter Missions

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-12-01

    Observations of solar energetic particles (SEPs) over Solar Cycles 22-24 included the measurement of their pitch-angle distributions (PADs). When only magnetically "well-connected" SEP events were selected, i.e., with the spacecraft on interplanetary magnetic field (IMF) lines whose coronal foot-points were within about 30 deg of the associated flare site, the PADs were usually "beam-like" during the rise-to-maximum phase (RTM) of the events. This nearly "scatter-free" propagation (due to magnetic focusing of the IMF) revealed that the injection times of the SEPs were delayed up to 10s of minutes after the onset of electromagnetic emissions from the flare. Direct comparison with the flare-associated coronal mass ejections (CMEs) from the western hemisphere indicated that the SEP acceleration/injection was occurring at least 1 Rs into the corona (and often continuing well above that radial distance). Moreover, the RTM profiles exhibited a continuum of shapes, from "spikes" to "pulses" to "ramps", and these shape characterizations ordered the properties of the associated CMEs. Most importantly, when compared at nearly the same near-relativistic velocities, electrons and protons exhibited similar PADs and RTM profiles. Clearly, such orderly patterns in the data call for a single dominant acceleration process that treats all particles of similar velocities the same, regardless of mass and charge. A simple theory that meets all of these requirements, based on nearly scatter-free propagation and energy change within particle "reservoirs" (such as the closed magnetic structure of a CME), has recently been proposed [Roelof, Proc. 14th Ann. Int'l. Astrophys. Conf., IOP, in press, 2015]. The acceleration results from compression (-divV) of the driver plasma, well sunward of the CME shock. Acceleration (e-folding) times of only a few minutes can be obtained from representative parameters of 1000 km/s CMEs. A companion paper [Roelof and Vourlidas, op. cit.], proposed a new

  18. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection

    NASA Astrophysics Data System (ADS)

    Pick, Monique; Vilmer, Nicole

    2008-10-01

    This paper will review the input of 65 years of radio observations to our understanding of solar and solar terrestrial physics. It is focussed on the radio observations of phenomena linked to solar activity in the period going from the first discovery of the radio emissions to present days. We shall present first an overview of solar radio physics focussed on the active Sun and on the premices of solar terrestrial relationships from the discovery to the 1980s. We shall then discuss the input of radioastronomy both at metric/decimetric wavelengths and at centimetric/millimetric and submillimetric wavelengths to our understanding of flares. We shall also review some of the radio, X-ray and white-light signatures bringing new evidence for reconnection and current sheets in eruptive events. The input of radio images (obtained with a high temporal cadence) to the understanding of the initiation and fast development in the low corona of coronal mass ejections (CMEs) as well as the radio observations of shocks in the corona and in the interplanetary medium will be reviewed. The input of radio observations to our knowledge of the interplanetary magnetic structures (ICMEs) will be summarized; we shall show how radio observations linked to the propagation of electron beams allow to identify small scale structures in the heliosphere and to trace the connection between the Sun and interplanetary structures as far as 4AU. We shall also describe how the radio observations bring useful information on the relationship and connections between the energetic electrons in the corona and the electrons measured in-situ. The input of radio observations on the forecasting of the arrival time of shocks at the Earth as well as on Space Weather studies will be described. In the last section, we shall summarize the key results that have contributed to transform our knowledge of solar activity and its link with the interplanetary medium. In conclusion, we shall indicate the instrumental radio

  19. Transit Time of Coronal Mass Ejections under Different Ambient Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Vršnak, Bojan

    2014-01-01

    The speed [ v( R)] of coronal mass ejections (CMEs) at various distances from the Sun is modeled (as proposed by Vršnak and Gopalswamy in J. Geophys. Res. 107, 2002, doi:10.1029/2001/JA000120) by using the equation of motion a drag= γ( v- w) and its quadratic form a drag= γ( v- w)| v- w|, where v and w are the speeds of the CME and solar wind, respectively. We assume that the parameter γ can be expressed as γ= αR β , where R is the heliocentric distance, and α and β are constants. We extend the analysis of Vršnak and Gopalswamy to obtain a more detailed insight into the dependence of the CME Sun-Earth transit time on the CME speed and the ambient solar-wind speed, for different combinations of α and β. In such a parameter-space analysis, the results obtained confirm that the CME transit time depends strongly on the state of the ambient solar wind. Specifically, we found that: i) for a particular set of values of α and β, a difference in the solar-wind speed causes larger transit-time differences at low CME speeds [ v 0], than at high v 0; ii) the difference between transit times of slow and fast CMEs is larger at low solar-wind speed [ w 0] than at high w 0; iii) transit times of fast CMEs are only slightly influenced by the solar-wind speed. The last item is especially important for space-weather forecasting, since it reduces the number of key parameters that determine the arrival time of fast CMEs, which tend to be more geo-effective than the slow ones. Finally, we compared the drag-based model results with the observational data for two CME samples, consisting of non-interacting and interacting CMEs (Manoharan et al. in J. Geophys. Res. 109, 2004). The comparison reveals that the model results are in better agreement with the observations for non-interacting events than for the interacting events. It was also found that for slow CMEs ( v 0<500 km s-1), there is a deviation between the observations and the model if slow-wind speeds (≈ 300 - 400 km

  20. A two-solar-mass neutron star measured using Shapiro delay.

    PubMed

    Demorest, P B; Pennucci, T; Ransom, S M; Roberts, M S E; Hessels, J W T

    2010-10-28

    Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out theoretical models of their composition. The observed range of neutron star masses, however, has hitherto been too narrow to rule out many predictions of 'exotic' non-nucleonic components. The Shapiro delay is a general-relativistic increase in light travel time through the curved space-time near a massive body. For highly inclined (nearly edge-on) binary millisecond radio pulsar systems, this effect allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar J1614-2230 that show a strong Shapiro delay signature. We calculate the pulsar mass to be (1.97 ± 0.04)M(⊙), which rules out almost all currently proposed hyperon or boson condensate equations of state (M(⊙), solar mass). Quark matter can support a star this massive only if the quarks are strongly interacting and are therefore not 'free' quarks.

  1. Voyager observations of O(+6) and other minor ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Villanueva, Louis; Mcnutt, Ralph L., Jr.; Lazarus, Alan J.; Steinberg, John T.

    1994-01-01

    The plasma science (PLS) experiments on the Voyager 1 and 2 spacecraft began making measurements of the solar wind shortly after the two launches in the fall of 1977. In reviewing the data obtained prior to the Jupiter encounters in 1979, we have found that the large dynamic range of the PLS instrument generally allows a clean separation of signatures of minor ions (about 2.5% of the time) during a single instrument scan in energy per charge. The minor ions, most notably O(+6), are well separated from the protons and alpha particles during times when the solar wind Mach number (ratio of streaming speed to thermal speed) is greater than approximately 15. During the Earth to Jupiter cruise we find that the average ratio of alpha particle number density to that of oxygen is 66 +/- 7 (Voyager 1) and 71 +/- 17 (Voyager 2). These values are consistent with the value 75 +/- 20 inferred from the Ion Composition Instrument on ISEE 3 during the period spanning 1978 and 1982. We have inferred an average coronal temperature of (1.7 +/- 0.1) x 10(exp 6) K based on the ratio of O(+7) to O(+6) number densities. Our observations cover a period of increasing solar activity. During this time we have found that the alpha particle to proton number density ratio is increasing with the solar cycle, the oxygen to proton ratio increases, and the alpha particle to oxygen ratio remains relatively constant in time.

  2. Interplanetary coronal mass ejections and their geomagnetic consequences during solar cycle 24

    NASA Astrophysics Data System (ADS)

    Maris Muntean, Georgeta; Mierla, Marilena; Besliu-Ionescu, Diana; Lacatus, Dana; Razvan Paraschiv, Alin

    Geomagnetic storms are known to be of great importance to life on Earth through their impact on telecommunications, electric power networks and much more. Our study will analyse in detail two months of solar and geomagnetic activity in March 2012 and, March 2013. There is an ICME (Interplanetary Coronal Mass Ejection) recorded on March 9, 2012 listed in the Richardson and Cane catalogue, correlated with a Halo CME (Coronal Mass Ejection) from March 7. An intense geomagnetic storm (minimum Dst = -131 nT) was registered on March 9, 2012. Out of the two ICMEs recorded on the 17th and 20th March 2013, only the first was clearly associated with a Halo CME from March, 15. March, 17 is a day of intense geomagnetic storm (minimum Dst = -132 nT). We will focus on these events, such that the interaction between ICMEs and interplanetary magnetic field from the Sun to the Earth can be thoroughly described.

  3. A CRITICAL EXAMINATION OF THE FUNDAMENTAL ASSUMPTIONS OF SOLAR FLARE AND CORONAL MASS EJECTION MODELS

    SciTech Connect

    Spicer, D. S.; Bingham, R.; Harrison, R.

    2013-05-01

    The fundamental assumptions of conventional solar flare and coronal mass ejection (CME) theory are re-examined. In particular, the common theoretical assumption that magnetic energy that drives flares and CMEs can be stored in situ in the corona with sufficient energy density is found wanting. In addition, the observational constraint that flares and CMEs produce non-thermal electrons with fluxes of order 10{sup 34}-10{sup 36} electrons s{sup -1}, with energies of order 10-20 keV, must also be explained. This constraint when imposed on the ''standard model'' for flares and CMEs is found to miss the mark by many orders of magnitude. We suggest, in conclusion, there are really only two possible ways to explain the requirements of observations and theory: flares and CMEs are caused by mass-loaded prominences or driven directly by emerging magnetized flux.

  4. Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems - The Chilton-Colburn analogy

    SciTech Connect

    Tsilingiris, P.T.

    2010-02-15

    In the present investigation efforts have been devoted towards developing an analysis suitable for heat and mass transfer processes modeling in solar distillation systems, when they are operating at higher temperatures. For this purpose the use of Lewis relation is not new although its validity is based on the assumptions of identical boundary layer concentration and temperature distributions, as well as low mass flux conditions, which are not usually met in solar distillation systems operating at higher temperatures associated with considerable mass transfer rates. The present analysis, taking into consideration these conditions and the temperature dependence of all pertinent thermophysical properties of the saturated binary mixture of water vapor and dry air, leads to the development of an improved predictive accuracy model. This model, having undergone successful first order validation against earlier reported measurements from the literature, appears to offer more accurate predictions of the transport processes and mass flow rate yield of solar stills when operated at elevated temperatures. (author)

  5. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. I. A Low-mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79 Day Orbit

    NASA Astrophysics Data System (ADS)

    Wisniewski, John P.; Ge, Jian; Crepp, Justin R.; De Lee, Nathan; Eastman, Jason; Esposito, Massimiliano; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; Gonzalez Hernandez, Jonay I.; Lee, Brian L.; Stassun, Keivan G.; Agol, Eric; Allende Prieto, Carlos; Barnes, Rory; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Da Costa, Luiz N.; Porto De Mello, G. F.; Femenía, Bruno; Ferreira, Leticia D.; Gary, Bruce; Hebb, Leslie; Holtzman, Jon; Liu, Jian; Ma, Bo; Mack, Claude E.; Mahadevan, Suvrath; Maia, Marcio A. G.; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Daniel J.; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Rebolo, Rafael; Santiago, Basilio; Schneider, Donald P.; Shelden, Alaina C.; Simmons, Audrey; Tofflemire, Benjamin M.; Wan, Xiaoke; Wang, Ji; Zhao, Bo

    2012-05-01

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T eff <~ 6000 K) primary stars. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged (lsim5 Gyr) solar-like star having a mass of 1.07 ± 0.08 M ⊙ and radius of 0.99 ± 0.18 R ⊙. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of ~2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 ± 0.012 days, an eccentricity of 0.1095 ± 0.0023, and a semi-amplitude of 4199 ± 11 m s-1. We determine the minimum companion mass (if sin i = 1) to be 97.7 ± 5.8 M Jup. The system's companion to host star mass ratio, >=0.087 ± 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T eff <~ 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  6. Solar Jet-Coronal Hole Collision and a Closely Related Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Du, Guohui; Li, Chuanyang

    2016-03-01

    Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using high-quality imaging data from the Atmospheric Imaging Assembly/Solar Dynamics Observatory, we show a well-observed coronal jet event, in which the part of the jet with embedding coronal loops runs into a nearby coronal hole (CH) and gets bounced in the opposite direction. This is evidenced by the flat shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME with an initially narrow and jet-like front is observed by the LASCO C2 coronagraph propagating along the direction of the post-collision jet. We also observe some 304 Å dark material flowing from the jet-CH interaction region toward the CME. We thus suggest that the jet and the CME are physically connected, with the jet-CH collision and the large-scale magnetic topology of the CH being important in defining the eventual propagating direction of this particular jet-CME eruption.

  7. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  8. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  9. Trigger of a Blowout Jet in a Solar Coronal Mass Ejection Associated with a Flare

    NASA Astrophysics Data System (ADS)

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-01

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  10. Propagation of Solar Energetic Particles During Multiple Coronal Mass Ejection Events

    NASA Astrophysics Data System (ADS)

    Pohjolainen, Silja; Al-Hamadani, Firas; Valtonen, Eino

    2016-02-01

    We study solar energetic particle (SEP) events during multiple solar eruptions. The analysed sequences, on 24 - 26 November 2000, 9 - 13 April 2001, and 22 - 25 August 2005, consisted of halo-type coronal mass ejections (CMEs) that originated from the same active region and were associated with intense flares, EUV waves, and interplanetary (IP) radio type II and type III bursts. The first two solar events in each of these sequences showed SEP enhancements near Earth, but the third in the row did not. We observed that in these latter events the type III radio bursts were stopped at much higher frequencies than in the earlier events, indicating that the bursts did not reach the typical plasma density levels near Earth. To explain the missing third SEP event in each sequence, we suggest that the earlier-launched CMEs and the CME-driven shocks either reduced the seed particle population and thus led to inefficient particle acceleration, or that the earlier-launched CMEs and shocks changed the propagation paths or prevented the propagation of both the electron beams and SEPs, so that they were not detected near Earth even when the shock arrivals were recorded.

  11. Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2001-01-01

    This investigation is concerned with the large-scale evolution and topology of coronal mass ejections (CMEs) in the solar wind. During the course of this three-year investigation, we have undertaken a number of studies that are discussed in more detail in this report. For example, we conducted an analysis of all CMEs observed by the Ulysses spacecraft during its in-ecliptic phase between 1 and 5 AU. In addition to studying the properties of the ejecta, we also analyzed the shocks that could be unambiguously associated with the fast CMEs. We also analyzed a series of 'density holes' observed in the solar wind that bear many similarities with CMEs. To complement this analysis, we conducted a series of 1-D and 2 1/2-D fluid, MHD, and hybrid simulations to address a number of specific issues related to CME evolution in the solar wind. For example, we used fluid simulations to address the interpretation of negative electron temperature-density relationships often observed within CME/cloud intervals. As part of this investigation, a number of fruitful international collaborations were forged. Finally, the results of this work were presented at nine scientific meetings and communicated in eight scientific, refereed papers.

  12. DENSITY DIAGNOSTICS OF CORONAL MASS EJECTION CORES WITH THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Landi, E.; Miralles, M. P.

    2014-01-01

    In this Letter, we investigate the application of the intensity ratio from pairs of narrow-band images from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, the Extreme Ultraviolet (EUV) Imager (EUVI) on board the Sun Earth Connection Coronal and Heliospheric Investigation, and the EUV Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory, to density diagnostics of optically thin plasmas. By inspecting the filtered spectra allowed by each instrument's effective area, we find that ratios between AIA images in the 171 Å and 193 Å channels can be used to determine the plasma electron density at transition region temperatures. This diagnostic potential is due to a pair of O V transitions which dominate the effective spectra of these two channels at temperatures around ≈2.5-3.0 × 10{sup 5} K. The temperature and electron density ranges where the 171/193 ratio is density sensitive are relevant for the cores of accelerating coronal mass ejections (CMEs) in the inner solar corona. We discuss how AIA series of images can be used for simultaneous temperature and density diagnostics of CME cores.

  13. TRIGGER OF A BLOWOUT JET IN A SOLAR CORONAL MASS EJECTION ASSOCIATED WITH A FLARE

    SciTech Connect

    Li, Xiaohong; Yang, Shuhong; Chen, Huadong; Li, Ting; Zhang, Jun

    2015-11-20

    Using the multi-wavelength images and the photospheric magnetograms from the Solar Dynamics Observatory, we study the flare that was associated with the only coronal mass ejection (CME) in active region (AR) 12192. The eruption of a filament caused a blowout jet, and then an M4.0 class flare occurred. This flare was located at the edge of the AR instead of in the core region. The flare was close to the apparently “open” fields, appearing as extreme-ultraviolet structures that fan out rapidly. Due to the interaction between flare materials and “open” fields, the flare became an eruptive flare, leading to the CME. Then, at the same site of the first eruption, another small filament erupted. With the high spatial and temporal resolution Hα data from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we investigate the interaction between the second filament and the nearby “open” lines. The filament reconnected with the “open” lines, forming a new system. To our knowledge, the detailed process of this kind of interaction is reported for the first time. Then the new system rotated due to the untwisting motion of the filament, implying that the twist was transferred from the closed filament system to the “open” system. In addition, the twist seemed to propagate from the lower atmosphere to the upper layers and was eventually spread by the CME to the interplanetary space.

  14. EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Albert, Loic; Arzoumanian, Doris; Bergeron, Jacqueline; Omont, Alain; Delorme, Philippe; Reyle, Celine

    2010-08-15

    We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-infrared spectroscopy of nine CFHQS quasars at z {approx} 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg II FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus, these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is {approx}10{sup 4} times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high redshift than is observed at low redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only {approx}10{sup 2} times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass-stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.

  15. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures.

    PubMed

    Lee, Kangmin; Hwang, Inchan; Kim, Namwoo; Choi, Deokjae; Um, Han-Don; Kim, Seungchul; Seo, Kwanyong

    2016-08-14

    We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm(2) exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm(-2) because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells. PMID:27405387

  16. 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures.

    PubMed

    Lee, Kangmin; Hwang, Inchan; Kim, Namwoo; Choi, Deokjae; Um, Han-Don; Kim, Seungchul; Seo, Kwanyong

    2016-08-14

    We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm(2) exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm(-2) because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells.

  17. 6.5% efficient perovskite quantum-dot-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Im, Jeong-Hyeok; Lee, Chang-Ryul; Lee, Jin-Wook; Park, Sang-Won; Park, Nam-Gyu

    2011-10-01

    Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH3NH3)PbI3 nanocrystal. Spin-coating of the equimolar mixture of CH3NH3I and PbI2 in γ-butyrolactone solution (perovskite precursor solution) leads to (CH3NH3)PbI3 quantum dots (QDs) on nanocrystalline TiO2 surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO2 film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm-2), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers.Highly efficient quantum-dot-sensitized solar cell is fabricated using ca. 2-3 nm sized perovskite (CH3NH3)PbI3 nanocrystal. Spin-coating of the equimolar mixture of CH3NH3I and PbI2 in γ-butyrolactone solution (perovskite precursor solution) leads to (CH3NH3)PbI3 quantum dots (QDs) on nanocrystalline TiO2 surface. By electrochemical junction with iodide/iodine based redox electrolyte, perovskite QD-sensitized 3.6 μm-thick TiO2 film shows maximum external quantum efficiency (EQE) of 78.6% at 530 nm and solar-to-electrical conversion efficiency of 6.54% at AM 1.5G 1 sun intensity (100 mW cm-2), which is by far the highest efficiency among the reported inorganic quantum dot sensitizers. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr10867k

  18. Mass loading in the solar wind interaction with Venus and Mars

    SciTech Connect

    Breus, T.K.; Bauer, S.J.; Krymskii, A.M.; Mitnitskii, V.Y.

    1989-03-01

    An analysis of available experimental data and theoretical concepts indicates that the interaction of the solar wind (SW) on the subsolar side with Venus, which has no intrinsic magnetic field, and with Mars, which has a small intrinsic magnetic field, is determined by the solar wind dynamic pressure with a contribution from the neutral planetary atmosphere to this interaction. The pattern of the SW interaction with these planets is different in principle for high and low dynamic pressures of the SW and is related to the varying intensity of ion formation processes (the SW Mass loading effect) in the vicinity of the SW obstacle boundary, which moves for different SW dynamic pressures into regions of different neutral atmosphere density. For moderate or high SW dynamic pressures, the subsolar Martian magnetosphere is also affected by this process. Results of numerical simulations of the SE-Mars interaction for a magnetospheric obstacle boundary at an altitude of 300 km are presented. To estimate the relative role of photoionization and charge exchange processes and their effect on the shock front position, different versions of the mass loading effect were separately calculated. copyright American Geophysical Union 1989

  19. On the rates of coronal mass ejections: remote solar and in situ observations

    NASA Astrophysics Data System (ADS)

    Riley, P.; Cane, H.; Richardson, I. G.; Gopalswamy, N.; Linker, J. A.; Mikic, Z.; Lionello, R.

    2006-05-01

    In this study we compare the rates of coronal mass ejections (CMEs) as inferred from remote solar observations and interplanetary CMEs (ICMEs) as inferred from in situ observations at both 1 AU and Ulysses for almost an entire solar cycle (1996 through 2004). We find that, while the rates of CMEs and ICMEs track each other well at solar minimum, they diverge significantly in early 1998, during the ascending phase of the solar cycle, with the remote solar observations yielding approximately 20 times more events than are seen in situ at 1 AU. This divergence persists through 2004. We discuss several possible causes, including: (1) the appearance of mid-latitude active regions; (2) the increased rate of high-latitude CMEs; and (3) the strength of the global solar field. We conclude that the most likely interpretation is that this divergence is due to the birth of mid-latitude active regions, which are the sites of a distinct population of CMEs that are only partially intercepted by Earth. This conclusion is supported by the following points: (1) A similar divergence occurs between ICMEs in which magnetic clouds are observed (MCs), and those that are not; and (2) a number of pronounced enhancements in the CME rate, separated by approximately one year, are also mirrored and in ICME rate, but not obviously in the MC rate. We provide a simple geometric argument that shows that the computed CME and ICME rates are consistent with each other. The origins of the individual peaks can be traced back to unusually strong active regions on the Sun. Taken together, these results suggest that whether one observes a flux rope within an ICME is sensitive to the trajectory of the spacecraft through the ICME, i.e., an observational selection effect. This conclusion is supported by models of CME eruption and evolution, which: (1) are incapable of producing a CME that does not contain an embedded flux rope; and (2) demonstrate that glancing intercepts can produce ICME-like signatures

  20. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both

  1. IS SOLAR CYCLE 24 PRODUCING MORE CORONAL MASS EJECTIONS THAN CYCLE 23?

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. E-mail: robin.colaninno@nrl.navy.mil

    2014-04-01

    Although sunspot numbers are roughly a factor of two lower in the current cycle than in cycle 23, the rate of coronal mass ejections (CMEs) appears to be at least as high in 2011-2013 as during the corresponding phase of the previous cycle, according to three catalogs that list events observed with the Large Angle and Spectrometric Coronagraph (LASCO). However, the number of CMEs detected is sensitive to such factors as the image cadence and the tendency (especially by human observers) to under-/overcount small or faint ejections during periods of high/low activity. In contrast to the total number, the total mass of CMEs is determined mainly by larger events. Using the mass measurements of 11,000 CMEs given in the manual CDAW catalog, we find that the mass loss rate remains well correlated with the sunspot number during cycle 24. In the case of the automated CACTus and SEEDS catalogs, the large increase in the number of CMEs during cycle 24 is almost certainly an artifact caused by the near-doubling of the LASCO image cadence after mid-2010. We confirm that fast CMEs undergo a much stronger solar-cycle variation than slow ones, and that the relative frequency of slow and less massive CMEs increases with decreasing sunspot number. We conclude that cycle 24 is not only producing fewer CMEs than cycle 23, but that these ejections also tend to be slower and less massive than those observed one cycle earlier.

  2. Is Solar Cycle 24 Producing More Coronal Mass Ejections Than Cycle 23?

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Colaninno, R.

    2014-04-01

    Although sunspot numbers are roughly a factor of two lower in the current cycle than in cycle 23, the rate of coronal mass ejections (CMEs) appears to be at least as high in 2011-2013 as during the corresponding phase of the previous cycle, according to three catalogs that list events observed with the Large Angle and Spectrometric Coronagraph (LASCO). However, the number of CMEs detected is sensitive to such factors as the image cadence and the tendency (especially by human observers) to under-/overcount small or faint ejections during periods of high/low activity. In contrast to the total number, the total mass of CMEs is determined mainly by larger events. Using the mass measurements of 11,000 CMEs given in the manual CDAW catalog, we find that the mass loss rate remains well correlated with the sunspot number during cycle 24. In the case of the automated CACTus and SEEDS catalogs, the large increase in the number of CMEs during cycle 24 is almost certainly an artifact caused by the near-doubling of the LASCO image cadence after mid-2010. We confirm that fast CMEs undergo a much stronger solar-cycle variation than slow ones, and that the relative frequency of slow and less massive CMEs increases with decreasing sunspot number. We conclude that cycle 24 is not only producing fewer CMEs than cycle 23, but that these ejections also tend to be slower and less massive than those observed one cycle earlier.

  3. ON THE RELATIVE CONSTANCY OF THE SOLAR WIND MASS FLUX AT 1 AU

    SciTech Connect

    Wang, Y.-M.

    2010-06-01

    Employing solar wind measurements from the Advanced Composition Explorer and Ulysses, photospheric magnetic data, and conservation laws along open field lines, we confirm that the energy and mass flux densities at the Sun increase roughly linearly with the footpoint field strength, B {sub 0}. This empirical result has a number of important physical implications. First, it supports the assumption that the magnetic field is the source of the heating in coronal holes. Second, because B {sub 0} may vary by over 2 orders of magnitude, depending on how close the footpoint is located to active regions, the heating rate in coronal holes varies over a very wide range, with active-region holes being characterized by much stronger heating and much larger mass fluxes at low heights than the large, weak-field polar holes. Third, the variation of the mass flux density at 1 AU remains very modest because the mass flux density at the Sun and the net flux-tube expansion both increase almost linearly with B {sub 0}, so that the two effects offset each other.

  4. SOLAR CYCLE VARIATIONS OF CORONAL NULL POINTS: IMPLICATIONS FOR THE MAGNETIC BREAKOUT MODEL OF CORONAL MASS EJECTIONS

    SciTech Connect

    Cook, G. R.; Mackay, D. H.; Nandy, Dibyendu E-mail: duncan@mcs.st-and.ac.u

    2009-10-20

    In this paper, we investigate the solar cycle variation of coronal null points and magnetic breakout configurations in spherical geometry, using a combination of magnetic flux transport and potential field source surface models. Within the simulations, a total of 2843 coronal null points and breakout configurations are found over two solar cycles. It is found that the number of coronal nulls present at any time varies cyclically throughout the solar cycle, in phase with the flux emergence rate. At cycle maximum, peak values of 15-17 coronal nulls per day are found. No significant variation in the number of nulls is found from the rising to the declining phase. This indicates that the magnetic breakout model is applicable throughout both phases of the solar cycle. In addition, it is shown that when the simulations are used to construct synoptic data sets, such as those produced by Kitt Peak, the number of coronal nulls drops by a factor of 1/6. The vast majority of the coronal nulls are found to lie above the active latitudes and are the result of the complex nature of the underlying active region fields. Only 8% of the coronal nulls are found to be connected to the global dipole. Another interesting feature is that 18% of coronal nulls are found to lie above the equator due to cross-equatorial interactions between bipoles lying in the northern and southern hemispheres. As the majority of coronal nulls form above active latitudes, their average radial extent is found to be in the low corona below 1.25 R {sub sun} (175, 000 km above the photosphere). Through considering the underlying photospheric flux, it is found that 71% of coronal nulls are produced though quadrupolar flux distributions resulting from bipoles in the same hemisphere interacting. When the number of coronal nulls present in each rotation is compared to the number of bipoles emerging, a wide scatter is found. The ratio of coronal nulls to emerging bipoles is found to be approximately 1/3. Overall

  5. Probing the eV-Mass Range for Solar Axions with CAST

    SciTech Connect

    Vogel, J K; Pivovaroff, M J; Soufli, R; van Bibber, K; CAST, C

    2010-11-11

    The CERN Axion Solar Telescope (CAST) is searching for solar axions which could be produced in the core of the Sun via the so-called Primakoff effect. Not only would these hypothetical particles solve the strong CP problem, but they are also one of the favored candidates for dark matter. In order to look for axions originating from the Sun, CAST uses a decommissioned LHC prototype magnet. In its 10 m long magnetic field region of 9 Tesla, axions could be reconverted into X-ray photons. Different X-ray detectors are installed on both ends of the magnet, which is mounted on a structure built to follow the Sun during sunrise and sunset for a total of about 3 hours per day. The analysis of the data acquired during the first phase of the experiment with vacuum in the magnetic field region yielded the most restrictive experimental upper limit on the axion-to-photon coupling constant for axion masses up to about 0.02 eV. In order to extend the sensitivity of the experiment to a wider mass range, the CAST experiment continues its search for axions with helium in the magnet bores. In this way it is possible to restore coherence of conversion for larger masses. Changing the pressure of the helium gas enables the experiment to scan different axion masses in the range of up to about 1.2 eV. Especially at high pressures, a precise knowledge of the gas density distribution is crucial to obtain accurate results. In the first part of this second phase of CAST, {sup 4}He was used and the axion mass region was extended up to 0.39 eV, a part of phase space favored by axion models. In CAST's ongoing {sup 3}He phase the studied mass range is now being extended further. In this contribution the final results of CAST's {sup 4}He phase will be presented and the current status of the {sup 3}He run will be given. This includes latest results as well as prospects of future axion experiments.

  6. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.

    PubMed

    He, Jian; Gao, Pingqi; Liao, Mingdun; Yang, Xi; Ying, Zhiqin; Zhou, Suqiong; Ye, Jichun; Cui, Yi

    2015-06-23

    Hybrid silicon/polymer solar cells promise to be an economically feasible alternative energy solution for various applications if ultrathin flexible crystalline silicon (c-Si) substrates are used. However, utilization of ultrathin c-Si encounters problems in light harvesting and electronic losses at surfaces, which severely degrade the performance of solar cells. Here, we developed a metal-assisted chemical etching method to deliver front-side surface texturing of hierarchically bowl-like nanopores on 20 μm c-Si, enabling an omnidirectional light harvesting over the entire solar spectrum as well as an enlarged contact area with the polymer. In addition, a back surface field was introduced on the back side of the thin c-Si to minimize the series resistance losses as well as to suppress the surface recombination by the built high-low junction. Through these improvements, a power conversion efficiency (PCE) up to 13.6% was achieved under an air mass 1.5 G irradiation for silicon/organic hybrid solar cells with the c-Si thickness of only about 20 μm. This PCE is as high as the record currently reported in hybrid solar cells constructed from bulk c-Si, suggesting a design rule for efficient silicon/organic solar cells with thinner absorbers. PMID:26047260

  7. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.

    PubMed

    He, Jian; Gao, Pingqi; Liao, Mingdun; Yang, Xi; Ying, Zhiqin; Zhou, Suqiong; Ye, Jichun; Cui, Yi

    2015-06-23

    Hybrid silicon/polymer solar cells promise to be an economically feasible alternative energy solution for various applications if ultrathin flexible crystalline silicon (c-Si) substrates are used. However, utilization of ultrathin c-Si encounters problems in light harvesting and electronic losses at surfaces, which severely degrade the performance of solar cells. Here, we developed a metal-assisted chemical etching method to deliver front-side surface texturing of hierarchically bowl-like nanopores on 20 μm c-Si, enabling an omnidirectional light harvesting over the entire solar spectrum as well as an enlarged contact area with the polymer. In addition, a back surface field was introduced on the back side of the thin c-Si to minimize the series resistance losses as well as to suppress the surface recombination by the built high-low junction. Through these improvements, a power conversion efficiency (PCE) up to 13.6% was achieved under an air mass 1.5 G irradiation for silicon/organic hybrid solar cells with the c-Si thickness of only about 20 μm. This PCE is as high as the record currently reported in hybrid solar cells constructed from bulk c-Si, suggesting a design rule for efficient silicon/organic solar cells with thinner absorbers.

  8. Predictions for Dusty Mass Loss from Asteroids During Close Encounters with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-06-01

    The Solar Probe Plus (SPP) mission will explore the Sun's corona and innermost solar wind starting in 2018. The spacecraft will also come close to a number of Mercury-crossing asteroids with perihelia less than 0.3 AU. At small heliocentric distances, these objects may begin to lose mass, thus becoming "active asteroids" with comet-like comae or tails. This paper assembles a database of 97 known Mercury-crossing asteroids that may be encountered by SPP, and it presents estimates of their time-dependent visible-light fluxes and mass loss rates. Assuming a similar efficiency of sky background subtraction as was achieved by STEREO , we find that approximately 80 % of these asteroids are bright enough to be observed by the Wide-field Imager for SPP (WISPR). A model of gas/dust mass loss from these asteroids is developed and calibrated against existing observations. This model is used to estimate the visible-light fluxes and spatial extents of spherical comae. Observable dust clouds occur only when the asteroids approach the Sun closer than 0.2 AU. The model predicts that during the primary SPP mission between 2018 and 2025, there should be 113 discrete events (for 24 unique asteroids) during which the modeled comae have angular sizes resolvable by WISPR. The largest of these correspond to asteroids 3200 Phaethon, 137924, 155140, and 289227, all with angular sizes of roughly 15-30 arcminutes. We note that the SPP trajectory may still change, but no matter the details there should still be multiple opportunities for fruitful asteroid observations.

  9. Mass extinctions, galactic orbits in the solar neighborhood and the Sun: a connection?

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; Dias, W. S.; Lépine, J. R. D.; Lorenzo-Oliveira, D.; Siqueira, R. K.

    2014-10-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment; a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages; and the destruction of Earth's ozone layer posed by supernova explosions. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.

  10. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in a 15 solar-mass supernova

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Woosley, S. E.; Weaver, T. A.; Schramm, D. N.

    1980-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using the Weaver and Woosley self-consistent model of a complete 15 solar-mass star and the n-process code of Blake and Schramm. It was found that the resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material (such as a Pt peak) nor are any actinides produced. Basically insufficient neutrons are available.

  11. A Search for Transiting Neptune-Mass Extrasolar Planets in High-Precision Photometry of Solar-Type Stars

    NASA Technical Reports Server (NTRS)

    Henry, Stephen M.; Gillman, Amelie r.; Henry, Gregory W.

    2005-01-01

    Tennessee State University operates several automatic photometric telescopes (APTs) at Fairborn Observatory in southern Arizona. Four 0.8 m APTs have been dedicated to measuring subtle luminosity variations that accompany magnetic cycles in solar-type stars. Over 1000 program and comparison stars have been observed every clear night in this program for up to 12 years with a precision of approximately 0.0015 mag for a single observation. We have developed a transit-search algorithm, based on fitting a computed transit template for each trial period, and have used it to search our photometric database for transits of unknown companions. Extensive simulations with the APT data have shown that we can reliably recover transits with periods under 10 days as long as the transits have a depth of at least 0.0024 mag, or about 1.6 times the scatter in the photometric observations. Thus, due to our high photometric precision, we are sensitive to transits of possible short-period Neptune-mass planets that likely would have escaped detection by current radial velocity techniques. Our search of the APT data sets for 1087 program and comparison stars revealed no new transiting planets. However, the detection of several unknown grazing eclipsing binaries from among our comparison stars, with eclipse depths of only a few millimags, illustrates the success of our technique. We have used this negative result to place limits on the frequency of Neptune-mass planets in close orbits around solar-type stars in the Sun's vicinity.

  12. Monodeurated methane in the outer solar system. 2. Its detection on Uranus at 1. 6 microns

    SciTech Connect

    Debergh, C.; Lutz, B.L.; Owen, T.; Brault, J.; Chauville, J.

    1985-05-01

    Deuterium in the atmosphere of Uranus has been studied only via measurements of the exceedingly weak dipole lines of hydrogen-deuteride (HD) seen in the visible region of the spectrum. The other sensitive indicator of deuterium in the outer solar system is monodeuterated methane (CH3D) but the two bands normally used ot study this molecule, NU sub 2 near 2200 1/cm and NU sub 6 near 1161 1/cm, have not been detected in Uranus.

  13. An Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Peter

    2000-01-01

    This investigation is concerned with the large-scale evolution and topology of coronal mass ejections (CMEs) in the solar wind. During this reporting period we have focused on several aspects of CME properties, their identification and their evolution in the solar wind. The work included both analysis of Ulysses and ACE observations as well as fluid and magnetohydrodynamic simulations. In addition, we analyzed a series of "density holes" observed in the solar wind, that bear many similarities with CMEs. Finally, this work was communicated to the scientific community at three meetings and has led to three scientific papers that are in various stages of review.

  14. Sixteen Years of Ulysses Interstellar Dust Measurements in the Solar System. I. Mass Distribution and Gas-to-dust Mass Ratio

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Strub, Peter; Grün, Eberhard; Sterken, Veerle J.

    2015-10-01

    In the early 1990s, contemporary interstellar dust penetrating deep into the heliosphere was identified with the in situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the interstellar dust stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium (ISM) surrounding our solar system. Earlier analyses of the Ulysses interstellar dust data measured between 1992 and 1998 implied the existence of a population of “big” interstellar grains (up to 10-13 kg). The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of interstellar dust in the very local ISM. In this paper we analyze the entire data set from 16 yr of Ulysses interstellar dust measurements in interplanetary space. This paper concentrates on the overall mass distribution of interstellar dust. An accompanying paper investigates time-variable phenomena in the Ulysses interstellar dust data, and in a third paper we present the results from dynamical modeling of the interstellar dust flow applied to Ulysses. We use the latest values for the interstellar hydrogen and helium densities, the interstellar helium flow speed of {v}{ISM∞ }=23.2 {km} {{{s}}}-1, and the ratio of radiation pressure to gravity, β, calculated for astronomical silicates. We find a gas-to-dust mass ratio in the local interstellar cloud of {R}{{g}/{{d}}}={193}-57+85, and a dust density of (2.1 ± 0.6) × 10-24 kg m-3. For a higher inflow speed of 26 {km} {{{s}}}-1, the gas-to-dust mass ratio is 20% higher, and, accordingly, the dust density is lower by the same amount. The gas-to-dust mass ratio derived from our new analysis is compatible with the value most recently determined from astronomical observations. We confirm earlier results that the very local ISM contains “big” (i.e., ≈1 μm sized) interstellar grains. We find a dust density in the local ISM that is a

  15. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  16. Analysis of Solar Wind Samples Returned by Genesis Using Laser Post Ionization Secondary Neutral Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.

    2005-12-01

    A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of

  17. A low-mass faraday cup experiment for the solar wind

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Steinberg, J. T.; Mcnutt, R. L., Jr.

    1993-01-01

    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism.

  18. Outburst from low-mass X-ray binary GRS 1747-312 in Terzan 6

    NASA Astrophysics Data System (ADS)

    Bahramian, A.; Heinke, C. O.; Sivakoff, G. R.; Kennea, J. A.; Wijnands, R.; Altamirano, D.

    2016-05-01

    GRS 1747-312 is an eclipsing transient low-mass X-ray binary in the core of the globular cluster Terzan 6. This source shows regular outbursts ~ every 6 months and, due to its eclipsing behaviour, has an accurately-constrained orbital period (12.36 hrs, in't Zand et al. 2003, A & A, 406, 233).

  19. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 6 Table 6 to Subpart KKKK of Part 63—Default Organic HAP Mass... blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  20. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 6 Table 6 to Subpart KKKK of Part 63—Default Organic HAP Mass... blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  1. Direct Observations of Magnetic Flux Rope Formation during a Solar Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Song, H.; Zhang, J.; Chen, Y.; Cheng, X.

    2014-12-01

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are results of eruptions of magnetic flux ropes (MFRs). However, a heated debate is on whether MFRs pre-exist before the eruptions or they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre existing MFR scenario. There is almost no reported observation about MFR formation during the eruption. In this presentation, we present an intriguing observation of a solar eruptive event with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows a detailed formation process of the MFR during the eruption. The process started with the expansion of a low lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly-formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved-in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (~ 10 MK), presumably a MFR, producing a CME. We suggest that two spatially-separated magnetic reconnections occurred in this event, responsible for producing the flare and the hot blob (CME), respectively.

  2. Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2016-05-01

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (˜200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.

  3. DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Song, H. Q.; Chen, Y.; Zhang, J.; Cheng, X.

    2014-09-10

    Coronal mass ejections (CMEs) are the most spectacular eruptive phenomena in the solar atmosphere. It is generally accepted that CMEs are the results of eruptions of magnetic flux ropes (MFRs). However, there is heated debate on whether MFRs exist prior to the eruptions or if they are formed during the eruptions. Several coronal signatures, e.g., filaments, coronal cavities, sigmoid structures, and hot channels (or hot blobs), are proposed as MFRs and observed before the eruption, which support the pre-existing MFR scenario. There is almost no reported observation of MFR formation during the eruption. In this Letter, we present an intriguing observation of a solar eruptive event that occurred on 2013 November 21 with the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, which shows the formation process of the MFR during the eruption in detail. The process began with the expansion of a low-lying coronal arcade, possibly caused by the flare magnetic reconnection underneath. The newly formed ascending loops from below further pushed the arcade upward, stretching the surrounding magnetic field. The arcade and stretched magnetic field lines then curved in just below the arcade vertex, forming an X-point. The field lines near the X-point continued to approach each other and a second magnetic reconnection was induced. It is this high-lying magnetic reconnection that led to the formation and eruption of a hot blob (∼10 MK), presumably an MFR, producing a CME. We suggest that two spatially separated magnetic reconnections occurred in this event, which were responsible for producing the flare and the hot blob (CME)

  4. Mass transport, corrosion, plugging, and their reduction in solar dish/Stirling heat pipe receivers

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Bradshaw, R.W.; Goods, S.H.; Moreno, J.B.; Moss, T.A.

    1996-07-01

    Solar dish/Stirling systems using sodium heat pipe receivers are being developed by industry and government laboratories here and abroad. The unique demands of this application lead to heat pipe wicks with very large surface areas and complex three-dimensional flow patterns. These characteristics can enhance the mass transport and concentration of constituents of the wick material, resulting in wick corrosion and plugging. As the test times for heat pipe receivers lengthen, we are beginning to see these effects both indirectly, as they affect performance, and directly in post-test examinations. We are also beginning to develop corrective measures. In this paper, we report on our test experiences, our post-test examinations, and on our initial effort to ameliorate various problems.

  5. Periodicity in the most violent solar eruptions: recent observations of coronal mass ejections and flares revisited

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Xie, Jing-Lan; Liang, Hong-Fei

    2012-03-01

    Using the Hilbert-Huang Transform method, we investigate the periodicity in the monthly occurrence numbers and monthly mean energy of coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph Experiment on board the Solar and Heliographic Observatory from 1999 March to 2009 December. We also investigate the periodicity in the monthly occurrence numbers of Hα flares and monthly mean flare indices from 1996 January to 2008 December. The results show the following. (1) The period of 5.66 yr is found to be statistically significant in the monthly occurrence numbers of CMEs; the period of 10.5 yr is found to be statistically significant in the monthly mean energy of CMEs. (2) The periods of 3.05 and 8.70yr are found to be statistically significant in the monthly occurrence numbers of Hα flares; the period of 9.14yr is found to be statistically significant in the monthly mean flare indices.

  6. Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control

    NASA Astrophysics Data System (ADS)

    Sperber, E.; Fu, B.; Eke, F. O.

    2016-06-01

    This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.

  7. Association of Coronal Mass Ejections and Type II Radio Bursts with Impulsive Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Yashiro, S.; Gopalswamy, N.; Cliver, E. W.; Reames, D. V.; Kaiser, M. L.; Howard, R. A.

    2004-12-01

    We report the association of impulsive solar energetic particle (SEP) events with coronal mass ejections (CMEs) and metric type II radio bursts. We identified 38 impulsive SEP events using the WIND/EPACT instrument and their CME association was investigated using white light data from SOHO/LASCO. We found that (1) at least ˜ 28--39 % of impulsive SEP events were associated with CMEs, (2) only 8--13 % were associated with metric type II radio bursts. The statistical properties of the associated CMEs were investigated and compared with those of general CMEs and CMEs associated with large gradual SEP events. The CMEs associated with impulsive SEP events were significantly slower (median speed of 613 kmps) and narrower (49 deg) than those of CMEs associated with large gradual SEP events (1336 kmps, 360 deg), but faster than the general CMEs (408 kmps).

  8. Measurements of the Gegenschein brightness from the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, A.; Bisi, M. M.; Clover, J. M.; Hick, P.; Jackson, B. V.

    2008-12-01

    The Gegenschein is a faint diffuse component of the zodiacal light centered upon the antisolar point; this has now been viewed by the Solar Mass Ejection Imager (SMEI) for over 5 years. SMEI provides unprecedented near-full-sky photometric maps each 102-minute orbit, using data from 3 unfiltered CCD cameras. Its 0.1% photometric precision enables observation over long periods of time, of heliospheric structures having surface brightness down to several S10's (an S10 is the equivalent brightness of a 10th magnitude star spread over one square degree). When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. The sky coverage and duration of these measurements enables a definitive characterization. We describe the analysis method for these data, characterize the average Gegenschein brightness distribution, present empirical formulae describing its shape, and discuss its variation with time.

  9. The evolution of rotating stars. 1: Method and exploratory calculations for a 7 solar mass star

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1976-01-01

    A method was developed which allows us to study the evolution of rotating stars beyond the main sequence stage. Four different cases of redistribution of angular momentum in an evolving star are considered. Evolutionary sequences for a 7 solar mass star, rotating according to these different cases, were computed from the ZAMS to the double shell source stage. Each sequence was begun with a (typical) equatorial velocity of 210 km/sec. On the main sequence, the effects of rotation are of minor importance. As the core contracts during later stages, important effects arise in all physically plausible cases. The outer regions of the cores approach critical velocities and develop unstable angular velocity distributions. The effects of these instabilities should significantly alter the subsequent evolution.

  10. A linear MHD instability analysis of solar mass ejections with gravitation

    NASA Technical Reports Server (NTRS)

    Song, M. T.; Wu, S. T.; Dryer, M.

    1987-01-01

    The linear MHD instability of a cylindrical plasma is used to investigate the origin of solar mass ejections, and the dispersion relation is solved numerically. The initial plasma-flow velocity is found to have a significant effect on the instability criteria and growth rate, and the instability growth-rate is shown to be larger in cases where plasma flow exists, relative to the static case. Results suggest that the plasma column may break into small pieces. Assuming a thin-tube approximation, gravity is found to have little effect on the instability of quasi-horizontal ejection, but to have considerable effect on the vertical ejection. In considering the gravitational force, an exact analytical solution is found for the vertical case, while asymptotic solutions are given for the horizontal and oblique cases.

  11. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  12. CORONAL MASS EJECTIONS AND THE SOLAR CYCLE VARIATION OF THE SUN’S OPEN FLUX

    SciTech Connect

    Wang, Y.-M.; Sheeley, N. R. Jr. E-mail: neil.sheeley@nrl.navy.mil

    2015-08-20

    The strength of the radial component of the interplanetary magnetic field (IMF), which is a measure of the Sun’s total open flux, is observed to vary by roughly a factor of two over the 11 year solar cycle. Several recent studies have proposed that the Sun’s open flux consists of a constant or “floor” component that dominates at sunspot minimum, and a time-varying component due to coronal mass ejections (CMEs). Here, we point out that CMEs cannot account for the large peaks in the IMF strength which occurred in 2003 and late 2014, and which coincided with peaks in the Sun’s equatorial dipole moment. We also show that near-Earth interplanetary CMEs, as identified in the catalog of Richardson and Cane, contribute at most ∼30% of the average radial IMF strength even during sunspot maximum. We conclude that the long-term variation of the radial IMF strength is determined mainly by the Sun’s total dipole moment, with the quadrupole moment and CMEs providing an additional boost near sunspot maximum. Most of the open flux is rooted in coronal holes, whose solar cycle evolution in turn reflects that of the Sun’s lowest-order multipoles.

  13. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Säm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  14. Coronal Mass Ejections and the Solar Cycle Variation of the Sun's Open Flux

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    2015-08-01

    The strength of the radial component of the interplanetary magnetic field (IMF), which is a measure of the Sun’s total open flux, is observed to vary by roughly a factor of two over the 11 year solar cycle. Several recent studies have proposed that the Sun’s open flux consists of a constant or “floor” component that dominates at sunspot minimum, and a time-varying component due to coronal mass ejections (CMEs). Here, we point out that CMEs cannot account for the large peaks in the IMF strength which occurred in 2003 and late 2014, and which coincided with peaks in the Sun’s equatorial dipole moment. We also show that near-Earth interplanetary CMEs, as identified in the catalog of Richardson and Cane, contribute at most ∼30% of the average radial IMF strength even during sunspot maximum. We conclude that the long-term variation of the radial IMF strength is determined mainly by the Sun’s total dipole moment, with the quadrupole moment and CMEs providing an additional boost near sunspot maximum. Most of the open flux is rooted in coronal holes, whose solar cycle evolution in turn reflects that of the Sun’s lowest-order multipoles.

  15. SOLAR WIND DRAG AND THE KINEMATICS OF INTERPLANETARY CORONAL MASS EJECTIONS

    SciTech Connect

    Maloney, Shane A.; Gallagher, Peter T.

    2010-12-01

    Coronal mass ejections (CMEs) are large-scale ejections of plasma and magnetic field from the solar corona, which propagate through interplanetary space at velocities of {approx}100-2500 km s{sup -1}. Although plane-of-sky coronagraph measurements have provided some insight into their kinematics near the Sun (<32 R {sub sun}), it is still unclear what forces govern their evolution during both their early acceleration and later propagation. Here, we use the dual perspectives of the STEREO spacecraft to derive the three-dimensional kinematics of CMEs over a range of heliocentric distances ({approx}2-250 R {sub sun}). We find evidence for solar wind (SW) drag forces acting in interplanetary space, with a fast CME decelerated and a slow CME accelerated toward typical SW velocities. We also find that the fast CME showed linear ({delta} = 1) dependence on the velocity difference between the CME and the SW, while the slow CME showed a quadratic ({delta} = 2) dependence. The differing forms of drag for the two CMEs indicate the forces responsible for their acceleration may be different.

  16. Stability and Acceleration of Solar Flux Ropes: Application to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Schuck, Peter; Chen, James

    2006-10-01

    The dynamics of solar flux ropes have received much attention in connection with coronal mass ejections (CMEs). A major unanswered question is how initial quasi-equilibrium flux ropes are driven. The Lorentz hoop force, originally derived for toroidal tokamak equilibrium, has been extented to expanding solar flux ropes with stationary footpoints [1]. We discuss the results of extensive comparisons between calculated flux-rope dynamics and recently observed CME dynamics (17 events). The agreement is found to be very good. In particular, the intrinsic spatial and temporal scales produced by the model equations are manifested in observed CME acceleration profiles [2]. More recently, a simplified equation based on the same concept has been proposed to describe CME dynamics [3]. This equation describes a system with no fixed footpoints and yields fundamentally different scales. We discuss how the differences are manifested in observed acceleration and how they can be used as observational discriminators. [1] Chen, J., Astrophy. J., 338, 453, 1989. Garren, D. and Chen, J., Phys. Plasmas, 1, 3425, 1994. Chen, J., J. Geophys. Res., 101, 27499, 1996. [2] Chen, J. and Krall, J., in press, Astrophys. J., 2006. [3] Kliem, B. and Torok, T., Phys. Rev. Lett., 96, 255002, 2006.

  17. 1.6 M Solar Telescope in Big Bear -- The NST

    NASA Astrophysics Data System (ADS)

    Goode, Philip R.; Denker, Carsten J.; Didkovsky, Leonid I.; Kuhn, J. R.; Wang, Haimin

    2003-06-01

    New Jersey Institute of Technology (NJIT), in collaboration with the University of Hawaii (UH), is upgrading Big Bear Solar Observatory (BBSO) by replacing its principal, 65 cm aperture telescope with a modern, off-axis 1.6 m clear aperture instrument from a 1.7 m blank. The new telescope offers a significant incremental improvement in ground-based infrared and high angular resolution capabilities, and enhances our continuing program to understand photospheric magneto-convection and chromospheric dynamics. These are the drivers for what is broadly called space weather -- an important problem, which impacts human technologies and life on earth. This New Solar Telescope (NST) will use the existing BBSO pedestal, pier and observatory building, which will be modified to accept the larger open telescope structure. It will be operated together with our 10 inch (for larger field-of-view vector magnetograms, Ca II K and Hα observations) and Singer-Link (full disk Hα, Ca II K and white light) synoptic telescopes. The NST optical and software control design will be similar to the existing SOLARC (UH) and the planned Advanced Technology Solar Telescope (ATST) facility led by the National Solar Observatory (NSO) -- all three are off-axis designs. The NST will be available to guest observers and will continue BBSO's open data policy. The polishing of the primary will be done in partnership with the University of Arizona Mirror Lab, where their proof-of-concept for figuring 8 m pieces of 20 m nighttime telescopes will be the NST's primary mirror. We plan for the NST's first light in late 2005. This new telescope will be the largest aperture solar telescope, and the largest aperture off-axis telescope, located in one of the best observing sites. It will enable new, cutting edge science. The scientific results will be extremely important to space weather and global climate change research.

  18. Automated solar cell assembly teamed process research. Semiannual subcontract report, December 6, 1993--June 30, 1994

    SciTech Connect

    Nowlan, M.

    1995-01-01

    This is the second Semiannual Technical Progress Report for the program titled `Automated Solar Cell Assembly Teamed Process Research` funded under National Renewable Energy Laboratory (NREL) subcontract No. ZAG-3-11219-01. This report describes the work done on Phase II of the program in the period from December 6, 1993 to June 30, 1994. Spire`s objective in this program is to develop high throughput (5 MW/yr) automated processes for interconnecting thin (200 {mu}m) silicon solar cells. High yield will be achieved with these fragile cells through the development of low mechanical stress and low thermal stress processes. For example, a machine vision system is being developed for cell alignment without mechanically contacting the cell edges, while a new soldering process is being developed to solder metal interconnect ribbons simultaneously to a cells` front and back contacts, eliminating one of the two heating steps normally used for soldering each cell.

  19. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    PubMed

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

  20. Solar spectral radiance and irradiance at 225.2-319.6 nanometers

    NASA Astrophysics Data System (ADS)

    Kohl, J. L.; Parkinson, W. H.; Zapata, C. A.

    1980-11-01

    Mean absolute intensities (spectral radiance) over 0.1 nm intervals between 225.2 nm and 319.6 nm at disk center and near the limb of the sun (mu = 0.23 + or - 0.04) are derived from the high spectral resolution measurements published by Kohl, Parkinson, and Kurucz. The corresponding limb-to-center ratios and spectral irradiance values are provided. A comparison with existing measurements of solar spectral radiance and spectral irradiance for the most part shows agreement within the estimated error limits, although some narrow band variations may be outside experimental errors. The contribution to the solar constant of the 230-305 nm band is derived to be 19.7 W/square m + or - 12%.

  1. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    PubMed

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics. PMID:27351104

  2. 2MASS J20261584-2943124: AN UNRESOLVED L0.5 + T6 SPECTRAL BINARY

    SciTech Connect

    Gelino, Christopher R.; Burgasser, Adam J.

    2010-07-15

    We identify the L dwarf 2MASS J20261584-2943124 as an unresolved spectral binary, based on low-resolution, near-infrared spectroscopy from IRTF/SpeX. The data reveal a peculiar absorption feature at 1.6 {mu}m, previously noted in the spectra of other very low-mass spectral binaries, which likely arises from overlapping FeH and CH{sub 4} absorption bands in the blended light of an L dwarf/T dwarf pair. Spectral template matching analysis indicates component types of L0.5 and T6, with relative brightness {Delta}H = 4.2 {+-} 0.6. Laser guide star adaptive optics imaging observations with Keck/NIRC2 fail to resolve the source, indicating a maximum separation at the observing epoch of 0.''25, or a projected separation of 9 AU assuming a distance of 36 {+-} 5 pc. With an age that is likely to be relatively older ({approx}>5 Gyr) based on the system's large V{sub tan} and mass ratio arguments, the relative motion of the potentially 'massive' (0.06-0.08 M{sub sun}) components of 2MASS J2026-2943 may be detectable through radial velocity variations, like its earlier-type counterpart 2MASS J03202839-0446358 (M8+T5), providing dynamical mass measurements that span the hydrogen burning limit.

  3. SOLAR SOURCE AND HELIOSPHERIC CONSEQUENCES OF THE 2010 APRIL 3 CORONAL MASS EJECTION: A COMPREHENSIVE VIEW

    SciTech Connect

    Liu Ying; Luhmann, Janet G.; Bale, Stuart D.; Lin, Robert P.

    2011-06-20

    We study the solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection (CME) in the frame of the Sun-Earth connection using observations from a fleet of spacecraft. The CME is accompanied by a B7.4 long-duration flare, dramatic coronal dimming, and EUV waves. It causes significant heliospheric consequences and space weather effects such as radio bursts, a prominent shock wave, the largest/fastest interplanetary CME at 1 AU since the 2006 December 13 CME, the first gradual solar energetic particle (SEP) events in solar cycle 24, and a prolonged geomagnetic storm resulting in a breakdown of the Galaxy 15 satellite. This event, together with several following periods of intense solar activities, indicates awakening of the Sun from a long minimum. The CME EUV loop begins to rise at least 10 minutes before the flare impulsive phase. The associated coronal wave forms an envelope around the CME, a large-scale three-dimensional structure that can only be explained by a pressure wave. The CME and its preceding shock are imaged by both STEREO A and B almost throughout the whole Sun-Earth space. CME kinematics in the ecliptic plane are obtained as a function of distance out to 0.75 AU by a geometric triangulation technique. The CME has a propagation direction near the Sun-Earth line and a speed that first increases to 1000-1100 km s{sup -1} and then decreases to about 800 km s{sup -1}. Both the predicted arrival time and speed at the Earth are well confirmed by the in situ measurements. The gradual SEP events observed by three widely separated spacecraft show time profiles much more complicated than suggested by the standard conceptual picture of SEP event heliolongitude distribution. Evolving shock properties, the realistic time-dependent connection between the observer and shock source, and a possible role of particle perpendicular diffusion may be needed to interpret this SEP event spatial distribution.

  4. Interleukin-6 (IL6) genotype is associated with fat-free mass in men but not women.

    PubMed

    Roth, Stephen M; Schrager, Matthew A; Lee, Mechele R; Metter, E Jeffrey; Hurley, Ben F; Ferrell, Robert E

    2003-12-01

    We studied the association of the G-174C promoter polymorphism in the interleukin-6 gene (IL6) with total body fat and fat-free mass (FFM) in 242 men and women (IL6 genotypes: G/G, n = 87; G/C, n = 100; C/C, n = 55) across the adult age span (21-92 years). In men, but not women (significant genotype by sex interactions; p =.023-.048), the C/C group exhibited significantly lower total FFM than the G/G group (54.7 +/- 0.8 kg vs 57.2 +/- 0.7 kg, respectively, p =.020), as well as significantly lower FFM of the lower limbs compared with the G/G group (18.4 +/- 0.3 kg vs 19.8 +/- 0.3 kg, respectively, p =.004). No significant genotype differences were observed in total body fat mass in either men or women. The results indicate that the IL6 G-174C polymorphism is significantly associated with FFM in men but not women.

  5. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas

    SciTech Connect

    Blander, M.; Unger, L.; Pelton, A.; Eriksson, G.

    1994-05-01

    Condensates from a gas of ``solar`` composition were calculated to investigate the origins of EL6 chondrites using a free energy minimization program with a data base for the thermodynamic properties of multicomponent molten silicates as well as for other liquids solids, solid solutions and gaseous species. Because of high volatility of silicon and silica, the high silicon content of metal (2.6 mole %) can only be produced at pressures 10{sup {minus}2} atm at temperatures above 1475 K. At 100--500 atm, a liquid silicate phase crystallizes at a temperature where the silicon content of the metal, ferrosilite content of the enstatite and albite concentration in the plagioclase are close to measured values. In pyrometallurgy, liquid silicates are catalysts for reactions in which Si-O-Si bridging bonds are broken or formed. Thus, one attractive mode for freezing in the compositions of these three phases is disappearance of fluxing liquid. If the plagioclase can continue to react with the nebula without a liquid phase, lower pressures of 10{sup {minus}1} to 1 atm might be possible. Even if the nebula is more reducing than a solar gas, the measured properties of EL6 chondrites might be reconciled with only slightly lower pressures (less than 3X lower). The temperatures would be about the same as indicated in our calculations since the product of the silicon content of the metal and the square of the ferrosilite content of the enstatite constitute a cosmothermometer for the mineral assemblage in EL6 chondrites.

  6. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    SciTech Connect

    Kay, C.; Opher, M.

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which the CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.

  7. Binary Stars with Components of Solar Type: 25 Orbits and System Masses

    NASA Astrophysics Data System (ADS)

    Docobo, J. A.; Ling, J. F.

    2009-10-01

    Revised orbits and system masses are presented for the following 25 visual double stars: WDS 00593-0040 (A 1902), WDS 00596-0111 (A 1903 AB), WDS 01023+0552 (A 2003), WDS 01049+3649 (A 1515), WDS 01234+5809 (STF 115 AB), WDS 02399+0009 (A 1928), WDS 03310+2937 (A 983), WDS 06573-3530 (I 65), WDS 07043-0303 (A 519), WDS 08267+2432 (A 1746 BC), WDS 10585+1711 (A 2375), WDS 11308+4117 (STT 234), WDS 15370+6426 (HU 1168), WDS 16044-1122 (STF 1998 AB), WDS 16283-1613 (RST 3950), WDS 17324+2848 (A 352), WDS 18466+3821 (HU 1191), WDS 19039+2642 (A 2992), WDS 19055+3352(HU 940), WDS 19282-1209 (SCJ 22), WDS 19487+1504 (A 1658), WDS 22400+0113 (A 2099), WDS 23506-5142 (SLR 14), WDS 23518-0637 (A 2700), and WDS 23529-0309 (FIN 359). In all of these systems, at least one component is of solar type. Total system masses were calculated in each case from the orbital period and semiaxis major together with the Hipparcos parallax, except in the cases for which there are no Hipparcos data or when these values are not precise. Other orbital and physical properties of these stars are also discussed. This paper is the second of three collating the revised double star orbits we have calculated in the past 15 yr.

  8. O- and N-glycosylation lead to different molecular mass forms of human monocyte interleukin-6.

    PubMed

    Gross, V; Andus, T; Castell, J; Vom Berg, D; Heinrich, P C; Gerok, W

    1989-04-24

    The biosynthesis and secretion of human interleukin-6 (IL-6) was studied in monocyte cultures stimulated with endotoxin. After labeling with [35S]methionine and immunoprecipitation with a specific antiserum one major (24 kDa) and four minor (27.5, 23.3, 22.5 and 21.8 kDa) molecular mass forms of IL-6 could be found in the cells and media. Incubation of monocyte media with sialidase and subsequently with endo-alpha-N-acetylgalactosaminidase, which cleaves Gal(beta 1-3)Gal-NAc from serine or threonine, led to the formation of only two forms of IL-6 with apparent molecular masses of 25 and 21.8 kDa. The latter had an electrophoretic mobility indistinguishable from that of 125I-labeled recombinant human IL-6. The results suggest that human monocyte IL-6 carries O-glycosidically bound carbohydrates with a Gal(beta 1-3)Gal-NAc core to which only sialic acid is bound. Differences in O-glycosylation are the major cause for the molecular heterogeneity of IL-6. A small part of IL-6 (27.5 kDa form) is in addition N-glycosylated. Incubation of monocytes with tunicamycin and 1-deoxymynnojirimycin and treatment of IL-6 with endoglucosaminidase H suggested that the 27.5 kDa form of IL-6 carries at least one N-linked complex-type oligosaccharide chain. PMID:2523818

  9. MASS AND ENERGY OF ERUPTING SOLAR PLASMA OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    SciTech Connect

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung; Raymond, John C.; Reeves, Katharine K.

    2015-01-10

    We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light coronal mass ejection features are visible in some events. Five events are observed in several passbands in X-rays, which allows for the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the X-ray Telescope (XRT) temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ∼3 × 10{sup 13}-5 × 10{sup 14} g, are smaller in their upper limit than the total masses obtained by LASCO, ∼1 × 10{sup 15} g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction timescales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

  10. Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation

    SciTech Connect

    Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

    1990-08-01

    The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

  11. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    SciTech Connect

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.

  12. Measured Mass-Loss Rates of Solar-like Stars as a Function of Age and Activity

    NASA Astrophysics Data System (ADS)

    Wood, Brian E.; Müller, Hans-Reinhard; Zank, Gary P.; Linsky, Jeffrey L.

    2002-07-01

    Collisions between the winds of solar-like stars and the local interstellar medium result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H I can be detected in high-resolution Lyα spectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diagnostic for the stellar mass-loss rate. We present new mass-loss rate measurements derived in this fashion for four stars (ɛ Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit surface area is correlated with X-ray surface flux. Fitting a power law to this relation yields M~F1.15+/-0.20X. The active M dwarf Proxima Cen and the very active RS CVn system λ And appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power-law relation for solar-like stars suggests that mass loss decreases with time. We infer a power-law relation of M~t-2.00+/-0.52. This suggests that the solar wind may have been as much as 1000 times more massive in the distant past, which may have had important ramifications for the history of planetary atmospheres in our solar system, that of Mars in particular. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. Calibration of NOAA-7 AVHRR, GOES-5 and GOES-6 VISSR/VAS solar channels

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Gautier, C.

    1986-01-01

    The NOAA-7, GOES-5 and GOES-6 Visible Infrared Spin Scan Radiometer/Vertical Atmospheric Sounder (VISSR/VAS) solar channels were calibrated. The White Sands Monument area in New Mexico, whose reflectance properties are well known, and space are used as calibration targets. The shortwave reflected terrestrial irradiance that is measured at satellite altitude is computed using a fairly accurate radiative transfer model which accounts for multiple scattering and bidirectional effects. The ground target reflectance and relevant characteristics of the overlying atmosphere are estimated from climatological data and observation at the nearest meteorological sites. The approach is believed to produce accuracies of 8 to 13% depending on the channel considered.

  14. Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10(11) solar masses.

    PubMed

    Amblard, Alexandre; Cooray, Asantha; Serra, Paolo; Altieri, B; Arumugam, V; Aussel, H; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Chapin, E; Clements, D L; Conley, A; Conversi, L; Dowell, C D; Dwek, E; Eales, S; Elbaz, D; Farrah, D; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Khostovan, A A; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Marsden, G; Mitchell-Wynne, K; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Page, M J; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rangwala, N; Roseboom, I G; Rowan-Robinson, M; Portal, M Sánchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Symeonidis, M; Trichas, M; Tugwell, K; Vaccari, M; Valiante, E; Valtchanov, I; Vieira, J D; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2011-02-24

    The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 μm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, M(min), such that log(10)[M(min)/M(⊙)] = 11.5(+0.7)(-0.2) at 350 μm, where M(⊙) is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation.

  15. Do interacting coronal mass ejections play a role in solar energetic particle events?

    SciTech Connect

    Kahler, S. W.; Vourlidas, A.

    2014-03-20

    Gradual solar energetic (E > 10 MeV) particle (SEP) events are produced in shocks driven by fast and wide coronal mass ejections (CMEs). With a set of western hemisphere 20 MeV SEP events, we test the possibility that SEP peak intensities, Ip, are enhanced by interactions of their associated CMEs with preceding CMEs (preCMEs) launched during the previous 12 hr. Among SEP events with no, 1, or 2 or more (2+) preCMEs, we find enhanced Ip for the groups with preCMEs, but no differences in TO+TR, the time from CME launch to SEP onset and the time from onset to SEP half-peak Ip. Neither the timings of the preCMEs relative to their associated CMEs nor the preCME widths W {sub pre}, speeds V {sub pre}, or numbers correlate with the SEP Ip values. The 20 MeV Ip of all the preCME groups correlate with the 2 MeV proton background intensities, consistent with a general correlation with possible seed particle populations. Furthermore, the fraction of CMEs with preCMEs also increases with the 2 MeV proton background intensities. This implies that the higher SEP Ip values with preCMEs may not be due primarily to CME interactions, such as the 'twin-CME' scenario, but are explained by a general increase of both background seed particles and more frequent CMEs during times of higher solar activity. This explanation is not supported by our analysis of 2 MeV proton backgrounds in two earlier preCME studies of SEP events, so the relevance of CME interactions for larger SEP event intensities remains unclear.

  16. A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections

    SciTech Connect

    Kahler, S. W.

    2013-06-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v {sub CME} or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v {sub CME}, and TR and TD increase with both v {sub CME} and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v {sub CME} and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v {sub CME} and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  17. A Comparison of Solar Energetic Particle Event Timescales with Properties of Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2013-06-01

    The dependence of solar energetic proton (SEP) event peak intensities Ip on properties of associated coronal mass ejections (CMEs) has been extensively examined, but the dependence of SEP event timescales is not well known. We define three timescales of 20 MeV SEP events and ask how they are related to speeds v CME or widths W of their associated CMEs observed by LASCO/SOHO. The timescales of the EPACT/Wind 20 MeV events are TO, the onset time from CME launch to SEP onset; TR, the rise time from onset to half the peak intensity (0.5Ip); and TD, the duration of the SEP intensity above 0.5Ip. This is a statistical study based on 217 SEP-CME events observed during 1996-2008. The large number of SEP events allows us to examine the SEP-CME relationship in five solar-source longitude ranges. In general, we statistically find that TO declines slightly with v CME, and TR and TD increase with both v CME and W. TO is inversely correlated with log Ip, as expected from a particle background effect. We discuss the implications of this result and find that a background-independent parameter TO+TR also increases with v CME and W. The correlations generally fall below the 98% significance level, but there is a significant correlation between v CME and W which renders interpretation of the timescale results uncertain. We suggest that faster (and wider) CMEs drive shocks and accelerate SEPs over longer times to produce the longer TR and TD SEP timescales.

  18. Origin of the High-speed Jets Fom Magnetic Flux Emergence in the Solar Transition Region as well as Their Mass and Energy Contribuctions to the Solar Wind

    NASA Astrophysics Data System (ADS)

    Liping, Y.; He, J.; Peter, H.; Tu, C. Y.; Feng, X. S.

    2015-12-01

    In the solar atmosphere, the jets are ubiquitous and found to be at various spatia-temporal scales. They are significant to understand energy and mass transport in the solar atmosphere. Recently, the high-speed transition region jets are reported from the observation. Here we conduct a numerical simulation to investigate the mechanism in their formation, as well as their mass and energy contributions to the solar wind. Driven by the supergranular convection motion, the magnetic reconnection between the magnetic loop and the background open flux occurring in the transition region is simulated with a two-dimensional MHD model. The simulation results show that not only a fast hot jet, much resemble the found transition region jets, but also a adjacent slow cool jet, mostly like classical spicules, is launched. The force analysis shows that the fast hot jet is continually driven by the Lorentz force around the reconnection region, while the slow cool jet is induced by an initial kick through the Lorentz force associated with the emerging magnetic flux. Also, the features of the driven jets change with the amount of the emerging magnetic flux, giving the varieties of both jets.With the developed one-dimensional hydrodynamic solar wind model, the time-dependent pulses are imposed at the bottom to simulate the jet behaviors. The simulation results show that without other energy source, the injected plasmas are accelerated effectively to be a transonic wind with a substantial mass flux. The rapid acceleration occurs close to the Sun, and the resulting asymptotic speeds, number density at 0.3 AU, as well as mass flux normalized to 1 AU are compatible with in site observations. As a result of the high speed, the imposed pulses lead to a train of shocks traveling upward. By tracing the motions of the injected plasma, it is found that these shocks heat and accelerate the injected plasma to make part of them propagate upward and eventually escape. The parametric study shows

  19. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Wood Building Products Pt. 63, Subpt. QQQQ, Table 6 Table 6 to Subpart QQQQ of Part 63—Default Organic... type Average organic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1%...

  20. Applications of thin film technology toward a low-mass solar power satellite

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Cull, Ronald C.

    1990-01-01

    Previous concepts for solar power satellites have used conventional-technology photovoltaics and microwave tubes. The authors propose using thin film photovoltaics and an integrated solid state phased array to design an ultra-lightweight solar power satellite, resulting in a potential reduction in weight by a factor of ten to a hundred over conventional concepts for solar power satellites.

  1. Solar Cooling for Buildings. Workshop Proceedings (Los Angeles, California, February 6-8, 1974).

    ERIC Educational Resources Information Center

    de Winter, Francis, Ed.

    A consensus has developed among U.S. solar researchers that the solar-powered cooling of buildings is an important topic. Most solar heating systems are technically simpler, and more highly developed, than solar cooling devices are. The determination of the best design concept for any particular application is not a simple process. Significant…

  2. Solar cycle variation of interplanetary shocks, coronal mass ejections, and stream interactions observed at 0.7 AU

    NASA Technical Reports Server (NTRS)

    Lindsay, G. M.; Luhmann, J. G.; Russell, C. T.; Gazis, P.

    1995-01-01

    A survey of the Pioneer Venus Orbiter (PVO) magnetometer and plasma data from 1979-1980, shows that the occurrence frequency of interplanetary shocks, coronal mass ejections (CMEs) and stream interactions observed at 0.7 AU exhibits a solar cycle variation. As previously found at 1 AU, the observed number of both interplanetary shocks and CMEs peaks during solar maximum (approximately 16 and approximately 27 per year, respectively) and reaches a low during solar minimum (approximately 0 and approximately 7 per year, respectively), in phase with the variation in smoothed sunspot number. The number of stream interactions observed varies in the opposite manner, having a minimum during solar maximum (approximately 15 per year) and a maximum during solar minimum (approximately 34 per year). The percentage of CMEs and stream interactions producing interplanetary shocks also varies during the solar-cycle and exhibits interesting behavior during the declining phase. While the number of CMEs observed during this phase is decreasing, the percentage of CMEs producing interplanetary shocks reaches a maximum. Also, while the number of stream interactions observed is increasing, but has not reached maximum during the declining phase, the percentage of stream interactions producing interplanety shocks is at a maximum.

  3. Masses of third family vectorlike quarks and leptons in Yukawa-unified E6

    NASA Astrophysics Data System (ADS)

    Hebbar, Aditya; Leontaris, George K.; Shafi, Qaisar

    2016-06-01

    In supersymmetric E6 the masses of the third family quarks and charged lepton, t -b -τ , as well as the masses of the vectorlike quarks and leptons, D -D ¯ and L -L ¯, may arise from the coupling 2 73×2 73×2 7H, where 2 73 and 2 7H denote the third family matter and Higgs multiplets, respectively. We assume that the SO(10) singlet component in 2 7H acquires a TeV-scale vacuum expectation value that spontaneously breaks U (1 )ψ and provides masses to the vectorlike particles in 2 73, while the Minimal Supersymmetric Standard Model doublets in 2 7H provide masses to t , b , and τ . Imposing Yukawa coupling unification ht=hb=hτ=hD=hL at MGUT and employing the ATLAS and CMS constraints on the Zψ' boson mass, we estimate the lower bounds on the third family vectorlike particles D -D ¯ and L -L ¯ masses to be around 5.85 TeV and 2.9 TeV, respectively. These bounds apply in the supersymmetric limit.

  4. Three Dimensional Parameters and Geoeffectiveness of Full Halo Coronal Mass Ejections During the Solar Raising Phase

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.; Liu, Y.; Wang, S.; Ye, P.

    2012-12-01

    Real positions and geometric parameters of the full halo coronal mass ejections (FHCMEs) in the CDAW CME catalog, derived by the Graduated Cylindrial Shell (GCS) model, were studied, together with the in situ observations from WIND and ACE satellites and the observation from the large field-of-view SETEREO/SECCHI coronagraph. It is found that: (1) the 3-Dimensional speed and angular width of the FHCMEs vary in a large range and they are correlated; (2) there are two different types of FHCMEs; one is normal or narrow CMEs but the projection effect makes a halo-like pattern, and the other is indeed wide CMEs; (3) about 65% front-side FHCMEs (FFHCMEs) hit the Earth, and, almost all the FFHCMEs originated from the vicinity of solar disk center (Θ <45o) can hit the Earth while most limb FFHCMEs (Θ >45o) did not even though they were wider; (4) 35% FFHCMEs caused moderate to intense geomagnetic storms with minimum Dst index less than -50nT.

  5. A soft x-ray coronal mass ejection occurred on solar limb on 1998 April 23

    NASA Astrophysics Data System (ADS)

    Cheng, X. J.

    2001-11-01

    Using some data observed with SXT/HXT aboard Yohkoh and the Nobeyama Radioheliograph (NoRH) on 1998 April 23, a comprehensive study on the soft X-ray coronal mass ejection (CME) on solar SE limb shows there were two magnetic dipole sources (MDSs), one magnetic capacity belt (MCB) between MDSs, one neutral current sheet (NCS) and only a few activation sources (ASs). During the MCB was changed by the ASs into a magnetic energy belt (MEB), the material and energy both concentrated to the NCS in the course of its formation. When the MDSs were put through by the MEB, the NCS formed and the CME occurred. The matter ejected not only from the NCS, but also from the whole MEB. The expanding loop of the CME had two footprints, they were just the MDSs. The head of the expanding loop always tended to the foot point of weak source. The locus of the head was just neutral line. From this, the position of NCS also could be determined.

  6. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT

    SciTech Connect

    Wisniewski, John P.; Agol, Eric; Barnes, Rory; Ge, Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Chang, Liang; Crepp, Justin R.; Eastman, Jason; Gaudi, B. Scott; Esposito, Massimiliano; Gonzalez Hernandez, Jonay I.; Prieto, Carlos Allende; Ghezzi, Luan; Da Costa, Luiz N.; Porto De Mello, G. F.; Stassun, Keivan G.; Cargile, Phillip; Bizyaev, Dmitry; and others

    2012-05-15

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T{sub eff} {approx}< 6000 K) primary stars. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged ({approx}<5 Gyr) solar-like star having a mass of 1.07 {+-} 0.08 M{sub Sun} and radius of 0.99 {+-} 0.18 R{sub Sun }. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of {approx}2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 {+-} 0.012 days, an eccentricity of 0.1095 {+-} 0.0023, and a semi-amplitude of 4199 {+-} 11 m s{sup -1}. We determine the minimum companion mass (if sin i = 1) to be 97.7 {+-} 5.8 M{sub Jup}. The system's companion to host star mass ratio, {>=}0.087 {+-} 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T{sub eff} {approx}< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  7. The X-Ray Properties of Million Solar Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard. M.; Gallo, Elena; Haardt, Francesco; Miller, Brendan P.; Wood, Callum J. L.; Reines, Amy E.; Wu, Jianfeng; Greene, Jenny E.

    2016-07-01

    We present new Chandra X-ray observations of seven low-mass black holes ({M}{{BH}}≈ {10}6 {M}⊙ ) accreting at low-bolometric Eddington ratios between -2.0≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -1.5. We compare the X-ray properties of these seven low-mass active galactic nuclei (AGNs) to a total of 73 other low-mass AGNs in the literature with published Chandra observations (with Eddington ratios extending from -2.0≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -0.1). We do not find any statistical differences between the low and high Eddington ratio low-mass AGNs in the distributions of their X-ray to ultraviolet luminosity ratios ({α }{{ox}}), or in their X-ray spectral shapes. Furthermore, the {α }{{ox}} distribution of low-{L}{{bol}}/{L}{{Edd}} AGNs displays an X-ray weak tail that is also observed within high-{L}{{bol}}/{L}{{Edd}} objects. Our results indicate that between -2≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -0.1, there is no systematic change in the structure of the accretion flow for active galaxies hosting {10}6 {M}⊙ black holes. We examine the accuracy of current bolometric luminosity estimates for our low-{L}{{bol}}/{L}{{Edd}} objects with new Chandra observations, and it is plausible that their Eddington ratios could be underestimated by up to an order of magnitude. If so, then in analogy with weak emission line quasars, we suggest that accretion from a geometrically thick, radiatively inefficient “slim disk” could explain their diverse properties in {α }{{ox}}. Alternatively, if current Eddington ratios are correct (or overestimated), then the X-ray weak tail would imply that there is diversity in disk/corona couplings among individual low-mass objects. Finally, we conclude by noting that the {α }{{ox}} distribution for low-mass black holes may have favorable consequences for the epoch of cosmic reionization being driven by AGN.

  8. Clinical Impact of the KL-6 Concentration of Pancreatic Juice for Diagnosing Pancreatic Masses

    PubMed Central

    Matsumoto, Kazuya; Takeda, Yohei; Harada, Kenichi; Onoyama, Takumi; Kawata, Soichiro; Horie, Yasushi; Sakamoto, Teruhisa; Ueki, Masaru; Miura, Norimasa; Murawaki, Yoshikazu

    2015-01-01

    Background and Aim. Pancreatic juice cytology (PJC) is considered optimal for differentially diagnosing pancreatic masses, but the accuracy of PJC ranges from 46.7% to 93.0%. The aim of this study was to evaluate the clinical impact of measuring the KL-6 concentration of pancreatic juice for diagnosing pancreatic masses. Methods. PJC and the KL-6 concentration measurements of pancreatic juice were performed for 70 consecutive patients with pancreatic masses (39 malignancies and 31 benign). Results. The average KL-6 concentration of pancreatic juice was significantly higher for pancreatic ductal adenocarcinomas (PDACs) (167.7 ± 396.1 U/mL) and intraductal papillary mucinous carcinomas (IPMCs) (86.9 ± 21.1 U/mL) than for pancreatic inflammatory lesions (17.5 ± 15.7 U/mL, P = 0.034) and intraductal papillary mucinous neoplasms (14.4 ± 2.0 U/mL, P = 0.026), respectively. When the cut-off level of the KL-6 concentration of pancreatic juice was 16 U/mL, the sensitivity, specificity, and accuracy of the KL-6 concentration of pancreatic juice alone were 79.5%, 64.5%, and 72.9%, respectively. Adding the KL-6 concentration of pancreatic juice to PJC when making a diagnosis caused the values of sensitivity and accuracy of PJC to increase by 15.3% (P = 0.025) and 8.5% (P = 0.048), respectively. Conclusions. The KL-6 concentration of pancreatic juice may be as useful as PJC for diagnosing PDACs. PMID:26451373

  9. SOHO Captures CME From X5.4 Solar Flare

    NASA Video Gallery

    The Solar Heliospheric Observatory (SOHO) captured this movie of the sun's coronal mass ejection (CME) associated with an X5.4 solar flare on the evening of March 6, 2012. The extremely fast and en...

  10. MAGNETOHYDRODYNAMIC SIMULATION OF THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15. II. DYNAMICS CONNECTING THE SOLAR FLARE AND THE CORONAL MASS EJECTION

    SciTech Connect

    Inoue, S.; Magara, T.; Choe, G. S.; Hayashi, K.; Park, Y. D.

    2015-04-20

    We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruption as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.

  11. Multiscale mass transport in z ˜6 galactic discs: fuelling black holes

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Escala, Andrés

    2016-08-01

    By using Adaptive Mesh Refinement cosmological hydrodynamic N-body zoom-in simulations, with the RAMSES code, we studied the mass transport processes on to galactic nuclei from high redshift up to z ˜6. Due to the large dynamical range of the simulations, we were able to study the mass accretion process on scales from ˜50 kpc to ˜few 1 pc. We studied the black hole (BH) growth on to the Galactic Centre in relation with the mass transport processes associated to both the Reynolds stress and the gravitational stress on the disc. Such methodology allowed us to identify the main mass transport process as a function of the scales of the problem. We found that in simulations that include radiative cooling and supernovae feedback, the supermassive black hole (SMBH) grows at the Eddington limit for some periods of time presenting ≈ 0.5 throughout its evolution. The α parameter is dominated by the Reynolds term, αR, with αR ≫ 1. The gravitational part of the α parameter, αG, has an increasing trend towards the Galactic Centre at higher redshifts, with values αG ˜1 at radii ≲ few 101 pc contributing to the BH fuelling. In terms of torques, we also found that gravity has an increasing contribution towards the Galactic Centre at earlier epochs with a mixed contribution above ˜100 pc. This complementary work between pressure gradients and gravitational potential gradients allows an efficient mass transport on the disc with average mass accretion rates of the order of ˜few 1 M⊙ yr-1. These levels of SMBH accretion rates found in our cosmological simulations are needed in all models of SMBH growth that attempt to explain the formation of redshift 6-7 quasars.

  12. COUPLING THE SOLAR DYNAMO AND THE CORONA: WIND PROPERTIES, MASS, AND MOMENTUM LOSSES DURING AN ACTIVITY CYCLE

    SciTech Connect

    Pinto, Rui F.; Brun, Allan Sacha; Grappin, Roland

    2011-08-20

    We study the connections between the Sun's convection zone and the evolution of the solar wind and corona. We let the magnetic fields generated by a 2.5-dimensional (2.5D) axisymmetric kinematic dynamo code (STELEM) evolve in a 2.5D axisymmetric coronal isothermal magnetohydrodynamic code (DIP). The computations cover an 11 year activity cycle. The solar wind's asymptotic velocity varies in latitude and in time in good agreement with the available observations. The magnetic polarity reversal happens at different paces at different coronal heights. Overall the Sun's mass-loss rate, momentum flux, and magnetic braking torque vary considerably throughout the cycle. This cyclic modulation is determined by the latitudinal distribution of the sources of open flux and solar wind and the geometry of the Alfven surface. Wind sources and braking torque application zones also vary accordingly.

  13. PREDICTION OF TYPE II SOLAR RADIO BURSTS BY THREE-DIMENSIONAL MHD CORONAL MASS EJECTION AND KINETIC RADIO EMISSION SIMULATIONS

    SciTech Connect

    Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.

    2013-08-20

    Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.

  14. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    NASA Technical Reports Server (NTRS)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  15. Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses

    SciTech Connect

    Iorio, Lorenzo

    2010-08-01

    We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi and the mean anomaly M. Then, we compare our prediction for (dot varpi) with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψ{sub z}| ≤ 0.0006−0.013 arcsec cty{sup −1}, |Ψ{sub x}| ≤ 0.1−2.7 arcsec cty{sup −1}, |Ψ{sub y}| ≤ 0.3−2.3 arcsec cty{sup −1}. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H{sub 0} not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψ{sub z} are in disagreement with the expected value of it at more than 3−σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.

  16. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  17. Applied research on 2-6 compound materials for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Bube, R. H.

    1975-01-01

    Several II-VI heterojunctions show promise for photovoltaic conversion of solar energy. The three of greatest interest are p-CdTe/n-CdS, p-CdTe/n-ZnSe, and p-ZnTe/n-CdSe. Several p-CdTe/n-CdS heterojunction cells have been prepared by close spaced transport deposition of p-CdTe on single crystal n-CdS, and by two source vacuum evaporation of n-CdS on single crystal p-CdTe. Both types of cells, in an experimental stage, are quite comparable, exhibiting values of quantum efficiency between 0.5 and 0.9, open circuit voltages between 0.50 and 0.66 V, fill factors between 0.4 and 0.6, and solar efficiencies up to 4 percent. Cells of p-ZnTe/n-CdSe have also been made by close spaced vapor transport deposition of n-CdSe on single crystal p-ZnTe.

  18. PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere

    SciTech Connect

    Zhang, Jianbing; Gao, Jianbo; Church, Carena P.; Miller, Elisa M.; Luther, Joseph M.; Klimov, Victor I.; Beard, Matthew C.

    2014-09-09

    Colloidal quantum dots (QDs) are promising candidates for the next generation of photovoltaic (PV) technologies. Much of the progress in QD PVs is based on using PbS QDs, partly because they are stable under ambient conditions. There is considerable interest in extending this work to PbSe QDs, which have shown an enhanced photocurrent due to multiple exciton generation (MEG). One problem complicating such device-based studies is a poor stability of PbSe QDs toward exposure to ambient air. We develop a direct cation exchange synthesis to produce PbSe QDs with a large range of sizes and with in situ chloride and cadmium passivation. The synthesized QDs have excellent air stability, maintaining their photoluminescence quantum yield under ambient conditions for more than 30 days. When we use QDs, we fabricate high-performance solar cells without any protection and demonstrate a power conversion efficiency exceeding 6%, which is a current record for PbSe QD solar cells.

  19. Seismic Emissions from a Highly Impulsive M6.7 Solar Flare

    NASA Astrophysics Data System (ADS)

    Martínez-Oliveros, J. C.; Moradi, H.; Donea, A.-C.

    2008-09-01

    On 10 March 2001 the active region NOAA 9368 produced an unusually impulsive solar flare in close proximity to the solar limb. This flare has previously been studied in great detail, with observations classifying it as a type 1 white-light flare with a very hard spectrum in hard X-rays. The flare was also associated with a type II radio burst and coronal mass ejection. The flare emission characteristics appeared to closely correspond to previous instances of seismic emission from acoustically active flares. Using standard local helioseismic methods, we identified the seismic signatures produced by the flare that, to date, is the least energetic (in soft X-rays) of the flares known to have generated a detectable acoustic transient. Holographic analysis of the flare shows a compact acoustic source strongly correlated with the impulsive hard X-rays, visible continuum, and radio emission. Time distance diagrams of the seismic waves emanating from the flare region also show faint signatures, mainly in the eastern sector of the active region. The strong spatial coincidence between the seismic source and the impulsive visible continuum emission reinforces the theory that a substantial component of the seismic emission seen is a result of sudden heating of the low photosphere associated with the observed visible continuum emission. Furthermore, the low-altitude magnetic loop structure inferred from potential-field extrapolations in the flaring region suggests that there is a significant anti-correlation between the seismicity of a flare and the height of the magnetic loops that conduct the particle beams from the corona.

  20. A Search for Early Optical Emission at Gamma-Ray Burst Locations by the Solar Mass Ejection Imager (SMEI)

    NASA Technical Reports Server (NTRS)

    Band, David L.; Buffington, Andrew; Jackson, Bernard V.; Hick, P. Paul; Smith, Aaron C.

    2005-01-01

    The Solar Mass Ejection Imager (SMEI) views nearly every point on the sky once every 102 minutes and can detect point sources as faint as R approx. 10th magnitude. Therefore, SMEI can detect or provide upper limits for the optical afterglow from gamma-ray bursts in the tens of minutes after the burst when different shocked regions may emit optically. Here we provide upper limits for 58 bursts between 2003 February and 2005 April.

  1. Solar Wind Sputtering of Lunar Soil Analogs: The Effect of Ionic Charge and Mass

    NASA Technical Reports Server (NTRS)

    Hijazi, H.; Bannister, M. E.; Meyer, F. W.; Rouleau, C. M.; Barghouty, A. F.; Rickman, D. L.; Hijazi, H.

    2014-01-01

    In this contribution we report sput-tering measurements of anorthite, an analog material representative of the lunar highlands, by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the heavier solar wind constituents), in the charge state range +1 to +9, and had a fixed solar-wind-relevant impact velocity of approximately 310 km/s or 500 eV/ amu. The goal of the measurements was to determine the sputtering contribution of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H+ fraction.

  2. Comparing SSN Index to X-Ray Flare and Coronal Mass Ejection Rates from Solar Cycles 22 - 24

    NASA Astrophysics Data System (ADS)

    Winter, L. M.; Pernak, R. L.; Balasubramaniam, K. S.

    2016-05-01

    The newly revised sunspot-number series allows for placing historical geoeffective storms in the context of several hundred years of solar activity. Using statistical analyses of the Geostationary Operational Environmental Satellites (GOES) X-ray observations from the past {≈} 30 years and the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) Coronal Mass Ejection (CME) catalog (1996 - present), we present sunspot-number-dependent flare and CME rates. In particular, we present X-ray flare rates as a function of sunspot number for the past three cycles. We also show that the 1 - 8 Å X-ray background flux is strongly correlated with sunspot number across solar cycles. Similarly, we show that the CME properties (e.g. proxies related to the CME linear speed and width) are also correlated with sunspot number for Solar Cycles 23 and 24. These updated rates will enable future predictions for geoeffective events and place historical storms in the context of present solar activity.

  3. Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Badruddin, A.; Falak, Z.

    2016-08-01

    The interplanetary coronal mass ejections (ICMEs) and the corotating interaction regions (CIRs) are the two most important structures of the interplanetary medium affecting the Earth and the near-Earth space environment. We study the solar wind-magnetosphere coupling during the passage of ICMEs and CIRs, in the Solar Cycle 23 (Jan. 1995-Dec. 2009), and their relative geoeffectiveness. We utilize the timings of different features of these structures, their arrival and duration. As geomagnetic parameter, we utilize high time resolution data of Dst and AE indices. In addition to these geomagnetic indices, we utilize the simultaneous and similar time resolution data of interplanetary plasma and field, namely, solar wind velocity, interplanetary magnetic field, its north-south component and dawn-dusk electric field. We apply the method of superposed epoch analysis. Utilizing the properties of various structures during the passage of ICMEs and CIRs, and variations observed in plasma and field parameters during their passage along with the simultaneous changes observed in geomagnetic parameters, we identify the interplanetary conditions, plasma/field parameters and their relative importance in solar wind-magnetosphere coupling. Geospace consequences of ICMEs and CIRs, and the implications of these results for solar wind-magnetosphere coupling are discussed.

  4. 11.6% efficient, all-sputtered CdTe solar cell on glass

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Jayamaha, U. N.; Fischer, A.; Grecu, D.; Bykov, E.; Contreras-Puente, G.

    1997-03-01

    We discuss the fabrication of an 11.6% efficient, polycrystalline thin-film CdS/CdTe solar cell by planar-magnetron-radio-frequency sputtering.(M.Shao, et al, Appl. Phys. Lett. 69, 3045 (1996).) The two semiconductor layers were sputtered sequentially at 380 C on commercially available soda-lime glass superstrates coated with fluorine-doped tin oxide (TCO). The magnetron magnetic field is critical to obtaining high cell efficiency. Much stronger photoluminescence and higher electrical conductivity are found in films and cells grown with unbalanced-field vs. balanced-field magnetrons. The magnetic field dependence is interpreted as arising from the enhanced electron and ion bombardment of the film growth surface when unbalanced magnetrons are used. Preliminary data suggest that further improvements should be achievable with changes to the TCO/CdS window and the back contact.

  5. Solar flare line emission between 6 A and 25 A. [using crystal spectrometer onboard OSO-5

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.; Swartz, M.; Kastner, S. O.

    1973-01-01

    A list of emission lines in the spectra of solar flares between 6 and 25 A has been compiled using data obtained with a KAP crystal spectrometer on the OSO-5 satellite. The emission lines have been classified according to their sensitivity to flare activity. This classification provides a method for discriminating between iron in high stages of ionization (Fe XX-Fe XXV) and lower stages (Fe XVII-Fe XIX), the lines of which are both present in the same spectral region during flares. Identifications consistent with these classifications are proposed. Anomalous intensities in the spectra of Fe XVII and Fe XX are pointed out, and implications of the observations for models of the X-ray emitting regions are discussed.

  6. Kinematical properties of interplanetary coronal mass ejections detected by interplanetary scintillation observations during the solar cycle 23

    NASA Astrophysics Data System (ADS)

    Iju, T.; Tokumaru, M.; Fujiki, K.

    2011-12-01

    We report kinematical properties of interplanetary coronal mass ejections (ICMEs) detected by interplanetary scintillation (IPS) observations. The IPS observations have been carried out since the early 1980s using the 327MHz radio-telescope system of the Solar-Terrestrial Environment Laboratory, Nagoya University. These observations allow us to probe into the solar wind between 0.2 and 1 AU with a cadence of 24 hours. In this study, we analyzed the data of solar wind disturbance factor (g-value) derived from IPS observations in 1997-2009 corresponding to the whole period of the solar cycle 23. From this analysis, we made a list of IPS disturbance event days (IDEDs) in the period. Further, we compare our list with that of near-Earth ICMEs compiled by Richardson and Cane [2010] with an assumption that an ICME cause an IDED. From this comparison, we identified 50 ICMEs, which are detected at three locations, i.e. near-Sun, interplanetary space, and near-Earth. Our statistical analyses for kinematical properties of these events yield following results: (1) fast ICMEs are rapidly decelerated, while slow ICMEs are accelerated, and consequently radial speeds converge on the speed of background solar wind during their outward propagation; (2) both of the accelerated and decelerated motions almost finish by 0.8AU with 490km/s of the critical speed for zero acceleration; (3) for the fast ICMEs, aave=k(V-Vbg) is more suited than aave=k(V-Vbg)|V-Vbg| to describes the relationship between average accelerations and speed differences, where aave, k, V, and Vbg are the average acceleration, coefficient, ICME speed, and speed of background solar wind, respectively. These results support a hypothesis that the radial motion of ICME is governed by drag force caused by an interaction with the background solar wind. Our results also suggest that stokes drag is a predominant force for the propagation of fast ICME.

  7. ARE THE FAINT STRUCTURES AHEAD OF SOLAR CORONAL MASS EJECTIONS REAL SIGNATURES OF DRIVEN SHOCKS?

    SciTech Connect

    Lee, Jae-Ok; Moon, Y.-J.; Lee, Kangjin; Lee, Jin-Yi; Lee, Kyoung-Sun; Kim, Sujin E-mail: moonyj@khu.ac.kr

    2014-11-20

    Recently, several studies have assumed that the faint structures ahead of coronal mass ejections (CMEs) are caused by CME-driven shocks. In this study, we have conducted a statistical investigation to determine whether or not the appearance of such faint structures depends on CME speeds. For this purpose, we use 127 Solar and Heliospheric Observatory/Large Angle Spectroscopic COronagraph (LASCO) front-side halo (partial and full) CMEs near the limb from 1997 to 2011. We classify these CMEs into two groups by visual inspection of CMEs in the LASCO-C2 field of view: Group 1 has the faint structure ahead of a CME and Group 2 does not have such a structure. We find the following results. (1) Eighty-seven CMEs belong to Group 1 and 40 CMEs belong to Group 2. (2) Group 1 events have much higher speeds (average = 1230 km s{sup –1} and median = 1199 km s{sup –1}) than Group 2 events (average = 598 km s{sup –1} and median = 518 km s{sup –1}). (3) The fraction of CMEs with faint structures strongly depends on CME speeds (V): 0.93 (50/54) for fast CMEs with V ≥ 1000 km s{sup –1}, 0.65 (34/52) for intermediate CMEs with 500 km s{sup –1} ≤ V < 1000 km s{sup –1}, and 0.14 (3/21) for slow CMEs with V < 500 km s{sup –1}. We also find that the fraction of CMEs with deca-hecto metric type II radio bursts is consistent with the above tendency. Our results indicate that the observed faint structures ahead of fast CMEs are most likely an enhanced density manifestation of CME-driven shocks.

  8. The Magnetic Helicity Budget of Solar Active Regions and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Nindos, A.; Zhang, J.; Zhang, H.

    2003-01-01

    We compute the magnetic helicity injected by transient photospheric horizontal flows in six solar active regions associated with halo coronal mass ejections (CMEs) that produced major geomagnetic storms and magnetic clouds (MCs) at 1 AU. The velocities are computed using the local correlation tracking (LCT) method. Our computations cover time intervals of 1 10-150 hr, and in four active regions the accumulated helicities due to transient flows are factors of 8-12 larger than the accumulated helicities due to differential rotation. As was first pointed out by DCmoulin and Berger, we suggest that the helicity computed with the LCT method yields not only the helicity injected from shearing motions but also the helicity coming from flux emergence. We compare the computed helicities injected into the corona with the helicities carried away by the CMEs using the MC helicity computations as proxies to the CME helicities. If we assume that the length of the MC flux tubes is I = 2 AU, then the total helicities injected into the corona are a factor of 2.94 lower than the total CME helicities. If we use the values of 1 determined by the condition for the initiation of the kink instability in the coronal flux rope or I = 0.5 AU then the total CME helicities and the total helicities injected into the corona are broadly consistent. Our study, at least partially, clears up some of the discrepancies in the helicity budget of active regions because the discrepancies appearing in our paper are much smaller than the ones reported in previous studies. However, they point out the uncertainties in the MC/CME helicity calculations and also the limitations of the LCT method, which underestimates the computed helicities.

  9. ASYMMETRIC MAGNETIC RECONNECTION IN SOLAR FLARE AND CORONAL MASS EJECTION CURRENT SHEETS

    SciTech Connect

    Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.; Winter, H. D.; Reeves, K. K.; Van Ballegooijen, A. A.; Lin, J.; Seaton, D. B.

    2012-05-20

    We present two-dimensional resistive magnetohydrodynamic simulations of line-tied asymmetric magnetic reconnection in the context of solar flare and coronal mass ejection current sheets. The reconnection process is made asymmetric along the inflow direction by allowing the initial upstream magnetic field strengths and densities to differ, and along the outflow direction by placing the initial perturbation near a conducting wall boundary that represents the photosphere. When the upstream magnetic fields are asymmetric, the post-flare loop structure is distorted into a characteristic skewed candle flame shape. The simulations can thus be used to provide constraints on the reconnection asymmetry in post-flare loops. More hard X-ray emission is expected to occur at the footpoint on the weak magnetic field side because energetic particles are more likely to escape the magnetic mirror there than at the strong magnetic field footpoint. The footpoint on the weak magnetic field side is predicted to move more quickly because of the requirement in two dimensions that equal amounts of flux must be reconnected from each upstream region. The X-line drifts away from the conducting wall in all simulations with asymmetric outflow and into the strong magnetic field region during most of the simulations with asymmetric inflow. There is net plasma flow across the X-line for both the inflow and outflow directions. The reconnection exhaust directed away from the obstructing wall is significantly faster than the exhaust directed toward it. The asymmetric inflow condition allows net vorticity in the rising outflow plasmoid which would appear as rolling motions about the flux rope axis.

  10. High-resolution observations of solar radio bursts at 2, 6, and 20 CM wavelength

    NASA Astrophysics Data System (ADS)

    Willson, R. F.

    1983-03-01

    Synthesis maps of eight solar bursts are constructed at 2, 6, and 20 cm wavelength with second-of-arc angular resolution using observations obtained by the Very Large Array and the Westerbork Synthesis Radio Telescope. The impulsive phase of the radio bursts is found to be located near the magnetic neutral line of the active regions, and between the flaring H-alpha kernels which mark the footpoint of magnetic loops. The impulsive phase of one 6 cm burst was determined to be smaller and spatially separated from both the preburst radio emission and the gradual decay phase of the burst, while another 6 cm burst exhibited preburst heating of the coronal loop in which the burst occurred. It is suggested that the plasma was heated at a lower level in the loop, while the burst energy was released several minutes later at a higher level. The rapid changes in circular polarization exhibited by a multiple-spike 20 cm burst can be attributed to either a magnetically complex region or the emission of new magnetic flux at coronal heights where magnetic field strengths were approximately equal to 300-400 G.

  11. Catalyzing Mass Production of Solar Photovoltaic Cells Using University Driven Green Purchasing

    ERIC Educational Resources Information Center

    Pearce, Joshua M.

    2006-01-01

    Purpose: The purpose of this paper is to explore the use of the purchase power of the higher education system to catalyze the economy of scale necessary to ensure market competitiveness for solar photovoltaic electricity. Design/methodology/approach: The approach used here was to first determine the demand necessary to construct "Solar City…

  12. Solar wind ion density variations that preceded the M6+ earthquakes occurring on a global scale between 3 and 15 September 2013

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2015-04-01

    3 and 15 September 2013. The result of the analysis showed that the nine M6+ earthquakes occurred on a global scale in the time period taken as a reference, were preceded by a significant variation of the solar wind proton density to which was superimposed on a coronal mass ejection (CME) that reached the Earth on September 1, 2013 at 09:19 UTC (± 6 hours, iSWA data). The CME event preceded the first earthquake taken in reference (Canada M6,1 earthquake occurred on September 3 at 20:19 UTC) of about 59 hours.

  13. Some Fresh Indications of the Solar Origin of 4-6-YEAR Oscillation of the Earth's Rotation Parameters

    NASA Astrophysics Data System (ADS)

    Djurovic, D.; Paquet, P.

    The variations of universal times difference UT1-TAI and Earth's rotation instantaneous pole coordinates (X,Y) are studied in the frequency range of 3 - 8 yr-1 as a function of the solar activity. It is found that power spectrum concentrations C1 and C2 are common to solar activity indicators and Earth's rotation parameters (ERP). The linear correlation between them is also not a fortuitous one. Accordingly, by the results of this study the hypothesis of Djurovic and Paquet (1996; 1999) that the primary cause of 4-6 year oscillation lies in solar irradiance is confirmed. Between several mechanisms responsible for the ERP variations as the most probable are considered the variations of solar irradiance spectral structure (especially large in its UV range) and variations of intensity of cosmic X-rays reaching the Earth's surface.

  14. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope

    PubMed Central

    Wang, Haimin; Cao, Wenda; Liu, Chang; Xu, Yan; Liu, Rui; Zeng, Zhicheng; Chae, Jongchul; Ji, Haisheng

    2015-01-01

    Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere. PMID:25919706

  15. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  16. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. PMID:27367379

  17. High band gap 2-6 and 3-5 tunneling junctions for silicon multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, Taher (Inventor); Kachare, Akaram H. (Inventor)

    1986-01-01

    A multijunction silicon solar cell of high efficiency is provided by providing a tunnel junction between the solar cell junctions to connect them in series. The tunnel junction is comprised of p+ and n+ layers of high band gap 3-5 or 2-6 semiconductor materials that match the lattice structure of silicon, such as GaP (band gap 2.24 eV) or ZnS (band gap 3.6 eV). Each of which has a perfect lattice match with silicon to avoid defects normally associated with lattice mismatch.

  18. Systems efficiency and specific mass estimates for direct and indirect solar-pumped closed-cycle high-energy lasers in space

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1978-01-01

    Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).

  19. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Petroleum Solvent Groups a 6 Table 6 to Subpart QQQQ of Part 63 Protection of Environment ENVIRONMENTAL...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend. c...

  20. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Solvent Groups a 6 Table 6 to Subpart QQQQ of Part 63 Protection of Environment ENVIRONMENTAL... HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the following..., Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend. c E.g.,...

  1. The age-mass-metallicity-activity relation for solar-type stars: comparisons with asteroseismology and the NGC 188 open cluster

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Schiavon, R. P.

    2016-10-01

    Context. The Mount Wilson Ca ii index log(R'_HK) is the accepted standard metric of calibration for the chromospheric activity versus age relation for FGK stars. Recent results claim its inability to discern activity levels, and thus ages, for stars older than ~2 Gyr, which would severely hamper its application to date disk stars older than the Sun. Aims: We present a new activity-age calibration of the Mt. Wilson index that explicitly takes mass and [Fe/H] biases into account; these biases are implicit in samples of stars selected to have precise ages, which have so far not been appreciated. Methods: We show that these selection biases tend to blur the activity-age relation for large age ranges. We calibrate the Mt. Wilson index for a sample of field FGK stars with precise ages, covering a wide range of mass and [Fe/H] , augmented with data from the Pleiades, Hyades, M 67 clusters, and the Ursa Major moving group. Results: We further test the calibration with extensive new Gemini/GMOS log ()R'HK) data of the old, solar [Fe/H] clusters, M 67 and NGC 188. The observed NGC 188 activity level is clearly lower than M 67. We correctly recover the isochronal age of both clusters and establish the viability of deriving usable chromospheric ages for solar-type stars up to at least ~6 Gyr, where average errors are ~0.14 dex provided that we explicitly account for the mass and [Fe/H] dimensions. We test our calibration against asteroseismological ages, finding excellent correlation (ρ = + 0.89). We show that our calibration improves the chromospheric age determination for a wide range of ages, masses, and metallicities in comparison to previous age-activity relations.

  2. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  3. Non-Mass Dependent Isotope Fractionations of Rarefied Gases (O2, SF6) Under a Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Oxy-Anion Stable Isotope Consortium

    2010-12-01

    Thermal diffusion induced isotope fractionation has long been intensely studied both experimentally and theoretically. It was usually used for small scale isotope separations in nuclear industry, both in gas and liquid phase. Previous research focus has mainly been on convective, high pressure and binary mixture systems, serving the purpose of efficient isotope separations. However, multiple-isotope behavior of rarefied gases under a thermal gradient has not been carefully examined, especially for a non-convective system. In addition to the limited practical applications of such a system, the lack of interest is largely due to the fact that thermal diffusion has never been considered outside the classical thermodynamic and kinetic realm and that the associated multiple isotope fractionation has to be mass dependent. When an otherwise homogeneous gas is superimposed by a thermal gradient, the coupled thermal and chemical diffusions occur. The multiple isotope (16O, 17O, 18O, or 32S, 33S, 34S, and 36S) fractionations associated with the dynamic process are indeed predicted to be entirely mass dependent as we calculate from Jones and Furry (1946) and Huang et al (2010). However, our thermal-gradient experiments on O2 and SF6 have proven otherwise. We found that a simple superimposed external thermal gradient on low pressure O2 or SF6 gas in a closed (but not isolated) system can produce measurable non-mass-dependent 17O or 33S anomalies. A series tests were conducted using two sets of apparatus to constrain the controlling factors. We obtained up to -0.51 or +0.82‰ (s. d., 1σ = 0.03) for the Δ17O and -0.111‰ (1σ = 0.018) for the Δ33S from different ends of our thermal gradients. We found that the magnitude of the 17O or 33S anomaly is a function of the initial gas pressure, temperature gradient, experimental duration, average temperature of the whole apparatus, and the geometry of the apparatus. The λ value (lnα17/lnα18 or lnα33/lnα34) ranges from ~ -0

  4. A global empirical model of thermospheric composition based on OGO-6 mass spectrometer measurements

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Mayr, H. G.; Reber, C. A.; Carignan, G. R.; Spencer, N. W.

    1972-01-01

    The analysis of composition measurements made with the neutral mass spectrometer aboard the OGO-6 satellite leads to the following conclusions. The measured atomic oxygen densities are generally in good agreement with those deduced from drag. The molecular nitrogen densities in the annual and semiannual variations depart significantly from those predicted by drag models and suggest similar departures for exospheric temperatures. The helium densities generally tend to vary in an inverse manner to the nitrogen densities. These composition changes are consistent with dynamical processes associated with the global circulation in the thermosphere.

  5. Optimization of solar cells for air mass zero operation and study of solar cells at high temperatures, phase 4

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1980-01-01

    The Pd contact to GaAs was studied using backscattering, Auger analysis, and sheet resistance measurements. Several metallurgical phases were present at low temperatures, but PdGa was the dominant phase in samples annealed at 500 C. Ti/Pd/Ag contacts appeared to have the lowest contact resistance. Etchback epitaxy (EBE) was compared to saturated melt epitaxy (SME) method of growing liquid phase epitaxial layers. The SME method resulted in a lower density of Ga microdroplets in the grown layer, although the best solar cells were made by the EBE method. Photoluminescence was developed as a tool for contactless analysis of GaAs cells. Efficiencies of over 8 percent were measured at 250 C.

  6. Interleukin-6-related genotypes, body mass index, and risk of multiple myeloma and plasmacytoma.

    PubMed

    Cozen, Wendy; Gebregziabher, Mulugeta; Conti, David V; Van Den Berg, David J; Coetzee, Gerhard A; Wang, Sophia S; Rothman, Nathaniel; Bernstein, Leslie; Hartge, Patricia; Morhbacher, Ann; Coetzee, Simon G; Salam, Muhammad T; Wang, Wei; Zadnick, John; Ingles, Sue A

    2006-11-01

    Interleukin-6 (IL-6) promotes normal plasma cell development and proliferation of myeloma cells in culture. We evaluated IL-6 genotypes and body mass index (BMI) in a case-control study of multiple myeloma and plasmacytoma. DNA samples and questionnaires were obtained from incident cases of multiple myeloma (n = 134) and plasmacytoma (n = 16; plasma cell neoplasms) ascertained from the Los Angeles County population-based cancer registry and from siblings or cousins of cases (family controls, n = 112) and population controls (n = 126). Genotypes evaluated included IL-6 promoter gene single nucleotide polymorphisms (SNP) at positions -174, -572, and -597; one variable number of tandem repeats (-373 A(n)T(n)); and one SNP in the IL-6 receptor (IL-6ralpha) gene at position -358. The variant allele of the IL-6 promoter SNP -572 was associated with a roughly 2-fold increased risk of plasma cell neoplasms when cases were compared with family [odds ratio (OR), 1.8; 95% confidence interval (95% CI), 0.7-4.7] or population controls (OR, 2.4; 95% CI, 1.2-4.7). The -373 9A/9A genotype was associated with a decreased risk compared with the most common genotype (OR for cases versus family controls, 0.4; 95% CI, 0.1-1.7; OR for cases versus population controls, 0.3; 95% CI, 0.1-0.9). No other SNPs were associated with risk. Obesity (BMI >or= 30 kg/m(2)) increased risk nonsignificantly by 40% and 80% when cases were compared with family controls or population controls, respectively, relative to persons with a BMI of <25 kg/m(2). These results suggest that IL-6 promoter genotypes may be associated with increased risk of plasma cell neoplasms.

  7. The coronal mass ejection interaction with the induced magnetosphere of Mars due to the 27 January 2012 solar storm

    NASA Astrophysics Data System (ADS)

    Frahm, R. A.; Sharber, J. R.; Winningham, J. D.; Elliott, H. A.; Howard, T. A.; DeForest, C. E.; Odstrĉil, D.; Kallio, E.; McKenna-Lawlor, S.; Barabash, S.

    2013-06-01

    An X-class flare on 27 January 2012 generated a high-energy particle stream advancing along the interplanetary magnetic field (IMF) which arrived at Mars in about 39 minutes, with a coronal mass ejection (CME) released from the same active region arriving at Mars several days later. The Electron Spectrometer (ELS), part of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment on the European Mars Express (MEx) Spacecraft, is used to show that the effect of the CME plasma caused an increase in the intensity of the electron distribution function within the Martian magnetosheath. Models of this event predicted the speed, morphology, and Martian impact of the CME. The Mars reaction, being an induced magnetosphere, responds to changes in solar wind conditions by continually self adjusting its magnetosheath to stand off the solar wind. Since the ion component of the solar wind interaction carries momentum away from the Sun, it is the electrons with their significantly greater mobility that must self adjust in order to maintain charge neutrality and the proper induced current flow in order to stand-off changes in the solar wind.

  8. Height of Shock Formation in the Solar Corona Inferred from Observations of Type II Radio Bursts and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Makela, P.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Chandra, R.; Manoharan, P. K.

    2013-01-01

    Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25-40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.

  9. Coronal mass ejections over solar cycle 23 and 24 from LASCO-C2 white-light images

    NASA Astrophysics Data System (ADS)

    Lamy, Philippe; Barlyaeva, Tatiana; Boclet, Brice

    2016-07-01

    It is now well established that coronal mass ejections (CMEs) play a major role in the heliosphere, starting from the corona to interplanetary space and interacting with planets. The almost uninterrupted observations by the LASCO coronagraph onboard SOHO since January 1996 have allowed an unprecedented view of CMEs over almost two solar cycles 23 and 24. The ARTEMIS-II catalog based on their automatic detection on high-quality calibrated synoptic maps of the corona offers a dataset free of selection effects. It is thus possible to perform an unbiased statistical analysis of their properties and investigate how they evolve with solar activity. We will present an extended comparison of their properties during the two solar cycles 23 and 24 emphasizing the differences. We will further compare them with those of the standard indices of solar activity such as the international sunspot number (SSN), the sunspot area (SSA) and the radio flux at 10.7 cm (F10.7) as well as those of their potential progenitors, flares and eruptive prominences, in order to ascertain their connection, and we will consider the two hemispheres separately whenever possible.

  10. Investigation of technology for monitoring UF/sub 6/ mass flow

    SciTech Connect

    Cooley, J.N.; Moran, B.W.; Swindle, D.W. Jr.

    1987-06-01

    The applicability of gas flow meters, in-line enrichment monitors, and instruments for measuring uranium or UF/sub 6/ concentrations in process streams as a means for verifying declared plant throughput have been investigated. The study was performed to assist the International Atomic Energy Agency in the development of an effective international safeguards approach for aerodynamic uranium enrichment plants. Because the process gas in an aerodynamic enrichment facility is a mixture of UF/sub 6/ and H/sub 2/, a mass flow measurement in conjunction with a measurement of the uranium (or UF/sub 6/) concentration in the process gas is required to quantify the amount of uranium being fed into, and withdrawn from, the cascades for nuclear materials accountability verification. In-line enrichment monitors developed for the US gas centrifuge enrichment plant are found to be applicable only to pure UF/sub 6/ streams. Of the five gas flow meters evaluated, the orifice meter and the pitot tube meter are judged the best choices for the proposed applications: the first is recommended for low-velocity gas, small diameter piping; the latter, for high-velocity gas, large diameter piping. Of the six procedures evaluated for measurement of uranium or UF/sub 6/ concentration in a mixed process stream, infrared-ultraviolet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement. 4 refs., 3 figs., 3 tabs.

  11. Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Riley, Pete

    2001-01-01

    Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which

  12. Heliocentric Distance of Coronal Mass Ejections at the Time of Energetic Particle Release: Revisiting the Ground Level Enhancement Events of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Using the kinematics of coronal mass ejections (CMEs), onset time of soft X-ray flares, and the finite size of the pre-eruption CME structure, we derive the heliocentric distane at which the energetic particles during the ground level enhancement (GLE) events of Solar Cycle 23. We find that the GLE particles are released when the CMEs reach an average heliocentric distance of approx.3.25 solar radii (Rs). From this we infer that the shocks accelerating the particles are located at similar heights. Type II radio burst observations indicate that the CMEs are at much lower distances (average approx.1.4 Rs) when the CME-driven shock first forms. The shock seems to travel approx.1.8 Rs over a period of approox.30 min on the average before releasing the GLE particles. In deriving these results, we made three assumptions that have observational support: (i) the CME lift off occurs from an initial distance of about 1.25 Rs; (ii) the flare onset and CME onset are one and the same because these are two different manifestations of the same eruption; and (iii) the CME has positive acceleration from the onset to the first appearance in the coronagraphic field of view (2.5 to 6 Rs). Observations of coronal cavities in eclipse pictures and in coronagraphic images justify the assumption (i). The close relationship between the flare reconnection magnetic flux and the azimuthal flux of interplanetary magnetic clouds justify assumption (ii) consistent with the standard model (CSHKP) of solar eruption. Coronagraphic observations made close to the solar surface indicate a large positive acceleration of CMEs to a heliocentric distance of approx.3 Rs before they start slowing down due to the drag force. The inferred acceleration (approx.1.5 km/s/s) is consistent with reported values in the literature.

  13. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. IV. A Candidate Brown Dwarf or Low-mass Stellar Companion to HIP 67526

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Cargile, Phillip; Crepp, Justin R.; De Lee, Nathan; Porto de Mello, Gustavo F.; Esposito, Massimiliano; Ferreira, Letícia D.; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Hebb, Leslie; Lee, Brian L.; Ma, Bo; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Brewington, Howard; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Ebelke, Garrett; Gary, Bruce; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Malanushenko, Viktor; Malanushenko, Elena; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Sivarani, Thirupathi; Snedden, Stephanie; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-09-01

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695^{+0.0188}_{-0.0187} days, an eccentricity of 0.4375 ± 0.0040, and a semi-amplitude of 2948.14^{+16.65}_{-16.55} m s-1. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T eff = 6004 ± 34 K, a surface gravity log g (cgs) =4.55 ± 0.17, and a metallicity [Fe/H] =+0.04 ± 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 ± 0.09 M ⊙ and 0.92 ± 0.19 R ⊙. The minimum mass of MARVELS-5b is 65.0 ± 2.9M Jup, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 ± 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M ⊙ at a separation larger than 40 AU.

  14. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    SciTech Connect

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji; Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G.; Crepp, Justin R.; Porto de Mello, Gustavo F.; Ferreira, Leticia D.; Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Ghezzi, Luan; Wisniewski, John P.; Agol, Eric; and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  15. Broad-line region kinematics and black hole mass in Markarian 6

    NASA Astrophysics Data System (ADS)

    Doroshenko, V. T.; Sergeev, S. G.; Klimanov, S. A.; Pronik, V. I.; Efimov, Yu. S.

    2012-10-01

    We present the results of optical spectral and photometric observations of the nucleus of Markarian 6 made with the 2.6-m Shajn telescope at the Crimean Astrophysical Observatory. The continuum and emission Balmer-line intensities varied by more than a factor of two during 1992-2008. The lag between the continuum and Hβ emission-line flux variations is 21.1 ± 1.9 days. For the Hα line the lag is about 27 days, but its uncertainty is much larger. We use Monte Carlo simulations of random time series to check the effect of our data sampling on the lag uncertainties and we compare our simulation results with those obtained by the random subset selection (RSS) method of Peterson et al. The lags in the high-velocity wings are shorter than those in the line core in accordance with virial motion. However, the lag is slightly larger in the blue wing than in the red wing. This is a signature of infall gas motion. Probably the broad-line region kinematic in the Mrk 6 nucleus is a combination of Keplerian and infall motions. The velocity-delay dependence is similar for individual observational seasons. Measurements of the Hβ line width in combination with the reverberation lag permit us to determine the black hole mass, MBH = (1.8 ± 0.2) × 108 M⊙. This result is consistent with active galactic nucleus scaling relationships between the broad-line region radius and the optical continuum luminosity (RBLR ∝ L0.5) as well as with the black hole mass-luminosity relationship (MBH-L) under an Eddington luminosity ratio for Mrk 6 of Lbol/LEdd ˜ 0.01.

  16. Rest-frame Optical Spectra and Black Hole Masses of 3 6 Quasars

    NASA Astrophysics Data System (ADS)

    Jun, Hyunsung David; Im, Myungshin; Lee, Hyung Mok; Ohyama, Youichi; Woo, Jong-Hak; Fan, Xiaohui; Goto, Tomotsugu; Kim, Dohyeong; Kim, Ji Hoon; Kim, Minjin; Lee, Myung Gyoon; Nakagawa, Takao; Pearson, Chris; Serjeant, Stephen

    2015-06-01

    We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3 < z < 6.4 taken with the AKARI space telescope, including the first detection of the Hα emission line as far out as z ˜ 6. We extend the scaling relation between the rest-frame optical continuum and the line luminosity of active galactic nuclei (AGNs) to the high-luminosity, high-redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100 Å and Hα AGN luminosities over a wide range of luminosity (1042 < {{L}5100} < 1047 ergs s-1) or redshift (0 < z < 6), suggesting that the physical mechanism governing this relation is unchanged from z = 0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the Hβ black hole (BH) mass ({{M}BH}) estimator of local AGNs, we derive the {{M}BH} estimators based on the Hα, Mg ii, and C iv lines, finding that the UV-line-based masses are overall consistent with the Balmer-line-based, but with a large intrinsic scatter of 0.40 dex for the C iv estimates. Our 43 {{M}BH} estimates from Hα confirm the existence of BHs as massive as ˜ {{10}10} {{M}⊙ } out to z ˜ 5 and provide a secure footing for previous results from Mg ii-line-based studies that a rapid {{M}BH} growth has occurred in the early universe.

  17. Photoelectrochemical Properties of Nanocrystalline Sb6O13, MgSb2O6, and ZnSb2O6-Based Electrodes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Jang, Jiyeon; Kim, Seung-Joo

    2012-10-01

    Three kinds of antimony compounds - Sb6O13, MgSb2O6 and ZnSb2O6 - were prepared in the form of nanocrystalline film and their photo-electrochemical properties were investigated. The preparation of Sb6O13 was based on thermolysis of a colloidal Sb2O5·4H2O suspension. MgSb2O6 and ZnSb2O6 were prepared via low-temperature hydrothermal methods. All the compounds exhibited semiconducting properties applicable to dye-sensitized solar cell (DSSC). The energy band gaps were estimated to be 3.39 eV for Sb6O13, 3.60 eV for MgSb2O6, and 3.31 eV for ZnSb2O6, respectively. After sensitization with a conventional ruthenium-dye (N719), Sb6O13-based solar cell exhibited the highest open circuit voltage (Voc = 0.76 V) whereas the Voc values (0.44-0.46 V) of MgSb2O6 and ZnSb2O6 are relatively low. The Voc values were proven to be related to the flat band potentials of the antimony compounds. The overall solar-to-electric energy conversion efficiencies were in the range of 0.7-1.0% under AM 1.5, 100 mW/cm2 illumination.

  18. A Solar Type II Radio Burst from Coronal Mass Ejection-Coronal Ray Interaction: Simultaneous Radio and Extreme Ultraviolet Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Du, Guohui; Feng, Li; Feng, Shiwei; Kong, Xiangliang; Guo, Fan; Wang, Bing; Li, Gang

    2014-05-01

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  19. A solar type II radio burst from coronal mass ejection-coronal ray interaction: Simultaneous radio and extreme ultraviolet imaging

    SciTech Connect

    Chen, Yao; Du, Guohui; Feng, Shiwei; Kong, Xiangliang; Wang, Bing; Feng, Li; Guo, Fan; Li, Gang

    2014-05-20

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  20. THE LOCATION OF SOLAR METRIC TYPE II RADIO BURSTS WITH RESPECT TO THE ASSOCIATED CORONAL MASS EJECTIONS

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Anna Lakshmi, M.; Umapathy, S.; Gopalswamy, N.

    2012-06-20

    Forty-one solar type II radio bursts located close to the solar limb (projected radial distance r {approx}> 0.8 R{sub Sun }) were observed at 109 MHz by the radioheliograph at the Gauribidanur observatory near Bangalore during the period 1997-2007. The positions of the bursts were compared with the estimated location of the leading edge (LE) of the associated coronal mass ejections (CMEs) close to the Sun. 38/41 of the type II bursts studied were located either at or above the LE of the associated CME. In the remaining 3/41 cases, the burst was located behind the LE of the associated CME at a distance of <0.5 R{sub Sun }. Our results suggest that nearly all the metric type II bursts are driven by the CMEs.

  1. Statistical analysis of geomagnetic storms, coronal mass ejections and solar energetic particle events in the framework of the COMESEP project

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga

    2013-04-01

    Geomagnetic storms and Solar Energetic Particle (SEP) radiation storms are hazards in space. It is important to mitigate the effects space weather phenomena may have on technology and human life. The aim of the EU FP7 COMESEP (Coronal Mass Ejections and Solar Energetic Particles) project is to develop forecasting tools both for geomagnetic and SEP storms, and relies on both models and data. This includes a statistical analysis of geomagnetic storms and SEP events during the SOHO era. The goal is to connect the impact of these phenomena with the associated Coronal Mass Ejection (CME) and/or solar flare characteristics. Results of these analyses are being implemented into the COMESEP space weather alert system that is being built based on the produced tools. For the analysis of geomagnetic storms, a representative subset of CMEs from the LASCO/SOHO catalog is selected, and includes associations with Dst index values. The main objective is to determine the probability distributions of Dst and other relationships depending on the CME and flare characteristics. The effect of multiple CME occurrences on the probability of large Dst index values and the treatment of semiannual variations of storms are also evaluated. The analysis of SEP events focuses on the quantification of SEP occurrence probabilities and on the identification of correlations between SEPs and solar events. Both quantities depend on the flare heliographic location, soft X-ray intensity, the CME speed and width. The SEP parameters studied include peak fluxes, fluences, spectral fit parameters and enhancements in heavy ion fluxes. A preliminary estimation of false alarms for our system based on the statistical analysis used is under progress to asses the validity of the alerts. This work has received funding from the European Commission FP7 Project COMESEP (263252).

  2. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C71 butyric acid methyl ester polymer solar cells

    NASA Astrophysics Data System (ADS)

    Chauhan, A. K.; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-01

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C71 butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ˜2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  3. SMEI 3D RECONSTRUCTION OF A CORONAL MASS EJECTION INTERACTING WITH A COROTATING SOLAR WIND DENSITY ENHANCEMENT: THE 2008 APRIL 26 CME

    SciTech Connect

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Clover, J. M.; Bisi, M. M.; Webb, D. F.

    2010-12-01

    The Solar Mass Ejection Imager (SMEI) has recorded the brightness responses of hundreds of interplanetary coronal mass ejections (CMEs) in the interplanetary medium. Using a three-dimensional (3D) reconstruction technique that derives its perspective views from outward-flowing solar wind, analysis of SMEI data has revealed the shapes, extents, and masses of CMEs. Here, for the first time, and using SMEI data, we report on the 3D reconstruction of a CME that intersects a corotating region marked by a curved density enhancement in the ecliptic. Both the CME and the corotating region are reconstructed and demonstrate that the CME disrupts the otherwise regular density pattern of the corotating material. Most of the dense CME material passes north of the ecliptic and east of the Sun-Earth line: thus, in situ measurements in the ecliptic near Earth and at the Solar-TErrestrial RElations Observatory Behind spacecraft show the CME as a minor density increase in the solar wind. The mass of the dense portion of the CME is consistent with that measured by the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory spacecraft, and is comparable to the masses of many other three-dimensionally reconstructed solar wind features at 1 AU observed in SMEI 3D reconstructions.

  4. Williamson Home, Ipswich, Mass. solar-energy-system performance evaluation, Nov. 1981 - Apr. 1982

    NASA Astrophysics Data System (ADS)

    Cramer, M.

    1982-06-01

    Data on solar water and space heating systems are given. The Williamson Home in Massachusetts is a single family residence whose active-solar-energy system is designed to supply 47% of the space heating and 91% of the hot water. The system is equipped with 339 square feet of flat plate collectors, a 240-cubic-foot rock bin for storage, a propane-gas furnace and a 100-gallon propane gas hot water tank for auxiliary heating. Monthly performance data are tabulated for the overall system and for the collector, hot water, and space heating subsystems. Also tabulated are solar coefficients of performance, solar operating energy, energy savings, and weather conditions. Also given is a graph of collector array efficiency versus the difference between the inlet water and ambient temperatures divided by insolation. System operation is illustrated by graphs of typical insolation data and outside ambient and indoor temperatures, collector operating periods and inlet/outlet temperatures, and typical storage and distribution temperatures versus time for a typical day. The system operating sequence and solar energy utilization and losses are also graphed.

  5. Data processing for a cosmic ray experiment onboard the solar probes Helios 1 and 2: Experiment 6

    NASA Technical Reports Server (NTRS)

    Mueller-Mellin, R.; Green, G.; Iwers, B.; Kunow, H.; Wibberenz, G.; Fuckner, J.; Hempe, H.; Witte, M.

    1982-01-01

    The data processing system for the Helios experiment 6, measuring energetic charged particles of solar, planetary and galactic origin in the inner solar system, is described. The aim of this experiment is to extend knowledge on origin and propagation of cosmic rays. The different programs for data reduction, analysis, presentation, and scientific evaluation are described as well as hardware and software of the data processing equipment. A chronological presentation of the data processing operation is given. Procedures and methods for data analysis which were developed can be used with minor modifications for analysis of other space research experiments.

  6. An estimate of the magnetic field strength associated with a solar coronal mass ejection from low frequency radio observations

    SciTech Connect

    Sasikumar Raja, K.; Ramesh, R.; Hariharan, K.; Kathiravan, C.; Wang, T. J.

    2014-11-20

    We report ground based, low frequency heliograph (80 MHz), spectral (85-35 MHz), and polarimeter (80 and 40 MHz) observations of drifting, non-thermal radio continuum associated with the 'halo' coronal mass ejection that occurred in the solar atmosphere on 2013 March 15. The magnetic field strengths (B) near the radio source were estimated to be B ≈ 2.2 ± 0.4 G at 80 MHz and B ≈ 1.4 ± 0.2 G at 40 MHz. The corresponding radial distances (r) are r ≈ 1.9 R {sub ☉} (80 MHz) and r ≈ 2.2 R {sub ☉} (40 MHz).

  7. The temperature structure, mass, and energy flow in the corona and inner solar wind

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1988-01-01

    Remote-sensing and in situ data are used to constrain a radiative energy balance model in order to study the radial variations of coronal temperatures, densities, and outflow speeds in several types of coronal holes and in an unstructured quiet region of the corona. A one-fluid solar wind model is used which takes into account the effects of radiative and inward conductive losses in the low corona and the chromospheric-coronal transition region. The results show that the total nonradiative energy input in magnetically open coronal regions is 5 + or - 10 to the 5th ergs/sq cm, and that most of the energy heating the coronal plasma is dissipated within 2 solar radii of the solar surface.

  8. Upper limits to the masses of objects in the solar comet cloud

    SciTech Connect

    Hills, J.G.

    1985-01-01

    The lack of a large steady stream of long-period comets with semi-major axes less than 2 x 10/sup 4/ AU rules out the sun having a companion more massive than about 0.01 M/sub solar/ with a semi-major axis less than about 1 x 10/sup 4/ AU. Any companion with a semi-major axis between 1 x 10/sup 4/ AU and 5 x 10/sup 4/ AU has more than a 50% probability of having entered the planetary system during the lifetime of the Solar System. The lack of apparent damage to the planetary system rules out any companion more massive than about 0.02 M/sub solar/ with a semi-major axis less than about 5 x 10/sup 4/ AU.

  9. Dynamics of solar filaments. IV - Structure and mass flow of an active region filament

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Malherbe, J. M.; Simon, G.; Poland, A. I.

    1985-01-01

    An active region filament near the center of the solar disk was observed on September 29-30, 1980, with the Multichannel Subtractive Double Pass Spectrograph of the Meudon solar tower and the UV Spectrograph and Polarimeter aboard the SMM satellite. H-alpha and C IV measurements are presently used to study brightness and material velocity in the 10,000 and 100,000 K temperature ranges, and photospheric magnetograms are used to investigate the underlying magnetic field. Attention is given to the constraints imposed on possible filament structures by observations, as well as the expected MHD relationships.

  10. ON THE ORIGIN OF THE SOLAR MORETON WAVE OF 2006 DECEMBER 6

    SciTech Connect

    Balasubramaniam, K. S.; Cliver, E. W.; Pevtsov, A.; Henry, T. W.; Neidig, D. F.; Temmer, M.; Muhr, N.; Veronig, A. M.; Imada, S.; Ling, A. G.; Moore, R. L.; Petrie, G. J. D.; Vrsnak, B.; White, S. M.

    2010-11-01

    We analyzed ground- and space-based observations of the eruptive flare (3B/X6.5) and associated Moreton wave ({approx}850 km s{sup -1}; {approx}270{sup 0} azimuthal span) of 2006 December 6 to determine the wave driver-either flare pressure pulse (blast) or coronal mass ejection (CME). Kinematic analysis favors a CME driver of the wave, despite key gaps in coronal data. The CME scenario has a less constrained/smoother velocity versus time profile than is the case for the flare hypothesis and requires an acceleration rate more in accord with observations. The CME picture is based, in part, on the assumption that a strong and impulsive magnetic field change observed by a GONG magnetograph during the rapid rise phase of the flare corresponds to the main acceleration phase of the CME. The Moreton wave evolution tracks the inferred eruption of an extended coronal arcade, overlying a region of weak magnetic field to the west of the principal flare in NOAA active region 10930. Observations of H{alpha} foot point brightenings, disturbance contours in off-band H{alpha} images, and He I 10830 A flare ribbons trace the eruption from 18:42 to 18:44 UT as it progressed southwest along the arcade. Hinode EIS observations show strong blueshifts at foot points of this arcade during the post-eruption phase, indicating mass outflow. At 18:45 UT, the Moreton wave exhibited two separate arcs (one off each flank of the tip of the arcade) that merged and coalesced by 18:47 UT to form a single smooth wave front, having its maximum amplitude in the southwest direction. We suggest that the erupting arcade (i.e., CME) expanded laterally to drive a coronal shock responsible for the Moreton wave. We attribute a darkening in H{alpha} from a region underlying the arcade to absorption by faint unresolved post-eruption loops.

  11. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions - S6a-35

    NASA Astrophysics Data System (ADS)

    George, I. S. Mehdi P. J.; O'Neill, M.; Matson, R.; Borckschmidt, A.

    2004-12-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005-meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the "direct drive" of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  12. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    NASA Technical Reports Server (NTRS)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  13. Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr; Badyda, Krzysztof

    2011-12-01

    The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.

  14. A sputtered CdS buffer layer for co-electrodeposited Cu2ZnSnS4 solar cells with 6.6% efficiency.

    PubMed

    Tao, Jiahua; Zhang, Kezhi; Zhang, Chuanjun; Chen, Leilei; Cao, Huiyi; Liu, Junfeng; Jiang, Jinchun; Sun, Lin; Yang, Pingxiong; Chu, Junhao

    2015-06-28

    Cu2ZnSnS4 thin films with thicknesses ranging from 0.35 to 1.85 μm and micron-sized grains (0.5-1.5 μm) were synthesized using co-electrodeposited Cu-Zn-Sn-S precursors with different deposition times. Here we have introduced a sputtered CdS buffer layer for the development of CZTS solar cells for the first time, which enables breakthrough efficiencies up to 6.6%. PMID:26027699

  15. Design and Performance of a Triple Source Air Mass Zero Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Snyder, David

    2005-01-01

    Simulating the sun in a laboratory for the purpose of measuring solar cells has long been a challenge for engineers and scientists. Multi-junction cells demand higher fidelity of a solar simulator than do single junction cells, due to a need for close spectral matching as well as AM0 intensity. A GaInP/GaAs/Ge solar cell for example, requires spectral matching in three distinct spectral bands (figure 1). A commercial single source high-pressure xenon arc solar simulator such as the Spectrolab X-25 at NASA Glenn Research Center, can match the top two junctions of a GaInP/GaAs/Ge cell to within 1.3% mismatch, with the GaAs cell receiving slightly more current than required. The Ge bottom cell however, is mismatched +8.8%. Multi source simulators are designed to match the current for all junctions but typically have small illuminated areas, less uniformity and less beam collimation compared to an X-25 simulator. It was our intent when designing a multi source simulator to preserve as many aspects of the X-25 while adding multi-source capability.

  16. On the Origins of Coronal Mass Ejections during Solar Minimum using STEREO Observations

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J. G.; Lynch, B. J.; Huttunen, E.; Toy, V.; Vourlidas, A.; Petrie, G.

    2008-05-01

    This study addresses the question of the origins of CMEs at the current solar minimum. It is a common consensus that it should be straight forward to track a CME from its source to 1AU during solar quiet times when the solar wind and IMF structure is less complex and fewer CMEs and other coronal activity occur. In reality, total of 1249 CMEs from January to October 2007 are reported on the LASCO CME catalog. Only ~23% (292) CMEs are wider than 30deg and ~2% (28) CMEs wider than 90deg from L1 view point. Most CMEs in the catalog are narrow or jet-like and are classified as poor events. Majority of the CMEs are slow with only one event over 1000km/s. But it has not been an easy task to relate a CME to its source during this period. Using an appropriate set of events and images from three viewing angles from STEREO A/B and SOHO at L1, we determine the sources of the CMEs and their locations on the Sun and in the large scale coronal field. Among other issues, we discuss the implications of our results to CME generation/origin, specifically, whether CMEs always originate from photospheric magnetic neutral lines? Whether some CMEs originate higher in the corona with no signature on the solar disk?

  17. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona

    SciTech Connect

    Kozarev, Kamen A.; Opher, Merav; Evans, Rebekah M.; Dayeh, Maher A.; Korreck, Kelly E.; Van der Holst, Bart

    2013-11-20

    The acceleration of protons and electrons to high (sometimes GeV/nucleon) energies by solar phenomena is a key component of space weather. These solar energetic particle (SEP) events can damage spacecraft and communications, as well as present radiation hazards to humans. In-depth particle acceleration simulations have been performed for idealized magnetic fields for diffusive acceleration and particle propagation, and at the same time the quality of MHD simulations of coronal mass ejections (CMEs) has improved significantly. However, to date these two pieces of the same puzzle have remained largely decoupled. Such structures may contain not just a shock but also sizable sheath and pileup compression regions behind it, and may vary considerably with longitude and latitude based on the underlying coronal conditions. In this work, we have coupled results from a detailed global three-dimensional MHD time-dependent CME simulation to a global proton acceleration and transport model, in order to study time-dependent effects of SEP acceleration between 1.8 and 8 solar radii in the 2005 May 13 CME. We find that the source population is accelerated to at least 100 MeV, with distributions enhanced up to six orders of magnitude. Acceleration efficiency varies strongly along field lines probing different regions of the dynamically evolving CME, whose dynamics is influenced by the large-scale coronal magnetic field structure. We observe strong acceleration in sheath regions immediately behind the shock.

  18. STUDY OF TWO SUCCESSIVE THREE-RIBBON SOLAR FLARES ON 2012 JULY 6

    SciTech Connect

    Wang, Haimin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Zeng, Zhicheng; Cao, Wenda

    2014-01-20

    This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.''1 resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing ''fish-bone-like'' morphology evidenced by both Hα images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Hα apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.

  19. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    SciTech Connect

    Su, Yingna; Van Ballegooijen, Adriaan

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motion (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.

  20. Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star

    NASA Astrophysics Data System (ADS)

    Gandolfi, D.; Parviainen, H.; Deeg, H. J.; Lanza, A. F.; Fridlund, M.; Prada Moroni, P. G.; Alonso, R.; Augusteijn, T.; Cabrera, J.; Evans, T.; Geier, S.; Hatzes, A. P.; Holczer, T.; Hoyer, S.; Kangas, T.; Mazeh, T.; Pagano, I.; Tal-Or, L.; Tingley, B.

    2015-04-01

    We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned light curve of Kepler-423 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of ~4.3% and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star Kepler-423 is a G4 dwarf with M⋆ = 0.85 ± 0.04 M⊙, R⋆ = 0.95 ± 0.04 R⊙, Teff= 5560 ± 80 K, [M/H] = - 0.10 ± 0.05 dex, and with an age of 11 ± 2 Gyr. The planet Kepler-423b has a mass of Mp= 0.595 ± 0.081MJup and a radius of Rp= 1.192 ± 0.052RJup, yielding a planetary bulk density of ρp = 0.459 ± 0.083 g cm-3. The radius of Kepler-423b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2σ confidence level (ΔFec = 14.2 ± 6.6 ppm) and found that the orbit might have asmall non-zero eccentricity of 0.019+0.028-0.014. With a Bond albedo of AB = 0.037 ± 0.019, Kepler-423b is one of the gas-giant planets with the lowest albedo known so far. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of

  1. FIRST PRECISION LIGHT CURVE ANALYSIS OF THE NEGLECTED EXTREME MASS RATIO SOLAR-TYPE BINARY HR BOOTIS

    SciTech Connect

    Samec, Ronald G.; Benkendorf, Barry; Dignan, James B.; Robb, Russell; Kring, James; Faulkner, Danny R.

    2015-04-15

    HR Bootis is a neglected binary that is found to be a solar-type (G2V) extreme mass ratio binary (EMRB). It was discovered by Hanley and Shapley in 1940. Surprisingly, little has been published in the intervening years. In 1999 it was characterized by a 0.31587 day orbital period. Since that time it has been observed by various observers who have determined ∼20 timings of minimum light over the past ∼15,000 orbits. Our observations in 2012 represent the first precision curves in the BVR{sub c}I{sub c} Johnson–Cousins wavelength bands. The light curves have rather low amplitudes, averaging some 0.5 magnitudes, yet they exhibit total eclipses, which is typical of the rare group of solar-type EMRBs. An improved linear ephemeris was computed along with a quadratic ephemeris showing a decaying orbit, which indicates magnetic breaking may be occurring. The light curve solution reveals that HR Boo is a contact system with a somewhat low 21% Roche-lobe fill-out but a mass ratio of q = 4.09 (0.2444), which defines it as an EMRB. Two spots, both hot, were allowed to iterate to fit the light curve asymmetries. Their radii are 32° and 16°. Both are high-latitude polar spots indicative of strong magnetic activity. The shallow contact yet nearly equal component temperatures makes it an unusual addition to this group.

  2. RR-Lyrae-type pulsations from a 0.26-solar-mass star in a binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Stępień, K; Bono, G; Moroni, P G Prada; Pilecki, B; Udalski, A; Soszyński, I; Preston, G W; Nardetto, N; McWilliam, A; Roederer, I U; Górski, M; Konorski, P; Storm, J

    2012-04-01

    RR Lyrae pulsating stars have been extensively used as tracers of old stellar populations for the purpose of determining the ages of galaxies, and as tools to measure distances to nearby galaxies. There was accordingly considerable interest when the RR Lyrae star OGLE-BLG-RRLYR-02792 (referred to here as RRLYR-02792) was found to be a member of an eclipsing binary system, because the mass of the pulsator (hitherto constrained only by models) could be unambiguously determined. Here we report that RRLYR-02792 has a mass of 0.26 solar masses M[symbol see text] and therefore cannot be a classical RR Lyrae star. Using models, we find that its properties are best explained by the evolution of a close binary system that started with M[symbol see text] and 0.8M[symbol see text]stars orbiting each other with an initial period of 2.9 days. Mass exchange over 5.4 billion years produced the observed system, which is now in a very short-lived phase where the physical properties of the pulsator happen to place it in the same instability strip of the Hertzsprung-Russell diagram as that occupied by RR Lyrae stars. We estimate that only 0.2 per cent of RR Lyrae stars may be contaminated by systems similar to this one, which implies that distances measured with RR Lyrae stars should not be significantly affected by these binary interlopers. PMID:22481359

  3. On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.

  4. Calculating Coronal Mass Ejection Magnetic Field at 1 AU Using Solar Observables

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.

    2013-12-01

    It is well-established that most major nonrecurrent geomagnetic storms are caused by solar wind structures with long durations of strong southward (Bz < 0) interplanetary magnetic field (IMF). Such geoeffective IMF structures are associated with CME events at the Sun. Unfortunately, neither the duration nor the internal magnetic field vector of the ejecta--the key determinants of geoeffectiveness--is measurable until the observer (e.g., Earth) passes through the ejecta. In this paper, we discuss the quantitative relationships between the ejecta magnetic field at 1 AU and remotely observable solar quantities associated with the eruption of a given CME. In particular, we show that observed CME trajectories (position-time data) within, say, 1/3 AU of the Sun, contain sufficient information to allow the calculation of the ejecta magnetic field (magnitude and components) at 1 AU using the Erupting Flux Rope (EFR) model of CMEs. Furthermore, in order to accurately determine the size and arrival time of the ejecta as seen by a fixed observer at 1 AU (e.g., ACE), it is essential to accurately calculate the three-dimensional geometry of the underlying magnetic structure. Accordingly, we have extended the physics-based EFR model to include a self-consistent calculation of the transverse expansion taking into account the non-symmetric drag coupling between an expanding CME flux rope and the ambient solar wind. The dependence of the minor radius of the flux rope at 1 AU that determines the perceived size of the ejecta on solar quantities is discussed. Work supported by the NRL Base Program.

  5. CONSTRUCTING A ONE-SOLAR-MASS EVOLUTIONARY SEQUENCE USING ASTEROSEISMIC DATA FROM KEPLER

    SciTech Connect

    Silva Aguirre, V.; Weiss, A.; Casagrande, L.; Chaplin, W. J.; Verner, G. A.; Miglio, A.; Broomhall, A. M.; Elsworth, Y.; Ballot, J.; Basu, S.; Bedding, T. R.; Serenelli, A. M.; Monteiro, M. J. P. F. G.; Campante, T. L.; Appourchaux, T.; Gaulme, P.; Bonanno, A.; Corsaro, E.; Bruntt, H.; GarcIa, R. A.

    2011-10-10

    Asteroseismology of solar-type stars has entered a new era of large surveys with the success of the NASA Kepler mission, which is providing exquisite data on oscillations of stars across the Hertzsprung-Russell diagram. From the time-series photometry, the two seismic parameters that can be most readily extracted are the large frequency separation ({Delta}{nu}) and the frequency of maximum oscillation power ({nu}{sub max}). After the survey phase, these quantities are available for hundreds of solar-type stars. By scaling from solar values, we use these two asteroseismic observables to identify for the first time an evolutionary sequence of 1 M{sub sun} field stars, without the need for further information from stellar models. Comparison of our determinations with the few available spectroscopic results shows an excellent level of agreement. We discuss the potential of the method for differential analysis throughout the main-sequence evolution and the possibility of detecting twins of very well-known stars.

  6. Spitzer Space Telescope Constraint on the Stellar Mass of a z = 6.96 Lyα Emitter

    NASA Astrophysics Data System (ADS)

    Ota, Kazuaki; Ly, Chun; Malkan, Matthew A.; Motohara, Kentaro; Hayashi, Masao; Shimasaku, Kazuhiro; Morokuma, Tomoki; Iye, Masanori; Kashikawa, Nobunari; Hattori, Takashi

    2010-10-01

    We obtained mid-infrared 3.6 and 4.5μm imaging of a z = 6.96 Lyα emitter (LAE), IOK-1, discovered in the Subaru Deep Field, using Spitzer Space Telescope Infrared Array Camera observations. After removal of a nearby bright source, we found that IOK-1 is not significantly detected in any of these infrared bands to m_{3.6μm ˜ 24.00 and m_{4.5μm} ˜ 23.54 at 3σ. Fitting population synthesis models to the spectral energy distribution consisting of the upper limit fluxes of the optical-to-infrared non-detection images and fluxes in detection images, we constrained the stellar mass, M*, IOK-1. This LAE could have either a mass as low as M* ≲ 2-9 × 108 M_{odot} for young age (≲10 Myr) and low dust reddening (AV ˜ 0) or a mass as large as M* ≲ 1-4 × 10M_{odot} for either old age ($>100 Myr) or high dust reddening (AV ˜ 1.5). This would be within the range of masses of z ˜ 3-6.6 LAEs studied to date, ˜106-1010M_{odot} Hence, IOK-1 is not a particularly unique galaxy with extremely high mass or low mass, but is similar to one of the LAEs seen at later epochs.

  7. Solar flares associated coronal mass ejections in case of type II radio bursts

    NASA Astrophysics Data System (ADS)

    Bhatt, Beena; Prasad, Lalan; Chandra, Harish; Garia, Suman

    2016-08-01

    We have statistically studied 220 events from 1996 to 2008 (i.e. solar cycle 23). Two set of flare-CME is examined one with Deca-hectometric (DH) type II and other without DH type II radio burst. Out of 220 events 135 (flare-halo CME) are accompanied with DH type II radio burst and 85 are without DH type II radio burst. Statistical analysis is performed to examine the distribution of solar flare-halo CME around the solar disk and to investigate the relationship between solar flare and halo CME parameters in case of with and without DH type II radio burst. In our analysis we have observed that: (i) 10-20° latitudinal belt is more effective than the other belts for DH type II and without DH type II radio burst. In this belt, the southern region is more effective in case of DH type II radio burst, whereas in case of without DH type II radio burst dominance exits in the northern region. (ii) 0-10° longitudinal belt is more effective than the other belts for DH type II radio burst and without DH type II radio burst. In this belt, the western region is more effective in case of DH type II radio burst, while in case of without DH type II radio burst dominance exits in the eastern region. (iii) Mean speed of halo CMEs (1382 km/s) with DH type II radio burst is more than the mean speed of halo CMEs (775 km/s) without DH type II radio burst. (iv) Maximum number of M-class flares is found in both the cases. (v) Average speed of halo CMEs in each class accompanied with DH type II radio burst is higher than the average speed of halo CMEs in each class without DH type II radio burst. (vi) Average speed of halo CMEs, associated with X-class flares, is greater than the other class of solar flares in both the cases.

  8. Monodeurated methane in the outer solar system. 2. Its detection on Uranus at 1.6 microns

    NASA Technical Reports Server (NTRS)

    Debergh, C.; Lutz, B. L.; Owen, T.; Brault, J.; Chauville, J.

    1985-01-01

    Deuterium in the atmosphere of Uranus has been studied only via measurements of the exceedingly weak dipole lines of hydrogen-deuteride (HD) seen in the visible region of the spectrum. The other sensitive indicator of deuterium in the outer solar system is monodeuterated methane (CH3D) but the two bands normally used ot study this molecule, NU sub 2 near 2200 1/cm and NU sub 6 near 1161 1/cm, have not been detected in Uranus.

  9. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  10. Response of Venus exospheric temperature measured by neutral mass spectrometer to solar EUV flux measured by Langmuir probe on the Pioneer Venus orbiter

    SciTech Connect

    Mahajan, K.K.; Kasprzak, W.T.; Brace, L.H.; Niemann, H.B.; Hoegy, W.R. )

    1990-02-01

    The photoelectron current from the Pioneer Venus Langmuir probe has provided measurements of the total flux of solar EUV photons at Venus since 1979. The neutral oxygen scale height measured by the orbiter neutral mass spectrometer has permitted the exospheric temperature to be derived furing the same mission. In this paper the EUV observations are used to examine the response of exospheric temperature to changes in solar activity, primarily those related to solar rotation. It is found that the dayside exospheric temperature quite faithfully tracks variations in the EUV flux. Comparison is also made with the Earth-based solar activity index F{sub 10.7} adjusted to the position of Venus. This index varied from 142 to 249 flux units (10{sup {minus}22} W m{sup {minus}2} Hz{sup {minus}1}) during the period of measurements. The exospheric temperature is better correlated with EUV flux than with the 10.7-cm solar radio flux.

  11. Response of Venus exospheric temperature measured by neutral mass spectrometer to solar EUV flux measured by Langmuir probe on the Pioneer Venus orbiter

    NASA Technical Reports Server (NTRS)

    Mahajan, K. K.; Kasprzak, W. T.; Brace, L. H.; Niemann, H. B.; Hoegy, W. R.

    1990-01-01

    The photoelectron current from the Pioneer Venus Langmuir probe has provided measurements of the total flux of solar EUV photons at Venus since 1979. The neutral oxygen scale height measured by the orbiter neutral mass spectrometer has permitted the exospheric temperature to be derived during the same mission. In this paper, the EUV observations are used to examine the response of exospheric temperature to changes in solar activity, primarily those related to solar rotation. It is found that the dayside exospheric temperature quite faithfully tracks variations in the EUV flux. Comparison is also made with the earth-based solar activity index F10.7 adjusted to the position of Venus. This index varied from 142 to 249 flux units during the period of measurements. The exospheric temperature is better correlated with EUV flux than with the 10.7-cm solar radio flux.

  12. Inward Motions in the Outer Solar Corona Between 6 And 12 R : Evidence For Waves or Magnetic Reconnection Jets?

    NASA Astrophysics Data System (ADS)

    Velli, Marco; Tenerani, Anna; DeForest, Craig

    2016-05-01

    DeForest et al. (2014) used synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft to identify inbound wave motions in the outer corona beyond 6 solar radii and inferred, from the observation, that the Alfven surface separating the magnetically dominated corona from the ow dominated wind must be located at least 12 solar radii from the Sun over polar coronal holes and 15 solar radii in the streamer belt. Here we will discuss both this and previous observations of inflows further down and attempt identification of the observed inward signals. We will theoretically reconstruct height-speed diagrams and compare them to the observed profiles. Interpretation in terms of Alfven / magnetoacouatic modes or Alfvenic turbulence appears to be ruled out by the fact that the observed signal shows a deceleration of inward motion when approaching the Sun. Fast magnetoacoustic waves are not directly ruled out in this way, as it is possible for inward waves observed in quadrature, but not propagating exactly radially, to suffer total reflection as the Alfven speed rises close to the Sun. However, the reconstructed signal in the height speed diagram has the wrong concavity. A final possibility is decelerating reconnection jets, most probably from component reconnection, in the accelerating wind: the profile in this case appears to match the observations very well. This interpretation does not alter the conclusion that the Alfven surface must be at least 12 solar radii from the photosphere.

  13. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars. PMID:17943124

  14. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  15. Solar wind mass-loading at Comet Halley - A lesson from Venus?

    NASA Technical Reports Server (NTRS)

    Breus, T. K.; Krymskii, A. M.; Luhmann, J. G.

    1987-01-01

    Recent observations at Comet Halley show that the region within which cometary ions become the dominant component lies outside of the magnetic field-free cavity. This behavior resembles that found at Venus under conditions where the incident solar wind dynamic pressure exceeds the ionospheric pressure. On these occasions the magnetosheath magnetic field is found well inside of the region where planetary ions are observed. Although scaling and the details of formation of the inner boundary of the magnetic field are different for these two objects, the processes by which the interplanetary magnetic field penetrates into the ionospheres at Venus and at Comet Halley are in many ways analogous.

  16. Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor

    SciTech Connect

    Chandran, RB; Bader, R; Lipinski, W

    2015-06-01

    Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element. Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.

  17. Solar project description for Helio-Thermics, Inc., lot 6 single family residence; Greenville, South Carolina

    NASA Astrophysics Data System (ADS)

    Moore, D.

    1981-03-01

    An instrumented single family residence in Greenville, South Carolina, has approximately 1086 square feet on conditioned space. Solar energy is used for space heating the home and preheating domestic and water (DHW). Solar energy enters the attic through a 416 square foot aperture which is double glazed with corrugated, translucent, fiberglass reinforced, acrylic panels. Warm air accumulates in the peak of the attic roof and circulates through the conditioned space or through storage by an air handler. Solar energy is stored in an 870 cubic foot storage bin containing 85,460 pounds of crushed rock located under the house. cold water is preheated in the attic by thermosiphoning water from the 80 gallon preheat tank through a manifold system of copper tubes. These tubes are attached to black sheet metal plates. Preheated city water is stored in the preheat tank and supplied, on demand, to a conventional 80 gallon DHW tank. When solar energy is insufficient to satisfy the space heating load, a water to air heat exchanger in the hot air supply duct provides auxiliary energy for space heating. A gas fired water heater provides auxiliary energy for the water to air heat exchanger and the DHW.

  18. THE MAGNETIC SYSTEMS TRIGGERING THE M6.6 CLASS SOLAR FLARE IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Toriumi, Shin; Iida, Yusuke; Bamba, Yumi; Kusano, Kanya; Imada, Shinsuke; Inoue, Satoshi

    2013-08-20

    We report a detailed event analysis of the M6.6 class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activity including one X- and several M-class flares. In order to investigate the magnetic structures related to the M6.6 event, particularly the formation process of a flare-triggering magnetic region, we analyzed multiple spacecraft observations and numerical results of a flare simulation. We observed that, in the center of this quadrupolar AR, a highly sheared polarity inversion line (PIL) was formed through proper motions of the major magnetic elements, which built a sheared coronal arcade lying over the PIL. The observations lend support to the interpretation that the target flare was triggered by a localized magnetic region that had an intrusive structure, namely, a positive polarity penetrating into a negative counterpart. The geometrical relationship between the sheared coronal arcade and the triggering region is consistent with the theoretical flare model based on the previous numerical study. We found that the formation of the trigger region was due to the continuous accumulation of small-scale magnetic patches. A few hours before the flare occurred, the series of emerged/advected patches reconnected with a pre-existing field. Finally, the abrupt flare eruption of the M6.6 event started around 17:30 UT. Our analysis suggests that in the process of triggering flare activity, all magnetic systems on multiple scales are included, not only the entire AR evolution but also the fine magnetic elements.

  19. On the Origin of Coronal Mass Ejections: How Does the Emergence of a Magnetic Flux Rope Reorganize the Solar Corona?

    NASA Astrophysics Data System (ADS)

    Roussev, Ilia; Galsgaard, Klaus; Lugaz, Noe; Jacobs, Carla; Sokolov, Igor

    2010-05-01

    The physical effects responsible for the occurrence of Coronal Mass Ejections (CMEs) on the Sun have been debated for almost four decades now. One of the leading mechanisms suggests that a CME may occur as the result of the emergence of a twisted magnetic flux rope from the convection zone into the solar corona. This process has been investigated by a number of researchers over the years, and it has been demonstrated that an eruption of the coronal magnetic field can in principle occur. The majority of these studies, however, involve some ad-hoc prescription of the electric field at the photosphere resembling flux emergence, and they neglect the ambient coronal magnetic field. In addition, most of these flux-emergence simulations are performed in a Cartesian domain, which extends into the corona up to only a few dozen pressure scale-heights. Because of this, it is difficult to assess how strongly the ad-hoc character of the driving motions and the limited computational domain affect the simulation results for the evolution of the erupting coronal magnetic field. In this paper, we present a new model of CMEs that mitigates these two effects. To achieve this, we couple the "local" magnetic-flux-emergence (MFE) model of Archontis et al. (2004) with a global MHD model of the solar corona and solar wind. The model coupling is performed using the Space Weather Modeling Framework. In the coupled model, the MFE simulation provides time-dependent boundary conditions for all MHD quantities into the global model, where the physical coupling is done at the photospheric boundary. The physical evolution of the system is followed using the BATS-R-US "ideal" MHD code well beyond the complete emergence of the magnetic flux from the convection zone. We discuss the dynamics of the flux emergence process and the related response of the pre-existing coronal magnetic field in the context of CME production.

  20. On the Origin of Coronal Mass Ejections: How Does the Emergence of a Magnetic Flux Rope Reorganize the Solar Corona?

    NASA Astrophysics Data System (ADS)

    Roussev, I. I.; Galsgaard, K.; Lugaz, N.; Sokolov, I.

    2010-12-01

    The physical causes leading to the occurrence of Coronal Mass Ejections (CMEs) on the Sun have been debated for almost four decades now. One of the leading mechanisms suggests that a CME may occur as the result of the emergence of a twisted magnetic flux rope from the convection zone into the solar corona. This process have been investigated by a number of researchers over the years, and it has been demonstrated that an eruption of the coronal magnetic field can in principle occur. The majority of these studies, however, involve some ad-hoc prescription of the electric field at the photosphere resembling flux emergence, and they neglect the ambient coronal magnetic field. In addition, most of these flux-emergence simulations are performed in a Cartesian domain, which extends only to a few dozen pressure scale-heights into the corona. Thus, it is difficult to assess the role of boundary driving and limited computational domain on the resulting evolution of the erupting coronal magnetic field. In this paper, we present a new model of CMEs that mitigates these two effects. To achieve this, we couple the "local" magnetic-flux-emergence (MFE) model of Archontis et al. (2004) with a global MHD model of the solar corona and solar wind. The model coupling is performed using the Space Weather Modeling Framework. In the coupled model, the MFE simulation provides time-dependent boundary conditions for all MHD quantities into the global model, where the physical coupling is done at the photospheric boundary. The physical evolution of the system is followed using the BATS-R-US "ideal" MHD code well beyond the complete emergence of the magnetic flux from the convection zone. We discuss the dynamics of the flux emergence process and the related response of the pre-existing coronal magnetic field in the context of CME production.

  1. Solar and terrestrial physics. [effects of solar activities on earth environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  2. The evolution of rotating stars. I - Method and exploratory calculations for a 7-solar-mass star

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1976-01-01

    A method is developed which allows the evolution of rotating stars to be studied well beyond the main-sequence stage. Four different cases of redistribution of angular momentum in an evolving star are considered. Evolutionary sequences for a 7-solar-mass star, rotating according to these different cases, were computed from the zero-age main-sequence to the double-shell-source stage. Each sequence was begun with a (typical) equatorial rotational velocity of 210 km/s. On the main sequence, the effects of rotation are of minor importance. However, as the core contracts during later stages, important effects arise in all physically plausible cases. The outer regions of the cores approach critical velocities and develop unstable angular-velocity distributions. The effects of these instabilities should significantly alter the subsequent evolution.

  3. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    SciTech Connect

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  4. The Relation between Coronal Holes and Coronal Mass Ejections during the Rise, Maximum, and Declining Phases of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mohamed, A. A.; Gopalswamy, N; Yashiro, S.; Akiyama, S.; Makela, P.; Xie, H.; Jung, H.

    2012-01-01

    We study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all the coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance =15deg) and resulting in magnetic clouds (MCs) and non-MCs in the solar wind. The CHIP is found to be the smallest during the rise phase for MCs and non-MCs. The maximum phase has the largest CHIP value (2.9 G) for non-MCs. The CHIP is the largest (5.8 G) for driverless (DL) shocks, which are shocks at 1 AU with no discernible MC or non-MC. These results suggest that the behavior of non-MCs is similar to that of the DL shocks and different from that of MCs. In other words, the CHs may deflect the CMEs away from the Sun-Earth line and force them to behave like limb CMEs with DL shocks. This finding supports the idea that all CMEs may be flux ropes if viewed from an appropriate vantage point.

  5. Depth profile analysis of amorphous silicon thin film solar cells by pulsed radiofrequency glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Sanchez, Pascal; Menéndez, Armando; Pereiro, Rosario; Sanz-Medel, Alfredo; Fernández, Beatriz

    2015-02-01

    Among the different solar cell technologies, amorphous silicon (a-Si:H) thin film solar cells (TFSCs) are today very promising and, so, TFSCs analytical characterization for quality control issues is increasingly demanding. In this line, depth profile analysis of a-Si:H TFSCs on steel substrate has been investigated by using pulsed radiofrequency glow discharge-time of flight mass spectrometry (rf-PGD-TOFMS). First, to discriminate potential polyatomic interferences for several analytes (e.g., (28)Si(+), (31)P(+), and (16)O(+)) appropriate time positions along the GD pulse profile were selected. A multi-matrix calibration approach, using homogeneous certified reference materials without hydrogen as well as coated laboratory-made standards containing hydrogen, was employed for the methodological calibration. Different calibration strategies (in terms of time interval selection on the pulse profile within the afterglow region) have been compared, searching for optimal calibration graphs correlation. Results showed that reliable and fast quantitative depth profile analysis of a-Si:H TFSCs by rf-PGD-TOFMS can be achieved. PMID:25404156

  6. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    SciTech Connect

    Cho, K.-S.; Kim, R.-S.; Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S.

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  7. An Estimate of the Coronal Magnetic Field near a Solar Coronal Mass Ejection from Low-frequency Radio Observations

    NASA Astrophysics Data System (ADS)

    Hariharan, K.; Ramesh, R.; Kishore, P.; Kathiravan, C.; Gopalswamy, N.

    2014-11-01

    We report ground-based, low-frequency (<100 MHz) radio imaging, spectral, and polarimeter observations of the type II radio burst associated with the solar coronal mass ejection (CME) that occurred on 2013 May 2. The spectral observations indicate that the burst has fundamental (F) and harmonic (H) emission components with split-band and herringbone structures. The imaging observations at 80 MHz indicate that the H component of the burst was located close to leading edge of the CME at a radial distance of r ≈ 2 R ⊙ in the solar atmosphere. The polarimeter observations of the type II burst, also at 80 MHz, indicate that the peak degree of circular polarization (dcp) corresponding to the emission generated in the corona ahead of and behind the associated MHD shock front are ≈0.05 ± 0.02 and ≈0.1 ± 0.01, respectively. We calculated the magnetic field B in the above two coronal regions by adopting the empirical relationship between the dcp and B for the harmonic plasma emission and the values are ≈(0.7-1.4) ± 0.2 G and ≈(1.4-2.8) ± 0.1 G, respectively.

  8. An estimate of the coronal magnetic field near a solar coronal mass ejection from low-frequency radio observations

    SciTech Connect

    Hariharan, K.; Ramesh, R.; Kishore, P.; Kathiravan, C.; Gopalswamy, N.

    2014-11-01

    We report ground-based, low-frequency (<100 MHz) radio imaging, spectral, and polarimeter observations of the type II radio burst associated with the solar coronal mass ejection (CME) that occurred on 2013 May 2. The spectral observations indicate that the burst has fundamental (F) and harmonic (H) emission components with split-band and herringbone structures. The imaging observations at 80 MHz indicate that the H component of the burst was located close to leading edge of the CME at a radial distance of r ≈ 2 R {sub ☉} in the solar atmosphere. The polarimeter observations of the type II burst, also at 80 MHz, indicate that the peak degree of circular polarization (dcp) corresponding to the emission generated in the corona ahead of and behind the associated MHD shock front are ≈0.05 ± 0.02 and ≈0.1 ± 0.01, respectively. We calculated the magnetic field B in the above two coronal regions by adopting the empirical relationship between the dcp and B for the harmonic plasma emission and the values are ≈(0.7-1.4) ± 0.2 G and ≈(1.4-2.8) ± 0.1 G, respectively.

  9. HIGH ANGULAR RESOLUTION RADIO OBSERVATIONS OF A CORONAL MASS EJECTION SOURCE REGION AT LOW FREQUENCIES DURING A SOLAR ECLIPSE

    SciTech Connect

    Ramesh, R.; Kathiravan, C.; Barve, Indrajit V.; Rajalingam, M. E-mail: kathir@iiap.res.in E-mail: rajalingam@iiap.res.in

    2012-01-10

    We carried out radio observations of the solar corona in the frequency range 109-50 MHz during the annular eclipse of 2010 January 15 from the Gauribidanur Observatory, located about 100 km north of Bangalore in India. The radio emission in the above frequency range originates typically in the radial distance range Almost-Equal-To 1.2-1.5 R{sub Sun} in the 'undisturbed' solar atmosphere. Our analysis indicates that (1) the angular size of the smallest observable radio source (associated with a coronal mass ejection in the present case) is Almost-Equal-To 1' {+-} 0.'3, (2) the source size does not vary with radial distance, (3) the peak brightness temperature of the source corresponding to the above size at a typical frequency like 77 MHz is Almost-Equal-To 3 Multiplication-Sign 10{sup 9} K, and (4) the coronal magnetic field near the source region is Almost-Equal-To 70 mG.

  10. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%.

    PubMed

    Ye, Senyun; Sun, Weihai; Li, Yunlong; Yan, Weibo; Peng, Haitao; Bian, Zuqiang; Liu, Zhiwei; Huang, Chunhui

    2015-06-10

    Although inorganic hole-transport materials usually possess high chemical stability, hole mobility, and low cost, the efficiency of most of inorganic hole conductor-based perovskite solar cells is still much lower than that of the traditional organic hole conductor-based cells. Here, we have successfully fabricated high quality CH3NH3PbI3 films on top of a CuSCN layer by utilizing a one-step fast deposition-crystallization method, which have lower surface roughness and smaller interface contact resistance between the perovskite layer and the selective contacts in comparison with the films prepared by a conventional two-step sequential deposition process. The average efficiency of the CuSCN-based inverted planar CH3NH3PbI3 solar cells has been improved to 15.6% with a highest PCE of 16.6%, which is comparable to that of the traditional organic hole conductor-based cells, and may promote wider application of the inexpensive inorganic materials in perovskite solar cells.

  11. First-principles prediction of solar radiation shielding performance for transparent windows of GdB6

    NASA Astrophysics Data System (ADS)

    Xiao, Lihua; Su, Yuchang; Ran, Jingyu; Liu, Yike; Qiu, Wei; Wu, Jianming; Lu, Fanghai; Shao, Fang; Tang, Dongsheng; Peng, Ping

    2016-04-01

    The structural, electronic, magnetic, and optical properties of GdB6 are studied using the first-principles calculations. Calculated values for magnetic and optical properties and lattice constant are found to be consistent with previously reported experimental results. The calculated results show that GdB6 is a perfect near-infrared absorption/reflectance material that could serve as a solar radiation shielding material for windows with high visible light transmittance, similar to LaB6, which is assigned to its plasma oscillation and a collective oscillation (volume plasmon) of carrier electrons. It was found that the magnetic 4f electrons of Gd are not relevant to the important optical properties of GdB6. These theoretical studies serve as a reference for future studies.

  12. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 6. Science Applications, Incorporated system analysis

    SciTech Connect

    Not Available

    1985-01-01

    This report summarizes the results of the systems analysis task for the conceptual design of a commercial size, solar powered, controlled environment agriculture system. The baseline greenhouse system consists of a 5-hectare growing facility utilizing an innovative fluid roof filter concept to provide temperature and humidity control. Fresh water for the system is produced by means of a reverse osmosis desalination unit and energy is provided by means of a solar photovoltaic array in conjunction with storage batteries and a power conditioning unit. The greenhouse environment is controlled via circulation of brackish groundwater in a closed system, which permits water recovery during dehumidification as well as CO/sub 2/ enrichment for increased crop productivity.

  13. Theoretical studies of massive stars. II - Evolution of a 15 solar-mass star from carbon shell burning to iron core collapse

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Endal, A. S.

    1980-01-01

    The evolution of a Population I star of 15 solar masses is described from the carbon shell burning stage to the formation and collapse of an iron core. An unusual aspect of the evolution is that neon ignition occurs off-center and neon burning propagates inward by a series of shell flashes. The extent of the core burning is generally smaller than the Chandrasekhar mass, so that most of the nuclear energy generation occurs in shell sources. Because of degeneracy and the influence of rapid convective mixing, these shell sources are unstable and the core goes through large excursions in temperature and density. The small core also causes the shell sources to converge into a narrow mass region slightly above the Chandrasekhar mass. Thus, the final nucleosynthesis yields are generally small, with silicon being most strongly enhanced with respect to solar system abundances.

  14. Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly; Kilper, Gary; Alexander, David; Kucera, Therese

    2010-01-01

    In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance

  15. The Orbitrap mass analyzer as a space instrument for the understanding of prebiotic chemistry in the Solar System

    NASA Astrophysics Data System (ADS)

    Vuitton, Véronique; Briois, Christelle; Makarov, Alexander

    Over the past decade, it has become apparent that organic molecules are widespread in our Solar System and beyond. The better understand of the prebiotic chemistry leading to their formation is a primary objective of many ongoing space missions. Cassini-Huygens revealed the existence of very large molecular structures in Titan's atmosphere as well as on its surface, in the form of dune deposits, but their exact nature remains elusive. One key science goal of the Mars Science Laboratory Curiosity rover is to assess the presence of organics on the red planet. Rosetta will characterize the elemental and isotopic composition of the gas and dust ejected from comet Churyumov-Gerasimenko, while amino acids have been detected in meteorites. This search for complex organics relies heavily on mass spectrometry, which has the remarkable ability to analyze and quantify species from almost any type of sample (provided that the appropriate sampling and ionizing method is used). Because of the harsh constraints of the spatial environment, the mass resolution of the spectrometers onboard current space probes is quite limited compared to laboratory instruments, leading to significant limitations in the scientific return of the data collected. Therefore, future in situ solar system exploration missions would significantly benefit from instruments relying on High Resolution Mass Spectrometry (HRMS). Since 2009, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies form a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercializes Orbitrap based laboratory instruments. The Orbitrap is an electrostatic mass analyzer, it is compact, lightweight, and can reach a good sensitivity and dynamic range. A prototype is under development at

  16. Proton intensity spectra during the solar energetic particle events of May 17, 2012 and January 6, 2014

    NASA Astrophysics Data System (ADS)

    Kühl, P.; Banjac, S.; Dresing, N.; Goméz-Herrero, R.; Heber, B.; Klassen, A.; Terasa, C.

    2015-04-01

    Context. Ground-level enhancements (GLEs) are solar energetic particle events that show a significant intensity increase at energies that can be measured by neutron monitors. The most recent GLE-like events were recorded on May 17, 2012 and January 6, 2014. They were also measured by sophisticated instrumentation in space such as PAMELA and the Electron Proton Helium INstrument (EPHIN) onboard SOHO. Since neutron monitors are only sensitive to protons above 400 MeV with maximum sensitivity at 1 to 2 GeV, the spectra of such weak GLE-like events (January 6, 2014) can only be measured by space instrumentation. Aims: We show that the SOHO/EPHIN is capable of measuring the solar energetic particle proton event spectra between 100 MeV and above 800 MeV. Methods: We performed a GEANT Monte Carlo simulation to determine the energy response function of EPHIN. Based on this calculation, we derived the corresponding proton energy spectra. The method was successfully validated against previous PAMELA measurements. Results: We present event spectra from EPHIN for May 17, 2012 and January 6, 2014. During the event in May 2012, protons were accelerated to energies above 700 MeV, while we found no significant increase for protons above 600 MeV during the event on January 6, 2014.

  17. SWAP-SECCHI OBSERVATIONS OF A MASS-LOADING TYPE SOLAR ERUPTION

    SciTech Connect

    Seaton, Daniel B.; Mierla, Marilena; Berghmans, David; Zhukov, Andrei N.; Dolla, Laurent

    2011-01-20

    We present a three-dimensional reconstruction of an eruption that occurred on 2010 April 3 using observations from SWAP on board PROBA2 and SECCHI on board STEREO. The event unfolded in two parts: an initial flow of cooler material confined to a height low in the corona, followed by a flux rope eruption higher in the corona. We conclude that mass off-loading from the first part triggered a rise and, subsequently, catastrophic loss of equilibrium of the flux rope.

  18. Cosmogenic nuclides in the solar gas-rich H3-6 chondrite breccia Frontier Mountain 90174

    NASA Astrophysics Data System (ADS)

    Leya, I.; Welten, K. C.; Nishiizumi, K.; Caffee, M. W.

    2009-03-01

    We re-evaluated the cosmic-ray exposure history of the H3-6 chondrite shower Frontier Mountain (FRO) 90174, which previously was reported to have a simple exposure history, an irradiation time of about 7 Ma, and a pre-atmospheric radius of 80-100 cm (Welten et al. 2001). Here we measured the concentrations and isotopic compositions of He, Ne, and Ar in 8 aliquots of 6 additional fragments of this shower, and 10Be and 26Al in the stone fractions of seven fragments. The radionuclide concentrations in the stone fractions, combined with those in the metal fractions, confirm that all samples are fragments of the FRO 90174 shower. Four of the fragments contain solarwind- implanted noble gases with a solar 20Ne/22Ne ratio of ˜12.0, indicating that FRO 90174 is a regolith breccia. The concentrations of solar gases and cosmogenic 21Ne in the samples analyzed by us and by Welten et al. (2001) overlap with those of the FRO H-chondrites from the 1984 season, suggesting that many of these samples are also part of the large FRO 90174 chondrite shower. The cosmogenic 21Ne concentrations in FRO 90174 show no simple correlation with 10Be and 26Al activities. We found 21Ne excesses between 0.3-1.1 × 10-8 cm3 STP/g in 6 of the 17 samples. Since excess 21Ne and trapped solar gases are not homogeneously distributed, i.e., we found in one fragment aliquots with and without excess 21Ne and solar 20Ne, we conclude that excess 21Ne is due to GCR irradiation of the regolith before compaction of the FRO 90174 object. Therefore, the chondrite shower FRO 90174 did not simply experience an exposure history, but some material was already irradiated at the surface of an asteroid leading to excess 21Ne. This excess 21Ne is correlated to implanted solar gases, clearly indicating that both processes occurred on the regolith.

  19. Formation of Super-Earth Mass Planets at 125-250 AU from a Solar-type Star

    NASA Astrophysics Data System (ADS)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2015-06-01

    We investigate pathways for the formation of icy super-Earth mass planets orbiting at 125-250 AU around a 1 {{M}⊙ } star. An extensive suite of coagulation calculations demonstrates that swarms of 1 cm-10 m planetesimals can form super-Earth mass planets on timescales of 1-3 Gyr. Collisional damping of 10-2-102 cm particles during oligarchic growth is a highlight of these simulations. In some situations, damping initiates a second runaway growth phase where 1000-3000 km protoplanets grow to super-Earth sizes. Our results establish the initial conditions and physical processes required for in situ formation of super-Earth planets at large distances from the host star. For nearby dusty disks in HD 107146, HD 202628, and HD 207129, ongoing super-Earth formation at 80-150 AU could produce gaps and other structures in the debris. In the solar system, forming a putative planet X at a≲ 300 AU (a≳ 1000 AU) requires a modest (very massive) protosolar nebula.

  20. Consciousness Can Change the Output Signals of a Solar Cell and the Photoelectric Conversion Equation of Slow Mass Wave

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2009-03-01

    The experiment's results show that human consciousness can change output signals such as Voc (open-circuit voltage) and Isc (short circuit current) of a solar cell placed some distance from a participant. For the first time, a consciousness signal is able to be recorded through the experiment conducted in Oct 2002. The order and rhythm of the changing wave pattern of Voc is related to the action of consciousness. The order and rhythm of slow brain signal of ERP and EEG are related to the cognized objects. Consciousness is independent and self-determined while brain signal is passive and driven. Consciousness is spiritual and Intelligence while brain signal is physical, corporality and mechanic. So consciousness is different from the brain signal. And consciousness effection is different from physical effection of light. Because consciousness can choose the object which it acts on. The light have a pairt of mass wave of low frequency and energy wave of high frequency. In photoelectric conversion process, We only use the energy wave to get the η (photoelectric transformation efficiency) which is little. If being used a pairt of wave, we will get a larger η. The photoelectric conversion equation of slow mass wave are being put forward.

  1. Ultramassive (about 10 to the 11th solar mass) dark core in the luminous infrared galaxy NGC 6240?

    NASA Technical Reports Server (NTRS)

    Bland-Hawthorn, Jonathan; Wilson, Andrew S.; Tully, R. Brent

    1991-01-01

    The first complete kinematic maps for the superluminous IR galaxy NGC 6240 are reported. The data reveal two dynamical disks that exhibit radically different rotation and are closely spaced in velocity and position. One disk is roughly aligned with the major axis of the near-IR continuum and exhibits flat rotation out to about 20 arsec in radius, centered on the doubled nucleus seen at optical, near-IR, and radio wavelengths. The rotation turns over at r(t1) roughly 7.2 arcsec with a peak-to-peak velocity amplitude of roughly 280/sin i1 km/s, where i1 is the disk inclination. The rotation curve of the second disk comprises an unresolved or marginally resolved central velocity gradient with a peak-to-peak amplitude of roughly 800/sin i2 km/s within r(t2) of 2.5 arcsec, and a faster than Keplerian dropoff outside r(t2). The peak rotation implies a compact mass M2 greater than 4.5 x 10 to the 10th solar mass/sin-squared i2 within a radius of 1.2 kpc.

  2. Analysis of the 3d(sup 6)4s((sup 6)D)4f-5g supermultiplet of Fe I in laboratory and solar infrared spectra

    NASA Technical Reports Server (NTRS)

    Johansson, S.; Nave, G.; Geller, M.; Sauval, A. J.; Grevesse, N.; Schoenfeld, W. G.; Change, E. S.; Farmer, C. B.

    1994-01-01

    The combined laboratory and solar analysis of the highly excited subconfigurations 3d(sup 6)4s((sup 6)D)4f and 3d(sup 6)4s((sup 6)D)5g of Fe I has allowed us to classify 87 lines of the 4f-5g supermultiplet in the spectral region 2545-2585 per cm. The level structure of these JK-coupled configurations is predicted by semiempirical calculations and the quardrupolic approximation. Semiempirical gf-values have been calculated and are compared to gf-values derived from the solar spectrum. The solar analysis has shown that these lines, which should be much less sensitive than lower excitation lines to departures from Local Thermal Equilibrium (LTE) and to temperature uncertanties, lead to a solar abundance of iron which is consistent with the meteoritic value (A(sub Fe) = 7.51).

  3. Off-peak power use in passive solar homes: Performance, monitoring, and analysis of periodic heating and cooling in high mass homes

    NASA Astrophysics Data System (ADS)

    Peck, J. F.

    1981-08-01

    The thermal performance of two passive solar homes and an identical standard home used as a control are described. The peak hour electrical demand rates of these homes are compared and off peak refrigeration of homes with large quantities of thermal mass is discussed. A computer model which is being developed to assess the potential of off peak refrigeration is also described.

  4. A study of mass production and installation of small solar thermal electric power systems

    NASA Technical Reports Server (NTRS)

    Butterfield, J. F.

    1980-01-01

    Technological constraints, materials availability, production capacity, and manufacturing and installations plans and costs at different production levels are included in a study of concentrating collector industrialization. As cobalt for the engine and receiver is supply limited, alternative lower temperature alloys and higher temperature materials such as ceramics are discussed. Economics and production efficiency favor co-location of cellular and thin glass production for reflectors. Assembly and installation are expensive for small sites and few alternatives exist to apply mass production techniques to lower these costs for the selected design. Stepping motors in the size and quantities required are not commercially available today but could be in the future.

  5. New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry.

    PubMed

    Liu, Ningning; Xiong, Yun; Li, Shanshan; Ren, Yiran; He, Qianqian; Gao, Siqi; Zhou, Jun; Shui, Wenqing

    2015-11-19

    The post-translational modifications (PTMs) occurring on microtubules have been implicated in the regulation of microtubule properties and functions. Acetylated K40 of α-tubulin, a hallmark of long-lived stable microtubules, is known to be negatively controlled by histone deacetylase 6 (HDAC6). However, the vital roles of HDAC6 in microtubule-related processes such as cell motility and cell division cannot be fully explained by the only known target site on tubulin. Here, we attempt to comprehensively map lysine acetylation sites on tubulin purified from mouse brain tissues. Furthermore, mass spectrometry-based quantitative comparison of acetylated peptides from wild-type vs HDAC6 knockout mice allowed us to identify six new deacetylation sites possibly mediated by HDAC6. Thus, adding new sites to the repertoire of HDAC6-mediated tubulin deacetylation events would further our understanding of the multi-faceted roles of HDAC6 in regulating microtubule stability and cellular functions.

  6. Relation Between Low Latitude Pc3 Magnetic Micropulsations and Solar Wind (P6)

    NASA Astrophysics Data System (ADS)

    Ansari, I. A.

    2006-11-01

    iaaamphysics@yahoo.co.in iaaphysicsamu@yahoo.com.au Geomagnetic pulsations recorded on the ground are the signatures of the integrated signals from the magnetosphere. Pc3 Geomagnetic pulsations are quasi-sinusoidal variations in the Earth’s Magnetic field in the period range 10-45 seconds. The magnitude of these pulsations ranges from fraction of a nT (nano Tesla) to several nT. These pulsations can be observed in a number of ways. However the application of ground based magnetometer arrays has proven to be one of the most successful methods of studying the spatial structure of hydromagnetic waves in the Earth’s Magnetosphere. The solar wind provides the energy for the Earth’s magnetospheric processes. Pc3-5 geomagnetic pulsations can be generated either externally or internally with respect to the magnetosphere. The Pc3 studies undertaken in the past have been confined to middle and high latitudes. The spatial and temporal variations observed in Pc3 occurrence are of vital importance because they provide evidence which can be directly related to wave generation mechanisms both inside and external to the magnetosphere. At low latitudes (L < 3) wave energy predominates in the Pc3 band and the spatial characteristics of these pulsations have received little attention in the past. An array of four low latitude induction coil magnetometers was established in south-east Australia over a longitudinal range of 17 degrees at L=1.8 to 2.7 for carrying out the study of the effect of the solar wind velocity on these pulsations. Digital dynamic spectra showing Pc3 pulsation activity over a period of about six months have been used to evaluate Pc3 pulsation occurrence. Pc3 occurrence probability at low latitudes has been found to be dominant for the solar wind velocity in the range 400-700 Km/sec. The results suggest that solar wind controls Pc3 occurrence through a mechanism in which Pc3 wave energy is convected through the magnetosheath and coupled to the standing

  7. Chemical Composition of Intermediate-mass Star Members of the M6 (NGC 6405) Open Cluster

    NASA Astrophysics Data System (ADS)

    Kılıçoğlu, T.; Monier, R.; Richer, J.; Fossati, L.; Albayrak, B.

    2016-03-01

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500-5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the Hβ profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are still under

  8. NIRIS: The Second Generation Near-Infrared Imaging Spectro-polarimeter for the 1.6 Meter New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Cao, W.; Goode, P. R.; Ahn, K.; Gorceix, N.; Schmidt, W.; Lin, H.

    2012-12-01

    The largest aperture solar telescope, the 1.6 m New Solar Telescope (NST) has been installed at the Big Bear Solar Observatory (BBSO). To take full advantage of the NST's greatest potential, we are upgrading the routinely operational InfraRed Imaging Magnetograph (IRIM) to its second generation, the NIRIS (Near-InfraRed Imaging Spectropolarimeter). NIRIS will offer unprecedented high resolution spectroscopic and polarimetric imaging data of the solar atmosphere from the deepest photosphere through the base of the corona. With the aid of the BBSO adaptive optics (AO) system, the spatial resolution will be close to the diffraction limit of the NST. The spectroscopic cadence will reach one second, while polarimetric measurements, including Stokes I, Q, U, V profiles, remain at a better than 10 s cadence. Polarization sensitivity is expected to be reach ˜ 10-4Ic. NIRIS will cover a broad spectral range from 1.0 to 1.7μm, with particular attention to two unique spectral lines: the Fe I 1565 nm doublet has already proven to be the most sensitive to Zeeman effect for probing the magnetic field in the deepest photosphere; the He I 1083 nm multiplet is one of the best currently available diagnostic of upper chromospheric magnetic fields that allows one to map the vector field at the base of the corona. NIRIS will be built on dual Fabry-Pérot Interferometers (FPIs), each of which has an aperture of 100 mm. The larger aperture of FPIs allows the available field-of-view up to one and half minutes with a spectral power of ˜ 105.

  9. Mass Conservation in a Chemical Transport Model and its Effect on CO2 and SF6 Simulations

    NASA Technical Reports Server (NTRS)

    Zhu, Z.; Weaver, C.; Kawa, S. R.; Douglass, A. R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Chemical transport models (CTMs) must conserve mass to be useful for applications involving assessment of the effect of various pollutants on the troposphere and stratosphere. Furthermore, calculations of the evolution of constituents such as SF6 are used to evaluate overall model transport, and interpretation of such simulations is clouded if mass conservation is not assured. For realistic simulations or predictions, it is crucial that constituents are not produced or lost by transport or other processes in the CTMs. Analysis of CO2 and SF6 experiments using a CTM shows that problems with mass conservation can seriously degrade the simulations. Failure to conserve mass results from inconsistency of the surface pressure tendency and the divergence of horizontal mass flux when the model is forced by assimilated meteorological data. We have developed an effective method to eliminate the inconsistency by modifying the divergent part of the wind field. The changes in the wind fields are quite small but the impact on mass conservation is large. Parameterizations of physical processes such as convection or turbulent transport can also affect mass conservation. The lack of conservation is small but accumulates when integrations are lengthy such as required for SF6. This lack of conservation is found using winds from either a GCM or from an assimilation system. A simple adjustment removes much of the inaccuracy in the convective parameterization. A CO2 simulation using assimilated winds from the most recent version of the Goddard Earth Observing System Data Assimilation System will be used to illustrate the impact of these transport improvements.

  10. Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades

    NASA Astrophysics Data System (ADS)

    Schroder, Klaus-Peter; Mittag, Marco; Schmitt, J. H. M. M.

    2015-01-01

    Using spectra taken by the robotic telescope ``TIGRE'' (see Fig. 1 and the TIGRE-poster presented by Schmitt et al. at this conference) and its mid-resolution (R=20,000) HEROS double-channel echelle spectrograph, we present our measurements of the solar Ca II H&K chromospheric emission. Using moonlight, we applied the calibration and definition of the Mt. Wilson S-index , which allows a direct comparison with historic observations, reaching back to the early 1960's. At the same time, coming from the same EUV emitting plage regions, the Ca II H&K emission is a good proxy for the latter, which is of interest as a forcing factor in climate models. Our measurements probe the weak, asynchronous activity cycle 24 around its 2nd maximum during the past winter. Our S-values suggest that this maximum is the lowest in chromospheric emission since at least 60 years -- following the longest and deepest minimum since a century. Our observations suggest a similarly long-term (on a scale of decades) low of the far-UV radiation, which should be considered by the next generation of climate models. The current, very interesting activity behaviour calls for a concerted effort on long-term solar monitoring.

  11. Intact molecular characterization of cord factor (trehalose 6,6'-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry.

    PubMed

    Fujita, Yukiko; Naka, Takashi; McNeil, Michael R; Yano, Ikuya

    2005-10-01

    Cord factor (trehalose 6,6'-dimycolate, TDM) is an unique glycolipid with a trehalose and two molecules of mycolic acids in the mycobacterial cell envelope. Since TDM consists of two molecules of very long branched-chain 3-hydroxy fatty acids, the molecular mass ranges widely and in a complex manner. To characterize the molecular structure of TDM precisely and simply, an attempt was made to determine the mycolic acid subclasses of TDM and the molecular species composition of intact TDM by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for the first time. The results showed that less than 1 microg mycolic acid methyl ester of TDM from nine representative species of mycobacteria and TDM from the same species was sufficient to obtain well-resolved mass spectra composed of pseudomolecular ions [M+Na]+. Although the mass ion distribution was extremely diverse, the molecular species of each TDM was identified clearly by constructing a molecular ion matrix consisting of the combination of two molecules of mycolic acids. The results showed a marked difference in the molecular structure of TDM among mycobacterial species and subspecies. TDM from Mycobacterium tuberculosis (H37Rv and Aoyama B) showed a distinctive mass pattern and consisted of over 60 molecular ions with alpha-, methoxy- and ketomycolate. TDM from Mycobacterium bovis BCG Tokyo 172 similarly showed over 35 molecular ions, but that from M. bovis BCG Connaught showed simpler molecular ion clusters consisting of less than 35 molecular species due to a complete lack of methoxymycolate. Mass ions due to TDM from M. bovis BCG Connaught and Mycobacterium kansasii showed a biphasic distribution, but the two major peaks of TDM from M. kansasii were shifted up two or three carbon units higher compared with M. bovis BCG Connaught. Within the rapid grower group, in TDM consisting of alpha-, keto- and wax ester mycolate from Mycobacterium phlei and Mycobacterium flavescens, the

  12. The Width of a Solar Coronal Mass Ejection and the Source of the Driving Magnetic Explosion

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T.

    2007-01-01

    We show that the strength of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width of the CME in the outer corona and the final angular width of the flare arcade. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid, (2) in the outer corona (R greater than 2R(sub Sun)) the CME is roughly a spherical plasmoid with legs shaped like a light bulb, and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs is an over-and-out CME that exploded from a laterally far offset compact ejective flare. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field, (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs, and (3) shows that a CME s final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade.

  13. Mass loss from S stars

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1988-01-01

    The mass-loss process in S stars is studied using 65 S stars from the listing of Wing and Yorka (1977). The role of pulsations in the mass-loss process is examined. It is detected that stars with larger mass-loss rates have a greater amplitude of pulsations. The dust-to-gas ratio for the S stars is estimated as 0.002 and the average mass-loss rate is about 6 x 10 to the -8th solar masses/yr. Some of the properties of the S stars, such as scale height, surface density, and lifetime, are measured. It is determined that scale height is 200 pc; the total duration of the S star phase is greater than or equal to 30,000 yr; and the stars inject 3 x 10 to the -6th solar masses/sq kpc yr into the interstellar medium.

  14. Self-similar Expansion of Solar Coronal Mass Ejections: Implications for Lorentz Self-force Driving

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Arunbabu, K. P.; Vourlidas, Angelos; Mauriya, Adwiteey

    2014-08-01

    We examine the propagation of several coronal mass ejections (CMEs) with well-observed flux rope signatures in the field of view of the SECCHI coronagraphs on board the STEREO satellites using the graduated cylindrical shell fitting method of Thernisien et al. We find that the manner in which they propagate is approximately self-similar; i.e., the ratio (κ) of the flux rope minor radius to its major radius remains approximately constant with time. We use this observation of self-similarity to draw conclusions regarding the local pitch angle (γ) of the flux rope magnetic field and the misalignment angle (χ) between the current density J and the magnetic field B. Our results suggest that the magnetic field and current configurations inside flux ropes deviate substantially from a force-free state in typical coronagraph fields of view, validating the idea of CMEs being driven by Lorentz self-forces.

  15. Solar wind composition from sector boundary crossings and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.; Geiss, J.

    1992-01-01

    Using the Ion Composition Instrument (ICI) on board the ISEE-3/ICE spacecraft, average abundances of He-4, He-3, O, Ne, Si, and Fe have been determined over extended periods. In this paper the abundances of He-4, O, Ne, Si, and Mg obtained by the ICI in the region of sector boundary crossings (SBCs), magnetic clouds and bidirectional streaming events (BDSs) are compared with the average abundances. Both magnetic clouds and BDSs are associated with coronal mass ejections (CMEs). No variation of abundance is seen to occur at SBCs except for helium, as has already been observed. In CME-related material, the abundance of neon appears to be high and variable, in agreement with recent analysis of spectroscopic observations of active regions. We find that our observations can be correlated with the magnetic topology in the corona.

  16. An Analysis of Interplanetary Solar Radio Emissions Associated with a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Kruparova, O.; Santolik, O.; Soucek, J.; Magdalenić, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Martínez Oliveros, J. C.; Bale, S. D.

    2016-05-01

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  17. Self-similar expansion of solar coronal mass ejections: Implications for Lorentz self-force driving

    SciTech Connect

    Subramanian, Prasad; Arunbabu, K. P.; Mauriya, Adwiteey; Vourlidas, Angelos

    2014-08-01

    We examine the propagation of several coronal mass ejections (CMEs) with well-observed flux rope signatures in the field of view of the SECCHI coronagraphs on board the STEREO satellites using the graduated cylindrical shell fitting method of Thernisien et al. We find that the manner in which they propagate is approximately self-similar; i.e., the ratio (κ) of the flux rope minor radius to its major radius remains approximately constant with time. We use this observation of self-similarity to draw conclusions regarding the local pitch angle (γ) of the flux rope magnetic field and the misalignment angle (χ) between the current density J and the magnetic field B. Our results suggest that the magnetic field and current configurations inside flux ropes deviate substantially from a force-free state in typical coronagraph fields of view, validating the idea of CMEs being driven by Lorentz self-forces.

  18. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Rollett, T.; Möstl, C.; Temmer, M.; Veronig, A. M.; Amerstorfer, U. V.; Frahm, R. A.; Davies, J. A.; Vršnak, B.; Žic, T.; Farrugia, C. J.; Zhang, T. L.

    2014-07-20

    We present an analysis of the fast coronal mass ejection (CME) of 2012  March 7, which was imaged by both STEREO spacecraft and observed in situ by MESSENGER, Venus Express, Wind, and Mars Express. Based on detected arrivals at four different positions in interplanetary space, it was possible to strongly constrain the kinematics and the shape of the ejection. Using the white-light heliospheric imagery from STEREO-A and B, we derived two different kinematical profiles for the CME by applying the novel constrained self-similar expansion method. In addition, we used a drag-based model to investigate the influence of the ambient solar wind on the CME's propagation. We found that two preceding CMEs heading in different directions disturbed the overall shape of the CME and influenced its propagation behavior. While the Venus-directed segment underwent a gradual deceleration (from ∼2700 km s{sup –1} at 15 R {sub ☉} to ∼1500 km s{sup –1} at 154 R {sub ☉}), the Earth-directed part showed an abrupt retardation below 35 R {sub ☉} (from ∼1700 to ∼900 km s{sup –1}). After that, it was propagating with a quasi-constant speed in the wake of a preceding event. Our results highlight the importance of studies concerning the unequal evolution of CMEs. Forecasting can only be improved if conditions in the solar wind are properly taken into account and if attention is also paid to large events preceding the one being studied.

  19. Relationships Between Interplanetary Coronal Mass Ejection Characteristics and Geoeffectiveness in the Rising Phase of Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Lawrance, M. Bendict; Shanmugaraju, A.; Moon, Y.-J.; Ibrahim, M. Syed; Umapathy, S.

    2016-05-01

    The characteristics and geoeffectiveness of interplanetary coronal mass ejections (ICMEs) are derived and their relationships are investigated. The results are compared for a set of events in the rising phase of Solar Cycles 23 and 24. These events are considered from the reported list of Cane and Richardson ( Geophys. Res. Lett. 27, 3591, 2000). The geoeffectiveness is studied independently for ICME and sheath. The results obtained are that i) CMEs of Cycle 23 have generated a higher Dst index than Cycle 24 CMEs and that ii) the southward magnetic component (Bs) and the Dst index of ICMEs correlate well for both Cycles 23 and 24 in their rising phase. These findings agree with the literature, which has described Cycle 24 to be weaker than Cycle 23 and where the ICME/sheath regions of Cycle 23 are found to have a greater Bs that results in stronger storms. In addition, other results obtained are as follows: i) The relation between ICME size and the related Dst index gives a weak correlation for the rising phases of both Cycles 23 and 24. ii) The correlation between sheath size and Dst index is higher in the rising phase of Cycle 24 than in the rising phase of Cycle 23. iii) The average ICME size of the rising phase of Cycle 23 (84 R_{⊙}) is greater than that of the rising phase of Cycle 24 (58 R_{⊙}). However, the average sheath size is 24 R_{⊙}, which is nearly equal to that of Cycle 24 (26 R_{⊙}). Thus the differences between the properties of ICME and sheath in both the cycles are demonstrated. Nearly 75 % of geomagnetic storm peaks occurred in the ICME duration in the rising phase of Cycles 23 and 24. This shows that the ICMEs are more important in generating the storms than the sheaths in the rising phase of a solar cycle.

  20. Titius-Bode law in the Solar System. Dependence of the regularity parameter on the central body mass

    NASA Astrophysics Data System (ADS)

    Georgiev, Tsvetan B.

    2016-07-01

    Near-commensurability of the orbital sizes or periods exists in the Solar system for the massive planets and the massive satellites of Jupiter, Saturn and Uranus. It is well revealed by the Titius-Bode law (TBL) long ago by Dermott (1968), but is not been explained convincingly yet. Independently on this fact, the question about the dependence of the scale constant of the TBL on the mass of the central body is open. In this paper we show such a dependence. Due to the dynamic evolution the orbits of the massive planets and satellites may be in a transient stage when a primary TBL is well pronounced. Simultaneously a secondary TBL, a trail from the past as a hint for the future, may be less pronounced. The TBL is fitted after the numeration of the objects. For this reason we derive a special "curve" and we use 2 its minimums to introduce a primary and a secondary numeration for the objects. Thus we derive constants of 2 TBLs and build the searched dependence by twice as many points. In this paper we show and use pairs of TBLs for the satellite systems of Jupiter, Saturn, Uranus, Neptune and Pluto, as well as for the solar system in two cases - with 4 massive planets and with 8 massive planets. In fig. 10 we show the statistically significant dependences where the coefficient of the near-commensurability for the orbital sizes varies from about 1.3 for the satellites of Pluto to about 1.7 for the planets of the Sun.

  1. 40 CFR Table F-6 to Subpart F of... - Estimated Mass Concentration Measurement of PM2.5 for Idealized Fine Aerosol Size Distribution

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Estimated Mass Concentration... Equivalent Methods for PM2.5 Pt. 53, Subpt. F, Table F-6 Table F-6 to Subpart F of Part 53—Estimated Mass... (µm) Test Sampler Fractional Sampling Effectiveness Interval Mass Concentration (µg/m3) Estimated...

  2. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O’Shaughnessy, Richard

    2016-06-01

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40–100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20–80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  3. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-01

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  4. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-23

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity. PMID:27337338

  5. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-22

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  6. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  7. Investigation of technology for the monitoring of UF/sub 6/ mass flow in UF/sub 6/ streams diluted with H/sub 2/

    SciTech Connect

    Baker, O.J.; Cooley, J.N.; Hewgley, W.A.; Moran, B.W.; Swindle, D.W. Jr.

    1986-12-01

    The applicability, availability, and effectiveness of gas flow meters are assessed as a means for verifying the mass flows of pure UF/sub 6/ streams diluted with a carrier gas. The initial survey identified the orifice, pitot tube, thermal, vortex shedding, and vortex precession (swirl) meters as promising for the intended use. Subsequent assessments of these flow meters revealed that two - the orifice meter and the pitot tube meter - are the best choices for the proposed applications: the first is recommended for low velocity gas, small diameter piping; the latter, for high velocity gas, large diameter piping. Final selection of the gas flow meters should be based on test loop evaluations in which the proposed meters are subjected to gas flows, temperatures, and pressures representative of those expected in service. Known instruments are evaluated that may be applicable to the measurement of uranium or UF/sub 6/ concentration in a UF/sub 6/ - H/sub 2/ process stream at an aerodynamic enrichment plant. Of the six procedures evaluated, four have been used for process monitoring in a UF/sub 6/ environment: gas mass spectrometry, infrared-ultraviolet-visible spectrophotometry, gas chromatography, and acoustic gas analysis. The remaining two procedures, laser fluorimetry and atomic absorption spectroscopy, would require significant development work before they could be used for process monitoring. Infrared-ultravioloet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement.

  8. PSEUDOSTREAMERS AS THE SOURCE OF A SEPARATE CLASS OF SOLAR CORONAL MASS EJECTIONS

    SciTech Connect

    Wang, Y.-M.

    2015-04-10

    Using white-light and extreme-ultraviolet imaging observations, we confirm that pseudostreamers (streamers that separate coronal holes of the same polarity) give rise to a different type of coronal mass ejection (CME) from that associated with helmet streamers (defined as separating coronal holes of opposite polarity). Whereas helmet streamers are the source of the familiar bubble-shaped CMEs characterized by gradual acceleration and a three-part structure, pseudostreamers produce narrower, fanlike ejections with roughly constant speeds. These ejections, which are typically triggered by underlying filament eruptions or small, flaring active regions, are confined laterally and channeled outward by the like-polarity open flux that converges onto the pseudostreamer plasma sheet from both sides. In contrast, helmet streamer CMEs are centered on the relatively weak field around the heliospheric current sheet and thus undergo greater lateral expansion. Pseudostreamer ejections have a morphological resemblance to white-light jets from coronal holes; however, unlike the latter, they are not primarily driven by interchange reconnection, and tend to have larger widths (∼20°–30°), lower speeds (∼250–700 km s{sup −1}), and more complex internal structure.

  9. The Peculiar Behavior of Halo Coronal Mass Ejections in Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Xie, H.; Akiyama, S.; Makela, P.; Yashiro, S.; Michalek, G.

    2015-01-01

    We report on the remarkable finding that the halo coronal mass ejections (CMEs) in cycle 24 are more abundant than in cycle 23, although the sunspot number in cycle 24 has dropped by approx. 40%. We also find that the distribution of halo-CME source locations is different in cycle 24: the longitude distribution of halos is much flatter with the number of halos originating at a central meridian distance greater than or equal to 60deg twice as large as that in cycle 23. On the other hand, the average speed and associated soft X-ray flare size are the same in both cycles, suggesting that the ambient medium into which the CMEs are ejected is significantly different. We suggest that both the higher abundance and larger central meridian longitudes of halo CMEs can be explained as a consequence of the diminished total pressure in the heliosphere in cycle 24. The reduced total pressure allows CMEs to expand more than usual making them appear as halos.

  10. The 17 January 2005 Complex Solar Radio Event Associated with Interacting Fast Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Malandraki, O.; Klein, K.-L.; Preka-Papadema, P.; Moussas, X.; Bouratzis, C.; Mitsakou, E.; Tsitsipis, P.; Kontogeorgos, A.

    2011-11-01

    On 17 January 2005 two fast coronal mass ejections were recorded in close succession during two distinct episodes of a 3B/X3.8 flare. Both were accompanied by metre-to-kilometre type-III groups tracing energetic electrons that escape into the interplanetary space and by decametre-to-hectometre type-II bursts attributed to CME-driven shock waves. A peculiar type-III burst group was observed below 600 kHz 1.5 hours after the second type-III group. It occurred without any simultaneous activity at higher frequencies, around the time when the two CMEs were expected to interact. We associate this emission with the interaction of the CMEs at heliocentric distances of about 25 R ⊙. Near-relativistic electrons observed by the EPAM experiment onboard ACE near 1 AU revealed successive particle releases that can be associated with the two flare/CME events and the low-frequency type-III burst at the time of CME interaction. We compare the pros and cons of shock acceleration and acceleration in the course of magnetic reconnection for the escaping electron beams revealed by the type-III bursts and for the electrons measured in situ.

  11. The 17 January 2005 Complex Solar Radio Event Associated with Interacting Fast Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Malandraki, O.; Klein, K.-L.; Preka-Papadema, P.; Moussas, X.; Bouratzis, C.; Mitsakou, E.; Tsitsipis, P.; Kontogeorgos, A.

    On 17 January 2005 two fast coronal mass ejections were recorded in close succession during two distinct episodes of a 3B/X3.8 flare. Both were accompanied by metre-to-kilometre type-III groups tracing energetic electrons that escape into the interplanetary space and by decametre-to-hectometre type-II bursts attributed to CME-driven shock waves. A peculiar type-III burst group was observed below 600 kHz 1.5 hours after the second type-III group. It occurred without any simultaneous activity at higher frequencies, around the time when the two CMEs were expected to interact. We associate this emission with the interaction of the CMEs at heliocentric distances of about 25 R ⊙. Near-relativistic electrons observed by the EPAM experiment onboard ACE near 1 AU revealed successive particle releases that can be associated with the two flare/CME events and the low-frequency type-III burst at the time of CME interaction. We compare the pros and cons of shock acceleration and acceleration in the course of magnetic reconnection for the escaping electron beams revealed by the type-III bursts and for the electrons measured in situ.

  12. Role of gas-surface interactions in the reduction of Ogo 6 neutral particle mass spectrometer data.

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Hinton, B. B.; Schmitt, G. A.

    1973-01-01

    Data obtained with the quadrupole mass spectrometer aboard the Ogo 6 satellite show the effects of significant surface interaction processes, including nearly complete recombination of incoming atomic oxygen on the walls of the instrument antechamber plus adsorption and desorption of oxygen and carbon monoxide. The observed data are fit by solving the time-dependent continuity equations accounting for production and loss of atomic oxygen, molecular oxygen, and (in the case of mass 28) carbon monoxide. The surface parameters that best fit the data are selected and applied to the determination of ambient densities and their estimated errors.

  13. Mass-independent isotope effect in the earliest processed solids in the solar system: a possible chemical mechanism.

    PubMed

    Marcus, R A

    2004-11-01

    A major constraint is described for a possible chemical origin for the "mass-independent" oxygen isotope phenomenon in calcium-aluminum rich inclusions (CAIs) in meteorites at high temperatures ( approximately 1500-2000 K). A symmetry-based dynamical eta effect is postulated for O atom-monoxide recombination on the surface of growing CAIs. It is the surface analog of the volume-based eta effect occurring in a similar phenomenon for ozone in the gas phase [Y. Q. Gao, W. C. Chen, and R. A. Marcus, J. Chem. Phys. 117, 1536 (2002), and references cited therein]: In the growth of CAI grains an equilibrium is postulated between adsorbed species XO (ads)+O (ads) <==>XO*(2)(ads), where XO*(2)(ads) is a vibrationally excited adsorbed dioxide molecule and X can be Si, Al, Ti, or other metals and can be C for minerals less refractory than the CAIs. The surface of a growing grain has an entropic effect of many order of magnitude on the position of this monoxide-dioxide equilibrium relative to its volume-based position by acting as a concentrator. The volume-based eta effect for ozone in the earlier study is not applicable to gas phase precursors of CAIs, due to the rarity of three-body recombination collisions at very low pressures and because of the high H(2) and H concentration in solar gas, which reduces gaseous O and gaseous dioxides and prevents the latter from acting as storage reservoirs for the two heavier oxygen isotopes. A surface eta effect yields XO*(2)(ads) that is mass-independently rich in (17)O and (18)O, and yields XO (ads)+O (ads) that is mass-independently poor in the two heavier oxygen isotopes. When the XO*(2)(ads) is deactivated by vibrational energy loss to the grain, it has only one subsequent fate, evaporation, and so undergoes no further isotopic fractionation. After evaporation the XO(2) again has only one fate, which is to react rapidly with H and ultimately form (16)O-poor H(2)O. The other species, O (ads)+XO (ads), are (16)O rich and react with Ca

  14. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  15. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  16. Core and wing densities of asymmetric coronal spectral profiles: Implications for the mass supply of the solar corona

    SciTech Connect

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R. E-mail: james.a.klimchuk@nasa.gov

    2014-02-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding ≈50 km s{sup –1}. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe XIV lines at 264.78 and 274.20 Å is used to determine wing and core densities. We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe XIV lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  17. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star

    NASA Astrophysics Data System (ADS)

    Donati, J. F.; Moutou, C.; Malo, L.; Baruteau, C.; Yu, L.; Hébrard, E.; Hussain, G.; Alencar, S.; Ménard, F.; Bouvier, J.; Petit, P.; Takami, M.; Doyon, R.; Cameron, A. Collier

    2016-06-01

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  18. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    PubMed

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions.

  19. ARE HALO-LIKE SOLAR CORONAL MASS EJECTIONS MERELY A MATTER OF GEOMETRIC PROJECTION EFFECTS?

    SciTech Connect

    Kwon, Ryun-Young; Zhang, Jie; Vourlidas, Angelos

    2015-02-01

    We investigated the physical nature of halo coronal mass ejections (CMEs) based on the stereoscopic observations from the two STEREO spacecraft, Ahead and Behind (hereafter A and B), and the SOHO spacecraft. Sixty-two halo CMEs occurred as observed by SOHO LASCO C2 for the three-year period from 2010 to 2012 during which the separation angles between SOHO and STEREO were nearly 90°. In such quadrature configuration, the coronagraphs of STEREO, COR2-A and -B, showed the side view of those halo CMEs seen by C2. It has been widely believed that the halo appearance of a CME is caused by the geometric projection effect, i.e., a CME moves along the Sun-observer line. In other words, it would appear as a non-halo CME if viewed from the side. However, to our surprise, we found that 41 out of 62 events (66%) were observed as halo CMEs by all coronagraphs. This result suggests that a halo CME is not just a matter of the propagating direction. In addition, we show that a CME propagating normal to the line of sight can be observed as a halo CME due to the associated fast magnetosonic wave or shock front. We conclude that the apparent width of CMEs, especially halos or partial halos is driven by the existence and the extent of the associated waves or shocks and does not represent an accurate measure of the CME ejecta size. This effect needs to be taken into careful consideration in space weather predictions and modeling efforts.

  20. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star.

    PubMed

    Donati, J F; Moutou, C; Malo, L; Baruteau, C; Yu, L; Hébrard, E; Hussain, G; Alencar, S; Ménard, F; Bouvier, J; Petit, P; Takami, M; Doyon, R; Collier Cameron, A

    2016-06-30

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet–disk interactions. PMID:27324847

  1. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star

    NASA Astrophysics Data System (ADS)

    Donati, J. F.; Moutou, C.; Malo, L.; Baruteau, C.; Yu, L.; Hébrard, E.; Hussain, G.; Alencar, S.; Ménard, F.; Bouvier, J.; Petit, P.; Takami, M.; Doyon, R.; Cameron, A. Collier

    2016-06-01

    Hot Jupiters are giant Jupiter-like exoplanets that orbit their host stars 100 times more closely than Jupiter orbits the Sun. These planets presumably form in the outer part of the primordial disk from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is, however, unclear whether this occurs early in the lives of hot Jupiters, when they are still embedded within protoplanetary disks, or later, once multiple planets are formed and interact. Although numerous hot Jupiters have been detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we report that the radial velocities of the young star V830 Tau exhibit a sine wave of period 4.93 days and semi-amplitude 75 metres per second, detected with a false-alarm probability of less than 0.03 per cent, after filtering out the magnetic activity plaguing the spectra. We find that this signal is unrelated to the 2.741-day rotation period of V830 Tau and we attribute it to the presence of a planet of mass 0.77 times that of Jupiter, orbiting at a distance of 0.057 astronomical units from the host star. Our result demonstrates that hot Jupiters can migrate inwards in less than two million years, probably as a result of planet-disk interactions.

  2. Understanding coronal mass ejections and associated shocks in the solar corona by merging multiwavelength observations

    SciTech Connect

    Zucca, P.; Gallagher, P. T.; Pick, M.; Démoulin, P.; Kerdraon, A.; Lecacheux, A.

    2014-11-01

    Using multiwavelength imaging observations, in EUV, white light and radio, and radio spectral data over a large frequency range, we analyzed the triggering and development of a complex eruptive event. This one includes two components, an eruptive jet and a coronal mass ejection (CME), which interact during more than 30 minutes, and can be considered as physically linked. This was an unusual event. The jet is generated above a typical complex magnetic configuration that has been investigated in many former studies related to the build-up of eruptive jets; this configuration includes fan-field lines originating from a corona null point above a parasitic polarity, which is embedded in one polarity region of a large active region. The initiation and development of the CME, observed first in EUV, does not show usual signatures. In this case, the eruptive jet is the main actor of this event. The CME appears first as a simple loop system that becomes destabilized by magnetic reconnection between the outer part of the jet and the ambient medium. The progression of the CME is closely associated with the occurrence of two successive type II bursts from a distinct origin. An important part of this study is the first radio type II burst for which the joint spectral and imaging observations were allowed: (1) to follow, step by step, the evolution of the spectrum and of the trajectory of the radio burst, in relationship with the CME evolution and (2) to obtain, without introducing an electronic density model, the B field and the Alfvén speed.

  3. Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation.

    PubMed

    Wang, Chunying; Zhang, Hao; Li, Fang; Zhu, Lingyan

    2010-09-01

    Bismuth tungstate (Bi2WO6) catalysts of different morphology were synthesized with a hydrothermal method by controlling the pH of the reaction solution. The properties of the synthesized catalysts were characterized and all catalysts presented high photoabsorption capacity in the range of UV light to visible light around 450 nm. The surface area of the catalysts decreased but the crystallinity increased with the pH of the hydrothermal reaction solution in the range of 4-11. It was found that the crystallinity of the catalysts played an important role on their degradation capacity to Bisphenol A (BPA). Bi2WO6 catalyst prepared at pH 11 displayed a mesoporous structure and it showed the highest photocatalytic activity to degrade BPA under simulated solar light irradiation. Nearly 100% of BPA with original concentration at 20 ppm was removed after 30 min irradiation in a solution with pH 10 and Bi2WO6 amount of 1.0 g L(-1). Furthermore, 86.6 and 99.1% of the total organic carbon was eliminated after 60 and 120 min irradiation, respectively. Only one intermediate at m/z 133 was observed by LC/MS and a simple pathway of BPA degradation by Bi2WO6 was proposed. PMID:20704289

  4. Detection of Biosignatures using Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Implications for the Search for Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Richardson, C. D.; Kotler, J. M.; Hinman, N. W.; Scott, J. R.

    2008-12-01

    Detection of bio/organic signatures, defined as an organic structure produced by living organisms or derived from other biogenic organic compounds, is essential to investigating the origin and distribution of extant or extinct life in the solar system. In conjunction with mineralogical, inorganic, and isotopic data, the detection and identification of bio/organic signatures can assist in linking biochemical and geochemical processes. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a proven method of obtaining bio/organic signatures from a range of geological materials. Sulfate salts were studied because they are found on Mars and Jovian satellites. The goal here was to determine (1) which combinations of bio/organic compounds and sulfate salts produced distinctive spectral signatures, and (2) the detection limit of the method. In these experiments, thenardite (Na2SO4) was mixed with stearic acid to determine the detection limit of GALDI-FTICR-MS, previously estimated to be 3 ppt, which corresponds to approximately 7 zeptomoles (10-21) per laser shot. All spectra were collected with little to no sample preparation and were acquired using a single laser shot. Unlike conventional analytical practices, the signal-to-noise ratio increased as the concentration of bio/organic compounds decreased relative to the mineral host. In combination with thenardite, aromatic amino acids were observed to undergo simple cation attachment ([M+Na]+) due to the π-bonded aromatic ring. Subsequent cation substitution of the carboxyl group led to formation of peaks representing double cation attachment ([M-H+Na]Na+). Spectra from naturally occurring thenardite and jarosite (XFe3(OH)6(SO4)2) revealed the presence of high mass cluster ions; analysis of their isotopic distribution suggested the presence of bio/organic compounds. High mass cluster ions, both organic and inorganic, readily

  5. Measurements and an empirical model of the Zodiacal brightness as observed by the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, Andrew; Bisi, Mario M.; Clover, John M.; Hick, P. Paul; Jackson, Bernard V.; Kuchar, Thomas A.; Price, Stephan D.

    2016-07-01

    The Solar Mass Ejection Imager (SMEI) provided near-full-sky broadband visible-light photometric maps for 8.5 years from 2003 to 2011. At a cadence of typically 14 maps per day, these each have an angular resolution of about 0.5º and differential photometric stability of about 1% throughout this time. When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. This sky coverage enables the formation of an empirical zodiacal-light model for observations at 1 AU which summarizes the SMEI data. When this is subtracted, analysis of the ensemble of residual sky maps sets upper limits of typically 1% for potential secular change of the zodiacal light for each of nine chosen ecliptic sky locations. An overall long-term photometric stability of 0.25% is certified by analysis of three stable sidereal objects. Averaging the nine ecliptic results together yields a 1-σ upper limit of 0.3% for zodiacal light change over this 8.5 year period.

  6. Measurements and an Empirical Model of the Zodiacal Brightness as Observed by the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Buffington, A.; Bisi, M. M.; Clover, J. M.; Hick, P. P.; Jackson, B. V.; Kuchar, T. A.; Price, S. D.

    2015-12-01

    The Solar Mass Ejection Imager (SMEI) has provided near-full-sky broadband visible-light photometric maps for 8.5 years from 2003 to 2011. These have an angular resolution of about 0.5º and differential photometric stability of about 1% per map throughout this time. When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. This sky coverage enables the formation of an empirical zodiacal-light model for observations at 1 AU which summarizes the SMEI data. When this is subtracted, analysis of the ensemble of residual sky maps sets upper limits of typically 1% for potential secular change of the zodiacal light for each of nine chosen ecliptic sky locations. An overall long-term photometric stability of 0.25% is certified by analysis of three stable sidereal objects. Averaging the nine ecliptic results together yields a 1-σ upper limit of 0.3% for zodiacal light change over this 8.5 year period.

  7. Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/Coronal Mass Ejection Eruptive Event

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; McAteer, R. T. James; Dennis, Brian R.; Young, C. Alex

    2010-01-01

    Observational evidence is presented for the merging of a downward-propagating plasmoid with a looptop kernel during an occulted limb event on 2007 January 25. RHESSI light curves in the 9-18 keV energy range, as well as that of the 245 MHz channel of the Learmonth Solar Observatory, show enhanced nonthermal emission in the corona at the time of the merging suggesting that additional particle acceleration took place. This was attributed to a secondary episode of reconnection in the current sheet that formed between the two merging sources. RHESSI images were used to establish a mean downward velocity of the plasmoid of 12 km/s. Complementary observations from the SECCHI suite of instruments on board STEREO-B showed that this process occurred during the acceleration phase of the associated coronal mass ejection (CME). From wavelet-enhanced EUV Imager, image evidence of inflowing magnetic field lines prior to the CME eruption is also presented. The derived inflow velocity was found to be 1.5 km/s. This combination of observations supports a recent numerical simulation of plasmoid formation, propagation, and subsequent particle acceleration due to the tearing mode instability during current sheet formation.

  8. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  9. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    NASA Technical Reports Server (NTRS)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  10. Evaluation of solar cells for potential space satellite power applications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

  11. Structural analysis of isomeric chondroitin sulfate oligosaccharides using regioselective 6-O-desulfation method and tandem mass spectrometry.

    PubMed

    Chen, Shu-Ting; Her, Guor-Rong

    2014-09-16

    A strategy based on a regioselective 6-O-desulfation reaction and negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)) was developed for the structural delineation of isomeric chondroitin sulfate oligosaccharides. Product ions resulting from the glycosidic cleavage provided information about the number of sulfate groups in each sugar residue. After the regioselective 6-O-desulfation reaction, the number of sulfate groups on each residue was obtained using a tandem mass spectrometry analysis of the reaction product. The sulfation pattern could be obtained based on the product ions of analytes before and after the desulfation reaction. The strategy was demonstrated using a series of tetrasaccharides prepared from shark cartilage chondroitin sulfate D. Among the 12 identified tetrasaccharides, six structures had not been reported before.

  12. Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.; Brandt, J. C.; Zwickl, R. D.; Bame, S. J.

    1983-01-01

    Solar wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979L on 1980 February 6. It was suggested that the tail position angle change occurred in response to a solar wind velocity shear across which the polar component changed by approx. 50 km s-1. The present activity was caused by noncorotating, disturbed plasma flows probably associated with an Importance 1B solar flare.

  13. Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance

    SciTech Connect

    Niedner, M.B. Jr.; Brandt, J.C.; Zwickl, R.D.; Bame, S.J.

    1983-11-01

    Solar wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979L on 1980 February 6. It was suggested that the tail position angle change occurred in response to a solar wind velocity shear across which the polar component changed by approx. 50 km s-1. The present activity was caused by noncorotating, disturbed plasma flows probably associated with an Importance 1B solar flare.

  14. Low-frequency observations of drifting, non-thermal continuum radio emission associated with the solar coronal mass ejections

    SciTech Connect

    Ramesh, R.; Kishore, P.; Barve, Indrajit V.; Kathiravan, C.; Mulay, Sargam M.; Wang, T. J.

    2013-11-20

    Low-frequency (80 MHz) imaging and spectral (≈85-20 MHz) observations of moving type IV radio bursts associated with coronal mass ejections (CMEs) from the Sun on three different days are reported. The estimated drift speed of the bursts is in the range ≈150-500 km s{sup –1}. We find that all three bursts are most likely due to second harmonic plasma emission from the enhanced electron density in the associated white-light CMEs. The derived maximum magnetic field strength of the latter is B ≈ 4 G at a radial distance of r ≈ 1.6 R {sub ☉}.

  15. Performance Comparisons and Down Selection of Small Motors for Two-Blade Heliogyro Solar Sail 6U CubeSat

    NASA Technical Reports Server (NTRS)

    Wiwattananon, Peerawan; Bryant, Robert G.

    2015-01-01

    This report compiles a review of 130 commercial small scale motors (piezoelectric and electric motors) and almost 20 researched-type small scale piezoelectricmotors for potential use in a 2 blades Heliogyro Solar Sail 6U CubeSat. In this application, a motor and gearhead (drive system) will deploy a roll of solar sailthin film (2 um thick)accommodated in a 2U CubeSat (100 x 200 x 100 mm) housing. The application requirements are: space rated, output torque at fulldeployment of 0.8 Nm, reel speed of 3 rpm, drive system weight limited to 150 grams, diameter limited to 50 mm, and the length not to exceed 40 mm. The 50mm diameter limit was imposed as motors with larger diameters would likely weigh too much and use more space on the satellite wall. This would limit theamount of the payload. The motors performance are compared between small scale, volume within 3x102 cm3 (3x105 mm3), commercial electric DC motors,commercial piezoelectric motors, and researched-type (non-commercial) piezoelectric motors extracted from scientific and product literature. The comparisonssuggest that piezoelectric motors without a gearhead exhibit larger output torque with respect to their volume and weight and require less input power toproduce high torque. A commercially available electric motor plus a gearhead was chosen through a proposed selection process to meet the applications designrequirements.

  16. A solvable model for fermion masses on a warped 6D world with the extra 2D sphere

    NASA Astrophysics Data System (ADS)

    Kokado, Akira; Saito, Takesi

    2015-03-01

    In a warped 6D world with an extra two-dimensional sphere, we propose an exactly solvable model for fermion masses with zero mode. The warp factor is given by ϕ(θ, φ) = sin θcos φ, which is a solution to the 6D Einstein equation with the bulk cosmological constant Λ and the energy-momentum tensor of the bulk matter fields. Our model provides another possibility of obtaining fermion zero mode, rather than traditional model based on Dirac's monopole.

  17. Solar Optics

    SciTech Connect

    Rozsnyai, B.F.

    2000-10-04

    Solar opacities are presented from the center of the Sun to the photosphere. The temperatures, densities and hydrogen mass fractions are taken from the standard solar model. For the heavy element abundances the Grevesse mixture is used. In the solar interior photoabsorption is dominated by free-free absorption and they compare two sets of opacities based on two different models for the inverse bremsstrahlung. The radiative luminosities calculated from the two sets of opacities are compared with those predicted by previous models of the standard solar model and also with the known luminosity of the Sun. pressures, specific heats and the speed of sound in the solar plasma are also presented.

  18. THE DISCOVERY OF THE YOUNGEST MOLECULAR OUTFLOW ASSOCIATED WITH AN INTERMEDIATE-MASS PROTOSTELLAR CORE, MMS-6/OMC-3

    SciTech Connect

    Takahashi, Satoko; Ho, Paul T. P.

    2012-01-20

    We present subarcsecond resolution HCN (4-3) and CO (3-2) observations made with the Submillimeter Array, toward an extremely young intermediate-mass protostellar core, MMS 6-main, located in the Orion Molecular Cloud 3 region (OMC-3). We have successfully imaged a compact molecular outflow lobe ( Almost-Equal-To 1000 AU) associated with MMS 6-main, which is also the smallest molecular outflow ever found in the intermediate-mass protostellar cores. The dynamical timescale of this outflow is estimated to be {<=}100 yr. The line width dramatically increases downstream at the end of the molecular outflow ({Delta}v {approx} 25 km s{sup -1}) and clearly shows the bow-shock-type velocity structure. The estimated outflow mass ( Almost-Equal-To 10{sup -4} M{sub Sun }) and outflow size are approximately two to four orders and one to three orders of magnitude smaller, respectively, while the outflow force ( Almost-Equal-To 10{sup -4} M{sub Sun} km s{sup -1} yr{sup -1}) is similar, compared to the other molecular outflows studied in OMC-2/3. These results show that MMS 6-main is a protostellar core at the earliest evolutionary stage, most likely shortly after the second core formation.

  19. Determination of the 235U Mass and Enrichment within Small UF6 Cylinders via a Neutron Coincidence Well Counting System

    SciTech Connect

    McElroy, Robert Dennis; Croft, Dr. Stephen; Young, Brian M; Venkataraman, Ram

    2011-01-01

    The construction of three new uranium enrichment facilities in the United States has sparked renewed interest in the development and enhancement of methods to determine the enrichment and fissile mass content of UF6 cylinders. We describe the design and examine the expected performance of a UF6 bottle counter developed for the assay of Type 5A cylinders. The counter, as designed and subsequently constructed, is a tall passive neutron well counter with a clam-shell configuration and graphite end plugs operated in fast neutron mode. Factory performance against expectation is described. The relatively high detection efficiency and effectively 4 detection geometry provide a near-ideal measurement configuration, making the UF6 bottle counter a valuable tool for the evaluation of the neutron coincidence approach to UF6 cylinder assay. The impacts of non-uniform filling, voids, enrichment, and mixed enrichments are examined

  20. Solar energetic particle event and radio bursts associated with the 1996 July 9 flare and coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Laitinen, T.; Klein, K.-L.; Kocharov, L.; Torsti, J.; Trottet, G.; Bothmer, V.; Kaiser, M. L.; Rank, G.; Reiner, M. J.

    2000-08-01

    Using spaceborne particle and gamma-ray detection and radio diagnostics we study solar energetic particle (SEP) production in the 1996 July 9 event. This event is associated with an impulsive soft X-ray flare (9:10 UT) and a coronal mass ejection (CME). In a global classification the event is considered as mixed-impulsive. A sequence of acceleration processes is identified, starting early in the flare impulsive phase and continuing throughout the period when the CME propagated up to several Rsolar above the photosphere: (1) Gamma-ray, hard X-ray and cm-wave emitting particles seen during the flare impulsive phase in the low corona had no counterpart at the Solar and Heliospheric Observatory (SoHO) spacecraft. (2) Electrons accelerated at a coronal shock wave were revealed by decimetric- to-metric type II radio emission and by simultaneous radio signatures of beams traveling to 1 AU. (3) Mildly relativistic (>=250 keV) electrons detected by SoHO did not correspond to these shock-accelerated populations, but to later mainly impulsive injection which was associated with radio brightenings over a large range of coronal altitudes. (4) Energetic protons detected by SoHO were accelerated during about 100 min after the flare impulsive phase with a gradually evolving production profile that bore some similarity with the time profile of broadband metric (type IV) emission. (5) While all other particle signatures decayed, a second period of interplanetary proton production took place >=2 hours after flare onset. The first, 100 min period of SEP acceleration, post-impulsive phase coronal acceleration, is definitely dominant in mildly relativistic electrons. Two acceleration periods nearly equally contribute to the production of ~ 20 MeV protons. However, the second period is more productive in low energy, ~ 1 MeV, protons. The timing of the SEP injections indicates that neither the impulsive flare acceleration in the low corona nor the interplanetary CME at >= 10 Rsolar are

  1. Heterogeneous Distribution of ^2^6Al at the Birth of the Solar System: Evidence from Corundum-Bearing Refractory Inclusions

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Makide, K.; Nagashima, K.; Huss, G. R.; Hellebrand, E.; Petaev, M. I.

    2012-03-01

    Corundum-bearing CAIs recorded heterogeneous distribution of ^2^6Al at the birth of the solar system. We suggest that ^2^6Al was injected into the protosolar molecular cloud core by a wind from a massive star and was later homogenized through the disk.

  2. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  3. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  4. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients

    PubMed Central

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Yang, Shwu-Huey

    2015-01-01

    Background n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. Methods In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. Results The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. Conclusion Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients. PMID:26466314

  5. Results from an International Measurement Round Robin of III-V Triple Junction Solar Cells under Air Mass Zero

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin; Nocerino, John; Khan, Osman; Cravens, Robert; Valles, Juan; Toporow, Chantal; Gomez, Trinidad,; Bazan, Loreto Pazos; Bailey, Sheila

    2006-01-01

    This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.

  6. ‘Fight TB with BCG’: Mass Vaccination Campaigns in the British Caribbean, 1951–6

    PubMed Central

    Altink, Henrice

    2014-01-01

    Based on a wide range of primary materials, including WHO reports and Colonial Office correspondence, this article examines the UNICEF/WHO-funded mass BCG campaigns that were carried out in seven Caribbean colonies between 1951 and 1956. It explores the reasons behind them, their nature and aftermath and also compares them to those in other non-European countries and discusses them within a context of decolonisation. In doing so, it not only adds to the scholarship on TB in non-European contexts, which had tended to focus on Africa and Asia, but also to the relatively new field of Caribbean medical history and the rapidly expanding body of work on international health, which has paid scant attention to the Anglophone Caribbean and the pre-independence period. PMID:25284891

  7. A two-dimensional simulation of the radial and latitudinal evolution of a solar wind disturbance driven by a fast, high-pressure coronal mass ejection

    SciTech Connect

    Riley, P.; Gosling, J.T.; Pizzo, V.J.

    1997-07-01

    Using a hydrodynamic simulation, we have studied the two-dimensional (symmetry in the azimuthal direction) evolution of a fast, high-pressure coronal mass ejection (CME) ejected into a solar wind with latitudinal variations similar to those observed by Ulysses. The latitudinal structure of the ambient solar wind in the meridional plane is approximated by two zones: At low latitudes ({lt}20{degree}) the solar wind is slow and dense, while at higher latitudes the solar wind is fast and tenuous. The CME is introduced into this ambient wind as a bell-shaped pressure pulse in time, spanning from the equator to 45{degree} with a speed and temperature equal to that of the high-latitude solar wind. Such an ejection profile produces radically different disturbance profiles at low and high latitudes. The low-latitude portion of the ejecta drives a highly asymmetric disturbance because of the relative difference in speed between the fast CME and slower ambient solar wind ahead. The high-latitude portion of the same ejecta material drives a much more radially symmetric disturbance because the relative difference in pressure between the CME and ambient background plasma dominates the dynamics. The simulations reveal other interesting features. There is significant distortion of the CME in the interplanetary medium. By {approximately}1AU the CME has effectively separated (in radius as well as latitude) into two pieces. The radial separation is due to the strong velocity shear between the slow and fast ambient solar wind. The latitudinal separation arises from pressure gradients associated with rarefaction regions that develop as the CME propagates outward. There is significant poleward motion of the highest-latitude portion of the CME and its associated disturbance. The main body of the CME expands poleward by {approximately}18{degree}, while the forward and reverse waves (produced by the overexpanding portion of the CME) propagate all the way to the pole. (Abstract Truncated)

  8. Il6 gene promoter polymorphism (-174G/C) influences the association between fat mass and cardiovascular risk factors.

    PubMed

    Moleres, A; Rendo-Urteaga, T; Azcona, C; Martínez, J A; Gómez-Martínez, S; Ruiz, J R; Moreno, L A; Marcos, A; Marti, A

    2009-12-01

    During the last decades, the prevalence of obesity has increased rapidly among young people. A polymorphism in the promoter region of the IL6 gene (-174G/C), has been previously reported to be involved in obesity and metabolic syndrome development. Therefore, the aim of the study was to examine whether the IL6-174G/C polymorphism influence the association of body fat with low-grade inflammatory markers and blood lipids and lipoproteins in Spanish adolescents. 504 Spanish adolescents participating in the AVENA study were genotyped for the-174G/C polymorphism of the IL6 gene. Anthropometric and body composition measurements were taken and blood samples were collected for plasma molecules determinations. No differences between genotypes were observed in anthropometric values, body composition measurements and plasma markers concentration. Physical activity level differ between genotypes with subjects carrying the C allele of the polymorphism being significantly (p<0.05) more active than GG subjects. The association between body fat mass and plasma glucose was influenced by the -174G/C polymorphism of the IL6 gene. Subjects carrying the C allele of the mutation seem to have higher values of lipoprotein (a) and C-reactive protein as their percentage of body fat mass increase. Our results suggest that this promoter polymorphism influences the association between adiposity and some plasma markers.

  9. The observation of large semi-major axis Centaurs: Testing for the signature of a planetary-mass solar companion

    NASA Astrophysics Data System (ADS)

    Gomes, Rodney S.; Soares, Jean S.; Brasser, Ramon

    2015-09-01

    Several objects whose perihelion lies between Jupiter and Neptune have large semi-major axes a > 100 au, two of them having semi-major axis above 1000 au. Since these objects' perihelia share the same region as the classical Centaurs, a coherent nomenclature for them could be large semi-major axis Centaurs (Laces). It has been argued that the classical Centaurs, with semi-major axes below 50 au, originate from the Scattered Disk. However, the Laces most likely originate from the Oort Cloud. We determine the brightest object in the Laces, classical Centaurs (with semi-major axis >20 au) and Scattered Disk populations using a procedure that introduces observational bias to a set of objects in orbits obtained from numerical simulations of the evolution of the Oort cloud and Scattered Disk in the framework of the Nice model. The application of the procedure consistently determines that the brightest distant Lace (semi-major axis above 500 au) is fainter than the brightest classical Centaur by about one magnitude, no matter what parameters were used for the procedure. However, reality shows a reversed situation: there is an excess of Laces with lower visual magnitudes. It is not clear why this is the case. We test whether a planetary-mass solar companion could produce an excess of bright Laces in comparison with classical Centaurs. We find that with the companion there is an excess of luminous Laces compared to when there is no companion. However, the companion model also produces many classical Centaurs with lower visual magnitudes than the observed ones. Thus we conclude that the companion does not solve this visual magnitude inconsistency, although the results are in general more coherent under the model with the companion than without.

  10. Correlation Analyses Between the Characteristic Times of Gradual Solar Energetic Particle Events and the Properties of Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Pan, Z. H.; Wang, C. B.; Wang, Yuming; Xue, X. H.

    2011-06-01

    It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 - 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.

  11. The Properties of Solar Energetic Particle Event-Associated Coronal Mass Ejections Reported in Different CME Catalogs

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; von Rosenvinge, T. T.; Cane, H. V.

    2015-06-01

    We compare estimates of the speed and width of coronal mass ejections (CMEs) in several catalogs for the CMEs associated with ˜ 200 solar energetic particle (SEP) events in 2006 - 2013 that included 25 MeV protons. The catalogs used are: CDAW, CACTUS, SEEDS, and CORIMP, all derived from observations by the LASCO coronagraphs on the SOHO spacecraft, the CACTUS catalog derived from the COR2 coronagraphs on the STEREO-A and -B spacecraft, and the DONKI catalog, which uses observations from SOHO and the STEREO spacecraft. We illustrate how, for this set of events, CME parameters can differ considerably in each catalog. The well-known correlation between CME speed and proton event intensity is shown to be similar for most catalogs, but this is largely because it is determined by a few large particle events associated with fast CMEs, and small events associated with slow CMEs. Intermediate particle events "shuffle" in position when speeds from different catalogs are used. Quadrature spacecraft CME speeds do not improve the correlation. CME widths also vary widely between catalogs, and they are influenced by plane-of-the-sky projection and how the width is inferred from the coronagraph images. The high degree of association (˜ 50 %) between the 25 MeV proton events and "full halo" (360∘-width) CMEs as defined in the CDAW catalog is removed when other catalogs are considered. Using CME parameters from the quadrature spacecraft, the SEP intensity is correlated with CME width, which is also correlated with CME speed.

  12. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets

    NASA Technical Reports Server (NTRS)

    Beaulieu, J.-P.; Bennett, D. P.; Batista, V.; Fukui, A.; Marquette, J.-B.; Brillant, S.; Cole, A. A.; Rogers, L. A.; Sumi, T.; Abe, F.

    2016-01-01

    Two cold gas giant planets orbiting a G-type main-sequence star in the galactic disk were previously discovered in the high-magnification microlensing event OGLE-2012-BLG-0026. Here, we present revised host star flux measurements and a refined model for the two-planet system using additional light curve data. We performed high angular resolution adaptive optics imaging with the Keck and Subaru telescopes at two epochs while the source star was still amplified. We detected the lens flux, H = 16.39 +/- 0.08. The lens, a disk star, is brighter than predicted from the modeling in the original study. We revisited the light curve modeling using additional photometric data from the B and C telescope in New Zealand and CTIO 1.3 m H-band light curve. We then include the Keck and Subaru adaptive optic observation constraints. The system is composed of an approximately 4-9 Gyr lens star of M(sub lens) = 1.06 +/- 0.05 solar mass at a distance of D(sub lens) = 4.0 +/- 0.3 kpc, orbited by two giant planets of 0.145 +/- 0.008 M(sub Jup) and 0.86 +/- 0.06 M(sub Jup), with projected separations of 4.0 +/- 0.5 au and 4.8 +/- 0.7 au, respectively. Because the lens is brighter than the source star by 16 +/- 8% in H, with no other blend within one arcsec, it will be possible to estimate its metallicity using subsequent IR spectroscopy with 8-10 m class telescopes. By adding a constraint on the metallicity it will be possible to refine the age of the system.

  13. Explaining the CMS excesses, baryogenesis, and neutrino masses in a E6 motivated U (1 )N model

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Hati, Chandan; Sarkar, Utpal

    2016-01-01

    We study the superstring inspired E6 model motivated U (1 )N extension of the supersymmetric standard model to explore the possibility of explaining the recent excess CMS events and the baryon asymmetry of the Universe in eight possible variants of the model. In light of the hints from short-baseline neutrino experiments at the existence of one or more light sterile neutrinos, we also study the neutrino mass matrices dictated by the field assignments and the discrete symmetries in these variants. We find that all the variants can explain the excess CMS events via the exotic slepton decay, while for a standard choice of the discrete symmetry four of the variants have the feature of allowing high scale baryogenesis (leptogenesis). For one other variant three body decay induced soft baryogenesis mechanism is possible which can induce baryon number violating neutron-antineutron oscillation. We also point out a new discrete symmetry which has the feature of ensuring proton stability and forbidding tree level flavor changing neutral current processes while allowing for the possibility of high scale leptogenesis for two of the variants. On the other hand, neutrino mass matrix of the U (1 )N model variants naturally accommodates three active and two sterile neutrinos which acquire masses through their mixing with extra neutral fermions giving rise to interesting textures for neutrino masses.

  14. Study of Space Weather and Environment Effects on the Next-Generation Solar Cell Technology Flying on the AeroCube-6 Twin CubeSat Mission

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Walker, D.; Blake, J. B.; Nocerino, J. C.; Liu, S. H.; Hardy, B. S.; Hinkley, D. A.; O'Brien, T. P., III; Mann, C. J.; Yue, Y.; Looper, M. D.; Crain, W. R., Jr.

    2015-12-01

    The AeroCube-6 (AC6) mission began operation in a near-circular 624×716 km 98° inclination LEO in June 2014 and consists of two identical 0.5U CubeSats (AC6-A and AC6-B) each carrying multiple experimental payloads. The CubeSats carry instrumentation for obtaining performance data on next-generation multi-junction solar cell technology flying in space for the first time. Each CubeSat's solar cell experiment consists of two of the same solar cell, with one solar cell protected by a standard cover glass and the other cell flying without protection. The objective of the flight experiment is to observe the solar cell technology's performance and degradation upon exposure to the space environment. Each CubeSat also has three miniature dosimeters that monitor different particle species of different energies that are associated with space weather and environmental effects on spacecraft systems. AC6-A carries the following dosimeters: a thin window low LET variant sensitive to >50 keV electrons and >600 keV protons, a thin window high LET variant sensitive to >600 keV protons, and a standard dosimeter sensitive to >1 MeV electrons and >20 MeV protons. AC6-B carries the same thin window variants and replaces the standard dosimeter with a high LET variant sensitive to >20 MeV protons only to enable particle species separation (and derivation of >1 MeV electron dose) when the two CubeSats are flying in close proximity. The observed degradation of the uncovered solar cells combined with dosimetry measurements indicate the presence of a significant population of low-energy (below a few hundreds keV) protons likely contributed to the degradation. Such CubeSat experiments are a low cost, rapid return method to study the impacts of space weather on current and future satellite components and systems.

  15. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  16. Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance

    SciTech Connect

    Niedner, M.B. Jr.; Brandt, J.C.; Zwickl, R.D.; Bame, S.J.

    1982-01-01

    Solar-wind plasma data from the ISEE-3 and Helios 2 spacecraft have been examined in order to explain a uniquely rapid 10/sup 0/ turning of the plasma tail of comet Bradfield 1979L on 1980 February 6. An earlier study conducted before the availability of in situ solar-wind data (Brandt et al., 1980) suggested that the tail position angle change occurred in response to a solar-wind velocity shear across which the polar component changed by approx. 50 km s/sup -1/. The present contribution confirms this result and further suggests that the comet-tail activity was caused by non-corotating, disturbed plasma flows probably associated with an Importance 1B solar flare.

  17. Interaction of the plasma tail of comet Bradfield 1979L on 1980 February 6 with a possibly flare-generated solar-wind disturbance

    NASA Technical Reports Server (NTRS)

    Niedner, M. B., Jr.; Brandt, J. C.; Zwickl, R. D.; Bame, S. J.

    1983-01-01

    Solar-wind plasma data from the ISEE-3 and Helios 2 spacecraft were examined in order to explain a uniquely rapid 10 deg turning of the plasma tail of comet Bradfield 1979l on 1980 February 6. An earlier study conducted before the availability of in situ solar-wind data (Brandt et al., 1980) suggested that the tail position angle change occurred in response to a solar-wind velocity shear across the polar component changed by approximately 50 km/s. The present contribution confirms this result and further suggests that the comet-tail activity was caused by non-corotating, disturbed plasma flows probably associated with an Importance 1B solar flare.

  18. SPATIALLY RESOLVING SUBSTRUCTURES WITHIN THE MASSIVE ENVELOPE AROUND AN INTERMEDIATE-MASS PROTOSTAR: MMS 6/OMC-3

    SciTech Connect

    Takahashi, Satoko; Ho, Paul T. P.; Saigo, Kazuya; Tomida, Kengo

    2012-06-10

    With the Submillimeter Array, the brightest (sub)millimeter continuum source in the Orion Molecular Cloud-2/3 region, MMS 6, has been observed in the 850 {mu}m continuum emission with approximately 10 times better angular resolution than previous studies ( Almost-Equal-To 0.''3, Almost-Equal-To 120 AU at Orion). The deconvolved size, the mass, and the column density of MMS 6-main are estimated to be 0.''32 Multiplication-Sign 0.''29 (132 AU Multiplication-Sign 120 AU), 0.29 M{sub Sun }, and 2.1 Multiplication-Sign 10{sup 25} cm{sup -2}, respectively. The estimated extremely high mean number density, 1.5 Multiplication-Sign 10{sup 10} cm{sup -3}, suggests that MMS 6-main is likely optically thick at 850 {mu}m. We compare our observational data with three theoretical core models: prestellar core, protostellar core + disk-like structure, and first adiabatic core. These comparisons clearly show that the observational data cannot be modeled as a simple prestellar core with a gas temperature of 20 K. A self-luminous source is necessary to explain the observed flux density in the (sub)millimeter wavelengths. Our recent detection of a very compact and energetic outflow in the CO (3-2) and HCN (4-3) lines supports the presence of a protostar. We suggest that MMS 6 is one of the first cases of an intermediate-mass protostellar core at an extremely young stage. In addition to the MMS 6-main peak, we have also spatially resolved a number of spiky structures and sub-clumps, distributed over the central 1000 AU. The masses of these sub-clumps are estimated to be 0.066-0.073 M{sub Sun }, which are on the order of brown dwarf masses. Higher angular resolution and higher sensitivity observations with ALMA and EVLA will reveal the origin and nature of these structures such as whether they are originated from fragmentations, spiral arms, or inhomogeneity within the disk-like structures/envelope.

  19. 8.6% Efficient CZTSSe Solar Cells Sprayed from Water-Ethanol CZTS Colloidal Solutions.

    PubMed

    Larramona, Gerardo; Bourdais, Stéphane; Jacob, Alain; Choné, Christophe; Muto, Takuma; Cuccaro, Yan; Delatouche, Bruno; Moisan, Camille; Péré, Daniel; Dennler, Gilles

    2014-11-01

    Copper zinc tin sulfide-selenide, Cu2ZnSn(S1-xSex)4 (CZTSSe), thin film photovoltaic devices were fabricated using a fast and environmentally friendly preparation method, consisting of the following steps: An instantaneous synthesis of a Cu-Zn-Sn-S (no Se) colloid, a nonpyrolytic spray of a dispersion of this colloid in a water-ethanol mixture, and a sequential annealing first in a N2 atmosphere and second in a Se atmosphere. The achievement of cell efficiencies up to 8.6% under AM1.5G (cell area 0.25 cm(2)) and without antireflecting coating indicates that this method can compete with other vacuum-based or more complex wet deposition methods. PMID:26278747

  20. A Novel 14C-Postlabeling Assay Using Accelerator Mass Spectrometry For the Detection of O6-Methyldeoxyguanosine Adducts

    SciTech Connect

    Thompkins, E M; Farmer, P B; Lamb, J H; Jukes, R; Dingley, K; Ubick, E A; Turteltaub, K W; Martin, E A; Brown, K

    2005-11-17

    Accelerator mass spectrometry (AMS) is currently one of the most sensitive methods available for the trace detection of DNA adducts and is particularly valuable for measuring adducts in humans or animal models. However, the standard approach requires administration of a radiolabeled compound. As an alternative, we have developed a preliminary {sup 14}C-postlabeling assay for detection of the highly mutagenic O{sup 6}-MedG, by AMS. Procedures were developed for derivatizing O{sup 6}-MedG using unlabeled acetic anhydride. Using conventional LC-MS analysis, the limit of detection for the major product, triacetylated O{sup 6}-MedG, was 10 fmoles. On reaction with {sup 14}C-acetic anhydride, using a specially designed enclosed system, the predominant product was {sup 14}C-di-acetyl O{sup 6}-MedG. This change in reaction profile was due to a modification of the reaction procedure, introduced as a necessary safety precaution. The limit of detection for {sup 14}C-diacetyl O{sup 6}-MedG by AMS was determined as 79 attomoles, {approx}18,000 fold lower than that achievable by LSC. Although the assay has so far only been carried out with labeled standards, the degree of sensitivity obtained illustrates the potential of this assay for measuring O{sup 6}-MedG levels in humans.

  1. Identification of Dimethyldioctadecylammonium Ion (m/z 550.6) and Related Species (m/z 522.6, 494.6) as a Source of Contamination in Mass Spectrometry

    PubMed Central

    Manier, M. Lisa; Cornett, D. Shannon; Hachey, David L.; Caprioli, Richard M.

    2008-01-01

    Chemical contamination can be one of the more common problems encountered when performing trace-level analysis regardless of the analytical technique. Minimizing or eliminating background interferences can be a difficult task, so knowledge of the chemical composition of these contaminants can prove invaluable when it comes to identifying the source. Once the source is identified, proper steps may be taken to reduce or eliminate it. In this study, we report the identity of some commonly seen contaminants (m/z 550.6, 522.6, and 494.6) in electrospray ionization (ESI) mass spectrometry (MS). Through MS, tandem MS, accurate-mass and high-resolution measurements we have identified these background contaminants as being quaternary ammonium species that contain long-chain hydrocarbon groups, where m/z 550.6 is a dimethyldioctadecylammonium ion (C18, C18) and m/z 522.6 and 494.6 are similar in nature but have shorter alkyl-chain groups. The lipophilic nature of these compounds and the fact that they have molecular weights similar to lysophospholipids makes them a frequent contaminant in lipidomic studies. The likely sources of these compounds are commonly used personal and household products. PMID:18328728

  2. High latitude minor ion enhancements: A clue for studies of magnetosphere-atmosphere coupling. [using OGO 6 ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1973-01-01

    Unexpectedly abrupt and pronounced distributions of the thermal molecular ions NO(+), O2(+) and N2(+) were observed at mid and high latitudes by the OGO-6 ion mass spectrometer. These minor ions may reach concentration levels exceeding 1000 ions/cu cm at altitudes as great as 1000 km, suggestive of scale heights well in excess of those inferred from low and mid-latitude measurements, under relatively undisturbed conditions. The high latitude ion enhancements were observed to be narrowly defined in time and space, with molecular ion concentrations changing by as much as an order of magnitude between successive orbits.

  3. Gas chromatographic/mass spectrometric analyses of unknown analytical response in imported Fava beans: 4-chloro-6-methoxyindole.

    PubMed

    Petzinger, G; Barry, T L; Roach, J A; Musser, S M; Sphon, J

    1995-01-01

    A halogenated unidentified analytical response (UAR) was encountered in a number of imported Fava bean samples during the Food and Drug Administration's routine pesticide-monitoring program. Gas chromatographic/mass spectrometric (GC/MS) analyses identified the halogenated component as 4-chloro-6-methoxyindole, a naturally occurring promutagen in Fava beans that has been linked to incidents of gastric cancer. Data from electron impact, positive and negative chemical ionization, collision-induced dissociation, and deuteration studies of this compound are presented, along with GC retention time data.

  4. Gas chromatographic/mass spectrometric analyses of unknown analytical response in imported Fava beans: 4-chloro-6-methoxyindole.

    PubMed

    Petzinger, G; Barry, T L; Roach, J A; Musser, S M; Sphon, J

    1995-01-01

    A halogenated unidentified analytical response (UAR) was encountered in a number of imported Fava bean samples during the Food and Drug Administration's routine pesticide-monitoring program. Gas chromatographic/mass spectrometric (GC/MS) analyses identified the halogenated component as 4-chloro-6-methoxyindole, a naturally occurring promutagen in Fava beans that has been linked to incidents of gastric cancer. Data from electron impact, positive and negative chemical ionization, collision-induced dissociation, and deuteration studies of this compound are presented, along with GC retention time data. PMID:7756907

  5. Black hole mass estimates and emission-line properties of a sample of redshift z > 6.5 quasars

    SciTech Connect

    De Rosa, Gisella; Peterson, Bradley M.; Frank, Stephan; Venemans, Bram P.; Decarli, Roberto; Walter, Fabian; Gennaro, Mario; Simcoe, Robert A.; Dietrich, Matthias; McMahon, Richard G.; Hewett, Paul C.; Mortlock, Daniel J.; Simpson, Chris

    2014-08-01

    We present the analysis of optical and near-infrared spectra of the only four z > 6.5 quasars known to date, discovered in the UKIDSS-LAS and VISTA-VIKING surveys. Our data set consists of new Very Large Telescope/X-Shooter and Magellan/FIRE observations. These are the best optical/NIR spectroscopic data that are likely to be obtained for the z > 6.5 sample using current 6-10 m facilities. We estimate the black hole (BH) mass, the Eddington ratio, and the Si IV/C IV, C III]/C IV, and Fe II/Mg II emission-line flux ratios. We perform spectral modeling using a procedure that allows us to derive a probability distribution for the continuum components and to obtain the quasar properties weighted upon the underlying distribution of continuum models. The z > 6.5 quasars show the same emission properties as their counterparts at lower redshifts. The z > 6.5 quasars host BHs with masses of ∼10{sup 9} M{sub ☉} that are accreting close to the Eddington luminosity ((log(L{sub Bol}/L{sub Edd})) = –0.4 ± 0.2), in agreement with what has been observed for a sample of 4.0 < z < 6.5 quasars. By comparing the Si IV/C IV and C III]/C IV flux ratios with the results obtained from luminosity-matched samples at z ∼ 6 and 2 ≤ z ≤ 4.5, we find no evidence of evolution of the line ratios with cosmic time. We compare the measured Fe II/Mg II flux ratios with those obtained for a sample of 4.0 < z < 6.4 sources. The two samples are analyzed using a consistent procedure. There is no evidence that the Fe II/Mg II flux ratio evolves between z = 7 and z = 4. Under the assumption that the Fe II/Mg II traces the Fe/Mg abundance ratio, this implies the presence of major episodes of chemical enrichment in the quasar hosts in the first ∼0.8 Gyr after the Big Bang.

  6. Atlas of albedo and absorbed solar radiation derived from Nimbus 6 earth radiation budget data set, July 1975 to May 1978

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Bess, T. Dale; Rutan, David

    1989-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. The atlas is based on 35 months of continuous measurements from July 1975 through May 1978. The data were retrieved from measurements made by the shortwave wide field-of-view radiometer of the first Earth Radiation Budget (ERB) instrument, which flew on the Nimbus 6 spacecraft in 1975. Profiles of zonal mean albedos and absorbed solar radiation are tabulated. These geographical distributions are provided as a resource for studying the radiation budget of the earth. This atlas of albedo and absorbed solar radiation complements the atlases of outgoing longwave radiation by Bess and Smith in NASA-RP-1185 and RP-1186, also based on the Nimbus 6 and 7 ERB data.

  7. Mass spectrometric analysis of evolved CO2 during 9.6-μm CO2 irradiation of dental enamel

    NASA Astrophysics Data System (ADS)

    Xie, John; Fried, Daniel

    2002-06-01

    Carbon dioxide laser irradiation induces chemical changes in dental hard tissues including, dehydration, decomposition, disproportionation, and vaporization. Such changes can lead to either an increase or decrease in susceptibility to acid dissolution and adversely affect the bond strength to restorative materials. The objective of this study was to measure the evolved molecular species produced during laser irradiation. Samples of bovine enamel were irradiated by a 9.6 micrometers TEA CO2 laser in a vacuum chamber connected to a quadruple mass spectrometer. At irradiation intensities above 0.37 J/cm2 an increase in evolved CO2 and H2O were detected indicative of thermal decomposition of the mineral phase. The respective ion yields changed markedly with increasing number of laser pulses suggesting that the decomposition was complete after less than ten laser pulses at irradiation intensities from 0.4 to 0.8 J/cm2. Above irradiation intensities of 1.0 J/cm2 there is continual emission after 50 laser pulses indicative of vaporization and material removal. At higher ablative fluence, higher mass species were detected due to the ejection of hydroxyapatite. This study demonstrates that mass spectroscopy can be used to directly probe laser induced physical and chemical changes in dental hard tissue during laser ablation.

  8. A forward-reverse shock pair in the solar wind driven by over-expansion of a coronal mass ejection: Ulysses observations

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.; Scime, E.E. ); Pizzo, V.J. ); Goldstein, B.E. ); Balogh, A. )

    1994-02-01

    A previously unidentified type of solar wind forward-reverse shock pair has been observed by Ulysses at 4.64 AU and S32.5[degrees]. In contrast to most solar wind forward-reverse shock pairs, which are driven by the speed difference between fast solar wind plasma and slower plasma ahead, this particular shock pair was driven purely by the over-expansion of a coronal mass ejection, CME, in transit from the Sun. A simple numerical simulation indicates that the over-expansion was a result of a high initial internal plasma and magnetic field pressure within the CME. The CME observed at 4.64 AU had the internal field structure of a magnetic flux rope. This event was associated with a solar disturbance in which new magnetic loops formed in the corona almost directly beneath Ulysses [approximately]11 days earlier. This association suggests that the flux rope was created as a result of reconnection between the the legs' of neighboring magnetic loops within the rising CME.

  9. Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants: characterization, cloning, mass mapping and functional analysis of a novel "cell-wall invertase-like" specific 6-FEH from sugar beet (Beta vulgaris L.).

    PubMed

    Van den Ende, Wim; De Coninck, Barbara; Clerens, Stefan; Vergauwen, Rudy; Van Laere, André

    2003-12-01

    About 15% of flowering plant species synthesize fructans. Fructans serve mainly as reserve carbohydrates and are subject to breakdown by plant fructan exohydrolases (FEHs), among which 1-FEHs (inulinases) and 6-FEHs (levanases) can be differentiated. This paper describes the unexpected finding that 6-FEHs also occur in plants that do not synthesize fructans. The purification, characterization, cloning and functional analysis of sugar beet (Beta vulgaris L.) 6-FEH are described. Enzyme activity measurements during sugar beet development suggest a constitutive expression of the gene in sugar beet roots. Classical enzyme purification followed by in-gel trypsin digestion and mass spectrometry (quadruple-time-of-flight mass spectrometry (Q-TOF) MS) led to peptide sequence information used in subsequent RT-PCR based cloning. Levan-type fructans (beta-2,6) are the best substrates for the enzyme, while inulin-type fructans (beta-2,1) and sucrose are poorly or not degraded. Sugar beet 6-FEH is more related to cell wall invertases than to vacuolar invertases and has a low iso-electric point (pI), clearly different from typical high pI cell wall invertases. Poor sequence homology to bacterial or fungal FEHs makes an endophytic origin highly unlikely. The functionality of the 6-FEH cDNA was further demonstrated by heterologous expression in Pichia pastoris. As fructans are absent in sugar beet, the role of 6-FEH in planta is not obvious. Like chitinases and beta-glucanases hydrolysing cell-surface components of fungal plant pathogens, a straightforward working hypothesis for further research might be that plant 6-FEHs participate in hydrolysis (or prevent the formation) of levan-containing slime surrounding endophytic or phytopathogenic bacteria.

  10. Disaster victim investigation recommendations from two simulated mass disaster scenarios utilized for user acceptance testing CODIS 6.0.

    PubMed

    Bradford, Laurie; Heal, Jennifer; Anderson, Jeff; Faragher, Nichole; Duval, Kristin; Lalonde, Sylvain

    2011-08-01

    Members of the National DNA Data Bank (NDDB) of Canada designed and searched two simulated mass disaster (MD) scenarios for User Acceptance Testing (UAT) of the Combined DNA Index System (CODIS) 6.0, developed by the Federal Bureau of Investigation (FBI) and the US Department of Justice. A simulated airplane MD and inland Tsunami MD were designed representing a closed and open environment respectively. An in-house software program was written to randomly generate DNA profiles from a mock Caucasian population database. As part of the UAT, these two MDs were searched separately using CODIS 6.0. The new options available for identity and pedigree searching in addition to the inclusion of mitochondrial DNA (mtDNA) and Y-STR (short tandem repeat) information in CODIS 6.0, led to rapid identification of all victims. A Joint Pedigree Likelihood Ratio (JPLR) was calculated from the pedigree searches and ranks were stored in Rank Manager providing confidence to the user in assigning an Unidentified Human Remain (UHR) to a pedigree tree. Analyses of the results indicated that primary relatives were more useful in Disaster Victim Identification (DVI) compared to secondary or tertiary relatives and that inclusion of mtDNA and/or Y-STR technologies helped to link family units together as shown by the software searches. It is recommended that UHRs have as many informative loci possible to assist with their identification. CODIS 6.0 is a valuable technological tool for rapidly and confidently identifying victims of mass disasters.

  11. Disaster victim investigation recommendations from two simulated mass disaster scenarios utilized for user acceptance testing CODIS 6.0.

    PubMed

    Bradford, Laurie; Heal, Jennifer; Anderson, Jeff; Faragher, Nichole; Duval, Kristin; Lalonde, Sylvain

    2011-08-01

    Members of the National DNA Data Bank (NDDB) of Canada designed and searched two simulated mass disaster (MD) scenarios for User Acceptance Testing (UAT) of the Combined DNA Index System (CODIS) 6.0, developed by the Federal Bureau of Investigation (FBI) and the US Department of Justice. A simulated airplane MD and inland Tsunami MD were designed representing a closed and open environment respectively. An in-house software program was written to randomly generate DNA profiles from a mock Caucasian population database. As part of the UAT, these two MDs were searched separately using CODIS 6.0. The new options available for identity and pedigree searching in addition to the inclusion of mitochondrial DNA (mtDNA) and Y-STR (short tandem repeat) information in CODIS 6.0, led to rapid identification of all victims. A Joint Pedigree Likelihood Ratio (JPLR) was calculated from the pedigree searches and ranks were stored in Rank Manager providing confidence to the user in assigning an Unidentified Human Remain (UHR) to a pedigree tree. Analyses of the results indicated that primary relatives were more useful in Disaster Victim Identification (DVI) compared to secondary or tertiary relatives and that inclusion of mtDNA and/or Y-STR technologies helped to link family units together as shown by the software searches. It is recommended that UHRs have as many informative loci possible to assist with their identification. CODIS 6.0 is a valuable technological tool for rapidly and confidently identifying victims of mass disasters. PMID:20620126

  12. Monitoring the Dynamics of Monomer Exchange Using Electrospray Mass Spectrometry: The Case of the Dimeric Glucosamine-6-Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Chevreux, Guillaume; Atmanene, Cédric; Lopez, Philippe; Ouazzani, Jamal; Van Dorsselaer, Alain; Badet, Bernard; Badet-Denisot, Marie-Ange; Sanglier-Cianférani, Sarah

    2011-03-01

    Escherichia coli glucosamine-6-phosphate synthase (GlmS) is a dimeric enzyme from the glutamine-dependent amidotransferases family, which catalyses the conversion of D-fructose-6-phosphate (Fru6P) and glutamine (Gln) into D-glucosamine-6-phosphate (GlcN6P) and glutamate, respectively. Extensive X-ray crystallography investigations have been reported, highlighting the importance of the dimeric association to form the sugar active site as well as significant conformational changes of the protein upon substrate and product binding. In the present work, an approach based on time-resolved noncovalent mass spectrometry has been developed to study the dynamics of GlmS subunit exchange. Using 14N versus 15N labeled proteins, the kinetics of GlmS subunit exchange was monitored with the wild-type enzyme in the presence of different substrates and products as well as with the protein bearing a key amino acid mutation specially designed to weaken the dimer interface. Determination of rate constants of subunit exchange revealed important modifications of the protein dynamics: while glutamine, glutamate, and K603A mutation accelerates subunit exchange, Fru6P and GlcN6P totally prevent it. These results are described in light of the available structural information, providing additional useful data for both the characterization of GlmS catalytic process and the design of new GlmS inhibitors. Finally, time-resolved noncovalent MS can be proposed as an additional biophysical technique for real-time monitoring of protein dynamics.

  13. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  14. The Interaction between Coronal Mass Ejections (CMEs) and Coronal Holes (CHs) during the Solar Cycle 23 and its Geomagnetic Consequences

    NASA Astrophysics Data System (ADS)

    Mohamed, Amaal; Gopalswamy, Nat

    2016-07-01

    The interactions between the two large scale phenomena, coronal holes (CHs) and coronal mass ejections (CMEs) maybe considered as one of the most important relations that having a direct impact not only on space weather but also on the relevant plasma physics. Many observations have shown that throughout their propagation from the Sun to interplanetary space, CMEs interact with the heliospheric structures (e.g., other CMEs, Corotating interaction regions (CIRs), helmet streamers, and CHs). Such interactions could enhance the southward magnetic field component, which has important implications for geomagnetic storm generation. These interactions imply also a significant energy and momentum transfer between the interacting systems where magnetic reconnection is taking place. When CHs deflect CMEs away from or towards the Sun-Earth line, the geomagnetic response of the CME is highly affected. Gopalswamy et al. [2009] have addressed the deflection of CMEs due to the existence of CHs that are in close proximity to the eruption regions. They have shown that CHs can act as magnetic barriers that constrain CMEs propagation and can significantly affect their trajectories. Here, we study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance < 15 °). We present an extensive statistical study via compiling data sets of observations of CMEs and their interplanetary counterparts; known as interplanetary CMEs (ICMEs). There are 2 subsets of ICMEs

  15. UBVR{sub c} I{sub c} ANALYSIS OF THE RECENTLY DISCOVERED TOTALLY ECLIPSING EXTREME MASS RATIO BINARY V1853 ORIONIS, AND A STATISTICAL LOOK AT 25 OTHER EXTREME MASS RATIO SOLAR-TYPE CONTACT BINARIES

    SciTech Connect

    Samec, R. G.; Labadorf, C. M.; Hawkins, N. C.; Faulkner, D. R.; Van Hamme, W.

    2011-10-15

    We present precision CCD light curves, a period study, photometrically derived standard magnitudes, and a five-color simultaneous Wilson code solution of the totally eclipsing, yet shallow amplitude (A{sub v} {approx} 0.4 mag) eclipsing, binary V1853 Orionis. It is determined to be an extreme mass ratio, q = 0.20, W-type W UMa overcontact binary. From our standard star observations, we find that the variable is a late-type F spectral-type dwarf, with a secondary component of about 0.24 solar masses (stellar type M5V). Its long eclipse duration (41 minutes) as compared to its period, 0.383 days, attests to the small relative size of the secondary. Furthermore, it has reached a Roche lobe fill-out of {approx}50% of its outer critical lobe as it approaches its final stages of binary star evolution, that of a fast spinning single star. Finally, a summary of about 25 extreme mass ratio solar-type binaries is given.

  16. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  17. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  18. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  19. Low molecular mass organogelator based gel electrolyte with effective charge transport property for long-term stable quasi-solid-state dye-sensitized solar cells.

    PubMed

    Huo, Zhipeng; Dai, Songyuan; Zhang, Changneng; Kong, Fantai; Fang, Xiaqin; Guo, Lei; Liu, Weiqing; Hu, Linhua; Pan, Xu; Wang, Kongjia

    2008-10-16

    Stable quasi-solid-state dye-sensitized solar cells (DSC) were fabricated using 12-hydroxystearic acid as a low molecular mass organogelator (LMOG) to form gel electrolyte. TEM image of the gel exhibited the self-assembled network constructed by the LMOG, which hindered flow and volatilization of the liquid. The formation of less-mobile polyiodide ions such as I 3 (-) and I 5 (-) confirmed by Raman spectroscopy increased the conductivity of the gel electrolytes by electronic conduction process, which should be rationalized by the Grotthuss-type electron exchange mechanism caused by rather packed polyiodide species in the electrolytes. The results of the accelerated aging tests showed that the gel electrolyte based dye-sensitized solar cell could retain over 97% of its initial photoelectric conversion efficiency value after successive heating at 60 degrees C for 1000 h and device degradation was also negligible after one sun light soaking with UV cutoff filter for 1000 h.

  20. Nanotexturing process on microtextured surfaces of silicon solar cells by SF6/O2 reactive ion etching.

    PubMed

    Ji, Hyungyong; Choi, Jaeho; Lim, Gyoungho; Parida, Bhaskar; Kim, Keunjoo; Jo, Jung Hee; Kim, Hong Seub

    2013-12-01

    We investigated a nanotexturing process on the microtextured surface of single crystalline silicon solar cell by the reactive ion etching process in SF6/O2 mixed gas ambient. P-type Si wafer samples were prepared using a chemical wet etching process to address saw damage removal and achieve microtexturing. The microtextured wafers were further processed for nanotexturing by exposure to reactive ions within a circular tray of wafer carrier containing many small holes for uniform etching. As the dry etching times were increased to 2, 4 and finally to 8 min, surface structures were observed in a transition from nanoholes to nanorods, and a variation in wafer color from dark blue to black. The surface nanostructures showed a lowered photoreflectance and enhanced quantum efficiency within the visible light region with wavelengths of less than 679 nm. The nanohole structure etched for 2 min showed enhanced conversion efficiency when compared to the bare sample; however, the nanorod structure etched for 8 min exhibited the decreased efficiency with a reduced short circuit current, indicating that the surface nanostructural damage with the enlarged nanoperimetric surface area is sensitive to surface passivation from the surface recombination process.

  1. Thermochemical properties of Li 6Zr 2O 7(s) by a mass-spectrometric Knudsen effusion method

    NASA Astrophysics Data System (ADS)

    Kato, Yoshinari; Asano, Mitsuru; Harada, Toshio; Mizutani, Yasuo

    1993-12-01

    Partial pressures of Li(g), LiO(g), Li 2O(g), Li 2O 2(g), Li 3O(g) and O 2(g) over Li 6Zr 2O 7(s) are studied by a mass-spectrometric Knudsen effusion method. From enthalpies of reaction for gas-solid equilibria, the enthalpies of formation for Li 6Zr 2O 7(s) are determined to be ΔfH°298( Li