Science.gov

Sample records for 6-4 photolyase crystal

  1. Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4)photolyase.

    PubMed Central

    Todo, T; Kim, S T; Hitomi, K; Otoshi, E; Inui, T; Morioka, H; Kobayashi, H; Ohtsuka, E; Toh, H; Ikenaga, M

    1997-01-01

    Two types of enzyme utilizing light from the blue and near-UV spectral range (320-520 nm) are known to have related primary structures: DNA photolyase, which repairs UV-induced DNA damage in a light-dependent manner, and the blue light photoreceptor of plants, which mediates light-dependent regulation of seedling development. Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)photoproducts] are the two major photoproducts produced in DNA by UV irradiation. Two types of photolyases have been identified, one specific for CPDs (CPD photolyase) and another specific for (6-4)photoproducts [(6-4)photolyase]. (6-4)Photolyase activity was first found in Drosophila melanogaster and to date this gene has been cloned only from this organism. The deduced amino acid sequence of the cloned gene shows that (6-4)photolyase is a member of the CPD photolyase/blue light photoreceptor family. Both CPD photolyase and blue light photoreceptor are flavoproteins and bound flavin adenine dinucleotides (FADs) are essential for their catalytic activity. Here we report isolation of a Xenopus laevis(6-4)photolyase gene and show that the (6-4)photolyase binds non- covalently to stoichiometric amounts of FAD. This is the first indication of FAD as the chromophore of (6-4)photolyase. PMID:9016626

  2. Energetics of Photoinduced Charge Migration within the Tryptophan Tetrad of an Animal (6-4) Photolyase.

    PubMed

    Cailliez, Fabien; Müller, Pavel; Firmino, Thiago; Pernot, Pascal; de la Lande, Aurélien

    2016-02-17

    Cryptochromes and photolyases are flavoproteins that undergo cascades of electron/hole transfers after excitation of the flavin cofactor. It was recently discovered that animal (6-4) photolyases, as well as animal cryptochromes, feature a chain of four tryptophan residues, while other members of the family contain merely a tryptophan triad. Transient absorption spectroscopy measurements on Xenopus laevis (6-4) photolyase have shown that the fourth residue is effectively involved in photoreduction but at the same time could not unequivocally ascertain the final redox state of this residue. In this article, polarizable molecular dynamics simulations and constrained density functional theory calculations are carried out to reveal the energetics of charge migration along the tryptophan tetrad. Migration toward the fourth tryptophan is found to be thermodynamically favorable. Electron transfer mechanisms are sought either through an incoherent hopping mechanism or through a multiple sites tunneling process. The Jortner-Bixon formulation of electron transfer (ET) theory is employed to characterize the hopping mechanism. The interplay between electron transfer and relaxation of protein and solvent is analyzed in detail. Our simulations confirm that ET in (6-4) photolyase proceeds out of equilibrium. Multiple site tunneling is modeled with the recently proposed flickering resonance mechanism. Given the position of energy levels and the distribution of electronic coupling values, tunneling over three tryptophan residues may become competitive in some cases, although a hopping mechanism is likely to be the dominant channel. For both reactive channels, computed rates are very sensitive to the starting protein configuration, suggesting that both can take place and eventually be mixed, depending on the state of the system when photoexcitation takes place.

  3. A quantum chemical perspective on (6-4) photolesion repair by photolyases.

    PubMed

    Dreuw, Andreas; Faraji, Shirin

    2013-12-14

    (6-4)-Photolyases are fascinating enzymes which repair (6-4)-DNA photolesions utilizing light themselves. It is well known that upon initial photo-excitation of an antenna pigment an electron is transferred from an adjacent FADH(-) cofactor to the photolesion initiating repair, i.e. restoration of the original undamaged DNA bases. Concerning the molecular details of this amazing repair mechanism, the early steps of energy transfer and catalytic electron generation are well understood, the terminal repair mechanism, however, is still a matter of ongoing debate. In this perspective article, recent results of quantum chemical investigations are presented, and their meaning for the repair mechanism under natural conditions is outlined. Consequences of natural light conditions, temperature and thermal equilibration are highlighted when issues like the initial protonation state of the relevant histidines and the lesion, or the direction of electron transfer are discussed.

  4. Characterization and differential expression of CPD and 6-4 DNA photolyases in Xiphophorus species and interspecies hybrids.

    PubMed

    Walter, Dylan J; Boswell, Mikki; Volk de García, Sara M; Walter, Sean M; Breitenfeldt, Erik W; Boswell, William; Walter, Ronald B

    2014-06-01

    Among the many Xiphophorus interspecies hybrid tumor models are those that exhibit ultraviolet light (UVB) induced melanoma. In previous studies, assessment of UVB induced DNA damage and nucleotide excision DNA repair has been performed in parental lines and interspecies hybrids. Species and hybrid specific differences in the levels of DNA damage induced and the dark repair rates for cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine pyrimidine photoproducts (6-4PPs) have been reported. However, UVB induced DNA lesions in Xiphophorus fishes are thought to primarily be repaired via light dependent CPD and 6-4PP specific photolyases. Photolyases are of evolutionary interest since they are ancient and presumably function solely to ameliorate the deleterious effects of UVB exposure. Herein, we report results from detailed studies of CPD and 6-4PP photolyase gene expression within several Xiphophorus tissues. We determined photolyase gene expression patterns before and after exposure to fluorescent light in X. maculatus, X. couchianus, and for F1 interspecies hybrids produced from crossing these two parental lines (X. maculatus Jp 163 B×X. couchianus). We present novel results showing these two photolyase genes exhibit species, tissue, and hybrid-specific differences in basal and light induced gene expression.

  5. Structural role of two histidines in the (6-4) photolyase reaction

    PubMed Central

    Yamada, Daichi; Iwata, Tatsuya; Yamamoto, Junpei; Hitomi, Kenichi; Todo, Takeshi; Iwai, Shigenori; Getzoff, Elizabeth D.; Kandori, Hideki

    2015-01-01

    Photolyases (PHRs) are DNA repair enzymes that revert UV-induced photoproducts, either cyclobutane pyrimidine dimers (CPD) or (6-4) photoproducts (PPs), into normal bases to maintain genetic integrity. (6-4) PHR must catalyze not only covalent bond cleavage, but also hydroxyl or amino group transfer, yielding a more complex mechanism than that postulated for CPD PHR. Previous mutation analysis revealed the importance of two histidines in the active center, H354 and H358 for Xenopus (6-4) PHR, whose mutations significantly lowered the enzymatic activity. Based upon highly sensitive FTIR analysis of the repair function, here we report that both H354A and H358A mutants of Xenopus (6-4) PHR still maintain their repair activity, although the efficiency is much lower than that of the wild type. Similar difference FTIR spectra between the wild type and mutant proteins suggest a common mechanism of repair in which (6-4) PP binds to the active center of each mutant, and is released after repair, as occurs in the wild type. Similar FTIR spectra also suggest that a decrease in volume by the H-to-A mutation is possibly compensated by the addition of water molecule( s). Such a modified environment is sufficient for the repair function that is probably controlled by proton-coupled electron transfer between the enzyme and substrate. On the other hand, two histidines must work in a concerted manner in the active center of the wild-type enzyme, which significantly raises the repair efficiency. PMID:27493863

  6. Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.

    PubMed

    Fujihashi, Masahiro; Numoto, Nobutaka; Kobayashi, Yukiko; Mizushima, Akira; Tsujimura, Masanari; Nakamura, Akira; Kawarabayasi, Yutaka; Miki, Kunio

    2007-01-26

    UV exposure of DNA molecules induces serious DNA lesions. The cyclobutane pyrimidine dimer (CPD) photolyase repairs CPD-type - lesions by using the energy of visible light. Two chromophores for different roles have been found in this enzyme family; one catalyzes the CPD repair reaction and the other works as an antenna pigment that harvests photon energy. The catalytic cofactor of all known photolyases is FAD, whereas several light-harvesting cofactors are found. Currently, 5,10-methenyltetrahydrofolate (MTHF), 8-hydroxy-5-deaza-riboflavin (8-HDF) and FMN are the known light-harvesting cofactors, and some photolyases lack the chromophore. Three crystal structures of photolyases from Escherichia coli (Ec-photolyase), Anacystis nidulans (An-photolyase), and Thermus thermophilus (Tt-photolyase) have been determined; however, no archaeal photolyase structure is available. A similarity search of archaeal genomic data indicated the presence of a homologous gene, ST0889, on Sulfolobus tokodaii strain7. An enzymatic assay reveals that ST0889 encodes photolyase from S. tokodaii (St-photolyase). We have determined the crystal structure of the St-photolyase protein to confirm its structural features and to investigate the mechanism of the archaeal DNA repair system with light energy. The crystal structure of the St-photolyase is superimposed very well on the three known photolyases including the catalytic cofactor FAD. Surprisingly, another FAD molecule is found at the position of the light-harvesting cofactor. This second FAD molecule is well accommodated in the crystal structure, suggesting that FAD works as a novel light-harvesting cofactor of photolyase. In addition, two of the four CPD recognition residues in the crystal structure of An-photolyase are not found in St-photolyase, which might utilize a different mechanism to recognize the CPD from that of An-photolyase.

  7. The g-tensor of the flavin cofactor in (6-4) photolyase: a 360 GHz/12.8 T electron paramagnetic resonance study

    NASA Astrophysics Data System (ADS)

    Schnegg, A.; Kay, C. W. M.; Schleicher, E.; Hitomi, K.; Todo, T.; Möbius, K.; Weber, S.

    2006-05-01

    The g-tensor of the neutral radical form of the flavin adenine dinucleotide cofactor FADH• of (6-4) photolyase from Xenopus laevis has been determined by very high-magnetic-field/high-microwave-frequency electron-paramagnetic resonance (EPR) performed at 360 GHz/12.8 T. Due to the high spectral resolution the anisotropy of the g-tensor could be fully resolved in the frozen-solution continuous-wave EPR spectrum. By least square fittings of spectral simulations to experimental data, the principal values of the g-tensor have been established: gX = 2.00433(5), gY = 2.00368(5), gZ = 2.00218(7). A comparison of very high-field EPR data and proton and deuteron electron-nuclear double resonance measurements yielded precise information concerning the orientation of the g-tensor with respect to the molecular frame. This data allowed a comparison to be made between the principal values of the g-tensors of the FADH• cofactors of photolyases involved in the repair of two different DNA lesions: the cyclobutane pyrimidine dimer (CPD) and the (6-4) photoproduct. It was found that gX and gZ are similar in both enzymes, whereas the gY component is slightly larger in (6-4) photolyase. This result clearly shows the sensitivity of the g-tensor to subtle differences in the protein environment experienced by the flavin.

  8. Searching for novel photolyases in UVC-resistant Antarctic bacteria.

    PubMed

    Marizcurrena, Juan José; Morel, María A; Braña, Victoria; Morales, Danilo; Martinez-López, Wilner; Castro-Sowinski, Susana

    2017-03-01

    Ultraviolet (UV) light irradiation has serious consequences for cell survival, including DNA damage by formation of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6,4) pyrimidone photoproducts. In general, the Nucleotide Excision Repair pathway repairs these lesions; however, all living forms, except placental mammals and some marsupials, produce a flavoprotein known as photolyase that directly reverses these lesions. The aim of this work was the isolation and identification of Antarctic UVC-resistant bacteria, and the search for novel photolyases. Two Antarctic water samples were UVC-irradiated (254 nm; 50-200 J m(- 2)) and 12 UVC-resistant bacteria were isolated and identified by 16S rDNA amplification/analysis as members of the genera Pseudomonas, Janthinobacterium, Flavobacterium, Hymenobacter and Sphingomonas. The UVC 50% lethal dose and the photo-repair ability of isolates were analyzed. The occurrence of photolyase coding sequences in Pseudomonas, Hymenobacter and Sphingomonas isolates were searched by PCR or by searching in the draft DNA genome. Results suggest that Pseudomonas and Hymenobacter isolates produce CDP-photolyases, and Sphingomonas produces two CPD-photolyases and a 6,4-photolyase. Results suggest that the Antarctic environment is an important source of genetic material for the identification of novel photolyase genes with potential biotechnological applications.

  9. Targeted Inactivation of DNA Photolyase Genes in Medaka Fish (Oryzias latipes).

    PubMed

    Ishikawa-Fujiwara, Tomoko; Shiraishi, Eri; Fujikawa, Yoshihiro; Mori, Toshio; Tsujimura, Tohru; Todo, Takeshi

    2017-01-01

    Proteins of the cryptochrome/photolyase family (CPF) exhibit sequence and structural conservation, but their functions are divergent. Photolyase is a DNA repair enzyme that catalyzes the light-dependent repair of ultraviolet (UV)-induced photoproducts, whereas cryptochrome acts as a photoreceptor or circadian clock protein. Two types of DNA photolyase exist: CPD photolyase, which repairs cyclobutane pyrimidine dimers (CPDs), and 6-4 photolyase, which repairs 6-4 pyrimidine-pyrimidone photoproducts (6-4PPs). Although the Cry-DASH protein is classified as a cryptochrome, it also has light-dependent DNA repair activity. To determine the significance of the three light-dependent repair enzymes in recovering from solar UV-induced DNA damage at the organismal level, we generated mutants in each gene in medaka using the CRISPR genome editing technique. The light-dependent repair activity of the mutants was examined in vitro in cultured cells and in vivo in skin tissue. Light-dependent repair of CPD was lost in the CPD photolyase-deficient mutant, whereas weak repair activity against 6-4PPs persisted in the 6-4 photolyase-deficient mutant. These results suggest the existence of a heretofore unknown 6-4PP repair pathway and thus improve our understanding of the mechanisms of defense against solar UV in vertebrates.

  10. Optical properties of the (3.4.6.4) hexagonal Archimedean photonic crystal

    NASA Astrophysics Data System (ADS)

    Jovanović, Djordje; Gajić, Radoš

    2011-01-01

    We theoretically investigated the optical properties of the lesser known (3.4.6.4) Archimedean photonic crystal. The structure is two dimensional and made of dielectric GaAs rods in air. The calculations of the band structures, equifrequency contours, and simulations of the wave propagation through the structure were performed by the plane wave expansion and finite-difference time-domain methods. With analysis of the gap map and equifrequency contours we obtained frequency ranges for best performance for wave guiding. For those frequency ranges, we designed a new type of waveguide for possible applications in integrated optics. In addition, negative refraction was exhibited by the structure.

  11. PHL1 of Cercospora Zeae-Maydis Encodes a Member of the Photolyase/Cryptochrome Family Involved in UV Protection and Fungal Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA photolyases harvest light energy to repair genomic lesions induced by UV light, whereas cryptochromes, paralogs of 6-4 DNA photolyases, have evolved in plants and animals as blue-light photoreceptors that function exclusively in signal transduction. Although members of the cryptochrome/photolyas...

  12. PHL1 of Cercospora zeae-maydis encodes a member of the photolyase/cryptochrome family involved in UV protection and fungal development.

    PubMed

    Bluhm, B H; Dunkle, L D

    2008-10-01

    DNA photolyases harvest light energy to repair genomic lesions induced by UV irradiation, whereas cryptochromes, presumptive descendants of 6-4 DNA photolyases, have evolved in plants and animals as blue-light photoreceptors that function exclusively in signal transduction. Orthologs of 6-4 photolyases are predicted to exist in the genomes of some filamentous fungi, but their function is unknown. In this study, we identified two putative photolyase-encoding genes in the maize foliar pathogen Cercospora zeae-maydis: CPD1, an ortholog of cyclobutane pyrimidine dimer (CPD) photolyases described in other filamentous fungi, and PHL1, a cryptochrome/6-4 photolyase-like gene. Strains disrupted in PHL1 (Deltaphl1) displayed abnormalities in development and secondary metabolism but were unaffected in their ability to infect maize leaves. After exposure to lethal doses of UV light, conidia of Deltaphl1 strains were abolished in photoreactivation and displayed reduced expression of CPD1, as well as RAD2 and RVB2, orthologs of genes involved in nucleotide excision and chromatin remodeling during DNA damage repair. This study presents the first characterization of a 6-4 photolyase ortholog in a filamentous fungus and provides evidence that PHL1 regulates responses to UV irradiation.

  13. Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana.

    PubMed Central

    Nakajima, S; Sugiyama, M; Iwai, S; Hitomi, K; Otoshi, E; Kim, S T; Jiang, C Z; Todo, T; Britt, A B; Yamamoto, K

    1998-01-01

    UV radiation induces two major classes of pyrimidine dimers: the pyrimidine [6-4] pyrimidone photoproduct (6-4 product) and the cyclobutane pyrimidine dimer (CPD). Many organisms produce enzymes, termed photolyases, that specifically bind to these damage products and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. A gene that expresses a protein with 6-4 photolyase activity in vitro was recently cloned from Drosophila melanogaster and Xenopus laevis. We report here the isolation of a homolog of this gene, cloned on the basis of sequence similarity, from the higher plant Arabidopsis thaliana. This cloned gene produces a protein with 6-4 photolyase activity when expressed in Escherichia coli. We also find that a previously described mutant of Arabidopsis (uvr3) that is defective in photoreactivation of 6-4 products carries a nonsense mutation in this 6-4 photolyase homolog. We have therefore termed this gene UVR3. Although homologs of this gene have previously been shown to produce a functional 6-4 photolyase when expressed in heterologous systems, this is the first demonstration of a requirement for this gene for photoreactivation of 6-4 products in vivo. PMID:9421527

  14. Identification and Purification of the CPD Photolyase in Vibrio parahaemolyticus RIMD2210633.

    PubMed

    Su, Zehong; Lian, Gaojian; Mawatari, Kazuaki; Tang, Ping; He, Shuya; Shimohata, Takaaki; Wu, Yimou; Yin, Weidong; Takahashi, Akira

    2015-01-01

    Photoreactivation is an error-free mechanism of DNA repair, utilized by prokaryotes and most eukaryotes and is catalyzed by specific enzymes called DNA photolyases. Photoreactivation has been reported in Vibrio parahaemolyticus WP28; however, information on photolyases in V. parahaemolyticus (V.p) strains has not been reported. This study examined the photoreactivation in V.p RIMD2210633. The photolyase responsible for repairing cyclobutane pyrimidine dimer (CPD) in DNA was identified, and the corresponding gene was determined as VPA1471. The protein was overexpressed in Escherichia coli and was purified for functional assessment in vitro. The mRNA level and protein expression level of this gene increased after ultraviolet A (UVA) illumination following ultraviolet C (UVC) irradiation. In vitro experiments confirmed that the protein encoded by VPA1471 could reduce the quantity of CPD in DNA. We designated the corresponding gene and protein of VPA1471 phr and Phr, respectively, although the function of two other photolyase/cryptochrome family members, VPA0203 and VPA0204, remains unclear. UV (ultraviolet) irradiation experiments suggest that these two genes possess some photorepairing ability. Therefore, we hypothesize that VPA0203 and VPA0204 encode (6-4) photolyase in V. parahaemolyticus RIMD2210633.

  15. Enhanced UV Resistance and Improved Killing of Malaria Mosquitoes by Photolyase Transgenic Entomopathogenic Fungi

    PubMed Central

    Fang, Weiguo; St. Leger, Raymond J.

    2012-01-01

    The low survival of microbial pest control agents exposed to UV is the major environmental factor limiting their effectiveness. Using gene disruption we demonstrated that the insect pathogenic fungus Metarhizium robertsii uses photolyases to remove UV-induced cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) photoproducts [(6-4)PPs] from its DNA. However, this photorepair is insufficient to fix CPD lesions and prevent the loss of viability caused by seven hours of solar radiation. Expression of a highly efficient archaeal (Halobacterium salinarum) CPD photolyase increased photorepair >30-fold in both M. robertsii and Beauveria bassiana. Consequently, transgenic strains were much more resistant to sunlight and retained virulence against the malaria vector Anopheles gambiae. In the field this will translate into much more efficient pest control over a longer time period. Conversely, our data shows that deleting native photolyase genes will strictly contain M. robertsii to areas protected from sunlight, alleviating safety concerns that transgenic hypervirulent Metarhizium spp will spread from mosquito traps or houses. The precision and malleability of the native and transgenic photolyases allows design of multiple pathogens with different strategies based on the environments in which they will be used. PMID:22912789

  16. A gene for a Class II DNA photolyase from Oryza sativa: cloning of the cDNA by dilution-amplification.

    PubMed

    Hirouchi, T; Nakajima, S; Najrana, T; Tanaka, M; Matsunaga, T; Hidema, J; Teranishi, M; Fujino, T; Kumagai, T; Yamamoto, K

    2003-07-01

    Ultraviolet radiation induces the formation of two classes of photoproducts in DNA-the cyclobutane pyrimidine dimer (CPD) and the pyrimidine [6-4] pyrimidone photoproduct (6-4 product). Many organisms produce enzymes, termed photolyases, which specifically bind to these lesions and split them via a UV-A/blue light-dependent mechanism, thereby reversing the damage. These photolyases are specific for either CPDs or 6-4 products. Two classes of photolyases (class I and class II) repair CPDs. A gene that encodes a protein with class II CPD photolyase activity in vitro has been cloned from several plants including Arabidopsis thaliana, Cucumis sativus and Chlamydomonas reinhardtii. We report here the isolation of a homolog of this gene from rice (Oryza sativa), which was cloned on the basis of sequence similarity and PCR-based dilution-amplification. The cDNA comprises a very GC-rich (75%) 5; region, while the 3; portion has a GC content of 50%. This gene encodes a protein with CPD photolyase activity when expressed in E. coli. The CPD photolyase gene encodes at least two types of mRNA, formed by alternative splicing of exon 5. One of the mRNAs encodes an ORF for 506 amino acid residues, while the other is predicted to code for 364 amino acid residues. The two RNAs occur in about equal amounts in O. sativa cells.

  17. Crystal structures of ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Fernandes, Carlos; Gaspar, Alexandra; Borges, Fernanda

    2016-01-01

    The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate, C19H16O4, (1), and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol-ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol-ecule differs significantly from the others, even the two independent mol-ecules (a and b) of (1). In all three mol-ecules, the carbonyl groups of the chromone and the carboxyl-ate are trans-related. The supra-molecular structure of (1) involves only weak C-H⋯π inter-actions between H atoms of the substituent phenyl group and the phenyl group, which link mol-ecules into a chain of alternating mol-ecules a and b, and weak π-π stacking inter-actions between the chromone units. The packing in (2) involves C-H⋯O inter-actions, which form a network of two inter-secting ladders involving the carbonyl atom of the carboxyl-ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π-π inter-actions stack the mol-ecules by unit translation along the a axis.

  18. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  19. CPD photolyase gene from Spinacia oleracea: repair of UV-damaged DNA and expression in plant organs.

    PubMed

    Yoshihara, Ryouhei; Imaki, Toshiyuki; Hori, Manabu; Watanabe, Chihiro; Yamamoto, Kazuo; Takimoto, Koichi

    2005-06-01

    The UV-B radiation contained in solar radiation has deleterious effects on plant growth, development and physiology. Specific damage to DNA caused by UV radiation involves the cyclobutyl pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts. CPDs are repaired by CPD photolyase via a UV-A/blue light-dependent mechanism. The gene for the class II CPD photolyase has been cloned from higher plants such as Arabidopsis, cucumbers and rice. We isolated and characterized the cDNA and a genomic clone encoding the spinach class II CPD photolyase. The gene consisted of 3777 bases and 9 exons. The sequence of amino acids predicted from the nucleotide sequence of the cDNA of the gene was highly homologous to that of the higher plants listed above. When a photolyase-deficient Escherichia coli strain was transformed with the cDNA, photoreactivation activity was partially restored, by the illumination with photoreactivating light, resulting in an increased survival and decreased content of CPDs in the Escherichia coli genome. In both the male and female plants, the gene was highly expressed in leaves and flowers under the condition of 14-h light and 10-h dark cycle. The expression in the roots was quite low compared with the other organs.

  20. The Trichoderma reesei Cry1 Protein Is a Member of the Cryptochrome/Photolyase Family with 6–4 Photoproduct Repair Activity

    PubMed Central

    Guzmán-Moreno, Jesús; Flores-Martínez, Alberto; Brieba, Luis G.; Herrera-Estrella, Alfredo

    2014-01-01

    DNA-photolyases use UV-visible light to repair DNA damage caused by UV radiation. The two major types of DNA damage are cyclobutane pyrimidine dimers (CPD) and 6–4 photoproducts (6-4PP), which are repaired under illumination by CPD and 6–4 photolyases, respectively. Cryptochromes are proteins related to DNA photolyases with strongly reduced or lost DNA repair activity, and have been shown to function as blue-light photoreceptors and to play important roles in circadian rhythms in plants and animals. Both photolyases and cryptochromes belong to the cryptochrome/photolyase family, and are widely distributed in all organisms. Here we describe the characterization of cry1, a member of the cryptochrome/photolyase protein family of the filamentous fungus Trichoderma reesei. We determined that cry1 transcript accumulates when the fungus is exposed to light, and that such accumulation depends on the photoreceptor Blr1 and is modulated by Envoy. Conidia of cry1 mutants show decreased photorepair capacity of DNA damage caused by UV light. In contrast, strains over-expressing Cry1 show increased repair, as compared to the parental strain even in the dark. These observations suggest that Cry1 may be stimulating other systems involved in DNA repair, such as the nucleotide excision repair system. We show that Cry1, heterologously expressed and purified from E. coli, is capable of binding to undamaged and 6-4PP damaged DNA. Photorepair assays in vitro clearly show that Cry1 repairs 6-4PP, but not CPD and Dewar DNA lesions. PMID:24964051

  1. Human white blood cells contain cyclobutyl pyrimidine dimer photolyase

    SciTech Connect

    Sutherland, B.M.; Bennett, P.V.

    1995-10-10

    Although enzymatic photoreactivation of cyclobutyl pyrimidine dimers in DNA is present in almost all organisms, its presence in placental mammals is controversial. We tested human white blood cells for photolyase by using three defined DNAs (suprecoiled pET-2, nonsupercoiled bacteriphage {lambda}, and a defined-sequence 287-bp oligonucleotide), two dimer-specific endonucleases (T4 endonuclease V and UV endonuclease from Micrococcus luteus), and three assay methods. We show that human white blood cells contain photolyase that can photorepair pyrimidine dimers in defined supercoiled and linear DNAs and in a 287-bp oligonucleotide and that human photolyase is active on genomic DNA in intact human cells. 44 refs., 3 figs.

  2. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes

    PubMed Central

    Mei, Qiming; Dvornyk, Volodymyr

    2015-01-01

    Background Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth. Results We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6–4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average ω = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (~1000–541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth’s geological history. PMID:26352435

  3. A new mineral species ferricoronadite, Pb[Mn6 4+(Fe3+, Mn3+)2]O16: mineralogical characterization, crystal chemistry and physical properties

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Aksenov, Sergey M.; Jančev, Simeon; Pekov, Igor V.; Göttlicher, Jörg; Polekhovsky, Yury S.; Rusakov, Vyacheslav S.; Nelyubina, Yuliya V.; Van, Konstantin V.

    2016-07-01

    A new mineral ferricoronadite with the simplified formula Pb(Mn6 4+Fe2 3+)O16 was discovered in the orogenetic zone related to the "Mixed Series" metamorphic complex near the Nežilovo village, Pelagonian massif, Republic of Macedonia. Associated minerals are franklinite, gahnite, hetaerolite, roméite, almeidaite, Mn-analogue of plumboferrite, zincohögbomite analogue with Fe3+ > Al, zincochromite, Zn-bearing talc, Zn-bearing muscovite, baryte, quartz and zircon. Ferricoronadite is a late hydrothermal mineral forming veinlets up to 8 mm thick in granular aggregate predominantly composed by zinc-dominant spinels. The new mineral is opaque, black, with brownish black streak. The luster is strong submetallic to metallic. The micro-indentation hardness is 819 kg/mm2. Distinct cleavage is observed on (100). Ferricoronadite is brittle, with uneven fracture. The density calculated from the empirical formula is 5.538 g/cm3. In reflected light, ferricoronadite is light gray. The reflectance values [ R max/ R min, % ( λ, nm)] are: 28.7/27.8 (470), 27.6/26.6 (546), 27.2/26.1 (589), 26.5/25.5 (650). The IR spectrum shows the absence of H2O and OH groups. According to the Mössbauer spectrum, all iron is trivalent. The Mn K-edge XANES spectroscopy shows that Mn is predominantly tetravalent, with subordinate Mn3+. The chemical composition is (wt%; electron microprobe, Mn apportioned between MnO2 and Mn2O3 based on the charge-balance requirement): BaO 5.16, PbO 24.50, ZnO 0.33, Al2O3 0.50, Mn2O3 9.90, Fe2O3 11.45, TiO2 4.19, MnO2 44.81, total 100.84. The empirical formula based on 8 cations Mn + Fe + Ti + Al + Zn pfu is Pb1.03Ba0.32(Mn 4.85 4+ Fe 1.35 3+ Mn 1.18 3+ Ti0.49Al0.09Zn0.04)Σ8.00O16. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is tetragonal, space group I4/ m, a = 9.9043(7), c = 2.8986(9) Å, V = 284.34(9) Å3, Z = 1. In ferricoronadite, double chains of edge-sharing (Mn, Fe, Ti)-centered octahedra are connected

  4. Molecular Understanding of Efficient DNA Repair Machinery of Photolyase

    NASA Astrophysics Data System (ADS)

    Tan, Chuang; Liu, Zheyun; Li, Jiang; Guo, Xunmin; Wang, Lijuan; Zhong, Dongping

    2012-06-01

    Photolyases repair the UV-induced pyrimidine dimers in damage DNA with high efficiency, through a cylic light-driven electron transfer radical mechanism. We report here our systematic studies of the repair dynamics in E. coli photolyase with mutation of five active-site residues. The significant loss of repair efficiency by the mutation indicates that those active-site residues play an important role in the DNA repair by photolyase. To understand how the active-site residues modulate the efficiency, we mapped out the entire evolution of each elementary step during the repair in those photolyase mutants with femtosecond resolution. We completely analyzed the electron transfer dynamics using the Sumi-Marcus model. The results suggest that photolyase controls the critical electron transfer and the ring-splitting of pyrimidine dimer through modulation of the redox potentials and reorganization energies, and stabilization of the anionic intermediates, maintaining the dedicated balance of all the reaction steps and achieving the maximum function activity.

  5. Supramolecular hydrogen-bonded 1D arrangement in the crystals of 2,4-diamino-6-benzyl-1,3,5-triazine and 2,4-diamino-6-(4‧-methylbenzyl)-1,3,5-triazine

    NASA Astrophysics Data System (ADS)

    Janczak, Jan; Kubiak, Ryszard

    2009-02-01

    Two crystals of triazine derivatives, 2,4-diamino-6-benzyl-1,3,5-triazine ( 1) and 2,4-diamino-6-(4'-methylbenzyl)-1,3,5-triazine ( 2), are synthesised by a direct reaction of cyanoguanidine with the respective cyanocompounds. The IR spectra of the compounds are very similar. In the crystals the molecules are interconnected by N sbnd H⋯N hydrogen bonds forming one-dimensional hydrogen bonded polymer in 1 and three-dimensional hydrogen bonded network in 2. The arrangement of molecules in the crystal of 1 is denser than in 2 due to the π-π interactions between the π-clouds of the aromatic triazine rings that are absent in the crystal of 2. The geometries of the molecules in the crystals have been compared with those obtained by ab-initio molecular orbital calculated results that represent the geometries of molecules in the gas-phase.

  6. Study of Proton Transfer in E. Coli Photolyase

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liu, Zheyun; Li, Jiang; Wang, Lijuan; Zhong, Dongping

    2013-06-01

    Photolyase is a flavoprotein which utilizes blue-light energy to repair UV-light damaged DNA. The catalytic cofactor of photolyase, flavin adenine dinucleotide (FAD), has five redox states. Conversions between these redox states involve intraprotein electron transfer and proton transfer, which play important role in protein function. Here we systematically studied proton transfer in E. coli photolyase in vitro by site-directed mutagenesis and steady-state UV-vis spectroscopy, and proposed the proton channel in photolyase. We found that in the mutant N378C/E363L, proton channel was completely eliminated when DNA substrate was bound to the protein. Proton is suggested to be transported from protein surface to FAD by two pathways: the proton relay pathway through E363 and surface water to N378 and then to FAD; and the proton diffusion pathway through the substrate binding pocket. In addition, reaction kinetics of conversions between the redox states was then solved and redox potentials of the redox states were determined. These results described a complete picture of FAD redox changes, which are fundamental to the functions of all flavoenzymes.

  7. A new class of DNA photolyases present in various organisms including aplacental mammals.

    PubMed Central

    Yasui, A; Eker, A P; Yasuhira, S; Yajima, H; Kobayashi, T; Takao, M; Oikawa, A

    1994-01-01

    DNA photolyase specifically repairs UV light-induced cyclobutane-type pyrimidine dimers in DNA through a light-dependent reaction mechanism. We have obtained photolyase genes from Drosophila melanogaster (fruit fly), Oryzias latipes (killifish) and the marsupial Potorous tridactylis (rat kangaroo), the first photolyase gene cloned from a mammalian species. The deduced amino acid sequences of these higher eukaryote genes show only limited homology with microbial photolyase genes. Together with the previously cloned Carassius auratus (goldfish) gene they form a separate group of photolyase genes. A new classification for photolyases comprising two distantly related groups is proposed. For functional analysis P.tridactylis photolyase was expressed and purified as glutathione S-transferase fusion protein from Escherichia coli cells. The biologically active protein contained FAD as light-absorbing cofactor, a property in common with the microbial class photolyases. Furthermore, we found in the archaebacterium Methanobacterium thermoautotrophicum a gene similar to the higher eukaryote photolyase genes, but we could not obtain evidence for the presence of a homologous gene in the human genome. Our results suggest a divergence of photolyase genes in early evolution. Images PMID:7813451

  8. Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer

    NASA Astrophysics Data System (ADS)

    Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.

    2007-12-01

    This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.

  9. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy.

    PubMed

    Wijaya, I M Mahaputra; Zhang, Yu; Iwata, Tatsuya; Yamamoto, Junpei; Hitomi, Kenichi; Iwai, Shigenori; Getzoff, Elizabeth D; Kandori, Hideki

    2013-02-12

    Photolyases (PHRs) utilize near-ultraviolet (UV)-blue light to specifically repair the major photoproducts (PPs) of UV-induced damaged DNA. The cyclobutane pyrimidine dimer PHR (CPD-PHR) from Escherichia coli binds flavin adenine dinucleotide (FAD) as a cofactor and 5,10-methenyltetrahydrofolate as a light-harvesting pigment and specifically repairs CPD lesions. By comparison, a second photolyase known as (6-4) PHR, present in a range of higher organisms, uniquely repairs (6-4) PPs. To understand the repair mechanism and the substrate specificity that distinguish CPD-PHR from (6-4) PHR, we applied Fourier transform infrared (FTIR) spectroscopy to bacterial CPD-PHR in the presence or absence of a well-defined DNA substrate, as we have studied previously for vertebrate (6-4) PHR. PHRs show light-induced reduction of FAD, and photorepair by CPD-PHR involves the transfer of an electron from the photoexcited reduced FAD to the damaged DNA for cleaving the dimers to maintain the DNA's integrity. Here, we measured and analyzed difference FTIR spectra for the photoactivation and DNA photorepair processes of CPD-PHR. We identified light-dependent signals only in the presence of substrate. The signals, presumably arising from a protonated carboxylic acid or the DNA substrate, implicate conformational rearrangements of the protein and substrate during the repair process. Deuterium exchange FTIR measurements of CPD-PHR highlight potential differences in the photoactivation and photorepair mechanisms in comparison to those of (6-4) PHR. Although CPD-PHR and (6-4) PHR appear to exhibit similar overall structures, our studies indicate that distinct conformational rearrangements, especially in the α-helices, are initiated within these enzymes upon binding of their respective DNA substrates.

  10. Crystal structures of ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate

    PubMed Central

    Gomes, Ligia R.; Low, John Nicolson; Fernandes, Carlos; Gaspar, Alexandra; Borges, Fernanda

    2016-01-01

    The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate, C19H16O4, (1), and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol­ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol­ecule differs significantly from the others, even the two independent mol­ecules (a and b) of (1). In all three mol­ecules, the carbonyl groups of the chromone and the carboxyl­ate are trans-related. The supra­molecular structure of (1) involves only weak C—H⋯π inter­actions between H atoms of the substituent phenyl group and the phenyl group, which link mol­ecules into a chain of alternating mol­ecules a and b, and weak π–π stacking inter­actions between the chromone units. The packing in (2) involves C—H⋯O inter­actions, which form a network of two inter­secting ladders involving the carbonyl atom of the carboxyl­ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π–π inter­actions stack the mol­ecules by unit translation along the a axis. PMID:26870574

  11. Toward an artificial oxidative DNA photolyase.

    PubMed

    Pauvert, Mickaël; Laine, Patrick; Jonas, Marco; Wiest, Olaf

    2004-01-23

    The design, synthesis, structure, and binding affinity of two dioptic receptors for the selective molecular recognition of the cis,syn cyclobutane pyrimidine dimer are reported. The design is based on two 2,6-di(acetamino)pyridine recognition units that are covalently linked via triple bonds to an anthraquinone functional spacer unit. The convergent synthesis uses a modified Sonogashira reaction involving a zinc transmetalation as the key step. The crystal structure of one of the receptors reveals a supramolecular 1D polymer with strong interactions mediated by shape self-complementarity, pi-stacking, and hydrogen bonding between adjacent molecules. Hydrogen bonding between adjacent strands enforces a parallel orientation, which leads to a noncentrosymmetric crystal structure of the highly polar compound. The receptor has an association constant of K(a) = 1.0 x 10(3) M(-1) with the cis,syn pyrimidine dimer, whereas binding of the trans,syn isomer is approximately 1 order of magnitude weaker.

  12. A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)(36.3)O94 with advanced transmission electron microscopy and neutron diffraction.

    PubMed

    Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke

    2016-01-21

    The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.

  13. UV Radiation–Sensitive Norin 1 Rice Contains Defective Cyclobutane Pyrimidine Dimer Photolyase

    PubMed Central

    Hidema, Jun; Kumagai, Tadashi; Sutherland, Betsy M.

    2000-01-01

    Norin 1, a progenitor of many economically important Japanese rice strains, is highly sensitive to the damaging effects of UVB radiation (wavelengths 290 to 320 nm). Norin 1 seedlings are deficient in photorepair of cyclobutane pyrimidine dimers. However, the molecular origin of this deficiency was not known and, because rice photolyase genes have not been cloned and sequenced, could not be determined by examining photolyase structural genes or upstream regulatory elements for mutations. We therefore used a photoflash approach, which showed that the deficiency in photorepair in vivo resulted from a functionally altered photolyase. These results were confirmed by studies with extracts, which showed that the Norin 1 photolyase–dimer complex was highly thermolabile relative to the wild-type Sasanishiki photolyase. This deficiency results from a structure/function alteration of photolyase rather than of nonspecific repair, photolytic, or regulatory elements. Thus, the molecular origin of this plant DNA repair deficiency, resulting from a spontaneously occurring mutation to UV radiation sensitivity, is defective photolyase. PMID:11006332

  14. Crystal structure of (1S,3R,8R,9R)-2,2-di-chloro-3,7,7-tri-methyl-10-methylenetri-cyclo-[6.4.0.0(1,3)]dodecan-9-ol.

    PubMed

    Benzalim, Ahmed; Auhmani, Aziz; Bimoussa, Abdoullah; Ait Itto, My Youssef; Daran, Jean-Claude; Auhmani, Abdelwahed

    2016-08-01

    The title compound, C16H24Cl2O, was synthesized by treating (1S,3R,8S,9R,10S)-2,2-di-chloro-3,7,7,10-tetra-methyl-9,10-ep-oxy-tri-cyclo-[6.4.0.0(1,3)]dodecane with a concentrated solution of hydro-bromic acid. It is built up from three fused rings: a cyclo-heptane ring, a cyclo-hexyl ring bearing alkene and hy-droxy substituents, and a cyclo-propane ring bearing two chlorine atoms. The asymmetric unit contains two mol-ecules linked by an O-H⋯O hydrogen bond. In the crystal, further O-H⋯O hydrogen bonds build up an R 4 (4)(8) cyclic tetra-mer. One of the mol-ecules presents disorder that affects the seven-membered ring. In both mol-ecules, the six-membered rings display a chair conformation, whereas the seven-membered rings display conformations inter-mediate between boat and twist-boat for the non-disordered mol-ecule and either a chair or boat and twist-boat for the disordered mol-ecule owing to the disorder. The absolute configuration for both mol-ecules is 1S,3R,8R,9R and was deduced from the chemical pathway and further confirmed by the X-ray structural analysis.

  15. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases.

    PubMed

    Kiontke, Stephan; Gnau, Petra; Haselsberger, Reinhard; Batschauer, Alfred; Essen, Lars-Oliver

    2014-07-11

    Light-harvesting and resonance energy transfer to the catalytic FAD cofactor are key roles for the antenna chromophores of light-driven DNA photolyases, which remove UV-induced DNA lesions. So far, five chemically diverse chromophores have been described for several photolyases and related cryptochromes, but no correlation between phylogeny and used antenna has been found. Despite a common protein topology, structural analysis of the distantly related class II photolyase from the archaeon Methanosarcina mazei (MmCPDII) as well as plantal orthologues indicated several differences in terms of DNA and FAD binding and electron transfer pathways. For MmCPDII we identify 8-hydroxydeazaflavin (8-HDF) as cognate antenna by in vitro and in vivo reconstitution, whereas the higher plant class II photolyase from Arabidopsis thaliana fails to bind any of the known chromophores. According to the 1.9 Å structure of the MmCPDII·8-HDF complex, its antenna binding site differs from other members of the photolyase-cryptochrome superfamily by an antenna loop that changes its conformation by 12 Å upon 8-HDF binding. Additionally, so-called N- and C-motifs contribute as conserved elements to the binding of deprotonated 8-HDF and allow predicting 8-HDF binding for most of the class II photolyases in the whole phylome. The 8-HDF antenna is used throughout the viridiplantae ranging from green microalgae to bryophyta and pteridophyta, i.e. mosses and ferns, but interestingly not in higher plants. Overall, we suggest that 8-hydroxydeazaflavin is a crucial factor for the survival of most higher eukaryotes which depend on class II photolyases to struggle with the genotoxic effects of solar UV exposure.

  16. Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro.

    PubMed Central

    Sancar, A; Franklin, K A; Sancar, G B

    1984-01-01

    Pyrimidine dimers are the major photoproducts produced in cellular DNA upon UV irradiation. In Escherichia coli there are dark and photorepair mechanisms that eliminate the dimers from DNA and prevent their lethal and mutagenic effects. To determine whether these repair mechanisms act cooperatively or competitively in repairing DNA, we investigated the effects upon one another of DNA photolyase, which mediates photorepair, and uvrABC excision nuclease, an enzyme complex of the uvrABC gene products, which catalyzes nucleotide excision repair. We found that photolyase stimulates the removal of pyrimidine dimers but not other DNA adducts by uvrABC excision nuclease. The two subunits of uvrABC excision nuclease, the uvrA and uvrB proteins which together bind to the dimer region of DNA, had no effect on the activity of photolyase. T4 endonuclease V, which like photolyase is specific for pyrimidine dimers, was inhibited by photolyase, suggesting that these two proteins recognize the same or similar chemical structures in UV-irradiated DNA that are different from those recognized by uvrABC excision nuclease. Images PMID:6390436

  17. The molecular origin of high DNA-repair efficiency by photolyase

    NASA Astrophysics Data System (ADS)

    Tan, Chuang; Liu, Zheyun; Li, Jiang; Guo, Xunmin; Wang, Lijuan; Sancar, Aziz; Zhong, Dongping

    2015-06-01

    The primary dynamics in photomachinery such as charge separation in photosynthesis and bond isomerization in sensory photoreceptor are typically ultrafast to accelerate functional dynamics and avoid energy dissipation. The same is also true for the DNA repair enzyme, photolyase. However, it is not known how the photoinduced step is optimized in photolyase to attain maximum efficiency. Here, we analyse the primary reaction steps of repair of ultraviolet-damaged DNA by photolyase using femtosecond spectroscopy. With systematic mutations of the amino acids involved in binding of the flavin cofactor and the cyclobutane pyrimidine dimer substrate, we report our direct deconvolution of the catalytic dynamics with three electron-transfer and two bond-breaking elementary steps and thus the fine tuning of the biological repair function for optimal efficiency. We found that the maximum repair efficiency is not enhanced by the ultrafast photoinduced process but achieved by the synergistic optimization of all steps in the complex repair reaction.

  18. An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation

    PubMed Central

    Landry, Laurie G.; Stapleton, Ann E.; Lim, Jackie; Hoffman, Peter; Hays, John B.; Walbot, Virginia; Last, Robert L.

    1997-01-01

    Photolyases are DNA repair enzymes that use energy from blue light to repair pyrimidine dimers. We report the isolation of an Arabidopsis thaliana mutant (uvr2-1) that is defective in photorepair of cyclobutylpyrimidine dimers (CPDs). Whereas uvr2-1 is indistinguishable from wild type in the absence of UV light, low UV-B levels inhibit growth and cause leaf necrosis. uvr2-1 is more sensitive to UV-B than wild type when placed under white light after UV-B treatment. In contrast, recovery in darkness or in light lacking photoreactivating blue light results in equal injury in uvr2-1 and wild type. The uvr2-1 mutant is unable to remove CPDs in vivo, and plant extracts lack detectable photolyase activity. This recessive mutation segregates as a single gene located near the top of chromosome 1, and is a structural gene mutation in the type II CPD photolyase PHR1. This mutant provides evidence that CPD photolyase is required for plant survival in the presence of UV-B light. PMID:8990208

  19. Role of CPI-17 in restoring skin homoeostasis in cutaneous field of cancerization: effects of topical application of a film-forming medical device containing photolyase and UV filters.

    PubMed

    Puig-Butillé, Joan Anton; Malvehy, Josep; Potrony, Miriam; Trullas, Carles; Garcia-García, Francisco; Dopazo, Joaquin; Puig, Susana

    2013-07-01

    Cutaneous field of cancerization (CFC) is caused in part by the carcinogenic effect of the cyclobutane pyrimidine dimers CPD and 6-4 photoproducts (6-4PPs). Photoreactivation is carried out by photolyases which specifically recognize and repair both photoproducts. The study evaluates the molecular effects of topical application of a film-forming medical device containing photolyase and UV filters on the precancerous field in AK from seven patients. Skin improvement after treatment was confirmed in all patients by histopathological and molecular assessment. A gene set analysis showed that skin recovery was associated with biological processes involved in tissue homoeostasis and cell maintenance. The CFC response was associated with over-expression of the CPI-17 gene, and a dependence on the initial expression level was observed (P = 0.001). Low CPI-17 levels were directly associated with pro-inflammatory genes such as TNF (P = 0.012) and IL-1B (P = 0.07). Our results suggest a role for CPI-17 in restoring skin homoeostasis in CFC lesions.

  20. 7 CFR 6.4 - Investigations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Investigations. 6.4 Section 6.4 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES General Provisions § 6.4 Investigations. (a) Section 22. The Administrator shall cause an investigation to be made whenever, based upon a...

  1. 7 CFR 6.4 - Investigations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Investigations. 6.4 Section 6.4 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES General Provisions § 6.4 Investigations. (a) Section 22. The Administrator shall cause an investigation to be made whenever, based upon a...

  2. 7 CFR 6.4 - Investigations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Investigations. 6.4 Section 6.4 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES General Provisions § 6.4 Investigations. (a) Section 22. The Administrator shall cause an investigation to be made whenever, based upon a...

  3. 7 CFR 6.4 - Investigations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Investigations. 6.4 Section 6.4 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES General Provisions § 6.4 Investigations. (a) Section 22. The Administrator shall cause an investigation to be made whenever, based upon a...

  4. 27 CFR 6.4 - Jurisdictional limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Jurisdictional limits. 6.4 Section 6.4 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS âTIED-HOUSEâ Scope of Regulations § 6.4 Jurisdictional limits. (a) General....

  5. Crystal structure of (1R,3S,8R,11R)-11-acetyl-3,7,7-trimethyl-10-oxatri­cyclo­[6.4.0.01,3]dodecan-9-one

    PubMed Central

    Bismoussa, Abdoullah; Ait Itto, My Youssef; Daran, Jean-Claude; Auhmani, Abdelwahed; Auhmani, Aziz

    2015-01-01

    The title compound, C16H24O3, is built up from three fused rings, a six-membered, a seven-membered and a three-membered ring. The absolute configuration of the title compound was determined as (1R,3S,8R,11R) based on the synthetic pathway. The six-membered ring has an half-chair conformation whereas the seven-membered ring displays a boat conformation. In the cyrstal, C—H⋯O hydrogen bonds build up a two-dimensional network parallel to (0 0 1). The crystal studied was an inversion twin with a minor twin component of 34%. PMID:26870471

  6. Characterization of photolyase/blue-light receptor homologs in mouse and human cells.

    PubMed

    Kobayashi, K; Kanno, S; Smit, B; van der Horst, G T; Takao, M; Yasui, A

    1998-11-15

    We isolated and characterized mouse photolyase-like genes, mCRY1 (mPHLL1) and mCRY2 (mPHLL2), which belong to the photolyase family including plant blue-light receptors. The mCRY1 and mCRY2 genes are located on chromosome 10C and 2E, respectively, and are expressed in all mouse organs examined. We raised antibodies specific against each gene product using its C-terminal sequence, which differs completely between the genes. Immunofluorescent staining of cultured mouse cells revealed that mCRY1 is localized in mitochondria whereas mCRY2 was found mainly in the nucleus. The subcellular distribution of CRY proteins was confirmed by immunoblot analysis of fractionated mouse liver cell extracts. Using green fluorescent protein fused peptides we showed that the C-terminal region of the mouse CRY2 protein contains a unique nuclear localization signal, which is absent in the CRY1 protein. The N-terminal region of CRY1 was shown to contain the mitochondrial transport signal. Recombinant as well as native CRY1 proteins from mouse and human cells showed a tight binding activity to DNA Sepharose, while CRY2 protein did not bind to DNA Sepharose at all under the same condition as CRY1. The different cellular localization and DNA binding properties of the mammalian photolyase homologs suggest that despite the similarity in the sequence the two proteins have distinct function(s).

  7. Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state.

    PubMed

    Tan, Chuang; Guo, Lijun; Ai, Yuejie; Li, Jiang; Wang, Lijuan; Sancar, Aziz; Luo, Yi; Zhong, Dongping

    2014-11-13

    Photoantenna is essential to energy transduction in photoinduced biological machinery. A photoenzyme, photolyase, has a light-harvesting pigment of methenyltetrahydrofolate (MTHF) that transfers its excitation energy to the catalytic flavin cofactor FADH¯ to enhance DNA-repair efficiency. Here we report our systematic characterization and direct determination of the ultrafast dynamics of resonance energy transfer from excited MTHF to three flavin redox states in E. coli photolyase by capturing the intermediates formed through the energy transfer and thus excluding the electron-transfer quenching pathway. We observed 170 ps for excitation energy transferring to the fully reduced hydroquinone FADH¯, 20 ps to the fully oxidized FAD, and 18 ps to the neutral semiquinone FADH(•), and the corresponding orientation factors (κ(2)) were determined to be 2.84, 1.53 and 1.26, respectively, perfectly matching with our calculated theoretical values. Thus, under physiological conditions and over the course of evolution, photolyase has adopted the optimized orientation of its photopigment to efficiently convert solar energy for repair of damaged DNA.

  8. 24 CFR 6.4 - Discrimination prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Discrimination prohibited. 6.4... COMMUNITY DEVELOPMENT ACT OF 1974 General Provisions § 6.4 Discrimination prohibited. (a) Section 109... benefits of, or be subjected to discrimination under any program or activity funded in whole or in...

  9. 24 CFR 6.4 - Discrimination prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Discrimination prohibited. 6.4... COMMUNITY DEVELOPMENT ACT OF 1974 General Provisions § 6.4 Discrimination prohibited. (a) Section 109... benefits of, or be subjected to discrimination under any program or activity funded in whole or in...

  10. 24 CFR 6.4 - Discrimination prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Discrimination prohibited. 6.4... COMMUNITY DEVELOPMENT ACT OF 1974 General Provisions § 6.4 Discrimination prohibited. (a) Section 109... benefits of, or be subjected to discrimination under any program or activity funded in whole or in...

  11. 24 CFR 6.4 - Discrimination prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Discrimination prohibited. 6.4... COMMUNITY DEVELOPMENT ACT OF 1974 General Provisions § 6.4 Discrimination prohibited. (a) Section 109... benefits of, or be subjected to discrimination under any program or activity funded in whole or in...

  12. 27 CFR 6.4 - Jurisdictional limits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Jurisdictional limits. 6.4 Section 6.4 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... transactions in interstate or foreign commerce in any such products; or (iii) The direct effect of...

  13. 27 CFR 6.4 - Jurisdictional limits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Jurisdictional limits. 6.4 Section 6.4 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... transactions in interstate or foreign commerce in any such products; or (iii) The direct effect of...

  14. 24 CFR 6.4 - Discrimination prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Discrimination prohibited. 6.4... COMMUNITY DEVELOPMENT ACT OF 1974 General Provisions § 6.4 Discrimination prohibited. (a) Section 109... benefits of, or be subjected to discrimination under any program or activity funded in whole or in...

  15. The crystal structure of 6-(4-chloro­phen­yl)-2-(4-methyl­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole-5-carbaldehyde

    PubMed Central

    Sowmya, A.; Anil Kumar, G. N.; Kumar, Sujeet; Karki, Subhas S.

    2016-01-01

    In the title imidazo[2,1-b][1,3,4]thia­diazole derivative, C19H14ClN3OS, the 4-methyl­benzyl and chloro­phenyl rings are inclined to the planar imidazo[2,1-b][1,3,4]thia­diazole moiety (r.m.s. deviation = 0.012 Å) by 64.5 (1) and 3.7 (1)°, respectively. The mol­ecular structure is primarily stabilized by a strong intra­molecular C—H⋯O hydrogen bond, leading to the formation of a pseudo-seven-membered S(7) ring motif, and a short intra­molecular C—H⋯N contact forming an S(5) ring motif. In the crystal, mol­ecules are linked by pairs of C—H⋯S hydrogen bonds, forming inversion dimers. The dimers are linked by C—H⋯O and C—H⋯π inter­actions, forming chains propagating along [110]. PMID:27746941

  16. Crystal and molecular structure of the antimalarial agent 4-(tert-butyl)-2-(tert-butylaminomethyl)-6-(4-chlorophenyl)phenol dihydrogen phosphate (WR 194,965 phosphate).

    PubMed Central

    Karle, J M; Karle, I L

    1988-01-01

    WR 194,965 phosphate, a new antimalarial agent containing a biphenyl ring structure active against chloroquine-resistant Plasmodium falciparum, crystallized in ionic form with a positive charge on the quaternary nitrogen atom. The oxygen and nitrogen atoms of WR 194,965 were hydrogen bonded to the same phosphate group. The nitrogen atom was also hydrogen bonded to a second phosphate group. The phosphate ions formed discrete clusters of four phosphate moieties. The phosphate clusters contained fourfold inversion symmetry. The intramolecular N-O distance in WR 194,965 of 3.073 A (1 A = 0.1 nm) was close to the reported values for N-O distances in the active cinchona alkaloids and may be important for activity. A comparison of the crystalline structure of WR 194,965 with those of mefloquine and quinidine sulfate demonstrated that the regions of the three molecules in the vicinity of the aliphatic nitrogen atom and the oxygen atom superimpose. Much of the remainder of the WR 194,965 molecule spatially overlapped with the combined three-dimensional space defined by quinidine and mefloquine. The crystallographic parameters were: C21H29ClNO+.H2PO4-; Mr = 443.9; symmetry of unit cell, tetragonal; space group, I41/a; parameters of unit cell, a = b = 24.305 +/- 0.002 A, c = 17.556 +/- 0.003 A; V (volume of unit cell) = 10370.9 A3; Z (number of molecules per unit cell) = 16; Dx (calculated density) = 1.137 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu (absorption coefficient) = 21.3 cm-1; F(000) (sum of atomic scattering factors at zero scattering angle) = 3,440; room temperature; final R = 8.2% for 2,508 reflections with [F0] greater than 3 sigma. PMID:3288114

  17. 43 CFR 3141.6-4 - Qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.6-4 Qualifications. Each bidder shall submit with the bid a statement over...

  18. 43 CFR 3141.6-4 - Qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.6-4 Qualifications. Each bidder shall submit with the bid a statement over...

  19. 43 CFR 3141.6-4 - Qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.6-4 Qualifications. Each bidder shall submit with the bid a statement over...

  20. 43 CFR 3141.6-4 - Qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING IN SPECIAL TAR SAND AREAS Leasing in Special Tar Sand Areas § 3141.6-4 Qualifications. Each bidder shall submit with the bid a statement over...

  1. Transient induction of photolyase activity in arrested frog cells in response to a short-wave ultraviolet segment of simulated ''sunlight''

    SciTech Connect

    Chao, C.C.; Lin-Chao, S.

    1987-05-29

    Induction of photolyase activity was studied in cultured frog cells using clonogenic assays. Exposure of arrested cells to a pre-irradiation (90% survival) of 254 nm ultraviolet light resulted in a transient enhancement of photolyase activity. Cells expressed a decreased level of photolyase activity in response to an equitoxic fluence of simulated sunlight wavelengths 280-310 nm. However, no significant increase of enzyme activity was detected in cells following treatment with sunlight wavelengths 310-330 nm. In addition, this process depends on newly biosynthesized protein(s).

  2. Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation.

    PubMed

    Byrdin, Martin; Eker, André P M; Vos, Marten H; Brettel, Klaus

    2003-07-22

    In Escherichia coli photolyase, excitation of the FAD cofactor in its semireduced radical state (FADH*) induces an electron transfer over approximately 15 A from tryptophan W306 to the flavin. It has been suggested that two additional tryptophans are involved in an electron transfer chain FADH* <-- W382 <-- W359 <-- W306. To test this hypothesis, we have mutated W382 into redox inert phenylalanine. Ultrafast transient absorption studies showed that, in WT photolyase, excited FADH* decayed with a time constant tau approximately 26 ps to fully reduced flavin and a tryptophan cation radical. In W382F mutant photolyase, the excited flavin was much longer lived (tau approximately 80 ps), and no significant amount of product was detected. We conclude that, in WT photolyase, excited FADH* is quenched by electron transfer from W382. On a millisecond scale, a product state with extremely low yield ( approximately 0.5% of WT) was detected in W382F mutant photolyase. Its spectral and kinetic features were similar to the fully reduced flavin/neutral tryptophan radical state in WT photolyase. We suggest that, in W382F mutant photolyase, excited FADH* is reduced by W359 at a rate that competes only poorly with the intrinsic decay of excited FADH* (tau approximately 80 ps), explaining the low product yield. Subsequently, the W359 cation radical is reduced by W306. The rate constants of electron transfer from W382 to excited FADH* in WT and from W359 to excited FADH* in W382F mutant photolyase were estimated and related to the donor-acceptor distances.

  3. Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans.

    PubMed

    Aubert, C; Mathis, P; Eker, A P; Brettel, K

    1999-05-11

    Light-induced electron transfer reactions leading to the fully reduced, catalytically competent state of the flavin adenine dinucleotide (FAD) cofactor have been studied by flash absorption spectroscopy in DNA photolyase from Anacystis nidulans. The protein, overproduced in Escherichia coli, was devoid of the antenna cofactor, and the FAD chromophore was present in the semireduced form, FADH., which is inactive for DNA repair. We show that after selective excitation of FADH. by a 7-ns laser flash, fully reduced FAD (FADH-) is formed in less than 500 ns by electron abstraction from a tryptophan residue. Subsequently, a tyrosine residue is oxidized by the tryptophanyl radical with t(1)/(2) = 50 microseconds. The amino acid radicals were identified by their characteristic absorption spectra, with maxima at 520 nm for Trp. and 410 nm for TyrO. The newly discovered electron transfer between tyrosine and tryptophan occurred for approximately 40% of the tryptophanyl radicals, whereas 60% decayed by charge recombination with FADH- (t(1)/(2) = 1 ms). The tyrosyl radical can also recombine with FADH- but at a much slower rate (t(1)/(2) = 76 ms) than Trp. In the presence of an external electron donor, however, TyrO. is rereduced efficiently in a bimolecular reaction that leaves FAD in the fully reduced state FADH-. These results show that electron transfer from tyrosine to Trp. is an essential step in the process leading to the active form of photolyase. They provide direct evidence that electron transfer between tyrosine and tryptophan occurs in a native biological reaction.

  4. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (A)BC excision nuclease

    SciTech Connect

    Sibghat-Ullah; Sancar, Z. )

    1990-06-19

    Human cell free extract prepared by the method of Manley et al. carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunits(s) of human excision nuclease.

  5. Crystal structure of (1S,3R,8R,9R)-2,2-di­chloro-3,7,7-tri­methyl-10-methylenetri­cyclo­[6.4.0.01,3]dodecan-9-ol

    PubMed Central

    Benzalim, Ahmed; Auhmani, Aziz; Bimoussa, Abdoullah; Ait Itto, My Youssef; Daran, Jean-Claude; Auhmani, Abdelwahed

    2016-01-01

    The title compound, C16H24Cl2O, was synthesized by treating (1S,3R,8S,9R,10S)-2,2-di­chloro-3,7,7,10-tetra­methyl-9,10-ep­oxy­tri­cyclo­[6.4.0.01,3]dodecane with a concentrated solution of hydro­bromic acid. It is built up from three fused rings: a cyclo­heptane ring, a cyclo­hexyl ring bearing alkene and hy­droxy substituents, and a cyclo­propane ring bearing two chlorine atoms. The asymmetric unit contains two mol­ecules linked by an O—H⋯O hydrogen bond. In the crystal, further O—H⋯O hydrogen bonds build up an R 4 4(8) cyclic tetra­mer. One of the mol­ecules presents disorder that affects the seven-membered ring. In both mol­ecules, the six-membered rings display a chair conformation, whereas the seven-membered rings display conformations inter­mediate between boat and twist-boat for the non-disordered mol­ecule and either a chair or boat and twist-boat for the disordered mol­ecule owing to the disorder. The absolute configuration for both mol­ecules is 1S,3R,8R,9R and was deduced from the chemical pathway and further confirmed by the X-ray structural analysis. PMID:27536404

  6. 1 CFR 6.4 - Monthly list of sections affected.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1 General Provisions 1 2011-01-01 2011-01-01 false Monthly list of sections affected. 6.4 Section 6.4 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.4 Monthly list of sections affected. A monthly list of sections of the Code...

  7. 1 CFR 6.4 - Monthly list of sections affected.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1 General Provisions 1 2010-01-01 2010-01-01 false Monthly list of sections affected. 6.4 Section 6.4 General Provisions ADMINISTRATIVE COMMITTEE OF THE FEDERAL REGISTER THE FEDERAL REGISTER INDEXES AND ANCILLARIES § 6.4 Monthly list of sections affected. A monthly list of sections of the Code...

  8. 39 CFR 6.4 - Attendance by conference telephone call.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Attendance by conference telephone call. 6.4 Section 6.4 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE MEETINGS (ARTICLE VI) § 6.4 Attendance by conference telephone call. For regularly scheduled meetings...

  9. Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV.

    PubMed

    Thiagarajan, Viruthachalam; Byrdin, Martin; Eker, André P M; Müller, Pavel; Brettel, Klaus

    2011-06-07

    CPD photolyase uses light to repair cyclobutane pyrimidine dimers (CPDs) formed between adjacent pyrimidines in UV-irradiated DNA. The enzyme harbors an FAD cofactor in fully reduced state (FADH(-)). The CPD repair mechanism involves electron transfer from photoexcited FADH(-) to the CPD, splitting of its intradimer bonds, and electron return to restore catalytically active FADH(-). The two electron transfer processes occur on time scales of 10(-10) and 10(-9) s, respectively. Until now, CPD splitting itself has only been poorly characterized by experiments. Using a previously unreported transient absorption setup, we succeeded in monitoring cyclobutane thymine dimer repair in the main UV absorption band of intact thymine at 266 nm. Flavin transitions that overlay DNA-based absorption changes at 266 nm were monitored independently in the visible and subtracted to obtain the true repair kinetics. Restoration of intact thymine showed a short lag and a biexponential rise with time constants of 0.2 and 1.5 ns. We assign these two time constants to splitting of the intradimer bonds (creating one intact thymine and one thymine anion radical T(∘-)) and electron return from T(∘-) to the FAD cofactor with recovery of the second thymine, respectively. Previous model studies and computer simulations yielded various CPD splitting times between < 1 ps and < 100 ns. Our experimental results should serve as a benchmark for future efforts to model enzymatic photorepair. The technique and methods developed here may be applied to monitor other photoreactions involving DNA.

  10. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions.

    PubMed

    Krapf, Sebastian; Koslowski, Thorsten; Steinbrecher, Thomas

    2010-08-28

    DNA Photolyases are light sensitive oxidoreductases present in many organisms that participate in the repair of photodamaged DNA. They are capable of electron transfer between a bound cofactor and a chain of tryptophan amino acid residues. Due to their unique mechanism and important function, photolyases have been subject to intense study in recent times, with both experimental and computational efforts. In this work, we present a novel application of classical molecular dynamics based free energy calculations, combined with quantum mechanical computations, to biomolecular charge transfer. Our approach allows for the determination of all reaction parameters in Marcus' theory of charge transport. We were able to calculate the free energy profile for the movement of a positive charge along protein sidechains involved in the biomolecule's function as well as charge-transfer rates that are in good agreement with experimental results. Our approach to simulate charge-transfer reactions explicitly includes the influence of protein flexibility and solvent dynamics on charge-transfer energetics. As applied here to a biomolecular system of considerable scientific interest, we believe the method to be easily adaptable to the study of charge-transfer phenomena in biochemistry and other fields.

  11. Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene

    SciTech Connect

    Willis, Leslie G.; Siepp, Robyn; Stewart, Taryn M.; Erlandson, Martin A.; Theilmann, David A. . E-mail: TheilmannD@agr.gc.ca

    2005-08-01

    The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (T. ni), has been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%. Gene analysis predicted 144 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Comparisons with previously sequenced baculoviruses indicate that 119 TnSNPV ORFs were homologues of previously reported viral gene sequences. Ninety-four TnSNPV ORFs returned an Autographa californica multiple NPV (AcMNPV) homologue while 25 ORFs returned poor or no sequence matches with the current databases. A putative photolyase gene was also identified that had highest amino acid identity to the photolyase genes of Chrysodeixis chalcites NPV (ChchNPV) (47%) and Danio rerio (zebrafish) (40%). In addition unlike all other baculoviruses no obvious homologous repeat (hr) sequences were identified. Comparison of the TnSNPV and AcMNPV genomes provides a unique opportunity to examine two baculoviruses that are highly virulent for a common insect host (T. ni) yet belong to diverse baculovirus taxonomic groups and possess distinct biological features. In vitro fusion assays demonstrated that the TnSNPV F protein induces membrane fusion and syncytia formation and were compared to syncytia formed by AcMNPV GP64.

  12. PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases.

    PubMed

    Hoffman, P D; Batschauer, A; Hays, J B

    1996-11-27

    A cDNA from Arabidopsis thaliana similar to microbial photolyase genes, and designated AT-PHH1, was isolated using a photolyase-like cDNA from Sinapsis alba (SA-PHR1) as a probe. Multiple isolations yielded only PHH1 cDNAs, and a few blue-light-receptor CRY1 (HY4) cDNAs (also similar to microbial photolyase genes), suggesting the absence of any other highly similar Arabidopsis genes. The AT-PHH1 and SA-PHR1 cDNA sequences predict 89% identity at the protein level, except for an AT-PHH1 C-terminal extension (111 amino acids), also not seen in microbial photolyases. AT-PHH1 and CRY1 show less similarity (54% p4erein identity), including respective C-terminal extensions that are themselves mostly dissimilar. Analysis of fifteen AT-PHH1 genomic isolates reveals a single gene, with three introns in the coding sequence and one in the 5'-untranslated leader. Full-length AT-PHH1, and both AT-PHH1 and AT-PHH1 delta C-513 (truncated to be approximately the size of microbial photolyase genes) cDNAs, were overexpressed, respectively, in yeast and Escherichia coli mutants hypersensitive to ultraviolet light. The absence of significant effects on resistance suggests either that any putative AT-PHH1 DNA repair activity requires cofactors/chromophores not present in yeast or E. coli, or that AT-PHH1 encodes a blue-light/ultraviolet-A receptor rather than a DNA repair protein.

  13. 15 CFR 6.4 - Adjustments to penalties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6.4 Commerce and Foreign Trade Office of the Secretary of Commerce CIVIL MONETARY PENALTY INFLATION ADJUSTMENTS § 6.4 Adjustments to penalties. The civil monetary penalties provided by law within the... Sensing Policy Act of 1992, from $11,000 to $11,000. (2) 15 U.S.C. 5658(c), Land Remote Sensing Policy...

  14. 31 CFR 6.4 - Eligibility of applicants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... public or private organization with a net worth of not more than $5 million and not more than 500... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Eligibility of applicants. 6.4 Section 6.4 Money and Finance: Treasury Office of the Secretary of the Treasury APPLICATIONS FOR...

  15. Resonance Raman spectroscopic investigation of the light-harvesting chromophore in escherichia coli photolyase and Vibrio cholerae cryptochrome-1.

    PubMed

    Sokolova, Olga; Cecala, Christine; Gopal, Anand; Cortazar, Frank; McDowell-Buchanan, Carla; Sancar, Aziz; Gindt, Yvonne M; Schelvis, Johannes P M

    2007-03-27

    Photolyases and cryptochromes are flavoproteins that belong to the class of blue-light photoreceptors. They usually bind two chromophores: flavin adenine dinucleotide (FAD), which forms the active site, and a light-harvesting pigment, which is a 5,10-methenyltetrahydrofolate polyglutamate (MTHF) in most cases. In Escherichia coli photolyase (EcPhr), the MTHF cofactor is present in substoichiometric amounts after purification, while in Vibrio cholerae cryptochrome-1 (VcCry1) the MTHF cofactor is bound more strongly and is present at stoichiometric levels after purification. In this paper, we have used resonance Raman spectroscopy to monitor the effect of loss of MTHF on the protein-FAD interactions in EcPhr and to probe the protein-MTHF interactions in both EcPhr and VcCry1. We find that removal of MTHF does not perturb protein-FAD interactions, suggesting that it may not affect the physicochemical properties of FAD in EcPhr. Our data demonstrate that the pteridine ring of MTHF in EcPhr has different interactions with the protein matrix than that of MTHF in VcCry1. Comparison to solution resonance Raman spectra of MTHF suggests that the carbonyl of its pteridine ring in EcPhr experiences stronger hydrogen bonding and a more polar environment than in VcCry1, but that hydrogen bonding to the pteridine ring amine hydrogens is stronger in VcCry-1. These differences in hydrogen bonding may account for the higher binding affinity of MTHF in VcCry1 compared to EcPhr.

  16. 34 CFR 6.4 - Central records; confidentiality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Education Office of the Secretary, Department of Education INVENTIONS AND PATENTS (GENERAL) § 6.4 Central records; confidentiality. Central files and records shall be maintained of all inventions, patents, and... Department under such patents. Invention reports required from employees or others for the purpose...

  17. 41 CFR 51-6.4 - Military resale commodities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potential of military resale commodities. (4) Establish policies and procedures which reserve to its agency... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Military resale... PROCEDURES § 51-6.4 Military resale commodities. (a) Purchase procedures for ordering military...

  18. 41 CFR 51-6.4 - Military resale commodities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Military resale... PROCEDURES § 51-6.4 Military resale commodities. (a) Purchase procedures for ordering military resale commodities are available from the central nonprofit agencies. Authorized resale outlets (military...

  19. 41 CFR 51-6.4 - Military resale commodities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Military resale... PROCEDURES § 51-6.4 Military resale commodities. (a) Purchase procedures for ordering military resale commodities are available from the central nonprofit agencies. Authorized resale outlets (military...

  20. 41 CFR 51-6.4 - Military resale commodities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Military resale... PROCEDURES § 51-6.4 Military resale commodities. (a) Purchase procedures for ordering military resale commodities are available from the central nonprofit agencies. Authorized resale outlets (military...

  1. 41 CFR 51-6.4 - Military resale commodities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Military resale... PROCEDURES § 51-6.4 Military resale commodities. (a) Purchase procedures for ordering military resale commodities are available from the central nonprofit agencies. Authorized resale outlets (military...

  2. Crystal structure of poly[[μ3-4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoato]{μ2-4-[6-(4-carboxyphenyl)-4,4'-bipyridin-4'-ium-2-yl]benzoato}manganese(II)] hemi-hydrate].

    PubMed

    Li, Yaping; Sun, Dajun; Ming, Julia; Han, Liying; Su, Guanfang

    2014-11-01

    The title compound, {[Mn(C24H14N2O4)(C24H16N2O4)]·0.5H2O} n , was obtained by the reaction of manganese nitrate with the ligand 4,4'-(4,4'-bi-pyridine-2,6-di-yl) di-benzoic acid under hydro-thermal conditions. The water O atom is located on a twofold rotation axis. The Mn(2+) ion is hepta-coordinated by six O atoms and one N atom from the ligands. In this structure, the ligands adopts two different forms, one completely deprotonated and one with a protonated N atom (pyridinium) and a carboxylic acid function. In the crystal, N-H⋯O and O-H⋯O hydrogen bonds consolidate the packing, forming a three-dimensional framework.

  3. Crystal structure of (1S,3R,8R,10S)-2,2-di­chloro-10-hy­droxy-3,7,7,10-tetra­methyl­tri­cyclo­[6.4.0.01,3]dodecan-9-one

    PubMed Central

    Benzalim, Ahmed; Auhmani, Aziz; Ait Itto, My Youssef; Daran, Jean-Claude; Abdelwahed, Auhmani

    2016-01-01

    The asymmetric unit of the title compound, C16H24Cl2O2, contains two independent mol­ecules (A and B) which are built from three fused rings, viz. a seven-membered heptane ring, a six-membered cyclo­hexyl ring bearing a ketone and an alcohol group, and a cyclo­propane ring bearing two Cl atoms. In the crystal, the two mol­ecules are linked via two O—H⋯O hydrogen bonds, forming an A–B dimer with an R 2 2(10) ring motif. The A mol­ecules of these dimers are linked via a C—H⋯O hydrogen bond, forming chains propagating along the a-axis direction. Both mol­ecules have the same absolute configuration, i.e. 1S,3R,8R,10S, which is based on the synthetic pathway and further confirmed by resonant scattering [Flack parameter = 0.03 (5)]. PMID:27308024

  4. Crystal structure of 5-amino-5'-chloro-6-(4-chloro-benzo-yl)-8-nitro-2,3-di-hydro-1H-spiro-[imidazo[1,2-a]pyridine-7,3'-indolin]-2'-one including an unknown solvent mol-ecule.

    PubMed

    Nagalakshmi, R A; Suresh, J; Sivakumar, S; Kumar, R Ranjith; Lakshman, P L Nilantha

    2014-09-01

    The asymmetric unit of the title compound, C21H15Cl2N5O4, contains two independent mol-ecules (A and B) having similar conformations. The amine (NH2) group forms an intra-molecular hydrogen bond with the benzoyl group, giving an S(6) ring motif in both mol-ecules. The central six-membered rings adopt sofa conformations and the imidazole rings are planar (r.m.s deviations = 0.0150 and 0.0166 Å). The pyridine and imidazole rings are inclined to one another by 3.54 (1) and 3.03 (1)° in mol-ecules A and B, respectively. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, forming chains along the a axis which enclose R 2 (2)(16) ring motifs. The rings are linked by weak N-H⋯O and C-H⋯O hydrogen bonds and C-H⋯π inter-actions forming sheets lying parallel to (001). A region of disordered electron density, most probably disordered solvent mol-ecules, occupying voids of ca 753 Å(3) for an electron count of 260, was treated using the SQUEEZE routine in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155]. Their formula mass and unit-cell characteristics were not taken into account during refinement.

  5. Laser shock peening of titanium 6-4 alloy

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Hopkins, A.; Laber, M. W.

    2000-04-01

    Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Titanium disks, 20-mm in diameter, and ranging in thicknesses from zero (bare LiF) to 3-mm were subjected to laser shock to monitor amplitude and temporal stress profiles of the pulsed laser. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.7 GPa while propagating through 3-mm thick disk of titanium 6-4.

  6. Laser Shock Peening of Titanium 6-4 Alloy

    NASA Astrophysics Data System (ADS)

    Hopkins, Alan; Laber, Mark; Brar, Nachhatter S.

    1999-06-01

    shock 99 Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Disks of titanium, 0 to 3-mm thick and 20-mm in diameter, were subjected to the pulsed laser to monitor amplitude and temporal stress profiles of laser shock. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.6 GPa while propagating through 3-mm thick disk of titanium 6-4. *Supported by the U.S. Air Force Research Laboratory

  7. Efficacy of a photolyase-based device in the treatment of cancerization field in patients with actinic keratosis and non-melanoma skin cancer.

    PubMed

    Puviani, M; Barcella, A; Milani, M

    2013-12-01

    Eryfotona AK-NMSC (ISDIN Spain) is a film-forming medical device in cream or fluid formulation containing the DNA-repair enzyme photolyase and high-protection UV filters in liposomes (repairsomes) indicated in the treatment of cancerization field in patients with actinic keratosis (AK) or non-melanoma skin cancer (NMSC). Photolyase is an enzyme that recognizes and directly repairs UV-induced DNA damage. The most common UV-induced DNA damage is the formation of cyclobutane pyrimidine dimers (CPD). Clinical studies evaluating the histological and cellular effects of Eryfotona AK-NMSC have shown a potential benefit in the treatment of the cancerization field in AK patients. In particular the use of Eryfotona AK-NMSC improves the confocal microscopic appearance of skin at the cancerization field level. In addition, Eryfotona AK-NMSC improves the p53 gene expression at keratinocyte level. In this study we reported a series of 6 cases of patients with AK or NMSC lesions treated with Eryfotona AK-NMSC fluid, both as coadjuvant and as single treatment, applied twice daily in the affected area with photograph documentation. Clinical photographs of the skin lesions at baseline and after Eryfotona AK-NMSC treatment were taken in all cases using a high-definition digital camera. Six patients with multiple AK lesions of the scalp or face with or without NMSC were treated for a mean of 1-3 months with Eryfotona AK-NMSC fluid formulation. Image documentations before and after treatment of this clinical series show a great improvement in AK lesions count and of cancerization field. This clinical series supports the clinical efficacy of the use of photolyase and high-protection UV filters in the treatment of cancerization field and AK lesions in patients with actinic damage.

  8. First characterisation of a CPD-class I photolyase from a UV-resistant extremophile isolated from High-Altitude Andean Lakes.

    PubMed

    Albarracín, Virginia Helena; Simon, Julian; Pathak, Gopal P; Valle, Lorena; Douki, Thierry; Cadet, Jean; Borsarelli, Claudio Darío; Farias, María Eugenia; Gärtner, Wolfgang

    2014-05-01

    UV-resistant Acinetobacter sp. Ver3 isolated from High-Altitude Andean Lakes (HAAL) in Argentinean Puna, one of the highest UV exposed ecosystems on Earth, showed efficient DNA photorepairing ability, coupled to highly efficient antioxidant enzyme activities in response to UV-B stress. We herein present the cloning, expression, and functional characterization of a cyclobutane pyrimidine dimer (CPD)-class I photolyase (Ver3Phr) from this extremophile to prove its involvement in the previously noted survival capability. Spectroscopy of the overexpressed and purified protein identified flavin adenine dinucleotide (FAD) and 5,10-methenyltetrahydrofolate (MTHF) as chromophore and antenna molecules, respectively. All functional analyses were performed in parallel with the ortholog E. coli photolyase. Whereas the E. coli enzyme showed the FAD chromophore as a mixture of oxidised and reduced states, the Ver3 chromophore always remained partly (including the semiquinone state) or fully reduced under all experimental conditions tested. Functional complementation of Ver3Phr in Phr(-)-RecA E. coli strains was assessed by traditional UFC counting and measurement of DNA bipyrimidine photoproducts by HPLC coupled with electrospray ionisation-tandem mass spectrometry (ESI-MS/MS) detection. The results identified strong photoreactivation ability in vivo of Ver3Phr while its nonphotoreactivation function, probably related with the stimulation of nucleotide excision repair (NER), was not as manifest as for EcPhr. Whether this is a question of the approach using an exogenous photolyase incorporated in a non-genuine host or a fundamental different behaviour of a novel enzyme from an exotic environment will need further studies.

  9. Impact of the N5-proximal Asn on the Thermodynamic and Kinetic Stability of the Semiquinone Radical in Photolyase*

    PubMed Central

    Damiani, Michael J.; Nostedt, Jordan J.; O'Neill, Melanie A.

    2011-01-01

    Flavoproteins can dramatically adjust the thermodynamics and kinetics of electron transfer at their flavin cofactor. A versatile regulatory tool is proton transfer. Here, we demonstrate the significance of proton-coupled electron transfer to redox tuning and semiquinone (sq) stability in photolyases (PLs) and cryptochromes (CRYs). These light-responsive proteins share homologous overall architectures and FAD-binding pockets, yet they have evolved divergent functions that include DNA repair, photomorphogenesis, regulation of circadian rhythm, and magnetoreception. We report the first measurement of both FAD redox potentials for cyclobutane pyrimidine dimer PL (CPD-PL, Anacystis nidulans). These values, E1(hq/sq) = −140 mV and E2(sq/ox) = −219 mV, where hq is FAD hydroquinone and ox is oxidized FAD, establish that the sq is not thermodynamically stabilized (ΔE = E2 − E1 = −79 mV). Results with N386D CPD-PL support our earlier hypothesis of a kinetic barrier to sq oxidation associated with proton transfer. Both E1 and E2 are upshifted by ∼100 mV in this mutant; replacing the N5-proximal Asn with Asp decreases the driving force for sq oxidation. However, this Asp alleviates the kinetic barrier, presumably by acting as a proton shuttle, because the sq in N386D CPD-PL oxidizes orders of magnitude more rapidly than wild type. These data clearly reveal, as suggested for plant CRYs, that an N5-proximal Asp can switch on proton transfer and modulate sq reactivity. However, the effect is context-dependent. More generally, we propose that PLs and CRYs tune the properties of their N5-proximal residue to adjust the extent of proton transfer, H-bonding patterns, and changes in protein conformation associated with electron transfer at the flavin. PMID:21131361

  10. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA.

    PubMed

    Aravind, L; Anantharaman, Vivek; Koonin, Eugene V

    2002-07-01

    Protein sequence and structure comparisons show that the catalytic domains of Class I aminoacyl-tRNA synthetases, a related family of nucleotidyltransferases involved primarily in coenzyme biosynthesis, nucleotide-binding domains related to the UspA protein (USPA domains), photolyases, electron transport flavoproteins, and PP-loop-containing ATPases together comprise a distinct class of alpha/beta domains designated the HUP domain after HIGH-signature proteins, UspA, and PP-ATPase. Several lines of evidence are presented to support the monophyly of the HUP domains, to the exclusion of other three-layered alpha/beta folds with the generic "Rossmann-like" topology. Cladistic analysis, with patterns of structural and sequence similarity used as discrete characters, identified three major evolutionary lineages within the HUP domain class: the PP-ATPases; the HIGH superfamily, which includes class I aaRS and related nucleotidyltransferases containing the HIGH signature in their nucleotide-binding loop; and a previously unrecognized USPA-like group, which includes USPA domains, electron transport flavoproteins, and photolyases. Examination of the patterns of phyletic distribution of distinct families within these three major lineages suggests that the Last Universal Common Ancestor of all modern life forms encoded 15-18 distinct alpha/beta ATPases and nucleotide-binding proteins of the HUP class. This points to an extensive radiation of HUP domains before the last universal common ancestor (LUCA), during which the multiple class I aminoacyl-tRNA synthetases emerged only at a late stage. Thus, substantial evolutionary diversification of protein domains occurred well before the modern version of the protein-dependent translation machinery was established, i.e., still in the RNA world.

  11. Synthesis, spectral, thermal, optical and theoretical studies of (2E,6E)-2-benzylidene-6-(4-methoxybenzylidene)cyclohexanone.

    PubMed

    Meenatchi, V; Muthu, K; Rajasekar, M; Meenakshisundaram, Sp

    2014-01-01

    Single crystals of (2E,6E)-2-benzylidine-6-(4-methoxybenzylidine)cyclohexanone are grown by slow evaporation of ethanolic solution at room temperature. The characteristic functional groups present in the molecule are confirmed by Fourier transform infrared and Fourier transform Raman analyses. The scanning electron microscopy study reveals the surface morphology of the material. Thermogravimetric/differential thermal analysis study reveals the purity of the material and the crystal is transparent in the visible region having a lower optical cut-off at ∼487nm. The second harmonic generation efficiency of as-grown material is estimated by Kurtz and Perry technique. Optimized geometry has been derived using Hartree-Fock calculations performed at the level 6-31G (d,p) and the first-order molecular hyperpolarizability (β) is estimated. The specimen is further characterized by nuclear magnetic resonance spectroscopy.

  12. [Fe(CN)6]4- decorated mesoporous gelatin thin films for colorimetric detection and as sorbents of heavy metal ions.

    PubMed

    Shi, Li; Huang, Hubiao; Sun, Luwei; Lu, Yanping; Du, Binyang; Mao, Yiyin; Li, Junwei; Ye, Zhizhen; Peng, Xinsheng

    2013-09-28

    [Fe(CN)6](4-) decorated mesoporous gelatin films, acting as colorimetric sensors and sorbents for heavy metal ions, were prepared by incorporating [Fe(CN)6](4-) ions into the mesoporous gelatin films through electrostatic interaction. Gelatin-Prussian blue (PB) and gelatin-PB analogue composite films were successfully synthesized by immersing the [Fe(CN)6](4-) decorated gelatin films into aqueous solutions of metal ions, such as Fe(3+), Cu(2+), Co(2+), Pb(2+) and Cd(2+) (all as nitrates). The in situ formation process of PB or its analogues in the films was investigated using quartz crystal microbalance (QCM) measurements. According to the different colors of the PB nanoparticles and its analogues, the [Fe(CN)6](4-) decorated mesoporous gelatin films demonstrated colorimetric sensor abilities for detecting the corresponding metal ions by the naked eye with sufficient sensitivity at 1 ppm level and a quite short response time of 5 minutes. Moreover, due to the [Fe(CN)6](4-) functionality and other functional groups of gelatin itself, this [Fe(CN)6](4-) decorated mesoporous gelatin film shows a tens times higher adsorption ability for heavy metal ions in water than that of activated carbon. Due to both the efficient detection and high adsorption ability for heavy metal ions, this film has wide potential applications for the detection and purification of heavy metal ions from polluted water.

  13. Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes: assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo.

    PubMed

    Tremblay, Maxime; Toussaint, Martin; D'Amours, Annie; Conconi, Antonio

    2009-02-01

    The genome is organized into nuclear domains, which create microenvironments that favor distinct chromatin structures and functions (e.g., highly repetitive sequences, centromeres, telomeres, noncoding sequences, inactive genes, RNA polymerase II and III transcribed genes, and the nucleolus). Correlations have been drawn between gene silencing and proximity to a heterochromatic compartment. At the other end of the scale are ribosomal genes, which are transcribed at a very high rate by RNA polymerase I (~60% of total transcription), have a loose chromatin structure, and are clustered in the nucleolus. The rDNA sequences have 2 distinct structures: active rRNA genes, which have no nucleosomes; and inactive rRNA genes, which have nucleosomes. Like DNA transcription and replication, DNA repair is modulated by the structure of chromatin, and the kinetics of DNA repair vary among the nuclear domains. Although research on DNA repair in all chromosomal contexts is important to understand the mechanisms of genome maintenance, this review focuses on nucleotide excision repair and photolyase repair of UV photoproducts in the first-order packing of DNA in chromatin: the nucleosome. In addition, it summarizes the studies that have demonstrated the existence of the 2 rDNA chromatins, and the way this feature of the rDNA locus allows for direct comparison of DNA repair in 2 very different structures: nucleosome and non-nucleosome DNA.

  14. 38 CFR 6.4 - Proof of age, relationship and marriage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., relationship and marriage. 6.4 Section 6.4 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS....4 Proof of age, relationship and marriage. Whenever it is necessary for a claimant to prove age, relationship or marriage, the provisions of 38 U.S.C. 103(c) and Part 3 this chapter will be followed....

  15. 38 CFR 6.4 - Proof of age, relationship and marriage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., relationship and marriage. 6.4 Section 6.4 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS....4 Proof of age, relationship and marriage. Whenever it is necessary for a claimant to prove age, relationship or marriage, the provisions of 38 U.S.C. 103(c) and Part 3 this chapter will be followed....

  16. 38 CFR 6.4 - Proof of age, relationship and marriage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Proof of age, relationship and marriage. 6.4 Section 6.4 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS....4 Proof of age, relationship and marriage. Whenever it is necessary for a claimant to prove...

  17. 38 CFR 6.4 - Proof of age, relationship and marriage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Proof of age, relationship and marriage. 6.4 Section 6.4 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS....4 Proof of age, relationship and marriage. Whenever it is necessary for a claimant to prove...

  18. 38 CFR 6.4 - Proof of age, relationship and marriage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Proof of age, relationship and marriage. 6.4 Section 6.4 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS....4 Proof of age, relationship and marriage. Whenever it is necessary for a claimant to prove...

  19. 12 CFR 6.4 - Capital measures and capital category definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Capital measures and capital category definitions. 6.4 Section 6.4 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY PROMPT... categories. For purposes of the provisions of section 38 and this part, a bank shall be deemed to be:...

  20. A temperature-induced order-disorder phase transition in a 4-substituted 4,2':6',4''-terpyridine.

    PubMed

    Granifo, Juan; Westermeyer, Marleen; Riquelme, Maricel; Gaviño, Rubén; Suárez, Sebastián; Halac, Emilia B; Baggio, Ricardo

    2015-12-01

    Crystals of 4'-(isoquinolin-4-yl)-4,2':6',4''-terpyridine (iqtp), C24H16N4, grown from an ethanol solution, undergo a reversible first-order single-crystal to single-crystal phase transition at Tc in the range 273-275 K, from a disordered higher-temperature phase [form (I)] in the space group P21/c, with one single molecule in the asymmetric unit, to an ordered lower-temperature one [form (II)] in the space group P21/n, with two independent molecules in the asymmetric unit. There is a group-subgroup relationship linking (I)-(II), due to cell doubling and the disappearance of a number of symmetry operations. In addition to X-ray diffraction, the transition has been monitored by Raman spectroscopy and differential scanning calorimetry, the latter disclosing an enthalpy change of 0.72 (6) kJ mol(-1). Variations of the unit-cell parameters with temperature between 170 and 293 K are presented. The evolution of diffraction spots in the vicinity of the transition temperature shows the coexistence of both phases, confirming the first-order character of the transition. Structural details of both phases are analyzed and intermolecular interactions compared in order to investigate the mechanism of the phase transition. A three-dimensional Hirshfeld surface analysis was performed to corroborate the significant changes in the intermolecular features.

  1. Vulgarisin A, a new diterpenoid with a rare 5/6/4/5 ring skeleton from the Chinese medicinal plant Prunella vulgaris.

    PubMed

    Lou, Huayong; Zheng, Shan; Li, Tianlei; Zhang, Jianxin; Fei, Yue; Hao, Xiaojiang; Liang, Guangyi; Pan, Weidong

    2014-05-16

    Vulgarisin A (1), a new diterpenoid with an unprecedented 5/6/4/5 fused tetracyclic ring skeleton, has been isolated from the medicinal plant Prunella vulgaris Linn. Its structure was characterized by extensive spectroscopic methods, and the absolute configuration was secured by single crystal X-ray diffraction analysis. Compound 1 showed weak cytotoxicity against human lung carcinoma A549 cells with an IC50 value of 57.0 μM.

  2. An Unexpected Deamination Reaction after Hydrolysis of the Pyrimidine (6-4) Pyrimidone Photoproduct

    PubMed Central

    2015-01-01

    Pyrimidine (6-4) pyrimidone photoproduct (6-4PP), a common DNA photolesion formed under solar irradiation, was indicated to hydrolyze under strong basic conditions, breaking the N3–C4 bond at the 5′-thymine. The reanalysis of this reaction revealed that the resulting water adduct may not be stable as previously proposed; it readily undergoes an esterification reaction induced by the 5-OH group at 6-4PP to form a five-membered ring, eliminating a molecule of ammonia. PMID:25250878

  3. Genome sequence of Corynebacterium nuruki S6-4 T, isolated from alcohol fermentation starter.

    PubMed

    Shin, Na-Ri; Whon, Tae Woong; Roh, Seong Woon; Kim, Min-Soo; Jung, Mi-Ja; Lee, Jina; Bae, Jin-Woo

    2011-08-01

    Corynebacterium nuruki S6-4(T), isolated from Korean alcohol fermentation starter, is a strictly aerobic, nonmotile, Gram-positive, and rod-shaped bacterium belonging to the genus Corynebacterium and the actinomycete group. We report here the draft genome sequence of C. nuruki strain S6-4(T) (3,106,595 bp, with a G+C content of 69.5%).

  4. Genome Sequence of Corynebacterium nuruki S6-4T, Isolated from Alcohol Fermentation Starter▿

    PubMed Central

    Shin, Na-Ri; Whon, Tae Woong; Roh, Seong Woon; Kim, Min-Soo; Jung, Mi-Ja; Lee, Jina; Bae, Jin-Woo

    2011-01-01

    Corynebacterium nuruki S6-4T, isolated from Korean alcohol fermentation starter, is a strictly aerobic, nonmotile, Gram-positive, and rod-shaped bacterium belonging to the genus Corynebacterium and the actinomycete group. We report here the draft genome sequence of C. nuruki strain S6-4T (3,106,595 bp, with a G+C content of 69.5%). PMID:21685278

  5. Mechanism of the alkali degradation of (6-4) photoproduct-containing DNA.

    PubMed

    Arichi, Norihito; Inase, Aki; Eto, Sachise; Mizukoshi, Toshimi; Yamamoto, Junpei; Iwai, Shigenori

    2012-03-21

    The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by β-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.

  6. Independent movement of the voltage sensors in KV2.1/KV6.4 heterotetramers

    PubMed Central

    Bocksteins, Elke; Snyders, Dirk J.; Holmgren, Miguel

    2017-01-01

    Heterotetramer voltage-gated K+ (KV) channels KV2.1/KV6.4 display a gating charge-voltage (QV) distribution composed by two separate components. We use state dependent chemical accessibility to cysteines substituted in either KV2.1 or KV6.4 to assess the voltage sensor movements of each subunit. By comparing the voltage dependences of chemical modification and gating charge displacement, here we show that each gating charge component corresponds to a specific subunit forming the heterotetramer. The voltage sensors from KV6.4 subunits move at more negative potentials than the voltage sensors belonging to KV2.1 subunits. These results indicate that the voltage sensors from the tetrameric channels move independently. In addition, our data shows that 75% of the total charge is attributed to KV2.1, while 25% to KV6.4. Thus, the most parsimonious model for KV2.1/KV6.4 channels’ stoichiometry is 3:1. PMID:28139741

  7. 43 CFR 4130.6-4 - Special grazing permits or leases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Special grazing permits or leases. 4130.6... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA Authorizing Grazing Use § 4130.6-4 Special grazing permits or leases. Special grazing permits...

  8. Dynamically Complex [6+4] and [4+2] Cycloadditions in the Biosynthesis of Spinosyn A

    PubMed Central

    Patel, Ashay; Chen, Zhuo; Yang, Zhongyue; Gutiérrez, Osvaldo; Liu, Hung-wen; Houk, K. N.; Singleton, Daniel A.

    2017-01-01

    SpnF, an enzyme involved in the biosynthesis of spinosyn A, catalyzes a transannular Diels–Alder reaction. Quantum mechanical computations and dynamic simulations now show that this cycloaddition is not well described as either a concerted or stepwise process, and dynamical effects influence the identity and timing of bond formation. The transition state for the reaction is ambimodal and leads directly to both the observed Diels–Alder and an unobserved [6+4] cycloadduct. The potential energy surface bifurcates and the cycloadditions occur by dynamically stepwise modes featuring an “entropic intermediate”. A rapid Cope rearrangement converts the [6+4] adduct into the observed [4+2] adduct. Control of nonstatistical dynamical effects may serve as another way by which enzymes control reactions. PMID:26909570

  9. DNA photochemistry: geometrically unconstrained pyrimidine (6-4) pyrimidone photoproducts do photoisomerize.

    PubMed

    Douki, Thierry; Rebelo-Moreira, Silvestre; Hamon, Nadège; Bayle, Pierre-Alain

    2015-01-16

    Structural features are of major importance for the formation of mutagenic photoproducts in DNA. It was recently reported that lack of constraints between two adjacent nucleosidic units prevents the conversion of pyrimidine (6-4) pyrimidone photoproducts into their Dewar valence isomers. We here report that this is not the case for the thymidine photoproducts which, although unconstrained, are quantitatively converted into photolysis products identified as Dewar valence isomers by mass spectrometry and NMR and infrared spectroscopies.

  10. Thymine photodimer formation in DNA hairpins. Unusual conformations favor (6 - 4) vs. (2 + 2) adducts.

    PubMed

    Hariharan, Mahesh; Siegmund, Karsten; Saurel, Clifton; McCullagh, Martin; Schatz, George C; Lewis, Frederick D

    2014-02-01

    The photochemical reactions of eleven synthetic DNA hairpins possessing a single TT step either in a base-paired stem or in a hexanucleotide linker have been investigated. The major reaction products have been identified as the cis-syn (2 + 2) adduct and the (6 - 4) adduct on the basis of their spectroscopic properties including 1D and 2D NMR spectra, UV spectra and stability or instability to photochemical cleavage. Product quantum yields and ratios determined by HPLC analysis allow the behaviour of the eleven hairpins to be placed into three groups: Group I in which the (2 + 2) adduct is the major product, as is usually the case for DNA, Group II in which comparable amounts of (2 + 2) and (6 - 4) adducts are formed, and Group III in which the major product is the (6 - 4) adduct. The latter behaviour is without precedent in natural or synthetic DNA and appears to be related to the highly fluxional structures of the hairpin reactants. Molecular dynamics simulation of ground state conformations provides quantum yields and product ratios calculated using a single parameter model that are in reasonable agreement with most of the experimental results. Factors which may influence the observed product ratios are discussed.

  11. Single Chirality (6,4) Single-Walled Carbon Nanotubes for Fluorescence Imaging with Silicon Detectors.

    PubMed

    Antaris, Alexander L; Yaghi, Omar K; Hong, Guosong; Diao, Shuo; Zhang, Bo; Yang, Jiang; Chew, Leila; Dai, Hongjie

    2015-12-16

    Postsynthetic single-walled carbon nanotube (SWCNT) sorting methods such as density gradient ultracentrifugation, gel chromatography, and electrophoresis have all been inspired by established biochemistry separation techniques designed to separate subcellular components. Biochemistry separation techniques have been refined to the degree that parameters such as pH, salt concentration, and temperature are necessary for a successful separation, yet these conditions are only now being applied to SWCNT separation methodologies. Slight changes in pH produce radically different behaviors of SWCNTs inside a density gradient, allowing for the facile separation of ultrahigh purity (6,4) SWCNTs from as-synthesized carbon nanotubes. The (6,4) SWCNTs are novel fluorophores emitting below ≈900 nm and can be easily detected with conventional silicon-based charge-coupled device detectors without the need for specialized InGaAs cameras. The (6,4) SWCNTs are used to demonstrate their potential as a clinically relevant NIR-I fluorescence stain for the immunohistochemical staining of cells and cancer tissue sections displaying high endothelial growth factor receptor levels.

  12. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  13. Tactical Miniature Crystal Oscillator.

    DTIC Science & Technology

    1981-04-01

    87 6.2 Outgassing experiments o......... 88 6.3 Electropolishing ......... 95 6.4 Leaks in the TMXO package...machinable and sealing properties. After considering the thermal and mech- anical characteristics of many materials, nickel was selected. Table 7 gives...and the nickel type used in this program. TABLE 7. CHARACTERISTICS OF CRYSTAL ENCLOSURES Old copper Alumina* Nickel enclosures enclosures enclosure

  14. CFL3D Version 6.4-General Usage and Aeroelastic Analysis

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Rumsey, Christopher L.; Biedron, Robert T.

    2006-01-01

    This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases. Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4 presented here that has not previously been published. There are also outdated features no longer used or recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also provides hints for usage, code installation and examples not found elsewhere.

  15. Antioxidant properties of flavone-6(4')-carboxaldehyde oxime ether derivatives.

    PubMed

    Ayhan-Kilcigil, Gülgün; Coban, Tülay; Tunçbilek, Meral; Can-Eke, Benay; Bozdağ-Dündar, Oya; Ertan, Rahmiye; Iscan, Mümtaz

    2004-06-01

    The in vitro antioxidant properties of some flavone-6(4)-carboxaldehyde oxime ether derivatives (Ia-f, IIa-f) were determined by their effects on the rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels by measuring the formation of 2-thiobarbituric acid reactive substances. The free radical scavenging properties of the compounds were also examined in vitro by determining their capacity to scavenge superoxide anions and interact with the stable free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH). The most active compounds, IIb (Flavone-4'-carboxaldehyde-O-ethyl oxime) and Id (Flavone-6-carboxaldehyde-O-[2-(1-pyrolidino) ethyl] oxime), caused 98 and 79% inhibition of superoxide anion production and DPPH stable free radical at 10(-3) M, respectively.

  16. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser.

  17. The Influence of Precipitation of Alpha2 on Properties and Microstructure in TIMETAL 6-4

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; Qiu, Chunlei; Venkatesh, V.; Fraser, Hamish L.; Williams, R. E. A.; Viswanathan, G. B.; Thomas, Matthew; Nag, S.; Banerjee, Rajarshi; Loretto, Michael H.

    2013-04-01

    Samples of Hot Isostatically Pressed (HIPped) powder of TIMETAL 6-4 (Ti-6Al-4V, compositions in wt pct unless indicated), which was HIPped at 1203 K (930 °C), and of forged bar stock, which was slowly cooled from above the beta transus, were both subsequently held at 773 K (500 °C) for times up to 5 weeks and analyzed using scanning and transmission electron microscopy and atom probe analysis. It has been shown that in the samples aged for 5 weeks at 773 K (500 °C), there is a high density of alpha2 (α2, an ordered phase based on the composition Ti3Al) precipitates, which are typically 5 nm in size, and a significantly smaller density was present in the slowly cooled samples. The fatigue and tensile properties of samples aged for 5 weeks at 773 K (500 °C) have been compared with those of the HIPped powder and of the forged samples which were slowly cooled from just above the transus, and although no significant difference was found between the fatigue properties, the tensile strength of the aged samples was 5 pct higher than that of the as-HIPped and slowly cooled forged samples. The ductility of the forged samples did not decrease after aging at 773 K (500 °C) despite the strength increase. Transmission electron microscopy has been used to assess the nature of dislocations generated during tensile and fatigue deformation and it has been found that not just is planar slip observed, but dislocation pairs are not uncommon in samples aged at 773 K (500 °C) and some are seen in slowly cooled Ti6Al4V.

  18. Discovery of a 6.4 h black hole binary in NGC 4490

    NASA Astrophysics Data System (ADS)

    Esposito, P.; Israel, G. L.; Sidoli, L.; Mapelli, M.; Zampieri, L.; Motta, S. E.

    2013-12-01

    We report on the discovery with Chandra of a strong modulation (˜90 per cent pulsed fraction) at ˜6.4 h from the source CXOU J123030.3+413853 in the star-forming, low-metallicity spiral galaxy NGC 4490, which is interacting with the irregular companion NGC 4485. This modulation, confirmed also by XMM-Newton observations, is interpreted as the orbital period of a binary system. The spectra from the Chandra and XMM-Newton observations can be described by a power-law model with photon index Γ ˜ 1.5. During these observations, which span from 2000 November to 2008 May, the source showed a long-term luminosity variability by a factor of ˜5, between ˜2 × 1038 and 1.1 × 1039 erg s-1 (for a distance of 8 Mpc). The maximum X-ray luminosity, exceeding by far the Eddington limit of a neutron star, indicates that the accretor is a black hole. Given the high X-ray luminosity, the short orbital period and the morphology of the orbital light curve, we favour an interpretation of CXOU J123030.3+413853 as a rare high-mass X-ray binary system with a Wolf-Rayet star as a donor, similar to Cyg X-3. This would be the fourth system of this kind known in the local Universe. CXOU J123030.3+413853 can also be considered as a transitional object between high-mass X-ray binaries and ultraluminous X-ray sources (ULXs), the study of which may reveal how the properties of persistent black hole binaries evolve entering the ULX regime.

  19. A High-Resolution Study of the IGM at 5 < z < 6.4

    NASA Astrophysics Data System (ADS)

    Becker, G. D.; Sargent, W. L. W.; Rauch, M.; Simcoe, R. A.

    2005-12-01

    The complete Lyman-alpha absorption seen in the spectra of z > 6 quasars suggest that the reionization of the IGM may have completed as late as z = 6.2. However, this late reionization scenario remains controversial due in part to studies of galaxy luminosity functions, which favor a highly-ionized IGM out to z > 6.5. In order to improve our understanding of the IGM at these redshifts, we have acquired Keck/HIRES spectra of nine quasars at 4.8 < z < 6.4. These are the first high-resolution spectra ever taken at z > 4.6, and are providing the first detailed look at the very high-redshift IGM. We will present the first results from this data set, highlighting the evolution of the Lyman-alpha forest and the quasar proximity regions. The high-resolution data also reveal an overabundance of O I systems at z > 6 towards SDSS J1148+5251. These O I absorbers may represent the last pockets of neutral gas to be reionized at z ˜ 6. Alternatively, they may be caused by enriched galaxy halos physically similar to those observed at lower redshift. For these systems we are able to measure accurate column densities of O I, C II, and Si II. The relative abundances are consistent with the yields of ordinary Type II supernovae, with at most ˜ 30% of the silicon contributed by very massive stars. GDB and WLWS have been supported by the NSF through grants AST 99-00733 and AST 02-06067. MR has been supported by the NSF under grant AST 00-98492. RAS has been supported by the MIT Pappalardo Fellowship program.

  20. Fluorescence of poly[2,6-(4-phenylquinoline)] and its blends

    NASA Astrophysics Data System (ADS)

    Lin, Hung-Sheng

    Optical absorption measurements and photoluminescence spectroscopy have been carried out on a class of nitrogen-containing pi-conjugated polymers which can be used as active materials in light emitting diodes. In this dissertation, Poly [2,6-(4-phenylquinoline)] (PPQ) was used as a model system to demonstrate that optical properties could be manipulated by inducing morphology changes in various PPQ-blends as well as by solvent interactions with the pi-conjugated backbone of the PPQ. It is shown that by controlling the preparation conditions, adding small molecules, and/or blending with other interactive polymers, the of the absorption and/or emission could be altered. Furthermore, it was found that both doping and chain packing may have important effects on the energy gap between the ground state and the excited state. There are two major peaks in the UV absorption spectrum of the PPQ. One peak is assigned to the phenyl group side chain, whereas the other one reflects the PPQ backbone, whose absorption has been illustrated to be dependent on experimental conditions. The position of the major photoluminescence emission peak was found to be influenced by (1) the nature of the solvent and the doping agents used, (2) different processing methods, and (3) blending with photo-inactive polymers such as Poly(vinyl alcohol) (PVA), Poly(ethylene oxide) (PEO), Poly(acrylic acid)(PAA), Sulfonic polystyrene (SPS), etc. These factors singly or in combination contribute to the shifting of the emission peak. In a polymer blend, the strength of the enthalpic interaction between its components determines the spatial separation of the polymers, which results in different morphologies in the blend, and in turn, different optical properties of the blend. Since the emission from a blend depends on its morphological dispersion, optical studies of polymer blends first involve control of morphologies in these blends. The morphologies of polymer blends have been studied by using Scanning

  1. Crystal Meth

    MedlinePlus

    ... from Other Parents Stories of Hope Crystal meth Crystal meth Story of Hope by giovanni January 3, ... about my drug addiction having to deal with Crystal meth. I am now in recovery and fighting ...

  2. Crystal Meth

    MedlinePlus

    ... Navigation Home / Stories of Hope / Crystal meth Crystal meth Story Of Hope By giovanni January 3rd, 2013 ... my drug addiction having to deal with Crystal meth. I am now in recovery and fighting my ...

  3. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  4. The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence

    NASA Astrophysics Data System (ADS)

    van der Woerd, Jérôme; Dorbath, Catherine; Ousadou, Farida; Dorbath, Louis; Delouis, Bertrand; Jacques, Eric; Tapponnier, Paul; Hahou, Youssef; Menzhi, Mohammed; Frogneux, Michel; Haessler, Henri

    2014-07-01

    The Al Hoceima Mw 6.4 earthquake of 24 February 2004 that occurred in the eastern Rif region of Morocco already hit by a large event in May 1994 (Mw 5.9) has been followed by numerous aftershocks in the months following the event. The aftershock sequence has been monitored by a temporary network of 17 autonomous seismic stations during 15 days (28 March-10 April) in addition to 5 permanent stations of the Moroccan seismic network (CNRST, SPG, Rabat). This network allowed locating accurately about 650 aftershocks that are aligned in two directions, about N10-20E and N110-120E, in rough agreement with the two nodal planes of the focal mechanism (Harvard). The aftershock alignments are long enough, about 20 km or more, to correspond both to the main rupture plane. To further constrain the source of the earthquake main shock and aftershocks (mb > 3.5) have been relocated thanks to regional seismic data from Morocco and Spain. While the main shock is located at the intersection of the aftershock clouds, most of the aftershocks are aligned along the N10-20E direction. This direction together with normal sinistral slip implied by the focal mechanism is similar with the direction and mechanisms of active faults in the region, particularly the N10E Trougout oblique normal fault. Indeed, the Al Hoceima region is dominated by an approximate ENE-SSW direction of extension, with oblique normal faults. Three major 10-30 km-long faults, oriented NNE-SSW to NW-SE are particularly clear in the morphology, the Ajdir and Trougout faults, west and east of the Al Hoceima basin, respectively, and the NS Rouadi fault 20 km to the west. These faults show clear evidence of recent vertical displacements during the late Quaternary such as uplifted alluvial terraces along Oued Rihs, offset fan surfaces by the Rouadi fault and also uplifted and tilted abandoned marine terraces on both sides of the Al Hoceima bay. However, the N20E direction is in contrast with seismic sources identified from

  5. A TeGM6-4r antigen-based immunochromatographic test (ICT) for animal trypanosomosis.

    PubMed

    Nguyen, Thu-Thuy; Ruttayaporn, Ngasaman; Goto, Yasuyuki; Kawazu, Shin-ichiro; Sakurai, Tatsuya; Inoue, Noboru

    2015-11-01

    Animal trypanosomosis is a disease that is distributed worldwide which results in huge economic losses due to reduced animal productivity. Endemic regions are often located in the countryside where laboratory diagnosis is costly or inaccessible. The establishment of simple, effective, and accurate field tests is therefore of great interest to the farming and veterinary sectors. Our study aimed to develop a simple, rapid, and sensitive immunochromatographic test (ICT) for animal trypanosomosis utilizing the recombinant tandem repeat antigen TeGM6-4r, which is conserved amongst salivarian trypanosome species. In the specificity analysis, TeGM6-4r/ICT detected all of Trypanosoma evansi-positive controls from experimentally infected water buffaloes. As expected, uninfected controls tested negative. All sera samples collected from Tanzanian and Ugandan cattle that were Trypanosoma congolense- and/or Trypanosoma vivax-positive by microscopic examination of the buffy coat were found to be positive by the newly developed TeGM6-4r/ICT, which was comparable to results from TeGM6-4r/ELISA (kappa coefficient [κ] = 0.78). TeGM6/ICT also showed substantial agreement with ELISA using Trypanosoma brucei brucei (κ = 0.64) and T. congolense (κ = 0.72) crude antigen, suggesting the high potential of TeGM6-4r/ICT as a field diagnostic test, both for research purposes and on-site diagnosis of animal trypanosomosis.

  6. DNA sequence context greatly affects the accuracy of bypass across an ultraviolet light 6-4 photoproduct in mammalian cells.

    PubMed

    Shriber, Pola; Leitner-Dagan, Yael; Geacintov, Nicholas; Paz-Elizur, Tamar; Livneh, Zvi

    2015-10-01

    Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism carried out by low-fidelity DNA polymerases that bypass DNA lesions, which overcomes replication stalling. Despite the miscoding nature of most common DNA lesions, several of them are bypassed in mammalian cells in a relatively accurate manner, which plays a key role maintaining a low mutation load. Whereas it is generally agreed that TLS across the major UV and sunlight induced DNA lesion, the cyclobutane pyrimidine dimer (CPD), is accurate, there were conflicting reports on whether the same is true for the thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct (TT6-4PP), which represents the second most common class of UV lesions. Using a TLS assay system based on gapped plasmids carrying site-specific TT6-4PP lesions in defined sequence contexts we show that the DNA sequence context markedly affected both the extent and accuracy of TLS. The sequence exhibiting higher TLS exhibited also higher error-frequency, caused primarily by semi-targeted mutations, at the nearest nucleotides flanking the lesion. Our results resolve the discrepancy reported on TLS across TT6-4PP, and suggest that TLS is more accurate in human cells than in mouse cells.

  7. Diagnostic value of the recombinant tandem repeat antigen TeGM6-4r for surra in water buffaloes.

    PubMed

    Nguyen, Thu-Thuy; Zhou, Mo; Ruttayaporn, Ngasaman; Nguyen, Quoc Doanh; Nguyen, Viet Khong; Goto, Yasuyuki; Suzuki, Yasuhiko; Kawazu, Shin-ichiro; Inoue, Noboru

    2014-03-17

    Trypanosoma evansi infection, or surra, is currently affecting various species of animals, especially water buffaloes. Since diagnosis is an important aspect of surra control, development of novel diagnostic antigens is of interest to implement and improve the currently utilized methods. Our study evaluated the tandem repeat antigen TeGM6-4r in T. evansi antibody detection in water buffaloes. TeGM6-4r-based ELISA was performed with 20 positive and 8 negative controls and 484 field samples from water buffaloes in Northern Vietnam. To examine cross-reactivity, sera from Japanese cattle that had been experimentally infected with Theileria orientalis (n=10), Babesia bovis (n=3), Babesia bigemina (n=7) and Trypanosoma theileri (n=59) were included in the study. The sensitivity of the test was 80%. TeGM6-4r did not react with Theileria or Babesia infected sera, however it showed cross reactivity with 11/59 T. theileri infected samples. The reference test, CATT/T. evansi also reacted with 3/59 T. theileri infected sera. The lysate antigen-based ELISA reacted with 4/59 T. theileri, 9/10 Theileria and 3/10 Babesia infected sera. In contrast, TeGM6-4r-based ELISA was 86.3% sensitive and 58.3% specific in the screening of field samples. The average seroprevalence of T. evansi infection among water buffaloes in Northern Vietnam was 27.1% by CATT/T. evansi and 53.7% by TeGM6-4r. Seroprevalence in the five surveyed provinces ranged from 17.4% to 39.8% in the reference test, and 47.3% to 67.3% in the recombinant antigen based test. The finding indicated that the disease is still widely endemic in the area and that surveillance programs need to be carried out regularly to better control surra. We proposed TeGM6-4r as a useful serodiagnostic antigen for the detection and epidemiological surveillance of T. evansi infection among water buffaloes.

  8. Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana

    SciTech Connect

    Pokorny, Richard; Klar, Tobias; Essen, Lars-Oliver; Batschauer, Alfred

    2005-10-01

    Recombinant cryptochrome 3 from A. thaliana with FAD and MTHF cofactors has been crystallized using the hanging-drop vapour-diffusion technique in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and X-ray diffraction data were collected to 1.9 Å resolution. Cryptochromes are flavoproteins which serve as blue-light receptors in plants, animals, fungi and prokaryotes and belong to the same protein family as the catalytically active DNA photolyases. Cryptochrome 3 from the plant Arabidopsis thaliana (cry3; 525 amino acids, 60.7 kDa) is a representative of the novel cryDASH subfamily of UV-A/blue-light receptors and has been expressed as a mature FAD-containing protein in Escherichia coli without the signal sequence that directs the protein into plant organelles. The purified cryptochrome was found to be complexed to methenyltetrahydrofolate as an antenna pigment. Crystals of the cryptochrome–antenna pigment complex were obtained by vapour diffusion and display orthorhombic symmetry, with unit-cell parameters a = 76.298, b = 116.782, c = 135.024 Å. X-ray diffraction data were collected to 1.9 Å resolution using synchrotron radiation. The asymmetric unit comprises a cry3 dimer, the physiological role of which remains to be elucidated.

  9. 41 CFR 304-6.4 - What form must we use to report payments received by the agency from non-Federal sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... report payments received by the agency from non-Federal sources? 304-6.4 Section 304-6.4 Public Contracts and Property Management Federal Travel Regulation System PAYMENT OF TRAVEL EXPENSES FROM A NON-FEDERAL SOURCE AGENCY REQUIREMENTS 6-PAYMENT GUIDELINES Reports § 304-6.4 What form must we use to...

  10. 41 CFR 304-6.4 - What form must we use to report payments received by the agency from non-Federal sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... report payments received by the agency from non-Federal sources? 304-6.4 Section 304-6.4 Public Contracts and Property Management Federal Travel Regulation System PAYMENT OF TRAVEL EXPENSES FROM A NON-FEDERAL SOURCE AGENCY REQUIREMENTS 6-PAYMENT GUIDELINES Reports § 304-6.4 What form must we use to...

  11. 41 CFR 304-6.4 - What form must we use to report payments received by the agency from non-Federal sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... report payments received by the agency from non-Federal sources? 304-6.4 Section 304-6.4 Public Contracts and Property Management Federal Travel Regulation System PAYMENT OF TRAVEL EXPENSES FROM A NON-FEDERAL SOURCE AGENCY REQUIREMENTS 6-PAYMENT GUIDELINES Reports § 304-6.4 What form must we use to...

  12. 41 CFR 304-6.4 - What form must we use to report payments received by the agency from non-Federal sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... report payments received by the agency from non-Federal sources? 304-6.4 Section 304-6.4 Public Contracts and Property Management Federal Travel Regulation System PAYMENT OF TRAVEL EXPENSES FROM A NON-FEDERAL SOURCE AGENCY REQUIREMENTS 6-PAYMENT GUIDELINES Reports § 304-6.4 What form must we use to...

  13. 41 CFR 304-6.4 - What form must we use to report payments received by the agency from non-Federal sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... report payments received by the agency from non-Federal sources? 304-6.4 Section 304-6.4 Public Contracts and Property Management Federal Travel Regulation System PAYMENT OF TRAVEL EXPENSES FROM A NON-FEDERAL SOURCE AGENCY REQUIREMENTS 6-PAYMENT GUIDELINES Reports § 304-6.4 What form must we use to...

  14. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  15. Synthesis, molecular docking and biological evaluation of novel 6-(4-(4-aminophenylsulfonyl)phenylamino)-5H-benzo[a]phenothiazin-5-one derivatives

    NASA Astrophysics Data System (ADS)

    Ravichandiran, Palanisamy; Athinarayanan, Jegan; Premnath, Dhanaraj; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali A.; Vasanthkumar, Samuel

    2015-03-01

    A novel series of 6-(4-(4-aminophenylsulfonyl)phenylamino)-5H-benzo[a]phenothiazin-5-one derivatives have been synthesized and examined for their in vitro antibacterial activity against a panel of Gram-positive and Gram-negative bacteria. Among these, N-(4-(4-(5-oxo-5H-benzo[a]phenothiazin-6-ylamino)phenylsulfonyl)phenyl)-3,5-bis(trifluoromethyl)benzamide (3n) (0.4 μg/mL) and 4-ethyl-N-(4-(4-(5-oxo-5H-benzo[a]phenothiazin-6-ylamino)phenylsulfonyl)phenyl)benzamide (3l) (0.6 μg/mL) systems exhibited a potent inhibitory activity against Gram-positive organism Bacillus subtilis, when compare to the other synthesized compounds. Sparfloxacin (9.76 μg/mL), Norfloxacin (no activity) were employed as the standard drugs. An evaluation of the cytotoxicity of the title compounds (1, 2, 3a-n) revealed that they displayed low toxicity (26-115 mg/L) against cervical cancer cell line (SiHa). The results of these studies suggest that, phenothiazin-5-one derivatives are interesting binding agents for the development of new Gram-positive and Gram-negative antibacterial agents. To understand the interactions with protein receptors, docking simulation was done with crystal structures of B.subtilis (YmaH) and histone deacetylase (HDAC8) to determine the probable binding conformation.

  16. Adipic acid-2,4-diamino-6-(4-meth-oxy-phen-yl)-1,3,5-triazine (1/2).

    PubMed

    Thanigaimani, Kaliyaperumal; Razak, Ibrahim Abdul; Arshad, Suhana; Jagatheesan, Rathinavel; Santhanaraj, Kulandaisamy Joseph

    2012-10-01

    The asymmetric unit of the title compound, 2C(10)H(11)N(5)O·C(6)H(10)O(4), consists of a 2,4-diamino-6-(4-meth-oxy-phen-yl)-1,3,5-triazine mol-ecule and one-half mol-ecule of adipic acid which lies about an inversion center. The triazine ring makes a dihedral angle of 12.89 (4)° with the adjacent benzene ring. In the crystal, the components are linked by N-H⋯O and O-H⋯N hydrogen bonds, thus generating a centrosymmetric 2 + 1 unit of triazine and adipic acid mol-ecules with R(2) (2)(8) motifs. The triazine mol-ecules are connected to each other by N-H⋯N hydrogen bonds, forming an R(2) (2)(8) motif and a supra-molecular ribbon along the c axis. The 2 + 1 units and the supra-molecular ribbons are further inter-linked by weak N-H⋯O, C-H⋯O and C-H⋯π inter-actions, resulting in a three-dimensional network.

  17. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  18. Crystal and Molecular Structure of the Antimalarial Agent 4-(tert-Butyl- 2-(tert-Butylaminomethyl)-6-(4-Chlorophenyl)Phenol Dihydrogen Phosphate (WR 194, 965 Phosphate)

    DTIC Science & Technology

    1988-04-01

    became defined. The WR 194,%5 molecule fitted more (Fig. 6C. In her review, Oleksyn (13) points out that in the closely to the three-dimensional space...molecule and the possible importance of 11. Oleksyn , B., L. Lebioda, and M. Ciechanowicz-Rutkowska. 1979. hydrogen bonding with a receptor. Although the...closely into the 12. Oleksyn , B., K. M. Stadnicka, and S. A. Hodorowicz. 1978. The ., -’ three-dimensional space defined by a combination of meflo

  19. Apoferritin crystals

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Alexander Chernov, of the Universities Space Research Association (USRA) and based at Marshall Space Flight Center, is investigating why protein crystals grown in space are, in about 20 percent of cases, better-ordered than those grown on the ground. They are testing the idea that the amount of impurities trapped by space-grown crystals may be different than the amount trapped by crystals grown on Earth because convection is negligible in microgravity. The concentrations or impurities in many space-grown crystals turned out to be several times lower than that in the terrestrial ones, sometimes below the detection limit. The ground-based experiment also showed that the amount of impurities per unit volume of the crystals was usually higher than the amount per unit volume of the solution. This means that a growing crystal actually purifies the solution in its immediate vicinity. Here, an impurity depletion zone is created around apoferritin crystals grown in gel, imitating microgravity conditions.

  20. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  1. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  2. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water

    PubMed Central

    2015-01-01

    Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion–oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters. PMID:25145273

  3. Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4

    NASA Technical Reports Server (NTRS)

    Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan

    2007-01-01

    The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.

  4. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water.

    PubMed

    Li, Pengfei; Song, Lin Frank; Merz, Kenneth M

    2015-01-22

    Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion-oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters.

  5. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  6. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  7. Crystal Data

    National Institute of Standards and Technology Data Gateway

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  8. Infrared collision-induced absorption by O2 near 6.4 microm for atmospheric applications: measurements and empirical modeling.

    PubMed

    Thibault, F; Menoux, V; Le Doucen, R; Rosenmann, L; Hartmann, J M; Boulet, C

    1997-01-20

    Accurate measurements of collision-induced absorption by O(2) and O(2)-N(2) mixtures in the fundamental band near 6.4 microm have been made. A Fourier-transform spectrometer was used with a resolution of 0.5 cm(-1). Absorption has been investigated in the 0-20-atm and 193-293 K pressure and temperature ranges, respectively. The current measurements confirm that the broad O(2) continuum carries small features whose attribution is not yet clear. Available experimental data in the 190-360 K temperature range have been used to build a simple, low cost computer, empirical model that is well adapted for computation of atmospheric O(2) absorption. Tests show that it is accurate, contrary to predictions of widely used atmospheric transmission codes.

  9. Hydrogen film cooling with incident and swept-shock interactions in a Mach 6.4 nitrogen free stream

    NASA Technical Reports Server (NTRS)

    Olsen, George C.; Nowak, Robert J.

    1995-01-01

    The effectiveness of slot film cooling of a flat plate in a Mach 6.4 flow with and without incident and swept oblique shock interactions was experimentally investigated. Hydrogen was the primary coolant gas, although some tests were conducted using helium as the coolant. Tests were conducted in the Calspan 48-Inch Shock Tunnel with a nitrogen flow field to preclude combustion of the hydrogen coolant gas. A two-dimensional highly instrumented model developed in a previous test series was used. Parameters investigated included coolant mass flow rate, coolant gas, local free-stream Reynolds number, incident oblique shock strength, and a swept oblique shock. Both gases were highly effective coolants in undisturbed flow; however, both incident and swept shocks degraded that effectiveness.

  10. 30/20 GHz and 6/4 GHz band transponder development for communications satellite CS-3

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Nakamura, Makoto; Okamoto, Teruki; Kumazawa, Hiroyuki

    The next phase communications satellite CS-3 will be launched in 1988 as a successor to CS-2. The CS-3 is composed of two 6/4 GHz band and ten 30/20 GHz band transponders and its mission life is seven years. This paper describes the newly developed CS-3 transponder, especially a 4 GHz band 7 watt GaAs FET amplifier, Ka-band frequency single-conversion, a 30 GHz band low noise amplifier, and a 20 GHz band 10 watt TWTA. The introduction of these new technologies contributes significantly to reducing the CS-3 transponder weight and size, and to improving performance characteristics and insuring a long life.

  11. Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Mong-Han; Tung, Hsin; Fielding, Eric J.; Huang, Hsin-Hua; Liang, Cunren; Huang, Chung; Hu, Jyr-Ching

    2016-07-01

    Rapid shortening in convergent mountain belts is often accommodated by slip on faults at multiple levels in upper crust, but no geodetic observation of slip at multiple levels within hours of a moderate earthquake has been shown before. Here we show clear evidence of fault slip within a shallower thrust at 5-10 km depth in SW Taiwan triggered by the 2016 Mw 6.4 MeiNong earthquake at 15-20 km depth. We constrain the primary coseismic fault slip with kinematic modeling of seismic and geodetic measurements and constrain the triggered slip and fault geometry using synthetic aperture radar interferometry. The shallower thrust coincides with a proposed duplex located in a region of high fluid pressure and high interseismic uplift rate, and may be sensitive to stress perturbations. Our results imply that under tectonic conditions such as high-background stress level and high fluid pressure, a moderate lower crustal earthquake can trigger faults at shallower depth.

  12. Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana.

    PubMed

    Pokorny, Richard; Klar, Tobias; Essen, Lars-Oliver; Batschauer, Alfred

    2005-10-01

    Cryptochromes are flavoproteins which serve as blue-light receptors in plants, animals, fungi and prokaryotes and belong to the same protein family as the catalytically active DNA photolyases. Cryptochrome 3 from the plant Arabidopsis thaliana (cry3; 525 amino acids, 60.7 kDa) is a representative of the novel cryDASH subfamily of UV-A/blue-light receptors and has been expressed as a mature FAD-containing protein in Escherichia coli without the signal sequence that directs the protein into plant organelles. The purified cryptochrome was found to be complexed to methenyltetrahydrofolate as an antenna pigment. Crystals of the cryptochrome-antenna pigment complex were obtained by vapour diffusion and display orthorhombic symmetry, with unit-cell parameters a = 76.298, b = 116.782, c = 135.024 A. X-ray diffraction data were collected to 1.9 A resolution using synchrotron radiation. The asymmetric unit comprises a cry3 dimer, the physiological role of which remains to be elucidated.

  13. 40 CFR 180.437 - Methyl 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate and methyl 6-(4-isopropyl-4...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-imidazolin-2-yl)-p-toluate and methyl 6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-m-toluate; tolerances... Tolerances § 180.437 Methyl 2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate and methyl 6-(4... for the combined residues of the herbicide methyl...

  14. 6-[(4′-Ethoxycarbonyl-[1,1′-biphenyl]-4-yl)oxy]hexanoic acid

    PubMed Central

    López-Velázquez, Delia; Mendoza, Angel

    2013-01-01

    In the title compound, C21H24O5, the dihedral angle between the benzene rings is 19.57 (15)°. In the crystal, the mol­ecular arrangement makes up head-to-head centrosymmetric dimers assembled by pairs of O—H⋯O bonds; this arrangement builds a graph-set ring motif of R 2 2(8). The dimers are linked into a tape running along the b-axis direction through C—H⋯O inter­actions. The packing is further consolidated by C—H⋯π inter­actions, forming layers parallel to (10-2). PMID:24098263

  15. Crystal clear

    NASA Astrophysics Data System (ADS)

    2012-02-01

    A semiconductor is usually opaque to any light whose photon energy is larger than the semiconductor bandgap. Nature Photonics spoke to Stephen Durbin about how to render GaAs semiconductor crystals transparent using intense X-ray pulses.

  16. ENHANCEMENT OF THE 6.4 keV LINE IN THE INNER GALACTIC RIDGE: PROTON-INDUCED FLUORESCENCE?

    SciTech Connect

    Nobukawa, K. K.; Nobukawa, M.; Tsuru, T. G.; Tanaka, T.; Koyama, K.; Uchiyama, H.; Torii, K.; Fukui, Y.; Chernyshov, D. O.; Dogiel, V. A.

    2015-07-01

    A common idea for the origin of the Galactic diffuse X-ray emission, particularly that of the iron lines from neutral and highly ionized atoms, is a superposition of many cataclysmic variables and coronally active binaries. In this scenario, the flux should symmetrically distribute between the east and west on the plane with respect to Sagittarius A* because the stellar mass distribution determined by infrared observations is nearly symmetric. This symmetry is confirmed for the highly ionized iron line as well as the continuum emission. However, a clear excess of the neutral iron line in the near east of the Galactic center compared to the near-west side is found. The flux distribution of the excess emission well correlates with the molecular column density. The X-ray spectrum of the excess emission is described by a power-law continuum plus a 6.4 keV line with a large equivalent width of ∼1.3 keV, which is hardly explained by the low-energy electron bombardment scenario. The longitudinal and latitudinal distribution of the excess emission disfavors the X-ray irradiation, either by Sagittarius A* or by nearby X-ray binaries. Then, the low-energy proton bombardment is the most probable origin, although the high-energy density ∼80 eV cm{sup −3} in 0.1–1000 MeV is required and there is no conventional proton source in the vicinity.

  17. The 29 July 2014 (Mw 6.4) Southern Veracruz, Mexico Earthquake: Scenary Previous to Its Occurrence.

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.

    2014-12-01

    On 29 July 2014 (10:46 UTC) a magnitude 6.4 (Mw) earthquake occurred at the southern Veracruz, Mexico region. The epicenter was preliminary located at 17.70° N and 95.63° W. It was a normal fault event with the slip on a fault that trend NNW and a focus approximately 117 km below the surface of the Gulf of Mexico costal plane. The earthquake was widely felt through centro and southern Mexico. In Oaxaca City 133 km to the south a person die of a hearth attack. No damages were reported. Most prominent moderate-sized earthquakes occurring in the southern Veracruz region since 1959 has been concentrated along two well defined seismic belts. One belt runs off the coast following nearly its contour. Here the earthquakes are shallow depth and mostly show a reverse fault mechanism. This belt of seismicity begins at the Los Tuxtlas volcanic field. Another seismic belt is located inland 70 km to the west. Here most earthquakes are of intermediate-depth (108-154 km) focus and normal faulting mechanism. The July 2014 earthquake is located near to this second seismic belt. In the present paper we discuss, within the regional geotectonic framework, the location and some aspects of the rupture process of the July 2014 earthquake.

  18. Enhancement of the 6.4 keV Line in the Inner Galactic Ridge: Proton-induced Fluorescence?

    NASA Astrophysics Data System (ADS)

    Nobukawa, K. K.; Nobukawa, M.; Uchiyama, H.; Tsuru, T. G.; Torii, K.; Tanaka, T.; Chernyshov, D. O.; Fukui, Y.; Dogiel, V. A.; Koyama, K.

    2015-07-01

    A common idea for the origin of the Galactic diffuse X-ray emission, particularly that of the iron lines from neutral and highly ionized atoms, is a superposition of many cataclysmic variables and coronally active binaries. In this scenario, the flux should symmetrically distribute between the east and west on the plane with respect to Sagittarius A* because the stellar mass distribution determined by infrared observations is nearly symmetric. This symmetry is confirmed for the highly ionized iron line as well as the continuum emission. However, a clear excess of the neutral iron line in the near east of the Galactic center compared to the near-west side is found. The flux distribution of the excess emission well correlates with the molecular column density. The X-ray spectrum of the excess emission is described by a power-law continuum plus a 6.4 keV line with a large equivalent width of ˜1.3 keV, which is hardly explained by the low-energy electron bombardment scenario. The longitudinal and latitudinal distribution of the excess emission disfavors the X-ray irradiation, either by Sagittarius A* or by nearby X-ray binaries. Then, the low-energy proton bombardment is the most probable origin, although the high-energy density ˜80 eV cm-3 in 0.1-1000 MeV is required and there is no conventional proton source in the vicinity.

  19. Post-seismic deformation of the Mw 6.4 Shonbeh earthquake (south western Iran) of April 9th, 2013

    NASA Astrophysics Data System (ADS)

    Fathian Baneh, Aram; Tolomei, Cristiano; Lugari, Alessandro; Trasatti, Elisa; Salvi, Stefano

    2016-04-01

    The study of post-seismic deformation within a region is of high significance to have a better understanding of the kinematic behavior of a seismogenic fault. We perform the Small Baseline Subset (SBAS) method to process a large number of X-Band, COSMO-SkyMed images to measure the post-seismic deformation due to the Shonbeh earthquake (Iran) of 9th April 2013 (Mw 6.4). The meizoseismal zone of the earthquake and following aftershocks' epicenters cover an area in the frontal edge of the Zagros Simply Folded Zone, in the southwest of Iran, between Kaki and Kangan anticlines. Exploiting the available dataset of images from the beginning of 2013 to mid 2014, we observe the concentration of the deformation along at least two NW- striking, southwest-dipping fault segments arranged in right-step pattern and parallel to the trend of the folds. The preliminary InSAR results illustrate the migration of the post-seismic deformation and stress relaxation from the southeastern toward the northwestern fault segments.

  20. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  1. High energy resolution, high angular acceptance crystal monochromator

    DOEpatents

    Alp, Ercan E.; Mooney, Timothy M.; Toellner, Thomas

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  2. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [acid-base properties of titanium 6-4 surfaces

    NASA Technical Reports Server (NTRS)

    Siriwardane, R.; Wightman, J. P.

    1980-01-01

    The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.

  3. (η5-Penta­methyl­cyclo­penta­dien­yl)(η6-4-phenyl­butan-2-one)ruthenium(II) tetra­phenyl­borate

    PubMed Central

    Loughrey, Bradley T.; Williams, Michael L.; Healy, Peter C.

    2010-01-01

    The title compound, [Ru(C10H15)(C10H12O)][B(C6H5)4], crystallizes as discrete (η5-penta­methyl­cyclo­penta­dien­yl)Ru(η6-4-phenyl­butan-2-one)]+ cations and [BPh4]− anions. In the cation, the non-H atoms of the butan-2-one group are approximately planar (r.m.s. deviation = 0.056 Å) and lie nearly perpendicular to the plane of the phenyl ring with a dihedral angle between the two planes of 69.3 (1)°. No significant C—H⋯O inter­actions are observed between the methyl and phenyl H atoms and the carbonyl O atom. PMID:21589253

  4. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  5. SYMMETRICAL LASER CRYSTALS.

    DTIC Science & Technology

    CRYSTAL GROWTH , SYMMETRY(CRYSTALLOGRAPHY), LASERS, SYNTHESIS, FERROELECTRIC CRYSTALS , FLUORESCENCE, IMPURITIES, BARIUM COMPOUNDS, ZIRCONATES...STRONTIUM COMPOUNDS, TITANATES, STANNATES, SAMARIUM, MANGANESE, REFRACTORY MATERIALS, OXIDES, SINGLE CRYSTALS .

  6. Therapeutic Crystals

    ERIC Educational Resources Information Center

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  7. Comparing Crystals

    ERIC Educational Resources Information Center

    Sharp, Janet; Hoiberg, Karen; Chumbley, Scott

    2003-01-01

    This standard lesson on identifying salt and sugar crystals expands into an opportunity for students to develop their observation, questioning, and modeling skills. Although sugar and salt may look similar, students discovered that they looked very different under a magnifying glass and behaved differently when dissolved in water. In addition,…

  8. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  9. Self-assembly in solvates of 2,4-diamino-6-(4-methyl- phenyl)-1,3,5-triazine and in its molecular adducts with some aliphatic dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Nandy, Purnendu; Nayak, Amrita; Biswas, Sharmita Nandy; Pedireddi, V. R.

    2016-03-01

    Solid state structures of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine, 1, in the form of methanol and dimethylsulfoxide (DMSO) solvates, as well as supramolecular assemblies of 1 with various aliphatic dicarboxylic acids, oxalic (a), malonic (b), succinic (c), glutaric (d) and adipic (e) have been reported. Analysis of the assemblies has been carried out by single crystal X-ray diffraction and thermal methods. Triazine 1 yields anhydrous molecular adducts with acids a-d, upon co-crystallization either from CH3OH and DMSO solvents. However acid e gives anhydrous adduct from DMSO solvent, while it gives a methanol adduct from CH3OH. Structure determination reveals that molecular adducts 1a, 1d and 1e are in a 2:1 ratio of 1 and the corresponding acid. However the ratio is 1:1, in 1b, perhaps due to the involvement of one of the acid groups in the intramolecular hydrogen bonding and in adduct 1c the ratio observed is 3:2. Structural features in all these assemblies have been rationalised in terms of various recognition patterns formed between the acceptor and donor groups. A noteworthy feature is that -COOH groups in acid a establish interaction with 1 through amino groups, while such interactions are observed to be through hetero -N atoms in case of the acids b-e.

  10. Repair of 254 nm ultraviolet-induced (6-4) photoproducts: monoclonal antibody recognition and differential defects in xeroderma pigmentosum complementation groups A, D, and variant

    SciTech Connect

    Hiramoto, T.; Matsunaga, T.; Ichihashi, M.; Nikaido, O.; Fujiwara, Y.; Mishima, Y. )

    1989-11-01

    Repair kinetics of ultraviolet (UV) light-induced (6-4) photoproducts in xeroderma pigmentosum complementation group A, D, and variant cells were studied by the enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody raised against (6-4) photoproducts, together with unscheduled DNA synthesis (UDS) and loss of T4 endonuclease V-susceptible sites (ESS). Group AXP35KO cells completely failed to repair both ESS (cyclobutane pyrimidine dimers) and antibody-recognizing (6-4) photoproducts until tested 24 h after irradiation, and had 2% early-time UDS. Group DXP43KO cells showed about 10% removal of both (6-4) photoproducts and ESS in 24 h, despite showing a residually higher level of 40% early-time and cumulative UDS. Thus, the results substantiated the extreme UV hypersensitivity of XP group A and D cells. However, XP52KO variant cells exhibited the normal level of UDS and ESS loss, but a slightly reduced repair of antibody-recognizing (6-4) photoproducts at 6 and 12 h after irradiation, which may account for a small UV hypersensitivity of the XP variant cells.

  11. Solid-like and liquid-like behaviour in small benzene clusters. A molecular dynamics simulation of (C 6H 6) 4

    NASA Astrophysics Data System (ADS)

    Del Mistro, G.; Stace, A. J.

    1990-08-01

    Molecular dynamics simulations have been performed on the cluster (C 6H 6) 4 with the individual molecules being treated as rigid rotors. Behaviour characteristic of melting is observed at internal temperatures as low as 80 K. It is concluded that the clusters begin to exhibit liquid-like properties when individual molecules acquire sufficient kinetic energy to execute large-ampli- tude motion.

  12. Immunological detection of UV induced cyclobutane pyrimidine dimers and (6-4) photoproducts in DNA from reference bacteria and natural aquatic populations.

    PubMed

    Kraft, Stephanie; Stephanie, Kraft; Obst, Ursula; Ursula, Obst; Schwartz, Thomas; Thomas, Schwartz

    2011-03-01

    UV light-caused DNA damage is a widespread field of study. As UV light has the biological effect of inactivating or killing bacteria, it is used for water disinfection. Due to this application, it is important to study the DNA damage efficiencies and regeneration capacities in bacteria after UV irradiation. Two monoclonal antibodies, anti-CPD and anti-(6-4) PP, were applied for an immunoassay of UV-induced DNA modifications. Cyclobutane pyrimidine dimer (CPD) and 6-4 photoproduct (6-4 PP) were detected in the reference bacteria Pseudomonas aeruginosa and Enterococcus faecium, and in natural water communities. The antibody-mediated detection signals increased with the UV doses from 100-400J/m(2). Here, the CPD-specific signals were stronger than the (6-4) PP-specific signals. These immunological results were in accordance with parallel cultivation experiments. All UV-irradiated bacteria showed a reduction of their growth rate depending on UV application by several orders of magnitudes. The immunoassay was also applied to three types of natural aquatic habitats with different cell densities. Besides artificial UV irradiation, it was possible to visualize natural sunlight effects on these natural bacterial communities. Light-dependent and dark repair processes were distinguished using the established immunological assays. The antibody-mediated analyses presented are fast methods to detect UV-induced DNA lesions and repair capacities in selected bacterial species as well as in entire natural mixed populations.

  13. Modulation of Closed-State Inactivation in Kv2.1/Kv6.4 Heterotetramers as Mechanism for 4-AP Induced Potentiation.

    PubMed

    Stas, Jeroen I; Bocksteins, Elke; Labro, Alain J; Snyders, Dirk J

    2015-01-01

    The voltage-gated K+ (Kv) channel subunits Kv2.1 and Kv2.2 are expressed in almost every tissue. The diversity of Kv2 current is increased by interacting with the electrically silent Kv (KvS) subunits Kv5-Kv6 and Kv8-Kv9, into functional heterotetrameric Kv2/KvS channels. These Kv2/KvS channels possess unique biophysical properties and display a more tissue-specific expression pattern, making them more desirable pharmacological and therapeutic targets. However, little is known about the pharmacological properties of these heterotetrameric complexes. We demonstrate that Kv5.1, Kv8.1 and Kv9.3 currents were inhibited differently by the channel blocker 4-aminopyridine (4-AP) compared to Kv2.1 homotetramers. In contrast, Kv6.4 currents were potentiated by 4-AP while displaying moderately increased affinities for the channel pore blockers quinidine and flecainide. We found that the 4-AP induced potentiation of Kv6.4 currents was caused by modulation of the Kv6.4-mediated closed-state inactivation: suppression by 4-AP of the Kv2.1/Kv6.4 closed-state inactivation recovered a population of Kv2.1/Kv6.4 channels that was inactivated at resting conditions, i.e. at a holding potential of -80 mV. This modulation also resulted in a slower initiation and faster recovery from closed-state inactivation. Using chimeric substitutions between Kv6.4 and Kv9.3 subunits, we demonstrated that the lower half of the S6 domain (S6c) plays a crucial role in the 4-AP induced potentiation. These results demonstrate that KvS subunits modify the pharmacological response of Kv2 subunits when assembled in heterotetramers and illustrate the potential of KvS subunits to provide unique pharmacological properties to the heterotetramers, as is the case for 4-AP on Kv2.1/Kv6.4 channels.

  14. The binuclear dual emitter [Br(CO)3Re(PN)(NP)Re(CO)3Br] (PN): 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine, a new bridging P,N-bidentate ligand resulting from the ring opening of tetrahydrofuran.

    PubMed

    Saldías, Marianela; Manzur, Jorge; Palacios, Rodrigo E; Gómez, María L; Fuente, Julio De La; Günther, Germán; Pizarro, Nancy; Vega, Andrés

    2017-01-31

    Lithium diphenylphosphide unexpectedly provokes the ring-opening of tetrahydrofuran (THF) and by reaction with 3,6-dichloropyridazine leads to the formation of the ligand 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine (P⋯N), which was isolated. The reaction of this ligand with the (Re(CO)3(THF)Br)2 dimer yields the novel complex [Br(CO)3Re(μ-3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine)2Re(CO)3Br] (BrRe(P⋯N)(N⋯P)ReBr), which was crystallized in the form of a chloroform solvate, (C46H40Br2Cl2N4O8P2Re2)·(CHCl3). The monoclinic crystal (P21/n) displays a bimetallic cage structure with a symmetry inversion centre in the middle of the rhenium to rhenium line. The molecule shows two oxidation signals occurring at +1.50 V and +1.76 V which were assigned to the Re(I)/Re(II) and Re(II)/Re(III) metal-centered couples, respectively, while signals observed at -1.38 V and -1.68 V were assigned to ligand centered reductions. Experimental and DFT/TDDFT results indicate that the UV-Vis absorption maximum of BrRe(P⋯N)(N⋯P)ReBr occurring near 380 nm displays a metal to ligand charge transfer (MLCT) character, which is consistent with CV results. Upon excitation at this wavelength, a weak emission (Φem < 1 × 10(-3)) is observed around 580 nm (in dichloromethane) which decays with two distinct lifetimes τ1 and τ2 of 24 and 4.7 ns, respectively. The prevalence of non-radiative deactivation pathways is consistent with efficient internal conversion induced by the high conformational flexibility of the P⋯N ligand's long carbon chain. Measurements in a frozen solvent at 77 K, where vibrational deactivation is hindered, show intense emission associated with the (3)MLCT state. These results demonstrate that BrRe(P⋯N)(N⋯P)ReBr preserves the dual emitting nature previously reported for the mononuclear complex RePNBr, with emission associated with and states.

  15. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  16. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  17. The archaeal cofactor F0 is a light-harvesting antenna chromophore in eukaryotes.

    PubMed

    Glas, Andreas F; Maul, Melanie J; Cryle, Max; Barends, Thomas R M; Schneider, Sabine; Kaya, Emine; Schlichting, Ilme; Carell, Thomas

    2009-07-14

    Archae possess unique biochemical systems quite distinct from the pathways present in eukaryotes and eubacteria. 7,8-Dimethyl-8-hydroxy-5deazaflavin (F(0)) and F(420) are unique deazaflavin-containing coenzyme and methanogenic signature molecules, essential for a variety of biochemical transformations associated with methane biosynthesis and light-dependent DNA repair. The deazaflavin cofactor system functions during methane biosynthesis as a low-potential hydrid shuttle F(420)/F(420)H(2). In DNA photolyase repair proteins, the deazaflavin cofactor is in the deprotonated state active as a light-collecting energy transfer pigment. As such, it converts blue sunlight into energy used by the proteins to drive an essential repair process. Analysis of a eukaryotic (6-4) DNA photolyase from Drosophila melanogaster revealed a binding pocket, which tightly binds F(0). Residues in the pocket activate the cofactor by deprotonation so that light absorption and energy transfer are switched on. The crystal structure of F(0) in complex with the D. melanogaster protein shows the atomic details of F(0) binding and activation, allowing characterization of the residues involved in F(0) activation. The results show that the F(0)/F(420) coenzyme system, so far believed to be strictly limited to the archael kingdom of life, is far more widespread than anticipated. Analysis of a D. melanogaster extract and of a DNA photolyase from the primitive eukaryote Ostreococcus tauri provided direct proof for the presence of the F(0) cofactor also in higher eukaryotes.

  18. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  19. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  20. Crystal structure of bis-(1-ethyl-pyridinium) dioxonium hexa-cyanidoferrate(II).

    PubMed

    Tanaka, Rikako; Matsushita, Nobuyuki

    2017-02-01

    The title compound, (C7H10N)2(H3O)2[Fe(CN)6] or (Etpy)2(H3O)2[Fe(CN)6] (Etpy(+) is 1-ethyl-pyridinium), crystallizes in the space group Pnnm. The Fe(II) atom of the [Fe(CN)6](4-) anion lies on a site with site symmetry ..2/m, and has an octa-hedral coordination sphere defined by six cyanido ligands. Both the Etpy(+) and the oxonium cations are located on a mirror plane. In the crystal, electron-donor anions of [Fe(CN)6](4-) and electron-acceptor cations of Etpy(+) are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional O-H⋯N hydrogen-bonding network between the oxonium ions and the cyanide ligands of [Fe(CN)6](4-).

  1. The SAURON project - XX. The Spitzer [3.6] - [4.5] colour in early-type galaxies: colours, colour gradients and inverted scaling relations

    NASA Astrophysics Data System (ADS)

    Peletier, Reynier F.; Kutdemir, Elif; van der Wolk, Guido; Falcón-Barroso, Jesús; Bacon, Roland; Bureau, Martin; Cappellari, Michele; Davies, Roger L.; de Zeeuw, P. Tim; Emsellem, Eric; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Sarzi, Marc; Scott, Nicholas; Shapiro, Kristen L.; van den Bosch, Remco C. E.; van de Ven, Glenn

    2012-01-01

    We investigate the [3.6]-[4.5] Spitzer-IRAC colour behaviour of the early-type galaxies of the SAURON survey, a representative sample of 48 nearby ellipticals and lenticulars. We investigate how this colour, which is unaffected by dust extinction, can be used to constrain the stellar populations in these galaxies. We find a tight relation between the [3.6]-[4.5] colour and effective velocity dispersion, a good mass indicator in early-type galaxies: ([3.6]-[4.5])e = (-0.109 ? 0.007)?+ (0.154 ? 0.016). Contrary to other colours in the optical and near-infrared, we find that the colours become bluer for larger galaxies. The relations are tighter when using the colour inside re (scatter 0.013 mag), rather than the much smaller re/8 aperture (scatter 0.023 mag), due to the presence of young populations in the central regions. We also obtain strong correlations between the [3.6]-[4.5] colour and three strong absorption lines (H?, Mgb and Fe 5015). Comparing our data with the models of Marigo et al., which show that more metal rich galaxies are bluer, we can explain our results in a way consistent with results from the optical, by stating that larger galaxies are more metal rich. The blueing is caused by a strong CO absorption band, whose line strength increases strongly with decreasing temperature and which covers a considerable fraction of the 4.5-?m filter. In galaxies that contain a compact radio source, the [3.6]-[4.5] colour is generally slightly redder (by 0.015 ? 0.007 mag using the re/8 aperture) than in the other galaxies, indicating small amounts of either hot dust, non-thermal emission, or young stars near the centre. We find that the large majority of the galaxies show redder colours with increasing radius. Removing the regions with evidence for young stellar populations (from the H? absorption line) and interpreting the colour gradients as metallicity gradients, we find that our galaxies are more metal poor going outwards. The radial [3.6]-[4.5] gradients

  2. Strand breakage of a (6-4) photoproduct-containing DNA at neutral pH and its repair by the ERCC1-XPF protein complex.

    PubMed

    Arichi, Norihito; Yamamoto, Junpei; Takahata, Chiaki; Sano, Emi; Masuda, Yuji; Kuraoka, Isao; Iwai, Shigenori

    2013-06-07

    The (6-4) photoproduct is one of the major UV-induced lesions in DNA. We previously showed that hydrolytic ring opening of the 5' base and subsequent hydrolysis of the glycosidic bond of the 3' component occurred when this photoproduct was treated with aqueous NaOH. In this study, we found that another product was obtained when the (6-4) photoproduct was heated at 90 °C for 6 h, in a 0.1 M solution of N,N'-dimethyl-1,2-ethanediamine adjusted to pH 7.4 with acetic acid. An analysis of the chemical structure of this product revealed that the 5' base was intact, whereas the glycosidic bond at the 3' component was hydrolyzed in the same manner. The strand break was detected for a 30-mer oligonucleotide containing the (6-4) photoproduct upon treatment with the above solution or other pH 7.4 solutions containing biogenic amines, such as spermidine and spermine. In the case of spermidine, the rate constant was calculated to be 1.4 × 10(-8) s(-1) at 37 °C. The strand break occurred even when the oligonucleotide was heated at 90 °C in 0.1 M sodium phosphate (pH 7.0), although this treatment produced several types of 5' fragments. The Dewar valence isomer was inert to this reaction. The product obtained from the (6-4) photoproduct-containing 30-mer was used to investigate the enzymatic processing of the 3' end bearing the damaged base and a phosphate. The ERCC1-XPF complex removed several nucleotides containing the damaged base, in the presence of replication protein A.

  3. PARAMAGNETIC RELAXATION IN CRYSTALS.

    DTIC Science & Technology

    CRYSTALS, PARAMAGNETIC RESONANCE, RELAXATION TIME , CRYSTAL DEFECTS, QUARTZ, GLASS, STRAIN(MECHANICS), TEMPERATURE, NUCLEAR SPINS, HYDROGEN, CALCIUM COMPOUNDS, FLUORIDES, COLOR CENTERS, PHONONS, OXYGEN.

  4. Inhibition of RNA and DNA synthesis in UV-irradiated normal human fibroblasts is correlated with pyrimidine (6-4) pyrimidone photoproduct formation.

    PubMed

    Petit Frère, C; Clingen, P H; Arlett, C F; Green, M H

    1996-07-05

    UV-irradiation of living cells results in an inhibition of RNA and DNA synthesis. The purpose of this study was to determine whether specific photoproducts or the total combined yield of lesions were responsible for these effects. Asynchronously dividing human fibroblasts from normal donors were irradiated with UVC (254 nm), broad spectrum UVB (290-320 + nm, Westinghouse FS20 lamp) or narrow spectrum UVB (310-315 nm, Philips TL01 lamp) at fluences which induce known yields of cyclobutane pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts or Dewar isomers. DNA synthesis was approximately 3-4 times more sensitive to both UVC and UVB irradiation than RNA synthesis. The immediate inhibition of RNA and DNA synthesis was correlated with (6-4) rather than overall photoproduct formation suggesting that the (6-4) photoproduct is the mediator of these inhibitory effects. In support of this suggestion we found that photoreactivation of cells cultured from the marsupial, mouse Sminthopsis crassicaudata, resulted in removal of 70% of pyrimidine dimers from the overall genome, but had only a slight effect on the recovery of RNA synthesis.

  5. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  6. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-04

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  7. Molecular tectonics: from crystals to crystals of crystals.

    PubMed

    Marinescu, Gabriela; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2013-12-11

    The in situ combination of M(II) cations (Co, Ni, Cu or Zn) with 2,4,6-pyridinetricarboxylic acid as a ligand, a bisamidinium dication as a H-bond donor tecton and NaOH leads to the formation of anionic metal complexes ML2(2-) and their interconnection into isomorphous 3D H-bonded networks displaying different colours which were used as preformed seed crystals for the formation of crystals of crystals by 3D epitaxial growth.

  8. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  9. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  10. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    SciTech Connect

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  11. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  12. Synthesis of N-(6-(4-(Piperazin-1-yl)phenoxy)pyridin-3-yl)benzenesulfonamide Derivatives for the Treatment of Metabolic Syndrome

    PubMed Central

    Bajare, Swapnil; Anthony, Jessy; Nair, Amrutha; Damre, Anagha; B-Rao, Chandrika; Sivaramakrishnan, H.; Wilankar, Chandan; Marita, Rosalind

    2013-01-01

    Metabolic syndrome is a widely prevalent multifactorial disorder associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. High plasma levels of insulin and glucose due to insulin resistance are a major component of the metabolic disorder. Thiazolidinediones (TZDs) are potent PPARγ ligand and used as insulin sensitizers in the treatment of type 2 diabetes mellitus. They are potent insulin-sensitizing agents but due to adverse effects like hepatotoxicity, a safer alternative of TZDs is highly demanded. Here we report synthesis of N-(6-(4-(piperazin-1-yl)phenoxy)pyridin-3-yl)benzenesulfonamide derivatives as an alternate remedy for insulin resistance. PMID:25374688

  13. Origin of anomalous electronic circular dichroism spectrum of RuPt2(tppz)2Cl2(PF6)4 in acetonitrile.

    PubMed

    Yu, Hua-Gen

    2014-07-24

    We report a theoretical study of the structures, energetics, and electronic spectra of the Pt(II)/Ru(II) mixed-metal complex RuPt2(tppz)2Cl2(PF6)4 (tppz = 2,3,5,6-tetra(2-pyridyl)pyrazine) in acetonitrile. The hybrid B3LYP density functional theory and its TDDFT methods were used with a complete basis set (CBS) extrapolation scheme and a conductor polarizable continuum model (C-PCM) for solvation effects. Results showed that the trinuclear complex has four types of stable conformers and/or enantiomers. They are separated by high barriers owing to the repulsive H/H geometrical constraints in tppz. A strong entropy effect was found for the dissociation of RuPt2(tppz)2Cl2(PF6)n in acetonitrile. The UV-visible and emission spectra of the complex were also simulated. They are in good agreement with experiments. In this work we have largely focused on exploring the origin of anomalous electronic circular dichroism (ECD) spectra of the RuPt2(tppz)2Cl2(PF6)4 complex in acetonitrile. As a result, a new mechanism has been proposed together with a clear illustration by using a physical model.

  14. Evaluation of the anticonvulsant activity of 6-(4-chlorophenyoxy)-tetrazolo[5,1-a]phthalazine in various experimental seizure models in mice.

    PubMed

    Sun, Xian-Yu; Wei, Cheng-Xi; Deng, Xian-Qing; Sun, Zhi-Gang; Quan, Zhe-Shan

    2010-01-01

    This study investigated the anticonvulsant activity of a new phthalazine tetrazole derivative, QUAN-0808 (6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine), in the mouse maximal electroshock (MES) seizure model. The neurotoxicity of QUAN-0808 was investigated using the rotarod neurotoxicity test in mice. QUAN-0808 exhibited higher activity (median effective dose, ED(50) = 6.8 mg/kg) and lower neurotoxicity (median toxic dose, TD(50) = 456.4 mg/kg), resulting in a higher protective index (PI = 67.1) compared with carbamazepine (PI = 6.4). In addition, QUAN-0808 exhibited significant oral anticonvulsant activity (ED(50) = 24 mg/kg) against MES-induced seizure with low neurotoxicity (TD(50) > 4500 mg/kg) in mice, resulting in a PI value of more than 187.5. QUAN-0808 was also tested in chemically induced animal models of seizure (pentylenetetrazole [PTZ], isoniazid [ISO], thiosemicarbazide [THIO] and 3-mercaptopropionic acid [3-MP]) to further investigate the anticonvulsant activity; QUAN-0808 produced significant anticonvulsant activity against seizures induced by ISO, THIO and 3-MP.

  15. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin.

    PubMed

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression.

  16. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  17. A 6.4MB duplication of the alpha-synuclein locus causing fronto-temporal dementia and parkinsonism - phenotype-genotype correlations

    PubMed Central

    Kara, Eleanna; Kiely, Aoife P; Proukakis, Christos; Giffin, Nicola; Love, Seth; Hehir, Jason; Rantell, Khadija; Pandraud, Amelie; Hernandez, Dena G; Nacheva, Elizabeth; Pittman, Alan M; Nalls, Mike A; Singleton, Andrew B; Revesz, Tamas; Bhatia, Kailash P; Quinn, Niall; Hardy, John; Holton, Janice L; Houlden, Henry

    2015-01-01

    Importance SNCA locus duplications are associated with variable clinical features and reduced penetrance but the reasons underlying this variability are unknown. Objective 1) To report a novel family carrying a heterozygous 6.4Mb duplication of the SNCA locus with an atypical clinical presentation strongly reminiscent of frontotemporal dementia (FTD) and late-onset pallidopyramidal syndromes. 2) To study phenotype-genotype correlations in SNCA locus duplications. Design, Setting, Participants and Data sources We report the clinical and neuropathologic features of a family carrying a 6.4Mb duplication of the SNCA locus. To identify candidate disease modifiers, we undertake a genetic analysis in the family and conduct statistical analysis on previously published cases carrying SNCA locus duplication using regression modelling with robust standard errors to account for clustering at the family level. Main outcome measures To assess whether length of the SNCA locus duplication influences disease penetrance and severity, and whether extra-duplication factors have a disease-modifying role. Results We identified a large 6.4Mb duplication of the SNCA locus in this family. Neuropathological analysis showed extensive α-synuclein pathology with minimal phospho-tau pathology. Genetic analysis showed an increased burden of PD-related risk factors and the disease-predisposing H1/H1 MAPT haplotype. Statistical analysis of previously published cases suggested that there is a trend towards increasing disease severity and disease penetrance with increasing duplication size. The corresponding odds ratios (95% CI) from the univariate analyses were 1.17 (0.81 to 1.68) and 1.34 (0.78 to 2.31) respectively. Gender was significantly associated with both disease risk and severity; males compared to females had increased disease risk and severity and the corresponding odds ratios (95% CI) from the univariate analyses were 8.36 (1.97 to 35.42) and 5.55 (1.39 to 22.22) respectively

  18. A Chandra Observation of the Luminous Northeastern Rim of the Galactic Supernova Remnant W28 (G6.4-0.1)

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas

    2016-06-01

    We present an analysis of a pointed observation made of the luminous northeastern rim of the Galactic supernova remnant (SNR) W28 (G6.4-0.1) with the Chandra X-ray Observatory. W28 is the archetype for the class of SNRs known as the mixed-morphology SNRs: sources in this class of objects feature a shell-like morphology with a contrasting center-filled X-ray morphology. Almost unique amongst mixed-morphology SNRs, W28 exhibits a luminous northeastern rim which is detected in the X-ray, optical and radio: this rim is also the site of a vigorous interaction between W28 and adjacent molecular clouds, as evidenced by the high concentration of hydroxyl (OH) masers seen at this rim. Our pointed Chandra observation of this rim is the highest angular X-ray observation made of this feature: initial analysis and results will be presented and discussed.

  19. Solvent effects on the oxidation (electron transfer) reaction of [Fe(CN) 6] 4- by [Co(NH 3) 5pz] 3+

    NASA Astrophysics Data System (ADS)

    Muriel, F.; Jiménez, R.; López, M.; Prado-Gotor, R.; Sánchez, F.

    2004-03-01

    Solvent effects on the title reaction were studied in different reaction media constituted by water and organic cosolvents (methanol, tert-butyl alcohol, ethyleneglycol and glucose) at 298.2 K. The results are considered in light of the Marcus-Hush approach for electron transfer reactions. Variations of the electron transfer rate constant are shown to be mainly due to changes in the reaction free energy. On the other hand the energies of the MMCT band, corresponding to the optical electron transfer within the ion pair [Fe(CN) 6] 4-/[Co(NH 3) 5pz] 3+, in the different reaction media, have been obtained. The activation free energies of the thermal electron transfer process have been calculated from the band ( Eop) data, and compared with those obtained from the kinetic study. Quantitative agreement is found between the two series of data. This shows the possibility of estimating activation free energies for electron transfer reactions from static (optical) measurements.

  20. Viscoelastic Response of the Titanium Alloy Ti-6-4: Experimental Identification of Time- and Rate-Dependent Reversible and Irreversible Deformation Regions

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.

    2014-01-01

    In support of an effort on damage prognosis, the viscoelastic behavior of Ti-6Al-4V (Ti-6-4) was investigated. This report documents the experimental characterization of this titanium alloy. Various uniaxial tests were conducted to low load levels over the temperature range of 20 to 538 C to define tensile, creep, and relaxation behavior. A range of strain rates (6x10(exp -7) to 0.001/s) were used to document rate effects. All tests were designed to include an unloading portion, followed by a hold time at temperature to allow recovery to occur either at zero stress or strain. The titanium alloy was found to exhibit viscoelastic behavior below the "yield" point and over the entire range of temperatures (although at lower temperatures the magnitude is extremely small). These experimental data will be used for future characterization of a viscoelastic model.

  1. Apparatus for growing crystals

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J. (Inventor); Witt, August F. (Inventor)

    1986-01-01

    An improved apparatus and method for growing crystals from a melt employing a heat pipe, consisting of one or more sections, each section serving to control temperature and thermal gradients in the crystal as it forms inside the pipe.

  2. Crystal structure and prediction.

    PubMed

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  3. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  4. Crystal Structure and Prediction

    NASA Astrophysics Data System (ADS)

    Thakur, Tejender S.; Dubey, Ritesh; Desiraju, Gautam R.

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  5. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  6. Conserved Negative Charges in the N-terminal Tetramerization Domain Mediate Efficient Assembly of Kv2.1 and Kv2.1/Kv6.4 Channels*

    PubMed Central

    Bocksteins, Elke; Labro, Alain J.; Mayeur, Evy; Bruyns, Tine; Timmermans, Jean-Pierre; Adriaensen, Dirk; Snyders, Dirk J.

    2009-01-01

    Voltage-gated potassium (Kv) channels are transmembrane tetramers of individual α-subunits. Eight different Shaker-related Kv subfamilies have been identified in which the tetramerization domain T1, located on the intracellular N terminus, facilitates and controls the assembly of both homo- and heterotetrameric channels. Only the Kv2 α-subunits are able to form heterotetramers with members of the silent Kv subfamilies (Kv5, Kv6, Kv8, and Kv9). The T1 domain contains two subdomains, A and B box, which presumably determine subfamily specificity by preventing incompatible subunits to assemble. In contrast, little is known about the involvement of the A/B linker sequence. Both Kv2 and silent Kv subfamilies contain a fully conserved and negatively charged sequence (CDD) in this linker that is lacking in the other subfamilies. Neutralizing these aspartates in Kv2.1 by mutating them to alanines did not affect the gating properties, but reduced the current density moderately. However, charge reversal arginine substitutions strongly reduced the current density of these homotetrameric mutant Kv2.1 channels and immunocytochemistry confirmed the reduced expression at the plasma membrane. Förster resonance energy transfer measurements using confocal microscopy showed that the latter was not due to impaired trafficking, but to a failure to assemble the tetramer. This was further confirmed with co-immunoprecipitation experiments. The corresponding arginine substitution in Kv6.4 prevented its heterotetrameric interaction with Kv2.1. These results indicate that these aspartates (especially the first one) in the A/B box linker of the T1 domain are required for efficient assembly of both homotetrameric Kv2.1 and heterotetrameric Kv2.1/silent Kv6.4 channels. PMID:19717558

  7. Apparatus for mounting crystal

    DOEpatents

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  8. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  9. CRYSTAL FILTER TEST SET

    DTIC Science & Technology

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  10. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  11. Food Crystalization and Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food Crystalization and Eggs Deana R. Jones, Ph.D. USDA Agricultural Research Service Egg Safety and Quality Research Unit Athens, Georgia, USA Deana.Jones@ars.usda.gov Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a foo...

  12. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  13. Annealing macromolecular crystals.

    PubMed

    Hanson, B Leif; Bunick, Gerard J

    2007-01-01

    The process of crystal annealing has been used to improve the quality of diffraction from crystals that would otherwise be discarded for displaying unsatisfactory diffraction after flash cooling. Although techniques and protocols vary, macromolecular crystals are annealed by warming the flash-cooled crystal, then flash cooling it again. To apply macromolecular crystal annealing, a flash-cooled crystal displaying unacceptably high mosaicity or diffraction from ice is removed from the goniometer and immediately placed in cryoprotectant buffer. The crystal is incubated in the buffer at either room temperature or the temperature at which the crystal was grown. After about 3 min, the crystal is remounted in the loop and flash cooled. In situ annealing techniques, where the cold stream is diverted and the crystal allowed to warm on the loop prior to flash cooling, are variations of annealing that appears to work best when large solvent channels are not present in the crystal lattice or the solvent content of the crystal is relatively low.

  14. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  15. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  16. Improving marginal crystals.

    PubMed

    Carter, Charles W; Riès-Kautt, Madeleine

    2007-01-01

    The physical chemistry of crystal growth can help to identify directions in which to look for improved crystal properties. In this chapter, we summarize how crystal growth depends on parameters that can be controlled experimentally, and relate them to the tools available for optimizing a particular crystal form for crystal shape, volume, and diffraction quality. Our purpose is to sketch the conceptual basis of optimization and to provide sample protocols derived from those foundations. We hope to assist even those who chose not to use systematic methods by enabling them to carry out rudimentary optimization searches armed with a better understanding of how the underlying physical chemistry operates.

  17. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  18. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  19. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  20. 4-{2-Meth­oxy-6-[(4-methyl­phen­yl)imino­meth­yl]phen­oxy}phthalonitrile

    PubMed Central

    Yazıcı, Serap; Akkaya, Abdullah; Ağar, Erbil; Şenel, İsmet; Büyükgüngör, Orhan

    2009-01-01

    In the mol­ecule of the title compound, C23H17N3O2, the methoxy­phenyl ring is oriented at dihedral angles of 13.34 (12) and 88.83 (12)° with respect to the methyl­phenyl and phthalonitrile rings, respectively; the dihedral angle between methyl­phenyl and phthalonitrile rings is 89.67 (10)°. In the crystal structure, weak inter­molecular C—H⋯N inter­actions link mol­ecules into chains. A weak C—H⋯π inter­action is also found.. PMID:21583974

  1. (8aS)-7,8,8a,9-Tetra­hydro­thieno[3,2-f]indolizin-6(4H)-one

    PubMed Central

    Švorc, Ľubomír; Vrábel, Viktor; Kožíšek, Jozef; Marchalín, Štefan; Šafář, Peter

    2009-01-01

    In the mol­ecular structure of the title compound, C10H11NOS, the central six-membered ring of the indolizine unit adopts an envelope conformation, the maximum deviations from the mean plane of the ring being 0.533 (2) Å. The fused thieno ring is nearly coplanar [mean deviation = 0.007 (2) Å]. The conformation of the fused oxopyrrolidine ring is close to that of a flat-envelope, with a maximum deviation of 0.339 (3) Å. The crystal structure is stabilized by C—H⋯O hydrogen bonds. PMID:21582436

  2. Crystal Polymorphism and Multiple Crystal Forms

    NASA Astrophysics Data System (ADS)

    Braga, Dario; Grepioni, Fabrizia; Maini, Lucia; Polito, Marco

    This chapter discusses the phenomenon of polymorphism in organic and organometallic compounds. Polymorphism is first introduced and then, to give the work some context, background information is given concerning properties and techniques for characterizing the solid phases. In particular, desolvation and interconverstion are examined, and the gas-solid reactions are presented as a successful route to obtaining new crystalline phases. Co-crystal definition is then described and the problem in distinguishing co-crystals and salts is evaluated.

  3. Construction and 13C NMR signal-amplification efficiency of a dynamic nuclear polarizer at 6.4 T and 1.4 K

    NASA Astrophysics Data System (ADS)

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  4. Blind thrust rupture of the 2015 Mw 6.4 Pishan earthquake in the Northwest Tibetan Plateau by joint inversion of InSAR and seismic data

    NASA Astrophysics Data System (ADS)

    Zhang, Guohong; Shan, Xinjian; Zhang, Yingfeng; Hetland, Eric; Qu, Chunyan; Feng, Guangcai

    2016-12-01

    The July 3rd, 2015 Pishan, China Mw 6.4 earthquake occurred within the Hetian fold belt, a frontal thrust region between the Northwestern Tibetan Plateau and the Tarim basin. We investigate the fault geometry and the rupture process of the Pishan earthquake based on joint inversion of teleseismic body waves and InSAR measurements. Our results show that the top of the fault that ruptured in the Pishan earthquake is buried 5 ± 2 km beneath the surface and that the earthquake ruptured only a segment of a deeply-seated detachment lying under the Hetian fold belt. Our inferred coseismic slip model shows two slip asperities, located in the depth range of about 7-9 km and 10-11 km. Additionally, we resolve a slip deficit region between the slip asperities, which might indicate friction heterogeneity on the fault plane. The earthquake ruptured for ∼15 s, releasing a total seismic moment of 4.7 × 1018 N m. We also show that the latest Pishan earthquake caused positive Coulomb stress changes on back thrust faults, potentially decreasing the time to the next earthquake on those faults. Based on our Pishan coseismic slip model, along with both the trend of the anticline system and the pattern of coseismic deformation, we envision an ongoing east-west extensional growth of the anticlines in the Western Kunlun frontal thrust region in addition to the northern underthrusting of the Northwestern Tibetan Plateau below the Tarim basin.

  5. Formation of cyclobutane dimers and (6-4) photoproducts upon far-UV photolysis of 5-methylcytosine-containing dinucleotide monophosphates.

    PubMed

    Douki, T; Cadet, J

    1994-10-04

    The far-UV photochemistry of 5-methylcytosine, a minor DNA base, was studied in three dinucleoside monophosphates, including m5dCpT, Tpm5dC, and m5dCpdC. The model compounds were exposed to 254-nm radiation, and the resulting photoproducts were isolated by reverse-phase HPLC and characterized as cyclobutane dimers, (6-4) adducts, and the related Dewar valence isomers by UV, mass, and 1H NMR spectroscopies. The rate of formation of the different photoproducts was compared with those obtained by photolysis of TpT and the corresponding cytosine dinucleoside monophosphates, including dCpT, TpdC, and dCpdC. The formation of deaminated m5dC-containing photoproducts was observed in each of the far-UV irradiated solution of m5dCpT, Tpm5dC, and m5dCpdC. They were shown to be generated mainly through a photochemical process since methylation of the C5 atom of the cytosine ring appeared to dramatically decrease the deamination rate of the C5-C6 saturated photoproducts.

  6. The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster?

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Wang, R.; Luehr, B.-G.; Wassermann, J.; Behr, Y.; Parolai, S.; Anggraini, A.; Günther, E.; Sobiesiak, M.; Grosser, H.; Wetzel, H.-U.; Milkereit, C.; Sri Brotopuspito, P. J. K.; Harjadi, P.; Zschau, J.

    2008-05-01

    Indonesia is repeatedly unsettled by severe volcano- and earthquake-related disasters, which are geologically coupled to the 5-7 cm/a tectonic convergence of the Australian plate beneath the Sunda Plate. On Saturday, 26 May 2006, the southern coast of central Java was struck by an earthquake at 2254 UTC in the Sultanate Yogyakarta. Although the magnitude reached only M w = 6.4, it left more than 6,000 fatalities and up to 1,000,000 homeless. The main disaster area was south of Mt. Merapi Volcano, located within a narrow topographic and structural depression along the Opak River. The earthquake disaster area within the depression is underlain by thick volcaniclastic deposits commonly derived in the form of lahars from Mt. Merapi Volcano, which had a major influence leading to the disaster. In order to more precisely understand this earthquake and its consequences, a 3-month aftershock measurement campaign was performed from May to August 2006. We here present the first location results, which suggest that the Yogyakarta earthquake occurred at 10-20 km distance east of the disaster area, outside of the topographic depression. Using simple model calculations taking material heterogeneity into account we illustrate how soft volcaniclastic deposits may locally amplify ground shaking at distance. As the high degree of observed damage may have been augmented by the seismic response of the volcaniclastic Mt. Merapi deposits, this work implies that the volcano had an indirect effect on the level of earthquake destruction.

  7. 6-(4-Amino-2-butyl-imidazoquinolyl)-norleucine: Toll-like receptor 7 and 8 agonist amino acid for self-adjuvanting peptide vaccine.

    PubMed

    Fujita, Yoshio; Hirai, Kazuyuki; Nishida, Keigo; Taguchi, Hiroaki

    2016-05-01

    Generally, small peptides by themselves are weak to induce antibody responses. Toll-like receptor (TLR) ligands are attractive candidates of vaccine adjuvants to improve their antigenicity. The covalent conjugation of TLR ligands with antigens to produce self-adjuvanting peptide vaccine is a promising approach. Based on the structure of TLR7/8 ligands, a series of synthetic amino acids 6-imidazoquinolyl-norleucines were synthesized, wherein an imidazoquinoline structure as the TLR7/8 agonistic pharmacophores was constructed on the ε-NH2 group of Lys. Of them, 6-(4-amino-2-butyl-imidazoquinolyl)-norleucine showed the most potent TLR7 and TLR8 agonistic activities with EC50 values of 8.55 and 106 μM, respectively. Subsequently, mice were immunized with the influenza A virus M2e antigen mixed with or covalently conjugated to the TLR7/8 agonist amino acid, which led to induction of M2e specific antibody productions in the absence of other adjuvant. We successfully developed a novel efficient tool for self-adjuvanting peptide vaccines targeting TLR7/8.

  8. High-elevation paleoenvironmental change during MIS 6-4 in the central Rockies of Colorado as determined from pollen analysis

    NASA Astrophysics Data System (ADS)

    Anderson, R. Scott; Jiménez-Moreno, Gonzalo; Ager, Thomas; Porinchu, David F.

    2014-11-01

    Paleoecological studies from Rocky Mountain (USA) high elevations encompassing the previous interglacial (MIS 5e) are rare. The ~ 10-m composite profile from the Ziegler Reservoir fossil site (2705 m asl) of central Colorado allows us to determine paleoenvironments from Marine Oxygen Isotope Stages (MIS) 6- 4 using pollen zones that are approximately equivalent to marine oxygen isotope stages. During Pollen Zone (PZ) 6 time, pollen assemblages dominated by Artemisia (sagebrush) suggest that alpine tundra or steppe occurred nearby. The transition to PZ 5e was characterized by a rapid increase in tree pollen, initially Picea (spruce) and Pinus (pine) but also Quercus (oak) and Pseudotsuga menziesii (Douglas-fir). Non-arboreal pollen (NAP) types increased during PZ 5d, while Abies (fir) and Juniperus (juniper) increased during PZ 5c. Pollen evidence suggests that temperatures during PZ 5b were as cold as during PZ 6, with the site again surrounded by alpine tundra. Picea dominated during PZ 5a before the onset of cooler conditions during PZ 4. The MIS 6-MIS 5e transition here was similar to the MIS 2-MIS 1 transition at other Rocky Mountain sites. However, the Ziegler Reservoir pollen record contains evidence suggesting unexpected climatic trends at this site, including a warmer-than-expected MIS 5d and cooler-than-expected MIS 5b.

  9. Effects of 6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine on anticoagulation in mice and the inhibition of experimental thrombosis in rats.

    PubMed

    Yu, Hai-Ling; Zhang, Feng; Lan, Tian; Quan, Zhe-Shan

    2014-12-01

    : Thrombosis is a major complication that could be fatal in acute or chronic cardio-cerebral-vascular diseases. Therefore, the development of novel agents for anticlotting and the prevention of thrombosis and cardiovascular diseases are clinically significant. This study aimed to evaluate the anticoagulant and antithrombotic effects of 6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine (Q808), a new phthalazine tetrazole derivative. Bleeding time, clotting time, and serum calcium ion (Ca) concentration were assessed in mice, whereas arteriovenous thrombus weight and plasma prothrombin time were evaluated in rats, and platelets Ca influx was determined in rabbit. Daily oral administration of Q808 at 25, 50, or 100 mg/kg for 3 days significantly delayed bleeding time and clotting time in mice compared with controls. Q808 administration at 50 mg/kg significantly reduced experimental thrombus weight by 62.6% and delayed plasma prothrombin time by 58.7% in rats, whereas 50 and 100 mg/kg of Q808 daily significantly increased serum Ca concentration in mice. Q808 at 0.2, 0.4, and 0.8 mg/mL significantly inhibited thrombin-induced Ca influx in rabbit platelets. Our results suggest that Q808 at 25-200 mg/kg daily exerts anticoagulant and antithrombotic effects, and its mechanisms of action may involve both the intrinsic and extrinsic coagulation pathways that inhibit certain coagulation factors and platelet functions.

  10. Polyamine Resistance Is Increased by Mutations in a Nitrate Transporter Gene NRT1.3 (AtNPF6.4) in Arabidopsis thaliana

    PubMed Central

    Tong, Wurina; Imai, Akihiro; Tabata, Ryo; Shigenobu, Shuji; Yamaguchi, Katsushi; Yamada, Masashi; Hasebe, Mitsuyasu; Sawa, Shinichiro; Motose, Hiroyasu; Takahashi, Taku

    2016-01-01

    Polyamines are small basic compounds present in all living organisms and act in a variety of biological processes. However, the mechanism of polyamine sensing, signaling and response in relation to other metabolic pathways remains to be fully addressed in plant cells. As one approach, we isolated Arabidopsis mutants that show increased resistance to spermine in terms of chlorosis. We show here that two of the mutants have a point mutation in a nitrate transporter gene of the NRT1/PTR family (NPF), NRT1.3 (AtNPF6.4). These mutants also exhibit increased resistance to putrescine and spermidine while loss-of-function mutants of the two closest homologs of NRT1.3, root-specific NRT1.1 (AtNPF6.3) and petiole-specific NRT1.4 (AtNPF6.2), were shown to have a normal sensitivity to polyamines. When the GUS reporter gene was expressed under the control of the NRT1.3 promoter, GUS staining was observed in leaf mesophyll cells and stem cortex cells but not in the epidermis, suggesting that NRT1.3 specifically functions in parenchymal tissues. We further found that the aerial part of the mutant seedling has normal levels of polyamines but shows reduced uptake of norspermidine compared with the wild type. These results suggest that polyamine transport or metabolism is associated with nitrate transport in the parenchymal tissue of the shoot. PMID:27379127

  11. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  12. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  13. Antarctic stratospheric ice crystals

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Toon, O. B.; Pueschel, R. F.; Snetsinger, K. G.; Verma, S.

    1989-01-01

    Ice crystals were replicated over the Palmer Peninsula at approximately 72 deg S on six occasions during the 1987 Airboirne Antarctic Ozone Experiment. The sampling altitude was between 12.5 and 18.5 km (45-65 thousand ft pressure altitude) with the temperature between 190 and 201 K. The atmosphere was subsaturated with respect to ice in all cases. The collected crystals were predominantly solid and hollow columns. The largest crystals were sampled at lower altitudes where the potential temperature was below 400 K. While the crystals were larger than anticipated, their low concentration results in a total surface area that is less than one tenth of the total aerosol surface area. The large ice crystals may play an important role in the observed stratospheric dehydration processes through sedimentation. Evidence of scavenging of submicron particles further suggests that the ice crystals may be effective in the removal of stratospheric chemicals.

  14. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  15. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent. Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:18429252

  16. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560

  17. Numerical earthquake model of the 20 April 2015 southern Ryukyu subduction zone M6.4 event and its impact on seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong

    2015-10-01

    The M6.4 earthquake that took place on the 20 April 2015 off the shore of eastern Taiwan was the largest event in the vicinity of Taiwan during 2015. The mainshock was located in the southern Ryukyu subduction zone, which is the interface between the Philippine Sea Plate and the Eurasian Plate. People in Taipei experienced strong ground shaking for more than 40 s, even though the epicenter was located more than 150 km away. In order to understand the origin of ground motions from this earthquake and how it caused such strong shaking in Taipei, a numerical earthquake model is analyzed, including models of source rupture and wave propagation. First, a joint source inversion was performed using teleseismic body wave and local ground motion data. Source inversion results show that a large slip occurred near the hypocenter, which rapidly released seismic energy in the first 2 s. Then, the rupture propagated toward the shallow fault plane. A large amount of seismic energy was released during this rupture stage that slipped for more than 8 s before the end of the rupture. The estimated stress drop is 2.48 MPa, which is consistent with values for subduction zone earthquakes. Forward simulation using this inverted source rupture model and a 3D seismic velocity model based on the spectral-element method was then performed. Results indicate that the strong ground motion in Taipei resulted from two factors: (1) the Taipei basin amplification effect and (2) the specific source radiation pattern. The results of this numerical earthquake model imply that future subduction zone events that occur in offshore eastern Taiwan are likely to cause relatively strong ground shaking in northern Taiwan, especially in the Taipei metropolitan area.

  18. Numerical earthquake model of the 20 April 2015 southern Ryukyu subduction zone M6.4 event and its impact on seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Lee, S. J.

    2015-12-01

    The M6.4 earthquake that took place on the 20th April 2015 off the shore of eastern Taiwan was the largest event that occurred in the vicinity of Taiwan during 2015. The mainshock located in the southern Ryukyu subduction zone, which is the interface between the Philippine Sea Plate and the Eurasian Plate. People in Taipei experienced strong ground shaking for more than 40 s, even though the epicenter was located more than 150 km away. In order to understand the origin of this earthquake and how it caused such strong shaking in Taipei, a numerical earthquake model is analyzed, including models of source rupture and wave propagation. First, a joint source inversion is performed using teleseismic body wave and local ground motion data. Source inversion results show that a large slip occurred near the hypocenter, which rapidly released seismic energy in the first 2 s. Then, the rupture propagated toward the shallow fault plane. A large amount of seismic energy was released during this rupture stage that slipped for more than 8 s before the end of the rupture. The estimated stress drop is 2.48 MPa, which is consistent with values for subduction zone earthquakes. Forward simulation using this inverted source rupture model based on the spectral-element method is then performed. Results indicate that the strong ground motion in Taipei resulted from two factors: (1) the Taipei basin amplification effect and (2) the specific source radiation pattern. The results of this numerical earthquake model imply that future subduction zone events that occur in offshore eastern Taiwan are likely to cause relatively strong ground shaking in northern Taiwan, especially in the Taipei metropolitan area.

  19. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    SciTech Connect

    Willott, Chris J.; Omont, Alain; Bergeron, Jacqueline

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  20. Thrust faulting and 3D ground deformation of the 3 July 2015 Mw 6.4 Pishan, China earthquake from Sentinel-1A radar interferometry

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Li, Tao; Chen, Jie

    2016-06-01

    Boosted by the launch of Sentinel-1A radar satellite from the European Space Agency (ESA), we now have the opportunity of fast, full and multiple coverage of the land based deformation field of earthquakes. Here we use the data to investigate a strong earthquake struck Pishan, western China on July 3, 2015. The earthquake fault is blind and no ground break features are found on-site, thus Synthetic Aperture Radar (SAR) data give full play to its technical advantage for the recovery of coseismic deformation field. By using the Sentinel-1A radar data in the Interferometric Wide Swath mode, we obtain 3 tracks of InSAR data over the struck region, and resolve the 3D ground deformation generated by the earthquake. Then the Line-of-Sight (LOS) InSAR data are inverted for the slip-distribution of the seismogenic fault. The final model shows that the earthquake is completely blind with pure-thrust motion. The maximum slip is 0.48 m at a depth of 7 km, consistent with the depth estimate from seismic reflection data. In particular, the inverted model is also compatible with a south-dipping fault ramp among a group of fault interfaces detected by the seismic reflection profile over the region. The seismic moment obtained equals to a Mw 6.4 earthquake. The Pishan earthquake ruptured the frontal part of the thrust ramps under the Slik anticline, and unloaded the coulomb stress of them. However, it may have loaded stress to the back-thrust above the thrust ramps by 1-4 bar, and promoted it for future failure. Moreover, the stress loading on the west side of the earthquake fault is much larger than that on the east side, indicating a higher risk for failure to the west of the Zepu fault.

  1. The 2012 August 11 MW 6.5, 6.4 Ahar-Varzghan earthquakes, NW Iran: aftershock sequence analysis and evidence for activity migration

    NASA Astrophysics Data System (ADS)

    Rezapour, Mehdi

    2016-02-01

    The Ahar-Varzghan doublet earthquakes with magnitudes MW 6.5 and 6.4 occurred on 2012 August 11 in northwest Iran and were followed by many aftershocks. In this paper, we analyse ˜5 months of aftershocks of these events. The Ahar-Varzghan earthquakes occurred along complex faults and provide a new constraint on the earthquake hazard in northwest Iran. The general pattern of relocated aftershocks defines a complex seismic zone covering an area of approximately 25 × 10 km2. The Ahar-Varzghan aftershock sequence shows a secondary activity which started on November 7, approximately 3 months after the main shocks, with a significant increase in activity, regarding both number of events and their magnitude. This stage was characterized by a seismic zone that propagated to the west of the main shocks. The catalogue of aftershocks for the doublet earthquake has a magnitude completeness of Mc 2.0. A below-average b-value for the Ahar-Varzghan sequence indicates a structural heterogeneity in the fault plane and the compressive stress state of the region. Relocated aftershocks occupy a broad zone clustering east-west with near-vertical dip which we interpret as the fault plane of the first of the doublet main shocks (MW 6.5). The dominant depth range of the aftershocks is from 3 to about 20 km, and the focal depths decrease toward the western part of the fault. The aftershock activity has its highest concentration in the eastern and middle parts of the active fault, and tapers off toward the western part of the active fault segment, indicating mainly a unilateral rupture toward west.

  2. Stochastic finite-fault simulation of ground motion from the August 11, 2012, M w 6.4 Ahar earthquake, northwestern Iran

    NASA Astrophysics Data System (ADS)

    Heidari, Reza

    2016-04-01

    In this study, the 11 August 2012 M w 6.4 Ahar earthquake is investigated using the ground motion simulation based on the stochastic finite-fault model. The earthquake occurred in northwestern Iran and causing extensive damage in the city of Ahar and surrounding areas. A network consisting of 58 acceleration stations recorded the earthquake within 8-217 km of the epicenter. Strong ground motion records from six significant well-recorded stations close to the epicenter have been simulated. These stations are installed in areas which experienced significant structural damage and humanity loss during the earthquake. The simulation is carried out using the dynamic corner frequency model of rupture propagation by extended fault simulation program (EXSIM). For this purpose, the propagation features of shear-wave including {Q}_s value, kappa value {k}_0 , and soil amplification coefficients at each site are required. The kappa values are obtained from the slope of smoothed amplitude of Fourier spectra of acceleration at higher frequencies. The determined kappa values for vertical and horizontal components are 0.02 and 0.05 s, respectively. Furthermore, an anelastic attenuation parameter is derived from energy decay of a seismic wave by using continuous wavelet transform (CWT) for each station. The average frequency-dependent relation estimated for the region is Q=(122± 38){f}^{(1.40± 0.16)}. Moreover, the horizontal to vertical spectral ratio H/V is applied to estimate the site effects at stations. Spectral analysis of the data indicates that the best match between the observed and simulated spectra occurs for an average stress drop of 70 bars. Finally, the simulated and observed results are compared with pseudo acceleration spectra and peak ground motions. The comparison of time series spectra shows good agreement between the observed and the simulated waveforms at frequencies of engineering interest.

  3. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  4. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  5. Automation in biological crystallization.

    PubMed

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  6. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  7. Liquid crystal optofluidics

    NASA Astrophysics Data System (ADS)

    Vasdekis, A. E.; Cuennet, J. G.; Psaltis, D.

    2012-10-01

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  8. Heroin crystal nephropathy.

    PubMed

    Bautista, Josef Edrik Keith; Merhi, Basma; Gregory, Oliver; Hu, Susie; Henriksen, Kammi; Gohh, Reginald

    2015-06-01

    In this paper we present an interesting case of acute kidney injury and severe metabolic alkalosis in a patient with a history of heavy heroin abuse. Urine microscopy showed numerous broomstick-like crystals. These crystals are also identified in light and electron microscopy. We hypothesize that heroin crystalizes in an alkaline pH, resulting in tubular obstruction and acute kidney injury. Management is mainly supportive as there is no known specific therapy for this condition. This paper highlights the utility of urine microscopy in diagnosing the etiology of acute kidney injury and proposes a novel disease called heroin crystal nephropathy.

  9. Automation in biological crystallization

    PubMed Central

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  10. Crystals in magma chambers

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2011-12-01

    Differentiation processes in igneous systems are one way in which the diversity of igneous rocks is produced. Traditionally, magmatic diversity is considered as variations in the overall chemical composition, such as basalt and rhyolite, but I want to extend this definition to include textural diversity. Such textural variations can be manifested as differences in the amount of crystalline (and immiscible liquid) phases and in the origin and identity of such phases. One important differentiation process is crystal-liquid separation by floatation or decantation, which clearly necessitates crystals in the magma. Hence, it is important to determine if magmas in chambers (sensu lato) have crystals. The following discussion is framed in generalities - many exceptions occur. Diabase (dolerite) dykes are a common, widespread result of regional mafic magmatism. The rims of most diabase dykes have few or no phenocrysts and crystals in the cores are commonly thought to have crystallized in place. Hence, this major mafic magmatic source did not have crystals, although compositional diversity of these dykes is commonly explained by crystal-liquid separation. This can be resolved if crystallisation was on the walls on the magma chamber. Similarly, most flood basalts are low in crystals and separation of those that are present cannot always explain the observed compositional diversity. Crystal-rich flows do occur, for example the 'Giant Plagioclase Basalts' of the Deccan series, but the crystals are thought to form or accumulate in a crystal-rich zone beneath the roof of the chamber - the rest of the chamber probably has few crystals. Some magmas from Hawaii contain significant amounts of olivine crystals, but most of these are deformed and cannot have crystallised in the chamber. In this case the crystals are thought to grow as the magma passes through a decollement zone. They may have grown on the walls or been trapped by filters. Basaltic andesite ignimbrites generally have

  11. Advanced Protein Crystallization Facility (APCF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  12. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  13. Resistance of the genome of Escherichia coli and Listeria monocytogenes to irradiation evaluated by the induction of cyclobutane pyrimidine dimers and 6-4 photoproducts using gamma and UV-C radiations

    NASA Astrophysics Data System (ADS)

    Beauchamp, S.; Lacroix, M.

    2012-08-01

    The effect of gamma and UV-C irradiation on the production of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PPs) in DNA was investigated to compare the natural resistance of the genome of a Gram-positive bacterium and a Gram-negative bacterium against irradiation. Solution of pure DNA and bacterial strains Listeria monocytogenes and Escherichia coli were irradiated using gamma and UV-C rays. Extracted DNA from bacteria and pure DNA samples were then analysed by ELISA using anti-CPDs and anti-6-4 PPs monoclonal antibodies. The results show that gamma rays, as well as UV-C rays, induce the formation of CPDs and 6-4 PPs in DNA. During UV-C irradiation, the three samples showed a difference in their sensitivity against formation of CPDs (P≤0.05). Pure DNA was the most sensitive while the genome of L. monocytogenes was the most resistant. Also during UV-C irradiation, the genome of L. monocytogenes was the only one to show a significant resistance against formation of 6-4 PPs (P≤0.05). During gamma irradiation, for both types of lesion, pure DNA and the genome of E. coli did not show significant difference in their sensitivity (P>0.05) while the genome of L. monocytogenes showed a resistance against formation of CPDs and 6-4 PPs.

  14. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  15. Relocation of the Mw 6.4 July 1, 2009 earthquake to the south of Crete and modeling of its associated small tsunami

    NASA Astrophysics Data System (ADS)

    Bocchini, Gian Maria; Papadopoulos, Gerassimos A.; Novikova, Tatiana; Karastathis, Vassilis K.; Mouzakiotis, Aggelos; Voulgaris, Nikolaos

    2016-04-01

    On July 1, 2009 (09:30 UTC) a Mw6.4 earthquake ruptured south of Crete Island triggering a small tsunami. Eyewitness reported the tsunami from Myrtos and Arvi Port, in the SE coast of Crete, and in Chrisi islet. In Arvi 4 or 5 wave arrivals were reported after a withdrawal of the sea of about 1 m. The sea disturbance lasted for about 1 h. The earthquake occurred as the result of the subduction of the oceanic African Plate beneath the continental Eurasian Plate along the Hellenic Subduction Zone (HSZ). South of Crete the Nubia-Aegean convergence rate (~3.5 cm/yr) is partially accommodated by low-angle (~20-25°) thrust faults at 20-40km depths and by steeper (>30°) reverse-faults at shallower depths. The area of interest has been struck by large magnitude earthquakes in historical times that in some cases triggered damaging tsunamis (e.g AD 1303). Routine earthquake locations performed by NOA do not provide good quality hypocenters for the area under investigation given the poor azimuthal coverage and the low density of the seismic stations. The 2009 earthquake, given its tsunamigenic nature, has been identified as a key event to study the central segment of the HSZ. We performed the relocation of the 2009 mainshock along with the seismicity of the area (ML>=3, period 2008-2015) using the NLLoc algorithm and testing several 1D velocity models available for the area and a 2D velocity model obtained from a published N-S seismic refraction profile across Crete. The hypocenters obtained from NLLoc have been subsequently relocated with HypoDD algorithm using catalog phase data. The results from the various relocation procedures showed a shallow hypocentral depth (12-17km) of the 2009 event and its likely intraplate nature. A set of hypocentral solutions were selected on the basis of minimum RMS and smaller errors with the aim to perform tsunami simulations with varying source parameters. Two different fault dips were used to discriminate between the intraplate (dip 32

  16. Crystals for stellar spectrometers

    NASA Technical Reports Server (NTRS)

    Alexandropoulos, N. G.; Cohen, G. G.

    1974-01-01

    Crystal evaluation as it applies to instrumentation employed in X-ray astronomy is reviewed, and some solutions are offered to problems that are commonly encountered. A general approach for selecting the most appropriate crystals for a given problem is also suggested. The energy dependence of the diffraction properties of (002) PET, (111) Ge, (101) ADP, (101) KAP, and (001) RAP are reported.

  17. Walkout in Crystal City

    ERIC Educational Resources Information Center

    Barrios, Greg

    2009-01-01

    When students take action, they create change that extends far beyond the classroom. In this article, the author, who was a former teacher from Crystal City, Texas, remembers the student walkout that helped launch the Latino civil rights movement 40 years ago. The Crystal City student walkout remains a high point in the history of student activism…

  18. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  19. Crystal Shape Bingo.

    ERIC Educational Resources Information Center

    Rule, Audrey C.

    This document describes a game that provides students with practice in recognizing three dimensional crystal shapes and planar geometric shapes of crystal faces. It contains information on the objective of the game, game preparation, and rules for playing. Play cards are included (four to a page). (ASK)

  20. Demonstration of Crystal Structure.

    ERIC Educational Resources Information Center

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  1. Bioengineered magnetic crystals

    NASA Astrophysics Data System (ADS)

    Kasyutich, O.; Sarua, A.; Schwarzacher, W.

    2008-07-01

    In this paper we report on the successful application of a protein crystallization technique to fabricate a three-dimensionally ordered array of magnetic nanoparticles, i.e. a novel type of metamaterial with unique magnetic properties. We utilize ferritin protein cages for the template-constrained growth of superparamagnetic nanoparticles of magnetite/maghemite Fe3O4-γ-Fe2O3 (magnetoferritin), followed by thorough nanoparticle bioprocessing and purification, and finally by protein crystallization. Protein crystallization is driven by the natural response of proteins to the supersaturation of the electrolyte, which leads to spontaneous nucleation and 3D crystal growth. Within a short period of time (hours to days) we were able to grow functional crystals on the meso-scale, with sizes of the order of tens, up to a few hundred micrometres. We present initial magnetic and Raman spectroscopy characterization results for the obtained 3D arrays of magnetic nanoparticles.

  2. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  3. Crystallization of macromolecular complexes: combinatorial complex crystallization

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Graille, Marc; Charbonnier, Jean-Baptiste

    2001-11-01

    The usefulness of antibody complexation, as a way of increasing the chances of crystallization needs to be re-evaluated after many antibody complexes have been crystallized and their structure determined. It is somewhat striking that among these, only a small number is a complex with a large protein antigen. The problem is that the effort of raising, cleaving and purifying an Fab is rewarded only by an extra chance of getting crystals; depending on the relative likelihood of crystallization of the complexed and uncomplexed protein. The example of the complex between HIV gp120, CD4 and an Fab fragment from a neutralizing antibody suggests that further complexation of an antigen-antibody complex with a third protein could, by increasing the number of possible combinations, improve the likelihood of crystallization. We propose the use of Ig-binding proteins as a way of extending the method from HIV gp120 to all proteins for which there are monoclonal antibodies. We discuss this technique, combinatorial complex crystallization (CCC), as part of a multi-component system for the enhancement of crystallization of macromolecular complexes. The method makes use of single Ig-binding domains from Staphylococcus aureus protein A (SpA), Peptostreptococcus magnus protein L (PpL) and the streptococcal protein G (SpG). The generality of the method depends on the ability of these domains to interact with a large repertoire of antibodies without affecting antigen binding. There is strong evidence to suggest that these Ig-binding domains bind outside the antigen-combining site of the antibody without perturbing antigen binding. It is clear from the crystal structure of the single SpG domain complexed with an Fab that the interaction involves mainly the immunoglobulin CH1 domain, a region not involved in antigen recognition. We have recently determined the structure of the complex between a human Fab and the domain D from SpA and found that steric hindrance is unlikely even for large

  4. Shaped Crystal Growth

    NASA Astrophysics Data System (ADS)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  5. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  6. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  7. Study of Geomagnetic Anomalies Related to Earthquakes at Pisco Peru 2007 (M=8.0) and at Taiwan 2009 (M= 6.4) (Invited)

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Takla, E.; Ishitsuka, J.; Rosales, D.; Dutra, S. L.; Liu, J. G.; Kakinami, Y.; Uozumi, T.; Abe, S.

    2010-12-01

    The Space Environment Research Center (SERC), Kyushu University deployed the MAGnetic Data Acqusition System (MAGDAS) at 53 stations along the 210- and 96-degree magnetic meridians (MM) and the magnetic Dip equator, and three FM-CW radars along the 210-degree MM during the International Heliophysical Year (IHY) period of 2005-2009 (see http://magdas.serc.kyushu-u.ac.jp/ and http://magdas2.serc.kyushu-u.ac.jp/). By analyzing these new MAGDAS data, we can perform a real-time monitoring for understanding the plasma and electromagnetic environment changes in geospace and lithosphere. In the present paper, we will introduce geomagnetic anomalies associated with larger earthquakes (EQs), observed at the MAGDAS stations. The first event is the Pisco earthquake (M=8.0) on August 15, 2007, which was the largest shallow earthquake and affected the coastal area south of Lima for 250 years. This occurred at the boundary between the Nazca and South American tectonic plates. Geomagnetic data from the MAGDAS Ancon (ANC; about 180 km from the epicenter), the INTERMAGNET Huancayo (HUA;about 190 km from the epicenter) and the MAGDAS Eusebio (EUS; about 39°east from ANC) stations were analyzed to clarify if there is a relation between the geomagnetic variations and the tectonic activities at Peru during 2007. Our results indicate both long- (several months) and short-term (daily) anomalous geomagnetic variations (H and Z components) in relation with these seismic activities. In addition, there were anomalous signals of Pc 3 polarization (Z/H) a few months before the onset of seismic activities. The second event is the Taiwan earthquake of M=6.4 on the Richter scale, which occurred at depth ≈ 45 km, on 19th of December 2009. The epicenter was located about 20 Km away from our MAGDAS Hualien (HLN) station. The MAGDAS Amami-ohshima (AMA) station in Japan was used as a remote reference station. The geomagnetic components (H, D and Z) at the HLN station showed baseline fluctuations

  8. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  9. Aluminum Nitride Crystal Growth

    DTIC Science & Technology

    1979-12-01

    increase the growth rate of AiN crystals from the vapor phase, and some new experiments to test this model conjecture are needed. if one’could operate...walls is much less severe,, and hence the crucible lifetime is about 88 times greater than for the -slycrystalline tungsten. In an effort to test this...added H2 to increase the growth rate is a better idea. One growth run, W253, Was made to test the single-crystal crucible method. The crystal from

  10. Analysis of Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1997-01-01

    A realistic computer model for polymorphic crystallization (i.e., initial and final phases with identical compositions), which includes time-dependent nucleation and cluster-size-dependent growth rates, is developed and tested by fits to experimental data. Model calculations are used to assess the validity of two of the more common approaches for the analysis of crystallization data. The effects of particle size on transformation kinetics, important for the crystallization of many systems of limited dimension including thin films, fine powders, and nanoparticles, are examined.

  11. Crystallization on prestructured seeds.

    PubMed

    Jungblut, Swetlana; Dellago, Christoph

    2013-01-01

    The crystallization transition of an undercooled monodisperse Lennard-Jones fluid in the presence of small prestructured seeds is studied with transition path sampling combined with molecular dynamics simulations. Compared to the homogeneous crystallization, clusters of a few particles arranged into a face- and body-centered cubic structure enhance the crystallization, while icosahedrally ordered seeds do not change the reaction rate. We identify two distinct nucleation regimes-close to the seed and in the bulk. Crystallites form close to the face- and body-centered structures and tend to stay away from the icosahedrally ordered seeds.

  12. Crystals in light.

    PubMed

    Kahr, Bart; Freudenthal, John; Gunn, Erica

    2010-05-18

    We have made images of crystals illuminated with polarized light for almost two decades. Early on, we abandoned photosensitive chemicals in favor of digital electrophotometry with all of the attendant advantages of quantitative intensity data. Accurate intensities are a boon because they can be used to analytically discriminate small effects in the presence of larger ones. The change in the form of our data followed camera technology that transformed picture taking the world over. Ironically, exposures in early photographs were presumed to correlate simply with light intensity, raising the hope that photography would replace sensorial interpretation with mechanical objectivity and supplant the art of visual photometry. This was only true in part. Quantitative imaging accurate enough to render the separation of crystalloptical quantities had to await the invention of the solid-state camera. Many pioneers in crystal optics were also major figures in the early history of photography. We draw out the union of optical crystallography and photography because the tree that connects the inventors of photography is a structure unmatched for organizing our work during the past 20 years, not to mention that silver halide crystallites used in chemical photography are among the most consequential "crystals in light", underscoring our title. We emphasize crystals that have acquired optical properties such as linear birefringence, linear dichroism, circular birefringence, and circular dichroism, during growth from solution. Other crystalloptical effects were discovered that are unique to curiously dissymmetric crystals containing embedded oscillators. In the aggregate, dyed crystals constitute a generalization of single crystal matrix isolation. Simple crystals provided kinetic stability to include guests such as proteins or molecules in excited states. Molecular lifetimes were extended for the preparation of laser gain media and for the study of the photodynamics of single

  13. Swimming in a crystal.

    PubMed

    Brown, Aidan T; Vladescu, Ioana D; Dawson, Angela; Vissers, Teun; Schwarz-Linek, Jana; Lintuvuori, Juho S; Poon, Wilson C K

    2016-01-07

    We study catalytic Janus particles and Escherichia coli bacteria swimming in a two-dimensional colloidal crystal. The Janus particles orbit individual colloids and hop between colloids stochastically, with a hopping rate that varies inversely with fuel (hydrogen peroxide) concentration. At high fuel concentration, these orbits are stable for 100s of revolutions, and the orbital speed oscillates periodically as a result of hydrodynamic, and possibly also phoretic, interactions between the swimmer and the six neighbouring colloids. Motile E. coli bacteria behave very differently in the same colloidal crystal: their circular orbits on plain glass are rectified into long, straight runs, because the bacteria are unable to turn corners inside the crystal.

  14. Single crystals of chitosan.

    PubMed

    Cartier, N; Domard, A; Chanzy, H

    1990-10-01

    Lamellar single crystals of chitosan were prepared at 125 degrees C by adding ammonia to a low DP fraction of chitosan dissolved in water. The crystals gave sharp electron diffraction diagrams which could be indexed in an orthorhombic P2(1)2(1)2(1) unit cell with a = 8.07 A, b = 8.44 A, c = 10.34 A. The unit cell contained two anti-parallel chitosan chains and no water molecules. It was found that cellulose microfibrils from Valonia ventricosa could act as nuclei for inducing the crystallization of chitosan on cellulose. This produced a shish-kebab morphology.

  15. Molecules in crystals

    NASA Astrophysics Data System (ADS)

    Spackman, Mark A.

    2013-04-01

    Hirshfeld surface analysis has developed from the serendipitous discovery of a novel partitioning of the crystal electron density into discrete molecular fragments, to a suite of computational tools used widely for the identification, analysis and discussion of intermolecular interactions in molecular crystals. The relationship between the Hirshfeld surface and very early ideas on the internal structure of crystals is outlined, and applications of Hirshfeld surface analysis are presented for three molecules of historical importance in the development of modern x-ray crystallography: hexamethylbenzene, hexamethylenetetramine and diketopiperazine.

  16. Signal enhancement for gene detection based on a redox reaction of [Fe(CN)(6)](4-) mediated by ferrocene at the terminal of a peptide nucleic acid as a probe with hybridization-amenable conformational flexibility.

    PubMed

    Aoki, Hiroshi; Tao, Hiroaki

    2008-07-01

    Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.

  17. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    PubMed

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals.

  18. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  19. Computer Modeling of Crystallization and Crystal Size distributions

    NASA Astrophysics Data System (ADS)

    Amenta, R. V.

    2002-05-01

    The crystal size distribution of an igneous rock has been shown to be related to the crystallization kinetics. In order to better understand crystallization processes, the nucleation and growth of crystals in a closed system is modeled computationally and graphically. Units of volume analogous to unit cells are systematically attached to stationary crystal nuclei. The number of volume units attached to each crystal per growth stage is proportional to the crystal size insuring that crystal dimensional growth rates are constant regardless of their size. The number of new crystal nuclei per total system volume that form in each growth stage increases exponentially Cumulative crystal size distributions (CCSD) are determined for various stages of crystallization (30 percent, 60 pct, etc) from a database generated by the computer model, and each distribution is fit to an exponential function of the same form. Simulation results show that CCSD functions appear to fit the data reasonably well (R-square) with the greatest misfit at 100 pct crystallization. The crystal size distribution at each pct crystallization can be obtained from the derivative of the respective CCSD function. The log form of each crystal size distribution (CSD) is a linear function with negative slope. Results show that the slopes of the CSD functions at pcts crystallization up to 90 pct are parallel, but the slope at 100 pct crystallization differs from the others although still in approximate alignment. We suggest that real crystallization of igneous rocks may show this pattern. In the early stages of crystallization crystals are far apart and CSD's are ideal as predicted by theory based on growth of crystals in a brine. At advanced stages of crystallization growth collision boundaries develop between crystals. As contiguity increases crystals become blocked and inactive because they can no longer grow. As crystallization approaches 100 pct a significant number of inactive crystals exist resulting in

  20. No warmup crystal oscillator

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.

    1982-01-01

    During warmup, crystal oscillators often show a frequency offset as large as 1 part in 10 to the 5th power. If timing information is transferred to the oscillator and then the oscillator is allowed to warmup, a timing error greater than 1 millisecond will occur. For many applications, it is unsuitable to wait for the oscillator to warmup. For medium accuracy timing requirements where overall accuracies in the order of 1 millisecond are required, a no warmup crystal concept was developed. The concept utilizes two crystal oscillator, used sequentially to avoid using a crystal oscillator for timing much higher frequency accuracy once warmed up. The accuracy achieved with practical TCXOs at initial start over a range of temperatures is discussed. A second design utilizing two oven controlled oscillators is also discussed.

  1. Diffusion in Coulomb crystals

    SciTech Connect

    Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2011-07-15

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  2. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  3. Crystal-Clear Technology.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate J.; And Others

    1993-01-01

    Provides diagrams to aid in discussing polymer dispersed liquid crystal (PDLC) technology. Equipped with a knowledge of PDLC, teachers can provide students with insight on how the gap between basic science and technology is bridged. (ZWH)

  4. Crystallization behavior of anorthite

    NASA Technical Reports Server (NTRS)

    Klein, L.; Uhlmann, D. R.

    1974-01-01

    The growth rate of anorthite crystals from the melt is studied as a function of temperature with undercooling in the ranges 52-152 and 402-652 degrees C. The triclinic form is invariably observed as the crystallization product, growth is preferentially in the c direction, and the interface morphology is faceted. Significant growth rate anisotropy is indicated. The maximum growth rate of anorthite from the melt is higher than for anorthite-rich lunar compositions. Recent computer studies are combined with experimental data to estimate the heat of fusion of anorthite as 28000-45000 cal/mol; the corresponding range for entropy of fusion is (7.8-12)R (where R is the gas constant). The observations and kinetic data support Jackson's predictions concerning materials with large entropies of fusion and his suggestion that entropy of fusion is an important parameter for characterizing the crystal-liquid interface and the nature of the crystallization process.

  5. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  6. Shaping Crystals using Electrophoresis

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie; Mackiewicz, Kristian

    2016-11-01

    Electrophoresis is size and shape independent as stressed by Morrison in his seminal paper. Here we present an original approach to reshape colloidal crystals using an electric field as a carving tool.

  7. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  8. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  9. Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Borgstahl, Gloria E. O.; Bellamy, Henry D.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    There are many ways of judging a good crystal. Which we use depends on the qualities we seek. For gemstones size, clarity and impurity levels (color) are paramount. For the semiconductor industry purity is probably the most important quality. For the structural crystallographer the primary desideratum is the somewhat more subtle concept of internal order. In this chapter we discuss the effect of internal order (or the lack of it) on the crystal's diffraction properties.

  10. Liquid Crystal Airborne Display

    DTIC Science & Technology

    1977-08-01

    81/2X 11- 10 -9 .8 display using a large advertising alphanimeric ( TCI ) has been added to the front of the optical box used in the F-4 aircraft for HUD...properties over a wide range of tempera - tures, including normal room temperature. What are Liquid Crystals? Liquid crystals have been classified in three...natic fanctions and to present data needed for the semi- automatic and manual control of system functions. Existing aircraft using CRT display

  11. Crystal growth of drug materials by spherical crystallization

    NASA Astrophysics Data System (ADS)

    Szabó-Révész, P.; Hasznos-Nezdei, M.; Farkas, B.; Göcző, H.; Pintye-Hódi, K.; Erős, I.

    2002-04-01

    One of the crystal growth processes is the production of crystal agglomerates by spherical crystallization. Agglomerates of drug materials were developed by means of non-typical (magnesium aspartate) and typical (acetylsalicylic acid) spherical crystallization techniques. The growth of particle size and the spherical form of the agglomerates resulted in formation of products with good bulk density, flow, compactibility and cohesivity properties. The crystal agglomerates were developed for direct capsule-filling and tablet-making.

  12. Engineering Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Dandekar, Preshit; Kuvadia, Zubin B.; Doherty, Michael F.

    2013-07-01

    Crystallization is an important separation and particle formation technique in the manufacture of high-value-added products. During crystallization, many physicochemical characteristics of the substance are established. Such characteristics include crystal polymorph, shape and size, chemical purity and stability, reactivity, and electrical and magnetic properties. However, control over the physical form of crystalline materials has remained poor, due mainly to an inadequate understanding of the basic growth and dissolution mechanisms, as well as of the influence of impurities, additives, and solvents on the growth rate of individual crystal faces. Crystal growth is a surface-controlled phenomenon in which solute molecules are incorporated into surface lattice sites to yield the bulk long-range order that characterizes crystalline materials. In this article, we describe some recent advances in crystal morphology engineering, with a special focus on a new mechanistic model for spiral growth. These mechanistic ideas are simple enough that they can be made to work and accurate enough that they are useful.

  13. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  14. Kinetic study of the oxidation of [Fe(CN) 6] 4- by [Co(NH 3) 4pzCO 2] 2+ and SO82- in the presence of the tripodal ligand Tren Aminopropil

    NASA Astrophysics Data System (ADS)

    García-España, E.; Sornosa-Ten, A.; Albelda, M. T.; Sánchez, F.; Marchena, M.

    2011-03-01

    Oxidations (electron transfers) of [Fe(CN) 6] 4- by [Co(NH 3) 4pzCO 2] 2+ and SO82- have been studied in solutions containing the receptor N,N',N″-(aminopropil)-tris (2-aminoetil) amina [Tren Aminopropil, TAL], which can incorporate [Fe(CN) 6] 4- and SO82- but not the cobalt complex. The results can be explained using the Brönsted equation that allows to obtain the binding constant of the transition state, a parameter that the Pseudophase Model cannot provide.

  15. Crystallization of brushite from EDTA-chelated calcium in agar gels

    NASA Astrophysics Data System (ADS)

    Plovnick, Ross H.

    1991-10-01

    Brushite (dicalcium phosphate dihydrate, CaHPO 4·2H 2O, DCPD) has been crystallized from ethylenediaminetetraacetic acid (EDTA)-chelated calcium in agar gels at initial pH 4.5-6.4 and Ca/P molar ratio above about 0.8. White, spherular crystalline DCPD aggregates up to 1 mm in diameter grew in 8-10 weeks. Liesegang ring were occassionally observed at initial gel pH 5 and Ca/P molar ratio near 1. Crystals were characterized by X-ray diffraction analysis, scanning electron microscopy, and infrared absorption spectroscopy. Brushite crystals were also grown in agar gels with either unchelated Ca initially present in the gels and EDTA in overlying solutions, or EDTA initially present in the gels and unchelated Ca in overlying solutions. These crystals grew as 2-3 mm aggregates mainly within 1-3 cm of the gel-solution interface.

  16. Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion

    NASA Astrophysics Data System (ADS)

    Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.

    2016-11-01

    The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.

  17. The effect of the temperature on the bandgaps based on the chiral liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Shi, Shuhui; Wang, Bainian

    2015-10-01

    Chiral side-chain liquid crystal polymer is synthesized from polysiloxanes and liqud crystal monomer 4-(Undecenoic-1- yloxybenzoyloxy)-4'-benzonitrile and 6-[4-(4- Undecenoic -1-yloxybenzoyloxy)- hydroxyphenyl] cholesteryl hexanedioate. The optical and thermal property of the monomer and polymer are shown by POM and DSC. As the unique optical property of the polymer, the bandgaps are shifted for heating temperature. The reflection bandgaps is shifted from 546nm to 429nm with temperature increase. As a photonic material, the chiral polymer which sensitive responses under the outfield is widely studied for reflection display, smart switchable reflective windows and defect model CLC laser etc.

  18. Crystal Growth Control

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1997-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.

  19. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  20. Crystal Ball Functional Model

    NASA Astrophysics Data System (ADS)

    Plotnick, David

    2016-09-01

    The A2 collaboration of the MAinz MIkrotron is dedicated to studying meson production and nucleon structure and behavior via photon scattering. The photons are made via bremsstrahlung process and energy-tagged using the Glasgow Photon tagger. The photon beam then interacts in a variety of targets: cryogenic, polarized or solid state, and scattered particles deposit their energy within the NaI crystals. Scintillators are able to give results on particles energy and time. Events are reconstructed by combining information from the Tagging spectrometer, the Crystal Ball detector, the TAPS forward wall spectrometer, a Cherenkov detector, and multi-wire proportional chambers. To better understand the detector and experimental events, a live display was built to show energies deposited in crystals in real-time. In order to show a range of energies and particles, addressable LEDs that are individually programmable were used. To best replicate the Crystal Ball, 3D printing technology was employed to build a similar highly segmented icosahedron that can hold each LED, creating a 3D representation of what photons see during experiments. The LEDs were controlled via Arduino microcontroller. Finally, we implemented the Experimental Physics and Industrial Control System to grab live event data, and a simple program converts this data in to color and crystal number data that is able to communicate with the Arduino. Using these simple parts, we can better visualize and understand the tools used in nuclear physics. This material is based upon work supported by the National Science Foundation Grant No. IIA-1358175.

  1. Determination of trace mercury by solid substrate-room temperature phosphorimetry quenching method based on catalytic effect of Hg2+ on formation of the ion association complex [Sn(XO)6]4+.[(Fin)4].

    PubMed

    Liu, Jia-Ming; Wu, Ruo-Hong; Li, De-Chang; Zhou, Ping; Zheng, Min-Min; Zeng, Xiao-Yi; Liu, Dong-Xia; Huang, Xiao-Mei; Zhu, Guo-Hui

    2006-09-01

    A new method for the determination of trace mercury by solid substrate-room temperature phosphorimetry (SS-RTP) quenching method has been established. In glycine-HCl buffer solution, xylenol orange (XO) can react with Sn4+ to form the complex [Sn(XO)6]4+. [Sn(XO)6]4+ can interact with Fin- (fluorescein anion) to form the ion associate [Sn(XO)6]4+.[(Fin)4]-, which can emit strong and stable room temperature phosphorescence (RTP) on polyamide membrane (PAM). Hg2+ can catalyze H2O2 oxidizing the ion association complex [Sn(XO)6]4+.[(Fin)4]-, which causes the RTP to quench. The DeltaIp value is directly proportional to the concentration of Hg2+ in the range of 0.016-1.6 fg spot(-1) (corresponding concentration: 0.040-4.0 pg ml(-1), 0.40 microl spot(-1)), and the regression equation of working cure is DeltaIp=10.03+83.15 m Hg2+ (fg spot(-1)), (r=0.9987, n=6) and the detection limit (LD) is 3.6 ag spot(-1)(corresponding concentration: 9.0 x 10(-15) g ml(-1), the sample volume: 0.4 microl). This simple, rapid, accurate method is of high selectivity and good repeatability, and it has been successfully applied to the determination of trace mercury in real samples. The reaction mechanism for catalyzing H2O2 oxidizing the ion association complex ([Sn(XO)6]4+.[(Fin)4]-) SS-RTP quenching method to determine trace mercury is also discussed.

  2. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  3. Flexible ferroelectric organic crystals

    PubMed Central

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-01-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity—the properties that originate from their non-centrosymmetric crystal lattice—but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals. PMID:27734829

  4. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  5. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M(2) reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  6. Flexible ferroelectric organic crystals

    NASA Astrophysics Data System (ADS)

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-10-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity--the properties that originate from their non-centrosymmetric crystal lattice--but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.

  7. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  8. Frequency doubling crystals

    DOEpatents

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  9. Microgravity crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Advanced finite element models are used to study three-dimensional, time-dependent flow and segregation in crystal growth systems. In this image of a prototypical model for melt and crystal growth, pathlines at one instant in time are shown for the flow of heated liquid silicon in a cylindrical container. The container is subjected to g-jitter disturbances along the vertical axis. A transverse magnetic field is applied to control them. Such computations are extremely powerful for understanding melt growth in microgravity where g-jitter drives buoyant flows. The simulation is part of the Theoretical Analysis of 3D, Transient Convection and Segregation in Microgravity Bridgman Crystal Growth investigation by Dr. Jeffrey J. Derby of the University of Mirnesota, Minneapolis.

  10. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  11. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  12. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    1999-01-01

    A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.

  14. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  15. Exotic crystal superstructures of colloidal crystals in confinement.

    PubMed

    Fontecha, Ana Barreira; Schöpe, Hans Joachim

    2008-06-01

    Colloidal model systems have been used for over three decades for investigating liquids, crystals, and glasses. Colloidal crystal superstructures have been observed in binary systems of repulsive spheres as well as oppositely charged sphere systems showing structures well known from atomic solids. In this work we study the structural transition of colloidal crystals under confinement. In addition to the known sequence of crystalline structures, crystal superstructures with dodecagonal and hexagonal symmetry are observed in one component systems. These structures have no atomic counterpart.

  16. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    DTIC Science & Technology

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  17. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  18. Crystal forms of naproxen.

    PubMed

    Song, Jung-Soon; Sohn, Young-Taek

    2011-01-01

    The objective of this work was to investigate the existence of polymorphs and pseudopolymorphs of naproxen and the transformation of crystal forms. Four crystal forms of naproxen have been isolated by recrystallization and characterized by differential scanning calorimetry, powder X-ray diffractometry and thermogravimetric analysis. The differential scanning calorimetry and powder X-ray diffractometry patterns of the four crystal forms were different respectively. In the dissolution studies in pH 6.8 ± 0.05 buffer equilibrated at 37 ± 0.5°C, the solubility of four crystal forms was similar (within the error range). After storage of 1 month at 0% RH (silica gel, 20°C), 52% RH (saturated solution of Na(2)Cr(2)O(7.2)H(2)O/20°C) and 95% RH (saturated solution of Na(2)HPO(4)/20°C), Form 2 and Form 4 were transformed to Form 1, but Form 3 and Form 1 were not transformed and they were shown to have a good physical stability at room temperature for 1 month.

  19. Pyrrolidinium ionic liquid crystals.

    PubMed

    Goossens, Karel; Lava, Kathleen; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Driesen, Kris; Görller-Walrand, Christiane; Binnemans, Koen; Cardinaels, Thomas

    2009-01-01

    N-alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2- thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group C(n)H(2n+1) was varied from eight to twenty carbon atoms (n = 8, 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour purity.

  20. Laser schlieren crystal monitor

    NASA Technical Reports Server (NTRS)

    Owen, Robert B. (Inventor); Johnston, Mary H. (Inventor)

    1987-01-01

    A system and method for monitoring the state of a crystal which is suspended in a solution is described which includes providing a light source for emitting a beam of light along an optical axis. A collimating lens is arranged along the optical axis for collimating the emitted beam to provide a first collimated light beam consisting of parallel light rays. By passing the first collimated light beam through a transparent container, a number of the parallel light rays are deflected off the surfaces of said crystal being monitored according to the refractive index gradient to provide a deflected beam of deflected light rays. A focusing lens is arranged along optical axis for focusing the deflected rays towards a desired focal point. A knife edge is arranged in a predetermined orientation at the focal point; and a screen is provided. A portion of the deflected beam is blocked with the knife edge to project only a portion of the deflected beam. A band is created at one edge of the image of the crystal which indicates the state of change of the surface of the crystal being monitored.

  1. Ferroelectric liquid crystal display

    NASA Technical Reports Server (NTRS)

    York, Paul K. (Inventor)

    1977-01-01

    A ferroelectric liquid crystal display device employs capacitance spoiling layers to minimize unneeded capacitances created by crossovers of X and Y address lines and to accurately define desired capacitances. The spoiler layers comprise low dielectric constant layers which space electrodes from the ferroelectric at crossover points where capacitance is not needed for device operation.

  2. The Crystal Set

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought…

  3. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  4. Poet Lake Crystal Approval

    EPA Pesticide Factsheets

    This September 19, 2016 letter from EPA approves the petition from Poet Biorefining-Lake Crystal, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel (D-code 6) RINs under the RFS

  5. Crystal Ball Replica

    NASA Astrophysics Data System (ADS)

    Ajamian, John

    2016-09-01

    The A2 collaboration of the Institute for Nuclear Physics of Johannes Gutenberg University performs research on (multiple) meson photoproduction and nucleon structure and dynamics using a high energy polarized photon beam at specific targets. Particles scattered from the target are detected in the Crystal Ball, or CB. The CB is composed of 672 NaI crystals that surround the target and can analyze particle type and energy of ejected particles. Our project was to create a replica of the CB that could display what was happening in real time on a 3 Dimensional scale replica. Our replica was constructed to help explain the physics to the general public, be used as a tool when calibrating each of the 672 NaI crystals, and to better analyze the electron showering of particles coming from the target. This poster will focus on the hardware steps necessary to construct the replica and wire the 672 programmable LEDS in such a way that they can be mapped to correspond to the Crystal Ball elements. George Washington NSF Grant.

  6. Controlling Chirality of Entropic Crystals.

    PubMed

    Damasceno, Pablo F; Karas, Andrew S; Schultz, Benjamin A; Engel, Michael; Glotzer, Sharon C

    2015-10-09

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams.

  7. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  8. Dichroism in Helicoidal Crystals.

    PubMed

    Cui, Xiaoyan; Nichols, Shane M; Arteaga, Oriol; Freudenthal, John; Paula, Froilanny; Shtukenberg, Alexander G; Kahr, Bart

    2016-09-21

    Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils.

  9. Studies of Cubic Ice Crystals

    DTIC Science & Technology

    1989-12-11

    the nitrate ion concentration in the ice. We hypothesize that Br- was oxidized to bromine (Br2), hypobromous acid (HOBr), or bromic acid (HBr03). The...Crystals grown from solutions of ammonium carbonate at -16°C 35 10 Crystals grown from solutions of sulfuric acid at -16°C 36 11 Ice crystal aspect ratios...elaborate crystals. When we compare this with the results of Workman and Reynolds for acid solutions, which all yielded negligible freezing potentials, we

  10. The effect of ferrocyanide ions on sodium chloride crystallization in salt mixtures

    NASA Astrophysics Data System (ADS)

    Gupta, Sonia; Pel, Leo; Steiger, Michael; Kopinga, Klaas

    2015-01-01

    The use of crystallization inhibitors has been proposed as a potential preventive treatment method against damage and is extensively tested for crystallization of single salts. However, in practice salt mixtures are present. Therefore, before using inhibitors in practice there is a strong need to explore their effect on salt mixtures. In this research, we studied the effect of ferrocyanide ions ([Fe(CN)6]4-) on NaCl crystallization in single salt and in salt mixtures of NaCl-KCl and NaCl-LiCl. A series of micro droplet drying experiments were undertaken. Time lapse microscopy of the crystallization was performed along with NMR measurements of hydrogen, sodium and lithium ions. This gives the possibility to visualize the drying of the droplet while simultaneously obtaining information of both NaCl and LiCl concentration in the droplet. For a NaCl solution droplet, in the presence of inhibitor, a significantly higher supersaturation prior to the onset of crystallization and a change in crystal morphology were observed. On the other hand, for salt mixtures, lower supersaturation compared to single salt and dendritic crystal morphology was seen in the presence of inhibitor. In a porous material, such a type of morphology can promote the formation of efflorescence that causes only little structural damage.

  11. Analysis of the 3d(sup 6)4s((sup 6)D)4f-5g supermultiplet of Fe I in laboratory and solar infrared spectra

    NASA Technical Reports Server (NTRS)

    Johansson, S.; Nave, G.; Geller, M.; Sauval, A. J.; Grevesse, N.; Schoenfeld, W. G.; Change, E. S.; Farmer, C. B.

    1994-01-01

    The combined laboratory and solar analysis of the highly excited subconfigurations 3d(sup 6)4s((sup 6)D)4f and 3d(sup 6)4s((sup 6)D)5g of Fe I has allowed us to classify 87 lines of the 4f-5g supermultiplet in the spectral region 2545-2585 per cm. The level structure of these JK-coupled configurations is predicted by semiempirical calculations and the quardrupolic approximation. Semiempirical gf-values have been calculated and are compared to gf-values derived from the solar spectrum. The solar analysis has shown that these lines, which should be much less sensitive than lower excitation lines to departures from Local Thermal Equilibrium (LTE) and to temperature uncertanties, lead to a solar abundance of iron which is consistent with the meteoritic value (A(sub Fe) = 7.51).

  12. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  13. Growing Crystals for Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Unidirectional solidification yields bulk crystals with compositional homogeneity. Unidirectionaly crystal-growth furnace assembly travels vertically so crystal grows upward from bottom tapered end of ampoule. Separately controlled furnaces used for hot (upper) and cold (lower) zones. New process produces ingots with radial compositional homogeneity suitable for fabricating infrared detectors.

  14. Physical vapor transport crystal growth

    NASA Technical Reports Server (NTRS)

    Yoel, Dave W.; Anderson, Elmer; Wu, Maw-Kuen; Cheng, H. Y.

    1987-01-01

    The goals of this research are two-fold: to study effective means of growing ZnSe crystals of good optical quality and to determine the advantages of growing such crystals in microgravity. As of this date the optimal conditions for crystal growth have not been determined. However, successful growth runs were made in two furnances and the results are given.

  15. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  16. A Few Good Crystals Please

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for X-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of solution conditions on the nucleation rate and final crystal size of two crystal systems; tetragonal lysozyme and glucose isomerase. Batch crystallization plates were prepared at given solution concentration and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Duplicate experiments indicate the reproducibility of the technique. Results for each system showing the effect of supersaturation, incubation temperature and solution pH on nucleation rates will be presented and discussed. In the case of lysozyme, having optimized solution conditions to produce an appropriate number of crystals of a suitable size, a batch of crystals were prepared under exactly the same conditions. Fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  17. Small Business Innovations (Crystal Components)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Scientific Materials Corporation, Bozeman, MT developed the SciMax line of improved Nd:Yag crystals under an Small Business Innovation Research (SBIR) contract with Langley Research Center. They reduced the amount of water trapped in the crystals during growth to improve the optical quality and efficiency. Applications of the crystals include fiber optics, telecommunications, welding, drilling, eye surgery and medical instrumentation.

  18. Crystal Engineering of Hand-Twisted Helical Crystals.

    PubMed

    Saha, Subhankar; Desiraju, Gautam R

    2017-02-08

    A strategy is outlined for the design of hand-twisted helical crystals. The starting point in the exercise is the one-dimensional (1D) plastic crystal, 1,4-dibromobenzene, which is then changed to a 1D elastic crystal, exemplified by 4-bromophenyl 4'-chlorobenzoate, by introduction of a molecular synthon -O-CO- in lieu of the supramolecular synthon Br···Br in the precursor. The 1D elastic crystals are next modified to two-dimensional (2D) elastic crystals, of the type 4-bromophenyl 4'-nitrobenzoate where the halogen bonding and C-H···O hydrogen bonding are well-matched. Finally, varying the interaction strengths in these 2D elastic crystals gives plastic crystals with two pairs of bendable faces but without slip planes. Typical examples are 4-chlorophenyl and 4-bromophenyl 4'-nitrobenzoate. This type of 2D plasticity represents a new type of bendable crystals in which plastic behavior is seen with a fair degree of isotropic character in the crystal packing. The presence of two sets of bendable faces, generally orthogonal to each other, allows for the possibility of hand-twisting of the crystals to give grossly helical morphologies. Accordingly, we propose the name hand-twisted helical crystals for these substances.

  19. Improving the Quality of Protein Crystals Using Stirring Crystallization

    NASA Astrophysics Data System (ADS)

    Adachi, Hiroaki; Matsumura, Hiroyoshi; Niino, Ai; Takano, Kazufumi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-04-01

    Recent reports state that a high magnetic field improves the crystal quality of bovine adenosine deaminase (ADA) with an inhibitor [Kinoshita et al.: Acta Cryst. D59 (2003) 1333]. In this paper, we examine the effect of stirring solution on ADA crystallization using a vapor-diffusion technique with rotary and figure-eight motion shakers. The probability of obtaining high-quality crystals is increased with stirring in a figure-eight pattern. Furthermore, rotary stirring greatly increased the probability of obtaining high-quality crystals, however, nucleation time was also increased. The crystal structure with the inhibitor was determined at a high resolution using a crystal obtained from a stirred solution. These results indicate that stirring with simple equipment is as useful as the high magnetic field technique for protein crystallization.

  20. Laser alexandrite crystals grown by horizontal oriented crystallization technique

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.; Tsvetkov, E. G.; Yurkin, A. M.

    2008-05-01

    Comparative studies were performed for alexandrite crystals, Al 2BeO 4:Cr 3+, employed in solid state lasers and grown by the horizontal oriented crystallization (HOC) technique and alexandrite crystals grown by the Czochralski (Cz) method. It was shown that the structural quality and possibilities of generation of stimulated emission HOC-crystals are similar to Cz-crystals, whereas their damage threshold is about three times higher. The obtained results and considerably lower cost price of HOC-alexandrite crystals prove their advantageous application in powerful laser systems, which require large laser rods with a higher resistance to laser beam. It is emphasized that application of HOC technique is promising for growth of laser crystals of other high-temperature oxide compounds.

  1. Extreme Nonlinear Optics With Liquid Crystals

    DTIC Science & Technology

    2006-10-31

    Photorefractive CdSe and gold nanowire -doped liquid crystals and polymer-dispersed-liquid-crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446: 233...Mallouk, “ Photorefractive CdSe and gold nanowire -doped liquid crystals and polymer-dispersed-liquid-crystal photonic crystals,” Mol. Cryst. Liq. Cryst...Williams, B. Lewis and T. Mallouk, “Photorefractive CdSe and gold nanowire -doped liquid crystals and polymer-dispersed-liquid-crystal photonic

  2. Crystallization-induced properties from morphology-controlled organic crystals.

    PubMed

    Park, Chibeom; Park, Ji Eun; Choi, Hee Cheul

    2014-08-19

    During the past two decades, many materials chemists have focused on the development of organic molecules that can serve as the basis of cost-effective and flexible electronic, optical, and energy conversion devices. Among the potential candidate molecules, metal-free or metal-containing conjugated organic molecules offer high-order electronic conjugation levels that can directly support fast charge carrier transport, rapid optoelectric responses, and reliable exciton manipulation. Early studies of these molecules focused on the design and synthesis of organic unit molecules that exhibit active electrical and optical properties when produced in the form of thin film devices. Since then, researchers have worked to enhance the properties upon crystallization of the unit molecules as single crystals provide higher carrier mobilities and exciton recombination yields. Most recently, researchers have conducted in-depth studies to understand how crystallization induces property changes, especially those that depend on specific crystal surfaces. The different properties that depend on the crystal facets have been of particular interest. Most unit molecules have anisotropic structures, and therefore produce crystals with several unique crystal facets with dissimilar molecular arrangements. These structural differences would also lead to diverse electrical conductance, optical absorption/emission, and even chemical interaction properties depending on the crystal facet investigated. To study the effects of crystallization and crystal facet-dependent property changes, researchers must grow or synthesize crystals of highly conjugated molecules that have both a variety of morphologies and high crystallinity. Morphologically well-defined organic crystals, that form structures such as wires, rods, disks, and cubes, provide objects that researchers can use to evaluate these material properties. Such structures typically occur as single crystals with well-developed facets with

  3. Plenum type crystal growth process

    DOEpatents

    Montgomery, Kenneth E.

    1992-01-01

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  4. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  5. Plenum type crystal growth chamber

    SciTech Connect

    Montgomery, K.E.

    1990-12-31

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  6. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  7. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  8. CRYSTAL/FACE

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Kok, Greg; Anderson, Bruce

    2004-01-01

    Droplet Measurement Technologies (DMT), under funding from NASA, participated in the CRYSTAL/FACE field campaign in July, 2002 with measurements of cirrus cloud hydrometeors in the size range from 0.5 to 1600 microns. The measurements were made with the DMT Cloud, Aerosol and Precipitation Spectrometer (CAPS) that was flown on NASA's WB57F. With the exception of the first research flight when the data system failed two hours into the mission, the measurement system performed almost flawlessly during the thirteen flights. The measurements from the CAPS have been essential for interpretation of cirrus cloud properties and their impact on climate. The CAPS data set has been used extensively by the CRYSTAL/FACE investigators and as of the date of this report, have been included in five published research articles, 10 conference presentations and six other journal articles currently in preparation.

  9. Liquid crystals in tribology.

    PubMed

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-09-18

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered.

  10. PYTHIA 6.4 physics and manual

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Torbjörn; Mrenna, Stephen; Skands, Peter

    2006-05-01

    The Pythia program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a rôle, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest. The code and further information may be found on the Pythia web page: http://www.thep.lu.se/~torbjorn/Pythia.html.

  11. PYTHIA 6.4 Physics and Manual

    SciTech Connect

    Sjostrand, Torbjorn; Mrenna, Stephen; Skands, Peter; /Fermilab

    2006-03-01

    The Pythia program can be used to generate high-energy-physics ''events'', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.

  12. Nematic liquid crystal bridges

    NASA Astrophysics Data System (ADS)

    Doss, Susannah; Ellis, Perry; Vallamkondu, Jayalakshmi; Danemiller, Edward; Vernon, Mark; Fernandez-Nieves, Alberto

    We study the effects of confining a nematic liquid crystal between two parallel glass plates with homeotropic boundary conditions for the director at all bounding surfaces. We find that the free surface of the nematic bridge is a surface of constant mean curvature. In addition, by changing the distance between the plates and the contact angle with the glass plates, we transition between loops and hedgehogs that can be either radial or hyperbolic.

  13. The Crystal Set

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2014-04-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought I knew, but actually did not.

  14. Diamond drumhead crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kolodziej, Tomasz; Vodnala, Preeti; Terentyev, Sergey A.; Blank, Vladimir D.; Shvyd'ko, Yuri V.

    2016-09-01

    Ultra-thin (< 100 um) diamond single crystals are essential for the realization of numerous next generation x-ray optical devices. Fabrication and handling of such ultra-thin crystal components without introducing damage and strain is a challenge. Drumhead crystals, monolithic crystal structures comprised of a thin membrane furnished with a surrounding solid collar would be a solution for the proper handling ensuring mechanically stable and strain-free mount of the membranes with efficient thermal transport. However, diamond being one of the hardest and chemically inert materials poses insurmountable difficulties in the fabrication. Here we report on a successful manufacturing of the diamond drumhead crystals using picosecond laser milling. Subsequent temperature treatment appears to be crucial for the membranes to become defect-free and unstrained, as revealed by x-ray double-crystal topography on an example of drumhead crystals with 1-mm in diameter and 28 um to 47 um-thick membranes in the (100) orientation.

  15. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  16. Crystallization of human nicotinamide phosphoribosyltransferase

    SciTech Connect

    Takahashi, Ryo; Nakamura, Shota; Yoshida, Takuya; Kobayashi, Yuji; Ohkubo, Tadayasu

    2007-05-01

    Human nicotinamide phosphoribosyltransferase has been crystallized using microseeding methods and X-ray diffraction data have been collected at 2.0 Å resolution. In the NAD biosynthetic pathway, nicotinamide phosphoribosyltransferase (NMPRTase; EC 2.4.2.12) plays an important role in catalyzing the synthesis of nicotinamide mononucleotide from nicotinamide and 5′-phosphoribosyl-1′-pyrophosphate. Because the diffraction pattern of the initally obtained crystals was not suitable for structure analysis, the crystal quality was improved by successive use of the microseeding technique. The resultant crystals diffracted to 2.0 Å resolution. These crystals belonged to space group P21, with unit-cell parameters a = 60.56, b = 106.40, c = 82.78 Å. Here, the crystallization of human NMPRTase is reported in the free form; the crystals should be useful for inhibitor-soaking experiments on the enzyme.

  17. Modern trends in technical crystallization

    NASA Astrophysics Data System (ADS)

    Matz, G.

    1980-04-01

    Interesting and significant developments have occurred in the last decade in both crystallization equipment and in the theory of crystallization process. In the field of technical crystallization new crystallizers have been developed and computer modelling has become important in scaling up and in the achievement of increased performance. The DP-Kristaller developed by Escher-Wyss-Tsukishima, the Brodie purifier, the sieve tray column having dancing balls, the automated multiple crystallization process due to Mützenberg and Saxer and the double belt cooler, all of which represent technical developments, are described in the first section. The second part of the paper reviews computer modelling of the fluidized bed crystallizer, chemical precipitation, flaking and prilling. Finally, there is a brief discussion of the impact of technical crystallization processes on environmental protection.

  18. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  19. Cholesterol crystal embolism (atheroembolism).

    PubMed

    Venturelli, Chiara; Jeannin, Guido; Sottini, Laura; Dallera, Nadia; Scolari, Francesco

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome.

  20. Quartz crystal fabrication facility

    NASA Astrophysics Data System (ADS)

    Ney, R. J.

    1980-05-01

    The report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing precision quartz crystal units in ceramic flatpack enclosures continuously in a high vacuum environment. The production rate design goal was 200 units per eight hour day. A unique nozzle beam gold deposition source was developed to operate for extended periods of time without reloading. The source puts out a narrow beam of gold typically in the order of 2 1/2 deg included cone angle. Maximum deposition rates are in the order of 400 a/min at 5.5 in. 'throw' distance used. Entrance and exit air lock chambers expedite the material throughput, so that the processing chambers are at high vacuum for extended periods of time. A stainless steel conveyor belt, in conjunction with three vacuum manipulators, transport the resonator components to the various work stations. Individual chambers are normally separated from each other by gate valves. The crystal resonators, mounted in flatpack frames but unplated, are loaded into transport trays in a lid-frame-lid sequency for insertion into the system and exit as completed crystal units. The system utilizes molybdenum coated ball bearings at essentially all friction surfaces. The gold sources and plating mask heads are equipped with elevators and gate valves, so that they can be removed from the system for maintenance without exposing the chambers to atmosphere.

  1. Cholesterol crystal embolism (atheroembolism)

    PubMed Central

    VENTURELLI, CHIARA; JEANNIN, GUIDO; SOTTINI, LAURA; DALLERA, NADIA; SCOLARI, FRANCESCO

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome. PMID:21977265

  2. On dewetting of thin films due to crystallization (crystallization dewetting).

    PubMed

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  3. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  4. Crystallization and preliminary X-ray diffraction analysis of brefeldin A-ADP ribosylated substrate (BARS).

    PubMed

    Nardini, Marco; Spanò, Stefania; Cericola, Claudia; Pesce, Alessandra; Damonte, Gianluca; Luini, Alberto; Corda, Daniela; Bolognesi, Martino

    2002-06-01

    Brefeldin A-ADP ribosylated substrate (BARS) is a newly discovered enzyme involved in membrane fission, catalyzing the formation of phosphatidic acid by transfer of an acyl group from acyl-CoA to lysophosphatidic acid. A truncated form of BARS, lacking the C-terminal segment expected to interact with the Golgi membrane, has been expressed in soluble form in Escherichia coli, purified and crystallized. BARS crystals diffract up to 2.5 A resolution using synchrotron radiation and belong to space group P6(2)22/P6(4)22, with unit-cell parameters a = b = 89.2, c = 162.6 A, alpha = beta = 90, gamma = 120 degrees and one molecule (39.5 kDa) per asymmetric unit. SeMet-substituted BARS has been crystallized under growth conditions very similar to those of the native protein.

  5. The crystal structure of beta-lactamase from Staphylococcus aureus at 0.5 nm resolution.

    PubMed Central

    Moult, J; Sawyer, L; Herzberg, O; Jones, C L; Coulson, A F; Green, D W; Harding, M M; Ambler, R P

    1985-01-01

    The preparation, crystallization and low-resolution structure determination of beta-lactamase (EC 3.5.2.6, 'penicillinase') from Staphylococcus aureus is described. The enzyme crystallizes in space group I222 with 1 molecule per asymmetric unit and cell dimensions a = 5.45(1), b = 9.39(1) and c = 13.87(2) nm. The structure was determined at 0.5 nm resolution by using phases calculated from (NH4)2Pt(CN)4 and KAu(CN)2 derivatives. The mean figure of merit mean value of m, for the 1106 reflexions used was 0.70. Difference Fourier syntheses for data collected from crystals soaked in platinum D-methionine and in 6-(4-hydroxy-3,5-di-iodobenzamido)penicilloic acid revealed the likely position of the active site of the enzyme. Images Fig. 2. (cont.) Fig. 2. PMID:2983660

  6. Discrete breathers in crystals

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite

  7. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  8. Additive manufacturing of micrometric crystallization vessels and single crystals

    PubMed Central

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-01-01

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates. PMID:27830827

  9. Additive manufacturing of micrometric crystallization vessels and single crystals.

    PubMed

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-11-10

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates.

  10. Additive manufacturing of micrometric crystallization vessels and single crystals

    NASA Astrophysics Data System (ADS)

    Halevi, Oded; Jiang, Hui; Kloc, Christian; Magdassi, Shlomo

    2016-11-01

    We present an all-additive manufacturing method that is performed at mild conditions, for the formation of organic single crystals at specific locations, without any photolithography prefabrication process. The method is composed of two steps; inkjet printing of a confinement frame, composed of a water soluble electrolyte. Then, an organic semiconductor solution is printed within the confinement to form a nucleus at a specific location, followed by additional printing, which led to the growth of a single crystal. The specific geometry of the confinement enables control of the specific locations of the single crystals, while separating the nucleation and crystal growth processes. By this method, we printed single crystals of perylene, which are suitable for the formation of OFETs. Moreover, since this method is based on a simple and controllable wet deposition process, it enables formation of arrays of single crystals at specific locations, which is a prerequisite for mass production of active organic elements on flexible substrates.

  11. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial

  12. Crystal nephropathies: mechanisms of crystal-induced kidney injury.

    PubMed

    Mulay, Shrikant R; Anders, Hans-Joachim

    2017-04-01

    Crystals can trigger a wide range of kidney injuries that can lead to acute kidney injury, chronic kidney disease, renal colic or nephrocalcinosis, depending on the localization and dynamics of crystal deposition. Studies of the biology of crystal handling by the kidney have shown that the formation of different crystals and other microparticles and the associated mechanisms of renal damage share molecular mechanisms, such as stimulation of the NLRP3 inflammasome or direct cytotoxicity through activation of the necroptosis signalling pathway. By contrast, crystal granuloma formation is limited to chronic crystallopathies that lead to chronic kidney disease and renal fibrosis. Here, we discuss current understanding of the pathomechanisms underlying the different types of crystal-induced kidney injury and propose a classification of crystal nephropathies based on the localization of crystal deposits in the renal vasculature (type 1), the nephron (type 2), or the draining urinary tract (type 3). Further exploration of the molecular mechanisms of crystal-induced kidney injury and renal remodelling might aid the development of innovative cures for these diseases.

  13. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  14. Crystallization and preliminary X-ray studies of psophocarpin B1, a chymotrypsin inhibitor from winged bean seeds.

    PubMed

    Dattagupta, J K; Chakrabarti, C; Podder, A; Dutta, S K; Singh, M

    1990-11-20

    Psophocarpin B1 is a 20,000 Mr protein of winged bean (Psophocarpus tetragonolobus) seeds having chymotrypsin inhibitory activity. Single crystals of this protein suitable for X-ray crystallographic studies have been obtained by the vapour diffusion method using ammonium sulphate. The crystals are hexagonal, space group P6(4)22 or P6(2)22, cell dimensions a = b = 61 A, c = 210 A. They are stable to irradiation with X-rays and diffract to at least 2.6 A resolution.

  15. The Crystallization of Canavalin as a Function of pH and NaCl Concentration

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Gorti, Sridhar; Pusey, Marc L.

    2004-01-01

    We posed the question of what happens to a protein that is known to grow as an n-mer when it is placed in solution conditions where it is monomeric. The trypsin-treated, or cut, form of the protein canavalin (CCAN) has been shown to nucleate and grow crystals as a trimer from neutral to slightly acidic solutions. Under these conditions the solution is composed almost wholly of trimers. The crystalline protein can be readily dissolved by weakly basic solution, which has been proposed to result in a solution that is monomeric. There are three possible outcomes to an attempt at crystallization of the protein under monomeric (high pH) conditions: 1) we will obtain the same crystals as under trimer conditions, but at different protein concentrations governed by the self association equilibria; 2) we will obtain crystals having a different symmetry, based upon a monomeric growth unit; 3) we will not obtain crystals. Obtaining the first result would be indicative that the solution-phase self-association process is critical to the crystal nucleation and growth process. The second result would be less clear, as it may also reflect a pH-dependent shift in the trimer-trimer molecular interactions. The third result, particularly for experiments in the transition pH's between trimeric and monomeric CCAN, would indicate that the monomer does not crystallize, and that solution phase self association is not part of the crystal nucleation and growth path. Results are presented for crystallization experiments of CCAN over the pH 6.4 to 9.6 range. Fluorescence anisotropy, light scattering, and gel filtration experiments show that the solutions are primarily trimers, with association to form larger species occurring as a function of protein concentration.

  16. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment.

  17. Photonic crystal microspheres

    NASA Astrophysics Data System (ADS)

    Zhokhov, A. A.; Masalov, V. M.; Sukhinina, N. S.; Matveev, D. V.; Dolganov, P. V.; Dolganov, V. K.; Emelchenko, G. A.

    2015-11-01

    Spherical samples of photonic crystals formed by colloidal SiO2 nanoparticles were synthesized. Synthesis of microspheres from 160 nm, 200 nm and 430 nm diameter colloidal nanoparticles was performed over a wide size range, from 5 μm to 50 μm. The mechanism of formation of void microparticles exceeding 50 μm is discussed. The spectral measurements verified the association of the spectra with the peaks of selective reflection from the cubic lattice planes. The microparticle morphology is characterized by scanning electron microscopy (SEM).

  18. Polymerizable ionic liquid crystals.

    PubMed

    Jazkewitsch, Olga; Ritter, Helmut

    2009-09-17

    Polymerizable vinylimidazolium ionic liquids (ILs) that contain mesogenic coumarin and biphenyl units, respectively, have been synthesized. The N-alkylation of N-vinylimidazole with bromoalkylated mesogenic units 7-(6-bromohexyloxy)coumarin (1) and 4,4'-bis(6-bromohexyloxy)biphenyl (2) was then carried out. The thermal behavior of the obtained ILs 3 and 4 was investigated by differential scanning calorimetry and polarizing optical microscopy. These measurements showed that the attached mesogenic units induce the self-assembly of ILs and, therefore, the occurrence of liquid crystalline phases. Subsequently, the ionic liquid crystals (ILCs) 3 and 4 were polymerized by a free-radical mechanism.

  19. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  20. Crystallization in detergent performance

    NASA Astrophysics Data System (ADS)

    Verdoes, D.; Van Landschoot, R. C.; Van Rosmalen, G. M.

    1990-01-01

    The effects of various polymeric additives on the crystallization of CaCO 3 in simple soda-based detergent formulations were investigated. The adherence of CaCO 3 on cotton, a great disadvantage of soda-based detergents, was significantly diminished by copolymers of polystyrene sulfonates. A mechanism in which these additives promote the nucleation of CaCO 3 is proposed. Polyacrylates cause an increasing adherence of CaCO 3 on cotton, because the chains adsorb on cotton and CaCO 3

  1. Crystallization of fluorozirconate glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Doremus, Robert H.; Bruce, A. J.; Moynihan, C. T.

    1984-01-01

    The crystallization of a number of glasses of the fluorozirconate family has been studied (using powder X-ray diffraction and DSC) as a function of time and temperature of heating. The main crystalline phases were beta BaZrF6 and beta BaZr2F10. Stable and metastble transformations to the low-temperature alpha phases were also investigated. The size of crystallites in fully devitrified glasses was calculated (from line broadening of the X-ray diffraction peaks) to be about 60 nm.

  2. Crystallization modifiers in lipid systems.

    PubMed

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter

    2015-07-01

    Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms

  3. Liquid crystals for photonic applications

    NASA Astrophysics Data System (ADS)

    Miniewicz, A.; Gniewek, A.; Parka, J.

    2003-01-01

    In this paper we describe application of liquid crystals in optical imaging and processing. Electrically and optically addressed liquid crystal spatial light modulators are key elements in real-time holographic devices. Their implementation for beam steering and hologram formation is briefly discussed. The Joint Fourier transform optical correlator for pattern recognition is presented as well as the use of liquid crystals for the adaptive optics purposes is discussed.

  4. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Miller, Teresa Y. (Inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  5. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  6. Crystal Chemistry of Melanite Garnet

    NASA Technical Reports Server (NTRS)

    Nguyen, Dawn Marie

    1999-01-01

    This original project resulted in a detailed crystal chemical data map of a titanium rich garnet (melanite) suite that originates from the Crowsnest Volcanics of Alberta Canada. Garnet is typically present during the partial melting of the earth's mantle to produce basalt. Prior studies conducted at Youngstown State University have yielded questions as to the crystal structure of the melanite. In the Studies conducted at Youngstown State University, through the use of single crystal x-ray diffraction, the c-axis appears to be distorted creating a tetragonal crystal instead of the typical cubic crystal of garnets. The micro probe was used on the same suite of titanium rich garnets as used in the single crystal x-ray diffraction. The combination of the single crystal x-ray research and the detailed microprobe research will allow us to determine the exact crystal chemical structure of the melanite garnet. The crystal chemical data was gathered through the utilization of the SX100 Electron Probe Micro Analyzer. Determination of the exact chemical nature may prove useful in modeling the ultramafic source rock responsible for the formation of the titanium rich lunar basalts.

  7. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  8. Quartz-crystal-oscillator hygrometer

    NASA Technical Reports Server (NTRS)

    Kruger, R.

    1977-01-01

    Measuring device, which eliminates complex and expensive optical components by electronically sensing dewpoint of water vapor in gas, employs piezoelectric crystal oscillator, supportive circuitry, temperature regulators, and readout.

  9. Surface Relaxation in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Boutet, S.; Robinson, I. K.; Hu, Z. W.; Thomas, B. R.; Chernov, A. A.

    2002-01-01

    Surface X-ray diffraction measurements were performed on (111) growth faces of crystals of the Cellular iron-storage protein horse spleen ferritin. Crystal Trunkation Rods (CTR) were measured. A fit of the measured profile of the CTR revealed a surface roughness of 48 +/- 4.5 A and a top layer spacing contraction of 3.9 +/- 1.5%. In addition to the peak from the CTR, the rocking curves of the crystals displayed unexpected extra peaks. Multiple-scattering is demonstrated to account for them. Future applications of the method could allow the exploration of hydration effects on the growth of protein crystals.

  10. Crystal face temperature determination means

    DOEpatents

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  11. Crystal structure of bis­(1-ethyl­pyridinium) dioxonium hexa­cyanidoferrate(II)

    PubMed Central

    Tanaka, Rikako

    2017-01-01

    The title compound, (C7H10N)2(H3O)2[Fe(CN)6] or (Etpy)2(H3O)2[Fe(CN)6] (Etpy+ is 1-ethyl­pyridinium), crystallizes in the space group Pnnm. The FeII atom of the [Fe(CN)6]4− anion lies on a site with site symmetry ..2/m, and has an octa­hedral coordination sphere defined by six cyanido ligands. Both the Etpy+ and the oxonium cations are located on a mirror plane. In the crystal, electron-donor anions of [Fe(CN)6]4− and electron-acceptor cations of Etpy+ are each stacked parallel to the b axis, resulting in a columnar structure with segregated moieties. The crystal packing is stabilized by a three-dimensional O—H⋯N hydrogen-bonding network between the oxonium ions and the cyanide ligands of [Fe(CN)6]4−. PMID:28217346

  12. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering

    PubMed Central

    Liu, L. H.; Yang, C.; Kang, L. M.; Qu, S. G.; Li, X. Q.; Zhang, W. W.; Chen, W. P.; Li, Y. Y.; Li, P. J.; Zhang, L. C.

    2016-01-01

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications. PMID:27029858

  13. A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering

    NASA Astrophysics Data System (ADS)

    Liu, L. H.; Yang, C.; Kang, L. M.; Qu, S. G.; Li, X. Q.; Zhang, W. W.; Chen, W. P.; Li, Y. Y.; Li, P. J.; Zhang, L. C.

    2016-03-01

    It is well known that semi-solid forming could only obtain coarse-grained microstructure in a few alloy systems with a low melting point, such as aluminum and magnesium alloys. This work presents that semi-solid forming could also produce novel bimodal microstructure composed of nanostructured matrix and micro-sized (CoFe)Ti2 twins in a titanium alloy, Ti62Nb12.2Fe13.6Co6.4Al5.8. The semi-solid sintering induced by eutectic transformation to form a bimodal microstructure in Ti62Nb12.2Fe13.6Co6.4Al5.8 alloy is a fundamentally different approach from other known methods. The fabricated alloy exhibits high yield strength of 1790 MPa and plastic strain of 15.5%. The novel idea provides a new insight into obtaining nano-grain or bimodal microstructure in alloy systems with high melting point by semi-solid forming and into fabricating high-performance metallic alloys in structural applications.

  14. Better photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-11-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly - and fundamentally - broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more 'special" than previously thought. Applications of such special fibers have not been hard to find. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available using air holes have enabled fibers so short they are more naturally held straight than bent. However, commercial success demands more than just a fiber and an application. The useful properties of the fibers need to be optimized for the specific application. This tutorial will describe some of the basic physics and technology behind these photonic crystal fibers (PCF's), illustrated with some of the impressive demonstrations of the past 18 months.

  15. Sonofragmentation of Ionic Crystals.

    PubMed

    Kim, Hyo Na; Suslick, Kenneth S

    2017-02-24

    Mechanochemistry deals with the interface between the chemical and the mechanical worlds and explores the physical and chemical changes in materials caused by an input of mechanical energy. As such, the chemical and physical effects of ultrasound, i.e., sonochemistry, are forms of mechanochemistry. In this paper, the fragmentation of ionic crystals during ultrasonic irradiation of slurries has been quantitatively investigated: the rate of fragmentation depends strongly on the strength of the materials (as measured by Vickers hardness or by Young's modulus). This is a mechanochemical extension of the Bell-Evans-Polanyi Principle or Hammond's Postulate: activation energies for solid fracture correlate with binding energies of solids. Sonofragmentation is unaffected by slurry loading or liquid vapor pressure, but is suppressed by increasing liquid viscosity. The mechanism of the particle breakage is consistent with a direct interaction between the shockwaves created by the ultrasound (through acoustic cavitation) and the solid particles in the slurry. Fragmentation is proposed to occur from defects in the solids induced by compression-expansion, bending, or torsional distortions of the crystals.

  16. Crystal structure of triclopyr.

    PubMed

    Cho, Seonghwa; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

    2014-09-01

    In the title compound {systematic name: 2-[(3,5,6-tri-chloro-pyridin-2-yl)-oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol-ecules in which the dihedral angles between the mean plane of the carb-oxy-lic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of inter-molecular O-H⋯O hydrogen bonds form dimers through an R 2 (2)(8) ring motif and are extended into chains along [100] by weak π-π inter-actions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short inter-molecular Cl⋯Cl contacts [3.458 (2) Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175 (4).

  17. Crystal structure of triclopyr

    PubMed Central

    Cho, Seonghwa; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

    2014-01-01

    In the title compound {systematic name: 2-[(3,5,6-tri­chloro­pyridin-2-yl)­oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol­ecules in which the dihedral angles between the mean plane of the carb­oxy­lic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of inter­molecular O—H⋯O hydrogen bonds form dimers through an R 2 2(8) ring motif and are extended into chains along [100] by weak π–π inter­actions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short inter­molecular Cl⋯Cl contacts [3.458 (2) Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175 (4). PMID:25309266

  18. Crystal Compton Camera

    SciTech Connect

    Ziock, Klaus-Peter; Braverman, Joshua B.; Harrison, Mark J.; Hornback, Donald Eric; Fabris, Lorenzo; Newby, Jason

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  19. Liquid Crystals in Tribology

    PubMed Central

    Carrión, Francisco-José; Martínez-Nicolás, Ginés; Iglesias, Patricia; Sanes, José; Bermúdez, María-Dolores

    2009-01-01

    Two decades ago, the literature dealing with the possible applications of low molar mass liquid crystals, also called monomer liquid crystals (MLCs), only included about 50 references. Today, thousands of papers, conference reports, books or book chapters and patents refer to the study and applications of MLCs as lubricants and lubricant additives and efforts are made to develop new commercial applications. The development of more efficient lubricants is of paramount technological and economic relevance as it is estimated that half the energy consumption is dissipated as friction. MLCs have shown their ability to form ordered boundary layers with good load-carrying capacity and to lower the friction coefficients, wear rates and contact temperature of sliding surfaces, thus contributing to increase the components service life and to save energy. This review includes the use of MLCs in lubrication, and dispersions of MLCs in conventional polymers (PDMLCs). Finally, new lubricating system composed of MLC blends with surfactants, ionic liquids or nanophases are considered. PMID:19865534

  20. Frustrated polymer crystal structures

    NASA Astrophysics Data System (ADS)

    Lotz, B.; Strasbourg, 67083

    1997-03-01

    Several crystal structures or polymorphs of chiral or achiral polymers and biopolymers with three fold conformation of the helix have been found to conform to a common and -with one exception(Puterman, M. et al, J. Pol. Sci., Pol. Phys. Ed., 15, 805 (1977))- hitherto unsuspected packing scheme. The trigonal unit-cell contains three isochiral helices; the azimuthal setting of one helix differs significantly from that of the other two, leading to a so-called frustrated packing scheme, in which the environment of conformationally identical helices differs. Two variants of the frustrated scheme are analyzed. Similarities with frustrated two dimensional magnetic systems are underlined. Various examples of frustration in polymer crystallography are illustrated via the elucidation or reinterpretation of crystal phases or polymorphs of polyolefins, polyesters, cellulose derivatives and polypeptides. Structural manifestations (including AFM evidence) and morphological consequences of frustration are presented, which help diagnose the existence of this original packing of polymers.(Work done with L. Cartier, D. Dorset, S. Kopp, T. Okihara, M. Schumacher, W. Stocker.)

  1. Glasses crystallize rapidly at free surfaces by growing crystals upward.

    PubMed

    Sun, Ye; Zhu, Lei; Kearns, Kenneth L; Ediger, Mark D; Yu, Lian

    2011-04-12

    The crystallization of glasses and amorphous solids is studied in many fields to understand the stability of amorphous materials, the fabrication of glass ceramics, and the mechanism of biomineralization. Recent studies have found that crystal growth in organic glasses can be orders of magnitude faster at the free surface than in the interior, a phenomenon potentially important for understanding glass crystallization in general. Current explanations differ for surface-enhanced crystal growth, including released tension and enhanced mobility at glass surfaces. We report here a feature of the phenomenon relevant for elucidating its mechanism: Despite their higher densities, surface crystals rise substantially above the glass surface as they grow laterally, without penetrating deep into the bulk. For indomethacin (IMC), an organic glass able to grow surface crystals in two polymorphs (α and γ), the growth front can be hundreds of nanometers above the glass surface. The process of surface crystal growth, meanwhile, is unperturbed by eliminating bulk material deeper than some threshold depth (ca. 300 nm for α IMC and less than 180 nm for γ IMC). As a growth strategy, the upward-lateral growth of surface crystals increases the system's surface energy, but can effectively take advantage of surface mobility and circumvent slow growth in the bulk.

  2. Single-crystal silicon optical fiber by direct laser crystallization

    SciTech Connect

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; Cheng, Hiu Yan; Liu, Wenjun; Poilvert, Nicolas; Xiong, Yihuang; Dabo, Ismaila; Mohney, Suzanne E.; Badding, John V.; Gopalan, Venkatraman

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillary fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.

  3. Single-crystal silicon optical fiber by direct laser crystallization

    DOE PAGES

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  4. Engineering calcium oxalate crystal formation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal accumulating plant, Arabidopsis. The success of t...

  5. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  6. Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face.

    PubMed

    Vatamanu, Jenel; Kusalik, Peter G

    2008-02-28

    This paper presents a systematic molecular simulation study of the heterogeneous crystal growth of methane hydrate sII from supersaturated aqueous methane solutions. The growth of sII hydrate on the [001] crystallographic face is achieved through utilization of a recently proposed methodology, and rates of crystal growth of 1 A/ns were sustained for the molecular models and specific conditions employed in this work. Characteristics of the crystals grown as well as properties and structure of the interface are examined. Water cages with a 5(12)6(3) arrangement, which are improper to both sI and sII structures, are identified during the heterogeneous growth of sII methane hydrate. We show that the growth of a [001] face of sII hydrate can produce an sI crystalline structure, confirming that cross-nucleation of methane hydrate structures is possible. Defects consisting of two methane molecules trapped in large 5(12)6(4) cages and water molecules trapped in small and large cages are observed, where in one instance we have found a large 5(12)6(4) cage containing three water molecules.

  7. Growing Crystals on the Ceiling.

    ERIC Educational Resources Information Center

    Christman, Robert A.

    1980-01-01

    Described is a method of studying growing crystals in a classroom utilizing a carrousel projector standing vertically. A saturated salt solution is placed on a slide on the lens of the projector and the heat from the projector causes the water to evaporate and salt to crystalize. (Author/DS)

  8. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  9. Crystals Out of "Thin Air".

    ERIC Educational Resources Information Center

    Vollmer, John J.

    2000-01-01

    Describes how to grow crystals of para-dichlorobenzene beginning with household mothballs. The crystals form through sublimation (solid to gas) and deposition (gas to solid). Also discusses demonstrations of evaporation and condensation and odor perception, which can support a study of the kinetic theory and phases of matter. (WRM)

  10. Crystallization of steroids in gels

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Devanarayanan, S.

    1991-03-01

    The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.

  11. Photoelastic sphenoscopic analysis of crystals

    SciTech Connect

    Montalto, L.; Rinaldi, D.; Scalise, L.; Paone, N.; Davì, F.

    2016-01-15

    Birefringent crystals are at the basis of various devices used in many fields, from high energy physics to biomedical imaging for cancer detection. Since crystals are the main elements of those devices, a great attention is paid on their quality and properties. Here, we present a methodology for the photoelastic analysis of birefringent crystals, based on a modified polariscope. Polariscopes using conoscopic observation are used to evaluate crystals residual stresses in a precise but time consuming way; in our methodology, the light beam shape, which impinges on the crystal surface, has been changed from a solid cone (conoscopy) to a wedge (sphenoscopy). Since the polarized and coherent light is focused on a line rather than on a spot, this allows a faster analysis which leads to the observation, at a glance, of a spatial distribution of stress along a line. Three samples of lead tungstate crystals have been observed using this technique, and the obtained results are compared with the conoscopic observation. The samples have been tested both in unloaded condition and in a loaded configuration induced by means of a four points bending device, which allows to induce a known stress distribution in the crystal. The obtained results confirm, in a reliable manner, the sensitivity of the methodology to the crystal structure and stress.

  12. Novel inclusion in laser crystals

    SciTech Connect

    Ma Xiaoshan; Wang Siting; Jin Zhongru; Shen Yafang; Chen Jiaguang

    1986-12-01

    In growing alexandrite crystals, a novel inclusion has been found. The inclusions are quantitatively analyzed by an electronic probe and the mechanism for forming inclusions is suggested. In our Bridgman MgF/sub 2/ crystals, the inclusions in <001> direction have also been observed.

  13. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel

    1992-01-01

    The overall scientific goals and rationale for growing protein crystals in microgravity are discussed. Data on the growth of human serum albumin crystals which were produced during the First International Microgravity Laboratory (IML-1) are presented. Potential scientific advantages of the utilization of Space Station Freedom are discussed.

  14. Photoelastic sphenoscopic analysis of crystals

    NASA Astrophysics Data System (ADS)

    Montalto, L.; Rinaldi, D.; Scalise, L.; Paone, N.; Davı, F.

    2016-01-01

    Birefringent crystals are at the basis of various devices used in many fields, from high energy physics to biomedical imaging for cancer detection. Since crystals are the main elements of those devices, a great attention is paid on their quality and properties. Here, we present a methodology for the photoelastic analysis of birefringent crystals, based on a modified polariscope. Polariscopes using conoscopic observation are used to evaluate crystals residual stresses in a precise but time consuming way; in our methodology, the light beam shape, which impinges on the crystal surface, has been changed from a solid cone (conoscopy) to a wedge (sphenoscopy). Since the polarized and coherent light is focused on a line rather than on a spot, this allows a faster analysis which leads to the observation, at a glance, of a spatial distribution of stress along a line. Three samples of lead tungstate crystals have been observed using this technique, and the obtained results are compared with the conoscopic observation. The samples have been tested both in unloaded condition and in a loaded configuration induced by means of a four points bending device, which allows to induce a known stress distribution in the crystal. The obtained results confirm, in a reliable manner, the sensitivity of the methodology to the crystal structure and stress.

  15. Crystal structure of fluroxypyr

    PubMed Central

    Park, Hyunjin; Choi, Myong Yong; Kwon, Eunjin; Kim, Tae Ho

    2016-01-01

    In the title pyridine herbicide {systematic name: 2-[(4-amino-3,5-di­chloro-6-fluoro­pyridin-2-yl)­oxy]acetic acid}, C7H5Cl2FN2O3, the mean plane of the carb­oxy­lic acid substituent and the pyridyl ring plane subtend a dihedral angle of 77.5 (1)°. In the crystal, pairs of O—H⋯O hydrogen bonds form inversion dimers with R 2 2(8) ring motifs. These are extended into chains along [011] by N—H⋯F hydrogen bonds. In addition, inter­molecular N—H⋯O hydrogen bonds and weak π–π inter­actions [ring centroid separation = 3.4602 (9) Å] connect these chains into a three-dimensional network. PMID:27980844

  16. Frequency mixing crystal

    DOEpatents

    Ebbers, Christopher A.; Davis, Laura E.; Webb, Mark

    1992-01-01

    In a laser system for converting infrared laser light waves to visible light comprising a source of infrared laser light waves and means of harmoic generation associated therewith for production of light waves at integral multiples of the frequency of the original wave, the improvement of said means of harmonic generation comprising a crystal having the chemical formula X.sub.2 Y(NO.sub.3).sub.5 .multidot.2 nZ.sub.2 o wherein X is selected from the group consisting of Li, Na, K, Rb, Cs, and Tl; Y is selected from the group consisting of Sc, Y, La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Ga, and In; Z is selected from the group consisting of H and D; and n ranges from 0 to 4.

  17. Lamella settler crystallizer

    DOEpatents

    Maimoni, Arturo

    1990-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as well as in other electrochemical systems requiring separation for phases of different densities.

  18. Lamella settler crystallizer

    DOEpatents

    Maimoni, A.

    1990-12-18

    A crystallizer is described which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as well as in other electrochemical systems requiring separation for phases of different densities. 3 figs.

  19. Crystal structure of mandipropamid.

    PubMed

    Park, Hyunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-10-01

    In the title compound, C23H22ClNO4 (systematic name: (RS)-2-(4-chloro-phen-yl)-N-{2-[3-meth-oxy-4-(prop-2-yn-1-yl-oxy)phen-yl]eth-yl}-2-(prop-2-yn-yloxy)acetamide), an amide fungicide, the dihedral angle between the chloro-benzene and benzene rings is 65.36 (6)°. In the crystal, N-H⋯O hydrogen bonds lead to zigzag supra-molecular chains along the c axis (glide symmetry). These are connected into layers by C-H⋯O and C-H⋯π inter-actions; the layers stack along the a axis with no specific inter-molecular inter-actions between them.

  20. Adaptive liquid crystal iris

    NASA Astrophysics Data System (ADS)

    Zhou, Zuowei; Ren, Hongwen; Nah, Changwoon

    2014-09-01

    We report an adaptive iris using a twisted nematic liquid crystal (TNLC) and a hole-patterned electrode. When an external voltage is applied to the TNLC, the directors of the LC near the edge of the hole are unwound first. Increasing the voltage can continuously unwind the LC toward the center. When the TNLC is sandwiched between two polarizers, it exhibits an iris-like character. Either a normal mode or a reverse mode can be obtained depending on the orientations of the transmission axes of the two polarizers. In contrast to liquid irises, the aperture of the LC iris can be closed completely. Moreover, it has the advantages of large variability of the aperture diameter, good stability, and low power consumption. Applications of the device for controlling the laser energy and correcting optical aberration are foreseeable.

  1. Natural photonic crystals

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  2. Clathrate colloidal crystals

    NASA Astrophysics Data System (ADS)

    Lin, Haixin; Lee, Sangmin; Sun, Lin; Spellings, Matthew; Engel, Michael; Glotzer, Sharon C.; Mirkin, Chad A.

    2017-03-01

    DNA-programmable assembly has been used to deliberately synthesize hundreds of different colloidal crystals spanning dozens of symmetries, but the complexity of the achieved structures has so far been limited to small unit cells. We assembled DNA-modified triangular bipyramids (~250-nanometer long edge, 177-nanometer short edge) into clathrate architectures. Electron microscopy images revealed that at least three different structures form as large single-domain architectures or as multidomain materials. Ordered assemblies, isostructural to clathrates, were identified with the help of molecular simulations and geometric analysis. These structures are the most sophisticated architectures made via programmable assembly, and their formation can be understood based on the shape of the nanoparticle building blocks and mode of DNA functionalization.

  3. Voxelated liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.; McConney, Michael E.; Wie, Jeong Jae; Tondiglia, Vincent P.; White, Timothy J.

    2015-02-01

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods.

  4. Crystal structure of flumioxazin

    PubMed Central

    Park, Hyunjin; Kim, Jineun; Kwon, Eunjin; Kim, Tae Ho

    2015-01-01

    The title compound {systematic name: 2-[7-fluoro-3,4-di­hydro-3-oxo-4-(prop-2-yn-1-yl)-2H-1,4-benzoxazin-6-yl]-4,5,6,7-tetra­hydro-1H-iso­indole-1,3(2H)-dione}, C19H15FN2O4, is a dicarboximide herbicide. The dihedral angle between the male­imide and benzene ring planes is 66.13 (5)°. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds and weak C—H⋯π inter­actions [3.5601 (19) Å] link adjacent mol­ecules, forming two-dimensional networks extending parallel to the (110) plane. PMID:26594468

  5. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  6. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  7. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  8. Texturing studies on ? bulk crystals

    NASA Astrophysics Data System (ADS)

    Prabhakaran, D.; Subramanian, C.

    1998-08-01

    Textured crystals of 0953-2048/11/8/013/img2 have been grown by the platinum strip heater-floating zone technique. Texturing ratio and phase purity (Bi-2212) of the grown crystals were calculated from the x-ray diffraction data. Chemical compositions of the grown crystals were quantified from the inductively coupled plasma analysis. 0953-2048/11/8/013/img3 was found to be increased by 2 K for a lower level of substitution and a superconductor to semiconductor transition was observed for the higher order Y substitution. Oxygen stoichiometries of the Y substituted crystals were quantified from the iodometry titration method. Micro-twinning along the growth axis was revealed during etching studies for the cleaved crystals.

  9. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  10. Polymeric photonic crystals

    NASA Astrophysics Data System (ADS)

    Fink, Yoel

    Two novel and practical methods for controlling the propagation of light are presented: First, a design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies is derived and used in fabricating an alldielectric omnidirectional reflector consisting of multilayer films. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices. A comprehensive framework for creating one-, two- and three-dimensional photonic crystals out of self- assembling block copolymers has been formulated. In order to form useful band gaps in the visible regime, periodic dielectric structures made of typical block copolymers need to be modified to obtain appropriate characteristic distances and dielectric constants. Moreover, the absorption and defect concentration must also be controlled. This affords the opportunity to tap into the large structural repertoire, the flexibility and intrinsic tunability that these self-assembled block copolymer systems offer. A block copolymer was used to achieve a self assembled photonic band gap in the visible regime. By swelling the diblock copolymer with lower molecular weight constituents control over the location of the stop band across the visible regime is achieved. One and three- dimensional crystals have been formed by changing the volume fraction of the swelling media. Methods for incorporating defects of prescribed dimensions into the self-assembled structures have been explored leading to the construction of a self assembled microcavity light- emitting device. (Copies available exclusively from MIT

  11. Growing single crystals in silica gel

    NASA Technical Reports Server (NTRS)

    Rubin, B.

    1970-01-01

    Two types of chemical reactions for crystal growing are discussed. The first is a metathetical reaction to produce calcium tartrate tetrahydrate crystals, the second is a decomplexation reaction to produce cuprous chloride crystals.

  12. Crystallization of Biological Macromolecules in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Chayen, N. E.; Helliwell, J. R.

    2000-01-01

    An overview of microgravity crystallization explaining why microgravity is used, factors which affect crystallization, the method of crystallization and the environment itself. Also covered is how best to make use of microgravity and what the future might hold.

  13. Two-fermion-four-boson description of {sup 198}Hg within the U{sub {nu}}(6/12) x U{sub {pi}}(6/4) extended nuclear structure supersymmetry

    SciTech Connect

    Bernards, C.; Heinze, S.; Jolie, J.; Fransen, C.; Linnemann, A.; Radeck, D.

    2009-05-15

    Using the U{sub {nu}}(6/12) x U{sub {pi}}(6/4) extended supersymmetry, we constructed the energy spectrum and electromagnetic transition properties of the supermultiplet member {sup 198}Hg with two proton fermions coupled to a neutron boson core. Consistency between the supersymmetric interacting boson fermion fermion approximation (IBFFA) description and the F-spin symmetric interacting boson approximation (IBA-2) description is shown for this two-fermion-N-boson multiplet member. The data of a {gamma}{gamma} angular correlation experiment using the HORUS cube {gamma}-ray spectrometer--determining new multipole mixing ratios, level spins, {gamma} transitions, and energy states--shows quite a good agreement, also for the low-energy part of the spectrum, when comparing theoretical predictions and experimental data. This is contrary to the usual assumption that a two-fermion-N-boson constellation should describe just the excited two-quasiparticle states.

  14. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  15. Spectrometric measurements and DFT studies on new complex of copper (II) with 2-((E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyang; Hu, Jie; Zhao, Jianying; Zhang, Yu

    2016-11-01

    The molecular structure of a new complex of copper (II) with (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole ([Cu2(emppc)2Cl2]Cl2) was optimized with B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ theoretical level. The ligand, (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole (emppc), binds to Cu(II) ions with a bi-dentate mode, two Cl- serve as bridging ligand, each Cu(II) ion has a highly distorted tetrahedron coordination geometry. With M062X/LanL2DZ theoretical level, the calculated interaction energies of Cu(II) with coordination atoms N are between 183.3-200.0 kJ mol- 1 for α spin and 319.4-324.9 kJ mol- 1 for β spin, and interaction energies of Cu(II) with coordination atoms Cl atom are 248.0-252.4 kJ mol- 1 for α spin and 332.6-333.6 kJ mol- 1 for β spin. The experimental Fourier transform infrared spectrum was assigned. The calculated IR based on B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ methods were performed and compared with experimental results. The UV-Vis experimental spectra of [Cu2(emppc)2Cl2]Cl2 was measured in methanol solution. The calculated electronic spectrum was performed with TD/M062X and PCM-TD/M062X methods with LanL2DZ basis set. The nature bond orbital analysis and temperature dependence of the thermodynamic properties were calculated with the same methods.

  16. High-precision Photometric Redshifts from Spitzer/IRAC: Extreme [3.6] - [4.5] Colors Identify Galaxies in the Redshift Range z ˜ 6.6 - 6.9

    NASA Astrophysics Data System (ADS)

    Smit, Renske; Bouwens, Rychard J.; Franx, Marijn; Oesch, Pascal A.; Ashby, Matthew L. N.; Willner, S. P.; Labbé, Ivo; Holwerda, Benne; Fazio, Giovanni G.; Huang, J.-S.

    2015-03-01

    One of the most challenging aspects of studying galaxies in the z≳ 7 universe is the infrequent confirmation of their redshifts through spectroscopy, a phenomenon thought to occur from the increasing opacity of the intergalactic medium to Lyα photons at z\\gt 6.5. The resulting redshift uncertainties inhibit the efficient search for [C ii] in z˜ 7 galaxies with sub-millimeter instruments such as ALMA, given their limited scan speed for faint lines. One means by which to improve the precision of the inferred redshifts is to exploit the potential impact of strong nebular emission lines on the colors of z ˜ 4 - 8 galaxies as observed by Spitzer/IRAC. At z˜ 6.8, galaxies exhibit IRAC colors as blue as [3.6]-[4.5]˜ -1, likely due to the contribution of [O iii]+Hβ to the 3.6 μm flux combined with the absence of line contamination in the 4.5 μm band. In this paper we explore the use of extremely blue [3.6]-[4.5] colors to identify galaxies in the narrow redshift window z ˜ 6.6 - 6.9. When combined with an I-dropout criterion, we demonstrate that we can plausibly select a relatively clean sample of z˜ 6.8 galaxies. Through a systematic application of this selection technique to our catalogs from all five CANDELS fields, we identify 20 probable z ˜ 6.6 - 6.9 galaxies. We estimate that our criteria select the ˜50% strongest line emitters at z˜ 6.8 and from the IRAC colors we estimate a typical [O iii]+Hβ rest-frame equivalent width of 1085 Å for this sample. The small redshift uncertainties on our sample make it particularly well suited for follow-up studies with facilities such as ALMA.

  17. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Astrophysics Data System (ADS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S. P.; Kolokolova, Ludmilla

    2015-08-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 ≤ fcrystal ≤ 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 μm, 16, 19, 23.5, 27, and 33 μm), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 μm-radii porous aggregates with 0.13 ≤ fcrystal ≤ 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale-Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11µm and 23 µm crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our

  18. THE CRYSTAL STRUCTURE OF DIPHENYLTELLURIUM DIBROMIDE,

    DTIC Science & Technology

    TELLURIUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, CRYSTAL STRUCTURE , CRYSTAL STRUCTURE , BROMIDES, SYMMETRY(CRYSTALLOGRAPHY), X RAY DIFFRACTION, FOURIER ANALYSIS, LEAST SQUARES METHOD, MOLECULAR STRUCTURE, CHEMICAL BONDS.

  19. Influence of surface cracks on laser-induced damage resistance of brittle KH₂PO₄ crystal.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Wang, Jinghe; Xiao, Yong; Li, Mingquan

    2014-11-17

    Single point diamond turning (SPDT) currently is the leading finishing method for achieving ultra-smooth surface on brittle KH(2)PO(4) crystal. In this work, the light intensification modulated by surface cracks introduced by SPDT cutting is numerically simulated using finite-difference time-domain algorithm. The results indicate that the light intensification caused by surface cracks is wavelength, crack geometry and position dependent. Under the irradiation of 355 nm laser, lateral cracks on front surfaces and conical cracks on both front and rear surfaces can produce light intensification as high as hundreds of times, which is sufficient to trigger avalanche ionization and finally lower the laser damage resistance of crystal components. Furthermore, we experimentally tested the laser-induced damage thresholds (LIDTs) on both crack-free and flawed crystal surfaces. The results imply that brittle fracture with a series of surface cracks is the dominant source of laser damage initiation in crystal components. Due to the negative effect of surface cracks, the LIDT on KDP crystal surface could be sharply reduced from 7.85J/cm(2) to 2.33J/cm(2) (355 nm, 6.4 ns). In addition, the experiment of laser-induced damage growth is performed and the damage growth behavior agrees well with the simulation results of light intensification caused by surface cracks with increasing crack depths.

  20. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  1. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  2. Crystallization of copper metaphosphate glass

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  3. Photonic crystal enhanced cytokine immunoassay.

    PubMed

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  4. Crystal ball single event display

    SciTech Connect

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J. |

    1997-10-15

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about {pi}{sup o}`s and {eta}`s formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer.

  5. Dichroic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  6. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  7. Crystal cataracts: Human genetic cataract caused by protein crystallization

    NASA Astrophysics Data System (ADS)

    Pande, Ajay; Pande, Jayanti; Asherie, Neer; Lomakin, Aleksey; Ogun, Olutayo; King, Jonathan; Benedek, George B.

    2001-05-01

    Several human genetic cataracts have been linked recently to point mutations in the D crystallin gene. Here we provide a molecular basis for lens opacity in two genetic cataracts and suggest that the opacity occurs because of the spontaneous crystallization of the mutant proteins. Such crystallization of endogenous proteins leading to pathology is an unusual event. Measurements of the solubility curves of crystals of the Arg-58 to His and Arg-36 to Ser mutants of D crystallin show that the mutations dramatically lower the solubility of the protein. Furthermore, the crystal nucleation rate of the mutants is enhanced considerably relative to that of the wild-type protein. It should be noted that, although there is a marked difference in phase behavior, there is no significant difference in protein conformation among the three proteins.

  8. Aperiodic crystals and superspace concepts.

    PubMed

    Janssen, T; Janner, A

    2014-08-01

    For several decades the lattice periodicity of crystals, as shown by Laue, was considered to be their essential property. In the early sixties of the last century compounds were found which for many reasons should be called crystals, but were not lattice periodic. This opened the field of aperiodic crystals. An overview of this development is given. Many materials of this kind were found, sometimes with very interesting properties. In the beginning the development was slow, but the number of structures of this type increased enormously. In the meantime hundreds of scientists have contributed to this field using a multi-disciplinary approach.

  9. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  10. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is

  11. Multicolor photonic crystal laser array

    SciTech Connect

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  12. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  13. Liquid crystal lens focusing in monocentric multiscale imagers

    NASA Astrophysics Data System (ADS)

    Stamenov, Igor; Tremblay, Eric; Baker, Katherine A.; McLaughlin, Paul; Ford, Joseph E.

    2012-10-01

    In multiscale imagers a single objective lens is shared by multiple secondary optical systems, so that a high-resolution wide-angle image is acquired in overlapping fields sensed by multiple conventional focal planes. In the "AWARE2" 2 Gigapixel imager, F/2.4 optics cover a 120 degree field of view using a monocentric glass primary lens shared by 221 molded plastic subimagers, each with a 14 Megapixel focal plane. Such imagers can independently focus parts of the image field, allowing wide-angle imaging over relatively close and deep image fields. However, providing hundreds of independent mechanical focus adjustments has a significant system impact in terms of complexity, bulk, and cost. In this paper we explore the use of an electronically controlled liquid crystal lens for focus of multiscale imagers in general, and demonstrate use with the AWARE2 imager optics. The Lens Vector Auto Focus (LVAF) liquid crystal lens provides up to 5 diopters of optical power over a 2.2mm aperture diameter, the maximum currently available aperture. However, a custom lens using the same materials and basic structure can provide the 5 diopters power and 6.4 mm aperture required to obtain full resolution overlapping image fields in the AWARE2 imager. We characterize the LVAF lens and the optical performance of the LVAF lens in the current AWARE2 prototype, comparing the measured and optically modeled resolution, and demonstrating software control of focus from infinity to an 2m object distance.

  14. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  15. Electrochemical Quartz Crystal Nanobalance

    NASA Astrophysics Data System (ADS)

    Inzelt, György

    The method of piezoelectric microgravimetry (nanogravimetry) using an electrochemical quartz crystal microbalance (EQCM) or nanobalance (EQCN) can be considered as a novel and much more sensitive version of electrogravimetry. The EQCN technique has become a widely used technique in several areas of electrochemistry, electroanalytical chemistry, bioelectrochemistry, etc. [1-10]. Obviously, mass changes occurring during adsorption, sorption, electrosorption, electrodeposition, or spontaneous deposition can be followed, which is very helpful for the elucidation of reaction mechanism via identification of the species accumulated on the surface. These investigations include metal and alloy deposition, underpotential deposition, electroplating, synthesis of conducting polymers by electropolymerization, adsorption of biologically active materials, and analytical determination of small ions and biomolecules. Of course, the opposite processes, i.e., spontaneous dissolution, electrodissolution, corrosion, can also be studied. Electrochemical oscillations, in which the formation and oxidation of chemisorbed molecular fragments play a determining role, have been studied, too. The majority of the investigations have been devoted to ion and solvent transport associated with the redox transformations of electrochemically active polymers. Similar studies have been carried out regarding polynuclear surface layers such as metal hexacyanometalates as well as inorganic and organic microcrystals of different compositions.

  16. Single Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  17. Structures beyond crystals

    NASA Astrophysics Data System (ADS)

    Hargittai, István

    2010-07-01

    Dan Shechtman made a seminal observation of the appearance on "non-crystallographic" symmetry in an alloy at the US National Bureau of Standards on April 8, 1982. This day has become known as the date of the discovery of quasicrystals. It was not easy to gain recognition for this discovery and the first printed report about it appeared two and a half years after the observation, which then was followed by an avalanche of publications. This was as if theoreticians and other experimentalists had only been waiting for a pioneer to come out with this revolutionary experiment. The discovery of quasicrystals just as the discovery of the structure of biological macromolecules was part of the development in which the framework of classical crystallography was crumbling and generalized crystallography—the science of structures—has emerged that had long been advanced by J. Desmond Bernal and his pupils. The discovery of quasicrystals offers some lessons about the nature of scientific discovery. This contribution presents selected aspects of the recognition of the importance of structures beyond crystals and is by far not a complete history of the areas involved.

  18. Crystals and Crystals: On the Mythology of Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Marsh, B.

    2008-12-01

    The intimate records of the deep functioning of magmatic systems reside in the temporal and spatial records of magma flux, composition and crystal load. The records for a single system are piecemeal: Plutons show good spatial records, but poor temporal records. Volcanoes give through lava sequences good temporal records, but no spatial context. Because of this dichotomy, two, almost mutually exclusive, branches of magmatology have developed, whereas in Nature there is only a single process. The processes envisioned in these schools necessary to deliver the end rock record are distinct. It is our tools and historic perspectives that have steered the science, not the subject itself. Due to this approach an almost mythical conception of how magmas function has become commonplace. The circumvention of this dilemma rests in carefully evaluating the records on hand in the light of a broad understanding of the fundamental mechanics of how magma lives and dies. It is these basic principles that promise to unify plutonic and volcanic evidence to reveal the full nature of magmatism on all scales. The two most basic features of all magmatic processes are the universal presence of solidification fronts and the presence or absence of a crystal cargo. Almost without exception (e.g., shallow pressure quenching) all first generation crystals grow in marginal solidification fronts (SFs) bordering all magmas. The package of isotherms bounded by the liquidus and solidus define SFs, which propagate in response to the rate of cooling. All physical and chemical processes occurring within SFs compete with the advancement or retreat of solidification. SFs are governed by crystallinity regimes: Suspension Zone (<25 % xtals), Capture Front (~25 %), Mush Zone (25-55%), Rigidity Front (~55%; Critical Crystallinity), and Rigid Crust Zone (>55% xtals). Magmas are laced with nuclei that multiply and grow when overtaken. Crystal growth rates are bounded; tiny crystals reside at the front of SFs

  19. Oscillatory growth for twisting crystals.

    PubMed

    Ibaraki, Shunsuke; Ise, Ryuta; Ishimori, Koichiro; Oaki, Yuya; Sazaki, Gen; Yokoyama, Etsuro; Tsukamoto, Katsuo; Imai, Hiroaki

    2015-05-18

    We demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry.

  20. Surface energies of elemental crystals.

    PubMed

    Tran, Richard; Xu, Zihan; Radhakrishnan, Balachandran; Winston, Donald; Sun, Wenhao; Persson, Kristin A; Ong, Shyue Ping

    2016-09-13

    The surface energy is a fundamental property of the different facets of a crystal that is crucial to the understanding of various phenomena like surface segregation, roughening, catalytic activity, and the crystal's equilibrium shape. Such surface phenomena are especially important at the nanoscale, where the large surface area to volume ratios lead to properties that are significantly different from the bulk. In this work, we present the largest database of calculated surface energies for elemental crystals to date. This database contains the surface energies of more than 100 polymorphs of about 70 elements, up to a maximum Miller index of two and three for non-cubic and cubic crystals, respectively. Well-known reconstruction schemes are also accounted for. The database is systematically improvable and has been rigorously validated against previous experimental and computational data where available. We will describe the methodology used in constructing the database, and how it can be accessed for further studies and design of materials.

  1. Polaron stability in oligoacene crystals.

    PubMed

    Pereira Junior, Marcelo Lopes; Ribeiro Junior, Luiz Antonio

    2017-03-01

    The polaron stability in organic molecular crystals is theoretically investigated in the scope of a two-dimensional Holstein-Peierls model that includes lattice relaxation. Particularly, the investigation is focused on designing a model Hamiltonian that can address properly the polaron properties in different model oligoacene crystals. The findings showed that a suitable choice for a set of parameters can play the role of distinguishing the model crystals and, consequently, different properties related to the polaron stability in these systems are observed. Importantly, the usefulness of this model is stressed by investigating the electronic localization of the polaron, which provides a deeper understanding into the properties associated with the polaron stability in oligoacene crystals.

  2. PREPARATION OF REFRACTORY OXIDE CRYSTALS

    DOEpatents

    Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

    1962-11-13

    A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

  3. Iron crystals in lunar breccias

    NASA Technical Reports Server (NTRS)

    Clanton, U. S.; Mckay, D. S.; Laughon, R. B.; Ladle, G. H.

    1973-01-01

    Many of the vugs in the highly recrystallized breccias from Apollos 14, 15, and 16 contain euhedral iron crystals. Three populations have been recognized based on crystal habit. In the first group the trapezohedron predominates and the cube faces are smaller. The second group is characterized by the cube as the dominant form; trapezohedron and tetrahexahedron faces are smaller and about equally developed. The dominant habit of the third group is the octahedron with smaller but equally developed cube and dodecahedron faces. Iron has been mobilized and redistributed in a vapor phase. The euhedral crystals, the abundant growth steps, and the open network of substrate crystals clearly support the concept of growth from a vapor-phase.

  4. Growth Defects in Biomacromolecular Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's ground based program confirmed close similarity between protein and small molecules crystal growth, but also revealed essential differences. No understanding exists as to why and when crystals grown in space are, in approx. 20 percent of cases, of higher quality. More rationale is needed in flight experiments. Ferritin crystals grown in space are 2.5 times cleaner than their terrestrial counterparts. This may occur because of the existence of a zone depleted with respect to impurities around a crystal growing in stagnant solution. This zone should appear since the distribution coefficient for homologous impurities exceeds unity. This impurity depletion zone hypothesis requires verification and development. Thorough purification from homologous impurities brought about resolution improvement from 2.6 to 1.8 angstroms for ferritin and from 2.6 to 2.0 angstroms for canavalin.

  5. Absence of Quantum Time Crystals.

    PubMed

    Watanabe, Haruki; Oshikawa, Masaki

    2015-06-26

    In analogy with crystalline solids around us, Wilczek recently proposed the idea of "time crystals" as phases that spontaneously break the continuous time translation into a discrete subgroup. The proposal stimulated further studies and vigorous debates whether it can be realized in a physical system. However, a precise definition of the time crystal is needed to resolve the issue. Here we first present a definition of time crystals based on the time-dependent correlation functions of the order parameter. We then prove a no-go theorem that rules out the possibility of time crystals defined as such, in the ground state or in the canonical ensemble of a general Hamiltonian, which consists of not-too-long-range interactions.

  6. Absence of Quantum Time Crystals

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Oshikawa, Masaki

    2015-06-01

    In analogy with crystalline solids around us, Wilczek recently proposed the idea of "time crystals" as phases that spontaneously break the continuous time translation into a discrete subgroup. The proposal stimulated further studies and vigorous debates whether it can be realized in a physical system. However, a precise definition of the time crystal is needed to resolve the issue. Here we first present a definition of time crystals based on the time-dependent correlation functions of the order parameter. We then prove a no-go theorem that rules out the possibility of time crystals defined as such, in the ground state or in the canonical ensemble of a general Hamiltonian, which consists of not-too-long-range interactions.

  7. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  8. Crystal face temperature determination means

    DOEpatents

    Nason, Donald O.; Burger, Arnold

    1994-01-01

    An optically transparent furnace (10) having a detection apparatus (29) with a pedestal (12) enclosed in an evacuated ampule (16) for growing a crystal (14) thereon. Temperature differential is provided by a source heater (20), a base heater (24) and a cold finger (26) such that material migrates from a polycrystalline source material (18) to grow the crystal (14). A quartz halogen lamp (32) projects a collimated beam (30) onto the crystal (14) and a reflected beam (34) is analyzed by a double monochromator and photomultiplier detection spectrometer (40) and the detected peak position (48) in the reflected energy spectrum (44) of the reflected beam (34) is interpreted to determine surface temperature of the crystal (14).

  9. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  10. Measuring phonons in protein crystals

    NASA Astrophysics Data System (ADS)

    Niessen, Katherine A.; Snell, Edward; Markelz, A. G.

    2013-03-01

    Using Terahertz near field microscopy we find orientation dependent narrow band absorption features for lysozyme crystals. Here we discuss identification of protein collective modes associated with the observed features. Using normal mode calculations we find good agreement with several of the measured features, suggesting that the modes arise from internal molecular motions and not crystal phonons. Such internal modes have been associated with protein function.

  11. Crystal growing from the melt

    NASA Technical Reports Server (NTRS)

    Davis, S. H.

    1987-01-01

    The mechanical and electrical properties of crystals produced by a unidirectional process depend strongly on the temperature and flow fields since these control the concentration of solute at the melt-crystal interface. The solute gradient there drives morphological instabilities that lead to cellular or dendritic interfaces. In the presentation several features of flow-solidification interactions will be discussed. These will include the effects of convection driven by density changes and buoyancy and the imposition of forced flow.

  12. Protein Crystallization Apparatus for Microgravity

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Protein Crystallization for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A droplet of solution with protein molecules dissolved in it is isolated in the center of a small well. In orbit, an elastomer seal is lifted so the solution can evaporate and be absorbed by a wick material. This raises the concentration of the solution, thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.

  13. Protein crystallization apparatus for microgravity

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Protein Crystallization for Microgravity (DCAM) was developed at NASA's Marshall Space Flight Center. A droplet of solution with protein molecules dissolved in it is isolated in the center of a small well. In orbit, an elastomer seal is lifted so the solution can evaporate and be absorbed by a wick material. This raises the concentration of the solution, thus prompting protein molecules in the solution to form crystals. The principal investigator is Dr. Dan Carter of New Century Pharmaceuticals in Huntsville, AL.

  14. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  15. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  16. Liquid Crystals for Nondestructive Evaluation

    DTIC Science & Technology

    1978-09-01

    Temperatures TI > T2 > - > TS defects was possible using the liquid crystal. are the Average TemperatursI Thes Resptivegi. Kapfer , Burns, Salvo, and Doyle...Means of Liquid Crystals,’ J. 38 .1; .1 of Sound and Vibration, Vol. 36, No. 3, pp. 407- 65. V.C. Kapfer , D.J. Bums, C.J. Salvo, and E.A. 15, Oct. 1974

  17. Creep of Oxide Single Crystals

    DTIC Science & Technology

    1990-08-01

    literature data on Gd 3Ga5O1 2 (8) indicate that garnets may be highly deformation resistant at temperatures very close to their melting points...Data for Yttrium Aluminum Garnet Single Crystals Temperature Stress Creep Rate (sec 1 ) for Given Stress Direction (0C) (MPa) [111] [110] [100] 1650...Gadolinium Gallium Garnet Single Crystals," J.Mat.Sci., 17, 878-884 (1982). 9. B.M. Wanklyn, Clarendon Laboratory, personal communicaticn. 10. S.B. Austerman

  18. Crystal Structure of UGe 2

    NASA Astrophysics Data System (ADS)

    Oikawa, Kennichi; Kamiyama, Takashi; Asano, Hajime; Ōnuki, Yoshichika; Kohgi, Masahumi

    1996-10-01

    The crystal structure of UGe2 has been determined by the X-ray precession method and Rietveld analysis of neutron powder diffraction data. The crystal system is orthorhombic (space group Cmmm) with lattice parameters a=0.40089(1), b=1.50889(3) and c=0.40950(1) nm. The structure is isomorphic with one of the polymorphs of ThGe2.

  19. Semiconductor crystal high resolution imager

    NASA Technical Reports Server (NTRS)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  20. Photoresponse of CsPbBr3 and Cs4PbBr6 Perovskite Single Crystals.

    PubMed

    Cha, Ji-Hyun; Han, Jae Hoon; Yin, Wenping; Park, Cheolwoo; Park, Yongmin; Ahn, Tae Kyu; Cho, Jeong Ho; Jung, Duk-Young

    2017-02-02

    High-quality and millimeter-sized perovskite single crystals of CsPbBr3 and Cs4PbBr6 were prepared in organic solvents and studied for correlation between photocurrent generation and photoluminescence (PL) emission. The CsPbBr3 crystals, which have a 3D perovskite structure, showed a highly sensitive photoresponse and poor PL signal. In contrast, Cs4PbBr6 crystals, which have a 0D perovskite structure, exhibited more than 1 order of magnitude higher PL intensity than CsPbBr3, which generated an ultralow photoresponse under illumination. Their contrasting optoelectrical characteristics were attributed to different exciton binding energies, induced by coordination geometry of the [PbBr6](4-) octahedron sublattices. This work correlated the local structures of lead in the primitive perovskite and its derivatives to PL spectra as well as photoconductivity.

  1. Crystal structure of a new hybrid compound based on an iodido-plumbate(II) anionic motif.

    PubMed

    Mokhnache, Oualid; Boughzala, Habib

    2016-01-01

    Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis-(piperazine-1,4-diium) [[tetra-iodido-plumbate(II)]-μ-iodido] iodide monohydrate], (C4N2H12)2[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H12)(2+) cations, water mol-ecules of crystallization and isolated I(-) anions are connected through N-H⋯·I, N-H⋯OW and OW-H⋯I hydrogen-bond inter-actions. Zigzag chains of corner-sharing [PbI6](4-) octa-hedra with composition [PbI4/1I2/2](3-) running parallel to the a axis are present in the structure packing.

  2. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  3. Liquid Crystals for Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    O'Neill, Mary; Kelly, Stephen M.

    As discussed in Chaps. 2 (10.1007/978-90-481-2873-0_2), 3 (10.1007/978-90-481-2873-3), 5 (10.1007/978-90-481-2873-5) and 6 (10.1007/978-90-481-2873-6), columnar, smectic and, more recently, nematic liquid crystals are widely recognized as very promising charge-transporting organic semiconductors due to their ability to spontaneously self-assemble into highly ordered domains in uniform thin films over large areas. This and their broad absorption spectra make them suitable as active materials for organic photovoltaic devices. In this chapter, we discuss the use of liquid crystals in such devices. Firstly, we examine the principle of power generation via the photovoltaic effect in organic materials and the various device configurations that can optimise efficiency. Then we discuss photovoltaic devices incorporating columnar liquid crystals combined with electron accepting materials based on either perylene or fullerene. The use of nematic and sanditic liquid crystals in photovoltaics is investigated as well as a novel solar cell concentrator incorporating liquid crystals. Finally, we analyse the benefits and limitations of liquid-crystal-based photovoltaics in the context of the state-of-the-art for organics photovoltaics.

  4. Protein crystal nucleation in pores

    PubMed Central

    Nanev, Christo N.; Saridakis, Emmanuel; Chayen, Naomi E.

    2017-01-01

    The most powerful method for protein structure determination is X-ray crystallography which relies on the availability of high quality crystals. Obtaining protein crystals is a major bottleneck, and inducing their nucleation is of crucial importance in this field. An effective method to form crystals is to introduce nucleation-inducing heterologous materials into the crystallization solution. Porous materials are exceptionally effective at inducing nucleation. It is shown here that a combined diffusion-adsorption effect can increase protein concentration inside pores, which enables crystal nucleation even under conditions where heterogeneous nucleation on flat surfaces is absent. Provided the pore is sufficiently narrow, protein molecules approach its walls and adsorb more frequently than they can escape. The decrease in the nucleation energy barrier is calculated, exhibiting its quantitative dependence on the confinement space and the energy of interaction with the pore walls. These results provide a detailed explanation of the effectiveness of porous materials for nucleation of protein crystals, and will be useful for optimal design of such materials. PMID:28091515

  5. Crystallization of the magma ocean

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Nomura, R.; Hirose, K.; Ballmer, M. D.

    2015-12-01

    We model the crystallization of the magma ocean using pyrolite as a proxy for its composition. We employ first-principles molecular-dynamics calculations to determine the density of the magmas. We use diamond-anvil cell experiments to trace the chemical evolution of the magmas during cooling and crystallization. We build a grid of pressure and temperature points, following the chemical evolution of the magma during the entire fractional crystallization of perovskite. Then we construct a geodynamical model of the evolving magma fully taking into account the density and chemistry of the melts and crystals. We show that the dynamics of the crystallization of the magma ocean is highly dependent (i) on extrinsic parameters, like pressure at the core-mantle boundary and temperature profile through the magma ocean, and (ii) on intrinsic parameters, like relative density relations between the melt and the crystals and vigor of the stirring. Formation of a solid layer in the middle of the magma ocean is possible, which can lead to the eventual formation of a basal magma ocean.

  6. Crystal engineering: a holistic view.

    PubMed

    Desiraju, Gautam R

    2007-01-01

    Crystal engineering, the design of molecular solids, is the synthesis of functional solid-state structures from neutral or ionic building blocks, using intermolecular interactions in the design strategy. Hydrogen bonds, coordination bonds, and other less directed interactions define substructural patterns, referred to in the literature as supramolecular synthons and secondary building units. Crystal engineering has considerable overlap with supramolecular chemistry, X-ray crystallography, materials science, and solid-state chemistry and yet it is a distinct discipline in itself. The subject goes beyond the traditional divisions of organic, inorganic, and physical chemistry, and this makes for a very eclectic blend of ideas and techniques. The purpose of this Review is to highlight some current challenges in this rapidly evolving subject. Among the topics discussed are the nature of intermolecular interactions and their role in crystal design, the sometimes diverging perceptions of the geometrical and chemical models for a molecular crystal, the relationship of these models to polymorphism, knowledge-based computational prediction of crystal structures, and efforts at mapping the pathway of the crystallization reaction.

  7. The need for growing crystals in space

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1981-01-01

    Payoffs of crystal growth in space in the areas of understanding growth and melt flow mechanisms, the growth of more uniform crystals with fewer defects, and the growth of crystals difficult or impossible to grow on Earth are summarized. The advantages of various heating methods are summarized. Critical devices requiring the uniformity and lower defect density of crystals grown in space are listed.

  8. Holographic data storage crystals for the LDEF

    NASA Technical Reports Server (NTRS)

    Callen, W. Russell; Gaylord, Thomas K.

    1993-01-01

    Crystals of lithium niobate were passively exposed to the space environment of the Long Duration Exposure Facility (LDEF). Three of the four crystals contained volume holograms. Although the crystals suffered the surface damage characteristic of that suffered by other components on the Georgia Tech tray, the crystals remained suitable for the formation of volume holograms.

  9. Adaptive Liquid Crystal Windows

    SciTech Connect

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  10. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.

    1998-09-08

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.

  11. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Cockroft, Nigel J.

    1998-01-01

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.

  12. Making Crystals from Crystals: A Solid-State Route to the Engineering of Crystalline Materials, Polymorphs, Solvates and Co-Crystals; Considerations on the Future of Crystal Engineering

    NASA Astrophysics Data System (ADS)

    Braga, Dario; Curzi, Marco; Dichiarante, Elena; Giaffreda, Stefano Luca; Grepioni, Fabrizia; Maini, Lucia; Palladino, Giuseppe; Pettersen, Anna; Polito, Marco

    Making crystals by design is the paradigm of crystal engineering. The main goal is that of obtaining and controlling the collective properties of a crystalline material from the convolution of the physical and chemical properties of the individual building blocks (whether molecules, ions, or metal atoms and ligands) with crystal periodicity and symmetry. Crystal engineering encompasses nowadays all traditional sectors of chemistry from organic to inorganic, organometallic, biological and pharmaceutical chemistry and nanotechnology. The investigation and characterization of the products of a crystal engineering experiment require the utilization of solid state techniques, including theoretical and advanced crystallography methods. Moreover, reactions between crystalline solids and/or between a crystalline solid and a vapour can be used to obtain crystalline materials, including new crystal forms, solvates and co-crystals. Indeed, crystal polymorphism, resulting from different packing arrangements of the same molecular or supramolecular entity in the crystal structure, represents a challenge to crystal makers.

  13. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators.

    SciTech Connect

    Knapp, G. S.

    1998-08-03

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator.

  14. Theoretical investigations on the molecular structure, vibrational spectra, HOMO-LUMO analyses and NBO study of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione.

    PubMed

    Al-Abdullah, Ebtehal S; Mary, Y Sheena; Panicker, C Yohannan; El-Brollosy, Nasser R; El-Emam, Ali A; Van Alsenoy, Christian; Al-Saadi, Abdulaziz A

    2014-12-10

    The FT-IR and FT-Raman spectra of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione were recorded. In this work, experimental and theoretical study on the molecular structure and vibrational wavenumbers of the title compound are presented. The vibrational wavenumbers were obtained theoretically at the DFT level and were compared with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, NBO, mapped molecular electrostatic potential and first hyperpolarizability. The calculated first hyperpolarizability of the title compound is 9.15 times that of urea and hence the title compound and the series of compounds it represents are attractive candidates for further studies in non linear optical applications. In the title compound, the HOMO of π nature is delocalized over the phenyl ring while the LUMO is located over the pyrimidine ring. The inter-molecular hydrogen bonding at O7 and N1H25 positions in each monomer give rise to a C2-symmetry dimer which is predicted to be about 10kcalmol(-1) more stable than the monomeric form.

  15. Theoretical investigations on the molecular structure, vibrational spectra, HOMO-LUMO analyses and NBO study of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione

    NASA Astrophysics Data System (ADS)

    Al-Abdullah, Ebtehal S.; Mary, Y. Sheena; Panicker, C. Yohannan; El-Brollosy, Nasser R.; El-Emam, Ali A.; Van Alsenoy, Christian; Al-Saadi, Abdulaziz A.

    2014-12-01

    The FT-IR and FT-Raman spectra of 1-[(Cyclopropylmethoxy)methyl]-5-ethyl-6-(4-methylbenzyl)-1,2,3,4-tetrahydropyrimidine-2,4-dione were recorded. In this work, experimental and theoretical study on the molecular structure and vibrational wavenumbers of the title compound are presented. The vibrational wavenumbers were obtained theoretically at the DFT level and were compared with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, NBO, mapped molecular electrostatic potential and first hyperpolarizability. The calculated first hyperpolarizability of the title compound is 9.15 times that of urea and hence the title compound and the series of compounds it represents are attractive candidates for further studies in non linear optical applications. In the title compound, the HOMO of π nature is delocalized over the phenyl ring while the LUMO is located over the pyrimidine ring. The inter-molecular hydrogen bonding at O7 and N1sbnd H25 positions in each monomer give rise to a C2-symmetry dimer which is predicted to be about 10 kcal mol-1 more stable than the monomeric form.

  16. Determination of superoxide in seawater using 2-methyl-6-(4-methoxyphenyl)-3,7- dihydroimidazo[1,2-a]pyrazin-3(7H)-one chemiluminescence.

    PubMed

    Rose, Andrew L; Moffett, James W; Waite, T David

    2008-02-15

    Superoxide, the one-electron reduced form of dioxygen, is known to be generated in marine environments by photochemical and biological processes. Because of its selective reaction with only a few commonly occurring compounds, superoxide is expected to approach concentrations in the high picomolar or low nanomolar range in seawater. Most currently existing methods do not have both the necessary sensitivity and selectivity to measure naturally occurring concentrations. In contrast, we demonstrate here that the chemiluminescence reagent 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[l,2-a]pyrazin-3(7H)-one (MCLA) is selective for superoxide in seawater and can be used with a detection limit of around 50 pM. Although a wide range of potential interferences were shown not to react with MCLA directly, some care must be taken when analyzing samples containing nanomolar concentrations of Fe(II), Cu(I), Mo(V), V(III), or V(IV), since these compounds can react with oxygen to produce superoxide during analysis that is subsequently detected. We describe two methods for calibrating the system, one employing photochemically generated superoxide standards and the other employing the superoxide-generating xanthine/xanthine oxidase system and discuss limitations on the use of each. The method was successfully used in the field to determine steady-state superoxide concentrations in the water column in the eastern equatorial Pacific Ocean.

  17. K-italic-shell ionization cross sections for Al, Ti, V, Cr, Fe, Ni, Cu, and Ag by protons and oxygen ions in the energy range 0. 3--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M.; Benka, O.

    1986-08-01

    Absolute K-italic-shell ionization cross sections have been measured for thin targets of Al, Ti, and Cu for protons in the energy range 0.3--2.0 MeV and for thin targets of Ti, V, Cr, Fe, Ni, Cu, and Ag for oxygen ions in the energy range 1.36--6.4 Mev. The experimental results are compared to the perturbed-stationary-state (PSS) approximation with energy-loss (E), Coulomb (C), and relativistic (R) corrections, i.e., the ECPSSR approximation (Brandt and Lapicki), to the semiclassical approximation (Laegsgaard, Andersen, and Lund), and to a theory for direct Coulomb ionization of the 1s-italicsigma molecular orbital (Montenegro and Sigaud (MS)). The proton results agree within 3% with empirical reference cross sections. Also, the ECPSSR provides best overall agreement for protons. For oxygen ions, ECPSSR and MS predict experimental results satisfactorily for scaled velocities xi> or =0.4. For lower scaled velocities, the experimental cross sections become considerably higher than theoretical predictions for Coulomb ionization. This deviation increases with increasing Z-italic/sub 1//Z/sub 2/; it cannot be explained by electron transfer to the projectile or by ionization due to target recoil atoms.

  18. K -shell ionization cross sections for Si, P, K, Ca, Zn, and Ga by protons and carbon ions in the energy range 1--6. 4 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Benka, O. )

    1990-01-01

    Absolute {ital K}-shell ionization cross sections have been measured for thin targets of Si, P, S, K, Ca, Zn, and Ga using carbon ions between 1.0 and 6.4 MeV and protons of 1 and 2 MeV. The dependence of x-ray production cross sections on target thickness was determined. The experimental results are compared to the semiclassical approximation (Laegsgaard, Andersen, and Lund in 3 Proceedings of the Tenth International Conference on the Physics of Electron and Atomic Collisions, Paris, 1977, edited by G. Watel (North-Holland, Amsterdam 1977)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B. 18, 299 (1985)), to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), and to the modification of the ECPSSR approximation (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Suppl. 12, C9-251 (1987)). The results for carbon ions are also compared to the statistical molecular orbital theory of inner-shell ionization for symmetric or nearly symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)).

  19. A Chandra Observation of the Luminous Northeastern Rim of the Galactic Supernova Remnant W28 (G6.4-0.1): Spatially-Resolved Spectroscopic Analysis and Radial Fitting

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas; Allen, Glenn E.; Mahaffey, Bradley; Poulos, Parker

    2017-01-01

    We present an analysis of a 50 kilosecond observation made with the Chandra X-ray Observatory of the northeastern rim of the Galactic supernova remnant (SNR) W28 (G6.4-0.1). W28 is well-known as the archetypical Galactic mixed-morphology SNR (MMSNRs): MMSNRs are a class of sources that feature a contrasting shell-like radio morphology with a center-filled X-ray morphology. The origin of these contrasting morphologies remains elusive: because MMSNRs all appear to be interacting strongly with ambient molecular clouds, it is suspected that these clouds and these interactions play a prominent role in dictating the appearance of these differing morphologies. The northeastern rim of W28 is particularly remarkable in that it is the only feature of the whole SNR that is detected in X-ray, optical and radio wavelengths: it is also the site of a high number density of hydroxyl (OH) masers which are well-known signposts of interactions between SNRs and molecular clouds. Our observation presented here features the highest angular resolution in X-ray ever attained in the study of this rim. We have performed spatially-resolved X-ray spectroscopy of this rim to search for variations in the spectral properties of individual features. We have also performed radial fitting to the X-ray emission to estimate the volume occupied by the X-ray emitting material.

  20. Methyl 4-{[6-(4-bromo­phen­yl)-3-oxo-2,3,4,5-tetra­hydro­pyridazin-4-yl]methyl}benzoate

    PubMed Central

    Bortoluzzi, Adailton J.; Souza, Luciana B. P.; Joussef, Antônio C.; Meyer, Emerson

    2011-01-01

    The structure of the title compound, C19H17BrN2O3, consists of two cyclic groups, viz. 4-(meth­oxy­carbon­yl)phenyl and 6-(4-bromo­phen­yl)-3-oxo-2,3,4,5-dihydro­pyridazin-4-yl, which are linked by a methyl­ene spacer. The pyridazine ring is twisted and the dihedral angle between its mean plane and that of the bromo­phenyl mean plane is 17.2 (2)°. The 4-(meth­oxy­carbon­yl)phenyl group shows a quasi-planar conformation, where the dihedral angle between the mean planes of the phenyl ring and carboxyl­ate ester group is 7.9 (4)°. Centrosymmetric inter­molecular N—H⋯O hydrogen bonds form dimers. These are linked by C—Br⋯O=C inter­actions [Br⋯O = 3.10 (1) Å] to form a one-dimensional polymeric structure running along the [10] direction. PMID:21754527