Science.gov

Sample records for 6-hydroxydopamine 6-ohda lesions

  1. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats

    PubMed Central

    Kaminer, Jaime; Thakur, Pratibha

    2015-01-01

    Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short- and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms. PMID:25673748

  2. [Effects of hypothalamic microinjections of 6-hydroxydopamine (6-OHDA) on estral cycle and morphology of the genital tract in the female rat (author's transl)].

    PubMed

    Sala, M A; Oteui, J T; Benedetti, W I

    1975-01-01

    To determine whether central catecholaminergic pathways are involved in the neural contral of gonadotrophin secretion, they were interrupted at the hypothalamic level by microinjections of 6-hydroxydopamine (6-OHDA). The effects on ovulation, estral cycle and ovarian and uterine histology were studied. Microinjections of 50 mug of 6-OHDA hydrobromyde were made bilaterally into the anterolateral hypothalamus in a group of rats. Another group was injected with 25 mug of 6-OHDA, while a control group recieved an equivalent volume (5 mul) of saline with ascorbic acid. Animals injected with 50 mug of 6-OHDA showed blockade of ovulation, vaginal cytology characteristics of persistent estrous, polyfollicular ovaries and enlarged uteri with hypertrophic endometrial glands. In the group injected with 25 mug, similiar effects were demonstrated, but the number of affected animals was smaller than that in the 50 mug group. Control animals dit not show modifications, either in estral cycle or in ovarian and uterine histology. These results suggest that 6-OHDA injected into the anterolateral hypothalmus interferes with catecholaminergic pathways that participate in the neural control of ovulation.

  3. Calretinin-containing axons and neurons are resistant to an intrastriatal 6-hydroxydopamine lesion.

    PubMed

    Tsuboi, K; Kimber, T A; Shults, C W

    2000-06-01

    Relative preservation of dopaminergic axons in patches and a subcallosal layer was observed in the dorsal, lateral and caudal striatum 4 weeks after intrastriatal injection of 6-hydroxydopamine (6-OHDA), a neurotoxin selective for catecholaminergic neurons. Since calcium binding proteins are reported to provide neuroprotective influence in neurons, differences in the distribution of the calcium binding proteins might be related to the different vulnerabilities of dopaminergic neurons and axons to neurotoxins. To address this possibility, we characterized patches of relatively dense tyrosine hydroxylase-immunoreactive (TH-IR) axons in intrastriatal 6-OHDA lesioned rats, focusing on two calcium binding proteins, calbindin (CB) and calretinin (CR). The patches and subcallosal layer of preserved dopaminergic axons in the striatum of rats lesioned with 6-OHDA contained CR, a 31-kDa calcium-binding protein, but interestingly not CB. Dopaminergic neurons containing CR in the substantia nigra pars compacta (SNpc) were relatively spared compared to those that did not contain CR. Taken together, our data indicate that dopaminergic axons and neurons containing CR in the nigrostriatal pathway are more resistant to 6-OHDA lesion than those that do not contain CR.

  4. Electroacupuncture Produces the Sustained Motor Improvement in 6-Hydroxydopamine-Lesioned Mice

    PubMed Central

    Deng, Jiahui; Sun, Min; Jia, Jun; Wang, Xiaomin

    2016-01-01

    Clinical and research evidence has shown that electroacupuncture (EA) promotes recovery of motor function in patients with Parkinson’s disease (PD). However, the “efficacy span” of EA treatment, especially the long-term effect of EA that is thought to last after the cessation of EA treatment, has not been investigated. The present study thus investigated and compared the effect of EA during and after chronic EA application on motor activity and dopamine lesions in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Chronic EA treatment (30 min a day, 6 days a week for 2 or 4 weeks) significantly attenuated motor deficiency and reduced dopamine neuron degeneration. Remarkably, EA showed a long-lasting effect after the cessation of EA stimulation. At 2 and 4 weeks after the termination of EA, EA continued to improve motor function in 6-OHDA-lesioned mice. Consistent with sustained behavioral effects, EA induced an enduring increase in the dopamine turnover ratio in the striatum 2 weeks after the cessation of EA treatment. Here we demonstrated that the therapeutic effect of EA outlasted the duration of EA application. During a relatively long period of time after the completion of EA treatment, EA is able to continue to improve motor function and enhance dopamine availability in 6-OHDA-lesioned PD mice. PMID:26894437

  5. Cholecystokinin tetrapeptide improves water maze performance of neonatally 6-hydroxydopamine-lesioned young rats.

    PubMed

    Rex, André; Fink, Heidrun

    2004-09-01

    This study addressed the proposed memory-modulating effect of the cholecystokinin (CCK) 2 agonist Boc-CCK-4 in rats using a Morris water maze. In the brain, CCK is colocalized and interacts with dopamine, respectively. To impair dopaminergic neurotransmission, and consequently, dopamine-mediated learning and memory, rat pups received the neurotoxin 6-hydroxydopamine (6-OHDA) into the left [Day 5 postnatal (p.n.)] and right (Day 8 p.n.) ventricles (50 microg/5 microl each). After 6-OHDA treatment, dopamine brain levels were reduced by 60% on Day 50 p.n. Lesioned rats had a lower body weight but normal swimming abilities. In the acquisition phase of the water maze (Day 50 p.n.), sham-lesioned rats learned quickly, compared to lesioned rats. Treatment with Boc-CCK-4 (40 microg/kg ip) did not affect performance in sham-lesioned rats but restored the learning curve in lesioned rats without increasing swimming speed indicating a better spatial learning in the dopamine-depleted rats. In summary, these findings demonstrate that stimulation of CCK2 receptors may counteract cognitive deficits of dopamine-depleted rats.

  6. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.

  7. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    SciTech Connect

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  8. Walking pattern analysis after unilateral 6-OHDA lesion and transplantation of foetal dopaminergic progenitor cells in rats.

    PubMed

    Klein, Alexander; Wessolleck, Johanna; Papazoglou, Anna; Metz, Gerlinde A; Nikkhah, Guido

    2009-05-16

    Functional sensorimotor recovery after transplantation of mesencephalic dopaminergic (DAergic) neurons has been well documented in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. However, the functional restoration of more specific gait-related patterns such as skilled walking, balance, and individual limb movements have been insufficiently studied. The purpose of this study was to investigate the behavioural effects of intrastriatal DA grafts on different aspects of normal and skilled walking in rats following unilateral 6-OHDA lesions of the medial forebrain bundle. Rats were subjected to drug-induced rotation, detailed footprint analysis, and assessment of skilled walking in the ladder rung walking test prior and after the transplantation of E14 ventral mesencephalon-derived progenitor cells. Good DAergic graft survival, as revealed by immunohistochemistry, was accompanied by a compensation of drug-induced rotational asymmetries. Interestingly, the analysis of walking patterns displayed a heterogeneous graft-induced response in skilled and non-skilled limb use. Grafted animals made fewer errors with their contralateral limbs in skilled walking than the sham-transplanted rats, and they improved their ipsi- and contralateral limb rotation. However, the parameter distance between feet showed a delayed recovery, and the stride length was not affected by the DA grafts at all. These findings indicate that ectopic intrastriatal transplantation of E14 ventral mesencephalon-derived cells promotes recovery of gait balance and stability, but does not ameliorate the shuffling gait pattern associated with 6-OHDA lesions. A full restoration of locomotor gait pattern might require a more complete and organotypic reconstruction of the mesotelencephalic DAergic pathway. PMID:19124044

  9. Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats.

    PubMed

    Engber, T M; Susel, Z; Kuo, S; Gerfen, C R; Chase, T N

    1991-06-21

    The effects of striatal dopamine denervation and levodopa replacement therapy on neuronal populations in the rat striatum were assessed by measurement of glutamic acid decarboxylase (GAD) and choline acetyltransferase (CAT) activities in the striatum, dynorphin and substance P concentrations in the substantia nigra, and enkephalin concentration in the globus pallidus. Rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway were treated for 21 days with levodopa (100 mg/kg/day, i.p., with 25 mg/kg benserazide) on either an intermittent (b.i.d.) or continuous (osmotic pump infusion) regimen and sacrificed following a three day drug washout. In saline-treated control rats, striatal GAD activity and globus pallidus enkephalin content were elevated and nigral substance P content was reduced ipsilateral to the 6-OHDA lesion. Intermittent levodopa treatment further increased GAD activity, decreased CAT activity, restored substance P to control levels, markedly increased dynorphin content, and had no effect on enkephalin. In contrast, continuous levodopa elevated globus pallidus enkephalin beyond the levels occurring with denervation, but had no effect on any of the other neurochemical measures. These results indicate that striatal neuronal populations are differentially affected by chronic levodopa therapy and by the continuous or intermittent nature of the treatment regimen. With the exception of substance P, levodopa did not reverse the effects of the 6-OHDA lesion but, rather, either exacerbated the lesion-induced changes (e.g. GAD and enkephalin) or altered neurochemical markers which had been unaffected by the lesion (e.g. CAT and dynorphin).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1717109

  10. Nitrosative and cognitive effects of chronic L-DOPA administration in rats with intra-nigral 6-OHDA lesion.

    PubMed

    Ramírez-García, G; Palafox-Sánchez, V; Limón, I D

    2015-04-01

    Besides motor disturbances, other symptoms found in the early stage of Parkinson's disease (PD) are deficits in both learning and memory. The nigro-striatal-cortical pathway is affected in this pathology, with this neuronal circuit involved in cognitive processes such as spatial working memory (SWM). However, cognitive dysfunction appears even when the patients are receiving L-DOPA treatment. There is evidence that the dopamine metabolism formed by L-DOPA generates free radicals such as nitric oxide, which may cause damage through the nitrosative stress (NS). The aim of this study was to evaluate both the effects of chronic L-DOPA administration on SWM and the production of NS in rats using an intra-nigral lesion caused by 6-hydroxydopamine (6-OHDA). Post-lesion, the animals were administered orally with L-DOPA/Carbidopa (100-mg/kg) for 20 days. An SWM task in a Morris water maze was conducted post-treatment. Nitrite levels and immunoreactivity of 3-Nitrotyrosine (3-NT), Inducible Nitric Oxide Synthase (iNOS), Glial Fibrillary Acidic Protein (GFAP), and Tyrosine Hydroxylase (TH) were evaluated in the substantia nigra pars compacta, the dorsal striatum and the medial prefrontal cortex. Our results show that chronic L-DOPA administration in rats with intra-nigral 6-OHDA-lesion caused significant increases in SWM deficit, nitrite levels and the immunoreactivity of 3-NT, iNOS and GFAP in the nigro-striatal-cortical pathway. These facts suggest that as L-DOPA can induce NS in rats with dopaminergic intra-nigral lesion, it could play a key role in the impairment of the SWM, and thus can be considered as a toxic mechanism that induces cognitive deficit in PD patients. PMID:25644418

  11. Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates.

    PubMed

    Torres, E M; Lane, E L; Heuer, A; Smith, G A; Murphy, E; Dunnett, S B

    2011-08-30

    The 6-hydroxydopamine (6-OHDA) lesion is the most widely used rat model of Parkinson's disease. A single unilateral injection of 6-OHDA into the median forebrain bundle (MFB) selectively destroys dopamine neurons in the ipsilateral substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), removing more than 95% of the dopamine innervation from target areas. The stereotaxic coordinates used to deliver 6-OHDA to the MFB have been used in our laboratory successfully for more than 25 years. However, in recent years we have observed a decline in the success rate of this lesion. Previously regular success rates of >80% of rats lesioned, have become progressively more variable, with rates as low as 20% recorded in some experiments. Having excluded variability of the neurotoxin and operator errors, we hypothesized that the change seen might be due to the use of smaller rats at the time of first surgery. An attempt to proportionally adjust the lesion coordinates base on head size did not increase lesion efficacy. However, in support of the small rat hypothesis it was observed that, using the standard coordinates, rat's heads had a "nose-up" position in the stereotaxic fame. Adjustment of the nose bar to obtain a flat head position during surgery improved lesion success, and subsequent adjustments of the lesion coordinates to account for smaller head size led to a greatly increased lesion efficacy (>90%) as assessed by amphetamine induced rotation.

  12. Intraventricular administration of endoneuraminidase-N facilitates ectopic migration of subventricular zone-derived neural progenitor cells into 6-OHDA lesioned striatum of mice.

    PubMed

    Li, Chen; Zhang, Yong-Xin; Yang, Chun; Hao, Fei; Chen, Sha-Sha; Hao, Qiang; Lu, Tao; Qu, Ting-Yu; Zhao, Li-Ru; Duan, Wei-Ming

    2016-03-01

    Polysialic acid (PSA), a carbohydrate polymer associated with the neural cell adhesion molecule (NCAM), plays an important role in the migration, differentiation and maturation of neuroblasts. Endoneuraminidase-N (Endo-N) can specifically cleave PSA from NCAM. The objective of the present study was to examine: the effect of Endo-N on characteristics of subventricular zone (SVZ)-derived neural progenitor cells (NPCs) in vitro; whether intraventricular administration of Endo-N could increase ectopic migration of SVZ-derived NPCs into 6-hydroxydopamine (6-OHDA)-lesioned striatum, and whether migrated NPCs could differentiate into neuronal and glial cells. In in vitro study, Endo-N was found to inhibit the migration of NPCs, and to enhance the differentiation of NPCs. In in vivo study, mice sequentially received injections of 6-OHDA into the right striatum, Endo-N into the right lateral ventricle, and bromodeoxyuridine (BrdU) intraperitoneally. The data showed that intraventricular injections of Endo-N disorganized the normal structure of the rostral migratory stream (RMS), and drastically increased the number of BrdU-immunoreactive (IR) cells in 6-OHDA-lesioned striatum. In addition, a number of BrdU-IR cells were double labeled for doublecortin (DCX), NeuN or glial fibrillary acidic protein (GFAP). The results suggest that interruption of neuroblast chain pathway with Endo-N facilitates ectopic migration of SVZ-derived NPCs into the lesioned striatum, and migrated NPCs can differentiate into neurons and astrocytes. PMID:26724216

  13. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  14. Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson's Disease

    PubMed Central

    Thiele, Sherri L.; Warre, Ruth; Nash, Joanne E.

    2012-01-01

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients1-4. However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise3,5. In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice9,10. However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer11. More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this model has proven

  15. Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions

    NASA Astrophysics Data System (ADS)

    Yadav, Amol P.; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M.; Nicolelis, Miguel A. L.

    2014-01-01

    Although L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.

  16. Adrenal Medullary Grafts Restore Olfactory Deficits and Catecholamine Levels of 6-OHDA Amygdala Lesioned Animals

    PubMed Central

    Fernández-Ruiz, Juan; Guzmán, Rubén; Martínez, María Dolores; Miranda, María Isabel; Bermúdez-Rattoni, Federico; Drucker-Colín, René

    1993-01-01

    Aside from motor and cognitive deficits, Parkinson patients also manifest a little-studied olfactory deficit. Since in Parkinson's disease there is a dopamine depletion of the amygdala due to mesocorticolimbic system degeneration, we decided to test olfactory and taste performance of 6-OHDA amygdala lesioned rats, as well as the possible restoration of either function with adrenal medullary transplants. Two 6-OHDA lesioned groups and one control group were tested in the potentiation of odor by taste aversion paradigm. On taste aversion none of the groups showed any impairment. In contrast, the 6-OHDA lesioned rats showed a marked impairment in olfactory aversion. At this point, one of the lesioned groups received a bilateral adrenal medullary graft within the lesioned area. After two months, all groups were submitted again to the behavioral paradigm. Taste remained unaffected, but the lesioned only group did not recover either olfactory aversion or normal catecholamine levels. The grafted group, on the other hand, restored olfactory aversion and catecholamine levels. It can be concluded from this study that catecholamine depletion of the amygdala is sufficient to produce a selective olfactory deficit, not accompanied by taste impairments, and that such a deficit can be reversed by adrenal medullary transplants, which in turn restore catecholamine levels. PMID:7948179

  17. High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats.

    PubMed

    Yang, Chen; Zhang, Jia-Rui; Chen, Lei; Ge, Shun-Nan; Wang, Jue-Lei; Yan, Zhi-Qiang; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2015-05-19

    Many studies showed that abnormal oscillations in the cortical-basal ganglia loop is involved in the pathophysiology of Parkinson's disease (PD). In contrast to the well-studied beta synchronization, high-voltage spindles (HVSs), another type of abnormal oscillation observed in PD, are neglected. To explore the role of subthalamic nucleus-deep brain stimulation (STN-DBS) in HVSs regulation, we simultaneously recorded the local field potential (LFP) in the globus pallidus (GP) and electrocorticogram (ECoG) in the primary motor cortex(M1) in freely moving 6-hydroxydopamine (6-OHDA) lesioned or control rats before, during, and after STN-DBS. Consistent with our previous study, HVSs occurrence, duration, and relative power and coherence between the M1 cortex and GP increased in 6-OHDA lesioned rats. We found that high but not low frequency stimulation restored the abnormal HVSs activity and motor deficit. These results suggest that the STN is involved in the abnormal oscillation between the M1 cortex and GP.

  18. RGS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease.

    PubMed

    Ko, Wai Kin D; Martin-Negrier, Marie-Laure; Bezard, Erwan; Crossman, Alan R; Ravenscroft, Paula

    2014-10-01

    Regulators of G-protein signalling (RGS) proteins are implicated in striatal G-protein coupled receptor (GPCR) sensitisation in the pathophysiology of l-DOPA-induced abnormal involuntary movements (AIMs), also known as dyskinesia (LID), in Parkinson's disease (PD). In this study, we investigated RGS protein subtype 4 in the expression of AIMs in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID. The effects of RGS4 antisense brain infusion on the behavioural and molecular correlates of l-DOPA priming in 6-OHDA-lesioned rats were assessed. In situ hybridisation revealed that repeated l-DOPA/benserazide treatment caused an elevation of RGS4 mRNA levels in the striatum, predominantly in the lateral regions. The increased expression of RGS4 mRNA in the rostral striatum was found to positively correlate with the behavioural (AIM scores) and molecular (pre-proenkephalin B, PPE-B expression) markers of LID. We found that suppressing the elevation of RGS4 mRNA in the striatum by continuous infusion of RGS4 antisense oligonucleotides, via implanted osmotic mini-pumps, during l-DOPA priming, reduced the induction of AIMs. Moreover, ex vivo analyses of the rostral dorsolateral striatum showed that RGS4 antisense infusion attenuated l-DOPA-induced elevations of PPE-B mRNA and dopamine-stimulated [(35)S]GTPγS binding, a marker used for measuring dopamine receptor super-sensitivity. Taken together, these data suggest that (i) RGS4 proteins play an important pathophysiological role in the development and expression of LID and (ii) suppressing the elevation of RGS4 mRNA levels in l-DOPA priming attenuates the associated pathological changes in LID, dampening its physiological expression. Thus, modulating RGS4 proteins could prove beneficial in the treatment of dyskinesia in PD.

  19. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    PubMed

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  20. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats

    PubMed Central

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson’s disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy. PMID:25395834

  1. LPA signaling is required for dopaminergic neuron development and is reduced through low expression of the LPA1 receptor in a 6-OHDA lesion model of Parkinson's disease.

    PubMed

    Yang, Xiao-Yun; Zhao, Ethan Y; Zhuang, Wen-Xin; Sun, Feng-Xiang; Han, Hai-Lin; Han, Hui-Rong; Lin, Zhi-Juan; Pan, Zhi-Fang; Qu, Mei-Hua; Zeng, Xian-Wei; Ding, Yuchuan

    2015-11-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that activates at least five known G-protein-coupled receptors (GPCRs): LPA1-LPA5. The nervous system is a major locus for LPA1 expression. LPA has been shown to regulate neuronal proliferation, migration, and differentiation during central nervous system development as well as neuronal survival. Furthermore, deficient LPA signaling has been implicated in several neurological disorders including neuropathic pain and schizophrenia. Parkinson's disease (PD) is a neurodegenerative movement disorder that results from the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The specific molecular pathways that lead to DA neuron degeneration, however, are poorly understood. The influence of LPA in the differentiation of mesenchymal stem cells (MSCs) into DA neurons in vitro and LPA1 expression in a 6-hydroxydopamine (6-OHDA) lesion model of PD in vivo were examined in the present study. LPA induced neuronal differentiation in 80.2 % of the MSC population. These MSCs developed characteristic neuronal morphology and expressed the neuronal marker, neuron-specific enolase (NSE), while expression of the glial marker, glial fibrillary acidic protein (GFAP), was absent. Moreover, 27.6 % of differentiated MSCs were positive for tyrosine hydroxylase (TH), a marker for DA neurons. In the 6-OHDA PD rat model, LPA1 expression in the substantia nigra was significantly reduced compared to control. These results suggest LPA signaling via activation of LPA1 may be necessary for DA neuron development and survival. Furthermore, reduced LPA/LPA1 signaling may be involved in DA neuron degeneration thus contributing to the pathogenesis of PD. PMID:26169757

  2. Apomorphine-induced biphasic circling behaviour in 6-hydroxydopamine-lesioned rats. A pharmacological kindling phenomenon.

    PubMed

    Coward, D M

    1983-06-01

    Factors governing the development of apomorphine-induced biphasic circling behaviour in rats having unilateral 6-hydroxydopamine lesions of the substantia nigra were investigated. It was found that a post-lesion time of at least 2--3 weeks and the repeated exposure to apomorphine were essential for its development. Optimal results were obtained when animals received weekly apomorphine, 0.05 mg/kg sc, in post-lesion weeks 6, 7 and 8. Pretreatment with haloperidol, 1.0 and 2.0 mg/kg ip 1 h beforehand in post-lesion week 9, converted the biphasic response into an enhanced, uniphasic one. The findings suggest that the development of the biphasic response to apomorphine is a multi-factorial process representing a pharmacological kindling phenomenon.

  3. An enteric nervous system progenitor cell implant promotes a behavioral and neurochemical improvement in rats with a 6-OHDA-induced lesion.

    PubMed

    Parra-Cid, Carmen; García-López, Julieta; García, Esperanza; Ibarra, Clemente

    2014-01-01

    The enteric nervous system (ENS) of mammals is derived from neural crest (NC) cells during embryogenesis and at the beginning of postnatal life. However, neural progenitor cells from the ENS (or ENSPC) are also found in the adult intestine and can be used for neuronal regeneration in diseases that lead to a loss of cell population, such as Parkinson's disease (PD), in which there is a decrease of dopaminergic neurons. The objective of this study was to evaluate the capacity of ENSPC to restore damaged nervous tissue and to show that they are functional for a behavioral and neurochemical recovery. We found that animals with ENSPC implants exhibited a motor recovery of 35% vs. the lesion group. In addition, DA levels were partially restored in 34%, while Homovanillic acid (HVA) levels remained at 21% vs. the group with a 6-Hydroxydopamine (6-OHDA)-induced lesion, suggesting that ENSPC represent a possible alternative in the study of cell transplants and the preservation of functional dopaminergic neurons in PD.

  4. Measuring dopaminergic function in the 6-OHDA-lesioned rat: a comparison of PET and microdialysis

    PubMed Central

    2013-01-01

    Background [18 F]fluorodopa (FDOPA) positron emission tomography (PET) allows assessment of levodopa (LDOPA) metabolism and is widely used to study Parkinson's disease. We examined how [18 F]FDOPA PET-derived kinetic parameters relate the dopamine (DA) and DA metabolite content of extracellular fluid measured by microdialysis to aid in the interpretation of data from both techniques. Methods [18 F]FDOPA PET imaging and microdialysis measurements were performed in unilaterally 6-hydroxydopamine-lesioned rats (n = 8) and normal control rats (n = 3). Microdialysis testing included baseline measurements and measurements following acute administration of LDOPA. PET imaging was also performed using [11C]dihydrotetrabenazine (DTBZ), which is a ligand for the vesicular monoamine transporter marker and allowed assessment of denervation severity. Results The different methods provided highly correlated data. Lesioned rats had reduced DA metabolite concentrations ipsilateral to the lesion (p < 0.05 compared to controls), with the concentration being correlated with FDOPA's effective distribution volume ratio (EDVR; r = 0.86, p < 0.01) and DTBZ's binding potential (BPND; r = 0.89, p < 0.01). The DA metabolite concentration in the contralateral striatum of severely (>80%) lesioned rats was lower (p < 0.05) than that of less severely lesioned rats (<80%) and was correlated with the ipsilateral PET measures (r = 0.89, p < 0.01 for BPND) but not with the contralateral PET measures. EDVR and BPND in the contralateral striatum were not different from controls and were not correlated with the denervation severity. Conclusions The demonstrated strong correlations between the PET and microdialysis measures can aid in the interpretation of [18 F]FDOPA-derived kinetic parameters and help compare results from different studies. The contralateral striatum was affected by the lesioning and so cannot always serve as an unaffected control. PMID:24088510

  5. Neuroprotective effect of Portulaca oleracea extracts against 6-hydroxydopamine-induced lesion of dopaminergic neurons.

    PubMed

    Martins, Waleska B; Rodrigues, Sheyla A; Silva, Hatamy K; Dantas, Camila G; Júnior, Waldecy DE Lucca; Filho, Lauro Xavier; Cardoso, Juliana C; Gomes, Margarete Z

    2016-09-01

    The Portulaca oleracea L. (Portulacaceae) is a cosmopolitan species with a wide range of biological activities, including antioxidant and neuroprotective actions. We investigated the effects of P. oleracea extracts in a 6-hydroxydopamine rat model of Parkinson's disease, a debilitating disorder without effective treatments. Chemical profiles of aqueous and ethanolic extracts of whole plant were analyzed by thin layer chromatography and the antioxidant activity was assessed by 2,2-diphenyl-1-picrilhidrazila method. Male Wistar rats received intrastriatal 6-hydroxydopamine and were treated with vehicle or extracts (oral, 200 and 400 mg/kg) daily for two weeks. The behavioral open field test was conducted at days 1 and 15. Immunohistochemical analysis was performed 4 weeks after surgery to quantify tyrosine-hydroxylase cell counts in the substantia nigra pars compacta. Extracts presented antioxidant activity in concentrations above 300 µg/kg. The chromatographic analysis revealed the presence of Levodopa, alkaloids, flavonoids, saponins, tannins, terpenoids and polysaccharides. Both extracts improved motor recovery 15 days after lesion and protected from tyrosine-hydroxylase cell loss after 4 weeks, but these effects were more evident for the aqueous extract. Because the dopamine precursor is present, in addition to antioxidant compounds and neuroprotective effects, P. oleracea can be considered as potential strategy for treating Parkinson's disease. PMID:27508995

  6. Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain.

    PubMed

    Hare, Dominic J; George, Jessica L; Grimm, Rudolph; Wilkins, Simon; Adlard, Paul A; Cherny, Robert A; Bush, Ashley I; Finkelstein, David I; Doble, Philip

    2010-11-01

    Three dimensional maps of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and phosphorous (P) in a 6-hydroxydopamine (6-OHDA) lesioned mouse brain were constructed employing a novel quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method known as elemental bio-imaging. The 3D maps were produced by ablating serial consecutive sections taken from the same animal. Each section was quantified against tissue standards resulting in a three dimensional map that represents the variation of trace element concentrations of the mouse brain in the area surrounding the substantia nigra (SN). Damage caused by the needle or the toxin did not alter the distribution of Zn, and Cu but significantly altered Fe in and around the SN and both Mn and Fe around the needle track. A 20% increase in nigral Fe concentration was observed within the lesioned hemisphere. This technique clearly shows the natural heterogeneous distributions of these elements throughout the brain and the perturbations that occur following trauma or intoxication. The method may applied to three-dimensional modelling of trace elements in a wide range of tissue samples. PMID:21072366

  7. Characterization of Fetal Antigen 1/Delta-Like 1 Homologue Expressing Cells in the Rat Nigrostriatal System: Effects of a Unilateral 6-Hydroxydopamine Lesion

    PubMed Central

    Liechti, Rémy; Ducray, Angélique D.; Jensen, Pia; Di Santo, Stefano; Seiler, Stefanie; Jensen, Charlotte H.; Meyer, Morten; Widmer, Hans Rudolf

    2015-01-01

    Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes. PMID:25723595

  8. Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson's disease and L-DOPA-induced dyskinesia.

    PubMed

    Kobylecki, Christopher; Crossman, Alan R; Ravenscroft, Paula

    2013-09-01

    Abnormal corticostriatal plasticity is a key mechanism of L-DOPA-induced dyskinesia (LID) in Parkinson's disease (PD). Antagonists at glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, such as IEM 1460, reduce induction and expression of dyskinesia in rat and non-human primate models of PD. AMPA receptor function is regulated by post-transcriptional splicing of subunit mRNA to produce flip and flop isoforms, which may therefore influence corticostriatal plasticity. The aim of this work was to evaluate alterations in alternative splicing of striatal AMPA receptor subunits in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID and PD. Male Sprague-Dawley rats received 12.5 μg 6-OHDA injections into the right medial forebrain bundle. In experiment 1, to assess acute dyskinesia, rats received L-DOPA/benserazide (6/15 mg/kg, i.p.) or vehicle for 21 days. In experiment 2, to assess dyskinesia priming, rats received vehicle, L-DOPA+vehicle or L-DOPA+IEM 1460 (3 mg/kg, i.p.) for 21 days. Animals were humanely killed 1h following final treatment in experiment 1, and 48 h following final treatment in experiment 2. Coronal sections of rostral striatum were processed for in situ hybridisation histochemistry, using oligonucleotide probes specific for the GluR1 and GluR2 subunits and their flip and flop isoforms. L-DOPA treatment increased GluR2-flip mRNA expression in the lesioned striatum of both groups; this was blocked by the Ca(2+)-permeable AMPA receptor antagonist IEM 1460. GluR1-flip expression was increased after 48 h drug washout but not in acute LID. There were no changes in expression of flop isoforms. Alternative splicing of AMPAR subunits contributes to abnormal striatal plasticity in the induction and expression of LID. Increases in GluR2-flip expression depend on activation of Ca(2+)-permeable AMPA receptors, which are a potential target of anti-dyskinetic therapies. PMID:23360800

  9. Ceftriaxone Ameliorates Motor Deficits and Protects Dopaminergic Neurons in 6-Hydroxydopamine-Lesioned Rats

    PubMed Central

    2011-01-01

    Parkinson’s disease is caused by the degeneration of dopaminergic neurons in substantia nigra. There is no current promising treatment for neuroprotection of dopaminergic neurons. Ceftriaxone is a beta-lactam antibiotic and has been reported to offer neuroprotective effects (Rothstein, J.-D., Patel, S., Regan, M.-R., Haenggeli, C., Huang, Y.-H., Bergles, D.-E., Jin, L., Dykes, H.-M., Vidensky, S., Chung, D.-S., Toan, S.-V., Bruijn, L.-I., Su, Z.-Z., Gupta, P., and Fisher, P.-B. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression Nature433, 73–77). In the present study, efficacy of ceftriaxone in neuroprotection of dopaminergic neurons and amelioration of motor deficits in a rat model of Parkinson’s disease were investigated. Ceftriaxone was administrated in 6-hydroxydopamine-lesioned rats. Using behavioral tests, grip strength and numbers of apomorphine-induced contralateral rotation were declined in the ceftriaxone-treated group. More importantly, cell death of dopaminergic neurons was found to decrease. In addition, both the protein expression and immunoreactivity for GLT-1 were up-regulated. The present results strongly indicate that ceftriaxone is a potential agent in the treatment of Parkinson’s disease. PMID:22860178

  10. Ultrastructural confirmation of neuronal protection by melatonin against the neurotoxin 6-hydroxydopamine cell damage.

    PubMed

    Mayo, J C; Sainz, R M; Antolín, I; Rodriguez, C

    1999-02-13

    6-Hydroxydopamine (6-OHDA) is a neurotoxin used in the induction of experimental Parkinson's disease in both animals and cultured neuronal cells. Biochemical and molecular approaches showed previously that low doses of 6-OHDA induced apoptosis in PC12 cells, while high doses of this neurotoxin induced necrosis. Melatonin has been shown to protect against the neuronal programmed cell death induced by 6-OHDA, although it was not able to prevent the massive necrotic cellular death occurring after the addition of high doses of the neurotoxin. In the present work, we demonstrate by ultrastructural analysis that although low doses of 6-OHDA induced apoptosis in PC12 cells, it also damaged the non-apoptotic cells, morphologically corresponding this damage to incipient and reversible necrotic lesions. When the doses of the neurotoxin increase, there are still apoptotic cells, although most of the cells show necrotic irreversible lesions. We also found that melatonin partially prevents the incipient necrotic lesions caused by low doses of 6-OHDA. The fact that melatonin was shown in previous work to prevent apoptosis caused by low doses of 6-OHDA, but not necrosis induced by high doses of the neurotoxin, seemed to indicate that this agent is only able to protect against apoptosis. However, our present results, melatonin preventing also the incipient necrotic neuronal lesions, suggest that this hormone may provide a general protection against cell death, suggesting that higher doses should be tried in order to prevent the necrotic cell death induced by high doses of the neurotoxin.

  11. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.

  12. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group. PMID:24140562

  13. 6-hydroxydopamine lesions in the rat neostriatum impair sequential learning in a serial reaction time task.

    PubMed

    Eckart, Moritz Thede; Huelse-Matia, Moriah Christina; McDonald, Rebecca S; Schwarting, Rainer K -W

    2010-04-01

    Sequential behavior has been intensively investigated in humans using so-called serial reaction time tasks(SRTT), in which visual stimuli are either presented in a random or sequential order. Typically, when the stimulus presentation follows a previously learned sequential order,reaction times are decreased compared to random stimulus presentation and become partly automated. A vast amount of SRTT findings indicates that sequential learning and performance seem to be mediated amongst others by the basal ganglia-especially the striatum-and the neurotransmitter dopamine therein. In this study we used an operant rat version of the human four choice SRTT to investigate the effect of bilateral neostriatal dopamine lesions induced by 6-hydroxydopamine on sequential learning. The rats' task was to respond rapidly to illuminated holes by nose-poking into them. During extensive training, the position of the illuminated hole followed a 12-item sequence. The outcome of this sequential training was also investigated in two tests, namely an interference test, where stimulus presentation switched between this sequential and a pseudo random order every five minutes, and a violation test, in which only one sequence item was eventually skipped. The neurotoxic lesions, which was placed before the start of training, led to the expected sub-total dopamine depletions (i.e. residual levels around 34-56% of controls), especially in the medial neostriatum. These lesions did not lead to general motor deficits in a catalepsy task, but moderate deficits in locomotion in an activity box, which largely recovered with time after lesion. In the SRTT, rats with lesions showed impaired learning, that is, less response accuracy and slower reaction times than the control group.During a subsequent test with alternating phases of sequential and random stimulus presentations, reaction times and accuracy of the control group were superior during sequential as compared to random stimulus phases. In the

  14. Neonatal 6-hydroxydopamine lesions lead to opposing changes in the levels of dopamine receptors and their messenger RNAs.

    PubMed

    Frohna, P A; Neal-Beliveau, B S; Joyce, J N

    1995-09-01

    Previous studies have established that selective damage to the early-developing components of the mesostriatal dopamine system produces profound changes in dopamine D1 receptor-mediated behaviors, while decreasing D1 receptor density. In order to better understand the effects of early intrastriatal 6-hydroxydopamine lesions, we studied the ontogenetic expression (postnatal days 7, 14, 35 and 90) of D1 and D2 receptors, and their corresponding messenger RNAs, in rats that had received intrastriatal 6-hydroxydopamine or vehicle lesions on postnatal day 1. Using receptor autoradiography, significant (P < 0.05) decreases in [3H]SCH 23390 binding to D1 receptors in the rostral and caudal dorsomedial and ventromedial caudate of 6-hydroxydopamine-lesioned animals were evident by postnatal day 7, and remained depressed at all future time points. A significant decrease in D1 receptor concentration occurred in the dorsolateral caudate at later time points (postnatal days 35 and 90). [3H]Spiperone binding to D2 receptor sites was unchanged throughout the entire study. In situ hybridization for D1 and D2 messenger RNA expression showed contrasting results. 6-Hydroxydopamine induced significant decreases of D1 messenger RNA levels in the dorsolateral and dorsomedial caudate by postnatal day 7. By postnatal day 14, messenger RNA expression was significantly elevated in the dorsomedial and ventromedial caudate of the 6-hydroxydopamine group, and remained elevated thereafter. D1 messenger RNA levels became elevated in the lateral caudate at later time points (postnatal days 35 and 90). The opposing changes in D1 receptor concentrations and the messenger RNA encoding the protein did not occur as a consequence of increased transport of D1 receptors to striatonigral terminals. D2 messenger RNA levels in the dorsal caudate were significantly decreased on postnatal day 7, and became higher than controls at postnatal day 14, but were unchanged from controls at later time points

  15. 6-Hydroxydopamine lesions of the anteromedial ventral striatum impair opposite-sex urinary odor preference in female mice.

    PubMed

    DiBenedictis, Brett T; Olugbemi, Adaeze O; Baum, Michael J; Cherry, James A

    2014-11-01

    Rodents rely upon their olfactory modality to perceive opposite-sex pheromonal odors needed to motivate courtship behaviors. Volatile and nonvolatile components of pheromonal odors are processed by the main (MOS) and accessory olfactory system (AOS), respectively, with inputs converging in the medial amygdala (Me). The Me in turn targets the mesolimbic dopamine system, including the nucleus accumbens core (AcbC) and shell (AcbSh), the ventral pallidum (VP), medial olfactory tubercle (mOT) and ventral tegmental area (VTA). We hypothesized that pheromone-induced dopamine (DA) release in the ventral striatum (particularly in the mAcb and mOT) may mediate the normal preference of female mice to investigate male pheromones. We made bilateral 6-OHDA lesions of DA fibers innervating either the mAcb alone or the mAcb+mOT in female mice and tested estrous females' preference for opposite-sex urinary odors. We found that 6-OHDA lesions of either the mAcb alone or the mAcb+mOT significantly reduced the preference of sexually naïve female mice to investigate breeding male urinary odors (volatiles as well as volatiles+nonvolatiles) vs. estrous female urinary odors. These same neurotoxic lesions had no effect on subjects' ability to discriminate between these two urinary odors, on their locomotor activity, or on their preference for consuming sucrose. The integrity of the dopaminergic innervation of the mAcb and mOT is required for female mice to prefer investigating male pheromones.

  16. Motor activity and gene expression in rats with neonatal 6-hydroxydopamine lesions.

    PubMed

    Masuo, Yoshinori; Ishido, Masami; Morita, Masatoshi; Oka, Syuichi; Niki, Etsuo

    2004-10-01

    A rat model of a hyperkinetic disorder was used to investigate the mechanisms underlying motor hyperactivity. Rats received an intracisternal injection of 6-hydroxydopamine on post-natal day 5. At 4 weeks of age, the animals showed significant motor hyperactivity during the dark phase, which was attenuated by methamphetamine injection. Gene expression profiling was carried out in the striatum and midbrain using a DNA macroarray. In the striatum at 4 weeks, there was increased gene expression of the NMDA receptor 1 and tachykinins, and decreased expression of a GABA transporter. At 8 weeks, expression of the NMDA receptor 1 in the striatum was attenuated, with enhanced expression of the glial glutamate/aspartate transporter. In the midbrain, a number of genes, including the GABA transporter gene, showed decreased expression at 4 weeks. At 8 weeks, gene expression was augmented for the dopamine transporter, D4 receptor, and several genes encoding peptides, such as tachykinins and their receptors. These results suggest that in the striatum the neurotransmitters glutamate, GABA and tachykinin may play crucial roles in motor hyperactivity during the juvenile period. Several classes of neurotransmitters, including dopamine and peptides, may be involved in compensatory mechanisms during early adulthood. These data may prompt further neurochemical investigations in hyperkinetic disorders.

  17. Intranigral grafts of fetal ventral mesencephalic tissue in adult 6-hydroxydopamine-lesioned rats can induce behavioral recovery.

    PubMed

    Johnston, R E; Becker, J B

    1997-01-01

    Intrastriatal grafts of fetal ventral mesencephalon in rats with unilateral 6-hydroxydopamine lesions can reduce and even reverse rotational behavior in response to direct and indirect dopamine agonists. These grafts can ameliorate deficits on simple spontaneous behaviors, but do not improve complex behaviors that require the skilled integration of the use of both paws. We report here that rats with grafts into the DA-depleted substantia nigra, that receive cyclosporine A, can experience recovery on spontaneous behaviors that mimic those observed in Parkinson's disease. Specific cyclosporine A treatment conditions can differentially affect whether intranigral grafts normalize paw use during initiation or termination of a movement sequence. These findings may have important implications for the treatment of Parkinson's disease. PMID:9171159

  18. Rapid eye movement (REM) sleep deprivation in 6-OHDA nigro-striatal lesioned rats with and without transplants of dissociated chromaffin cells.

    PubMed

    Drucker-Colín, R; Durán-Vázquez, A; Salín-Pascual, R J; Verdugo-Díaz, L; Mendoza-Ramírez, J L; Jiménez-Anguiano, A

    1996-08-12

    Since both REM sleep deprivation and unilateral 6-OHDA lesions induce supersensitivity of DA receptors, the purpose of this study was to determine whether the response of rats with such lesions would be modified by REM sleep deprivation. In addition, the effect of grafts of dissociated chromaffin cells was also tested. Rats with 6-OHDA lesions were subjected to 24 or 72 h of REM sleep deprivation and tested with various doses of apomorphine to determine turning behavior frequencies. At end of those experiments, the animals were transplanted with dissociated chromaffin cells and turning behavior was tested again. The results showed that REM sleep deprivation nearly doubled the turning behavior frequency, that chromaffin cell grafts decreased it, but that REM deprivation in grafted animals still seemed to produce an increase of post-synaptic supersensitivity independent of denervation. The results were discussed in terms of the possible relationship of sleep with Parkinson's disease through the DA system.

  19. Effect of WR-1065 on 6-hydroxydopamine-induced catalepsy and IL-6 level in rats

    PubMed Central

    Kheradmand, Afshin; Nayebi, Alireza Mohajjel; Jorjani, Masoumeh; Haddadi, Rasool

    2016-01-01

    Objective(s): Neuroinflammation and oxidative stress play a key role in pathogenesis of Parkinson’s disease (PD). In the present study we investigated the effect of reactive oxygen species (ROS) scavenger WR-1065 on catalepsy and cerebrospinal fluid (CSF) level of interleukin 6(IL-6) and striatum superoxide dismutase (SOD) activity in 6-hydroxydopamine (6-OHDA) induced experimental model of PD. Materials and Methods: Seventy two male Wistar rats were divided into 9 equal groups and 6-OHDA (8 μg/2 μl/rat) was infused unilaterally into substantia nigra pars copmacta (SNc) to induce PD. Catalepsy was measured by standard bar test, CSF level of IL-6 was assessed by enzyme-linked immunosorbent assay (ELISA) method and SOD activity measured by spectrophotometric method. In pre-treatment groups WR-1065 (20, 40 and 80 μg/2 μl/rat/day, for 3 days) was infused into the SNc before 6-OHDA administration and 21 days later, as a recovery period, behavioral and molecular assay tests were done. Results: Our results showed that pre-treatment with WR-1065 improved (P<0.001) 6-OHDA-induced catalepsy in a dose dependent manner. In 6-OHDA-lesioned animals SOD activity in SNc and CSF level of IL-6 was decreased markedly (P<0.001) when compared with non-lesioned group, while pre-treatment with WR-1065(P<0.001) restored their levels up to the normal range. Conclusion: Our study indicated that pre-treatment with WR-1065 could modulate catalepsy and IL-6 level in 6-OHDA-lesioned rats. Also WR1065 could increase SOD activity up to normal range. It can be regarded as an anti-oxidative drug in prevention or adjunctive therapy of PD. PMID:27403255

  20. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats.

    PubMed

    Cai, Jingli; Yang, Ming; Poremsky, Elizabeth; Kidd, Sarah; Schneider, Jay S; Iacovitti, Lorraine

    2010-07-01

    Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on renewable stem cells. Human induced pluripotent stem (hiPS) cells offer great promise in this regard. If hiPS cells can be differentiated into authentic mDA neuron, hiPS could provide a potential autologous source of transplant tissue when generated from PD patients, a clear advantage over human embryonic stem (hES) cells. Here, we report that mDA neurons can be derived from a commercially available hiPS cell line, IMR90 clone 4, using a modified hES differentiation protocol established in our lab. These cells express all the markers (Lmx1a, Aldh1a1, TH, TrkB), follow the same mDA lineage pathway as H9 hES cells, and have similar expression levels of DA and DOPAC. Moreover, when hiPS mDA progenitor cells are transplanted into 6-OHDA-lesioned PD rats, they survive long term and many develop into bona fide mDA neurons. Despite their differentiation and integration into the brain, many Nestin+ tumor-like cells remain at the site of the graft. Our data suggest that as with hES cells, selecting the appropriate population of mDA lineage cells and eliminating actively dividing hiPS cells before transplantation will be critical for the future success of hiPS cell replacement therapy in PD patients.

  1. Extracellular toxicity of 6-hydroxydopamine on PC12 cells.

    PubMed

    Blum, D; Torch, S; Nissou, M F; Benabid, A L; Verna, J M

    2000-04-14

    6-hydroxydopamine (6-OHDA) is usually thought to cross cell membrane through dopamine uptake transporters, to inhibit mitochondrial respiration and to generate intracellular reactive oxygen species. In this study, we show that the anti-oxidants catalase, glutathione and N-acetyl-cysteine are able to reverse the toxic effects of 6-OHDA. These two latter compounds considerably slow down 6-OHDA oxidation in a cell free system suggesting a direct chemical interaction with the neurotoxin. Moreover, desipramine does not protect PC12 cells and 6-OHDA is also strongly toxic towards non-catecholaminergic C6 and NIH3T3 cells. These results thus suggest that 6-OHDA toxicity on PC12 cells mainly involves an extracellular process. PMID:10754220

  2. 6-hydroxydopamine and aggression in cats.

    PubMed

    Beleslin, D B; Samardzić, R; Stefanović-Denić, K

    1981-01-01

    The effect of 6-hydroxydopamine (6-OHDA) injected into the cerebral ventricles on behaviour of singly- and group-housed cats was investigated. 6-OHDA in doses of 0.5, 1 and 2 mg was administered every morning for 5 to 8 days. In small doses 6-OHDA in singly- and group-housed cats evoked motor phenomena such as tremor, ataxia, rigidity, weakness and sometimes clonic-tonic convulsions. Occasionally restlessness, irritability and rage were observed. Large doses of 6-OHDA in group-housed cats, after a short latent period (2-3 days) produced aggression which intensified on subsequent injections, and thereafter, on repeated administrations, no longer occurred. The aggression consisted of restlessness, irritability, anger, rage, apprehension, threat, attack, fighting, flight and crying. Of autonomic phenomena mydriasis, dyspnea and sometimes piloerection were observed. The aggression was initiated by the most restless cat, or by disturbing the animals, such as by moving the cage. When 6-OHDA no longer produced aggressive behaviour, motor changes such as tremor, ataxia, rigidity, walking on broad base, weakness with adynamia and clonic-tonic convulsions developed. These latter symptoms were produced by large doses of 6-OHDA in singly-housed cats. In these animals spontaneous signs of aggressive behaviour usually were not observed, although if handled they showed rage, snarling and hissing. When singly-housed cats were kept in the same cage with group-housed animals, the singly-housed cats usually became aggressive. It appears that hyperactivity induced aggression in 6-OHDA-treated cats. PMID:7195585

  3. The effects of dorsal bundle injections of 6-hydroxydopamine on avoidance responding in rats.

    PubMed

    Fibiger, H C; Mason, S T

    1978-12-01

    1 The effect of injection of 6-hydroxydopamine (6-OHDA) into the fibres of the dorsal noradrenergic bundle on acquisition, retention and extinction of active avoidance in rats were examined. 2 6-OHDA injections severely depleted noradrenaline in all forebrain areas assayed, with the interesting exception of the septum. No significant effect on dopamine concentrations in various forebrain regions was found. 3 Acquisition and retention of active avoidance was not altered by the lesion. Marked resistance to extinction was seen when the unconditioned stimulus (shock) was removed. 4 A comparison with work by other authors in which both forebrain noradrenaline and dopamine were depleted suggest that the alteration in extinction seen in both studies is a noradrenergic effect, whereas the deficits in acquisition and retention found previously are dopaminergic in origin.

  4. R-apomorphine protects against 6-hydroxydopamine-induced nigrostriatal damage in rat.

    PubMed

    Yuan, Hong; Liang, Li-Wu; Chen, Zheng-Jing; Ji, Hui-Ru; Wang, Mei-Kang; Zhang, Hai-Ying; Li, Cao; Xu, Jian-Yang

    2006-11-01

    Objective The aim of the present study was not only to assess the retrograde degenerative changes in the dopaminergic neurons of the substantia nigra (SN) and ventral tegmental area (VTA) after injection of 6-hydroxydopamine (6-OHDA) into the striatum, but also to use this 6-OHDA model of Parkinson's disease to explore the possible neuroprotective effect of R-apomorphine (R-APO). Methods The partial lesion was obtained by intrastriatal administration of 6-OHDA. R-APO administration (10 mg/kg, s.c.) started 15 min prior to lesioning and continued daily for another 22 days post surgery. Testing was carried out 5 weeks after lesioning. We investigated the histology and associated behavior and neurochemical changes. Structural and functional deficits were quantified by tyrosine hydroxylase (TH) / Nissl-staining cell number counting, striatal dopamine (DA) content determination and amphetamine-induced rotation analysis. Results R-APO-treatment attenuated the amphetamine-induced ipsiversive rotation 5 weeks after the lesion induction. R-APO administration for 22 days significantly reduced the size of the lesion at the level of the SN from 50% (control group) to 69%. Moreover, the cell shape resembled that observed in the intact animals. R-APO treatment significantly increased the number of cells in both the lesion and the intact sides of VTA by 60%, suggesting selective neurotrophic effect of R-APO in this area. Finally, R-APO-treatment significantly attenuated the 6-OHDA-induced striatal DA depletion and normalized dihydroxyphenylacetic acid (DOPAC)/DA ratios. Conclusion We conclude that R-APO has neuroprotective and possible neurotrophic effect on a striatal lesion with 6-OHDA, suggesting that this drug may have rescuing properties in patients with early stage Parkinson's disease. These effects are more pronounced in VTA and enhance with duration of treatment. PMID:17690718

  5. Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hippocampal serotonin.

    PubMed

    Santiago, Ronise M; Barbiero, Janaína; Gradowski, Raisa W; Bochen, Suelen; Lima, Marcelo M S; Da Cunha, Cláudio; Andreatini, Roberto; Vital, Maria A B F

    2014-02-01

    Among the non-motor phenomena of Parkinson's disease (PD) are depressive symptoms, with a prevalence of 40-70%. The reason for this high prevalence is not yet clear. The basal ganglia receives dopamine (DA) inputs from the substantia nigra pars compacta (SNpc), which is known to be impaired in PD patients. The neurotransmitter deficiency hypothesis of PD considers that low serotonin (5-hydroxytryptamine [5-HT]) activity in the brain in PD patients is a risk factor for depression. We investigated whether DA depletion promoted by the neurotoxin 6-hydroxydopamine (6-OHDA) is able to induce depressive-like behavior and neurotransmitter alterations that are similar to those observed in PD. To test this hypothesis, we performed intranigral injections of 6-OHDA in male Wistar rats and conducted motor behavior, depressive-like behavior, histological, and neurochemical tests. After the motor recovery period, 6-OHDA was able to produce anhedonia and behavioral despair 7, 14, and 21 days after neurotoxin infusion. These altered behavioral responses were accompanied by reductions of striatal DA. Additionally, decreases in hippocampal 5-HT content were detected in the 6-OHDA group. Notably, correlations were found between 5-HT and DA levels and swimming, immobility, and sucrose preference. Our results indicate that 6-OHDA produced depressive-like behavior accompanied by striatal DA and hippocampal 5-HT reductions. Moreover, DA and 5-HT levels were strongly correlated with "emotional" impairments, suggesting the important participation of these neurotransmitters in anhedonia and behavioral despair after 6-OHDA-induced nigral lesions.

  6. Serotonin₆ receptors in the dorsal hippocampus regulate depressive-like behaviors in unilateral 6-hydroxydopamine-lesioned Parkinson's rats.

    PubMed

    Liu, Kun-Cheng; Li, Jun-Yi; Tan, Hui-Hui; Du, Cheng-Xue; Xie, Wen; Zhang, Yu-Ming; Ma, Wei-Lin; Zhang, Li

    2015-08-01

    Preclinical studies indicate both activation and blockade of serotonin6 (5-HT6) receptors may produce antidepressant-like effects. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT6 receptors in the dorsal hippocampus (DH) involve in the regulation of PD-associated depression. Unilateral 6-hydroxydopamine lesions of the medial forebrain bundle in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. In sham-operated rats, intra-DH injection of 5HT6 receptor agonist WAY208466 or antagonist SB258585 increased sucrose consumption and decreased immobility time, indicating the induction of antidepressant effects. In the lesioned rats, WAY208466 also produced antidepressant effects, whereas SB258585 decreased sucrose consumption and increased immobility time, indicating the induction of depressive-like behaviors. Neurochemical results showed that WAY208466 did not change dopamine (DA) levels in the medial prefrontal cortex (mPFC), DH and habenula, and noradrenaline (NA) levels in the DH and habenula in sham-operated rats, and SB258585 increased DA and NA levels in these structures. Further, WAY208466 increased DA levels in the mPFC, DH and habenula, and NA level in the habenula in the lesioned rats, and SB258585 decreased DA levels in the mPFC and habenula. Additionally, the lesion did not change the density of neuronal glutamate transporter EAAC1/5-HT6 receptor co-expressing neurons in the DH. Compared to sham-operated rats, these findings suggest that the effects of 5-HT6 receptors in PD-associated depression may be mediated through different neurochemical mechanisms, and the DH is an important site involved in these effects.

  7. Serotonin₆ receptors in the dorsal hippocampus regulate depressive-like behaviors in unilateral 6-hydroxydopamine-lesioned Parkinson's rats.

    PubMed

    Liu, Kun-Cheng; Li, Jun-Yi; Tan, Hui-Hui; Du, Cheng-Xue; Xie, Wen; Zhang, Yu-Ming; Ma, Wei-Lin; Zhang, Li

    2015-08-01

    Preclinical studies indicate both activation and blockade of serotonin6 (5-HT6) receptors may produce antidepressant-like effects. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT6 receptors in the dorsal hippocampus (DH) involve in the regulation of PD-associated depression. Unilateral 6-hydroxydopamine lesions of the medial forebrain bundle in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. In sham-operated rats, intra-DH injection of 5HT6 receptor agonist WAY208466 or antagonist SB258585 increased sucrose consumption and decreased immobility time, indicating the induction of antidepressant effects. In the lesioned rats, WAY208466 also produced antidepressant effects, whereas SB258585 decreased sucrose consumption and increased immobility time, indicating the induction of depressive-like behaviors. Neurochemical results showed that WAY208466 did not change dopamine (DA) levels in the medial prefrontal cortex (mPFC), DH and habenula, and noradrenaline (NA) levels in the DH and habenula in sham-operated rats, and SB258585 increased DA and NA levels in these structures. Further, WAY208466 increased DA levels in the mPFC, DH and habenula, and NA level in the habenula in the lesioned rats, and SB258585 decreased DA levels in the mPFC and habenula. Additionally, the lesion did not change the density of neuronal glutamate transporter EAAC1/5-HT6 receptor co-expressing neurons in the DH. Compared to sham-operated rats, these findings suggest that the effects of 5-HT6 receptors in PD-associated depression may be mediated through different neurochemical mechanisms, and the DH is an important site involved in these effects. PMID:25863121

  8. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease

    PubMed Central

    Glajch, Kelly E.; Fleming, Sheila M.; Surmeier, D. James; Osten, Pavel

    2012-01-01

    Parkinson’s disease (PD), the second most common neurodegenerative disorder, is characterized by marked impairments in motor function caused by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Animal models of PD have traditionally been based on toxins, such as 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that selectively lesion dopaminergic neurons. Motor impairments from 6-OHDA lesions of SNc neurons are well characterized in rats, but much less work has been done in mice. In this study, we compare the effectiveness of a series of drug-free behavioral tests in assessing sensorimotor impairments in the unilateral 6-OHDA mouse model, including six tests used for the first time in this PD mouse model (the automated treadmill “DigiGait” test, the challenging beam test, the adhesive removal test, the pole test, the adjusting steps test, and the test of spontaneous activity) and two tests used previously in 6-OHDA-lesioned mice (the limb-use asymmetry “cylinder” test and the manual gait test). We demonstrate that the limb-use asymmetry, challenging beam, pole, adjusting steps, and spontaneous activity tests are all highly robust assays for detecting sensorimotor impairments in the 6-OHDA mouse model. We also discuss the use of the behavioral tests for specific experimental objectives, such as simple screening for well-lesioned mice in studies of PD cellular pathophysiology or comprehensive behavioral analysis in preclinical therapeutic testing using a battery of sensorimotor tests. PMID:22178078

  9. 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors.

    PubMed

    Tobón-Velasco, Julio C; Limón-Pacheco, Jorge H; Orozco-Ibarra, Marisol; Macías-Silva, Marina; Vázquez-Victorio, Genaro; Cuevas, Elvis; Ali, Syed F; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2013-02-01

    6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to better understand the cellular events further leading to neurodegeneration. The present work explored how 6-OHDA triggers early downstream signaling pathways that activate neurotoxicity in the rat striatum. Mitochondrial function, caspases-dependent apoptosis, kinases signaling (Akt, ERK 1/2, SAP/JNK and p38) and crosstalk between nuclear factor kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) were evaluated at early times post-lesion. We found that 6-OHDA initiates cell damage via mitochondrial complex I inhibition, cytochrome c and apoptosis-inducing factor (AIF) release, as well as activation of caspases 9 and 3 to induce apoptosis, kinase signaling modulation and NF-κB-mediated inflammatory responses, accompanied by inhibition of antioxidant systems regulated by the Nrf2 pathway. Our results suggest that kinases SAP/JNK and p38 up-regulation may play a role in the early stages of 6-OHDA toxicity to trigger intrinsic pathways for apoptosis and enhanced NF-κB activation. In turn, these cellular events inhibit the activation of cytoprotective mechanisms, thereby leading to a condition of general damage.

  10. Protective effect of methanolic extract of Garcinia indica fruits in 6-OHDA rat model of Parkinson's disease

    PubMed Central

    Antala, Bhaveshkumar V.; Patel, Manishkumar S.; Bhuva, Satish V.; Gupta, Shiv; Rabadiya, Samir; Lahkar, Mangala

    2012-01-01

    Context: Several studies have reported that antioxidants play an important role in Parkinson's disease (PD). Garcinia indica extract is a natural antioxidant, the present study was undertaken to evaluate the neuroprotective effect of methanolic extract of Garcinia indica (GIM) against 6-hydroxydopamine (6-OHDA) neurotoxicity for striatal dopaminergic neurons in the rat. Materials and Methods: Thirty adult Wistar rats were randomly divided into five groups namely control, 6-OHDA model, and GIM (100, 200, and 400 mg/kg body weight suspended in one ml of 0.1% carboxymethyl cellulose). The treatment was started three days before surgery and continued for next 14 days. The surgery was done on third day in all groups for administration of 6-OHDA into the right striatum and right substantia nigra, whereas control group injected with 6-OHDA vehicle. Various behavior and biochemical tests (Apomorphine-induced rotational behavior, Stepping test, Initiation time, Postural balance test, and Disengage time) were used to evaluate the neuroprotective effect of GIM. One-way analysis of variance (ANOVA) followed by Dunnett's test was used to compare inter-group differences. P<0.05 was considered as statistically significant. Results: GIM had significant (P<0.05, P<0.01) preventive effect in biochemical tests, i.e., dopamine and its metabolites measurement and in various behavior tests, i.e., apomorphine-induced rotational behavior, stepping test, initiation time, postural balance test, and disengage time as compared to 6-OHDA-treated rats. Conclusions: Our results demonstrated that GIM acted as an effective neuroprotective agent for striatal dopaminergic neurons in 6-OHDA lesioned rat model of PD. PMID:23248394

  11. Berberine chloride pretreatment exhibits neuroprotective effect against 6-hydroxydopamine-induced neuronal insult in rat

    PubMed Central

    Negahdar, Feraidoon; Mehdizadeh, Mehdi; Joghataei, Mohammad Taghi; Roghani, Mehrdad; Mehraeen, Fereshteh; Poorghayoomi, Ehsan

    2015-01-01

    Parkinson’s disease (PD) is a rather common movement disorder as a result of the degeneration of dopaminergic neurons within the substantianigra. Current treatments for PD afford symptomatic relief with no prevention of disease progression. Due to the neuroprotective and anti-apoptotic potential of the isoquinoline alkaloid berberine (BBR), this study was conducted to assess whether BBR pretreatment could attenuate behavioral and neuronal derangement in 6-hydroxydopamine (6-OHDA)-induced model of PD in the rat. Unilateral intrastriatal 6-OHDA-lesioned rats received BBR at doses of 25 and/or 50 mg/kg (i.p.) three times at an interval of 24 h, started 2 days before the surgery. After 1 week, apomorphine caused significant contralateral rotations and a significant reduction in the number of Nissl-stained and tyrosine-hydroxylase (TH)-positive neurons on the left side of the substantianigra. BBR pretreatment at a dose of 50 mg/kg significantly reduced rotations and prevented loss of TH-positive neurons. These results indicate pre-lesion administration of BBR could protect against 6-OHDA toxicity and this may be of benefit besides other available therapies in PD. PMID:26664381

  12. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats.

    PubMed

    Song, Shilei; Nie, Qingmei; Li, Zhifang; Du, Gang

    2016-04-01

    Our previous study has demonstrated that curcumin (CM), a natural ingredient isolated from Zingiberaceae, exerts the effect of inhibiting hippocampal injury in 6-hydroxydopamine (6-OHDA)-induced parkinsonian rat. However, the potential effect of CM on 6-OHDA-injured substantia nigra (SN) needs to be investigated. This study aimed to further evaluate the therapeutic effectiveness of CM against damaged SN in rats. Methodologically, Parkinson's disease (PD) rat was prepared by using a surgical approach of injecting 6-hydroxydopamine (6-OHDA) into the SN. Morris water maze, open-field assays, and rotarod test were used to assess the neurobehavioral manifestations. Neurotransmitter contents in the SN were determined by using the biochemical tests. Western blotting was employed to evaluate the target protein expressions. The representative data showed that CM protected against 6-OHDA-induced neural impairments in the SN, as evidenced by improved memory abilities, elevated intercalatum levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduced concentration of malonaldehyde (MDA). In addition, dopamine (DA) and acetylcholine (ACh) levels were increased in the SN. Moreover, intercalatum heat shock protein 70 (HSP70) was lowered, while basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and receptor tyrosine kinase A (TrkA) expressions were up-regulated, respectively. Taken together, the findings indicate that curcum in exerts neuroprotection in the SN via ameliorating neurofunctions of PD rats. PMID:26922613

  13. Amphetamine-evoked rotation requires newly synthesized dopamine at 14 days but not 1 day after intranigral 6-OHDA and is consistently dissociated from sensorimotor behavior.

    PubMed

    Paquette, Melanie A; Marsh, Steven T; Hutchings, Janet E; Castañeda, Eddie

    2009-06-01

    Immediately after unilateral, intranigral 6-hydroxydopamine (6-OHDA), amphetamine (AMPH) evokes "paradoxical" contraversive rotation, whereas 14 days later, AMPH evokes the traditional ipsiversive rotation used to model the chronic Parkinsonian state. In this study, the hypothesis was that accelerated dopamine (DA) synthesis ipsilateral to the lesion augments cytoplasmic DA to produce paradoxical rotation. Therefore, the sensitivity to synthesis inhibition of AMPH-evoked rotation at 1 or 14 days after 6-OHDA was assessed. To determine the functional status that might be reflected by paradoxical rotation, sensorimotor abilities were examined at 1 and 14 days following unilateral 6-OHDA using the elevated swing, paw placement, grip strength, ladder walking, somatosensory neglect, and cylinder tests. At 14 days after 6-OHDA when AMPH-evoked ipsiversive rotation is mediated by the intact hemisphere, rotation was dose-dependently reduced by tyrosine hydroxylase (TH) inhibition with alpha-methyl-p-tyrosine (alpha-MPT) or dopa decarboxylase (DDC) inhibition with 3-hydroxybenzyl hydrazine (NSD-1015), indicating dependence upon newly synthesized DA. Conversely, at 1 day after 6-OHDA, paradoxical rotation, presumably mediated by the treated hemisphere, was completely resistant to synthesis blockade, indicating an abundant supply of intracellular DA that is independent from synthesis rates. Sensorimotor behaviors were not correlated with AMPH-evoked rotation. The present data do not support the hypothesis that enhanced DA synthesis is required to express paradoxical rotation. Therefore, alternative mechanisms that may enhance cytoplasmic DA to produce paradoxical rotation are discussed. PMID:19378464

  14. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease.

    PubMed

    Sadan, Ofer; Bahat-Stromza, Merav; Barhum, Yael; Levy, Yossef S; Pisnevsky, Anat; Peretz, Hagit; Ilan, Avihay Bar; Bulvik, Shlomo; Shemesh, Noam; Krepel, Dana; Cohen, Yoram; Melamed, Eldad; Offen, Daniel

    2009-10-01

    Stem cell-based therapy is a promising treatment for neurodegenerative diseases. In our laboratory, a novel protocol has been developed to induce bone marrow-derived mesenchymal stem cells (MSC) into neurotrophic factors- secreting cells (NTF-SC), thus combining stem cell-based therapy with the NTF-based neuroprotection. These cells produce and secrete factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor. Conditioned medium of the NTF-SC that was applied to a neuroblastoma cell line (SH-SY5Y) 1 h before exposure to the neurotoxin 6-hydroxydopamine (6-OHDA) demonstrated marked protection. An efficacy study was conducted on the 6-OHDA-induced lesion, a rat model of Parkinson's disease. The cells, either MSC or NTF-SC, were transplanted on the day of 6-OHDA administration and amphetamine-induced rotations were measured as a primary behavior index. We demonstrated that when transplanted posterior to the 6-OHDA lesion, the NTF-SC ameliorated amphetamine-induced rotations by 45%. HPLC analysis demonstrated that 6-OHDA induced dopamine depletion to a level of 21% compared to the untreated striatum. NTF-SC inhibited dopamine depletion to a level of 72% of the contralateral striatum. Moreover, an MRI study conducted with iron-labeled cells, followed by histological verification, revealed that the engrafted cells migrated toward the lesion. In a histological assessment, we found that the cells induced regeneration in the damaged striatal dopaminergic nerve terminal network. We therefore conclude that the induced MSC have a therapeutic potential for neurodegenerative processes and diseases, both by the NTFs secretion and by the migratory trait toward the diseased tissue.

  15. Striatal pleiotrophin overexpression provides functional and morphological neuroprotection in the 6-hydroxydopamine model.

    PubMed

    Gombash, Sara E; Lipton, Jack W; Collier, Timothy J; Madhavan, Lalitha; Steece-Collier, Kathy; Cole-Strauss, Allyson; Terpstra, Brian T; Spieles-Engemann, Anne L; Daley, Brian F; Wohlgenant, Susan L; Thompson, Valerie B; Manfredsson, Fredric P; Mandel, Ronald J; Sortwell, Caryl E

    2012-03-01

    Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult.

  16. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats

    PubMed Central

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  17. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats.

    PubMed

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin; Yang, Jian; Jia, Jun; Wang, Xiao-Min

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  18. Short-Term Treatment with Silymarin Improved 6-OHDA-Induced Catalepsy and Motor Imbalance in Hemi-Parkisonian Rats

    PubMed Central

    Haddadi, Rasool; Eyvari Brooshghalan, Shahla; Farajniya, Safar; Mohajjel Nayebi, Alireza; Sharifi, Hamdolah

    2015-01-01

    Purpose: Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by disabling motor abnormalities, which include tremor, muscle stiffness, paucity of voluntary movements, and postural instability. Silymarin (SM) or milk thistle extract, is known to own antioxidative, anti-apoptotic, anti-inflammatory and neuroprotective effects. In the present study, we investigated the effect of intraperitoneal (i.p) administration of SM, on 6-OHDA-induced motor-impairments (catalepsy and imbalance) in the rats. Methods: Experimental model of PD was induced by unilateral infusion of 6-hydroxydopamine (6-OHDA; 8 μg/2 μl/rat) into the central region of the substantia nigra pars compacta (SNc). Catalepsy and motor coordination were assessed by using of bar test and rotarod respectively. Results: The results showed a significant (p<0.001) increase in catalepsy of 6-OHDA-lesioned rats whereas; in SM (100, 200 and 300 mg/kg, i.p for 5 days) treated hemi-parkinsonian rats catalepsy was decreased markedly (p<0.001). Furthermore, there was a significant (p<0.001) increase in motor-imbalance of 6-OHDA-lesioned rats. SM improved motor coordination significantly (p<0.001) in a dose dependent manner and increased motor balance. Conclusion: In conclusion, we found that short-term treatment with SM could improve 6-OHDA-induced catalepsy and motor imbalance in rats. We suggest that SM can be used as adjunctive therapy along with commonly used anti-parkinsonian drugs. However, further clinical trial studies should be carried out to prove this hypothesis. PMID:26819917

  19. Nonenzymatic role of acetylcholinesterase in neuritic sprouting: regional changes in acetylcholinesterase and choline acetyltransferase after neonatal 6-hydroxydopamine lesions.

    PubMed

    Slotkin, Theodore A; Ryde, Ian T; Wrench, Nicola; Card, Jennifer A; Seidler, Frederic J

    2009-01-01

    Acetylcholinesterase (AChE) is postulated to play a nonenzymatic role in the development of neuritic projections. We gave the specific neurotoxin, 6-OHDA to rats on postnatal day (PN) 1, a treatment that destroys noradrenergic nerve terminals in the forebrain while producing reactive sprouting in the brainstem. AChE showed profound decreases in the forebrain that persisted in males over the entire phase of major synaptogenesis, from PN4 through PN21; in the brainstem, AChE was increased. Parallel examinations of choline acetyltransferase, an enzymatic marker for cholinergic nerve terminals, showed a different pattern of 6-OHDA-induced alterations, with initial decreases in both forebrain and brainstem in males and regression toward normal by PN21; females were far less affected. The sex differences are in accord with the greater plasticity of the female brain and its more rapid recovery from neurotoxic injury; our findings indicate that these differences are present well before puberty. These results support the view that AChE is involved in neurite formation, unrelated to its enzymatic role in cholinergic neurotransmission. Further, the results for choline acetyltransferase indicate that early depletion of norepinephrine compromises development of acetylcholine systems, consistent with a trophic role for this neurotransmitter.

  20. Nonenzymatic role of acetylcholinesterase in neuritic sprouting: regional changes in acetylcholinesterase and choline acetyltransferase after neonatal 6-hydroxydopamine lesions.

    PubMed

    Slotkin, Theodore A; Ryde, Ian T; Wrench, Nicola; Card, Jennifer A; Seidler, Frederic J

    2009-01-01

    Acetylcholinesterase (AChE) is postulated to play a nonenzymatic role in the development of neuritic projections. We gave the specific neurotoxin, 6-OHDA to rats on postnatal day (PN) 1, a treatment that destroys noradrenergic nerve terminals in the forebrain while producing reactive sprouting in the brainstem. AChE showed profound decreases in the forebrain that persisted in males over the entire phase of major synaptogenesis, from PN4 through PN21; in the brainstem, AChE was increased. Parallel examinations of choline acetyltransferase, an enzymatic marker for cholinergic nerve terminals, showed a different pattern of 6-OHDA-induced alterations, with initial decreases in both forebrain and brainstem in males and regression toward normal by PN21; females were far less affected. The sex differences are in accord with the greater plasticity of the female brain and its more rapid recovery from neurotoxic injury; our findings indicate that these differences are present well before puberty. These results support the view that AChE is involved in neurite formation, unrelated to its enzymatic role in cholinergic neurotransmission. Further, the results for choline acetyltransferase indicate that early depletion of norepinephrine compromises development of acetylcholine systems, consistent with a trophic role for this neurotransmitter. PMID:19452616

  1. 6-Hydroxydopamine inhibits some effects of mescaline centrally administered to rabbits.

    PubMed

    Ferri, S; Reina, R A; Braga, P

    1977-12-19

    The narcotic antagonist naloxone does not antagonize antinociception elicited in the rabbit by 100 microgram/kg of mescaline centrally administered, whereas pretreatment with 6-hydroxydopamine (6-OHDA) inhibits this mescaline effect. Stereotyped behavior of rabbits following central mescaline administration is also prevented by 6-hda pretreatment. Since 6-OHDA in known to produce a degeneration of catecholamine containing nerve terminals, a crucial role of catecholamines is suggested in the complex of effects seen in the rabbit after central administration of the hallucinogen.

  2. 6-OHDA lesions to amygdala and hippocampus attenuate memory-enhancing effect of the 3-7 fragment of angiotensin II.

    PubMed

    Winnicka, M M; Braszko, J J; Wiśniewski, K

    1998-05-01

    We have previously shown that facilitatory effect of angiotensin II (AII) on the retrieval of memory is mediated by the dopaminergic system. In the present study, we searched for the influence of the 3-7 fragment of angiotensin II [AII(3-7)] on the retrieval processes in a passive avoidance situation after bilateral 6-OHDA lesions to the central amygdala (CA) and the CA4 field of the hippocampus (HI). AII(3-7) given 15 min before the retention testing, at the intracerebroventricular dose of 1 nmol, significantly prolonged avoidance latencies in sham-operated rats (i.e. improved retrieval of memory for the electric footshock experienced during the learning trial). Bilateral lesions to CA totally abolished, and to HI significantly diminished, this facilitatory effect. An increase of spontaneous locomotor activity in rats lesioned to CA and a decrease in rats lesioned to HI were unlikely to interfere with the cognitive effect of AII (3-7). These results suggest that the anatomical substrate of facilitating retrieval of information activity of AII(3-7) is closely related to the dopaminergic projection from the ventral tegmental area and substantia nigra to CA and HI.

  3. Neuroprotective Effect of Pseudoginsenoside-F11 on a Rat Model of Parkinson's Disease Induced by 6-Hydroxydopamine

    PubMed Central

    Wang, Jian Yu; Yang, Jing Yu; Wang, Fang; Fu, Shi Yuan; Hou, Yue; Jiang, Bo; Ma, Jie; Song, Cui; Wu, Chun Fu

    2013-01-01

    Pseudoginsenoside-F11 (PF11), a component of Panax quinquefolism (American ginseng), plays a lot of beneficial effects on disorders of central nervous system. In this paper, the neuroprotective effect of PF11 on Parkinson's disease (PD) and the possible mechanism were investigated in a rat PD model. PF11 was orally administered at 3, 6, and 12 mg/kg once daily for a period of 2 weeks before and 1 week after the unilateral lesion of left medial forebrain bundle (MFB) induced by 6-hydroxydopamine (6-OHDA). The results showed that PF11 markedly improved the locomotor, motor balance, coordination, and apomorphine-induced rotations in 6-OHDA-lesioned rats. The expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and the content of extracellular dopamine (DA) in striatum were also significantly increased after PF11 treatment. Moreover, significant reduction in the levels of striatal extracellular hydroxyl radical (∙OH), detected as 2,3- and 2,5-dihydroxy benzoic acid (2,3- and 2,5-DHBA), and increase in the level of striatal extracellular ascorbic acid (AA) were observed in the PF11-treated groups compared with 6-OHDA-lesioned rats. Taken together, we propose that PF11 has potent anti-Parkinson property possibly through inhibiting free radical formation and stimulating endogenous antioxidant release. PMID:24386001

  4. Pramipexole protects dopaminergic neurons through paraplegin against 6-hydroxydopamine.

    PubMed

    Kim, Mun Ki; Park, Hyeon Soo; Cho, Jea Hyeon; Kim, Gon Sup; Won, Chungkil

    2015-01-21

    The neurotransmitter dopamine (DA) regulates various physiological and psychological functions, such as movement, motivation, behavior, and learning. DA exerts its function through DA receptors and a series of studies have reported the role of DAergic receptors in preventing DAergic neuronal degeneration. Here, we studied the DA receptor-mediated neuroprotective effect of the D2-like receptor agonists against 6-hydroxydopamine (6-OHDA)-induced DAergic neurodegeneration. D2-like receptor agonists were administered in the substantia nigra in vivo and to primary cultured neurons. Treatment of 6-OHDA decreased tyrosine hydroxylase (TH) and paraplegin (mitochondrial regulation protein) immunoreactivity, whereas pretreatment with quinpirole (a full D2-like receptor agonist) preserved TH and paraplegin reactivity. This led us to test which DA receptors were necessary for the neuroprotective effect and whether paraplegin can be regulated by D2 or D3 receptor agonists. Pretreatment with the D2 receptor selective agonist, sumanirole, did not preserve TH and paraplegin reactivity from 6-OHDA. However, the D3 receptor agonist, pramipexole, protected TH reactivity and restored paraplegin expression to the control level in the presence of 6-OHDA. Interestingly, pretreatment with the D3 receptor antagonist GR103691 reduced TH and paraplegin expression levels. These results suggest that the D3 receptor agonist may protect DA neurons from the effect of 6-OHDA through the modulation of the mitochondrial regulation protein paraplegin. PMID:25514384

  5. Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model.

    PubMed

    Sedaghat, Reza; Roghani, Mehrdad; Khalili, Mohsen

    2014-01-01

    Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD.

  6. Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model

    PubMed Central

    Sedaghat, Reza; Roghani, Mehrdad; Khalili, Mohsen

    2014-01-01

    Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD. PMID:24734075

  7. Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: Possible involvement of oxidative stress and inflammatory cytokines.

    PubMed

    Kheradmand, Afshin; Nayebi, Alireza M; Jorjani, Masoumeh; Khalifeh, Solmaz; Haddadi, Rasool

    2016-08-01

    Over production of reactive oxygen species (ROS) is postulated to be the main contributor in degeneration of nigrostriatal dopaminergic neurons. In this study we investigated the effects of WR1065, a free radical scavenger, on motor imbalance, oxidative stress parameters and inflammatory cytokines in CSF and brain of hemi-parkinsonian rats. Lesion of dopaminergic neurons was done by unilateral infusion of 6-hydroxydopamine into the central region of the substentia nigra pars compacta (SNc) to induce hemi-parkinsonism and motor imbalance in rats. WR1065 (20, 40 and 80μg/2μl/rat) was administered three days before 6-OHDA administration. After three weeks behavioral study was performed and then brain and CSF samples were collected to assess tumor necrosis factor (TNFα), interlukin (IL-1β), reduced glutathione (GSH), and malondialdehyde (MDA). WR1065 pre-treatment in rats before receiving 6-OHDA, improved significantly motor impairment and caused reduction of MDA and inflammatory cytokines TNFα and IL-1β levels, while GSH level significantly increased when compared with lesioned rats. Our study indicated that WR1065 could improve 6-OHDA-induced motor imbalance. Furthermore, it decreased lipid peroxidation and inflammatory cytokines and restored the level of GSH up to normal range. We suggest that WR1065 can be proposed as a potential neuroprotective agent in motor impairments of PD. However to prove this hypothesis more clinical trial studies should be done. PMID:27222379

  8. Protective Effect of Oral Hesperetin Against Unilateral Striatal 6-Hydroxydopamine Damage in the Rat.

    PubMed

    Kiasalari, Zahra; Khalili, Mohsen; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2016-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder due to loss of dopaminergic neurons in the substantia nigra pars compacta (SNC). PD finally leads to incapacitating symptoms including motor and cognitive deficits. This study was undertaken to assess protective effect of the flavanone hesperetin against striatal 6-hydroxydopamine lesion and to explore in more detail some underlying mechanisms including apoptosis, inflammation and oxidative stress. In this research study, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats received hesperetin (50 mg/kg/day) for 1 week. Hesperetin reduced apomorphine-induced rotational asymmetry and decreased the latency to initiate and the total time on the narrow beam task. It also attenuated striatal malondialdehyde and enhanced striatal catalase activity and GSH content, lowered striatal level of glial fibrillary acidic protein as an index of astrogliosis and increased Bcl2 with no significant change of the nuclear factor NF-kB as a marker of inflammation. Hesperetin treatment was also capable to mitigate nigral DNA fragmentation as an index of apoptosis and to prevent loss of SNC dopaminergic neurons. This study indicated the protective effect of hesperetin in an early model of PD via attenuation of apoptosis, astrogliosis marker and oxidative stress and it may be helpful as an adjuvant therapy for management of PD at its early stages.

  9. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Tarozzi, Andrea; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-11-17

    A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD. PMID:25257035

  10. Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat.

    PubMed

    Carta, Anna R; Frau, Lucia; Lucia, Frau; Pinna, Annalisa; Annalisa, Pinna; Pontis, Silvia; Silvia, Pontis; Simola, Nicola; Nicola, Simola; Schintu, Nicoletta; Nicoletta, Schintu; Morelli, Micaela; Micaela, Morelli

    2008-07-01

    Prolonged treatment with L-DOPA induces highly disabling dyskinesia in Parkinson's disease (PD) patients. In contrast, dopaminergic agonists display variably dyskinetic outcome, depending on pharmacokinetic/pharmacodynamic profile. The present study was aimed at assessing behavioral and biochemical correlates of intense or mild dyskinesia displayed by the different dopamine (DA) receptors stimulation in a rat model of PD. The effect of subchronic stimulation of the D(1) receptor by SKF38393, and the D(2)/D(3) receptor by ropinirole was evaluated in unilaterally 6-hydroxyDA-lesioned rats. Sensitization of contralateral turning (SCT) behavior and abnormal involuntary movements (AIMs) were assessed as behavioral correlates of dyskinetic responses. Opioid peptides mRNA in the dorsolateral striatum (dlStr) and glutamic acid decarboxylase (GAD67) mRNA content in globus pallidus (GP), were evaluated as an index of neuroadaptive changes occurring in the direct and indirect basal ganglia pathways. Subchronic SKF38393 caused AIMs and SCT whereas ropinirole elicited SCT only, indicating that both drugs induced some dyskinetic response, albeit of different type. Peptides mRNA evaluation in dlStr, showed that SKF38393 subchronic treatment was associated to an overexpression of both dynorphin (DYN) and enkephalin (ENK) mRNAs, in the direct and indirect striatal pathway respectively. In contrast, a decrease in DYN mRNA levels only was observed after treatment with ropinirole. Analysis of GAD67 mRNA levels in the GP showed an increase after both D(1) and D(2)/D(3) agonist treatments. Results suggest that presence of SCT alone or SCT plus AIMs might represent correlates of the differential severity of dyskinetic movements induced by treatment with low (ropinirole) or high (SKF38393) dyskinetic potential. Neuroadaptive increases in opioid peptide expression in both direct and indirect striatal pathways were associated to the appearance of AIMs alone. In contrast, increase of GAD67 m

  11. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  12. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  13. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    PubMed

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.

  14. The Use of Perinatal 6-Hydroxydopamine to Produce a Rodent Model of Lesch-Nyhan Disease.

    PubMed

    Knapp, Darin J; Breese, George R

    2016-01-01

    Lesch-Nyhan disease is a neurologically, metabolically, and behaviorally devastating condition that has eluded complete characterization and adequate treatment. While it is known that the disease is intimately associated with dysfunction of the hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene that codes for an enzyme of purine metabolism (hypoxanthine-guanine phosphoribosyltransferase) and is associated with neurological, behavioral, as well as metabolic dysfunction, the mechanisms of the neurobehavioral manifestations are as yet unclear. However, discoveries over the past few decades not only have created useful novel animal models (e.g., the HPRT-deficient mouse and the serendipitously discovered perinatal 6-hydroxydopamine (6-OHDA lesion model), but also have expanded into epigenetic, genomic, and proteomic approaches to better understand the mechanisms underlying this disease. The perinatal 6-OHDA model, in addition to modeling self-injury and dopamine depletion in the clinical condition, also underscores the profound importance of development in the differential course of maladaptive progression in the face of a common/single neurotoxic insult at different ages. Recent developments from clinical and basic science efforts attest to the fact that while the disease would seem to have a simple single gene defect at its core, the manifestations of this defect are profound and unexpectedly diverse. Future efforts employing the 6-OHDA model and others in the context of the novel technologies of genome editing, chemo- and opto-genetics, epigenetics, and further studies on the mechanisms of stress-induced maladaptations in brain all hold promise in taking our understanding of this disease to the next level. PMID:27029809

  15. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine.

    PubMed

    Santiago, Ronise M; Barbieiro, Janaína; Lima, Marcelo M S; Dombrowski, Patrícia A; Andreatini, Roberto; Vital, Maria A B F

    2010-08-16

    Depression is a frequently encountered non-motor feature of Parkinson's disease (PD) and it can have a significant impact on patient's quality of life. Considering the differential pathophysiology of depression in PD, it prompts the idea that a degenerated nigrostriatal system plays a role in depressive-like behaviors, whilst animal models of PD are employed. Therefore, we addressed the question of whether dopamine (DA) depletion, promoted by the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), lipopolysaccharide (LPS) and rotenone are able to induce depressive-like behaviors and neurotransmitters alterations similarly that encountered in PD. To test this rationale, we performed intranigral injections of each neurotoxin, followed by motor behavior, depressive-like behaviors, histological and neurochemical tests. After the motor recovery period, MPTP, 6-OHDA and rotenone were able to produce anhedonia and behavioral despair. These altered behavioral responses were accompanied by reductions of striatal DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) restricted to the 6-OHDA group. Additionally, decreases on the hippocampal serotonin (5-HT) content were detected for the MPTP, 6-OHDA and rotenone groups. Notably, strong correlations were detected among the groups when 5-HT and DA were correlated with swimming (r=+0.97; P=0.001) and immobility (r=-0.90; P=0.012), respectively. Our data indicate that MPTP, 6-OHDA and rotenone, but not LPS were able to produce depressive-like behaviors accompanied primarily by hippocampal 5-HT reductions. Moreover, DA and 5-HT strongly correlated with "emotional" impairments suggesting an important participation of these neurotransmitters in anhedonia and behavioral despair after nigral lesions promoted by the neurotoxins.

  16. Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine

    SciTech Connect

    Kavanagh, Edel T.; Loughlin, John P.; Herbert, Kate Reed; Dockery, Peter; Samali, Afshin; Doyle, Karen M.; Gorman, Adrienne M. . E-mail: adrienne.gorman@nuigalway.ie

    2006-12-29

    6-Hydroxydopamine (6-OHDA) is often used in models of Parkinson's disease since it can selectively target and kill dopaminergic cells of the substantia nigra. In this study, pre-treatment of PC12 cells with nerve growth factor (NGF) inhibited apoptosis and necrosis by 6-OHDA, including caspase activity and lactate dehydrogenase release. Notably, cells exposed to 6-OHDA in the presence of NGF were subsequently capable of proliferation (when replated without NGF), or neurite outgrowth (with continued presence of NGF). Following 7 days growth in the presence of NGF, expression of {beta}III tubulin and tyrosine hydroxylase and increased intracellular catecholamines was detectable in PC12 cells, features characteristic of functional dopaminergic neurons. NGF-pre-treated PC12 cells retained expression of {beta}III-tubulin and tyrosine hydroxylase, but not catecholamine content following 6-OHDA exposure. These data indicate that NGF-protected cells maintained some aspects of functionality and were subsequently capable of proliferation or differentiation.

  17. CCK-8 injected into the nucleus accumbens attenuates the supersensitive locomotor response to apomorphine in 6-OHDA and chronic-neuroleptic treated rats.

    PubMed

    Weiss, F; Ettenberg, A; Koob, G F

    1989-01-01

    Postsynaptic dopamine-cholecystokinin (CCK) interactions in the nucleus accumbens were studied in two behavioral preparations of DA receptor supersensitivity: chronic-neuroleptic treated and 6-hydroxydopamine (6-OHDA) denervated rats. Subcutaneous (SC) injections of apomorphine (APO; 0.15 mg/kg) in experiment 1 produced marked hyperlocomotion in rats following 12 days of pretreatment with cis-[Z]-flupenthixol (2 mg/kg; twice per day). Bilateral intra-accumbens (N.Acc.) microinjections of CCK-8 (2 ng and 2 micrograms) reliably reduced APO-stimulated hyperlocomotion. An intermediate CCK dose (20 ng) was without effect. No change in APO responsivity following chronic vehicle treatment was observed and the baseline APO response was not altered by CCK at any dose. Denervation of mesolimbic dopamine (DA) terminals by intra-N.Acc. injections of 6-hydroxydopamine (6-OHDA; 8 micrograms/side) in experiment 2 similarly resulted in intense locomotor hyperactivity after APO stimulation (0.1 mg/kg; SC). Bilateral intra-N.Acc. injections of CCK-8 (1, 10, 100 ng, and 1 micrograms) significantly attenuated the supersensitive locomotor response to APO. As in experiment 1, CCK produced "biphasic" dose-response effects with strong attenuation that persisted throughout the entire 60-min test at both high (1 microgram) and low (1 ng) doses. Intermediate CCK doses (10 and 100 ng) produced only short-term reductions in activity. Hypomotility induced by APO in SHAM-lesioned rats was not effectively reversed by CCK treatments. CCK had no effect on unstimulated baseline locomotor activity in either 6-OHDA or SHAM-lesioned rats. These results provide further evidence that CCK-8 modulates mesolimbic DA activity by functionally opposing the postsynaptic effects of DA in the region of the nucleus accumbens. PMID:2574480

  18. RNAi-mediated silencing of HLA A2 suppressed acute rejection against human fibroblast xenografts in the striatum of 6-OHDA lesioned rats.

    PubMed

    Liang, Caixia; Xu, Yunzhi; Zheng, Deyu; Sun, Xiaohong; Xu, Qunyuan; Duan, Deyi

    2016-08-15

    Major histocompatibility complex class l (MHC I) molecules play a role in determining whether transplanted cells will be accepted or rejected, and masking of MHC I on donor cells has been found useful for immunoprotection of neural xenografts. In the present study, primary human embryonic lung fibroblasts (HELF), HELF treated with lentivirus-mediated small interfering RNAs (siRNAs) targeting human leukocyte antigen A2 (HLA A2, MHC I in humans) (siHELF), and rat embryonic lung fibroblasts (RELF) were stereotaxically grafted into the striatum of 6-hydroxydopamine lesioned rats to explore whether knockdown of HLA A2 could reduce host immune responses against xenografts. Before lentiviral infection, the cells were transduced with retroviruses harboring tyrosine hydroxylase cDNA. Knockdown of HLA A2 protein was examined by Western blotting. The immune responses (the number of CD4 and CD8 T-cells in the brain and peripheral blood), glial reaction, and survival of human fibroblasts were quantitatively evaluated by flow cytometry and immunohistochemistry at 4d, 2w, and 6w post-graft. Animal behaviors were assessed by counting apomorphine-induced rotations pre- and post-grafts. It was shown that a lower level of HLA A2 was observed in siHELF grafts than in HELF grafts, and knockdown of HLA A2 decreased rat immune responses, as indicated by less remarkable increases in the number of CD8 and CD4 T-cells in the brain and the ratio of CD4:CD8 T-cells in the peripheral blood in rats grafted with siHELF. Rats grafted with siHELF exhibited a significant improvement in motor asymmetry post-transplantation and a better survival of human fibroblasts at 2w. The increasing number of activated microglia and the decreasing number of astrocytes were found in three groups of rats post-implantation. These data suggested that RNAi-mediated knockdown of HLA A2 could suppress acute rejection against xenogeneic human cell transplants in the rat brain. PMID:27397073

  19. Adipose stromal cells-conditioned medium blocks 6-hydroxydopamine-induced neurotoxicity and reactive oxygen species.

    PubMed

    Gu, Huiying; Wang, Jimmy; Du, Nicole; Tan, Jiangning; Johnstone, Brian; Du, Yansheng

    2013-06-01

    A recent in vivo study suggested that the delivery of adipose stromal cells (ASCs) protected rat brains from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. However, the molecular mechanism that underlies this neuroprotection remains unknown. It was suggested that ASCs-induced neuroprotection possibly resulting from released factors from ASCs. In this study, we investigated whether and how cell-free conditioned media collected from ASCs (ASC-CM) protect neurons against neurotoxicity induced by 6-OHDA in cultured rat rostral mesencephalic neurons (RMN) and cerebellar granule neurons (CGN). We now report that ASC-CM protects both RMN and CGN against 6-OHDA neurotoxicity. Exposure of CGN to 6-OHDA resulted in a significant increases in neuronal ROS and cell death. As expected, pretreatments with ASC-CM dramatically block both 6-OHDA-induced ROS and neurotoxicity. Additionally, ASC-CM also directly attenuated H2O2-induced neuronal death. Our results suggest that ASC-CM could block 6-OHDA-induced neuronal death by inhibiting both 6-OHDA-induced ROS generation and ROS-induced neurotoxicity in neurons. Both antioxidative and neuroprotective effects of ASC-CM may be beneficial in the therapy for Parkinson's disease and other neurodegenerative diseases.

  20. Behavioral and Neurochemical Effects of Alpha-Lipoic Acid in the Model of Parkinson's Disease Induced by Unilateral Stereotaxic Injection of 6-Ohda in Rat

    PubMed Central

    de Araújo, Dayane Pessoa; De Sousa, Caren Nádia Soares; Araújo, Paulo Victor Pontes; Menezes, Carlos Eduardo de Souza; Sousa Rodrigues, Francisca Taciana; Escudeiro, Sarah Souza; Lima, Nicole Brito Cortez; Patrocínio, Manoel Claúdio Azevedo; Aguiar, Lissiana Magna Vasconcelos; Viana, Glauce Socorro de Barros; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This study aimed to investigate behavioral and neurochemical effects of α-lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinson's disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α-Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α-lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α-lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α-lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment. PMID:24023579

  1. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase

    SciTech Connect

    Wu Shaoping; Fu Ailing; Wang Yuxia; Yu Leiping; Jia Peiyuan; Li Qian; Jin Guozhang; Sun Manji . E-mail: Sunmj@nic.bmi.ac.cn

    2006-07-21

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 {mu}M) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD.

  2. Co-transplantation of carotid body and ventral mesencephalic cells as an alternative approach towards functional restoration in 6-hydroxydopamine-lesioned rats: implications for Parkinson's disease.

    PubMed

    Shukla, S; Agrawal, A K; Chaturvedi, R K; Seth, K; Srivastava, N; Sinha, C; Shukla, Y; Khanna, V K; Seth, P K

    2004-10-01

    Exogenous administration of various neurotrophic factors has been shown to protect neurons in animal model of Parkinson's disease (PD). Several attempts are being made to search a tissue source simultaneously expressing many of these neurotrophic factors. Carotid body (CB) contains oxygen-sensitive glomus cells rich in dopamine (DA) and expresses glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and neurotrophin-3. We have attempted to study the functional restoration following co-transplantation of CB cells and ventral mesencephalic cells (VMC) in a 6-hydroxydopamine-lesioned rat model of PD. A significant recovery (p < 0.001) in d-amphetamine-induced circling behavior (80%) and spontaneous locomotor activity (85%) was evident in co-transplanted animals at 12 weeks post-transplantation as compared to lesioned animals. Similarly, a significant (p < 0.001) restoration was observed in DA-D(2) receptor binding (77%), striatal DA (87%) and 3,4-dihydroxyphenylacetic acid (DOPAC) (85%) levels and nigral DA (75%) and DOPAC (74%) levels. Functional recovery was accompanied by tyrosine hydroxylase (TH) expression and quantification of TH-positive cells by image analysis revealed a significant restoration in TH-immunoreactive (IR) fiber density in striatum, as well as TH-IR neurons in substantia nigra pars compacta in co-transplanted animals over VMC-transplanted animals. The result suggests that co-transplantation of CB cells along with VMC provides better and long-term functional restoration in the rat model of PD, possibly by supporting the survival of newly grafted cells as well as remaining host DA neurons. PMID:15447661

  3. Voluntary exercise reduces the neurotoxic effects of 6-hydroxydopamine in maternally separated rats

    PubMed Central

    Mabandla, Musa Vuyisile; Russell, Vivienne Ann

    2010-01-01

    Maternal separation has been associated with development of anxiety-like behaviour and learning impairments in adult rats. This has been linked to changes in brain morphology observed after exposure to high levels of circulating glucocorticoids during the stress-hyporesponsive period (P4 to P14). In the present study, adult rats that had been subjected to maternal separation (180 min/day for 14 days) during the stress-hyporesponsive period, received unilateral infusions of a small dose of 6-hydroxydopamine (6-OHDA, 5 μg/4 μl saline) into the medial forebrain bundle. The results showed that voluntary exercise had a neuroprotective effect in both non-stressed and maternally separated rats in that there was a decrease in forelimb akinesia (step test) and limb use asymmetry (cylinder test). Maternal separation increased forelimb akinesia and forelimb use asymmetry and reduced the beneficial effect of exercise on forelimb akinesia. It also reduced exploratory behaviour, consistent with anxiety-like behaviour normally associated with maternal separation. Exercise appeared to reduce dopamine neuron destruction in the lesioned substantia nigra when expressed as a percentage of the non-lesioned hemisphere. However, this appeared to be due to a compensatory decrease in completely stained tyrosine hydroxylase positive neurons in the contralateral, non-lesioned substantia nigra. In agreement with reports that maternal separation increases the 6-OHDA-induced loss of dopamine terminals in the striatum, there was a small increase in dopamine neuron destruction when expressed as a percentage of the non-lesioned hemisphere but there was no difference in dopamine cell number, suggesting that exposure to maternal separation did not exacerbate dopamine cell loss. PMID:20206210

  4. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine.

    PubMed

    Roberts, A C; De Salvia, M A; Wilkinson, L S; Collins, P; Muir, J L; Everitt, B J; Robbins, T W

    1994-05-01

    The effects of 6-hydroxydopamine lesions of the prefrontal cortex in monkeys were investigated on two cognitive tests of prefrontal function, spatial delayed response, and attentional set shifting. The latter test provided a componential analysis of the Wisconsin Card Sort Test, a commonly used clinical test of frontal lobe function in man. Acquisition of a visual compound discrimination requiring a shift of attention from one dimension to another (extradimensional shift), for example, shapes to lines, was significantly improved. This enhancement was behaviorally specific in that there were no effects on acquisition of a discrimination that required the continued maintenance of an attentional set toward one particular dimension (intradimensional shift), nor any effects on a series of visual or spatial discrimination reversals that involved the repeated shifting of responding between two exemplars from the same dimension. In contrast, spatial delayed response performance was impaired, in agreement with previous results. Neurochemical measures showed a marked depletion of dopamine limited to the prefrontal cortex and a smaller loss of prefrontal noradrenaline. This was accompanied by a long-term adaptive change in the striatum such that extracellular dopamine in the caudate nucleus, as measured by in vivo microdialysis, was elevated in response to potassium stimulation as long as 18 months postsurgery. It is proposed that attentional set shifting is mediated by a balanced interaction between prefrontal and striatal dopamine, and that elevated dopamine contributes to the improvement in attentional set-shifting ability. This interpretation is consistent with the impairment in attentional set-shifting ability observed in patients with Parkinson's disease or with damage to the frontal lobes using the same test as used here for infrahuman primates.

  5. Interactions of CaMKII with dopamine D2 receptors: roles in levodopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's rats

    PubMed Central

    Zhang, SuFang; Xie, ChengLong; Wang, Qiang; Liu, ZhenGuo

    2014-01-01

    Ca2+/calmodulin-dependent protein kinase II is a synapse-enriched kinase in mammalian brains. This kinase interacts with various synaptic proteins to regulate expression and function of interacting proteins and thereby modulates synaptic transmission. CaMKII and its interacting partners are also believed to play a pivotal role in the pathogenesis of various neurological and neurodegenerative disorders, such as Parkinson's disease (PD). In this study, we found that CaMKIIα binds to dopamine D2 receptors (D2R) in vitro. A distal region in the D2R third intracellular loop harbors CaMKIIα binding. Endogenous CaMKIIα was also found to interact with native D2Rs in rat striatal neurons in which D2Rs are expressed at a high level. In addition, in a rat 6-hydroxydopamine lesioned model of PD, chronic levodopa administration induced characteristic dyskinesia. In parallel, levodopa induced an increase in CaMKIIα-D2R interactions in striatal neurons. Intrastriatal injection of a Tat-fusion and CaMKIIα-D2R interaction-dead peptide (Tat-D2Ri) reversed this increase in the interaction between two proteins. Tat-D2Ri also alleviated dyskinetic behaviors induced by levodopa. These results reveal a new interaction between CaMKIIα and D2Rs in striatal neurons which is sensitive to long-term administration of levodopa in PD rats. Prevention of the response of CaMKIIα-D2R interactions to levodopa can alleviate levodopa-induced dyskinesia. PMID:25351365

  6. Adaptive down-regulation of the serotonin transporter in the 6-hydroxydopamine-induced rat model of preclinical stages of Parkinson's disease and after chronic pramipexole treatment.

    PubMed

    Berghauzen-Maciejewska, K; Wardas, J; Kosmowska, B; Domin, H; Śmiałowska, M; Głowacka, U; Ossowska, K

    2016-02-01

    Our recent study has indicated that a moderate lesion induced by bilateral 6-hydroxydopamine (6-OHDA) injections into the ventrolateral region of the caudate-putamen (CP) in rats, modeling preclinical stages of Parkinson's disease, induces a "depressive-like" behavior which is reversed by chronic treatment with pramipexole (PRA). The aim of the present study was to examine the influence of the above lesion and chronic PRA treatment on binding to the serotonin transporter (SERT) in different brain regions. As before, 6-OHDA (15 μg/2.5 μl) was administered bilaterally into the CP. PRA (1mg/kg) was injected subcutaneously twice a day for 2 weeks. Serotonergic and dopaminergic neurons of the dorsal raphe (DR) were immunostained for tryptophan hydroxylase and tyrosine hydroxylase, respectively, and were counted stereologically. Binding of [(3)H]GBR 12,935 to the dopamine transporter (DAT) and [(3)H]citalopram to SERT was analyzed autoradiographically. Intrastriatal 6-OHDA injections decreased the number of dopaminergic, but not serotonergic neurons in the DR. 6-OHDA reduced the DAT binding in the CP, and SERT binding in the nigrostriatal system (CP, substantia nigra (SN)), limbic system (ventral tegmental area (VTA), nucleus accumbens (NAC), amygdala, prefrontal cortex (PFCX), habenula, hippocampus) and DR. A significant positive correlation was found between DAT and SERT binding in the CP. Chronic PRA did not influence DAT binding but reduced SERT binding in the above structures, and deepened the lesion-induced losses in the core region of the NAC, SN, VTA and PFCX. The present study indicates that both the lesion of dopaminergic neurons and chronic PRA administration induce adaptive down-regulation of SERT binding. Moreover, although involvement of stimulation of dopaminergic transmission by chronic PRA in its "antidepressant" effect seems to be prevalent, additional contribution of SERT inhibition cannot be excluded.

  7. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Haas, Stefan Jean-Pierre; Zhou, Xiaolai; Machado, Venissa; Wree, Andreas; Krieglstein, Kerstin; Spittau, Björn

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor β1 (Tgfβ1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfβ1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO). PMID:26869879

  8. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties.

    PubMed

    Olatunji, Opeyemi J; Feng, Yan; Olatunji, Oyenike O; Tang, Jian; Ouyang, Zhen; Su, Zhaoliang

    2016-07-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by degeneration and loss of dopaminergic neurons of the substantia nigra. Increasing evidence has indicated that oxidative stress plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Therapeutic options that target the antioxidant machinery may have potential in the treatment of PD. Cordycepin, a nucleoside isolated from Cordyceps species displayed potent antioxidant, anti-inflammatory and anticancer properties. However, its neuroprotective effect against 6-OHDA neurotoxicity as well as underlying mechanisms is still unclear. In this present study, we investigated the protective effect of cordycepin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity and its underlying mechanism. We observed that cordycepin effectively inhibited 6-OHDA-induced cell death, apoptosis and mitochondrial dysfunction. Cordycepin also inhibited cell apoptosis induced by 6-OHDA as observed in the reduction of cytochrome c release from the mitochondrial as well as the inhibition of caspase-3. In addition cordycepin markedly reduced cellular malondialdehyde (MDA) content and intracellular reactive oxygen species (ROS) level. Cordycepin also significantly increased the antioxidant enzymes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in 6-OHDA-treated cells. The results obtained unambiguously demonstrated that cordycepin protects PC12 cells against 6-OHDA-induced neurotoxicity through its potent antioxidant activity. PMID:27261571

  9. Lithium fails to protect dopaminergic neurons in the 6-OHDA model of Parkinson's disease.

    PubMed

    Yong, Yue; Ding, Hanqing; Fan, Zhiqin; Luo, Jia; Ke, Zun-Ji

    2011-03-01

    Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative diseases, the therapeutic potential of lithium receives great attention. Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons. The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD.

  10. 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria.

    PubMed

    Gupta, Sonam; Goswami, Poonam; Biswas, Joyshree; Joshi, Neeraj; Sharma, Sharad; Nath, C; Singh, Sarika

    2015-01-15

    The present study was conducted to investigate the effect of the neurotoxins 6-hydroxydopamine and lipopolysaccharide on astrocytes. Rat astrocyte C6 cells were treated with different concentration of 6-hydroxydopamine (6-OHDA)/lipopolysaccharides (LPS) for 24 h. Both neurotoxins significantly decreased the viability of astrocytes, augmented the expression of inducible nitric oxide synthase (iNOS) and the astrocyte marker--glial fibrillar acidic protein. A significantly decreased mitochondrial dehydrogenase activity, mitochondrial membrane potential, augmented reactive oxygen species (ROS) level, caspase-3 mRNA level, chromatin condensation and DNA damage was observed in 6-OHDA/LPS treated astroglial cells. 6-OHDA/LPS treatment also caused the significantly increased expression of iNOS and nitrite level. Findings showed that 6-OHDA/LPS treatment caused mitochondrial dysfunction mediated death of astrocytes, which significantly involve the nitric oxide. Since we have observed significantly increased level of iNOS along with mitochondrial impairment and apoptotic cell death in astrocytes, therefore to validate the role of iNOS, the cells were co-treated with iNOS inhibitor aminoguanidine (AG, 100 μM). Co-treatment of AG significantly attenuated the 6-OHDA/LPS induced cell death, mitochondrial activity, augmented ROS level, chromatin condensation and DNA damage. GFAP and caspase-3 expression were also inhibited with co-treatment of AG, although the extent of inhibition was different in both experimental sets. In conclusion, the findings showed that iNOS mediated increased level of nitric oxide acts as a key regulatory molecule in 6-OHDA/LPS induced mitochondrial dysfunction, DNA damage and apoptotic death of astrocytes.

  11. Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells.

    PubMed

    Chalovich, Elisabeth M; Zhu, Jian-hui; Caltagarone, John; Bowser, Robert; Chu, Charleen T

    2006-06-30

    Impaired survival signaling may represent a central mechanism in neurodegeneration. 6-Hydroxydopamine (6-OHDA) is an oxidative neurotoxin used to injure catecholaminergic cells of the central and peripheral nervous systems. Although 6-OHDA elicits phosphorylation of several kinases, downstream transcriptional effects that influence neuronal cell death are less defined. The cAMP response element (CRE) is present in the promoter sequences of several important neuronal survival factors. Treatment of catecholaminergic neuronal cell lines (B65 and SH-SY5Y) with 6-OHDA resulted in repression of basal CRE transactivation. Message levels of CRE-driven genes such as brain-derived neurotrophic factor and the survival factor Bcl-2 were decreased in 6-OHDA-treated cells, but message levels of genes lacking CRE sequences were not affected. Repression of CRE could be reversed by delayed treatment with cAMP several hours after initiation of 6-OHDA injury. Furthermore, restoration of CRE-driven transcription was associated with significant neuroprotection. In contrast to observations in other model systems, the mechanism of CRE repression did not involve decreased phosphorylation of its binding protein CREB. Instead, total CREB and phospho-CREB (pCREB) were increased in the cytoplasm and decreased in the nucleus of 6-OHDA-treated cells. 6-OHDA also decreased nuclear pCREB in dopaminergic neurons of primary mouse midbrain cultures. Co-treatment with cAMP promoted/restored nuclear localization of pCREB in both immortalized and primary culture systems. Increased cytoplasmic pCREB was observed in degenerating human Parkinson/Lewy body disease substantia nigra neurons but not in age-matched controls. Notably, cytoplasmic accumulation of activated upstream CREB kinases has been observed previously in both 6-OHDA-treated cells and degenerating human neurons, supporting a potential role for impaired nuclear import of phosphorylated signaling proteins.

  12. Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy.

    PubMed

    Silva-Adaya, Daniela; Pérez-De La Cruz, Verónica; Villeda-Hernández, Juana; Carrillo-Mora, Paul; González-Herrera, Irma Gabriela; García, Esperanza; Colín-Barenque, Laura; Pedraza-Chaverrí, José; Santamaría, Abel

    2011-01-01

    The neuroactive metabolite at the kynunerine pathway, kynurenic acid (KYNA), is a well-known competitive antagonist at the co-agonist glycine site of the N-methyl-D-aspartate receptor (NMDAr), and also decreases the extracellular levels of glutamate by blocking α7-nicotinic acetylcholine receptor (α7-nAchr) located on glutamatergic terminals. KYNA has been often reported to be neuroprotective in different neurotoxic models. The systemic administration of L-kynurenine (L-KYN)--the precursor of KYNA--together with probenecid (PROB)--an inhibitor of organic acids transport--to rodents increases KYNA levels in the brain in a dose-dependent manner. The striatal infusion of the toxin 6-hydroxydopamine (6-OHDA) to rodents is one of the common models used to simulate Parkinson's disease (PD). Different studies have linked PD alterations with excessive glutamatergic transmission in the striatum since NMDAr antagonists exert beneficial effects in PD models. In this work we investigated the effect that a systemic administration of L-KYN+PROB exerted on the toxic model induced by 6-OHDA in rats. PROB (50 mg/kg, i.p.) + L-KYN (75 mg/kg, i.p.) were given to rats for seven consecutive days. On day two of treatment, the animals were infused with a single injection of 6-OHDA (20 μg/2 μl) into the right striatum. Fourteen days post-lesion, rotation behavior was assessed as a marker of motor impairment. The total levels of dopamine (DA) were also estimated in striatal tissue samples of 6-OHDA-treated animals as a neurochemical marker of damage. In addition, twenty eight days post-lesion, the striatal damage was assessed by hematoxylin/eosin staining and immunohistochemistry against glial fibrillary acidic protein (GFAP) in the same animals. Neurodegeneration was also assessed by Fluoro Jade staining. 6-OHDA infusion increased rotation behavior, striatal reactive gliosis and neurodegeneration, while DA levels were decreased. For all markers evaluated, we observed protective

  13. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents.

    PubMed

    Nie, Shuke; Xu, Yan; Chen, Guiqin; Ma, Kai; Han, Chao; Guo, Zhenli; Zhang, Zhentao; Ye, Keqiang; Cao, Xuebing

    2015-12-01

    Dopaminergic neurons loss in the substantia nigra (SN) and dopamine (DA) content loss in the striatum correlate well with disease severity in Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is a member of neurotrophin family and is necessary for the survival and development of DA neurons in the SN. Deficits in BDNF/TrkB receptors signaling contribute to the dysfunction of PD. Deoxygedunin, a derivative of gedunin produced from Indian neem tree, binds TrkB receptor and activates TrkB and its downstream signaling cascades in a BDNF-independent manner, and possesses neuroprotective effects in vitro and in vivo. In this study, we tested the neuroprotective effects of deoxygedunin in 6-hydroxydopamine (6-OHDA)-lesioned rat model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease. Rats were treated with deoxygedunin 5 mg/kg (i.p.) for one month started two weeks before 6-OHDA lesion (pre-treatment), or for two weeks right after lesion (post-treatment), with isovolumetric vehicle as control and normal. Mice were given deoxygedunin 5 mg/kg (i.p.) for 2 weeks and administrated with MPTP twice at the dose of 20 mg/kg (i.p.) on day 7. The results revealed that pretreatment with deoxygedunin improved PD models' behavioral performance and reduced dopaminergic neurons loss in SN, associated with the activation of TrkB receptors and its two major signaling cascades involving mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K). Thus, our current study indicates that deoxygedunin, as a small molecule TrkB agonist, displays prominent neuroprotective properties, providing a novel therapeutic strategy for treating Parkinson's disease. PMID:26282118

  14. Cathepsin X promotes 6-hydroxydopamine-induced apoptosis of PC12 and SH-SY5Y cells.

    PubMed

    Pišlar, Anja Hafner; Zidar, Nace; Kikelj, Danijel; Kos, Janko

    2014-07-01

    The cysteine carboxypeptidase cathepsin X is an important player in degenerative processes under normal ageing and pathological conditions. In the present study, we investigated the potential role of cathepsin X in 6-hydroxydopamine (6-OHDA)-induced toxicity in the pheochromocytoma cell line PC12 and neuroblastoma cell line SH-SY5Y. Cells exposed to 6-OHDA demonstrated alterations in the protein level of cathepsin X and activity of cathepsin X. Downregulation of cathepsin X expression by siRNA attenuated the neuronal death caused by 6-OHDA. Treatment with specific cathepsin X inhibitor AMS36 protected cells against 6-OHDA mediated cytotoxicity, resulting in reduced cell death and apoptosis. Furthermore, AMS36 reversed 6-OHDA-induced loss of tyrosine hydroxylase and attenuated 6-OHDA-induced activation of caspase-3, triggering apoptosis, intracellular generation of reactive oxygen species and mitochondrial dysfunction, including the release of cytochrome c and an imbalanced Bax/Bcl-2 ratio. Moreover, AMS36 interfered with NF-κB activation by blocking degradation of IκBα, preventing NF-κB translocation to the nucleus. Our data provide the first evidence that inhibition of cathepsin X protects both, PC12 and SH-SY5Y cells against 6-OHDA toxicity and indicate that cathepsin X may be responsible for dopamine neuron death, involved in the pathogenic cascade event for the neurodegenerative disorders, such as Parkinson's disease.

  15. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons.

    PubMed

    Hwang, Cheol Kyu; Chun, Hong Sung

    2012-01-01

    Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 µM) significantly attenuated 6-OHDA (50 µM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.

  16. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action.

    PubMed

    Saito, Yoshiro; Nishio, Keiko; Ogawa, Yoko; Kinumi, Tomoya; Yoshida, Yasukazu; Masuo, Yoshinori; Niki, Etsuo

    2007-03-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.

  17. Guanosine protects glial cells against 6-hydroxydopamine toxicity.

    PubMed

    Giuliani, Patricia; Ballerini, Patrizia; Buccella, Silvana; Ciccarelli, Renata; Rathbone, Michel P; Romano, Silvia; D'Alimonte, Iolanda; Caciagli, Francesco; Di Iorio, Patrizia; Pokorski, Mieczyslaw

    2015-01-01

    Increasing body of evidence indicates that neuron-neuroglia interaction may play a key role in determining the progression of neurodegenerative diseases including Parkinson's disease (PD), a chronic pathological condition characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra. We have previously reported that guanosine (GUO) antagonizes MPP(+)-induced cytotoxicity in neuroblastoma cells and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA) and beta-amyloid-induced apoptosis of SH-SY5Y cells. In the present study we demonstrate that GUO protected C6 glioma cells, taken as a model system for astrocytes, from 6-OHDA-induced neurotoxicity. We show that GUO, either alone or in combination with 6-OHDA activated the cell survival pathways ERK and PI3K/Akt. The involvement of these signaling systems in the mechanism of the nucleoside action was strengthened by a reduction of the protective effect when glial cells were pretreated with U0126 or LY294002, the specific inhibitors of MEK1/2 and PI3K, respectively. Since the protective effect on glial cell death of GUO was not affected by pretreatment with a cocktail of nucleoside transporter blockers, GUO transport and its intracellular accumulation were not at play in our in vitro model of PD. This fits well with our data which pointed to the presence of specific binding sites for GUO on rat brain membranes. On the whole, the results described in the present study, along with our recent evidence showing that GUO when administered to rats via intraperitoneal injection is able to reach the brain and with previous data indicating that it stimulates the release of neurotrophic factors, suggest that GUO, a natural compound, by acting at the glial level could be a promising agent to be tested against neurodegeneration. PMID:25310956

  18. Intraventricular injection of 6-hydroxydopamine results in an increased number of tyrosine hydroxylase immune-positive cells in the rat cortex.

    PubMed

    Wachter, B; Caradonna, S; Gittinger, K; Schläger, A; Küppers, E

    2014-11-01

    Previously we have demonstrated that intraventricular injection of 6-hydroxydopamine (6-OHDA) results in increased proliferation and de-differentiation of rat cortical astrocytes into progenitor-like cells 4 days after lesion (Wachter et al., 2010). To find out if these cells express tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine synthesis pathway, we performed immunohistochemistry in the rat cortex following intraventricular injection of 6-OHDA. Four days after injection we demonstrated a strong emergence of TH-positive (TH(+)) somata in the cortices of 6-OHDA-lesioned animals. The number of TH(+) cells in the cortex of 6-OHDA-lesioned animals was 15 times higher than in sham-operated animals, where virtually no TH(+) somata occurred. Combining TH immunohistochemistry with classical Nissl stain yielded complete congruency, and ∼45% of the TH(+) cells co-expressed calretinin, which indicates an interneuron affiliation. There was no co-staining of TH with other interneuron markers or with glial markers such as glial fibrillary acidic protein (GFAP) or the neural stem/progenitor marker Nestin, nor could we find co-localization with the proliferation marker Ki67. However, we found a co-localization of TH with glial progenitor cell markers (Sox2 and S100β) and with polysialylated-neural cell adhesion molecule (PSA-NCAM), which has been shown to be expressed in immature, but not recently generated cortical neurons. Taken together, this study seems to confirm our previous findings with respect to a 6-OHDA-induced expression of neuronal precursor markers in cells of the rat cortex, although the TH(+) cells found in this study are not identical with the potentially de-differentiated astrocytes described recently (Wachter et al., 2010). The detection of cortical cells expressing the catecholaminergic key enzyme TH might indicate a possible compensatory role of these cells in a dopamine-(DA)-depleted system. Future studies are needed to determine

  19. Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation.

    PubMed

    Li, Li; Sagot, Ben; Zhou, Fu-Ming

    2015-07-30

    The transcription factor Pitx3 null mutant (Pitx3Null) mice have a constitutive perinatal-onset and symmetric bilateral dopamine (DA) loss in the striatum. In these mice l-3,4-dihydroxyphenylalanine (l-dopa) induces apparently normal horizontal movements (walking) but also upward movements consisting of the vertical body trunk and waving paws that are absent in normal animals and in animals with the classic unilateral 6-hydroxydopamine (6-OHDA) lesion-induced DA denervation. Thus, a concern is that the perinatal timing of the DA loss and potential developmental abnormalities in Pitx3Null mice may underlie these upward movements, thus reducing the usefulness as a DA denervation model. Here we show that in normal wild-type (Pitx3WT) mice with adult-onset symmetric, bilateral 6-OHDA-induced DA lesion in the dorsal striatum, l-dopa induces normal horizontal movements and upward movements that are qualitatively identical to those in Pitx3Null mice. Furthermore, after unilateral 6-OHDA lesion of the residual DA innervation in the striatum in Pitx3Null mice, l-dopa induces contraversive rotation that is similar to that in Pitx3WT mice with the classic unilateral 6-OHDA lesion. These results indicate that in Pitx3Null mice, the bilateral symmetric DA denervation in the dorsal striatum is sufficient for expressing the l-dopa-induced motor phenotype and the perinatal timing of their DA loss is not a determining factor, providing further evidence that Pitx3Null mice are a convenient and suitable mouse model to study the consequences of DA loss and dopaminergic replacement therapy in Parkinson's disease.

  20. Behavioral and Cellular Modulation of l-DOPA-Induced Dyskinesia by β-Adrenoceptor Blockade in the 6-Hydroxydopamine-Lesioned Rat

    PubMed Central

    Lindenbach, David; Ostock, Corinne Y.; Eskow Jaunarajs, Karen L.; Dupre, Kristin B.; Barnum, Christopher J.; Bhide, Nirmal

    2011-01-01

    Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as l-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective β-adrenergic receptor (βAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with l-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF l-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through βAR blockade, we subsequently examined each enantiomer separately because only the (−)enantiomer has significant βAR affinity. We next investigated the effects of a localized striatal βAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic l-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (−)propranolol had anti-LID properties indicating βAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through βAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action. PMID:21402691

  1. PHARMACOLOGICAL REGULATION OF DIGESTION IN THE ANAUTOGENOUS FLESH FLY, Sarcophaga crassipalpis, BY SIMPLE INJECTION OF 6-HYDROXYDOPAMINE.

    PubMed

    Bil, Magdalena; Huybrechts, Roger

    2016-03-01

    Female anautogenous Sarcophaga flesh flies need a protein meal to start large-scale yolk polypeptides (YPs) production and oocyte maturation. Protein meal rapidly elicits a brain-dependent increase in midgut proteolytic activity. Trypsin and chymotrypsin together represent over 80% of protease activity in liver-fed flies. Abdominal injection of 6-hydroxydopamine (6-OHDA) dose-dependently prohibits this increase in proteolytic activity at translational level in a similar way as post liver feeding decapitation. Delayed injection of 6-OHDA later than 6 h post liver meal has no effect. In flesh flies, chemical decapitation by 6-OHDA, by interrupting the brain-gut dopaminergic signaling, can be used as tool for the controlled inhibition of midgut proteolytic activity and subsequent ovarial development. Inhibition of ovarial development is probably indirect due to a deficit in circulating amino acids needed for YPs synthesis.

  2. Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson's disease.

    PubMed

    Mayo, J C; Sainz, R M; Uria, H; Antolin, I; Esteban, M M; Rodriguez, C

    1998-04-01

    It was recently reported that low doses of 6-hydroxydopamine (6-OHDA) induce apoptosis of naive (undifferentiated) and neuronal (differentiated) PC12 cells, and this system has been proposed as an adequate experimental model for the study of Parkinson's disease. The mechanism by which this neurotoxin damages cells is via the production of free radicals. Given that the neurohormone melatonin has been reported 1) to be a highly effective endogenous free radical scavenger, 2) to increase the mRNA levels and the activity of several antioxidant enzymes, and 3) to inhibit apoptosis in other tissues, we have studied the ability of melatonin to prevent the programmed cell death induced by 6-OHDA in PC12 cells. We found that melatonin prevents the apoptosis caused by 6-OHDA in naive and neuronal PC12 cells as estimated by 1) cell viability assays, 2) counting of the number of apoptotic cells, and 3) analysis and quantification of DNA fragmentation. Exploration of the mechanisms used by melatonin to reduce programmed cell death revealed that this chemical mediator prevents the 6-OHDA induced reduction of mRNAs for several antioxidant enzymes. The possibility that melatonin utilized additional mechanisms to prevent apoptosis of these cells is also discussed. Since this endogenous agent has no known side effects and readily crosses the blood-brain-barrier, we consider melatonin to have a high clinical potential in the treatment of Parkinson's disease and possibly other neurodegenerative diseases, although more research on the mechanisms is yet to be done.

  3. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons. PMID:26730494

  4. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.

  5. Apomorphine-induced turning behavior in 6-hydroxydopamine lesioned rats is increased by histidine and decreased by histidine decarboxylase, histamine H1 and H2 receptor antagonists, and an H3 receptor agonist.

    PubMed

    Liu, Chun-Qing; Hu, Dan-Na; Liu, Fu-Xin; Chen, Zhong; Luo, Jian-Hong

    2008-09-01

    The role of histamine and its receptors in basal ganglia neurocircuitry was assessed in apomorphine-induced turning behavior. Rats with unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta and medial forebrain bundle were administered histaminergic agents, and apomorphine-induced turning behavior was tested on Days 7 and 14 post-lesion. Compared with saline-treated rats, histidine (500 mg/kg, i.p.), a precursor of histamine, increased turning behavior (p<0.05), while alpha-fluoromethylhistidine (alpha-FMH, 25 microg, i.c.v.), an irreversible inhibitor of histidine decarboxylase, decreased turning behavior (p<0.05) but only on Day 14 post-lesion. Both the histamine H(1) receptor antagonist pyrilamine (10 and 50 microg, i.c.v.) and the H(2) receptor antagonist cimetidine (10 and 50 microg, i.c.v.) significantly decreased turning behavior on Days 7 and 14 post-lesion. The histamine H(3) receptor agonist immepip (10 microg, i.c.v.) decreased turning behavior (p<0.05) on Day 14 post-lesion. The present findings indicate the complex interactions of histamine on basal ganglia function.

  6. Behavioural Assessment of the A2a/NR2B Combination in the Unilateral 6-OHDA-Lesioned Rat Model: A New Method to Examine the Therapeutic Potential of Non-Dopaminergic Drugs

    PubMed Central

    Michel, Anne; Downey, Patrick; Van Damme, Xavier; De Wolf, Catherine; Schwarting, Rainer; Scheller, Dieter

    2015-01-01

    In Parkinson’s disease (PD), dopaminergic therapies are often associated with the development of motor complications. Attention has therefore been focused on the use of non-dopaminergic drugs. This study developed a new behavioural method capable of demonstrating the added value of combining adenosinergic and glutamatergic receptor antagonists in unilateral 6-OHDA lesioned rats. Rats were dosed orally with Tozadenant, a selective A2A receptor antagonist, and three different doses of Radiprodil, an NR2B-selective NMDA receptor antagonist. The drugs were given alone or in combination and rats were placed in an open-field for behavioural monitoring. Video recordings were automatically analysed. Five different behaviours were scored: distance traveled, ipsi- and contraversive turns, body position, and space occupancy. The results show that A2A or NR2B receptor antagonists given alone or in combination did not produce enhanced turning as observed with an active dose of L-Dopa/benserazide. Instead the treated rats maintained a straight body position, were able to shift from one direction to the other and occupied a significantly larger space in the arena. The highest “Tozadenant/Radiprodil” dose combination significantly increased all five behavioural parameters recorded compared to rats treated with vehicle or the same doses of the drugs alone. Our data suggest that the A2A/NR2B antagonist combination may be able to stimulate motor activity to a similar level as that achieved by L-Dopa but in the absence of the side-effects that are associated with dopaminergic hyperstimulation. If these results translate into the clinic, this combination could represent an alternative symptomatic treatment option for PD. PMID:26322641

  7. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats.

    PubMed

    Das, Saroj Kumar; Patel, Bhupesh; Patri, Manorama

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence.

  8. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats

    PubMed Central

    Das, Saroj Kumar; Patel, Bhupesh

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence. PMID:27034665

  9. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum.

    PubMed

    Serratos, Iris N; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Colín-González, Ana Laura; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Sánchez-García, Aurora; Gómez, Isabel; Rangel-López, Edgar; Santamaria, Abel

    2016-04-01

    The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity.

  10. 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA.

    PubMed

    Gomez-Lazaro, Maria; Galindo, Maria F; Concannon, Caoimhín G; Segura, Miguel F; Fernandez-Gomez, Francisco J; Llecha, Nuria; Comella, Joan X; Prehn, Jochen H M; Jordan, Joaquin

    2008-03-01

    Mitochondrial alterations have been associated with the cytotoxic effect of 6-hydroxydopamine (6-OHDA), a widely used toxin to study Parkinson's disease. In previous work, we have demonstrated that 6-OHDA increases mitochondrial membrane permeability leading to cytochrome c release, but the precise mechanisms involved in this process remain unknown. Herein we studied the mechanism of increased mitochondrial permeability of SH-SY5Y neuroblastoma cells in response to 6-OHDA. Cytochrome c release induced by 6-OHDA occurred, in both SH-SY5Y cells and primary cultures, in the absence of mitochondrial swelling or a decrease in mitochondrial calcein fluorescence, suggesting little involvement of the mitochondrial permeability transition pore in this process. In contrast, 6-OHDA-induced cell death was associated with a significant translocation of the pro-apoptotic Bax protein from the cytosol to mitochondria and with a significant induction of the BH3-only protein PUMA. Experiments in mouse embryonic fibroblasts deficient in Bax or PUMA demonstrated a role for both proteins in 6-OHDA-induced apoptosis. Although 6-OHDA elevated both total and nuclear p53 protein levels, activation of p53 was not essential for subsequent cell death. In contrast, we found that p38 mitogen-activated protein kinase (MAPK) was activated early during 6-OHDA-induced apoptosis, and that treatment with the p38 MAPK inhibitor SKF86002 potently inhibited PUMA induction, green fluorescent protein-Bax redistribution and apoptosis in response to 6-OHDA. These data demonstrate a critical involvement of p38 MAPK, PUMA, and Bax in 6-OHDA-induced apoptosis.

  11. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent.

    PubMed

    Jiang, Hong; Song, Ning; Xu, Huamin; Zhang, Shuzhen; Wang, Jun; Xie, Junxia

    2010-03-01

    Iron plays a key role in Parkinson's disease (PD). Increased iron content of the substantia nigra (SN) has been found in PD patients, and divalent metal transporter 1 (DMT1) has been shown to be up-regulated in the SN of both MPTP-induced PD models and PD patients. However, the mechanisms underlying DMT1 up-regulation are largely unknown. In the present study, we observed that in the SN of 6-hydroxydopamine (6-OHDA)-induced PD rats, DMT1 with the iron responsive element (IRE, DMT1+IRE), but not DMT1 without IRE (DMT1-IRE), was up-regulated, suggesting that increased DMT1+IRE expression might account for nigral iron accumulation in PD rats. This possibility was further assessed in an in vitro study using 6-OHDA-treated and DMT1+IRE-over-expressing MES23.5 cells. In 6-OHDA-treated MES23.5 cells, increased iron regulatory protein (IRP) 1 and IRP2 expression was observed, while silencing of IRPs dramatically diminished 6-OHDA-induced DMT1+IRE up-regulation. Pretreatment with N-acetyl-L-cysteine fully suppressed IRPs up-regulation by inhibition of 6-OHDA-induced oxidative stress. Increased DMT1+IRE expression resulted in increased iron influx by MES23.5 cells. Our data provide direct evidence that DMT1+IRE up-regulation can account for IRE/IRP-dependent 6-OHDA-induced iron accumulation initiated by 6-OHDA-induced intracellular oxidative stress and that increased levels of intracellular iron result in aggravated oxidative stress. The results of this study provide novel evidence supporting the use of anti-oxidants in the treatment of PD, with the goal of inhibiting iron accumulation by regulation of DMT1 expression. PMID:20125122

  12. Altered extracellular striatal in vivo biotransformation of the opioid neuropeptide dynorphin A(1-17) in the unilateral 6-OHDA rat model of Parkinson's disease.

    PubMed

    Klintenberg, Rebecka; Andrén, Per E

    2005-02-01

    The in vivo biotransformation of dynorphin A(1-17) (Dyn A) was studied in the striatum of hemiparkinsonian rats by using microdialysis in combination with nanoflow reversed-phase liquid chromatography/electrospray time-of-flight mass spectrometry. The microdialysis probes were implanted into both hemispheres of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats. Dyn A (10 pmol microl(-1)) was infused through the probes at 0.4 microl min(-1) for 2 h. Samples were collected every 30 min and analyzed by mass spectrometry. The results showed for the first time that there was a difference in the Dyn A biotransformation when comparing the two corresponding sides of the brain. Dyn A metabolites 1-8, 1-16, 5-17, 10-17, 7-10 and 8-10 were detected in the dopamine-depleted striatum but not in the untreated striatum. Dyn A biotransformed fragments found in both hemispheres were N-terminal fragments 1-4, 1-5, 1-6, 1-11, 1-12 and 1-13, C-terminal fragments 2-17, 3-17, 4-17, 7-17 and 8-17 and internal fragments 2-5, 2-10, 2-11, 2-12, and 8-15. The relative levels of these fragments were lower in the dopamine-depleted striatum. The results imply that the extracellular in vivo processing of the dynorphin system is being disturbed in the 6-OHDA-lesion animal model of Parkinson's disease. PMID:15706626

  13. Pretreatment With Fragments of Substance-P or With Cholecystokinin Differentially Affects Recovery From Sub-Total Nigrostriatal 6-Hydroxydopamine Lesion

    PubMed Central

    Nikolaus, S.; Huston, J. P.; Schwarting, R. K. W.

    1999-01-01

    The neuropeptide substance P is known to have mnemogenic and reinforcing actions and can exert neurotrophic and regenerative effects in vitro as well as in vivo. Furthermore, our previous work in the rat showed that either pre- or post-lesion treatment with substance P can promote functional recovery in cases of partial nigrostriatal dopamine lesions. Other work has provided evidence that the effects of substance P might be differentially encoded by its C- and N-terminal fragments. The C-terminal fragment was found to be reinforcing, whereas the mnemogenic as well as neurotrophic properties have been ascribed to the N-terminal sequences. Given these relations, we asked here whether pre-lesion treatment with either a C- or an N-terminal fragment of substance P might differentially affect the behavioral and neurochemical outcome of nigrostriatal dopamine lesions. Therefore, either substance P1−7 or substance P5−11 (37 nmol/kg each) was administered intraperitoneally daily for eight consecutive days before unilateral 6-hydroxy-dopamine lesions of the substantia nigra. Control rats received prelesion treatment with vehicle. Furthermore, we investigated the effects of pre-treatment with Boc-cholecystokinin-4 (0.91 nmol/kg), as we had found an increase in dopamine metabolism in animals that were pre-treated with cholecystokinin-8 in a former study. In accordance with our previous work, drug treatment effects were observed when excluding animals with most severe dopamine lesions: In animals with partial lesions (residual neostriatal dopamine levels of more than 10%), lesion-dependent asymmetries in turning behavior were observed in animals that were pre-treated with vehicle-, substance P1−7 , or Boc-cholecysto-kinin–4,. whereas turning after pre-treatment with substance P5−11 was not significantly asymmetrical. Furthermore, the ipsi- and contra-lateral neostriatal dopamine levels did not differ significantly in this group. Moreover, pre treatment with substance

  14. The effects of glutathione and ascorbic acid on the oxidations of 6-hydroxydopa and 6-hydroxydopamine.

    PubMed

    Nappi, A J; Vass, E

    1994-12-15

    The interactions of ascorbic acid (AA) and reduced glutathione (GSH) in the oxidations of the catecholaminergic neurotoxins 6-hydroxydopa (TOPA) and 6-hydroxydopamine (6-OHDA) were investigated by both high performance liquid chromatography with electrochemical detection (HPLC-ED) and spectrometric methods. These comparative studies showed TOPA and 6-OHDA to be extremely unstable, with 100% of the trihydroxyphenyls oxidized within 0.5 min at physiological pH in potassium phosphate buffer. Neither AA nor GSH was found capable of significantly impeding the oxidations of these trihydroxyphenyls, or of regenerating these substances by reducing back their oxidation products, even though such a redox exchange mechanism was demonstrated for AA and the dihydroxyphenyl dopamine. Although ineffective in keeping TOPA and 6-OHDA as reduced molecules, GSH may nevertheless influence the neurotoxicity of trihydroxyphenyls by interacting with their oxidation products forming glutathionyl conjugates, thereby switching the reaction pathway away from potentially toxic eumelanin precursors and toward the production of pheomelanin. Electrochemical analyses established the formation of two oxidation products derived from each trihydroxyphenyl, one detected at -100 mV and the other at +700 mV. AA had no effect on either oxidation product, whereas GSH significantly decreased the levels of both oxidation products. The component detected at +700 mV is the cyclized, reduced leukochrome. The identity of the component detected at -100 mV was not established, but it is considered to be either the p-quinone or the cyclized, oxidized aminochrome.

  15. Cortex Fraxini (Qingpi) Protects Rat Pheochromocytoma Cells against 6-Hydroxydopamine-Induced Apoptosis

    PubMed Central

    Li, Jing-Jie; Zhou, Shi-Ya; Zhang, Huan; Lam, Kim-Hung; Lee, Simon Ming-Yuen; Yu, Peter Hoi-Fu; Chan, Shun-Wan

    2015-01-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder having close relationship with oxidative stress induced by reactive oxygen species (ROS). Cortex Fraxini (QP) is a kind of traditional Chinese medicinal herb with antioxidant properties. It may be a potential candidate for preventing the development of chronic neurodegenerative diseases. Thus, the key objective of the current study was to investigate the neuroprotective effect of QP water extract on 6-hydroxydopamine (6-OHDA) induced apoptosis in rat pheochromocytoma (PC12) cells. It was found that QP water extract possesses strong antioxidant property with SC50 = 0.15 mg/mL. Total phenolic content of QP water extract was found to be 200.78 ± 2.65 mg GAE/g. QP water extract's free radical scavenging capacity was demonstrated by reversing the increased level of intracellular ROS induced by 6-OHDA, using 2′,7′-dichlorodihydrofluorescein diacetate. Moreover, QP water extract (0.5 mg/mL) could remarkably increase the viability of PC12 cells treated with 6-OHDA. The protective effect of QP water extract was found to be via inhibiting MEK/ERK pathway and reversing PI3-K/Akt/GSK3β pathway. The current results suggest that QP might be a potential candidate for preventing the development of neurodegenerative diseases, such as PD. PMID:26347850

  16. Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase.

    PubMed

    Iglesias-González, Javier; Sánchez-Iglesias, Sofía; Méndez-Álvarez, Estefanía; Rose, Sarah; Hikima, Atsuko; Jenner, Peter; Soto-Otero, Ramón

    2012-10-01

    Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC(50) = 200 ± 15 nM) and state 3 respiration (IC(50) = 192 ± 17 nM), with no significant effects on state 4(o). An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC(50) = 100 ± 9 μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity. PMID:22821477

  17. Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae.

    PubMed

    Feng, Chien-Wei; Wen, Zhi-Hong; Huang, Shi-Ying; Hung, Han-Chun; Chen, Chun-Hong; Yang, San-Nan; Chen, Nan-Fu; Wang, Hui-Min; Hsiao, Chung-Der; Chen, Wu-Fu

    2014-06-01

    Parkinson's disease (PD) is a neurodegenerative disease that is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, current treatments for PD are mainly palliative. Recently, researchers discovered that neurotoxins can induce Parkinsonian-like symptoms in zebrafish. No study to date has investigated the characteristics of PD, such as neuroinflammation factors, oxidative stress, or ubiquitin dysfunction, in this model. Therefore, the current study was aimed at utilizing commonly used clinical drugs, minocycline, vitamin E, and Sinemet, to test the usefulness of this model. Previous studies had indicated that DA cell loss was greater with 6-hydroxydopamine (6-OHDA) than with other neurotoxins. Thus, we first challenged zebrafish with 6-OHDA immersion and found a significant reduction in zebrafish locomotor activity; we then reversed the locomotor disruptions by treatment with vitamin E, Sinemet, or minocycline. The present study also analyzed the mRNA expression of parkin, pink1, and cd-11b, because the expression of these molecular targets has been shown to result in attenuation in mammalian models of PD. Vitamin E, Sinemet, and minocycline significantly reversed 6-OHDA-induced changes of parkin, pink1, and cd-11b mRNA expression in zebrafish. Moreover, we assessed tyrosine hydroxylase (TH) expression to confirm the therapeutic effects of vitamin E tested on this PD model and established that vitamin E reversed the 6-OHDA-induced damage on TH expression. Our results provide some support for the validity of this in vivo Parkinson's model, and we hope that this model will be more widely used in the future.

  18. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-01

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.

  19. Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide.

    PubMed

    Singh, Sarika; Kumar, Sachin; Dikshit, Madhu

    2010-01-01

    The primary pathology in Parkinson's disease patients is significant loss of dopaminergic neurons in the substantia nigra through multiple mechanisms. We previously have demonstrated the involvement of nitric oxide (NO) in the dopaminergic neurodegeneration induced by 6-hydroxydopamine (6-OHDA) and lipopolysaccharide (LPS) in rats. The present study was undertaken to investigate further the role of NO in the mitochondria-mediated apoptosis of dopaminergic neurons during the early time period after administration of 6-OHDA and LPS. Measurement of dopamine and its metabolites, TH immunolabeling, cytochrome-c release, mitochondrial complex-I and caspase-3 activity assessment was performed in both the 6-OHDA- and LPS-induced experimental models of Parkinson's disease. Significant decreases in dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), tyrosine hydroxylase (TH) immunolabeling and mitochondrial complex-I activity were observed, with increase in cytochrome-c release and caspase-3 activation. Dopmaine and its metabolite levels, mitochondrial complex-I activity and caspase-3 activity were significantly reversed with treatment of the NOS inhibitor, L-NAME. The reduction in the extent of cytochrome-c release responded variably to NOS inhibition in both the models. The results obtained suggest that NO contributes to mitochondria-mediated neuronal apoptosis in the dopaminergic neurodegeneration induced by 6-OHDA and LPS in rats. PMID:20594414

  20. Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells.

    PubMed

    Takata, Maki K; Yamaguchi, Fuminori; Nakanose, Koichi; Watanabe, Yasuo; Hatano, Naoya; Tsukamoto, Ikuko; Nagata, Mitsuhiro; Izumori, Ken; Tokuda, Masaaki

    2005-11-01

    We evaluated the neuroprotective effects of D-psicose, one of the rare sugars, on 6-hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells, the in vitro model of Parkinson's disease (PD). Apoptotic characteristics of PC12 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. The results showed that D-psicose at a concentration of 50 mM, exerted significant protective effects against the 6-OHDA (200 muM)-induced PC12 cell apoptosis, while other sugars had little or no protective effects. We have observed a significant increase in the level of intracellular glutathione after 24 h in 6-OHDA (200 muM) treated cells, while a decrease in the level was observed at 3 h and 6 h. Also, a synergistic exposure to D-psicose and 6-OHDA for 24 h showed a significant increase in intracellular glutathione level. Therefore, these results suggest that D-psicose may play a potential role as a neuroprotective agent in the treatment of neurodegenerative diseases by inducing an up-regulation of intracellular glutathione.

  1. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease

    PubMed Central

    Xu, Qi; Kanthasamy, Anumantha G.; Jin, Huajun; Reddy, Manju B.

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  2. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    PubMed

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  3. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    PubMed

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.

  4. Reduced expression of choline acetyltransferase in vagal motoneurons and gastric motor dysfunction in a 6-OHDA rat model of Parkinson's disease.

    PubMed

    Zheng, Li-Fei; Wang, Zhi-Yong; Li, Xiao-feng; Song, Jin; Hong, Feng; Lian, Hui; Wang, Qian; Feng, Xiao-Yan; Tang, Yuan-yuan; Zhang, Yue; Zhu, Jin-Xia

    2011-10-28

    Parkinson's disease (PD) has been characterized by dopaminergic neuron degeneration in the substantia nigra (SN) accompanied by pathology of the dorsal motor nucleus of the vagus (DMV). PD patients have often experienced gastrointestinal dysfunctions, such as gastroparesis. However, the mechanism underlying these symptoms in PD patients is not clear. In the present study, we investigated alterations of cholinergic and catecholaminergic neurons in the DMV and gastric motor function in rats microinjected with 6-hydroxydopamine (6-OHDA) bilaterally into the SN (referred to as 6-OHDA rats) and explored possible mechanisms. A strain gauge force transducer was used to record gastric motility in vivo. Expression of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) was evaluated by immunofluorescence and western blot analysis. Acetylcholine (Ach) content was measured using ultra-performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS) analysis. After treatment with 6-OHDA for 6weeks, 6-OHDA rats exhibited decreased ChAT and enhanced TH expression in the DMV and decreased Ach content in the gastric muscular layer. Delayed gastric emptying and impaired gastric motility in vivo were observed in 6-OHDA rats. The results of the present study indicated that decreased ChAT and enhanced TH expression in the DMV may be correlated with the development of delayed gastric emptying and impaired gastric motility, which may be partly due to the decreased Ach release from the vagus. PMID:21955729

  5. Sequential bilateral striatal lesions have additive effects on single skilled limb use in rats.

    PubMed

    Faraji, Jamshid; Metz, Gerlinde A

    2007-02-27

    Unilateral dopamine depletion in rats induced by injection of 6-hydroxydopamine (6-OHDA) into the nigrostriatal system causes permanent impairments in limb use. The disturbances in limb use, including impairments in skilled reaching, are most severe on the side contralateral to the lesion. A number of studies, however, have also described ipsilateral deficits in skilled reaching. The purpose of this study was to investigate the effects of sequential bilateral striatal 6-OHDA lesions on skilled reaching movements in rats to compare the contribution of contra- versus ipsilateral motor control. Rats were trained in a reaching task to grasp food pellets with their preferred paw prior to receiving an intrastriatal 6-OHDA injection on the side contralateral to the preferred paw. The lesion significantly reduced reaching success along with qualitative impairments in limb use. In addition, animals displayed asymmetry in limb use and contraversive rotation bias after an apomorphine challenge. Three weeks later, animals received a second lesion induced by intrastriatal 6-OHDA injection into the hemisphere ipsilateral to the preferred paw. This lesion exaggerated the previous impairments in limb use and further reduced reaching success of the preferred paw. In the ladder rung walking task, additional impairments were found only in the forelimb ipsilateral to the first lesion. The findings of additive effects of sequential bilateral lesions suggest that both the contra- and ipsilateral striatum control single limb use. This supports the notion of bilateral control of skilled forelimb use by the mesostriatal dopaminergic system. PMID:17182115

  6. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    SciTech Connect

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  7. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson's disease.

    PubMed

    Yin, Sheng-Ming; Zhao, Dan; Yu, De-Qin; Li, Sheng-Long; An, Dong; Peng, Yan; Xu, Hong; Sun, Yi-Ping; Wang, Dong-Mei; Zhao, Jie; Zhang, Wan-Qin

    2014-12-25

    Neuroprotective effect of scorpion venom on Parkinson's disease (PD) has already been reported. The present study was aimed to investigate whether scorpion venom heat resistant peptide (SVHRP) could attenuate ultrastructural abnormalities in mitochondria and oxidative stress in midbrain neurons of early-stage PD model. The early-stage PD model was established by injecting 6-hydroxydopamine (6-OHDA) (20 μg/3 μL normal saline with 0.1% ascorbic acid) into the striatum of Sprague Dawley (SD) rats unilaterally. The rats were intraperitoneally administered with SVHRP (0.05 mg/kg per day) or vehicle (saline) for 1 week. Two weeks after 6-OHDA treatment, the rats received behavior tests for validation of model. Three weeks after 6-OHDA injection, the immunoreactivity of dopaminergic neurons were detected by immunohistochemistry staining, and the ultrastructure of neuronal mitochondria in midbrain was observed by electron microscope. In the meantime, the activities of monoamine oxidase-B (MAO-B), superoxide dismutase (SOD) and content of malondialdehyde (MDA) in the mitochondria of the midbrain neurons, as well as the inhibitory ability of hydroxyl free radical and the antioxidant ability in the serum, were measured by corresponding kits. The results showed that 6-OHDA reduced the optical density of dopaminergic neurons, induced damage of mitochondrial ultrastructure of midbrain neurons, decreased SOD activity, increased MAO-B activity and MDA content, and reduced the antioxidant ability of the serum. SVHRP significantly reversed the previous harmful effects of 6-OHDA in early-stage PD model. These findings indicate that SVHRP may contribute to neuroprotection by preventing biochemical and ultrastructure damage changes which occur during early-stage PD. PMID:25516514

  8. Anti-oxidation and Antiapoptotic Effects of Chondroitin Sulfate on 6-Hydroxydopamine-Induced Injury Through the Up-Regulation of Nrf2 and Inhibition of Mitochondria-Mediated Pathway.

    PubMed

    Ju, Chuanxia; Hou, Lin; Sun, Fusheng; Zhang, Li; Zhang, Zheng; Gao, Hua; Wang, Lei; Wang, Dachao; Lv, Yuqiang; Zhao, Xiaodan

    2015-07-01

    The purpose of the study was to investigate the protective effect and molecular mechanism of chondroitin sulfate (CS) against 6-hydroxydopamine (6-OHDA) induced toxicity in the human neuroblastoma cell line SH-SY5Y. The results showed that CS could protect SH-SY5Y cells against 6-OHDA-induced injury. The subsequent mechanism study showed that the anti-oxidation of CS may partly be mediated through inhibiting the intracellular reactive oxygen species overproduction, recovering the reduction of nuclear NF-E2-related factor-2 (Nrf2) expression and the reduction of antioxidants activity induced by 6-OHDA. Furthermore, CS pretreatment significantly attenuated 6-OHDA-induced cell apoptosis and nuclear condensation. 6-OHDA-induced dysfunctions, including the decrease of mitochondrial membrane potential (ΔΨm), increase of intracellular free Ca(2+), imbalance of Bcl-2/Bax ratio, release of Cyt-c from the mitochondria and activation of caspase-3 and caspase-9 were attenuated by CS pretreatment, which demonstrated that CS suppressed 6-OHDA-induced apoptosis in SH-SY5Y cells possibly through mitochondria protection. These results suggest that CS exhibits anti-oxidation through the up-regulation of Nrf2 along with endogenous antioxidant, and reduces apoptosis via inhibiting the mitochondrial pathway to protect SH-SY5Y cells damaged by 6-OHDA.

  9. Carnosic acid protects SH-SY5Y cells against 6-hydroxydopamine-induced cell death through upregulation of parkin pathway.

    PubMed

    Lin, Chia-Yuan; Tsai, Chia-Wen; Tsai, Chia-Wen

    2016-11-01

    Parkin is a Parkinson's disease (PD)-linked gene that plays an important role in the ubiquitin-proteasome system (UPS). This study explored whether carnosic acid (CA) from rosemary protects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via upregulation of parkin in vivo and in vitro. We found that the reduction in proteasomal activity by 6-OHDA was attenuated in SH-SY5Y cells pretreated with 1 μM CA. Immunoblots showed that CA reversed the induction of ubiquitinated protein and the reduction of PTEN-induced putative kinase 1 (PINK1) and parkin protein in 6-OHDA-treated SH-SY5Y cells and rats. Moreover, in a transgenic OW13 Caenorhabditis elegans model of PD that expresses human α-synuclein in muscle cells, CA reduced α-synuclein accumulation in a dose-dependent manner. In cells pretreated with the proteasome inhibitor MG132, CA no longer reversed the 6-OHDA-mediated induction of cleavage of caspase 3 and poly(ADP)-ribose polymerase and no longer reversed the suppression of proteasome activity. When parkin expression was silenced by use of small interfering RNA, the ability of CA to inhibit apoptosis and induce proteasomal activity was significantly reduced. The reduction in 6-OHDA-induced neurotoxicity by CA was associated with the induction of parkin, which in turn upregulated the UPS and then decreased cell death. PMID:27091487

  10. Chemical and biological evaluation of nephrocizin in protecting nerve growth factor-differentiated PC12 cells by 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Lin, Yi-Pei; Chen, Tai-Yuan; Tseng, Hsiang-Wen; Lee, Mei-Hsien; Chen, Shui-Tein

    2012-12-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. This model is crucial in the search for compounds that diminish 6-OHDA-induced nerve growth factor (NGF)-differentiated PC12 cell death. Nephrocizin (luteolin-7-O-β-D-glucopyranoside), a flavone glycoside, was isolated from widely distributed plants. The protective effects of pre-treatment with nephrocizin on the induced neurotoxicity in PC12 cells by 6-OHDA and its oxidative products, H₂O₂-, and p-quinone, were evaluated herein. Nephrocizin promoted cell viability, scavenged ROS-related products, increased cellular glutathione (GSH) levels, and reduced caspase-3 and -8 activities in 6-OHDA-, H₂O₂-, or p-quinone-treated PC12 cells. Furthermore, nephrocizin-conjugated metabolites in PC12 cells were identified with the boronate-affinity method and LC-MS technology, and preferential regioselectivity at the C2' and C5' positions by the nephrocizin-GSH (or NAC) adduct method was observed. These lines of evidence established that nephrocizin could form a dimer to diminish the intracellular ROS. These results demonstrate the first neuroprotective mechanism of nephrocizin against 6-OHDA-, H₂O₂- or p-quinone-induced cytotoxicity in PC12 cells via chemical and biological studies. These dietary antioxidants are potential candidates for use in intervention in neurodegenerative diseases.

  11. Protective effects of Althaea officinalis L. extract in 6-hydroxydopamine-induced hemi-Parkinsonism model: behavioral, biochemical and histochemical evidence.

    PubMed

    Rezaei, Maryam; Alirezaei, Masoud

    2014-05-01

    It is well known that Parkinson's disease (PD) is the second most common neurodegenerative disorder in humans. In this regard, the neuroprotective effect of Althaea officinalis (AO) has already been reported. Therefore, this study examined whether administration of AO extract would improve behavioral, biochemical and structural abnormalities in an experimental animal model of PD in rats. For this purpose, we induced hemi-Parkinsonism by unilateral intranigral injection of 6-hydroxydopamine (6-OHDA, 8 μg/5 μl saline-ascorbate). The rats were pretreated i.p. with AO extract (10 mg/kg) started 6 days before surgery and continued until the 3rd day post-surgery. Regarding oxidative stress, brain MDA concentration (as a lipid peroxidation marker) increased significantly in the 6-OHDA-administered group in comparison with rats pretreated with AO extract. It was found that AO treatment attenuated rotational behavior in the 6-OHDA-administered group and protected the neurons of substantia nigra pars compacta against 6-OHDA toxicity. Overall, AO extract administration indicated neuroprotective effects against 6-OHDA-induced hemi-Parkinsonism in rats.

  12. Chemical and biological evaluation of nephrocizin in protecting nerve growth factor-differentiated PC12 cells by 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Lin, Yi-Pei; Chen, Tai-Yuan; Tseng, Hsiang-Wen; Lee, Mei-Hsien; Chen, Shui-Tein

    2012-12-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. This model is crucial in the search for compounds that diminish 6-OHDA-induced nerve growth factor (NGF)-differentiated PC12 cell death. Nephrocizin (luteolin-7-O-β-D-glucopyranoside), a flavone glycoside, was isolated from widely distributed plants. The protective effects of pre-treatment with nephrocizin on the induced neurotoxicity in PC12 cells by 6-OHDA and its oxidative products, H₂O₂-, and p-quinone, were evaluated herein. Nephrocizin promoted cell viability, scavenged ROS-related products, increased cellular glutathione (GSH) levels, and reduced caspase-3 and -8 activities in 6-OHDA-, H₂O₂-, or p-quinone-treated PC12 cells. Furthermore, nephrocizin-conjugated metabolites in PC12 cells were identified with the boronate-affinity method and LC-MS technology, and preferential regioselectivity at the C2' and C5' positions by the nephrocizin-GSH (or NAC) adduct method was observed. These lines of evidence established that nephrocizin could form a dimer to diminish the intracellular ROS. These results demonstrate the first neuroprotective mechanism of nephrocizin against 6-OHDA-, H₂O₂- or p-quinone-induced cytotoxicity in PC12 cells via chemical and biological studies. These dietary antioxidants are potential candidates for use in intervention in neurodegenerative diseases. PMID:22954731

  13. Paeoniflorin inhibition of 6-hydroxydopamine-induced apoptosis in PC12 cells via suppressing reactive oxygen species-mediated PKCδ/NF-κB pathway.

    PubMed

    Dong, H; Li, R; Yu, C; Xu, T; Zhang, X; Dong, M

    2015-01-29

    Parkinson's disease (PD) is second only to Alzheimer's disease as the most common devastating human neurodegenerative disorder. Despite intense investigation, no curative therapy is available for PD. Paeoniflorin, a monoterpene glucoside isolated from the Paeonia lactiflora Pall., possesses wide pharmacological effects in the nervous system. This study aims at evaluating the effect of paeoniflorin on 6-hydroxydopamine (6-OHDA)-induced apoptosis and to characterize involved signal transduction pathways in PC12 cells. Our results showed that paeoniflorin suppresses mitochondria-mediated apoptosis of PC12 cells induced by 6-OHDA, and anti-apoptotic effects of paeoniflorin on PC12 cells might mainly result from its antioxidant capability by increasing glutathione (GSH). Moreover, we also found that paeoniflorin can dramatically attenuate the 6-OHDA-induced nuclear factor κB (NF-κB) translocation without affecting phosphorylation of Akt, JNK, p38, and ERK1/2. 6-OHDA-induced protein kinase Cδ (PKCδ) upregulation was blocked by paeoniflorin treatment in PC12 cells. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenyleneiodonium or NF-κB inhibitor BAY 11-7082 could partially attenuate 6-OHDA-induced cell death. Together, our results indicate that the inhibition of PC12 cell apoptosis by paeoniflorin might be mediated, at least in part, by inhibiting reactive oxygen species (ROS)/PKCδ/NF-κB signaling pathway. This evidence supports the pharmacological potential of paeoniflorin in the management of neurodegenerative disorders associated with oxidative stress, including PD. PMID:25446358

  14. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    PubMed

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  15. Inhibition of glycogen synthase kinase-3β by lithium chloride suppresses 6-hydroxydopamine-induced inflammatory response in primary cultured astrocytes.

    PubMed

    Wang, Hong-Mei; Zhang, Ting; Li, Qiang; Huang, Jian-Kang; Chen, Rong-Fu; Sun, Xiao-Jiang

    2013-11-01

    An increasing amount of evidence has emerged to suggest that neuroinflammatory process is involved in the pathogenesis of Parkinson's disease (PD). Activated microglia and astrocytes are found in the substantia nigra (SN) of Parkinson's disease brains as well as in animal models of Parkinson's disease. Although reactive astrocytes are involved in the progression of PD, the role of reactive astrocytes in neuroinflammation of PD has received limited attention to date. Recently, Glycogen synthase kinase-3β (GSK-3β) was identified as a crucial regulator of the inflammatory response. The purpose of this study was to explore the mechanism by which 6-hydroxydopamine (6-OHDA) induces inflammatory response in astrocytes and observe the anti-inflammatory effect of lithium chloride (LiCl) on 6-OHDA-treated astrocytes. In the present study, we found that glial fibrillary acidic protein (GFAP) was markedly upregulated in the presence of 6-OHDA. Moreover, our results revealed that proinflammatory molecules including inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase-2(COX-2), prostaglandins E2 (PGE2), and tumor necrosis factor-α (TNF-α) were obviously increased in astrocytes exposed to 6-OHDA. Western blot analysis revealed that 6-OHDA significantly increased dephosphorylation/activation of GSK-3β as well as the nuclear translocation of nuclear factor-κB (NF-κB) p65. Besides, GSK-3β inhibitor LiCl and SB415286 inhibited the GSK-3β/NF-κB signaling pathway, leading to the reduction of proinflammatory molecules in 6-OHDA-activated astrocytes. These results confirmed that GSK-3β inhibitor LiCl and SB415286 provide protection against neuroinflammation in 6-OHDA-treated astrocytes. Therefore, GSK-3β may be a potential therapeutic target for the treatment of PD.

  16. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD. PMID:25449120

  17. High-Frequency Stimulation of the Rat Entopeduncular Nucleus Does Not Provide Functional or Morphological Neuroprotection from 6-Hydroxydopamine

    PubMed Central

    Fischer, D. Luke; Collier, Timothy J.; Cole-Strauss, Allyson; Wohlgenant, Susan L.; Lipton, Jack W.; Steece-Collier, Kathy; Manfredsson, Fredric P.; Kemp, Christopher J.; Sortwell, Caryl E.

    2015-01-01

    Deep brain stimulation (DBS) is the most common neurosurgical treatment for Parkinson’s disease (PD). Whereas the globus pallidus interna (GPi) has been less commonly targeted than the subthalamic nucleus (STN), a recent clinical trial suggests that GPi DBS may provide better outcomes for patients with psychiatric comorbidities. Several laboratories have demonstrated that DBS of the STN provides neuroprotection of substantia nigra pars compacta (SNpc) dopamine neurons in preclinical neurotoxin models of PD and increases brain-derived neurotrophic factor (BDNF). However, whether DBS of the entopeduncular nucleus (EP), the homologous structure to the GPi in the rat, has similar neuroprotective potential in preclinical models has not been investigated. We investigated the impact of EP DBS on forelimb use asymmetry and SNpc degeneration induced by 6-hydroxydopamine (6-OHDA) and on BDNF levels. EP DBS in male rats received unilateral, intrastriatal 6-OHDA and ACTIVE or INACTIVE stimulation continuously for two weeks. Outcome measures included quantification of contralateral forelimb use, stereological assessment of SNpc neurons and BDNF levels. EP DBS 1) did not ameliorate forelimb impairments induced by 6-OHDA, 2) did not provide neuroprotection for SNpc neurons and 3) did not significantly increase BDNF levels in any of the structures examined. These results are in sharp contrast to the functional improvement, neuroprotection and BDNF-enhancing effects of STN DBS under identical experimental parameters in the rat. The lack of functional response to EP DBS suggests that stimulation of the rat EP may not represent an accurate model of clinical GPi stimulation. PMID:26222442

  18. The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra.

    PubMed

    Kitamura, Yoshihisa; Inden, Masatoshi; Minamino, Hideaki; Abe, Mari; Takata, Kazuyuki; Taniguchi, Takashi

    2010-11-01

    Neuron/glial 2 (NG2)-expressing cells are often referred to as oligodendrocyte precursor cells. NG2-expressing cells have also been identified as multipotent progenitor cells. However, microglia-like NG2 glial cells have not been fully examined in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, we chose two rat models of PD, i.e., intranigral or intrastriatal injection of 6-hydroxydopamine (6-OHDA), since the cell bodies of dopamine (DA) neurons, which form a nigrostriatal pathway, are in the substantia nigra pars compacta (SNpc) while their nerve terminals are in the striatum. In the nigral 6-OHDA-injected model, activated NG2-positive cells were detected in the SNpc but not in the striatum. In contrast, in the striatal 6-OHDA-injected model, these cells were detected in both the SNpc and the striatum. In both models, activated NG2-positive cells were located close to surviving tyrosine hydroxylase (TH)-positive neurons in the SNpc. In addition, activated NG2-positive cells in the SNpc coexpressed ionized calcium-binding adaptor molecule 1 (Iba1), a microglia/macrophage marker. Interestingly, these double-positive glial cells coexpressed glial cell line-derived neurotrophic factor (GDNF). These results suggest that microglia-like NG2 glial cells may help protect DA neurons and may lead to new therapeutic targets in PD.

  19. Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson's disease.

    PubMed

    Cova, Lidia; Bossolasco, Patrizia; Armentero, Marie-Therese; Diana, Valentina; Zennaro, Eleonora; Mellone, Manuela; Calzarossa, Cinzia; Cerri, Silvia; Deliliers, Giorgio Lambertenghi; Polli, Elio; Blandini, Fabio; Silani, Vincenzo

    2012-03-01

    Stem cell (SC) transplantation represents a promising tool to treat neurodegenerative disorders, such as Parkinson's disease (PD), but positive therapeutic outcomes require elucidation of the biological mechanisms involved. Therefore, we investigated human Mesenchymal SCs (hMSCs) ability to protect murine differentiated Neural SCs (mdNSCs) against the cytotoxic effects of 6-hydroxydopamine (6-OHDA) in a co-culture model mimicking the in vivo neurovascular niche. The internalization of 6-OHDA mainly relies on its uptake by the dopamine active transporter (DAT), but its toxicity could also involve other pathways. We demonstrated that mdNSCs consistently expressed DAT along the differentiative process. Exposure to 6-OHDA did not affect hMSCs, but induced DAT-independent apoptosis in mdNSCs with generation of reactive oxygen species and caspases 3/7 activation. The potential neuroprotective action of hMSCs on mdNSCs exposed to 6-OHDA was tested in different co-culture conditions, in which hMSCs were added to mdNSCs prior to, simultaneously, or after 6-OHDA treatment. In the presence of the neurotoxin, the majority of mdNSCs acquired an apoptotic phenotype, while co-cultures with hMSCs significantly increased their survival (up to 70%) in all conditions. Multiplex human angiogenic array analysis on the conditioned media demonstrated that cytokine release by hMSCs was finely modulated. Moreover, sole growth factor addition yielded a similar neuroprotective effect on mdNSCs. In conclusion, our findings demonstrate that hMSCs protect mdNSCs against 6-OHDA neurotoxicity, and rescue cells from ongoing neurodegeneration likely through the release of multiple cytokines. Our findings provide novel insights for the development of therapeutic strategies designed to counteract the neurodegenerative processes of PD.

  20. Effect of antidepressant drugs on 6-OHDA-treated mice in the FST.

    PubMed

    Chenu, F; Dailly, E; Bourin, M

    2007-02-01

    There is growing evidence suggesting that dopamine could be indirectly involved in the appearance of behavioural effects of antidepressants. In this study, we induced a partial (over 70%) and non-reversible depletion of dopamine-containing neurons in mice by i.c.v. infusion of 6-OHDA. Then, we compared the antidepressant-like effect of drugs (citalopram, paroxetine, desipramine and imipramine) with or without dopamine depletion in the mice forced swimming test. Our results clearly show that lesion with 6-OHDA does not modify the response of mice to desipramine and imipramine, whereas dopamine depletion abolished the antidepressant-like effect of citalopram and paroxetine. It could then be suggested that antidepressant-like effect of selective serotonin reuptake inhibitors (paroxetine and citalopram) in the mice FST requires the activation of dopaminergic pathways to occur.

  1. Neuroprotective potentials of neurotrophin rich olfactory ensheathing cell's conditioned media against 6OHDA-induced oxidative damage.

    PubMed

    Shukla, A; Mohapatra, T M; Parmar, D; Seth, K

    2014-05-01

    On the basis of recent reports, we propose that impaired neurotrophin signaling (PI3k/Akt), low antioxidant levels, and generation of reactive oxygen species (ROS) conjointly participate in the progressive events responsible for the dopaminergic cell loss in Parkinson's disease (PD). In the present study we tried to target these deficits collectively through multiple neurotrophic factors (NTFs) support in the form of Olfactory Ensheathing Cell's Conditioned Media (OEC CM) using human SH-SY5Y neuroblastoma cell line exposed to 6 hydroxydopamine (6OHDA). 6OHDA exposure induced, oxidative stress-mediated apoptotic cell death viz. enhanced ROS generation, diffused cytosolic cytochrome c (cyt c), impaired Bcl-2: Bax levels along with decrease in GSH content. These changes were accompanied by loss in Akt phosphorylation and TH levels in SH-SY5Y cells. OEC CM significantly checked apoptotic cell death by preserving pAkt levels which coincided with enhanced GSH and suppressed oxidative injury. Functional integrity of OEC CM supported cells was evident by maintained tyrosine hydroxylase (TH) expression. Intercepting Akt signaling by specific inhibitor LY294002 blocked the protective effect. Taken together our findings provide important evidence that the key to protective effect of multiple NTF support via OEC CM is enhanced Akt survival signaling which promotes antioxidant defense leading to suppression of oxidative damage. PMID:24528157

  2. Striatal Injury with 6-OHDA Transiently Increases Cerebrospinal GFAP and S100B

    PubMed Central

    Batassini, Cristiane; Broetto, Núbia; Tortorelli, Lucas Silva; Borsoi, Milene; Zanotto, Caroline; Galland, Fabiana; Souza, Tadeu Mello; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2015-01-01

    Both glial fibrillary acidic protein (GFAP) and S100B have been used as markers of astroglial plasticity, particularly in brain injury; however, they do not necessarily change in the same time frame or direction. Herein, we induced a Parkinson's disease (PD) model via a 6-OHDA intrastriatal injection in rats and investigated the changes in GFAP and S100B using ELISA in the substantia nigra (SN), striatum, and cerebrospinal fluid on the 1st, 7th, and 21st days following the injection. The model was validated using measurements of rotational behaviour induced by methylphenidate and tyrosine hydroxylase in the dopaminergic pathway. To our knowledge, this is the first measurement of cerebrospinal fluid S100B and GFAP in the 6-OHDA model of PD. Gliosis (based on a GFAP increase) was identified in the striatum, but not in the SN. We identified a transitory increment of cerebrospinal fluid S100B and GFAP on the 1st and 7th days, respectively. This initial change in cerebrospinal fluid S100B was apparently related to the mechanical lesion. However, the 6-OHDA-induced S100B secretion was confirmed in astrocyte cultures. Current data reinforce the idea that glial changes precede neuronal damage in PD; however, these findings also indicate that caution is necessary regarding the interpretation of data in this PD model. PMID:26090233

  3. Effects of the neuroprotectant lubeluzole on the cytotoxic actions of veratridine, barium, ouabain and 6-hydroxydopamine in chromaffin cells

    PubMed Central

    Cano-Abad, María F; López, Manuela G; Hernández-Guijo, Jesús M; Zapater, Pedro; Gandía, Luis; Sánchez-García, Pedro; García, Antonio G

    1998-01-01

    Incubation of bovine adrenal chromaffin cells with veratridine (10–100 μM) during 24 h, caused a concentration-dependent release of the cytosolic lactate dehydrogenase (LDH) into the bathing medium, an indicator of cell death. Lubeluzole or its R(−) enantiomer, R91154, did not enhance LDH release. Both lubeluzole and R91154 (0.3–10 μM) decreased the veratridine-induced LDH release. Penfluridol did not increase LDH release at concentrations 0.003–1 μM; 3–10 μM increased LDH release to 50–60%, after 24 h exposure. Penfluridol (0.03–0.3 μM) did not protect against the cytotoxic effects of veratridine; at 1 μM, 15% protection was produced. Higher concentrations (3–10 μM) enhanced the cytotoxic effects of veratridine. Ba2+ ions caused a concentration-dependent increase of LDH release. This cytotoxic effect was partially prevented by 3 μM lubeluzole and fully counteracted by 1 μM penfluridol. R91154 was less potent than lubeluzole and only protected against the lesion induced by 0.5 mM Ba2+. Ouabain (10 μM during 24 h) increased LDH release to about 30%. Both lubeluzole (0.3–10 μM) and the lower concentrations of penfluridol (0.003–0.3 μM) prevented the ouabain cytotoxic effects. At higher concentrations (3 μM), penfluridol increased drastically the ouabain cytotoxic effects. 6-Hydroxydopamine (6-OHDA) caused significant cytotoxic effects at 30 and 100 μM. Lubeluzole (3–10 μM) or penfluridol (0.03–0.3 μM) had no cytoprotective effects against 6-OHDA. Lubeluzole (3 μM), R91154 (3 μM) and penfluridol (1 μM) blocked the current through Na+ channels in voltage-clamped chromaffin cells (INa) by around 20–30%. Ca2+ current through Ca2+ channels (ICa) was inhibited 57% by lubeluzole and R91154 and 50% by penfluridol. The effects of penfluridol were not washed out, but those of lubeluzole and R91154 were readily reversible. Lubeluzole (3 μM) induced reversible blockade of the

  4. Curcumin I protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis.

    PubMed

    Jaisin, Yamaratee; Thampithak, Anusorn; Meesarapee, Benjawan; Ratanachamnong, Piyanee; Suksamrarn, Apichart; Phivthong-Ngam, Laddawal; Phumala-Morales, Noppawan; Chongthammakun, Sukumal; Govitrapong, Piyarat; Sanvarinda, Yupin

    2011-02-11

    Oxidative stress (OS) plays a pivotal role in the pathogenesis of Parkinson's disease (PD). 6-Hydroxydopamine (6-OHDA) is a neurotoxin used to induce oxidative cell death of dopaminergic neurons in experimental models of PD. Curcumin I, or diferuloylmethane is a pure compound isolated from Curcuma longa Linn. that has been reported to have neuroprotective properties. The precise mechanism, however, remains unclear. This study aims to elucidate the mechanisms by which curcumin I exerts its effects, using 6-OHDA-induced neurotoxicity in the human dopaminergic cell line SH-SY5Y. In our experiments, pretreatment with curcumin I improved cell viability, and significantly reduced reactive oxygen species (ROS). Further investigations revealed a reduction of p53 phosphorylation and decrease of the Bax/Bcl-2 ratio, as measured by mRNA expression and protein level. Taken together, these findings indicate that curcumin I protects dopaminergic neurons from 6-OHDA-induced toxicity via the reduction of ROS production, and subsequent attenuation of p53 phosphorylation and reduction of the Bax/Bcl-2 ratio. PMID:21167259

  5. Gait analysis in three different 6-hydroxydopamine rat models of Parkinson's disease.

    PubMed

    Zhou, Ming; Zhang, Wangming; Chang, Jingyu; Wang, Jun; Zheng, Weixin; Yang, Yong; Wen, Peng; Li, Min; Xiao, Hu

    2015-01-01

    Gait deficits are important clinical symptoms of Parkinson's disease (PD) but are rarely studied. In this study we made three different rat PD models by administration of 6-hydroxydopamine into caudate putamen (CPU), medial forebrain bundle (MFB) and substantia nigra compact (SNC). We evaluated the gait changes in these models by using a computer-assisted CatWalk system. Correlations of gait parameters with tyrosine hydroxylase protein levels in the CPU and SNC were also investigated. The gait readouts were significantly impaired in both the MFB and SNC groups. However, the MFB group showed a more pronounced impairment than the SNC group. In contrast, only mild and incomplete gait impairment occurred in the CPU group. In addition, some gait parameters demonstrated close correlation with the protein levels of TH. This paper suggests that the 6-hydroxydopamine-induced MFB model is more propitious to study gait dysfunction than the other two models and the CatWalk system can provide reliable and objective criteria to stratify gait changes arising from 6-hydroxydopamine lesioned rats. These findings may hold promise in the study of PD disease progression and new therapeutic methods.

  6. Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice.

    PubMed

    Willard, A M; Bouchard, R S; Gittis, A H

    2015-08-20

    Parkinson's disease (PD) is a movement disorder whose cardinal motor symptoms arise due to the progressive loss of dopamine. Although this dopamine loss typically progresses slowly over time, currently there are very few animal models that enable incremental dopamine depletion over time within the same animal. This type of gradual dopamine depletion model would be useful in studies aimed at the prodromal phase of PD, when dopamine levels are pathologically low but motor symptoms have not yet presented. Utilizing the highly characterized neurotoxin 6-hydroxydopamine (6-OHDA), we have developed a paradigm to gradually deplete dopamine levels in the striatum over a user-defined time course - spanning weeks to months - in C57BL/6 mice. Dopamine depletions were achieved by administration of five low-dose injections (0.75μg) of 6-OHDA through an implanted intracranial bilateral cannula targeting the medial forebrain bundle. Levels of dopamine within the striatum declined linearly with successive injections, quantified using tyrosine hydroxylase immunostaining and high-performance liquid chromatography. Behavioral testing was carried out at each time point to study the onset and progression of motor impairments as a function of dopamine loss over time. We found that spontaneous locomotion, measured in an open field, was robust until ∼70% of striatal dopamine was lost. Beyond this point, additional dopamine loss caused a sharp decline in motor performance, reaching a final level comparable to that of acutely depleted mice. Similarly, although rearing behavior was more sensitive to dopamine loss and declined linearly as a function of dopamine levels, it eventually declined to levels similar to those seen in acutely depleted mice. In contrast, motor coordination, measured on a vertical pole task, was only moderately impaired in gradually depleted mice, despite severe impairments observed in acutely depleted mice. These results demonstrate the importance of the temporal

  7. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research. PMID:26794209

  8. Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression.

    PubMed

    Wang, Yue-Hua; Yu, Hai-Tao; Pu, Xiao-Ping; Du, Guan-Hua

    2013-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction is involved in the mechanism of cell damage in Parkinson's disease (PD). 6-Hydroxydopamine (6-OHDA) is a dopamine analog which specifically damages dopaminergic neurons. Baicalein has been previously reported to have potential in the treatment of PD. The purpose of the present study was to investigate the mechanism of action of baicalein against 6-OHDA injury in SH-SY5Y cells. The results showed that baicalein significantly alleviated alterations of mitochondrial redox activity and mitochondrial membrane potential induced by 6-OHDA in a dose-dependent manner in SH-SY5Y cells compared with vehicle group. Futhermore, baicalein decreased the production of ROS and upregulated the DJ-1 protein expression in SH-SY5Y cells. In addition, baicalein also inhibited ROS production and lipid peroxidation (IC50 = 6.32 ± 0.03 μM) in rat brain mitochondia. In summary, the underlying mechanisms of baicalein against 6-OHDA-induced mitochondrial dysfunction may involve inhibition of mitochondrial oxidation and upregulation of DJ-1 protein expression. PMID:24288000

  9. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson’s Disease Model

    PubMed Central

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R.; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress. PMID:27493838

  10. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson's Disease Model.

    PubMed

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-08-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress.

  11. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-09-15

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.

  12. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  13. Depressive-like behavior observed with a minimal loss of locus coeruleus (LC) neurons following administration of 6-hydroxydopamine is associated with electrophysiological changes and reversed with precursors of norepinephrine.

    PubMed

    Szot, Patricia; Franklin, Allyn; Miguelez, Cristina; Wang, Yangqing; Vidaurrazaga, Igor; Ugedo, Luisa; Sikkema, Carl; Wilkinson, Charles W; Raskind, Murray A

    2016-02-01

    Depression is a common co-morbid condition most often observed in subjects with mild cognitive impairment (MCI) and during the early stages of Alzheimer's disease (AD). Dysfunction of the central noradrenergic nervous system is an important component in depression. In AD, locus coeruleus (LC) noradrenergic neurons are significantly reduced pathologically and the reduction of LC neurons is hypothesized to begin very early in the progression of the disorder; however, it is not known if dysfunction of the noradrenergic system due to early LC neuronal loss is involved in mediating depression in early AD. Therefore, the purpose of this study was to determine in an animal model if a loss of noradrenergic LC neurons results in depressive-like behavior. The LC noradrenergic neuronal population was reduced by the bilateral administration of the neurotoxin 6-hydroxydopamine (6-OHDA) directly into the LC. Forced swim test (FST) was performed three weeks after the administration of 6-OHDA (5, 10 and 14 μg/μl), animals administered the 5 μg/μl of 6-OHDA demonstrated a significant increase in immobility, indicating depressive-like behavior. This increase in immobility at the 5 μg/μl dose was observed with a minimal loss of LC noradrenergic neurons as compared to LC neuronal loss observed at 10 and 14 μg/μl dose. A significant positive correlation between the number of surviving LC neurons after 6-OHDA and FST immobile time was observed, suggesting that in animals with a minimal loss of LC neurons (or a greater number of surviving LC neurons) following 6-OHDA demonstrated depressive-like behavior. As the 6-OHDA-induced loss of LC neurons is increased, the time spent immobile is reduced. Depressive-like behavior was also observed with the 5 μg/μl dose of 6-OHDA with a second behavior test, sucrose consumption. FST increased immobility following 6-OHDA (5 μg/μl) was reversed by the administration of a single dose of L-1-3-4-dihydroxyphenylalanine (DOPA) or l-threo-3

  14. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study.

    PubMed

    Shobana, Chandrasekar; Kumar, Radhakrishnan Ramesh; Sumathi, Thangarajan

    2012-10-01

    Parkinson's disease is one of the commonest neurodegenerative diseases, and oxidative stress has been evidenced to play a vital role in its causation. In this study, we evaluated whether alcoholic extract of Bacopa monniera (AEBM), an antioxidant and memory enhancer can slow the neuronal injury in a 6-OHDA-rat model of Parkinson's. Rats were treated with 20 and 40 mg/kg bodyweight of AEBM for 3 weeks. On Day 21, 2 μl of 6-OHDA (12 μg in 0.01 % in ascorbic acid-saline) was infused into the right striatum, while the control group received 2 μl of vehicle. Three weeks after the 6-OHDA injection, the rats were tested for neurobehavioral activity (rotarod, locomotor activity, grip test, forced swim test, radial arm maze) and were killed after 6 weeks for the estimation of lipid peroxidation, reduced glutathione (GSH) content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase (SOD), and catalase (CAT). The deficits in behavioral activity due to 6-OHDA lesioning were significantly and dose dependently restored by AEBM. Lesioning was followed by an increased lipid peroxidation and significant depletion of reduced GSH content in the substantia nigra, which was prevented with AEBM pretreatment. The activities of GSH-dependent enzymes, CAT and SOD in striatum were reduced significantly by lesioning, which were restored significantly and dose dependently by AEBM. This study indicates that the extract of B. monniera might be helpful in attenuating 6-OHDA-induced lesioning in rats.

  15. Behavioral effects of lesions in the A10 dopaminergic area of the rat.

    PubMed

    Galey, D; Simon, H; Le Moal, M

    1977-03-18

    Experiments have been carried out with 150 rats in order to study some psychophysiological functions of the mesencephalocortico limbic dopaminergic A10 group. Lesions in the A10 area were made by using 6-hydroxydopamine (6-OHDA) local injections; 2 small volumes of injections were used at the same concentration (2 mug/1 mul or 1 mug/0.5 mul). In a first experiment the effects of these two injections were tested on locomotor activity measured in a circular corridor, 10 and 30 days after surgery. Injections provoked hyperactivity, mainly during nocturnal basal activity periods, but not during initial exploratory activity periods. The larger the injection, the more important the hyperactivity was. The larger injections induced important food spillage evidence through the wire floor of the home cage and perturbation in a passive avoidance learning. There was no change in body weight or in amount of ingested food. In a second experiment, the effects of local injection of 6-OHDA in the other CA structures or bundles situated in or near the ventral tegmental area were tested. Injections in the substantia nigra compacta, in the noradrenergic ventral bundle, in the dorsal periventricular system-tegmental radiations did not provoke locomotor hyperactivity. In a third experiment, a possible role of the median raphe (MR) nucleus in the A10-lesion induced hyperactivity was tested: first, radiofrequency MR lesions were made and no durable significant hyperactivity was recorded; secondly, 6-OHDA (1 mug/0.5 mul) was injected into the A10 area and activity was measured 10 days later: these injections provoked significant hyperactivity during the nocturnal basal and the diurnal basal activity periods. It might be concluded that neither the neighboring CA fibers nor the MR were directly involved in the ventral tegmental -- 6-OHDA lesions syndrome. Anatomical controls by using the Fink-Heimer silver impregnating method have demonstrated, first, that the 6-OHDA injections did not

  16. Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson's Disease.

    PubMed

    Umarao, Preeti; Bose, Samrat; Bhattacharyya, Supti; Kumar, Anil; Jain, Suman

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the dopaminergic neurons of the substantia nigra leading to various motor and non-motor deficits. We explored the neuroprotective potential of superparamagnetic iron oxide nanoparticles (IONPs) along with exposure to EMF in 6-OHDA rat model of PD. IONPs were implanted at the site of lesion and 24 h thereafter the rats were exposed to magnetic fields 2 h/day for one week. Bilateral lesions of the striatum were made with 6-OHDA. The rats in all the intervention groups improved progressively over the days and by post-surgery day 4 they were active and bright. We observed a significant beneficial effect of the IONPs implantation and MF exposure on feeding behavior, gait and postural stability. There was a significant enhancement of mitochondrial function and attenuation of lesion volume in all the intervention groups as compared to PD. The results demonstrate neuroprotective effect of iron oxide nanoparticle implantation and magnetic field exposure in an in vivo 6-OHDA rat model of PD. PMID:27398453

  17. Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson's Disease

    PubMed Central

    Bitu Pinto, Natália; da Silva Alexandre, Bruno; Neves, Kelly Rose Tavares; Silva, Aline Holanda; Leal, Luzia Kalyne A. M.; Viana, Glauce S. B.

    2015-01-01

    Camellia sinensis (green tea) is largely consumed, mainly in Asia. It possesses several biological effects such as antioxidant and anti-inflammatory properties. The objectives were to investigate the neuroprotective actions of the standardized extract (CS), epicatechin (EC) and epigallocatechin gallate (EGCG), on a model of Parkinson's disease. Male Wistar rats were divided into SO (sham-operated controls), untreated 6-OHDA-lesioned and 6-OHDA-lesioned treated for 2 weeks with CS (25, 50, or 100 mg/kg), EC (10 mg/kg), or EGCG (10 mg/kg) groups. One hour after the last administration, animals were submitted to behavioral tests and euthanized and their striata and hippocampi were dissected for neurochemical (DA, DOPAC, and HVA) and antioxidant activity determinations, as well as immunohistochemistry evaluations (TH, COX-2, and iNOS). The results showed that CS and catechins reverted behavioral changes, indicating neuroprotection manifested as decreased rotational behavior, increased locomotor activity, antidepressive effects, and improvement of cognitive dysfunction, as compared to the untreated 6-OHDA-lesioned group. Besides, CS, EP, and EGCG reversed the striatal oxidative stress and immunohistochemistry alterations. These results show that the neuroprotective effects of CS and its catechins are probably and in great part due to its powerful antioxidant and anti-inflammatory properties, pointing out their potential for the prevention and treatment of PD. PMID:26167188

  18. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis

    PubMed Central

    Im, Hyung-Jun; Hahm, Jarang; Kang, Hyejin; Choi, Hongyoon; Lee, Hyekyoung; Hwang, Do Won; Kim, E. Edmund; Chung, June-Key; Lee, Dong Soo

    2016-01-01

    Movement impairments in Parkinson’s disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using 18F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD. PMID:27650055

  19. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson's disease examined using persistent homology-based analysis.

    PubMed

    Im, Hyung-Jun; Hahm, Jarang; Kang, Hyejin; Choi, Hongyoon; Lee, Hyekyoung; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2016-01-01

    Movement impairments in Parkinson's disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using (18)F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD. PMID:27650055

  20. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease.

    PubMed

    Im, Hyung-Jun; Hwang, Do Won; Lee, Han Kyu; Jang, Jaeho; Lee, Song; Youn, Hyewon; Jin, Yeona; Kim, Seung U; Kim, E Edmund; Kim, Yong Sik; Lee, Dong Soo

    2013-06-01

    Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.

  1. Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway

    PubMed Central

    Zhang, Jing; Fan, Wenchuang; Wang, Hui; Bao, Lihua; Li, Guibao; Li, Tao; Song, Shouyang; Li, Hongyu; Hao, Jing; Sun, Jinhao

    2015-01-01

    Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM). The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p < 0.01). Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p < 0.01). Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway. PMID:26681969

  2. Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells.

    PubMed

    Meesarapee, Benjawan; Thampithak, Anusorn; Jaisin, Yamaratee; Sanvarinda, Pimtip; Suksamrarn, Apichart; Tuchinda, Patoomratana; Morales, Noppawan Phumala; Sanvarinda, Yupin

    2014-04-01

    6-Hydroxydopamine (6-OHDA) selectively enters dopaminergic neurons and undergoes auto-oxidation resulting in the generation of reactive oxygen species and dopamine quinones, subsequently leading to apoptosis. This mechanism mimics the pathogenesis of Parkinson's disease and has been used to induce experimental Parkinsonism in both in vitro and in vivo systems. In this study, we investigated the effects of curcumin I (diferuloylmethane) purified from Curcuma longa on quinoprotein production, phosphorylation of p38 MAPK (p-p38), and caspase-3 activation in 6-OHDA-treated SH-SY5Y dopaminergic cells. Pretreatment of SH-SY5Y with curcumin I at concentrations of 1, 5, 10, and 20 μM, significantly decreased the formation of quinoprotein and reduced the levels of p-p38 and cleaved caspase-3 in a dose-dependent manner. Moreover, the levels of the dopaminergic neuron marker, phospho-tyrosine hydroxylase (p-TH), were also dose-dependently increased upon treatment with curcumin I. Our results clearly demonstrated that curcumin I protects neurons against oxidative damage, as shown by attenuation of p-p38 expression, caspase-3-activation, and toxic quinoprotein formation, together with the restoration of p-TH levels. This study provides evidence for the therapeutic potential of curcumin I in the chemoprevention of oxidative stress-related neurodegeneration.

  3. β-Ecdysterone Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Apoptosis via Mitochondria-Dependent Mechanism: Involvement of p38(MAPK)-p53 Signaling Pathway.

    PubMed

    Pan, Zhi; Niu, Yingcai; Liang, Yini; Zhang, Xiaojie; Dong, Miaoxian

    2016-10-01

    Parkinson's disease (PD) is a neurological disorder pathologically characterized by loss of dopaminergic neurons in the substantia nigra. No curative therapy is available for PD. We recently found that phytoestrogen β-ecdysterone (β-Ecd) is able to reduce MPP(+)-induced apoptosis in PC12 cells. This study investigated the potential of β-Ecd to protect against SH-SY5Y cell apoptosis induced by the PD-related neurotoxin 6-hydroxydopamine (6-OHDA) and the underlying mechanism for this cytoprotection. In the present study, pretreatment with β-Ecd significantly reduced 6-OHDA-induced apoptosis of SH-SY5Y cells by a mitochondria-dependent pathway, as indicated by downregulation of Bax and PUMA (p53 upregulated modulator of apoptosis) expression, suppressing ΔΨm loss, inhibiting cytochrome c release, and attenuating caspase-9 activation. Furthermore, we showed that the inhibition of p38 mitogen-activated protein kinase (p38(MAPK))-dependent p53 promoter activity contributed to the protection of SH-SY5Y cells from apoptosis, which was validated by the use of SB203580 or p38β dominant negative (DN) mutants. Additionally, knock-down apoptosis signal-regulating kinase 1 (ASK1) by specific shRNA and blockade reactive oxygen species (ROS) by pharmacological inhibitor competently prevented β-Ecd-mediated inhibition of p38(MAPK) and ASK1 phosphorylation, respectively. These data provide the first evidence that β-Ecd protects SH-SY5Y cells against 6-OHDA-induced apoptosis, possibly through mitochondria protection and p53 modulation via ROS-dependent ASK1-p38(MAPK) pathways. The neuroprotective effects of β-Ecd make it a promising candidate as a therapeutic agent for PD.

  4. β-Ecdysterone Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Apoptosis via Mitochondria-Dependent Mechanism: Involvement of p38(MAPK)-p53 Signaling Pathway.

    PubMed

    Pan, Zhi; Niu, Yingcai; Liang, Yini; Zhang, Xiaojie; Dong, Miaoxian

    2016-10-01

    Parkinson's disease (PD) is a neurological disorder pathologically characterized by loss of dopaminergic neurons in the substantia nigra. No curative therapy is available for PD. We recently found that phytoestrogen β-ecdysterone (β-Ecd) is able to reduce MPP(+)-induced apoptosis in PC12 cells. This study investigated the potential of β-Ecd to protect against SH-SY5Y cell apoptosis induced by the PD-related neurotoxin 6-hydroxydopamine (6-OHDA) and the underlying mechanism for this cytoprotection. In the present study, pretreatment with β-Ecd significantly reduced 6-OHDA-induced apoptosis of SH-SY5Y cells by a mitochondria-dependent pathway, as indicated by downregulation of Bax and PUMA (p53 upregulated modulator of apoptosis) expression, suppressing ΔΨm loss, inhibiting cytochrome c release, and attenuating caspase-9 activation. Furthermore, we showed that the inhibition of p38 mitogen-activated protein kinase (p38(MAPK))-dependent p53 promoter activity contributed to the protection of SH-SY5Y cells from apoptosis, which was validated by the use of SB203580 or p38β dominant negative (DN) mutants. Additionally, knock-down apoptosis signal-regulating kinase 1 (ASK1) by specific shRNA and blockade reactive oxygen species (ROS) by pharmacological inhibitor competently prevented β-Ecd-mediated inhibition of p38(MAPK) and ASK1 phosphorylation, respectively. These data provide the first evidence that β-Ecd protects SH-SY5Y cells against 6-OHDA-induced apoptosis, possibly through mitochondria protection and p53 modulation via ROS-dependent ASK1-p38(MAPK) pathways. The neuroprotective effects of β-Ecd make it a promising candidate as a therapeutic agent for PD. PMID:27229883

  5. Murine model for Parkinson's disease: from 6-OH dopamine lesion to behavioral test.

    PubMed

    da Conceição, Fabio S L; Ngo-Abdalla, Stacie; Houzel, Jean-Christophe; Rehen, Stevens K

    2010-01-01

    Parkinson's disease (PD) affects at least 6.5 million people worldwide, irrespective of gender, social, ethnic, economic, or geographic boundaries. Key symptoms, such as tremor, rigidity and bradikinesia, develop when about 3/4 of dopaminergic cells are lost in the substantia nigra, and fail to provide for the smooth, coordinated regulation of striatal motor circuits. Depression and hallucinations are common, and dementia eventually occurs in 20% of patients. At this time, there is no treatment to delay or stop the progression of PD. Rather, the medications currently available aim more towards the alleviation of these symptoms. New surgical strategies may reversibly switch on the functionally damaged circuits through the electrical stimulation of deep brain structures, but although deep brain stimulation is a major advance, it is not suitable for all patients. It remains therefore necessary to test new cell therapy approaches in preclinical models. Selective neurotoxic disruption of dopaminergic pathways can be reproduced by injection of 6-hydroxydopamine (6-OHDA) or MPTP (1-methyl-4-phenyl-1,2,3,6-tertahydropyridine) whereas depleting drugs and oxidative-damaging chemicals may also reproduce specific features of PD in rodents. Unlike MPTP, 6-OHDA lesions cause massive irreversible neuronal loss, and can be uni- or bilateral. The 6-OHDA lesion model is reliable, leads to robust motor deficits, and is the most widely used after 40 years of research in rats. As interactions between grafted cells and host can now be studied more thoroughly in mice rather than in rats, the model has been transposed to mice, where it has been recently characterized. In this video, we demonstrate how to lesion the left nigro-striatal pathway of anesthetized mice by slowly delivering 2.0 microL of 6-OHDA through a stereotaxically inserted micro-syringe needle. The loss of dopaminergic input occurs within days, and the functional impairments can be monitored over post-operative weeks and

  6. Murine model for Parkinson's disease: from 6-OH dopamine lesion to behavioral test.

    PubMed

    da Conceição, Fabio S L; Ngo-Abdalla, Stacie; Houzel, Jean-Christophe; Rehen, Stevens K

    2010-01-01

    Parkinson's disease (PD) affects at least 6.5 million people worldwide, irrespective of gender, social, ethnic, economic, or geographic boundaries. Key symptoms, such as tremor, rigidity and bradikinesia, develop when about 3/4 of dopaminergic cells are lost in the substantia nigra, and fail to provide for the smooth, coordinated regulation of striatal motor circuits. Depression and hallucinations are common, and dementia eventually occurs in 20% of patients. At this time, there is no treatment to delay or stop the progression of PD. Rather, the medications currently available aim more towards the alleviation of these symptoms. New surgical strategies may reversibly switch on the functionally damaged circuits through the electrical stimulation of deep brain structures, but although deep brain stimulation is a major advance, it is not suitable for all patients. It remains therefore necessary to test new cell therapy approaches in preclinical models. Selective neurotoxic disruption of dopaminergic pathways can be reproduced by injection of 6-hydroxydopamine (6-OHDA) or MPTP (1-methyl-4-phenyl-1,2,3,6-tertahydropyridine) whereas depleting drugs and oxidative-damaging chemicals may also reproduce specific features of PD in rodents. Unlike MPTP, 6-OHDA lesions cause massive irreversible neuronal loss, and can be uni- or bilateral. The 6-OHDA lesion model is reliable, leads to robust motor deficits, and is the most widely used after 40 years of research in rats. As interactions between grafted cells and host can now be studied more thoroughly in mice rather than in rats, the model has been transposed to mice, where it has been recently characterized. In this video, we demonstrate how to lesion the left nigro-striatal pathway of anesthetized mice by slowly delivering 2.0 microL of 6-OHDA through a stereotaxically inserted micro-syringe needle. The loss of dopaminergic input occurs within days, and the functional impairments can be monitored over post-operative weeks and

  7. Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson's disease.

    PubMed

    Herrán, Enara; Requejo, Catalina; Ruiz-Ortega, Jose Angel; Aristieta, Asier; Igartua, Manoli; Bengoetxea, Harkaitz; Ugedo, Luisa; Pedraz, Jose Luis; Lafuente, Jose Vicente; Hernández, Rosa Maria

    2014-01-01

    Current research efforts are focused on the application of growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), as neuroregenerative approaches that will prevent the neurodegenerative process in Parkinson's disease. Continuing a previous work published by our research group, and with the aim to overcome different limitations related to growth factor administration, VEGF and GDNF were encapsulated in poly(lactic-co-glycolic acid) nanospheres (NS). This strategy facilitates the combined administration of the VEGF and GDNF into the brain of 6-hydroxydopamine (6-OHDA) partially lesioned rats, resulting in a continuous and simultaneous drug release. The NS particle size was about 200 nm and the simultaneous addition of VEGF NS and GDNF NS resulted in significant protection of the PC-12 cell line against 6-OHDA in vitro. Once the poly(lactic-co-glycolic acid) NS were implanted into the striatum of 6-OHDA partially lesioned rats, the amphetamine rotation behavior test was carried out over 10 weeks, in order to check for in vivo efficacy. The results showed that VEGF NS and GDNF NS significantly decreased the number of amphetamine-induced rotations at the end of the study. In addition, tyrosine hydroxylase immunohistochemical analysis in the striatum and the external substantia nigra confirmed a significant enhancement of neurons in the VEGF NS and GDNF NS treatment group. The synergistic effect of VEGF NS and GDNF NS allows for a reduction of the dose by half, and may be a valuable neurogenerative/neuroreparative approach for treating Parkinson's disease. PMID:24920904

  8. Efficient Expression of Igf-1 from Lentiviral Vectors Protects In Vitro but Does Not Mediate Behavioral Recovery of a Parkinsonian Lesion in Rats.

    PubMed

    Lu-Nguyen, Ngoc B; Broadstock, Martin; Yáñez-Muñoz, Rafael J

    2015-11-01

    Gene therapy approaches delivering neurotrophic factors have offered promising results in both preclinical and clinical trials of Parkinson's disease (PD). However, failure of glial cell line-derived neurotrophic factor in phase 2 clinical trials has sparked a search for other trophic factors that may retain efficacy in the clinic. Direct protein injections of one such factor, insulin-like growth factor (IGF)-1, in a rodent model of PD has demonstrated impressive protection of dopaminergic neurons against 6-hydroxydopamine (6-OHDA) toxicity. However, protein infusion is associated with surgical risks, pump failure, and significant costs. We therefore used lentiviral vectors to deliver Igf-1, with a particular focus on the novel integration-deficient lentiviral vectors (IDLVs). A neuron-specific promoter, from the human synapsin 1 gene, excellent for gene expression from IDLVs, was additionally used to enhance Igf-1 expression. An investigation of neurotrophic effects on primary rat neuronal cultures demonstrated that neurons transduced with IDLV-Igf-1 vectors had complete protection on withdrawal of exogenous trophic support. Striatal transduction of such vectors into 6-OHDA-lesioned rats, however, provided neither protection of dopaminergic substantia nigra neurons nor improvement of animal behavior.

  9. β-asarone increases MEF2D and TH levels and reduces α-synuclein level in 6-OHDA-induced rats via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway: Chaperone-mediated autophagy activation, macroautophagy inhibition and HSP70 up-expression.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Liu, Shu; Fang, Yongqi

    2016-10-15

    Inactive myocyte enhancer factor 2D (MEF2D) and alpha-synuclein (α-syn) aggregation will cause neuronal death. MEF2D or α-syn degradation is also associated with macroautophagy, chaperone-mediated autophagy (CMA) and heat-shock protein 70 (HSP70). We found that β-asarone had positive effects on treating 6-hydroxydopamine (6-OHDA)-induced rats, but mechanisms of β-asarone affecting on MEF2D and α-syn via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway remain unclear. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create PD rats, which were divided into four groups and administered for 30days: 6-OHDA model group, MEF2D inhibitor-treated group (SB203580, 0.5mg/kg, i.p.), MEF2D activator-treated group (LiCl, 100mg/kg, i.p.), β-asarone-treated group (15mg/kg, p.o.). Expressions of tyrosine hydroxylase (TH), α-syn, heat-shock cognate protein 70 (HSC70), lysosome-associated membrane protein type 2a (LAMP-2A), MEF2D, HSP70, Beclin-1, light chain 3B (LC3B) and p62 in the mesencephalon were measured after 30-day administration. α-syn, Beclin-1 and LC3B levels were higher in the 6-OHDA model group, while TH, MEF2D, HSC70, LAMP-2A, p62 levels were lower compared to the sham-operated group. Our results also showed thatβ-asarone treatment reduced protein and mRNA levels of α-syn, Beclin-1 and LC3B, but increased HSP70, TH, MEF2D, HSC70, LAMP-2A and p62 levels compared to the 6-OHDA model group. Additionally, certain correlations among α-syn, TH, Beclin-1, LC3B, p62, HSP70, LAMP-2A and MEF2D were also discovered in this study. These findings suggested that β-asarone treatment could increase MEF2D and TH as well as reduce α-syn to protect against 6-OHDA induced damage in PD rat mesencephalon via modulating the HSP70/MAPK/MEF2D/Beclin-1 pathway.

  10. The Longitudinal Transcriptomic Response of the Substantia Nigra to Intrastriatal 6-Hydroxydopamine Reveals Significant Upregulation of Regeneration-Associated Genes

    PubMed Central

    Cole-Strauss, Allyson; Grabinski, Tessa; Mattingly, Zachary R.; Winn, Mary E.; Steece-Collier, Kathy; Sortwell, Caryl E.; Manfredsson, Fredric P.; Lipton, Jack W.

    2015-01-01

    We hypothesized that the study of gene expression at 1, 2, 4, 6 and 16 weeks in the substantia nigra (SN) after intrastriatal 6-OHDA in the Sprague-Dawley rat (rattus norvegicus) would identify cellular responses during the degenerative process that could be axoprotective. Specifically, we hypothesized that genes expressed within the SN that followed a profile of being highly upregulated early after the lesion (during active axonal degeneration) and then progressively declined to baseline over 16 weeks as DA neurons died are indicative of potential protective responses to the striatal 6-OHDA insult. Utilizing a κ-means cluster analysis strategy, we demonstrated that one such cluster followed this hypothesized expression pattern over time, and that this cluster contained several interrelated transcripts that are classified as regeneration-associated genes (RAGs) including Atf3, Sprr1a, Ecel1, Gadd45a, Gpnmb, Sox11, Mmp19, Srgap1, Rab15,Lifr, Trib3, Tgfb1, and Sema3c. All exemplar transcripts tested from this cluster (Sprr1a, Ecel1, Gadd45a, Atf3 and Sox11) were validated by qPCR and a smaller subset (Sprr1a, Gadd45a and Sox11) were shown to be exclusively localized to SN DA neurons using a dual label approach with RNAScope in situ hybridization and immunohistochemistry. Upregulation of RAGs is typically associated with the response to axonal injury in the peripheral nerves and was not previously reported as part of the axodegenerative process for DA neurons of the SN. Interestingly, as part of this cluster, other transcripts were identified based on their expression pattern but without a RAG provenance in the literature. These "RAG-like" transcripts need further characterization to determine if they possess similar functions to or interact with known RAG transcripts. Ultimately, it is hoped that some of the newly identified axodegeneration-reactive transcripts could be exploited as axoprotective therapies in PD and other neurodegenerative diseases. PMID:25992874

  11. Forskolin promotes the development of ethanol tolerance in 6-hydroxydopamine-treated mice

    SciTech Connect

    Szabo, G.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    Partial depletion of brain norepinephrine by 6-hydroxydopamine prevents the development of functional tolerance to ethanol in mice. This blockade of tolerance development was overcome by daily intracerebroventricular injections of forskolin. These results suggest that interaction of norepinephrine with post-synaptic ..beta..-adrenergic receptors, and activation of adenylate cyclase, is important for the development of ethanol tolerance. Interaction of norepinephrine with ..cap alpha../sub 1/-adrenergic receptors may be less crucial, since treatment with a phorbol ester activator of protein kinase C did not restore the development of tolerance in mice treated with 6-hydroxydopamine. The importance of the ..beta..-adrenergic receptor-coupled adenylate cyclase system for development of ethanol tolerance, in addition to its previously-reported role in long-term potentiation, suggests that this system may influence neuroadaptive processes in general. 26 references, 2 figures.

  12. The effects of prenatal methylmercury exposure on trace element and antioxidant levels in rats following 6-hydroxydopamine-induced neuronal insult.

    PubMed

    Mohamed Moosa, Zulfiah; Daniels, Willie M U; Mabandla, Musa V

    2014-06-01

    Methylmercury (MeHg) is a metal toxin found commonly in the environment. Studies have shown severe neurotoxic effects of MeHg poisoning especially during pregnancy where it crosses the foetoplacental and the blood brain barrier of the foetus leading to neurodevelopmental deficits in the offspring. These deficits may predispose offspring to neurodegenerative diseases later in life. In this study we investigated the effects of prenatal methylmercury exposure (2.5 mg/L in drinking water from GND 1-GND 21) on the trace element status in the brain of adolescent offspring (PND 28). Total antioxidant capacity (TAC) was measured in their blood plasma. In a separate group of animals that was also exposed prenatally to MeHg, 6-hydroydopamine (6-OHDA) was administered at PND 60 as a model of neuronal insult. Trace element and TAC levels were compared before and after 6-OHDA exposure. Prenatal MeHg treatment alone resulted in significantly higher concentrations of zinc, copper, manganese and selenium in the brain of offspring at PND 28 (p < 0.05), when compared to controls. In contrast, brain iron levels in MeHg-exposed adolescent offspring were significantly lower than their controls (p < 0.05). Following 6-OHDA exposure, the levels of iron, zinc, copper and manganese were increased compared to sham-lesioned offspring (p < 0.05). Prenatal MeHg exposure further increased these trace element levels thereby promoting toxicity (p < 0.05). Total antioxidant capacity was not significantly different in MeHg and control groups prior to lesion. However, following 6-OHDA administration, MeHg-exposed animals had a significantly lower TAC than that of controls (p < 0.05). Brain TAC levels were higher in adult male rats than in female rats during adolescence however male rats that had been exposed to MeHg in utero failed to show this increase at PND 74. Prenatal MeHg exposure results in trace element dyshomeostasis in the brain of offspring and reduces total

  13. Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival during 6-OHDA-Induced Oxidative Stress

    PubMed Central

    Asaithambi, Arunkumar; Ay, Muhammet; Jin, Huajun; Gosh, Anamitra; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2014-01-01

    Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD. PMID:24806360

  14. Microarray expression profiling in 6-hydroxydopamine-induced dopaminergic neuronal cell death.

    PubMed

    Park, Bokyung; Oh, Chang-Ki; Choi, Won-Seok; Chung, In Kwon; Youdim, Moussa B H; Oh, Young J

    2011-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. To discover potential key molecules in this process, we utilized cDNA microarray technology to obtain an expression profile of transcripts in MN9D dopaminergic neuronal cells treated with 6-hydroxydopamine. Using a self-organizing map algorithm, data mining and clustering were combined to identify distinct functional subgroups of genes. We identified alterations in the expression of 81 genes in eight clusters. Among these genes, we verified protein expression patterns of MAP kinase phosphatase 1 and sequestosome 1 using both cell culture and rat brain models of PD. Immunological analyses revealed increased expression levels as well as aggregated distribution patterns of these gene products in 6-hydroxydopamine-treated dopaminergic neurons. In addition to the identification of other proteins that are known to be associated with protein aggregation, our results raise the possibility that a more widespread set of proteins may be associated with the generation of protein aggregates in dying neurons. Further research to determine the functional roles of other altered gene products within the same cluster as well as the seven remaining clusters may provide new insights into the neurodegeneration that underlies PD pathogenesis.

  15. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    PubMed

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo. PMID:23430275

  16. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    PubMed

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo.

  17. Spontaneous locomotor activity and L-DOPA-induced dyskinesia are not linked in 6-OHDA parkinsonian rats

    PubMed Central

    Sgroi, Stefania; Kaelin-Lang, Alain; Capper-Loup, Christine

    2014-01-01

    Bradykinesia (slowness of movement) and other characteristic motor manifestations of Parkinson’s disease (PD) are alleviated by treatment with L-dihydroxyphenylalanine (L-DOPA). Long-term L-DOPA treatment, however, is associated with complications such as motor fluctuations and dyskinesia that severely impair the quality of life. It is unclear whether the effect of L-DOPA on spontaneous motor activity and its dyskinesia-inducing effect share a common mechanism. To investigate the possible connection between these two effects, we analyzed the spontaneous locomotor activity of parkinsonian rats before surgery (unilateral injection of 6-OHDA in the right medial forebrain bundle), before treatment with L-DOPA, during L-DOPA treatment (the “ON” phase), and after the end of L-DOPA treatment (the “OFF” phase). We correlated the severity of dyskinesia (AIM scores) with locomotor responses in the ON/OFF phases of chronic L-DOPA treatment at two different doses. We treated three groups of parkinsonian animals with chronic injections of 8 mg/kg L-DOPA, 6 mg/kg L-DOPA, and saline solution and one group of non-lesioned animals with 8 mg/kg L-DOPA. At the end of the experiment, tyrosine hydroxylase (TH) immunoreactivity was analyzed in the striatum of all parkinsonian rats. We found no correlation between the severity of dyskinesia and spontaneous locomotor activity in the ON or OFF phase of L-DOPA treatment. The only observed correlation was between the pathological rotation induced by L-DOPA at the highest dose and locomotor activity in the ON phase of L-DOPA treatment. In addition, a L-DOPA withdrawal effect was observed, with worse motor performance in the OFF phase than before the start of L-DOPA treatment. These findings suggest that different neural mechanisms underlie the effect of L-DOPA on spontaneous motor activity and its dyskinesia-inducing effect, with a different dose-response relationship for each of these two effects. PMID:25324746

  18. Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model.

    PubMed

    Shi, Zhenhua; Lu, Zhongbing; Zhao, Yashuo; Wang, Yueqi; Zhao-Wilson, Xi; Guan, Peng; Duan, Xianglin; Chang, Yan-Zhong; Zhao, Baolu

    2013-06-01

    Previous pharmacological studies have indicated that AC11 (a standardized aqueous extract of Uncaria tomentosa) has beneficial effects on DNA repair and immune function. However, its benefits go beyond this. The present study utilized electron spin resonance (ESR) and spin trapping technique, as well as the 6-OHDA-induced cell damage and transgenic Caenorhabditis elegans models, towards exploring the antioxidant and neuroprotective ability of AC11. Our results showed that AC11 could scavenge several types of free radicals, especially hydroxyl radicals (60% of hydroxyl radicals were scavenged by 30 μg/ml of AC11). In SH-SY5Y cells, we found that AC11 could dose dependently protect 6-OHDA induced cell damage by increase cell viability and mitochondrial membrane potential. AC11 pretreatment also significantly decreased the level of lipid peroxidation, intracellular reactive oxygen species and nitric oxide in 6-OHDA treated cells. In NL5901 C. elegans, 10 μg/ml AC11 could reduce the aggregation of α-synuclein by 40%. These findings encourage further investigation on AC11 and its active constituent compounds, as possible therapeutic intervention against Parkinson's disease.

  19. Early toxic effect of 6-hydroxydopamine on extracellular concentrations of neurotransmitters in the rat striatum: an in vivo microdialysis study.

    PubMed

    Tobón-Velasco, Julio César; Silva-Adaya, Daniela; Carmona-Aparicio, Liliana; García, Esperanza; Galván-Arzate, Sonia; Santamaría, Abel

    2010-12-01

    The early effects of 6-OHDA as a Parkinsonian model in rodents are relevant since pharmacological and toxicological points of view, as they can explain the acute and chronic deleterious events occurring in the striatum. In this study, we focused our attention on the neurochemical and motor dysfunction produced after a pulse infusion of 6-OHDA, paying special attention to the capacity of this molecule to induce neurotransmitter release and behavioural alterations. Extracellular levels of dopamine, serotonin, norepinephrine, glutamate, glutamine, aspartate, glycine and GABA were all assessed in striatal dialysates in freely moving rats immediately after exposed to a single pulse of 6-OHDA in dorsal striatum, and major behavioural markers of motor alterations were simultaneously explored. Enhanced release of dopamine, serotonin and norepinephrine was found immediately after 6-OHDA pulse. Delayed glutamate and glycine release were detected and a biphasic effect on GABA was observed. Mostly serotonin and dopamine outflow, followed by glutamate, correlated with wet dog shakes and other behavioural qualitative alterations. Early dopamine release, accompanied by other neurotransmitters, can generate an excitatory environment affecting the striatal neurons with immediate consequences for behavioural performance. In turn, these changes might be accounting for later features of toxicity described in this model.

  20. A rat model of striatonigral degeneration generated by simultaneous injection of 6-hydroxydopamine into the medial forebrain bundle and quinolinic acid into the striatum.

    PubMed

    Yoon, Hyung Ho; Kim, Yong Hwan; Shin, Eun Sil; Jeon, Sang Ryong

    2014-11-01

    A double toxin-double lesion strategy is well-known to generate a rat model of striatonigral degeneration (SND) such as multiple system atrophy-parkinsonian type. However, with this model it is difficult to distinguish SND from Parkinson's disease (PD). In this study, we propose a new rat model of SND, which is generated by simultaneous injection of 6-hydroxydopamine into the medial forebrain bundle and quinolinic acid into the striatum. Stepping tests performed 30 min after intraperitoneal L-dopa administration at 6 weeks post-surgery revealed an L-dopa response in the PD group but not the SND group. Apomorphine-induced rotation tests revealed no rotational bias in the SND group, which persisted for 2 months, but contralateral rotations in the PD group. MicroPET scans revealed glucose hypometabolism and dopamine transporter impairment on the lesioned striatum in the SND group. Tyrosine hydroxylase immunostaining in the SND group revealed that 74.7% of nigral cells on the lesioned side were lost after lesion surgery. These results suggest that the proposed simultaneous double toxin-double lesion method successfully created a rat model of SND that had behavioral outcomes, multitracer microPET evaluation, and histological aspects consistent with SND pathology. This model will be useful for future study of SND. PMID:25408589

  1. 6-Hydroxydopamine induces distinct alterations in GDF5 and GDNF mRNA expression in the rat nigrostriatal system in vivo.

    PubMed

    Gavin, Aisling M; Walsh, Sinéad; Wyatt, Sean; O'Keeffe, Gerard W; Sullivan, Aideen M

    2014-02-21

    Growth/differentiation factor (GDF)5 and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that promote the survival of midbrain dopaminergic neurons in vitro and in vivo. Both factors have potent neurotrophic and neuroprotective effects in rat models of Parkinson's disease (PD) and represent promising new therapies for PD. The aim of this study was to investigate the expression of GDF5, GDNF and their receptors in the nigrostriatal dopaminergic system in rat models of PD. It found that endogenous GDF5, GDNF and their receptors are differentially expressed in two 6-hydroxydopamine lesion models of PD. In both striatal and medial forebrain bundle (MFB) lesion models, striatal levels of GDF5 mRNA increased at 10 days post-lesion, while GDNF mRNA levels in the nigrostriatal system decreased after 10 and 28 days. Midbrain mRNA levels for both GDF5 receptors transiently increased after striatal lesion, whereas those of two GDNF receptors decreased at later time-points in both models. Despite the fact that exogenous GDF5 and GDNF have comparable effects on dopaminergic neurons in vitro and in vivo, their endogenous responses to neurotoxic injury are different. This highlights the importance of studying neurotrophic factor expression at distinct disease stages and in various animal models of PD.

  2. Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys

    PubMed Central

    Joers, Valerie; Seneczko, Kailie; Goecks, Nichole C.; Kamp, Timothy J.; Hacker, Timothy A.; Brunner, Kevin G.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, R. Jerome; Holden, James E.; Emborg, Marina E.

    2012-01-01

    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog 11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia. PMID:22539969

  3. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    PubMed

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson's disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson's disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson's disease induced by 6-hydroxydopamine. PMID:27610168

  4. Regulation of subtypes of beta-adrenergic receptors in rat brain following treatment with 6-hydroxydopamine

    SciTech Connect

    Johnson, E.W.; Wolfe, B.B.; Molinoff, P.B.

    1989-07-01

    The technique of quantitative autoradiography has been used to localize changes in the densities of subtypes of beta-adrenergic receptors in rat brain following treatment with 6-hydroxydopamine. Previously reported increases in the density of beta 1-adrenergic receptors in the cerebral cortex were confirmed. The anatomical resolution of autoradiography made it possible to detect changes in the density of beta 2-adrenergic receptors in the cortex and in a number of other brain regions. The density of beta 1-adrenergic receptors increased from 30 to 50% depending on the region of the cortex being examined. The increase in the somatomotor cortex was greater than that in the frontal or occipital cortex. The increase in the density of beta 2-adrenergic receptors in the cortex was not as widespread as that of beta 1-adrenergic receptors and occurred primarily in frontal cortex, where the density of receptors increased by 40%. The densities of both beta 1- and beta 2-adrenergic receptors increased in a number of forebrain, thalamic, and midbrain structures. Selective changes in the density of beta 1-adrenergic receptors were observed in the superficial gray layer of the superior colliculus and in the amygdala. The density of beta 2-adrenergic receptors increased in the caudate-putamen, the substantia nigra, and the lateral and central nuclei of the thalamus, whereas the density of beta 1-adrenergic receptors did not change in these regions. The densities of both subtypes of beta-adrenergic receptors increased in the hippocampus, the cerebellum, the lateral posterior nucleus of the thalamus, and the dorsal lateral geniculate.

  5. Activation and blockade of prelimbic 5-HT6 receptors produce different effects on depressive-like behaviors in unilateral 6-hydroxydopamine-induced Parkinson's rats.

    PubMed

    Zhang, Yu-Ming; Zhang, Li; Wang, Yong; Sun, Yi-Na; Guo, Yuan; Du, Cheng-Xue; Zhang, Jin; Yao, Lu; Yu, Shu-Qi; Liu, Jian

    2016-11-01

    The role of prelimbic (PrL) 5-HT6 receptors in depression is poorly understood, particularly in Parkinson's disease-related depression. Here we reported that 6-hydroxydopamine lesions in rats decreased sucrose preference and increased immobility time as measured by the sucrose preference and forced swim tests when compared to sham-operated rats, indicating the induction of depressive-like behaviors. Intra-PrL injection of 5-HT6 receptor agonist WAY208466 induced depressive-like responses in sham-operated rats, and produced antidepressant-like effects in the lesioned rats. However, 5-HT6 receptor antagonist SB258585 produced antidepressant-like effects in sham-operated rats, and increased the expression of depressive-like behaviors in the lesioned rats. Neurochemical results showed that intra-PrL injection of WAY208466 and SB258585 decreased or increased dopamine (DA) and noradrenaline (NA) levels in the medial prefrontal cortex, amygdala, habenula and ventral hippocampus in sham-operated and the lesioned rats, respectively. WAY208466 increased the firing rate of PrL glutamate neurons in the two groups of rats, while SB258585 decreased the firing rate of the neurons. Compared to sham-operated rats, the duration of WAY208466 and SB258585 action on the firing rate of glutamate neurons was markedly prolonged in the lesioned rats. The lesion did not change the co-localization of 5-HT6 receptor and glutamate neurons in the PrL. These findings indicate that 5-HT6 receptors in the PrL are involved in the regulation of depressive-like behaviors, which attribute to changes in DA and NA levels in the limbic and limbic-related brain regions. Additionally, the results suggest that the lesion leads to a supersensitization of 5-HT6 receptors on glutamate neurons in the PrL.

  6. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. L-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, L-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of L-DOPA and CSC or ZM 241385 did not change the effect of L-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of L-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical.

  7. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis.

    PubMed

    Toti, Luca; Travagli, R Alberto

    2014-11-15

    Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis. PMID:25277799

  8. Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids.

    PubMed

    Berg, Jürgen; Roch, Manfred; Altschüler, Jennifer; Winter, Christine; Schwerk, Anne; Kurtz, Andreas; Steiner, Barbara

    2015-02-01

    Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson's disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype.

  9. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression

    PubMed Central

    Gao, J; Kang, X-y; Sun, S; Li, L; Zhang, B-l; Li, Y-q; Gao, D-s

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  10. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression.

    PubMed

    Gao, J; Kang, X-Y; Sun, S; Li, L; Zhang, B-L; Li, Y-Q; Gao, D-S

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  11. Relationships among rat ultrasonic vocalizations, behavioral measures of striatal dopamine loss, and striatal tyrosine hydroxylase immunoreactivity at acute and chronic time points following unilateral 6-hydroxydopamine-induced dopamine depletion.

    PubMed

    Grant, Laura M; Barnett, David G; Doll, Emerald J; Leverson, Glen; Ciucci, Michelle

    2015-09-15

    Voice deficits in Parkinson disease (PD) emerge early in the disease process, but do not improve with standard treatments targeting dopamine. Experimental work in the rat shows that severe and chronic unilateral nigrostriatal dopamine depletion with 6-OHDA results in decreased intensity, bandwidth, and complexity of ultrasonic vocalizations. However, it is unclear if mild/acute dopamine depletion, paralleling earlier stages of PD, results in vocalization deficits, or to what degree vocalization parameters are correlated with other dopamine-dependent indicators of lesion severity or percent of tyrosine hydroxylase (%TH) loss. Here, we assayed ultrasonic vocalizations, forelimb asymmetry, and apomorphine rotations in rats with a range of unilateral dopamine loss resulting from 6-OHDA or vehicle control infusions to the medial forebrain bundle at acute (72 h) and chronic (4 weeks) time points post-infusion. The %TH loss was evaluated at 4 weeks. At 72 h, forelimb asymmetry and %TH loss were significantly correlated, while at 4 weeks, all measures of lesion severity were significantly correlated with each other. Call complexity was significantly correlated with all measures of lesion severity at 72 h but only with %TH loss at 4 weeks. Bandwidth was correlated with forelimb asymmetry at both time points. Duration was significantly correlated with all dopamine depletion measures at 4 weeks. Notably, not all parameters were affected universally or equally across time. These results suggest that vocalization deficits may be a sensitive index of acute and mild catecholamine loss and further underscores the need to characterize the neural mechanisms underlying vocal deficits in PD.

  12. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease.

    PubMed

    Fu, Yuan; Ito, Mikako; Fujita, Yasunori; Ito, Masafumi; Ichihara, Masatoshi; Masuda, Akio; Suzuki, Yumi; Maesawa, Satoshi; Kajita, Yasukazu; Hirayama, Masaaki; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Kinji

    2009-04-01

    Molecular hydrogen serves as an antioxidant that reduces hydroxyl radicals, but not the other reactive oxygen and nitrogen species. In the past year, molecular hydrogen has been reported to prevent or ameliorate eight diseases in rodents and one in human associated with oxidative stress. In Parkinson's disease, mitochondrial dysfunction and the associated oxidative stress are major causes of dopaminergic cell loss in the substantia nigra. We examined effects of approximately 50%-saturated molecular hydrogen in drinking water before or after the stereotactic surgery on 6-hydroxydopamine-induced nigrostrital degeneration in a rat model of Parkinson's disease. Methamphetamine-induced behavioral analysis showed that molecular hydrogen prevented both the development and progression of the nigrostrital degeneration. Tyrosine hydroxylase staining of the substantia nigra and striatum also demonstrated that pre- and post-treatment with hydrogen prevented the dopaminergic cell loss. Our studies suggest that hydrogen water is likely able to retard the development and progression of Parkinson's disease. PMID:19356598

  13. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model.

    PubMed

    Zhang, Q J; Du, C X; Tan, H H; Zhang, L; Li, L B; Zhang, J; Niu, X L; Liu, J

    2015-12-17

    The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.

  14. Alterations of BDNF and trkB mRNA Expression in the 6-Hydroxydopamine-Induced Model of Preclinical Stages of Parkinson’s Disease: An Influence of Chronic Pramipexole in Rats

    PubMed Central

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; Głowacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively. PMID:25739024

  15. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson’s Disease in Rats

    PubMed Central

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson’s disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson’s disease induced by 6-hydroxydopamine. PMID:27610168

  16. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson’s Disease in Rats

    PubMed Central

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson’s disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson’s disease induced by 6-hydroxydopamine.

  17. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways.

    PubMed

    Zhang, Jie; Niu, Na; Wang, Mingyu; McNutt, Michael A; Zhang, Donghong; Zhang, Baogang; Lu, Shijun; Liu, Yuqing; Liu, Zhihui

    2013-08-01

    Oxidative and immune attacks from the environment or microglia have been implicated in the loss of dopaminergic neurons of Parkinson's disease. The role of IgG which is an important immunologic molecule in the process of Parkinson's disease has been unclear. Evidence suggests that IgG can be produced by neurons in addition to its traditionally recognized source B lymphocytes, but its function in neurons is poorly understood. In this study, extensive expression of neuron-derived IgG was demonstrated in dopaminergic neurons of human and rat mesencephalon. With an in vitro Parkinson's disease model, we found that neuron-derived IgG can improve the survival and reduce apoptosis of dopaminergic neurons induced by 6-hydroxydopamine toxicity, and also depress the release of NO from microglia triggered by 6-hydroxydopamine. Expression of TNF-α and IL-10 in microglia was elevated to protective levels by neuron-derived IgG at a physiologic level via the FcγR I and TLR4 pathways and microglial activation could be attenuated by IgG blocking. All these data suggested that neuron-derived IgG may exert a self-protective function by activating microglia properly, and IgG may be involved in maintaining immunity homeostasis in the central nervous system and serve as an active factor under pathological conditions such as Parkinson's disease.

  18. Intrastriatal grafts of fetal ventral mesencephalon improve allodynia-like withdrawal response to mechanical stimulation in a rat model of Parkinson's disease.

    PubMed

    Takeda, Ryuichiro; Ishida, Yasushi; Ebihara, Kosuke; Abe, Hiroshi; Matsuo, Hisae; Ikeda, Tetsuya; Koganemaru, Go; Kuramashi, Aki; Funahashi, Hideki; Magata, Yasuhiro; Kawai, Keiichi; Nishimori, Toshikazu

    2014-06-24

    We previously reported that a unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease showed allodynia-like withdrawal response to mechanical stimulation of the ipsilateral side of the rat hindpaw. The goal of this study was to investigate the effect of intrastriatal grafts of fetal ventral mesencephalon (VM) on the withdrawal response in 6-OHDA rats. The withdrawal threshold in response to the mechanical stimulation of the rat hindpaw was measured using von Frey filaments. In the ipsilateral side of the 6-OHDA lesions, the withdrawal threshold in response to mechanical stimulation significantly increased in 6-OHDA rats with VM grafts compared with those with sham grafts, but did not change in the contralateral side at 5 weeks after transplantation. The present results suggest that the intrastriatal grafts of fetal VM may relieve pain sensation induced by mechanical stimulation in 6-OHDA rats. PMID:24831182

  19. S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades.

    PubMed

    Tobón-Velasco, Julio César; Vázquez-Victorio, Genaro; Macías-Silva, Marina; Cuevas, Elvis; Ali, Syed F; Maldonado, Perla D; González-Trujano, María Eva; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2012-09-01

    Pharmacological activation at the basal ganglia of the transcription factor Nrf2, guardian of redox homeostasis, holds a strong promise for the slow progression of Parkinson's disease (PD). However, a potent Nrf2 activator in the brain still must be found. In this study, we have investigated the potential use of the antioxidant compound S-allyl cysteine (SAC) in the activation of Nrf2 in 6-hydoxydopamine (6-OHDA)-intoxicated rats. In the rat striatum, SAC by itself promoted the Nrf2 dissociation of Keap-1, its nuclear translocation, the subsequent association with small MafK protein, and further binding of the Nrf2/MafK complex to ARE sequence, as well as the up-regulation of Nrf2-dependent genes encoding the antioxidant enzymes HO-1, NQO-1, GR, and SOD-1. In vivo and in vitro experiments to identify signaling pathways activated by SAC pointed to Akt as the most likely kinase participating in Nrf2 activation by SAC. In PC12 cells, SAC stimulated the activation of Akt and ERK1/2 and inhibited JNK1/2/3 activation. In the rat striatum, the SAC-induced activation of Nrf2 is likely to contribute to inhibit the toxic effects of 6-OHDA evidenced by phase 2 antioxidant enzymes up-regulation, glutathione recovery, and attenuation of reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxides formation. These early protective effects correlated with the long-term preservation of the cellular redox status, the striatal dopamine (DA) and tyrosine hydroxylase (TH) levels, and the improvement of motor skills. Therefore, this study indicates that, in addition to direct scavenging actions, the activation of Nrf2 by SAC might confer neuroprotective responses through the modulation of kinase signaling pathways in rodent models of PD, and suggests that this antioxidant molecule may have a therapeutic value in this human pathology.

  20. 6-hydroxydopamine-induced Parkinson's disease-like degeneration generates acute microgliosis and astrogliosis in the nigrostriatal system but no bioluminescence imaging-detectable alteration in adult neurogenesis.

    PubMed

    Fricke, Inga B; Viel, Thomas; Worlitzer, Maik M; Collmann, Franziska M; Vrachimis, Alexis; Faust, Andreas; Wachsmuth, Lydia; Faber, Cornelius; Dollé, Frédéric; Kuhlmann, Michael T; Schäfers, Klaus; Hermann, Sven; Schwamborn, Jens C; Jacobs, Andreas H

    2016-05-01

    Parkinson's disease is a slowly progressing neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra (SN), leading to severe impairment in motor and non-motor functions. Endogenous subventricular zone (SVZ) neural stem cells constantly give birth to new cells that might serve as a possible source for regeneration in the adult brain. However, neurodegeneration is accompanied by neuroinflammation and dopamine depletion, potentially compromising regeneration. We therefore employed in vivo imaging methods to study striatal deafferentation (N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-[(123) I]iodophenyl)nortropane single photon emission computed tomography, DaTscan(™) ) and neuroinflammation in the SN and striatum (N,N-diethyl-2-(2-(4-(2-[(18) F]fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide positron emission tomography, [(18) F]DPA-714 PET) in the intranigral 6-hydroxydopamine Parkinson's disease mouse model. Additionally, we transduced cells in the SVZ with a lentivirus encoding firefly luciferase and followed migration of progenitor cells in the SVZ-olfactory bulb axis via bioluminescence imaging under disease and control conditions. We found that activation of microglia in the SN is an acute process accompanying the degeneration of dopaminergic cell bodies in the SN. Dopaminergic deafferentation of the striatum does not influence the generation of doublecortin-positive neuroblasts in the SVZ, but generates chronic astrogliosis in the nigrostriatal system. PMID:26950181

  1. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD.

  2. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD. PMID:26773499

  3. Regulation of dihydropyridine calcium antagonist binding sites in the rat hippocampus following neurochemical lesions.

    PubMed

    Bolger, G T; Basile, A S; Janowsky, A J; Paul, S M; Skolnick, P

    1987-01-01

    The effects of catecholaminergic, cholinergic, serotonergic, and glutaminergic terminal destruction and neurotransmitter depletion on [3H]nitrendipine binding to rat brain membranes were determined using the neurotoxins 6-hydroxydopamine, 5,7-dihydroxytryptamine, and kainic acid and the neurotransmitter-depleting agent reserpine. Following intracisternal injection of 6-hydroxydopamine there were time-dependent increases (14-23%) in the density but not change in the affinity of hippocampal [3H]nitrendipine binding sites. 6-Hydroxydopamine significantly increased [3H]nitrendipine binding in the hippocampus 4 and 10 days following injection. However, no significant change in binding was observed at 16 and 26 days. [3H]Nitrendipine binding in the cerebral cortex, striatum, cerebellum, and brain stem was unaffected by 6-hydroxydopamine. Neither 5,7-dihydroxytryptamine nor kainic acid affected [3H]nitrendipine binding in the hippocampus and cerebral cortex. Acute and chronic reserpinization also did not affect [3H]nitrendipine binding in the hippocampus and cerebral cortex. These results indicate that dihydropyridine calcium antagonist bindings sites in rat brain are subject to brain region-specific regulation following neurochemical lesions and may be present in their largest densities on postsynaptic membranes.

  4. Circadian distribution of motor-activity in unilaterally 6-hydroxy-dopamine lesioned rats.

    PubMed

    Baier, Paul Christian; Branisa, Pablo; Koch, Reinhard; Schindehütte, Jan; Paulus, Walter; Trenkwalder, Claudia

    2006-02-01

    Sleep abnormalities in idiopathic Parkinson's disease (PD) frequently consist in a reduction of total sleep time and efficacy and subsequent excessive daytime sleepiness. As it remains unclear whether these phenomena are part of the disease itself or result from pharmacological treatment, animal models for investigating the pathophysiology of sleep alterations in PD may add knowledge to this research area. In the present study, we investigate whether changes in circadian motor activity occur in 6-OHDA-lesioning model for PD, and allow a screening for disturbed sleep-waking behaviour. Activity measurements of six male Wistar rats with 6-OHDA-lesions in the medial forebrain bundle and six controls were carried out in two consecutive 12:12 h light-dark (LD) cycles. A computer-based video-analysis system, recording the animals' movement tracks was used. Distance travelled and number of transitions between movement periods and resting periods were determined. Although 6-OHDA-lesioned animals show a reduced locomotor activity compared to non-lesioned rats, the circadian distribution basically remained intact. However, some lesioning effects were more pronounced in the resting phase than in the activity phase, possibly paralleling nocturnal akinesia in PD. In order to further elucidate the described phenomena, it will be necessary to perform studies combining sleep recordings with locomotor activity measurements.

  5. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β.

    PubMed

    Muñoz, Ana; Garrido-Gil, Pablo; Dominguez-Meijide, Antonio; Labandeira-Garcia, Jose L

    2014-11-01

    Non-neuronal factors such as angiogenesis and neuroinflammation may play a role in l-dopa induced dyskinesias (LID). Vascular endothelial growth factor (VEGF) and proinflammatory cytokines such as interleukin-1β (IL-1β) have been found to be involved in LID. The renin-angiotensin system (RAS) is involved in the inflammatory response and VEGF synthesis via type 1 (AT1) receptors. However, it is not known whether the RAS plays a role in LID and whether AT1 antagonists could constitute a useful therapy against LID. In this study, we investigated whether manipulation of brain RAS is effective in preventing LID. Blocking AT1 receptors with candesartan significantly reduces LID in the 6-OHDA rat model. Chronic dopaminergic denervation induces an increase in striatal levels of VEGF and IL-1β. Dyskinetic animals showed significantly higher levels of VEGF and IL-1β in the lateral striatum and the substantia nigra, as revealed by western blot and real time-PCR analyses. Interestingly, animals treated with both candesartan and l-dopa displayed significantly lower levels of VEGF, IL-1β and dyskinesia than those treated with l-dopa alone. The stimulatory effect of angiotensin II (AII) on VEGF expression was confirmed by the addition of AII to primary mesencephalic cultures and intraventricular administration of AII in rats. The results of the present study reveal for the first time that blockage of AT-1 receptors reduces LID. A candesartan-induced decrease in VEGF and IL-1β may be responsible for the beneficial effects, suggesting the brain RAS as a new target for LID treatment in PD patients. PMID:25160895

  6. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Ryu, Junghwa; Zhang, Rui; Hong, Bo-Hyun; Yang, Eun-Jung; Kang, Kyoung Ah; Choi, Moonseok; Kim, Ki Cheon; Noh, Su-Jin; Kim, Hee Soo; Lee, Nam-Ho; Hyun, Jin Won; Kim, Hye-Sun

    2013-01-01

    In this study, we investigated whether phloroglucinol (1,3,5-trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD.

  7. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions

    PubMed Central

    Bonito-Oliva, Alessandra; Masini, Débora; Fisone, Gilberto

    2014-01-01

    Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson's disease (PD). These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA) in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to revert the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual noradrenergic terminals. PMID

  8. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-01

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  9. Dopamine depletion in either the dorsomedial or dorsolateral striatum impairs egocentric Cincinnati water maze performance while sparing allocentric Morris water maze learning.

    PubMed

    Braun, Amanda A; Amos-Kroohs, Robyn M; Gutierrez, Arnold; Lundgren, Kerstin H; Seroogy, Kim B; Skelton, Matthew R; Vorhees, Charles V; Williams, Michael T

    2015-02-01

    Both egocentric route-based learning and spatial learning, as assessed by the Cincinnati water maze (CWM) and Morris water maze (MWM), respectively, are impaired following an 80% dopamine (DA) loss in the neostriatum after 6-hydroxydopamine (6-OHDA) administration in rats. The dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) are implicated in different navigational learning types, namely the DLS is implicated in egocentric learning while the DMS is implicated in spatial learning. This experiment tested whether selective DA loss through 6-OHDA lesions in the DMS or DLS would impair one or both types of navigation. Both DLS and DMS DA loss significantly impaired route-based CWM learning, without affecting spatial or cued MWM performance. DLS 6-OHDA lesions produced a 75% DA loss in this region, with no changes in other monoamine levels in the DLS or DMS. DMS 6-OHDA lesions produced a 62% DA loss in this region, without affecting other monoamine levels in the DMS or DLS. The results indicate a role for DA in DLS and DMS regions in route-based egocentric but not spatial learning and memory. Spatial learning deficits may require more pervasive monoamine reductions within each region before deficits are exhibited. This is the first study to implicate DLS and DMS DA in route-based egocentric navigation. PMID:25451306

  10. Effect of pre- and postnatal manganese exposure on brain histamine content in a rodent model of Parkinson's disease.

    PubMed

    Brus, Ryszard; Jochem, Jerzy; Nowak, Przemysław; Adwent, Marta; Boroń, Dariusz; Brus, Halina; Kostrzewa, Richard M

    2012-02-01

    Rats lesioned shortly after birth with 6-hydroxydopamine (6-OHDA; 134 μg icv) represent a near-ideal model of severe Parkinson's disease because of the near-total destruction of nigrostriatal dopaminergic fibers. There are scarce data that in Parkinson's disease, activity of the central histaminergic system is increased. The element manganese, an essential cofactor for many enzymatic reactions, itself in toxic amount, replicates some clinical features similar to those of Parkinson's disease. The aim of this study was to examine the effect of neonatal manganese exposure on 6-OHDA modeling of Parkinson's disease in rats, and to determine effects on histamine content in the brain of these rats in adulthood. Manganese (MnCl₂·4H₂O; 10,000 ppm) was included in the drinking water of pregnant Wistar rats from the time of conception until the 21st day after delivery, the age when neonatal rats were weaned. Control rats consumed tap water. Other groups of neonatal rat pups, on the 3rd day after birth, were pretreated with desipramine (20 mg/kg ip 1 h) prior to bilateral icv administration of 6-OHDA (60 or 134 μg) or its vehicle saline-ascorbic (0.1%) (control). At 2 months after birth, in rats lesioned with 60 or 134 μg 6-OHDA, endogenous striatal dopamine (DA) content was reduced, respectively, by 92 and 98% (HPLC/ED), while co-exposure of these groups to perinatal manganese did not magnify the DA depletion. However, there was prominent enhancement of histamine content in frontal cortex, hippocampus, hypothalamus, and medulla oblongata of adult rat brain after 6-OHDA (60 and 134 μg) injection on the day 3rd postnatal day. These findings indicate that histamine and the central histaminergic system are altered in the brain of rats lesioned to model Parkinson's disease, and that manganese enhances effects of 6-OHDA on histamine in brain. PMID:21822760

  11. Respiratory deficits in a rat model of Parkinson's disease.

    PubMed

    Tuppy, M; Barna, B F; Alves-Dos-Santos, L; Britto, L R G; Chiavegatto, S; Moreira, T S; Takakura, A C

    2015-06-25

    Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of the dopaminergic nigrostriatal pathway. In addition to deficits in voluntary movement, PD involves a disturbance of breathing regulation. However, the cause and nature of this disturbance are not well understood. Here, we investigated breathing at rest and in response to hypercapnia (7% CO2) or hypoxia (8% O2), as well as neuroanatomical changes in brainstem regions essential for breathing, in a 6-hydroxydopamine (6-OHDA) rat model of PD. Bilateral injections of 6-OHDA (24μg/μl) into the striatum decreased tyrosine hydroxylase (TH(+))-neurons in the substantia nigra pars compacta (SNpc), transcription factor phox2b-expressing neurons in the retrotrapezoid nucleus and neurokinin-1 receptors in the ventral respiratory column. In 6-OHDA-lesioned rats, respiratory rate was reduced at rest, leading to a reduction in minute ventilation. These animals also showed a reduction in the tachypneic response to hypercapnia, but not to hypoxia challenge. These results suggest that the degeneration of TH(+) neurons in the SNpc leads to impairment of breathing at rest and in hypercapnic conditions. Our data indicate that respiratory deficits in a 6-OHDA rat model of PD are related to downregulation of neural systems involved in respiratory rhythm generation. The present study suggests a new avenue to better understand the respiratory deficits observed in chronic stages of PD.

  12. The dual dopamine-glutamate phenotype of growing mesencephalic neurons regresses in mature rat brain.

    PubMed

    Bérubé-Carrière, Noémie; Riad, Mustapha; Dal Bo, Grégory; Lévesque, Daniel; Trudeau, Louis-Eric; Descarries, Laurent

    2009-12-20

    Coexpression of tyrosine hydroxylase (TH) and vesicular glutamate transporter 2 (VGLUT2) mRNAs in the ventral tegmental area (VTA) and colocalization of these proteins in axon terminals of the nucleus accumbens (nAcb) have recently been demonstrated in immature (15-day-old) rat. After neonatal 6-hydroxydopamine (6-OHDA) lesion, the proportion of VTA neurons expressing both mRNAs and of nAcb terminals displaying the two proteins was enhanced. To determine the fate of this dual phenotype in adults, double in situ hybridization and dual immunolabeling for TH and VGLUT2 were performed in 90-day-old rats subjected or not to the neonatal 6-OHDA lesion. Very few neurons expressed both mRNAs in the VTA and substantia nigra (SN) of P90 rats, even after neonatal 6-OHDA. Dually immunolabeled terminals were no longer found in the nAcb of normal P90 rats and were exceedingly rare in the nAcb of 6-OHDA-lesioned rats, although they had represented 28% and 37% of all TH terminals at P15. Similarly, 17% of all TH terminals in normal neostriatum and 46% in the dopamine neoinnervation of SN in 6-OHDA-lesioned rats were also immunoreactive for VGLUT2 at P15, but none at P90. In these three regions, all dually labeled terminals made synapse, in contradistinction to those immunolabeled for only TH or VGLUT2 at P15. These results suggest a regression of the VGLUT2 phenotype of dopamine neurons with age, following normal development, lesion, or sprouting after injury, and a role for glutamate in the establishment of synapses by these neurons.

  13. Early-onset cortico-cortical synchronization in the hemiparkinsonian rat model.

    PubMed

    Jávor-Duray, B N; Vinck, M; van der Roest, M; Mulder, A B; Stam, C J; Berendse, H W; Voorn, P

    2015-02-01

    Changes in synchronized neuronal oscillatory activity are reported in both cortex and basal ganglia of Parkinson's disease patients. The origin of these changes, in particular their relationship with the progressive nigrostriatal dopaminergic denervation, is unknown. Therefore, in the present study we studied interregional neuronal synchronization in motor cortex and basal ganglia during the development of dopaminergic degeneration induced by a unilateral infusion of 6-hydroxydopamine (6-OHDA) into the rat medial forebrain bundle. We performed serial local field potential recordings bilaterally in the motor cortex and the subthalamic nucleus of the lesioned hemisphere prior to, during, and after development of the nigrostriatal dopaminergic cell loss. We obtained signal from freely moving rats in both resting and walking conditions, and we computed local spectral power, interregional synchronization (using phase lag index), and directionality (using Granger causality). After neurotoxin injection the first change in phase lag index was an increment in cortico-cortical synchronization. We observed increased bidirectional Granger causality in the beta frequency band between cortex and subthalamic nucleus within the lesioned hemisphere. In the walking condition, the 6-OHDA lesion-induced changes in synchronization resembled that of the resting state, whereas the changes in Granger causality were less pronounced after the lesion. Considering the relatively preserved connectivity pattern of the cortex contralateral to the lesioned side and the early emergence of increased cortico-cortical synchronization during development of the 6-OHDA lesion, we suggest a putative compensatory role of cortico-cortical coupling. PMID:25392174

  14. Neuroprotective activity of peripherally administered liver growth factor in a rat model of Parkinson's disease.

    PubMed

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucía; Reimers, Diana; Herranz, Antonio Sánchez; Rodríguez-Serrano, Macarena; Miranda, Cristina; Jiménez-Escrig, Adriano; Díaz-Gil, Juan José; Bazán, Eulalia

    2013-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson's disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson's disease.

  15. Neuroprotective Activity of Peripherally Administered Liver Growth Factor in a Rat Model of Parkinson’s Disease

    PubMed Central

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucía; Reimers, Diana; Herranz, Antonio Sánchez; Rodríguez-Serrano, Macarena; Miranda, Cristina; Jiménez-Escrig, Adriano; Díaz-Gil, Juan José; Bazán, Eulalia

    2013-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease. PMID:23861803

  16. Basal and stress-induced corticosterone secretion is decreased by lesion of mesencephalic dopaminergic neurons.

    PubMed

    Casolini, P; Kabbaj, M; Leprat, F; Piazza, P V; Rougé-Pont, F; Angelucci, L; Simon, H; Le Moal, M; Maccari, S

    1993-09-17

    There is evidence that certain psychopathological conditions are accompanied by a dysfunction in both the hypothalamo-pituitary-adrenal axis and dopaminergic systems, although the relationship between these two systems is as yet unclear. In the present study we investigated the effect of a specific lesion of dopamine mesencephalic neurons (Ventral Tegmental Area) on basal and stress-induced corticosterone secretion. Three weeks after injection of 6-OHDA, there was a depletion in dopamine in the frontal cortex and in the ventral and dorsal striatum, whereas norepinephrine and serotonin levels were unchanged. The dopamine-lesioned rats exhibited a lower basal and stress-induced corticosterone secretion than the sham-lesioned animals. The results indicate that the dopaminergic system may have a stimulatory influence on the hypothalamo-pituitary-adrenal axis. PMID:8242373

  17. Role of 5-Hydroxytryptamine 1A Receptors in 6-Hydroxydopmaine-induced Catalepsy-like Immobilization in Rats: a Therapeutic Approach for Treating Catalepsy of Parkinson’s Disease

    PubMed Central

    eyhani-rad, Siamak; Mohajjel Nayebi, Alireza; Mahmoudi, Javad; Samini, Morteza; Babapour, Vahab

    2012-01-01

    We have shown that buspirone, a partial agonist of 5-hydroxytryptamine 1A (5-HT1A) receptors, improves motor dysfunctions induced by 6-hydroxydopamine (6-OHDA) and haloperidol in rats. The present work extends these findings by investigating the role of 5-HT1A receptors on catalepsy-like immobilization in rats, a model of Parkinson’s disease. Catalepsy was induced by unilateral infusion of 6-OH-dopamine (8 μg/2μL/rat) into the central region of the substantia nigra, compact part (SNc) and assayed by bar-test method 5, 60, 120 and 180 min after the drugs administration. The involvement of 5-HT1A receptors in 6-OHDA-induced catalepsy was studied through intraperitoneal (0.25, 0.5 and 1mg/Kg IP) and intrasubstantia nigra, compact part (10 μg/rat, intra-SNc) injection of 8-hydroxy-2-[di-n-propylamino] tetralin (8-OHDPAT) as well as administration of 1-(2-methoxyphenyl)-4-[4-(2-pthalimmido) butyl] piperazine hydrobromide (0.1, 0.5 and 1 mg/Kg, NAN-190, IP). NAN-190 (1 mg/Kg, IP) and 8-OHDPAT (1 mg/Kg, IP and 10 μg/rat, intra-SNc) increased and decreased 6-OHDA-induced catalepsy respectively. In normal (non 6-OHDA-lesioned) rats, NAN-190 (1 mg/Kg, IP) increased the elapsed time in bar-test while 8-OHDPAT did not produce any significant effect. The anticataleptic effect of 8-OHDPAT (1 mg/Kg, IP) was reversed markedly by co-injection with NAN-190 (1 mg/Kg, IP). These findings suggest that 5-HT1A receptors are involved in 6-OHDA-induced catalepsy-like immobilization. PMID:24250551

  18. Effect of exercise on dopamine neuron survival in prenatally stressed rats

    PubMed Central

    Mabandla, Musa V.; Kellaway, Lauriston A.; Daniels, William M. U.

    2010-01-01

    Prenatal stress has been associated with increased vulnerability to psychiatric disturbances including schizophrenia, depression, attention-deficit hyperactivity disorder and autism. Elevated maternal circulating stress hormones alter development of neural circuits in the fetal brain and cause long-term changes in behaviour. The aim of the present study was to investigate whether mild prenatal stress increases the vulnerability of dopamine neurons in adulthood. A low dose of 6-hydroxydopamine (6-OHDA, 5 μg/4 μl saline) was unilaterally infused into the medial forebrain bundle of nerve fibres in the rat brain in order to create a partial lesion of dopamine neurons which was sufficient to cause subtle behavioural deficits associated with early onset of Parkinson’s disease without complete destruction of dopamine neurons. Voluntary exercise appeared to have a neuroprotective effect resulting in an improvement in motor control and decreased asymmetry in the use of left and right forelimbs to explore a novel environment as well as decreased asymmetry of tyrosine hydroxylase-positive cells in the substantia nigra pars compacta and decreased dopamine cell loss in 6-OHDA-lesioned rats. Prenatal stress appeared to enhance the toxic effect of 6-OHDA possibly by reducing the compensatory adaptations to exercise. PMID:19844780

  19. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions.

    PubMed

    Rampersaud, N; Harkavyi, A; Giordano, G; Lever, R; Whitton, J; Whitton, P S

    2012-10-01

    Research on Parkinson's disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal pathway; however, post-mortem studies have demonstrated that other brain regions such as the locus coeruleus (LC) and raphe nuclei (RN) are significantly affected as well. Degeneration of these crucial neuronal cell bodies may be responsible for depressive behavior and cognitive decline present in the pre-motor stage of PD. We have thus set out to create a pre-motor rodent model of PD which mimics the early stages of the condition. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a selective noradrenergic neurotoxin, and parachloroampetamine (pCA), a selective serotonergic neurotoxin, were utilized concomitantly with bilateral 6-hydroxydopamine (6-OHDA) injections into the striatum to produce a pre-motor rodent model of PD with partial deficits in the dopaminergic, noradrenergic, and serotonergic systems. Our model exhibited a depressive/anhedonic condition as assessed using sucrose preference testing and the forced swim test. Our model also demonstrated deficits in object memory. These behavioral impairments were accompanied by a decline in both tissue and extracellular levels of all three neurotransmitters in both the frontal cortex and striatum. Immunohistochemistry also revealed a decrease in TH+ cells in the LC and substantia nigra. Exendin-4 (EX-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, promoted recovery of both the biochemical and behavioral dysfunction exhibited by our model. EX-4 was able to preserve the functional integrity of the dopaminergic, noradrenergic, and serotonergic systems. In conclusion, we have generated a novel animal model of PD that recapitulates certain pre-motor symptomology. These symptoms and causative physiology are ameliorated upon treatment with EX-4 and thus it could be used as a possible therapy for the non-motor symptoms prominent in the early stages of PD.

  20. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb.

    PubMed

    Lazarini, Françoise; Gabellec, Marie-Madeleine; Moigneu, Carine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lledo, Pierre-Marie

    2014-10-22

    Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing. PMID:25339754

  1. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease.

    PubMed

    Saraiva, C; Paiva, J; Santos, T; Ferreira, L; Bernardino, L

    2016-08-10

    Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration.

  2. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson’s Disease

    PubMed Central

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson’s disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  3. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson's Disease.

    PubMed

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson's disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  4. The effect of central chemical sympathectomy on the oxygen uptake; anaerobic glycolysis and lactic acid dehydrogenase activity in the retina of white rats.

    PubMed

    Pojda, S M; Brus, R

    1976-01-01

    Male Wistar rats were injected intraventricularly with two doses of 250 mcg of 6-hydroxydopamine (6-OHDA) in two consecutive days. Two weeks later the oxygen uptake, anaerobic glycolysis and lactic acid dehydrogenase (LDH) activity in the retina were determined. The decrease of oxygen uptake (-28%), anaerobic glycolysis (-31%) and LDH activity (-12%) in rats treated with 6-OHDA in comparison to control animals was found. The possible role of the adrenergic system in regulation of the metabolism of the retina is discussed.

  5. Modeling fall propensity in Parkinson's disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation.

    PubMed

    Kucinski, Aaron; Paolone, Giovanna; Bradshaw, Marc; Albin, Roger L; Sarter, Martin

    2013-10-16

    Cognitive symptoms, complex movement deficits, and increased propensity for falls are interrelated and levodopa-unresponsive symptoms in patients with Parkinson's disease (PD). We developed a test system for the assessment of fall propensity in rats and tested the hypothesis that interactions between loss of cortical cholinergic and striatal dopaminergic afferents increase fall propensity. Rats were trained to traverse stationary and rotating rods, placed horizontally or at inclines, and while exposed to distractors. Rats also performed an operant Sustained Attention Task (SAT). Partial cortical cholinergic and/or caudate dopaminergic deafferentation were produced by bilateral infusions of 192 IgG-saporin (SAP) into the basal forebrain and/or 6-hydroxydopamine (6-OHDA) into the caudate nucleus, respectively, modeling the lesions seen in early PD. Rats with dual cholinergic-dopaminergic lesions (DL) fell more frequently than SAP or 6-OHDA rats. Falls in DL rats were associated with incomplete rebalancing after slips and low traversal speed. Ladder rung walking and pasta handling performance did not indicate sensorimotor deficits. SAT performance was impaired in DL and SAP rats; however, SAT performance and falls were correlated only in DL rats. Furthermore, in DL rats, but not in rats with only dopaminergic lesions, the placement and size of dopaminergic lesion correlated significantly with fall rates. The results support the hypothesis that after dual cholinergic-dopaminergic lesions, attentional resources can no longer be recruited to compensate for diminished striatal control of complex movement, thereby "unmasking" impaired striatal control of complex movements and yielding falls. PMID:24133257

  6. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease.

    PubMed

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2016-08-01

    Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential.

  7. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease.

    PubMed

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2016-08-01

    Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential. PMID:26414358

  8. NMDA receptors mediate an early up-regulation of brain-derived neurotrophic factor expression in substantia nigra in a rat model of presymptomatic Parkinson's disease.

    PubMed

    Bustos, Gonzalo; Abarca, Jorge; Bustos, Victor; Riquelme, Eduardo; Noriega, Viviana; Moya, Catherine; Campusano, Jorge

    2009-08-01

    The clinical symptoms of Parkinson's disease (PD) appear late and only when the degenerative process at the level of the nigrostriatal dopamine (DA) pathway is quite advanced. An increase in brain-derived neurotrophic factor (BDNF) expression may be one of the molecular signals associated to compensatory and plastic responses occurring in basal ganglia during presymptomatic PD. In the present study, we used in vivo microdialysis, semiquantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry to study N-methyl-D-aspartic acid (NMDA) receptor regulation of BDNF expression in substantia nigra (SN) of adult rats after partial lesioning of the nigrostriatal DA pathway with unilateral striatal injections of 6-hydroxydopamine (6-OHDA). A time-dependent partial decrease of striatal DA tissue content as well as parallel and gradual increases in extracellular glutamate and aspartate levels in SN were found 1 to 7 days after unilateral 6-OHDA intrastriatal injection. Instead, the number of tyrosine hydroxylase-immunoreactive (IR) cells in the ipsilateral SN pars compacta remained statistically unchanged after neurotoxin injection. Intrastriatal administration of 6-OHDA also produced an early and transient augmentation of pan-BDNF, exon II-BDNF, and exon III-BDNF transcripts in the ipsilateral SN. The pan-BDNF and exon II-BDNF transcript increases were completely abolished by the prior systemic administration of MK-801, a selective antagonist of NMDA receptors. MK-801 also blocked the increase in BDNF-IR cells in SN observed 7 days after unilateral 6-OHDA intrastriatal injections. Our findings suggest that a coupling between glutamate release, NMDA receptor activation, and BDNF expression may exist in the adult SN and represent an important signal in this midbrain nucleus triggered in response to partial DA loss occurring in striatal nerve endings during presymptomatic PD.

  9. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease

    PubMed Central

    Harkavyi, Alexander; Abuirmeileh, Amjad; Lever, Rebecca; Kingsbury, Ann E; Biggs, Christopher S; Whitton, Peter S

    2008-01-01

    Background It has recently become apparent that neuroinflammation may play a significant role in Parkinson's disease (PD). This is also the case in animal paradigms of the disease. The potential neuroprotective action of the glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 (EX-4), which is protective against cytokine mediated apoptosis and may stimulate neurogenesis, was investigated In paradigms of PD. Methods Two rodent 'models' of PD, 6-hydroxydopamine (6-OHDA) and lipopolysaccaride (LPS), were used to test the effects of EX-4. Rats were then investigated in vivo and ex vivo with a wide range of behavioural, neurochemical and histological tests to measure integrity of the nigrostriatal system. Results EX-4 (0.1 and 0.5 μg/kg) was given seven days after intracerebral toxin injection. Seven days later circling behaviour was measured following apomorphine challenge. Circling was significantly lower in rats given EX-4 at both doses compared to animals given 6-OHDA/LPS and vehicle. Consistent with these observations, striatal tissue DA concentrations were markedly higher in 6-OHDA/LPS + EX-4 treated rats versus 6-OHDA/LPS + vehicle groups, whilst assay of L-DOPA production by tyrosine hydroxylase was greatly reduced in the striata of 6-OHDA/LPS + vehicle rats, but this was not the case in rats co-administered EX-4. Furthermore nigral TH staining recorded in 6-OHDA/LPS + vehicle treated animals was markedly lower than in sham-operated or EX-4 treated rats. Finally, EX-4 clearly reversed the loss of extracellular DA in the striata of toxin lesioned freely moving rats. Conclusion The apparent ability of EX-4 to arrest progression of, or even reverse nigral lesions once established, suggests that pharmacological manipulation of the GLP-1 receptor system could have substantial therapeutic utility in PD. Critically, in contrast to other peptide agents that have been demonstrated to possess neuroprotective properties in pre-clinical models of PD, EX-4 is in

  10. Dissociation of the neural substrates of foraging effort and its social facilitation in the domestic chick.

    PubMed

    Ogura, Yukiko; Izumi, Takeshi; Yoshioka, Mitsuhiro; Matsushima, Toshiya

    2015-11-01

    The frequency or intensity of behavior is often facilitated by the presence of others. This social facilitation has been reported in a variety of animals, including birds and humans. Based on Zajonc's "drive theory," we hypothesized that facilitation and drive have shared neural mechanisms, and that dopaminergic projections from the midbrain to striatum are involved. As the ascending dopaminergic projections include the mesolimbic and nigrostriatal pathways, we targeted our lesions at the medial striatum (MSt) and substantia nigra (SN). We found that a bilateral electrolytic lesion of the MSt suppressed baseline foraging effort, but social facilitation was intact. Conversely, an electrolytic lesion targeted at the unilateral SN (on the right side) partially suppressed social facilitation, while baseline foraging effort remained unaffected. However, selective depletion of catecholaminergic (thyrosine hydroxylase immunoreactive) terminals by micro-infusion of 6-hydroxydopamine (6-OHDA) to bilateral MSt had no significant effects on foraging behavior, whereas it impaired formation of the association memory reinforced by water reward. Neurochemical assay by high-perfromance liquid chromatography also revealed a significant decrease in the dopamine and noradrenaline contents in MSt after 6-OHDA micro-infusion compared with intact control chicks. Thus, we conclude that the neural substrate of social facilitation can be dissociated from that responsible for reward-based foraging effort, and that ascending dopaminergic pathways do not appear to contribute to social facilitation. Based on our detailed analysis of the lesion areas, we discuss fiber tracts or neural components of the midbrain tegmental area that may be responsible for social facilitation.

  11. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson’s Disease

    PubMed Central

    Garea-Rodríguez, Enrique; Eesmaa, Ave; Lindholm, Päivi; Schlumbohm, Christina; König, Jessica; Meller, Birgit; Krieglstein, Kerstin; Helms, Gunther; Saarma, Mart; Fuchs, Eberhard

    2016-01-01

    Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF. PMID:26901822

  12. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  13. [Improvement in spontaneous and acquired spatial behaviors following lesions of septal dopaminergic afferents in mice: possible relations with hippocampal cholinergic activity].

    PubMed

    Galey, D; Durkin, T; Sifakis, G; Jaffard, R

    1984-01-01

    Recent evidence from pharmacological studies support the view that dopaminergic afferents to the septal complex which originate from the mesencephalic A10 area, exert a tonic inhibitory control over the activity of the septal-hippocampal cholinergic neurons. Accordingly one could predict that the release from such an inhibition by lesion of the septal dopaminergic terminals might improve performance in tasks known to be related to hippocampal cholinergic activity. In order to test this hypothesis mice of the C57BL/6 strain received a bilateral injection of 6-hydroxydopamine in the lateral septal nucleus; they were compared to subjects receiving saline and to unoperated control mice in tests performed in a T-maze: spontaneous alternation, acquisition and reversal of spatial discrimination. In all tasks, performance of experimental subjects was improved relative to controls. However, subsequent experiments showed that this improvement was not observed when visual (light/dark) discrimination was used. Finally, 6-hydroxydopamine injected mice exhibited a substantial increase in hippocampal sodium-dependent high affinity choline uptake (+ 16.7%). These results are discussed in relation to the three main theories concerning the role of the septo-hippocampal complex and cholinergic system in the control of behavior (i.e. Pavlovian internal inhibition, spatial mapping and working memory). Only the theory of spatial cognition seems to account for our present findings.

  14. Dopamine-dependent modulation of rat globus pallidus excitation by nicotine acetylcholine receptors.

    PubMed

    Ríos, Alain; Barrientos, Rafael; Alatorre, Alberto; Delgado, Alfonso; Perez-Capistran, Teresa; Chuc-Meza, Eliezer; García-Ramirez, Martha; Querejeta, Enrique

    2016-02-01

    The globus pallidus (GP) coordinates information processing in the basal ganglia nuclei. The contribution of nicotinic cholinergic receptors (nAChRs) to the spiking activity of GP neurons is largely unknown. Several studies have reported that the effect of nAChRs in other nuclei depends on dopaminergic input. Via in vivo single unit extracellular recordings and intranuclear drug infusions, we analyzed the effects of local activation and blockade of nAChRs in neurons of both sham and 6-hydroxydopamine (6-OHDA)-lesioned rats. In sham rats, the local application of nicotine and edrophonium (an acetylcholinesterase inhibitor) increases GP neurons spiking rate. Local application of mecamylamine, a neuronal nicotinic cholinergic antagonist, diminishes pallidal neurons spiking rate, an effect not produced by d-tubocurarine, a peripheral nicotinic cholinergic antagonist. Moreover, mecamylamine blocks the excitatory effect evoked by nicotine and edrophonium. In 6-OHDA-lesioned rats, local infusion of nicotine does not change pallidal neurons firing rate. Our results show that there is a tonic cholinergic input to the GP that increases their spiking rate through the activation of nAChRs and that this effect depends on functional dopaminergic pathways.

  15. Motor disturbances and thalamic electrical power of frequency bands' improve by grape seed extract in animal model of Parkinson's disease

    PubMed Central

    Sarkaki, Alireza; Eidypour, Zainab; Motamedi, Freshteh; keramati, keivan; Farbood, Yaghoub

    2012-01-01

    Objective: Previous studies showed that grape seed extract (GSE) is an excellent natural substance with potent antioxidant effect and free radical scavenger. This study aimed to evaluate the effect of GSE on motor dysfunctions and thalamic local Electroencephalography (EEG) frequency bands' powers in rats with Parkinson's disease (PD). Materials and Methods: In this study 8 µg 6-hydroxydopamine (6-OHDA) dissolved in 2 µl normal saline containing 0.01% ascorbic acid was infused into right medial forebrain bundle (MFB) to make an animal model of PD. Rats with PD received four weeks GSE (100 mg/kg, p.o.) after apomorphine-induced rotation test. Spontaneous motor tests and also thalamic ventroanterior nucleus (AV) local EEG recording were done in freely moving rats in all groups. Results: Chronic treatment of PD rats with GSE could influence potentially frequency bands' powers of thalamic VA and improve post-lesion motor dysfunctions significantly (p<0.05 and p<0.01, respectively). Conclusion: Our findings suggest that GSE modulates the CNS function and has beneficial effects on the direct and indirect striato-thalamo-cortical pathways in PD. GSE acts as a new and potent natural free radical scavenger which removes oxidants produced by neurotoxin 6-OHDA in brain. Therefore, it reinforces electrical power of remained thalamic VA neurons and thereby improves post-lesion motor disorders. PMID:25050252

  16. Mesocortical dopamine depletion and anxiety-related behavior in the rat: sex and hemisphere differences.

    PubMed

    Sullivan, R M; Dufresne, M M; Siontas, D; Chehab, S; Townsend, J; Laplante, F

    2014-10-01

    The mesocortical dopamine (DA) system of the rat plays an important role in prefrontal cortex (PFC) regulation of stress and emotion and exhibits functional hemispheric asymmetry for such processing. Since few studies examine sex differences in this context, we compared the effects of left vs. right unilateral PFC DA depletion in males and females in several behavioral situations associated with anxiety or aversion. Adult rats received unilateral injections of 6-hydroxydopamine (6-OHDA) or vehicle in the ventromedial (vm) PFC. Behavioral tests included a predator odor burying test, elevated plus maze and sucrose consumption with simple taste aversion. Tissue analysis confirmed that vmPFCs injected with 6-OHDA were depleted of DA (75-85%) compared to controls. Burying behavior and sucrose consumption were affected only by left lesions, similarly in both sexes. However, risk assessment behaviors were affected by right lesions in opposite directions in males and females. Behaviors modified preferentially by the left cortex thus showed less evidence of sex differences than those modulated by the right. While mesocortical DA depletion effects are lateralized, the nature of these effects can vary with sex and specific behavior. Such findings may be clinically significant, given the large gender differences in the incidence of mood and anxiety disorders, which also show many lateralized prefrontal abnormalities. PMID:24819821

  17. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease.

    PubMed

    Reglodi, Dóra; Lubics, Andrea; Tamás, Andrea; Szalontay, Luca; Lengvári, István

    2004-05-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide, exerting different actions in the central and peripheral nervous systems. Among others, it has neurotrophic and neuroprotective effects. In the present study, we investigated the effects of PACAP in a rat model of Parkinson's disease. Rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) into the substantia nigra. PACAP-treated animals received 0.1 microg PACAP as a pretreatment. Control animals without PACAP treatment displayed severe hypokinesia at 1 and 10 days postlesion when compared to animals receiving saline only. In only 1 day postlesion, by contrast, PACAP-treated rats showed no hypokinesia. Asymmetrical signs, such as turning, rearing and biased thigmotaxic scanning were observed in all lesioned animals 1 day postlesion. PACAP-treated animals, however, showed better recovery as they ceased to display asymmetrical signs 10 days later and showed markedly less apomorphine-induced rotations. Tyrosine-hydroxylase immunohistochemistry revealed that control animals had more than 95% loss of the dopaminergic cells in the ipsilateral substantia nigra, while PACAP-treated animals had only approximately 50% loss of dopaminergic cells. In summary, the present results show the neuroprotective effect of PACAP in 6-OHDA-induced lesion of substantia nigra, with less severe acute neurological symptoms and a more rapid amelioration of behavioral deficits.

  18. Decreased HCN2 expression in STN contributes to abnormal high-voltage spindles in the cortex and globus pallidus of freely moving rats.

    PubMed

    Yang, Chen; Zhang, Jia-Rui; Chen, Lei; Ge, Shun-Nan; Wang, Ju-Lei; Yan, Zhi-Qiang; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2015-08-27

    Abnormal oscillation in the cortical-basal ganglia loop is involved in the pathophysiology of parkinsonism. High-voltage spindles (HVSs), one of the main type abnormal oscillations in Parkinson's disease, are regulated by dopamine D2-like receptors but not D1-like receptors. However, little is known about how dopamine D2-like receptors regulate HVSs and the role of hyperpolarization-activated cyclic nucleotide-gated2 (HCN2) in HVSs regulation. We simultaneously recorded the local field potential (LFP) in globus pallidus (GP) and electrocorticogram (ECoG) in primary motor cortex (M1) in freely moving 6-hydroxydopamine (6-OHDA) lesioned or control rats. The expression of HCN2 and dopamine D2 receptor in the subthalamic nucleus (STN) was examined by immunochemical staining and Western blotting. We also tested the role of HCN2 in HVSs regulation by using pharmacological and shRNA methodology. We found that dopamine D2-like receptor agonists suppressed the increased HVSs in 6-OHDA lesioned rats. HCN2 was co-expressed with dopamine D2 receptor in the STN, and dopamine depletion decreased the expression of HCN2 as well as dopamine D2 receptor which contribute to the regulation of HVSs. HCN2 was down regulated by HCN2 shRNA, which thereby led to an increase in the HVSs in naïve rats while HCN2 agonist reduced the HVSs in 6-OHDA lesioned rats. These results suggest that HCN2 in the STN is involved in abnormal oscillation regulation between M1 cortex and GP.

  19. Enhanced Neuroprotective Effects of Coadministration of Tetrandrine with Glutathione in Preclinical Model of Parkinson's Disease

    PubMed Central

    Li, Xiang-Yun; Mei, Guang-Hai; Dong, Qiang; Zhang, Yu; Guo, Zhuang-Li; Su, Jing-Jing; Tang, Yu-Ping; Jin, Xue-Hong; Zhou, Hou-Guang; Huang, Yan-Yan

    2015-01-01

    Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment. PMID:26664824

  20. Enhanced Neuroprotective Effects of Coadministration of Tetrandrine with Glutathione in Preclinical Model of Parkinson's Disease.

    PubMed

    Li, Xiang-Yun; Mei, Guang-Hai; Dong, Qiang; Zhang, Yu; Guo, Zhuang-Li; Su, Jing-Jing; Tang, Yu-Ping; Jin, Xue-Hong; Zhou, Hou-Guang; Huang, Yan-Yan

    2015-01-01

    Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment. PMID:26664824

  1. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    SciTech Connect

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies.

  2. Combination of acamprosate and baclofen as a promising therapeutic approach for Parkinson’s disease

    PubMed Central

    Hajj, Rodolphe; Milet, Aude; Toulorge, Damien; Cholet, Nathalie; Laffaire, Julien; Foucquier, Julie; Robelet, Sandra; Mitry, Richard; Guedj, Mickael; Nabirotchkin, Serguei; Chumakov, Ilya; Cohen, Daniel

    2015-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of dopaminergic nigrostriatal neurons but which involves the loss of additional neurotransmitter pathways. Mono- or polytherapeutic interventions in PD patients have declining efficacy long-term and no influence on disease progression. The systematic analysis of available genetic and functional data as well as the substantial overlap between Alzheimer’s disease (AD) and PD features led us to repurpose and explore the effectiveness of a combination therapy (ABC) with two drugs – acamprosate and baclofen – that was already effective in AD animal models, for the treatment of PD. We showed in vitro that ABC strongly and synergistically protected neuronal cells from oxidative stress in the oxygen and glucose deprivation model, as well as dopaminergic neurons from cell death in the 6-hydroxydopamine (6-OHDA) rat model. Furthermore, we showed that ABC normalised altered motor symptoms in vivo in 6-OHDA-treated rats, acting by protecting dopaminergic cell bodies and their striatal terminals. Interestingly, ABC also restored a normal behaviour pattern in lesioned rats suggesting a symptomatic effect, and did not negatively interact with L-dopa. Our results demonstrate the potential value of combining repurposed drugs as a promising new strategy to treat this debilitating disease. PMID:26542636

  3. Preventive effects of soy meal (+/- isoflavone) on spatial cognitive deficiency and body weight in an ovariectomized animal model of Parkinson's disease.

    PubMed

    Sarkaki, A; Badavi, M; Aligholi, H; Moghaddam, A Zand

    2009-10-15

    The aim of the present study was to investigate the preventive effect of 4 weeks soy meal (+/- isoflavone) on post-menopausal cognitive deficiency and body weight alteration in ovariectomized (OVX)-6-hydroxy dopamine (6-OHDA)-induced animal model of Parkinson's Disease (PD) which mimics status in menopause women. Female Wistar rats (250-300 g, 5-6 months old) were divided into 2 main groups. (1) Control; (2) OVX; included 5 subgroups that were pre-treated with 10 or 20 g soy with isoflavone in 30 g daily diet (10 and 20 groups, respectively), 10 or 20 g soy without isoflavone in 30 g daily diet (-10 and -20 groups, respectively) and 0 g soy (sham treated group) during 4 weeks after OVX. To induce animal model ofPD in main second group (OVX rats) the substantia nigra pars compacta (SNpc) was lesioned by 6-hydroxydopamine (6-OHDA) (8 microg kg(-1) 4 microL(-1) normal saline contains 0.1% ascorbate). All animals were trained in Morris water maze for evaluating the spatial learning and memory. The results indicated that pre-treatment of Parkinsonian rats with different doses of dietary soy meal (+/- isoflavone) improved the spatial learning and memory and prevents increasing the body weight after menopause significantly. Our data show that, long-duration dietary soy meal may have the potential neuroprotective effect against post-menopausal cognitive deficiency induced by degeneration of nigrostriatal dopaminergic system and constant body weight during post-menopausal life cycle.

  4. Dopaminergic Lesions of the Dorsolateral Striatum in Rats Increase Delay Discounting in an Impulsive Choice Task

    PubMed Central

    Tedford, Stephanie E.; Persons, Amanda L.; Napier, T. Celeste

    2015-01-01

    Dysregulated dopamine transmission in striatal circuitry is associated with impulsivity. The current study evaluated the influence of dopaminergic inputs to the dorsolateral striatum on impulsive choice, one aspect of impulsive behavior. We implemented an operant task that measures impulsive choice in rats via delay discounting wherein intracranial self-stimulation (ICSS) was used as the positive reinforcer. To do so, rats were anesthetized to allow implanting of a stimulating electrode within the lateral hypothalamus of one hemisphere and bilateral dorsal striatal injections of the dopaminergic toxin, 6-OHDA (lesioned) or its vehicle (sham). Following recovery, rats were trained in a delay discounting task wherein they selected between a small ICSS current presented immediately after lever pressing, and a large ICSS current presented following a 0 to 15s delay upon pressing the alternate lever. Task acquisition and reinforcer discrimination were similar for lesioned and sham rats. All rats exhibited an initial preference for the large reinforcer, and as the delay was increased, preference for the large reinforcer was decreased indicating that the subjective value of the large reinforcer was discounted as a function of delay time. However, this discounting effect was significantly enhanced in lesioned rats for the longer delays. These data reveal a contribution of dopaminergic inputs to the dorsolateral striatum on impulsive choice behavior, and provide new insights into neural substrates underlying discounting behaviors. PMID:25927685

  5. Dopaminergic lesions of the dorsolateral striatum in rats increase delay discounting in an impulsive choice task.

    PubMed

    Tedford, Stephanie E; Persons, Amanda L; Napier, T Celeste

    2015-01-01

    Dysregulated dopamine transmission in striatal circuitry is associated with impulsivity. The current study evaluated the influence of dopaminergic inputs to the dorsolateral striatum on impulsive choice, one aspect of impulsive behavior. We implemented an operant task that measures impulsive choice in rats via delay discounting wherein intracranial self-stimulation (ICSS) was used as the positive reinforcer. To do so, rats were anesthetized to allow implanting of a stimulating electrode within the lateral hypothalamus of one hemisphere and bilateral dorsal striatal injections of the dopaminergic toxin, 6-OHDA (lesioned) or its vehicle (sham). Following recovery, rats were trained in a delay discounting task wherein they selected between a small ICSS current presented immediately after lever pressing, and a large ICSS current presented following a 0 to 15 s delay upon pressing the alternate lever. Task acquisition and reinforcer discrimination were similar for lesioned and sham rats. All rats exhibited an initial preference for the large reinforcer, and as the delay was increased, preference for the large reinforcer was decreased indicating that the subjective value of the large reinforcer was discounted as a function of delay time. However, this discounting effect was significantly enhanced in lesioned rats for the longer delays. These data reveal a contribution of dopaminergic inputs to the dorsolateral striatum on impulsive choice behavior, and provide new insights into neural substrates underlying discounting behaviors.

  6. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  7. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease.

    PubMed

    Danielyan, Lusine; Schäfer, Richard; von Ameln-Mayerhofer, Andreas; Bernhard, Felix; Verleysdonk, Stephan; Buadze, Marine; Lourhmati, Ali; Klopfer, Tim; Schaumann, Felix; Schmid, Barbara; Koehle, Christoph; Proksch, Barbara; Weissert, Robert; Reichardt, Holger M; van den Brandt, Jens; Buniatian, Gayane H; Schwab, Matthias; Gleiter, Christoph H; Frey, William H

    2011-02-01

    Safe and effective cell delivery remains one of the main challenges in cell-based therapy of neurodegenerative disorders. Graft survival, sufficient enrichment of therapeutic cells in the brain, and avoidance of their distribution throughout the peripheral organs are greatly influenced by the method of delivery. Here we demonstrate for the first time noninvasive intranasal (IN) delivery of mesenchymal stem cells (MSCs) to the brains of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. IN application (INA) of MSCs resulted in the appearance of cells in the olfactory bulb, cortex, hippocampus, striatum, cerebellum, brainstem, and spinal cord. Out of 1 × 10⁶ MSCs applied intranasally, 24% survived for at least 4.5 months in the brains of 6-OHDA rats as assessed by quantification of enhanced green fluorescent protein (EGFP) DNA. Quantification of proliferating cell nuclear antigen-positive EGFP-MSCs showed that 3% of applied MSCs were proliferative 4.5 months after application. INA of MSCs increased the tyrosine hydroxylase level in the lesioned ipsilateral striatum and substantia nigra, and completely eliminated the 6-OHDA-induced increase in terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine, 5'-triphosphate (dUTP)-biotin nick end labeling (TUNEL) staining of these areas. INA of EGFP-labeled MSCs prevented any decrease in the dopamine level in the lesioned hemisphere, whereas the lesioned side of the control animals revealed significantly lower levels of dopamine 4.5 months after 6-OHDA treatment. Behavioral analyses revealed significant and substantial improvement of motor function of the Parkinsonian forepaw to up to 68% of the normal value 40-110 days after INA of 1 × 10⁶ cells. MSC-INA decreased the concentrations of inflammatory cytokines-interleukin-1β (IL-1β), IL-2, -6, -12, tumor necrosis factor (TNF), interferon-γ (IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-CSF)-in the lesioned side to their

  8. Role of dopamine in the recruitment of immune cells to the nigro-striatal dopaminergic structures.

    PubMed

    Espinosa-Oliva, Ana M; de Pablos, Rocío M; Sarmiento, Manuel; Villarán, Ruth F; Carrillo-Jiménez, Alejandro; Santiago, Marti; Venero, José L; Herrera, Antonio J; Cano, Josefina; Machado, Alberto

    2014-03-01

    Research indicates that inflammation and microglial activation are involved in the initiation and progression of Parkinson's disease (PD). Neuroinflammation contributes to the infiltration of peripheral immune cells and blood-brain barrier (BBB) leakage, linking peripheral and central inflammatory events in the pathogenesis of PD. Dopamine (DA) likely plays a role in this process. In the present study, the dopaminergic toxin 6-hydroxydopamine (6-OHDA) was used to damage dopaminergic neurons. Injection of 6-OHDA within the nigrostriatal pathway produced loss of astrocytes, disruption of the BBB, microglia activation and a reduction in osteopontin (OPN) immunoreactivity. Depletion of DA content by alpha-methylparatyrosine (α-MPT, a tyrosine hydroxylase inhibitor) reduced the infiltration of peripheral macrophages as well as the 6-OHDA-induced increase in microglial cells. DA could therefore be relevant in sustaining inflammation and lymphocyte recruitment induced by 6-OHDA, supporting DA implication in the degeneration of dopaminergic neurons induced by inflammatory processes.

  9. Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [18F]LBT-999 in a Parkinson’s Disease Rat Model

    PubMed Central

    Sérrière, Sophie; Doméné, Aurélie; Vercouillie, Johnny; Mothes, Céline; Bodard, Sylvie; Rodrigues, Nuno; Guilloteau, Denis; Routier, Sylvain; Page, Guylène; Chalon, Sylvie

    2015-01-01

    The inverse association between nicotine intake and Parkinson’s disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [18F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [3H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD. PMID:26389120

  10. The vermicelli handling test: a simple quantitative measure of dexterous forepaw function in rats.

    PubMed

    Allred, Rachel P; Adkins, DeAnna L; Woodlee, Martin T; Husbands, Lincoln C; Maldonado, Mónica A; Kane, Jacqueline R; Schallert, Timothy; Jones, Theresa A

    2008-05-30

    Loss of function in the hands occurs with many brain disorders, but there are few measures of skillful forepaw use in rats available to model these impairments that are both sensitive and simple to administer. Whishaw and Coles previously described the dexterous manner in which rats manipulate food items with their paws, including thin pieces of pasta [Whishaw IQ, Coles BL. Varieties of paw and digit movement during spontaneous food handling in rats: postures, bimanual coordination, preferences, and the effect of forelimb cortex lesions. Behav Brain Res 1996;77:135-48]. We set out to develop a measure of this food handling behavior that would be quantitative, easy to administer, sensitive to the effects of damage to sensory and motor systems of the CNS and useful for identifying the side of lateralized impairments. When rats handle 7 cm lengths of vermicelli, they manipulate the pasta by repeatedly adjusting the forepaw hold on the pasta piece. As operationally defined, these adjustments can be easily identified and counted by an experimenter without specialized equipment. After unilateral sensorimotor cortex (SMC) lesions, transient middle cerebral artery occlusion (MCAO) and striatal dopamine depleting (6-hydroxydopamine, 6-OHDA) lesions in adult rats, there were enduring reductions in adjustments made with the contralateral forepaw. Additional pasta handling characteristics distinguished between the lesion types. MCAO and 6-OHDA lesions increased the frequency of several identified atypical handling patterns. Severe dopamine depletion increased eating time and adjustments made with the ipsilateral forepaw. However, contralateral forepaw adjustment number most sensitively detected enduring impairments across lesion types. Because of its ease of administration and sensitivity to lateralized impairments in skilled forepaw use, this measure may be useful in rat models of upper extremity impairment.

  11. Visualization of multiple opioid-receptor types in rat striatum after specific mesencephalic lesions

    SciTech Connect

    Eghbali, M.; Santoro, C.; Paredes, W.; Gardner, E.L.; Zukin, R.S.

    1987-09-01

    In order to gain insight into a possible modulatory role for ..mu.., delta, and kappa opioid receptors of the nigrostriatal dopaminergic pathway, the authors investigated the topographical organization of the receptors with respect to pre- and postsynaptic membranes. Dopaminergic terminals projecting from the substantia nigra to the corpus striatum were destroyed by unilateral injection of 6-hydroxydopamine into the susbstantia nigra. Quantitative receptor assays using highly specific radioligands were used to measure the density of striatal ..mu.., delta, and kappa receptors before and after denervation. Quantitative in vitro autoradiography was used to visualize the neuroanatomical pattern of receptors on lesioned and nonlesioned sides of the brain under the light microscope. Loss of ..mu.. receptors in striatal patches was striking in the ventro-lateral areas of the striatum, whereas the most notable loss of delta receptors was found in the central striatum. Other brain areas did not differ significantly in ..mu.. receptor density between the lesioned and nonlesioned sides, as determined by autoradiography. These findings suggest that a high percentage of ..mu.. and delta receptors in the striatum are located on the nigrostriatal dopaminergic terminals and support the concept of a modulatory role for ..mu.. and delta opioid peptides in the nigrostriatal dopaminergic pathway.

  12. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation

    PubMed Central

    Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.

    2015-01-01

    Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304

  13. Unilateral Lesion of Dopamine Neurons Induces Grooming Asymmetry in the Mouse.

    PubMed

    Pelosi, Assunta; Girault, Jean-Antoine; Hervé, Denis

    2015-01-01

    Grooming behaviour is the most common innate behaviour in animals. In rodents, it consists of sequences of movements organized in four phases, executed symmetrically on both sides of the animal and creating a syntactic chain of behavioural events. The grooming syntax can be altered by stress and novelty, as well as by several mutations and brain lesions. Grooming behaviour is known to be affected by alterations of the dopamine system, including dopamine receptor modulation, dopamine alteration in genetically modified animals, and after brain lesion. While a lot is known about the initiation and syntactic modifications of this refined sequence of movements, effects of unilateral lesion of dopamine neurons are unclear particularly regarding the symmetry of syntactic chains. In the present work we studied grooming in mice unilaterally lesioned in the medial forebrain bundle by 6-hydroxydopamine. We found a reduction in completion of grooming bouts, associated with reduction in number of transitions between grooming phases. The data also revealed the development of asymmetry in grooming behaviour, with reduced tendency to groom the contralateral side to the lesion. Symmetry was recovered following treatment with L-DOPA. Thus, the present work shows that unilateral lesion of dopamine neurons reduces self-grooming behaviour by affecting duration and numbers of events. It produces premature discontinuation of grooming chains but the sequence syntax remains correct. This deficient grooming could be considered as an intrinsic symptom of Parkinson's disease in animal models and could present some similarities with abnormalities of motor movement sequencing seen in patients. Our study also suggests grooming analysis as an additional method to screen parkinsonism in animal models.

  14. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  15. Dissociation of the neural substrates of foraging effort and its social facilitation in the domestic chick.

    PubMed

    Ogura, Yukiko; Izumi, Takeshi; Yoshioka, Mitsuhiro; Matsushima, Toshiya

    2015-11-01

    The frequency or intensity of behavior is often facilitated by the presence of others. This social facilitation has been reported in a variety of animals, including birds and humans. Based on Zajonc's "drive theory," we hypothesized that facilitation and drive have shared neural mechanisms, and that dopaminergic projections from the midbrain to striatum are involved. As the ascending dopaminergic projections include the mesolimbic and nigrostriatal pathways, we targeted our lesions at the medial striatum (MSt) and substantia nigra (SN). We found that a bilateral electrolytic lesion of the MSt suppressed baseline foraging effort, but social facilitation was intact. Conversely, an electrolytic lesion targeted at the unilateral SN (on the right side) partially suppressed social facilitation, while baseline foraging effort remained unaffected. However, selective depletion of catecholaminergic (thyrosine hydroxylase immunoreactive) terminals by micro-infusion of 6-hydroxydopamine (6-OHDA) to bilateral MSt had no significant effects on foraging behavior, whereas it impaired formation of the association memory reinforced by water reward. Neurochemical assay by high-perfromance liquid chromatography also revealed a significant decrease in the dopamine and noradrenaline contents in MSt after 6-OHDA micro-infusion compared with intact control chicks. Thus, we conclude that the neural substrate of social facilitation can be dissociated from that responsible for reward-based foraging effort, and that ascending dopaminergic pathways do not appear to contribute to social facilitation. Based on our detailed analysis of the lesion areas, we discuss fiber tracts or neural components of the midbrain tegmental area that may be responsible for social facilitation. PMID:26235329

  16. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    PubMed

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  17. Lesion of the dopaminergic nigrostriatal pathway induces trigeminal dynamic mechanical allodynia

    PubMed Central

    Dieb, Wisam; Ouachikh, Omar; Durif, Franck; Hafidi, Aziz

    2014-01-01

    Background Pain constitutes the major non motor syndrome in Parkinson's disease (PD) and includes neuropathic pain; however current drug therapies used to alleviate it have only limited efficacy. This is probably due to poor understanding of the mechanisms underlying it. Aims We investigated a major class of trigeminal neuropathic pain, dynamic mechanical allodynia (DMA), in a rat model of PD and in which a bilateral 6-hydroxy dopamine (6-OHDA) injection was administered to produce a lesion of the nigrostriatal dopaminergic pathway. Results and discussion Lesioned animals presented significant DMA in the orofacial area that occurred from 4 days to 5 weeks post-injury. To investigate a segmental implication in the neuropathic pain induced by dopamine depletion, the expression of the isoform gamma of the protein kinase C (PKCg) and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2) was explored in the medullary dorsal horn (MDH). There was a high increase in PKCg expression in the III and IIi laminae of the MDH of lesioned-animals compared to shams. pERK1/2 expression was also significantly high in the ipsilateral MDH of lesioned rats in response to non-noxious tactile stimulus of the orofacial region. Since pERK1/2 is expressed only in response to nociceptive stimuli in the dorsal spinal horn, the current study demonstrates that non-noxious stimuli evoke allodynic response. Intraperitoneal and intracisternal administrations of bromocriptine, a dopamine 2 receptor (D2R) agonist, significantly decreased DMA compared to control rats injected with saline. These data demonstrate for the first time that nigrostriatal dopaminergic depletion produces trigeminal neuropathic pain that at least involves a segmental mechanism. In addition, bromocriptine was shown to have a remarkable analgesic effect on this neuropathic pain symptom. PMID:24944866

  18. Lesions of the dopaminergic innervation of the nucleus accumbens medial shell delay the generation of preference for sucrose, but not of sexual pheromones.

    PubMed

    Martínez-Hernández, José; Lanuza, Enrique; Martínez-García, Fernando

    2012-01-15

    Male sexual pheromones are rewarding stimuli for female mice, able to induce conditioned place preference. To test whether processing these natural reinforcing stimuli depends on the dopaminergic innervation of the nucleus accumbens, as for other natural rewards, we compare the effects of specific lesions of the dopaminergic innervation of the medial shell of the nucleus accumbens on two different appetitive behaviours, 'pheromone seeking' and sucrose preferential intake. Female mice, with no previous experience with either adult male chemical stimuli or with sucrose, received injections of 6-hydroxydopamine (or vehicle) in the medial shell of the accumbens. Then, we analyzed their preference for male soiled-bedding and their preferential intake of a sucrose solution, with particular emphasis on the dynamics of acquisition of both natural rewards. The results indicate that both lesioned and sham animals showed similar preference for male sexual pheromones, which was constant along the test (linear dynamics). In contrast, lesioned animals differed from sham operated mice in the dynamics of sucrose consumption in their first test of sucrose preference. Sham animals showed an initial sucrose preference followed by preference for water, which can be interpreted as sucrose neophobia. Lesioned animals showed no preference at the beginning of the test, and a delayed sucrose preference appeared followed by a delayed neophobia. The next day, during a second sucrose-preference test, both groups displayed comparable and sustained preferential sucrose intake. Therefore, dopamine in the medial shell of the nucleus accumbens has a different role on the reward of sexual pheromones and sucrose.

  19. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area.

    PubMed

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2013-09-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. The dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease by acting on the neuronal reward circuitry. Therefore this study was designed to explore the potential motivational effect of dopamine replacement therapy in bilateral VTA-lesioned animals. The posterior (p)VTA, which project to the nucleus accumbens (NAc) constitutes the major dopamine neuronal circuitry implicated in addictive disorders. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists, and cocaine in rat with a 6-OHDA bilateral lesion of the pVTA. Amongst the dopamine receptor agonists used in this study only the D2R and D3R agonists (bromocriptine, PD128907 and pramipexole), induced a significant CPP in pVTA-lesioned animals. Dopamine receptor agonists did not induce behavioral sensitization in sham animals. Moreover, confocal D2R immunostaining analysis showed a significant increase in the number of D2R per cell body in the NAc shell of pVTA lesioned rats compared to sham. This result correlated, for the first time, the dopamine receptor agonists effect with DR2 overexpression in the NAc shell of pVTA-lesioned rats. In addition, cocaine, which is known to increase dopamine release, induced behavioral sensitization in sham group but not in dopamine deprived group. Thus, the later result highlighted the importance of pVTA-NAc dopaminergic pathway in positive reinforcements. Altogether these data suggested that the implication of the dopamine replacement therapy in the appearance of dopamine dysregulation syndrome in Parkinson's disease is probably due to both neuronal degeneration in the posterior VTA and

  20. Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra

    SciTech Connect

    Hargraves, R.; Freed, W.J.

    1987-03-09

    This study examined the effects of continuously supplied dopamine delivered directly into the dopamine-deficient striatum. Rats received unilateral lesions of the substantia nigra by stereotaxic administration of 6-hydroxydopamine and were tested for apomorphine-induced rotational behavior and general activity. Osmotic mini-pumps were filled with dopamine in various concentrations, implanted subcutaneously and connected to a cannula implanted directly into the striatum. The system delivered solution at a rate of .5 ..mu..l/hr for two weeks. Dopamine in a dosage of 0.5 ..mu..g/per hour reduced apomorphine-induced rotational behavior by a mean of 52 +/- 5.8% (mean +/- SEM n=20) with a maximal individual decrease of 99%. There was no change in general activity or increase in stereotype behavior. Infusions of vehicle solutions did not decrease rotational behavior. Spread of the infused dopamine and its metabolites was estimated by adding /sup 3/H-dopamine to the pumps in tracer quantities. Radioactivity was highly concentrated at the infusion site and decreased rapidly within a few mm from the infusion site. Continuous infusion methods may eventually prove to be effective in the treatment of nigro-striatal degenerative disease. 12 references, 4 figures.

  1. From unilateral to bilateral parkinsonism: Effects of lateralization on dyskinesias and associated molecular mechanisms.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C

    2015-10-01

    The mechanisms underlying lateralization and progression of motor symptoms from unilateral to bilateral in Parkinson's disease (PD) remain to be elucidated. In addition, the molecular mechanisms involved in levodopa-induced dyskinesias (LIDs) depending on lateralization and disease progression from unilaterally to bilateral have not been described yet. We investigated motor symptoms, LIDs and associated striatal molecular markers expression after unilateral left or right, and after a sequential bilateral 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions in rats. Sequentially bilateral lesioned animals showed a bilateral increase in striatal preproenkephalin (PPE) mRNA without changes in pre-prodynorphin (PDyn) mRNA expression. The increase in dyskinesias when parkinsonism becomes bilateral was mostly due to an increase in orolingual dyskinesias associated to a increase in PDyn mRNA expression. Right lesion induces, or facilitates when first-done, a greater level of LIDs and an increase in striatal PPE and PDyn mRNAs in the second lesioned side. We describe a new striatal molecular pattern that appears when parkinsonism becomes bilateral and the relevance of the lateralization for the development of LIDs.

  2. From unilateral to bilateral parkinsonism: Effects of lateralization on dyskinesias and associated molecular mechanisms.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C

    2015-10-01

    The mechanisms underlying lateralization and progression of motor symptoms from unilateral to bilateral in Parkinson's disease (PD) remain to be elucidated. In addition, the molecular mechanisms involved in levodopa-induced dyskinesias (LIDs) depending on lateralization and disease progression from unilaterally to bilateral have not been described yet. We investigated motor symptoms, LIDs and associated striatal molecular markers expression after unilateral left or right, and after a sequential bilateral 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions in rats. Sequentially bilateral lesioned animals showed a bilateral increase in striatal preproenkephalin (PPE) mRNA without changes in pre-prodynorphin (PDyn) mRNA expression. The increase in dyskinesias when parkinsonism becomes bilateral was mostly due to an increase in orolingual dyskinesias associated to a increase in PDyn mRNA expression. Right lesion induces, or facilitates when first-done, a greater level of LIDs and an increase in striatal PPE and PDyn mRNAs in the second lesioned side. We describe a new striatal molecular pattern that appears when parkinsonism becomes bilateral and the relevance of the lateralization for the development of LIDs. PMID:26113400

  3. The integrity of the ventral noradrenergic bundle (VNAB) is not necessary for a normal neuroendocrine stress response.

    PubMed

    Castagné, V; Rivet, J M; Mormède, P

    1990-03-19

    The paraventricular nucleus of the hypothalamus (PVN) receives a dense noradrenergic innervation originating in the caudal brainstem and conveyed by the ventral noradrenergic bundle (VNAB). To evaluate the importance of this pathway, rats were bilaterally injected with 6-hydroxydopamine (6-OHDA) into the VNAB, posterior to the locus coeruleus to avoid the lesion of the dorsal noradrenergic system. These lesions reduced noradrenaline (NA) levels in the PVN by 60% without any significant change of NA levels in the cortex or of dopamine or serotonin in any part of the brain, indicating the specificity of the lesion. After one or three weeks, the neuroendocrine responses to stress were monitored. The secretion of adrenocorticotropic hormone (ACTH), corticosterone and prolactin were studied under basal conditions and after exposure to a novel environment. The activity of the sympathetic nervous system (SNS) was studied in catheterized rats. Plasma catecholamines were measured in basal conditions, and in response to gentle handling or exposure to footshocks. Apart from a transient increase of the adrenocortical axis activity which disappeared 3 weeks after surgery, the lesion did not change either basal levels of the hormones measured or their response to stress, indicating that the noradrenergic input to the PVN conveyed by the VNAB is not necessary for a normal neuroendocrine stress response to occur. PMID:2159362

  4. The Metabotropic Glutamate Receptor 4-Positive Allosteric Modulator VU0364770 Produces Efficacy Alone and in Combination with l-DOPA or an Adenosine 2A Antagonist in Preclinical Rodent Models of Parkinson's Disease

    PubMed Central

    Jones, Carrie K.; Bubser, Michael; Thompson, Analisa D.; Dickerson, Jonathan W.; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L.; Bridges, Thomas M.; Morrison, Ryan D.; Jadhav, Satyawan; Engers, Darren W.; Italiano, Kimberly; Bode, Jacob; Daniels, J. Scott; Lindsley, Craig W.; Hopkins, Corey R.; Conn, P. Jeffrey

    2012-01-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu4), including N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu4 PAMs exhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu4 in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu4 PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with l-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of l-DOPA, suggesting that mGlu4 PAMs may provide l-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu4 PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either l-DOPA or A2A antagonists. PMID:22088953

  5. Animal models to guide clinical drug development in ADHD: lost in translation?

    PubMed

    Wickens, Jeffery R; Hyland, Brian I; Tripp, Gail

    2011-10-01

    We review strategies for developing animal models for examining and selecting compounds with potential therapeutic benefit in attention-deficit hyperactivity disorder (ADHD). ADHD is a behavioural disorder of unknown aetiology and pathophysiology. Current understanding suggests that genetic factors play an important role in the aetiology of ADHD. The involvement of dopaminergic and noradrenergic systems in the pathophysiology of ADHD is probable. We review the clinical features of ADHD including inattention, hyperactivity and impulsivity and how these are operationalized for laboratory study. Measures of temporal discounting (but not premature responding) appear to predict known drug effects well (treatment validity). Open-field measures of overactivity commonly used do not have treatment validity in human populations. A number of animal models have been proposed that simulate the symptoms of ADHD. The most commonly used are the spontaneously hypertensive rat (SHR) and the 6-hydroxydopamine-lesioned (6-OHDA) animals. To date, however, the SHR lacks treatment validity, and the effects of drugs on symptoms of impulsivity and inattention have not been studied extensively in 6-OHDA-lesioned animals. At the present stage of development, there are no in vivo models of proven effectiveness for examining and selecting compounds with potential therapeutic benefit in ADHD. However, temporal discounting is an emerging theme in theories of ADHD, and there is good evidence of increased value of delayed reward following treatment with stimulant drugs. Therefore, operant behaviour paradigms that measure the effects of drugs in situations of delayed reinforcement, whether in normal rats or selected models, show promise for the future.

  6. Animal models to guide clinical drug development in ADHD: lost in translation?

    PubMed Central

    Wickens, Jeffery R; Hyland, Brian I; Tripp, Gail

    2011-01-01

    We review strategies for developing animal models for examining and selecting compounds with potential therapeutic benefit in attention-deficit hyperactivity disorder (ADHD). ADHD is a behavioural disorder of unknown aetiology and pathophysiology. Current understanding suggests that genetic factors play an important role in the aetiology of ADHD. The involvement of dopaminergic and noradrenergic systems in the pathophysiology of ADHD is probable. We review the clinical features of ADHD including inattention, hyperactivity and impulsivity and how these are operationalized for laboratory study. Measures of temporal discounting (but not premature responding) appear to predict known drug effects well (treatment validity). Open-field measures of overactivity commonly used do not have treatment validity in human populations. A number of animal models have been proposed that simulate the symptoms of ADHD. The most commonly used are the spontaneously hypertensive rat (SHR) and the 6-hydroxydopamine-lesioned (6-OHDA) animals. To date, however, the SHR lacks treatment validity, and the effects of drugs on symptoms of impulsivity and inattention have not been studied extensively in 6-OHDA-lesioned animals. At the present stage of development, there are no in vivo models of proven effectiveness for examining and selecting compounds with potential therapeutic benefit in ADHD. However, temporal discounting is an emerging theme in theories of ADHD, and there is good evidence of increased value of delayed reward following treatment with stimulant drugs. Therefore, operant behaviour paradigms that measure the effects of drugs in situations of delayed reinforcement, whether in normal rats or selected models, show promise for the future. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21480864

  7. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    PubMed Central

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  8. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    PubMed

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  9. Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test.

    PubMed

    Cryan, John F; Page, Michelle E; Lucki, Irwin

    2002-02-01

    The novel antidepressant reboxetine is a selective norepinephrine reuptake inhibitor. In this study, the antidepressant-like effects of reboxetine were characterized in a modified rat forced swim test. Further, in order to investigate the role of the locus coeruleus and lateral tegmental noradrenergic systems in the mediation of reboxetine's effects, the impact of different chemical lesions of these two pathways was examined on the behavioral responses induced by reboxetine in the forced swim test. Reboxetine (5-20 mg/kg, s.c.) dose-dependently decreased immobility and swimming behavior in the forced swim test while it simultaneously increased climbing behavior. These effects were similar to those previously demonstrated with tricyclic antidepressants and are indicative of reboxetine's effects on the noradrenergic system. Discrete local injections of the neurotoxin 6-hydroxydopamine were employed to lesion the ventral noradrenergic bundle arising from cells located in the lateral tegmentum. This resulting lesion completely prevented reboxetine (10 mg/kg, s.c.)-induced decreases in immobility and increases in climbing behavior, demonstrating that an intact ventral noradrenergic bundle is required for the manifestation of reboxetine-induced antidepressant-like behavior in the test. In contrast, lesions of the dorsal noradrenergic bundle which consists of neurons arising from the nucleus locus coereleus, were achieved by systemic pretreatment with the selective noradrenergic neurotoxin N-(2-chloroethyl)-N-2-bromobenzylamine (DSP-4; 50 mg/kg, i.p.). The ability of reboxetine (10 mg/kg, s.c.) to increase climbing and decrease immobility was augmented by DSP-4 pretreatment. Furthermore, neither lesions of the dorsal noradrenergic bundle nor the ventral noradrenergic bundle altered baseline immobility scores in the forced swim test. Taken together, these data suggest that forebrain regions innervated by these two distinct noradrenergic pathways exert opposing influences

  10. Vascular Lesions.

    PubMed

    Jahnke, Marla N

    2016-08-01

    Vascular lesions in childhood are comprised of vascular tumors and vascular malformations. Vascular tumors encompass neoplasms of the vascular system, of which infantile hemangiomas (IHs) are the most common. Vascular malformations, on the other hand, consist of lesions due to anomalous development of the vascular system, including the capillary, venous, arterial, and lymphatic systems. Capillary malformations represent the most frequent type of vascular malformation. IHs and vascular malformations tend to follow relatively predictable growth patterns in that IHs grow then involute during early childhood, whereas vascular malformations tend to exhibit little change. Both vascular tumors and vascular malformations can demonstrate a wide range of severity and potential associated complications necessitating specialist intervention when appropriate. Evaluation and treatment of the most common types of vascular lesions are discussed in this article. [Pediatr Ann. 2016;45(8):e299-e305.]. PMID:27517358

  11. Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission.

    PubMed

    Da Cunha, Claudio; Wietzikoski, Evellyn Claudia; Ferro, Marcelo Machado; Martinez, Glaucia Regina; Vital, Maria Aparecida Barbato Frazão; Hipólide, Débora; Tufik, Sergio; Canteras, Newton Sabino

    2008-06-01

    Rats with unilateral lesion of the substantia nigra pars compacta (SNpc) have been used as a model of Parkinson's disease. Depending on the lesion protocol and on the drug challenge, these rats rotate in opposite directions. The aim of the present study was to propose a model to explain how critical factors determine the direction of these turns. Unilateral lesion of the SNpc was induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Separate analysis showed that neither the type of neurotoxin nor the site of lesion along the nigrostriatal pathway was able to predict the direction of the turns these rats made after they were challenged with apomorphine. However, the combination of these two factors determined the magnitude of the lesion estimated by tyrosine-hydroxylase immunohistochemistry and HPLC-ED measurement of striatal dopamine. Very small lesions did not cause turns, medium-size lesions caused ipsiversive turns, and large lesions caused contraversive turns. Large-size SNpc lesions resulted in an increased binding of [(3)H]raclopride to D2 receptors, while medium-size lesions reduced the binding of [(3)H]SCH-23390 D1 receptors in the ipsilateral striatum. These results are coherent with the model proposing that after challenged with a dopamine receptor agonist, unilaterally SNpc-lesioned rats rotate toward the side with the weaker activation of dopamine receptors. This activation is weaker on the lesioned side in animals with small SNpc lesions due to the loss of dopamine, but stronger in animals with large lesions due to dopamine receptor supersensitivity.

  12. Young and Middle-Aged Rats Exhibit Isometric Forelimb Force Control Deficits in a Model of Early-Stage Parkinson's disease

    PubMed Central

    Bethel-Brown, Crystal S.; Morris, Jill K.; Stanford, John A.

    2011-01-01

    Deficits in manual motor control often accompany the early stages of Parkinson’s disease (PD), and are often revealed through isometric force tasks. In order to determine whether similar deficits occur in a rat model of early-stage PD, young (8 months) and middle-aged (18 months) rats were trained to produce sustained press-hold-release isometric forelimb responses that allowed for analyses of force output and spectral analysis of forelimb stability and tremor. Rats then received a 6-hydroxydopamine (6-OHDA) infusion into the striatum contralateral to the trained forelimb and were tested for four weeks post-lesion. The resulting partial striatal dopamine depletions (which at 41 ± 12% and 43 ± 6% in young and middle-aged rats, respectively, did not differ between the two groups) resulted in isometric forelimb deficits. Specifically, rats exhibited significantly diminished force stability and increased high frequency (10–25 Hz) tremor, indicating potential postural disturbances and increased postural tremor respectively. Durations of press-hold-release bouts were also increased post-lesion, suggesting difficulty in task disengagement. Despite pre-lesion differences in some of the force measures, the effects of partial nigrostriatal DA depletion did not differ between the two age groups. These results support the use of the press-while-licking task in preclinical studies modeling isometric force control deficits in PD. PMID:21767573

  13. Serotonergic interaction between medial prefrontal cortex and mesotelencephalic DA system underlies cognitive and affective deficits in hemiparkinsonian rats.

    PubMed

    Petri, D; de Souza Silva, M A; Chao, O Y-H; Schnitzler, A; Huston, J P

    2015-10-29

    Parkinson's disease (PD) patients not only exhibit motor impairments, but also characteristic deficits in cognitive and affective functions. Such functions have consistently been associated with the medial prefrontal cortex (mPFC). To determine whether there is an interaction between the midbrain dopamine system (MDS) and the mPFC underlying the cognitive and emotional deficits seen in rats, we administered a disconnection procedure of these structures by applying lesions to the mPFC (N-methyl-d-aspartic acid (NMDA)) and the medial forebrain bundle (6-hydroxydopamine (6-OHDA)) either in the same or opposite hemispheres. The results indicate a functional interaction of the MDS and the mPFC: Disconnection effects on behavior were observed with respect to memory-, anxiety- and depression-related behaviors. A disconnection of the mPFC and MDS had promnestic, antidepressant- and anxiolytic-like effects. In order to determine whether this circuit between the mPFC and MDS involves serotonergic mechanisms, we also utilized serotonin-specific disconnections of the mPFC by applying the 5-HT-specific agent 5,7-dihydroxytryptamine (5,7-DHT) into the mPFC and 6-OHDA into the medial forebrain bundle, again either in the same or opposite hemispheres. The behavioral effects observed here resembled those incurred by the unspecific disconnection of the mPFC, demonstrating a significant contribution of serotonergic mechanisms to the interplay between the MDS and the mPFC. Taken together, these experiments provide evidence for an interaction of the MDS and the mPFC in the control of cognitive and affective processes known to be impaired in PD and point toward a prominent involvement of the serotonergic system. A disconnection of the mPFC and the MDS had promnestic, antidepressant- and anxiolytic-like behavioral effects. These findings may impact therapeutic approaches in the treatment of cognitive and neuropsychiatric symptoms seen in PD.

  14. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.

    PubMed

    Schulz, Thomas C; Noggle, Scott A; Palmarini, Gail M; Weiler, Deb A; Lyons, Ian G; Pensa, Kate A; Meedeniya, Adrian C B; Davidson, Bruce P; Lambert, Nevin A; Condie, Brian G

    2004-01-01

    The use of human embryonic stem cells (hESCs) as a source of dopaminergic neurons for Parkinson's disease cell therapy will require the development of simple and reliable cell differentiation protocols. The use of cell cocultures, added extracellular signaling factors, or transgenic approaches to drive hESC differentiation could lead to additional regulatory as well as cell production delays for these therapies. Because the neuronal cell lineage seems to require limited or no signaling for its formation, we tested the ability of hESCs to differentiate to form dopamine-producing neurons in a simple serum-free suspension culture system. BG01 and BG03 hESCs were differentiated as suspension aggregates, and neural progenitors and neurons were detectable after 2-4 weeks. Plated neurons responded appropriately to electrophysiological cues. This differentiation was inhibited by early exposure to bone morphogenic protein (BMP)-4, but a pulse of BMP-4 from days 5 to 9 caused induction of peripheral neuronal differentiation. Real-time polymerase chain reaction and whole-mount immunocytochemistry demonstrated the expression of multiple markers of the midbrain dopaminergic phenotype in serum-free differentiations. Neurons expressing tyrosine hydroxylase (TH) were killed by 6-hydroxydopamine (6-OHDA), a neurotoxic catecholamine. Upon plating, these cells released dopamine and other catecholamines in response to K+ depolarization. Surviving TH+ neurons, derived from the cells differentiated in serum-free suspension cultures, were detected 8 weeks after transplantation into 6-OHDA-lesioned rat brains. This work suggests that hESCs can differentiate in simple serum-free suspension cultures to produce the large number of cells required for transplantation studies. PMID:15579641

  15. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination.

    PubMed

    Metz, Gerlinde A; Whishaw, Ian Q

    2002-04-15

    The ladder rung walking test is a new task to assess skilled walking and measure both forelimb and hindlimb placing, stepping, and inter-limb co-ordination. Rats spontaneously walk from a starting location to a goal along a horizontal ladder. The spacing between the rungs of the ladder is variable and can be changed to prevent the animal from learning either the absolute or relative location of the rungs. The testing procedure requires minimal training and allows detailed quantitative and qualitative analysis using video recording. The utility of the test is described with postoperative data obtained from animals with unilateral neocortical strokes produced by pial stripping over the motor cortex, neonatal and adult unilateral corticospinal tract lesions produced by tract section at the pyramids, and unilateral dopamine depletions produced by injection of 6-hydroxydopamine into the nigrostriatal bundle. In addition, a group of aged rats was examined. Deficits in limb placing, stepping and co-ordination displayed by the animals demonstrate that this test can discriminate between lesions of the motor system or age-associated impairments. The test is useful for assessing loss and recovery of function due to brain or spinal cord injury, the effectiveness of treatment therapies, as well as compensatory processes through which animals adapt to nervous system injury. PMID:11992668

  16. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: A model on the dissociation of bradykinesia from hypokinesia.

    PubMed

    Ribeiro, Renata Pietsch; Santos, Danúbia Bonfanti; Colle, Dirleise; Naime, Aline Aita; Gonçalves, Cinara Ludvig; Ghizoni, Heloisa; Hort, Mariana Appel; Godoi, Marcelo; Dias, Paulo Fernando; Braga, Antonio Luiz; Farina, Marcelo

    2016-05-15

    Bradykinesia and hypokinesia represent well-known motor symptoms of Parkinson's disease (PD). While bradykinesia (slow execution of movements) is present in less affected PD patients and aggravates as the disease severity increases, hypokinesia (reduction of movement) seems to emerge prominently only in the more affected patients. Here we developed a model based on the central infusion of low dose (40μg) 6-hydroxydopamine (6-OHDA) in mice in an attempt to discriminate bradykinesia (accessed through forelimb inability) from hypokinesia (accessed through locomotor and exploratory activities). The potential beneficial effects of succinobucol against 6-OHDA-induced forelimb inability were also evaluated. One week after the beginning of treatment with succinobucol (i.p. injections, 10mg/kg/day), mice received a single i.c.v. infusion of 6-OHDA (40μg/site). One week after 6-OHDA infusion, general locomotor/exploratory activities (open field test), muscle strength (grid test), forelimb skill (single pellet task), as well as striatal biochemical parameters related to oxidative stress and cellular homeostasis (glutathione peroxidase, glutathione reductase and NADH dehydrogenases activities, lipid peroxidation and TH levels), were evaluated. 6-OHDA infusions did not change locomotor/exploratory activities and muscle strength, as well as the evaluated striatal biochemical parameters. However, 6-OHDA infusions caused significant reductions (50%) in the single pellet reaching task performance, which detects forelimb skill inability and can be used to experimentally identify bradykinesia. Succinobucol partially protected against 6-OHDA-induced forelimb inability. The decreased forelimb ability with no changes in locomotor/exploratory behavior indicates that our 6-OHDA-based protocol represents a useful tool to mechanistically study the dissociation of bradykinesia and hypokinesia in PD.

  17. The locus coeruleus Is Directly Implicated in L-DOPA-Induced Dyskinesia in Parkinsonian Rats: An Electrophysiological and Behavioural Study

    PubMed Central

    Miguelez, Cristina; Aristieta, Asier; Cenci, Maria Angela; Ugedo, Luisa

    2011-01-01

    Despite being the most effective treatment for Parkinson’s disease, L-DOPA causes a development of dyskinetic movements in the majority of treated patients. L-DOPA-induced dyskinesia is attributed to a dysregulated dopamine transmission within the basal ganglia, but serotonergic and noradrenergic systems are believed to play an important modulatory role. In this study, we have addressed the role of the locus coeruleus nucleus (LC) in a rat model of L-DOPA-induced dyskinesia. Single-unit extracellular recordings in vivo and behavioural and immunohistochemical approaches were applied in rats rendered dyskinetic by the destruction of the nigrostriatal dopamine neurons followed by chronic treatment with L-DOPA. The results showed that L-DOPA treatment reversed the change induced by 6-hydroxydopamine lesions on LC neuronal activity. The severity of the abnormal involuntary movements induced by L-DOPA correlated with the basal firing parameters of LC neuronal activity. Systemic administration of the LC-selective noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine did not modify axial, limb, and orolingual dyskinesia, whereas chemical destruction of the LC with ibotenic acid significantly increased the abnormal involuntary movement scores. These results are the first to demonstrate altered LC neuronal activity in 6-OHDA lesioned rats treated with L-DOPA, and indicate that an intact noradrenergic system may limit the severity of this movement disorder. PMID:21931808

  18. Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease.

    PubMed

    Yue, X; Hariri, D J; Caballero, B; Zhang, S; Bartlett, M J; Kaut, O; Mount, D W; Wüllner, U; Sherman, S J; Falk, T

    2014-01-31

    Vascular endothelial growth factor B (VEGF-B) has recently been shown to be a promising novel neuroprotective agent for several neurodegenerative conditions. In the current study we extended previous work on neuroprotective potential for Parkinson's disease (PD) by testing an expanded dose range of VEGF-B (1 and 10 μg) and directly comparing both neuroprotective and neurorestorative effects of VEGF-B in progressive unilateral 6-hydroxydopamine (6-OHDA) PD models to a single dose of glial cell line-derived neurotrophic factor (GDNF, 10 μg), that has been established by several groups as a standard in both preclinical PD models. In the amphetamine-induced rotational tests the treatment with 1 and 10 μg VEGF-B resulted in significantly improved motor function of 6-OHDA-lesioned rats compared to vehicle-treated 6-OHDA-lesioned rats in the neuroprotection paradigm. Both doses of VEGF-B caused an increase in tyrosine hydroxylase (TH)-positive cell and fiber count in the substantia nigra (SN) and striatum in the neuroprotective experiment. The effect size was comparable to the effects seen with GDNF. In the neurorestoration paradigm, VEGF-B injection had no significant effect in either the behavioral or the immunohistochemical analyses, whereas GDNF injection significantly improved the amphetamine-induced rotational behavior and reduced TH-positive neuronal cell loss in the SN. We also present a strong positive correlation (p=1.9e-50) of the expression of VEGF-B with nuclear-encoded mitochondrial genes involved in fatty acid metabolism in rat midbrain, pointing to the mitochondria as a site of action of VEGF-B. GDNF showed a positive correlation with nuclear-encoded mitochondrial genes that was not nearly as strong (p=0.018). VEGF-B counteracted rotenone-induced reduction of (a) fatty acid transport protein 1 and 4 levels and (b) both Akt protein and phosphorylation levels in SH-SY5Y cells. We further verified VEGF-B expression in the human SN pars compacta of healthy

  19. (+)-Dinapsoline: an efficient synthesis and pharmacological profile of a novel dopamine agonist.

    PubMed

    Sit, Sing-Yuen; Xie, Kai; Jacutin-Porte, Swanee; Taber, Matthew T; Gulwadi, Amit G; Korpinen, Carolyn D; Burris, Kevin D; Molski, Thaddeus F; Ryan, Elaine; Xu, Cen; Wong, Henry; Zhu, Juliang; Krishnananthan, Subramaniam; Gao, Qi; Verdoorn, Todd; Johnson, Graham

    2002-08-15

    A highly convergent synthesis was developed for the novel dopamine agonist dinapsoline (12) (Ghosh, D.; Snyder, S. E.; Watts, V. J.; Mailman, R. B.; Nichols, D. E. 8,9-Dihydroxy-2,3,7, 11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline: A Potent Full Dopamine D(1) Agonist Containing a Rigid beta-Phenyldopamine Pharmacophore. J. Med. Chem. 1996, 39 (2), 549-555). The crucial step in the new synthesis was a free radical-initiated cyclization to give the complete dinapsoline framework. The improved synthesis required half as many steps as the original procedure (Nichols, D. E.; Mailman, R.; Ghosh, D. Preparation of novel naphtho[1,2,3-de]isoquinolines as dopamine receptor ligands. PCT Int. Appl. WO 9706799 A1, Feb 27, 1997). One of the late-stage intermediates (11) was resolved into a pair of enantiomers. From there, the (R)-(+)-12 (absolute configuration by X-ray) of dinapsoline was identified as the active enantiomer. In unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats, (+)-dinapsoline showed robust rotational behavior comparable to that of an external benchmark, trans-4,5,5a,6,7,11b-hexahydro-2-propyl-benzo[f]thieno[2,3-c]quinoline-9,10-diol, hydrochloride 18 (Michaelides, M. R.; Hong, Y. Preparation of heterotetracyclic compounds as dopamine agonists. PCT Int. Appl. WO 9422858 A1, Oct 13, 1994).

  20. Nur77 exacerbates PC12 cellular injury in vitro by aggravating mitochondrial impairment and endoplasmic reticulum stress

    PubMed Central

    Gao, Huimin; Chen, Zhaoyu; Fu, Yongmei; Yang, Xiaoyan; Weng, Ruihui; Wang, Rui; Lu, Jianjun; Pan, Mengqiu; Jin, Kunlin; McElroy, Chris; Tang, Beisha; Xia, Ying; Wang, Qing

    2016-01-01

    The nuclear orphan receptor, Nur77 plays important roles in neuroimflammation, apoptosis, and dopaminergic neurodegeneration. We conducted a further mechanistic investigation into the association of Nur77 with cell death. Cytosporone B (Csn-B), an agonist for Nur77, and Nur77 knockdown were adopted in the 6-hydroxydopamine (OHDA)-lesioned PC12 cells to investigate the mechanisms underlying Nur77-mediated injury. The 6-OHDA incubation caused Nur77 translocation from the nucleus to cytosol and Endoplasm reticulum (ER) and induced co-localization of Tom20/Nur77 and Protein Disulfide Isomerase (PDI)/Nur77. Nur77 activation further decreased cell viability, aggravated intracellular LDH release, intracellular Ca2+, ROS levels, apoptosis, ER tress and, mitochondrial transmembrane potential (ΔΨm) decline. In addition, Nur77 activation significantly enhanced the efficiency of autophagy as indicated by an up-regulation of Beclin-1/LC-3 and downregulation of p62, and aggravated mitochondrial dysfunctions and ER stress as shown by increased HSP60/Cytochrome C (Cyt C) and CHOP-ATF3 levels respectively. These changes could be partially reversed by Nur77 knockdown. Moreover, Nur77 activation upregulated PINK1 and downregulated Parkin levels. We conclude that Nur77 exacerbates PC12 cell death at least partially by aggravating the mitochondrial impairment and ER stress and enhancing autophagy. We propose that Nur77 is likely a critical target in the PD therapy. PMID:27679973

  1. Proof of concept studies exploring the safety and functional activity of human parthenogenetic-derived neural stem cells for the treatment of Parkinson's disease.

    PubMed

    Gonzalez, Rodolfo; Garitaonandia, Ibon; Crain, Andrew; Poustovoitov, Maxim; Abramihina, Tatiana; Noskov, Alexander; Jiang, Chuan; Morey, Robert; Laurent, Louise C; Elsworth, John D; Snyder, Evan Y; Redmond, D Eugene; Semechkin, Ruslan

    2015-01-01

    Recent studies indicate that human pluripotent stem cell (PSC)-based therapies hold great promise in Parkinson's disease (PD). Clinical studies have shown that grafted fetal neural tissue can achieve considerable biochemical and clinical improvements in PD. However, the source of fetal tissue grafts is limited and ethically controversial. Human parthenogenetic stem cells offer a good alternative because they are derived from unfertilized oocytes without destroying viable human embryos and can be used to generate an unlimited supply of neural stem cells for transplantation. Here we evaluate for the first time the safety and engraftment of human parthenogenetic stem cell-derived neural stem cells (hpNSCs) in two animal models: 6-hydroxydopamine (6-OHDA)-lesioned rodents and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primates (NHPs). In both rodents and nonhuman primates, we observed successful engraftment and higher dopamine levels in hpNSC-transplanted animals compared to vehicle control animals, without any adverse events. These results indicate that hpNSCs are safe, well tolerated, and could potentially be a source for cell-based therapies in PD.

  2. Tissue specific regulation of peripheral-type benzodiazepine receptor density after chemical sympathectomy

    SciTech Connect

    Basile, A.S.; Skolnick, P.

    1988-01-01

    The characteristics of (/sup 3/H)Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of (/sup 3/H)Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50% respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of (/sup 3/H)Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the B/sub max/ of (/sup 3/H)Ro 5-4684 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for (/sup 3/H)Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion. 33 references, 4 tables.

  3. [Elevated gastric lesions].

    PubMed

    de Careaga, B; Villagómez, G; Pabón, J; Calderón, O; Elío, D; Pérez, J; Martínez, M; Patiño, F; Ponce, R; Lora, J

    1986-01-01

    Elevated gastric lesions, represent an important group among gastric pathology. To establish its incidence in our experience, we studied the endoscopic reports of two important hospitals in La Paz city: Instituto de Gastroenterología Boliviano Japonés and Hospital Obrero No. 1. In order to make a good endoscopic diagnosis among different elevated lesions we use some parameters like: location, shape, size, diameter, surface of the lesion and surrounding mucosa and characteristics of the falls. 10.472 endoscopic reports were reviewed, 497 elevated gastric lesions were found, 475 corresponded to mucosal lesions (352 benign lesions and 123 malignant lesions), 11 to submucosal and 11 extragastric lesions.

  4. Benign breast lesions: Ultrasound

    PubMed Central

    Masciadri, N.; Ferranti, C.

    2011-01-01

    Benign breast diseases constitute a heterogeneous group of lesions arising in the mammary epithelium or in other mammary tissues, and they may also be linked to vascular, inflammatory or traumatic pathologies. Most lesions found in women consulting a physician are benign. Ultrasound (US) diagnostic criteria indicating a benign lesion are described as well as US findings in the most frequent benign breast lesions. PMID:23396888

  5. Example based lesion segmentation

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2014-03-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer's disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  6. Example Based Lesion Segmentation

    PubMed Central

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2016-01-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer’s disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  7. Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease.

    PubMed

    Boronat-García, Alejandra; Palomero-Rivero, Marcela; Guerra-Crespo, Magdalena; Millán-Aldaco, Diana; Drucker-Colín, René

    2016-01-01

    Cell replacement therapy in Parkinson's disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts. PMID:27525967

  8. Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease

    PubMed Central

    Boronat-García, Alejandra; Palomero-Rivero, Marcela; Guerra-Crespo, Magdalena; Millán-Aldaco, Diana; Drucker-Colín, René

    2016-01-01

    Cell replacement therapy in Parkinson’s disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts. PMID:27525967

  9. Dopamine Modulates Motor Control in a Specific Plane Related to Support

    PubMed Central

    Herbin, Marc; Simonis, Caroline; Revéret, Lionel; Hackert, Rémi; Libourel, Paul-Antoine; Eugène, Daniel; Diaz, Jorge; de Waele, Catherine; Vidal, Pierre-Paul

    2016-01-01

    At the acute stage following unilateral labyrinthectomy (UL), rats, mice or guinea pigs exhibit a complex motor syndrome combining circling (HSCC lesion) and rolling (utricular lesion). At the chronic stage, they only display circling, because proprioceptive information related to the plane of support substitutes the missing utricular information to control posture in the frontal plane. Circling is also observed following unilateral lesion of the mesencephalic dopaminergic neurons by 6- hydroxydopamine hydrobromide (6-OHDA rats) and systemic injection of apomorphine (APO rats). The resemblance of behavior induced by unilateral vestibular and dopaminergic lesions at the chronic stage can be interpreted in two ways. One hypothesis is that the dopaminergic system exerts three-dimensional control over motricity, as the vestibular system does. If this hypothesis is correct, then a unilateral lesion of the nigro-striatal pathway should induce three-dimensional motor deficits, i.e., circling and at least some sort of barrel rolling at the acute stage of the lesion. Then, compensation could also take place very rapidly based on proprioception, which would explain the prevalence of circling. In addition, barrel rolling should reappear when the rodent is placed in water, as it occurs in UL vertebrates. Alternatively, the dopaminergic network, together with neurons processing the horizontal canal information, could control the homeostasis of posture and locomotion specifically in one and only one plane of space, i.e. the plane related to the basis of support. In that case, barrel rolling should never occur, whether at the acute or chronic stage on firm ground or in water. Moreover, circling should have the same characteristics following both types of lesions. Clearly, 6-OHDA and APO-rats never exhibited barrel rolling at the acute stage. They circled at the acute stage of the lesion and continued to do so three weeks later, including in water. In contrast, UL-rats, exhibited

  10. Preventative treatment in an animal model of ADHD: Behavioral and biochemical effects of methylphenidate and its interactions with ovarian hormones in female rats.

    PubMed

    Lukkes, Jodi L; Freund, Nadja; Thompson, Britta S; Meda, Shirisha; Andersen, Susan L

    2016-09-01

    Clinical and preclinical studies on attention deficit hyperactivity disorder (ADHD) show that juvenile males that are exposed to methylphenidate (MPH) show reduced risk for substance use later in life. In contrast, little is known about whether females have the same enduring treatment response to stimulants and how gonadal hormones influence their behavior later in life. Females received either a sham or 6-hydroxydopamine (6-OHDA) microinjection in the prefrontal cortex (PFC) at postnatal day (P)10. Subjects were then treated with Vehicle or MPH (2mg/kg, p.o.) between P20-35 and tested during late adolescence/young adulthood (P60); half of these subjects underwent ovariectomy at P55 to determine hormonal influences. Females with 6-OHDA were depleted of PFC dopamine by 61% and demonstrated increased impulsive choice (delayed discounting) and preferences for cocaine-associated environments relative to control females. Both MPH and ovariectomy reduced impulsive choice and cocaine preferences in 6-OHDA females, but had no enduring effect in Sham females. Ovariectomy itself did not significantly affect impulsivity. Juvenile MPH interacted strongly with 6-OHDA to increase D4, D5, Alpha-1A, Alpha-2A, and 5-HT-1A mRNA receptor expression in the PFC. MPH alone effected D1 mRNA, while 6-OHDA increased BDNF; all markers were decreased by ovariectomy. Together, these data suggest that 6-OHDA changes in dopamine are not only relevant for ADHD-like behaviors, but their long-term modulation by treatment and the influence of cyclical differences in menstrual cycle. PMID:27397110

  11. Differential impairment of thermogenesis in the pigeon after chemical sympathectomy.

    PubMed

    Hohtola, E; Rintamäki, H; Hissa, R

    1978-08-01

    A dose-controlled chemical sympathectomy with 6-hydroxydopamine (6-OHDA) did not disrupt thermostasis in the pigeon at +38 degrees C. At +6 degrees C, thermogenesis was impaired, but the lower body temperature and oxygen consumption were stable and vasoconstriction was normal. The stability may partly be explained by a massive release of adrenaline from the adrenals (50% in 20 min). Despite a deficit in heat production both after sympathectomy and after acute 6-OHDA, no change in muscle electrical activity was observed. Plasma free fatty acid (FFA) concentration was significantly elevated after sympathectomy, but no changes occurred in blood glucose or plasma lactate levels. The results indicate a major compensatory role for the adrenals in avian thermogenesis. They also suggest a sympathetically mediated auxiliary thermogenic mechanism independent of muscle electrical activity and coupled to FFA metabolism. PMID:688081

  12. Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson’s Disease

    PubMed Central

    Feng, Chien-Wei; Hung, Han-Chun; Huang, Shi-Ying; Chen, Chun-Hong; Chen, Yun-Ru; Chen, Chun-Yu; Yang, San-Nan; Wang, Hui-Min David; Sung, Ping-Jyun; Sheu, Jyh-Horng; Tsui, Kuan-Hao; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and gait impairment. In a previous study, we found that the marine-derived compound 11-dehydrosinulariolide (11-de) upregulates the Akt/PI3K pathway to protect cells against 6-hydroxydopamine (6-OHDA)-mediated damage. In the present study, SH-SY5Y, zebrafish and rats were used to examine the therapeutic effect of 11-de. The results revealed the mechanism by which 11-de exerts its therapeutic effect: the compound increases cytosolic or mitochondrial DJ-1 expression, and then activates the downstream Akt/PI3K, p-CREB, and Nrf2/HO-1 pathways. Additionally, we found that 11-de could reverse the 6-OHDA-induced downregulation of total swimming distance in a zebrafish model of PD. Using a rat model of PD, we showed that a 6-OHDA-induced increase in the number of turns, and increased time spent by rats on the beam, could be reversed by 11-de treatment. Lastly, we showed that 6-OHDA-induced attenuation in tyrosine hydroxylase (TH), a dopaminergic neuronal marker, in zebrafish and rat models of PD could also be reversed by treatment with 11-de. Moreover, the patterns of DJ-1 expression observed in this study in the zebrafish and rat models of PD corroborated the trend noted in previous in vitro studies. PMID:27763504

  13. EPO-dependent activation of PI3K/Akt/FoxO3a signalling mediates neuroprotection in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Jia, Yu; Mo, Shi-Jing; Feng, Qi-Qi; Zhan, Ma-Li; OuYang, Li-Si; Chen, Jia-Chang; Ma, Yu-Xin; Wu, Jia-Jia; Lei, Wan-Long

    2014-05-01

    Erythropoietin (EPO) may become a potential therapeutic candidate for the treatment of the neurodegenerative disorder -- Parkinson's disease (PD), since EPO has been found to prevent neuron apoptosis through the activation of cell survival signalling. However, the underlying mechanisms of how EPO exerts its neuroprotective effect are not fully elucidated. Here we investigated the mechanism by which EPO suppressed 6-hydroxydopamine (6-OHDA)-induced neuron death in in vitro and in vivo models of PD. EPO knockdown conferred 6-OHDA-induced cytotoxicity. This effect was reversed by EPO administration. Treatment of PC12 cells with EPO greatly diminished the toxicity induced by 6-OHDA in a dose- and time-dependent manner. EPO effectively reduced apoptosis of striatal neurons and induced a significant improvement on the neurological function score in the rat models of PD. Furthermore, EPO increased the expression of phosphorylated Akt and phosphorylated FoxO3a, and abrogated the 6-OHDA-induced dysregulation of Bcl-2, Bax and Caspase-3 in PC12 cells and in striatal neurons. Meanwhile, the EPO-dependent neuroprotection was notably reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that PI3K/Akt/FoxO3a signalling pathway may be a possible mechanism involved in the neuroprotective effect of EPO in PD. PMID:24390959

  14. Anti-Parkinson Activity of Petroleum Ether Extract of Ficus religiosa (L.) Leaves.

    PubMed

    Bhangale, Jitendra O; Acharya, Sanjeev R

    2016-01-01

    In the present study, we evaluated anti-Parkinson's activity of petroleum ether extract of Ficus religiosa (PEFRE) leaves in haloperidol and 6 hydroxydopamine (6-OHDA) induced experimental animal models. In this study, effects of Ficus religiosa (100, 200, and 400 mg/kg, p.o.) were studied using in vivo behavioral parameters like catalepsy, muscle rigidity, and locomotor activity and its effects on neurochemical parameters (MDA, CAT, SOD, and GSH) in rats. The experiment was designed by giving haloperidol to induce catalepsy and 6-OHDA to induce Parkinson's disease-like symptoms. The increased cataleptic scores (induced by haloperidol) were significantly (p < 0.001) found to be reduced, with the PEFRE at a dose of 200 and 400 mg/kg (p.o.). 6-OHDA significantly induced motor dysfunction (muscle rigidity and hypolocomotion). 6-OHDA administration showed significant increase in lipid peroxidation level and depleted superoxide dismutase, catalase, and reduced glutathione level. Daily administration of PEFRE (400 mg/kg) significantly improved motor performance and also significantly attenuated oxidative damage. Thus, the study proved that Ficus religiosa treatment significantly attenuated the motor defects and also protected the brain from oxidative stress. PMID:26884755

  15. Anti-Parkinson Activity of Petroleum Ether Extract of Ficus religiosa (L.) Leaves

    PubMed Central

    Bhangale, Jitendra O.; Acharya, Sanjeev R.

    2016-01-01

    In the present study, we evaluated anti-Parkinson's activity of petroleum ether extract of Ficus religiosa (PEFRE) leaves in haloperidol and 6 hydroxydopamine (6-OHDA) induced experimental animal models. In this study, effects of Ficus religiosa (100, 200, and 400 mg/kg, p.o.) were studied using in vivo behavioral parameters like catalepsy, muscle rigidity, and locomotor activity and its effects on neurochemical parameters (MDA, CAT, SOD, and GSH) in rats. The experiment was designed by giving haloperidol to induce catalepsy and 6-OHDA to induce Parkinson's disease-like symptoms. The increased cataleptic scores (induced by haloperidol) were significantly (p < 0.001) found to be reduced, with the PEFRE at a dose of 200 and 400 mg/kg (p.o.). 6-OHDA significantly induced motor dysfunction (muscle rigidity and hypolocomotion). 6-OHDA administration showed significant increase in lipid peroxidation level and depleted superoxide dismutase, catalase, and reduced glutathione level. Daily administration of PEFRE (400 mg/kg) significantly improved motor performance and also significantly attenuated oxidative damage. Thus, the study proved that Ficus religiosa treatment significantly attenuated the motor defects and also protected the brain from oxidative stress. PMID:26884755

  16. Ghost cell lesions

    PubMed Central

    Rajesh, E.; Jimson, Sudha; Masthan, K. M. K.; Balachander, N.

    2015-01-01

    Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms. PMID:26015694

  17. Preinvasive lesions

    Cancer.gov

    This definition is for allocation of lesions with preinvasive/borderline properties. It is currently aimed at newly identified neoplasms, which may be similar to those described in humans. In mouse pathology, many adenomas may be preinvasive/borderline lesions. However, their inclusion in the preinvasive category can be justified only upon development of better diagnostic criteria.

  18. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  19. Extragastric Dieulafoy's lesion

    PubMed Central

    Gauci, James; Galea, Samuel; Galea, Joseph; Schembri, Mark

    2014-01-01

    A 74-year-old man on warfarin for aortic valve replacement presented with recurrent episodes of melaena. An initial oesophagogastroduodenoscopy (OGD) was normal, as were red cell scanning and colonoscopy. It was a third OGD that revealed the cause of the melaena—a vascular lesion in the duodenum, at the junction between D1 and D2. An extragastric Dieulafoy's lesion was diagnosed, and the lesion was injected with epinephrine and tattooed. Over the following months, episodes of bleeding recurred despite further attempts at injection. Percutaneous radiologically assisted embolisation of the gastroduodenal artery, and eventually duodenotomy and oversuturing of the lesion were performed to no avail. The patient has undergone over 10 endoscopies, and has received over 70 units of packed red cells to date, since his initial presentation 6 years ago. Attempts to stop the bleeding permanently have been difficult, highlighting the complexity of managing such a lesion. PMID:25216921

  20. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model

    PubMed Central

    Winner, Beate; Desplats, Paula; Hagl, Christian; Klucken, Jochen; Aigner, Robert; Ploetz, Sonja; Laemke, Jörn; Karl, Alexandra; Aigner, Ludwig; Masliah, Eliezer; Buerger, Erich; Winkler, Jürgen

    2016-01-01

    Cell proliferation of neural progenitors in the subventricular zone (SVZ) of Parkinson disease (PD) patients and animal models is decreased. It was previously demonstrated that the neurotransmitter dopamine modulates cell proliferation in the embryonic brain. The aim of the present study was to analyze whether oral treatment with the dopamine receptor agonist pramipexole (PPX) modulates adult neurogenesis in the SVZ/ olfactory bulb system in a dopaminergic lesion model. 6-Hydroxydopamine (6-OHDA) lesioned adult rats received either PPX (1,0 mg/kg) or PBS orally twice daily and bromodeoxyuridine (BrdU, a cell proliferation marker) for 10 days and were perfused immediately after treatment or 4 weeks after PPX withdrawal. Stereological analysis revealed a significant augmentation in SVZ proliferation by PPX. Consecutively, enhanced neuronal differentiation and more new neurons were present in the olfactory bulb 4 weeks after PPX withdrawal. In addition, dopaminergic neurogenesis was increased in the olfactory bulb after PPX treatment. Motor activity as assessed by using an open field paradigm was permanently increased even after long term PPX withdrawal. In addition, we demonstrate that D2 and D3 receptors are present on adult rat SVZ derived neural progenitors in vitro, and PPX specifically increased mRNA levels of epidermal growth factor receptor (EGF-R) and paired box gene 6 (Pax6). Oral PPX treatment selectively increases adult neurogenesis in the SVZ-olfactory bulb system by increasing proliferation and cell survival of newly generated neurons. Analyzing the neurogenic fate decisions mediated by D2/D3 signaling pathways may lead to new avenues to induce neural repair in the adult brain. PMID:19619535

  1. Multifocal vascular lesions.

    PubMed

    Levin, Laura E; Lauren, Christine T

    2016-03-01

    Multifocal vascular lesions are important to recognize and appropriately diagnose. Generally first noticed on the skin, multifocal vascular lesions may have systemic involvement. Distinguishing among the different types of multifocal vascular lesions is often based on clinical features; however, radiological imaging and/or biopsy are frequently needed to identify distinct features and guide treatment. Knowledge of the systemic associations that can occur with different vascular anomalies may reduce life-threatening complications, such as coagulopathy, bleeding, cardiac compromise, and neurologic sequelae. This review provides a synopsis of the epidemiology, pathogenesis, presentation, workup, and treatment of several well-recognized multifocal vascular tumors and malformations. PMID:27607324

  2. Oral Lesions in Neonates

    PubMed Central

    Rao, Roopa S; Majumdar, Barnali; Jafer, Mohammed; Maralingannavar, Mahesh; Sukumaran, Anil

    2016-01-01

    ABSTRACT Oral lesions in neonates represent a wide range of diseases often creating apprehension and anxiety among parents. Early examination and prompt diagnosis can aid in prudent management and serve as baseline against the future course of the disease. The present review aims to enlist and describe the diagnostic features of commonly encountered oral lesions in neonates. How to cite this article: Patil S, Rao RS, Majumdar B, Jafer M, Maralingannavar M, Sukumaran A. Oral Lesions in Neonates. Int J Clin Pediatr Dent 2016;9(2):131-138. PMID:27365934

  3. Retinal lesions in septicemia.

    PubMed

    Neudorfer, M; Barnea, Y; Geyer, O; Siegman-Igra, Y

    1993-12-15

    We explored the association between septicemia and specific retinal lesions in a prospective controlled study. Hemorrhages, cotton-wool spots, or Roth's spots were found in 24 of 101 septicemic patients (24%), compared to four of 99 age- and gender-matched control patients (4%) (P = .0002). There was no significant association between types of organisms or focus of infection and the presence of specific lesions. Histologic examination of affected eyes disclosed cytoid bodies in the nerve fiber layer without inflammation. A definite association between septicemia and retinal lesions was found and indicates the need for routine ophthalmoscopy in septicemic patients. PMID:8250076

  4. Skin lesion of blastomycosis

    MedlinePlus

    ... in: Africa Canada Central and southeastern United States India Israel Saudi Arabia A person gets infected by ... is diagnosed by identifying the fungus in a culture taken from a skin lesion. This usually requires ...

  5. Acute nontraumatic liver lesions.

    PubMed

    Caremani, Marcello; Tacconi, Danilo; Lapini, Laura

    2013-11-26

    The principal conditions requiring emergency/urgent intervention in patients with nontraumatic liver lesions are hemorrhage (with or without tumor rupture), rupture of hydatid cysts (with or without infection), complications arising from liver abscesses or congenital liver cysts, rupture related to peliosis hepatis, and in rare cases spontaneous hemorrhage. This article examines each of these conditions, its appearance on ultrasound (the first-line imaging method of choice for assessing any urgent nontraumatic liver lesion) and indications for additional imaging studies.

  6. [Osteoarticular lesions from parachuting].

    PubMed

    Orso, C A; Valbonesi, L; Calabrese, B F; D'Onofrio, S

    1990-01-01

    Based on personal experience gained in a parachuting centre (Pescara Aero-club) from 1975 up to 1988, the authors report their evaluation on chronic and acute osteoarticular lesions. The review of the cases was not based on the incidence of the lesions nor on their characteristics, normally found in common traumatology, but it was related to the dynamics of the trauma during the landing and to painful syndromes following a prolonged parachuting activity.

  7. Meniscal Ramp Lesions

    PubMed Central

    Chahla, Jorge; Dean, Chase S.; Moatshe, Gilbert; Mitchell, Justin J.; Cram, Tyler R.; Yacuzzi, Carlos; LaPrade, Robert F.

    2016-01-01

    Meniscal ramp lesions are more frequently associated with anterior cruciate ligament (ACL) injuries than previously recognized. Some authors suggest that this entity results from disruption of the meniscotibial ligaments of the posterior horn of the medial meniscus, whereas others support the idea that it is created by a tear of the peripheral attachment of the posterior horn of the medial meniscus. Magnetic resonance imaging (MRI) scans have been reported to have a low sensitivity, and consequently, ramp lesions often go undiagnosed. Therefore, to rule out a ramp lesion, an arthroscopic evaluation with probing of the posterior horn of the medial meniscus should be performed. Several treatment options have been reported, including nonsurgical management, inside-out meniscal repair, or all-inside meniscal repair. In cases of isolated ramp lesions, a standard meniscal repair rehabilitation protocol should be followed. However, when a concomitant ACL reconstruction (ACLR) is performed, the rehabilitation should follow the designated ACLR postoperative protocol. The purpose of this article was to review the current literature regarding meniscal ramp lesions and summarize the pertinent anatomy, biomechanics, diagnostic strategies, recommended treatment options, and postoperative protocol. PMID:27504467

  8. Monitoring pigmented skin lesions

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Bamber, Jeffery C.; Ott, Robert J.; Crawford, Diane C.; Mortimer, Peter S.

    2002-06-01

    The rising incidence of skin cancer has led to an increase in the number of patients with skin lesions that require diagnosis, mostly using subjective visual examination. Successful treatment depends on early diagnosis. Unfortunately diagnostic accuracy, even by experts, can be as low as 56%; therefore, an accurate, objective diagnostic aid is greatly needed. Reflectance characteristics of pigmented skin lesions were documented to evaluate their diagnostic potential. Reflectance spectra in the wavelength range 320-1100nm were obtained from 260 lesions. Differences between spectra from benign and malignant lesions were utilized by extracting features with the best discriminating power. Discrimination was evaluated using two techniques: multivariate statistical analysis and artificial neural networks, using histology as the standard. Each technique was tested in a blind study and assessed in terms of its ability to diagnose new cases and compared to the clinical diagnosis. The artificial neural network achieved the best diagnostic performance for discriminating between malignant melanoma and benign nevi, having a sensitivity of 100% and a specificity of 65%. Utilization of visible and infrared techniques for monitoring skin lesions has lead to improvements in diagnostic accuracy. We conclude that these techniques are worthy of further development and evaluation in clinical practice as a screening tool.

  9. Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson's Disease.

    PubMed

    Bortolanza, Mariza; Bariotto-Dos-Santos, Keila D; Dos-Santos-Pereira, Maurício; da-Silva, Célia Aparecida; Del-Bel, Elaine

    2016-07-01

    Amantadine is the noncompetitive antagonist of N-methyl-D-aspartate, receptor activated by the excitatory neurotransmitter glutamate. It is the only effective medication used to alleviate dyskinesia induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease patients. Unfortunately, adverse effects as abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia limit its clinical utility. Combined effective symptomatic treatment modalities may lessen the liability to undesirable events. Likewise drugs known to interfere with nitrergic system reduce AIMs in animal models of Parkinson's disease. We aimed to analyze an interaction between amantadine, neuronal nitric oxide synthase inhibitor (7-nitroindazole, 7NI), and nitric oxide donor (sodium nitroprusside, SNP) in 6-hydroxydopamine-(6-OHDA)-lesioned rats (microinjection in the medial forebrain bundle) presenting L-DOPA-induced dyskinesia (20 mg/kg, gavage, during 21 days). We confirm that 7NI-30 mg/kg, SNP-2/4 mg/kg and amantadine-40 mg/kg, individually reduced AIMs. Our results revealed that co-administration of sub-effective dose of amantadine (10 mg/kg) plus sub-effective dose of 7NI (20 mg/kg) potentiates the effect of reducing AIMs scores when compared to the effect of the drugs individually. No superior benefit on L-DOPA-induced AIMs was observed with the combination of amantadine and SNP. The results revealed that combination of ineffective doses of amantadine and 7NI represents a new strategy to increase antidyskinetic effect in L-DOPA-induced AIMs. It may provide additional therapeutic benefits to Parkinson's disease patients from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone. To close, we discuss the paradox of both nitric oxide synthase inhibitor and/or donor produced AIMs reduction by targeting nitric oxide synthase. PMID:27053252

  10. Effect of Cell Adhesion Molecules on the Neurite Outgrowth of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons.

    PubMed

    Peng, Su-Ping; Schachner, Melitta; Boddeke, Erik; Copray, Sjef

    2016-04-01

    Intrastriatal transplantation of dopaminergic neurons has been shown to be a potentially very effective therapeutic approach for the treatment of Parkinson's disease (PD). With the detection of induced pluripotent stem cells (iPSCs), an unlimited source of autologous dopaminergic (DA) neurons became available. Although the iPSC-derived dopaminergic neurons exhibited most of the fundamental dopaminergic characteristics, detailed analysis and comparison with primary DA neurons have shown some aberrations in the expression of genes involved in neuronal development and neurite outgrowth. The limited outgrowth of the iPSC-derived DA neurons may hamper their potential application in cell transplantation therapy for PD. In the present study, we examined whether the forced expression of L1 cell adhesion molecule (L1CAM) and polysialylated neuronal cell adhesion molecule (PSA-NCAM), via gene transduction, can promote the neurite formation and outgrowth of iPSC-derived DA neurons. In cultures on astrocyte layers, both adhesion factors significantly increased neurite formation of the adhesion factor overexpressing iPSC-derived DA neurons in comparison to control iPSC-derived DA neurons. The same tendency was observed when the DA neurons were plated on postnatal organotypic striatal slices; however, this effect did not reach statistical significance. Next, we examined the neurite outgrowth of the L1CAM- or PSA-NCAM-overexpressing iPSC-derived DA neurons after implantation in the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, the animal model for PD. Like the outgrowth on the organotypic striatal slices, no significant L1CAM- and PSA-NCAM-enforced neurite outgrowth of the implanted DA neurons was observed. Apparently, induced expression of L1CAM or PSA-NCAM in the iPSC-derived DA neurons cannot completely restore the neurite outgrowth potential that was reduced in these DA neurons as a consequence of epigenetic aberrations resulting from the i

  11. Neuroinflammation in the generation of post-transplantation dyskinesia in Parkinson's disease.

    PubMed

    Lane, E L; Soulet, D; Vercammen, L; Cenci, M A; Brundin, P

    2008-11-01

    The observation that neural grafts can induce dyskinesias has severely hindered the development of a transplantation therapy for Parkinson's disease (PD). We addressed the hypothesis that inflammatory responses within and around an intrastriatal graft containing dopamine neurons can trigger dyskinetic behaviors. We subjected rats to unilateral nigrostriatal lesions with 6-hydroxydopamine (6-OHDA) and treated them with L-DOPA for 21 days in order to induce abnormal involuntary movements (AIMs). Subsequently, we grafted the rats with allogeneic embryonic ventral mesencephalic tissue in the dopamine-denervated striatum. In agreement with earlier studies, the grafted rats developed dyskinesia-like AIMs in response to amphetamine. We then used two experimental approaches to induce an inflammatory response and examined if the amphetamine-induced AIMs worsened or if spontaneous AIMs developed. In one experiment, we challenged the neural graft hosts immunologically with an orthotopic skin allograft of the same genetic origin as the intracerebral neural allograft. In another experiment, we infused the pro-inflammatory cytokine interleukin 2 (IL-2) adjacent to the intrastriatal grafts using osmotic minipumps. The skin allograft induced rapid rejection of the mesencephalic allografts, leading to disappearance of the amphetamine-induced AIMs. Contrary to our hypothesis, the rejection process itself did not elicit AIMs. Likewise, the IL-2 infusion did not induce spontaneous AIMs, nor did it alter L-DOPA-induced AIMs. The IL-2 infusions did, however, elicit the predicted marked striatal inflammation, as evidenced by the presence of activated microglia and IL2Ralpha-positive cells. These results indicate that an inflammatory response in and around grafted dopaminergic neurons is not sufficient to evoke dyskinetic behaviors in experimental models of PD. PMID:18675359

  12. Human olfactory bulb neural stem cells mitigate movement disorders in a rat model of Parkinson's disease.

    PubMed

    Marei, Hany E S; Lashen, Samah; Farag, Amany; Althani, Asmaa; Afifi, Nahla; A, Abd-Elmaksoud; Rezk, Shaymaa; Pallini, Roberto; Casalbore, Patrizia; Cenciarelli, Carlo

    2015-07-01

    Parkinson's disease (PD) is a neurological disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are multipotent stem cells that are capable of differentiating into different neuronal and glial elements. The production of DA neurons from NSCs could potentially alleviate behavioral deficits in Parkinsonian patients; timely intervention with NSCs might provide a therapeutic strategy for PD. We have isolated and generated highly enriched cultures of neural stem/progenitor cells from the human olfactory bulb (OB). If NSCs can be obtained from OB, it would alleviate ethical concerns associated with the use of embryonic tissue, and provide an easily accessible cell source that would preclude the need for invasive brain surgery. Following isolation and culture, olfactory bulb neural stem cells (OBNSCs) were genetically engineered to express hNGF and GFP. The hNFG-GFP-OBNSCs were transplanted into the striatum of 6-hydroxydopamin (6-OHDA) Parkinsonian rats. The grafted cells survived in the lesion environment for more than eight weeks after implantation with no tumor formation. The grafted cells differentiated in vivo into oligodendrocyte-like (25 ± 2.88%), neuron-like (52.63 ± 4.16%), and astrocyte -like (22.36 ± 1.56%) lineages, which we differentiated based on morphological and immunohistochemical criteria. Transplanted rats exhibited a significant partial correction in stepping and placing in non-pharmacological behavioral tests, pole and rotarod tests. Taken together, our data encourage further investigations of the possible use of OBNSCs as a promising cell-based therapeutic strategy for Parkinson's disease.

  13. Intraventricular mass lesions

    SciTech Connect

    Morrison, G.; Sobel, D.F.; Kelley, W.M.; Norman, D.

    1984-11-01

    Determining the precise etiology of an intraventricular mass can be a difficult diagnostic problem. CT and angiographic findings were reviewed in a series of 73 patients who had intraventricular masses. The histologic diagnosis can be suggested preoperatively by an analysis of the frequency of lesions occurring at a given ventricular location, lesion density before and after administration of contrast material, age, and sex of the patient, morphologic appearance of the mass, and presence or absence of hydrocephalus. Angiography is useful when meningioma, choroid plexus papilloma and carcinoma, or arteriovenous malformation are considered.

  14. Magnetic resonance imaging of liver lesions: exceptions and atypical lesions.

    PubMed

    van den Bos, Indra C; Hussain, Shahid M; de Man, Robert A; Zondervan, Pieter E; Ijzermans, Jan N M; Preda, A; Krestin, Gabriel P

    2008-01-01

    On state-of-the-art magnetic resonance imaging, most lesions can be detected and characterized with confidence according to well-known criteria. However, atypical characteristics in some common lesions and the incidental encounter with rare lesions may pose diagnostic difficulties. In this article, six challenging hepatic lesions will be discussed and evaluated on the most important magnetic resonance imaging sequences, with histological correlation when available. In addition, the background information concerning these lesions will be described based on the most recent available literature. By reading this article, the reader will be able to (1) categorize the lesion in solid and fluid-containing lesions, based on the T2 signal intensity; and (2) define the benign or malignant nature of the lesion, in relation to the signal intensity and dynamic enhancement pattern, despite the presence of atypical characteristics of some lesions. PMID:18436109

  15. [Managing focal incidental renal lesions].

    PubMed

    Nicolau, C; Paño, B; Sebastià, C

    2016-01-01

    Incidental renal lesions are relatively common in daily radiological practice. It is important to know the different diagnostic possibilities for incidentally detected lesions, depending on whether they are cystic or solid. The management of cystic lesions is guided by the Bosniak classification. In solid lesions, the goal is to differentiate between renal cancer and benign tumors such as fat-poor angiomyolipoma and oncocytoma. Radiologists need to know the recommendations for the management of these lesions and the usefulness of the different imaging techniques and interventional procedures in function of the characteristics of the incidental lesion and the patient's life expectancy.

  16. Novel lesion detection aids.

    PubMed

    Neuhaus, K W; Longbottom, C; Ellwood, R; Lussi, A

    2009-01-01

    Several non-invasive and novel aids for the detection of (and in some cases monitoring of) caries lesions have been introduced in the field of 'caries diagnostics' over the last 15 years. This chapter focusses on those available to dentists at the time of writing; continuing research is bound to lead to further developments in the coming years. Laser fluorescence is based on measurements of back-scattered fluorescence of a 655-nm light source. It enhances occlusal and (potentially) approximal lesion detection and enables semi-quantitative caries monitoring. Systematic reviews have identified false-positive results as a limitation. Quantitative light-induced fluorescence is another sensitive method to quantitatively detect and measure mineral loss both in enamel and some dentine lesions; again, the trade-offs with lower specificity when compared with clinical visual detection must be considered. Subtraction radiography is based on the principle of digitally superimposing two radiographs with exactly the same projection geometry. This method is applicable for approximal surfaces and occlusal caries involving dentine but is not yet widely available. Electrical caries measurements gather either site-specific or surface-specific information of teeth and tooth structure. Fixed-frequency devices perform best for occlusal dentine caries but the method has also shown promise for lesions in enamel and other tooth surfaces with multi-frequency approaches. All methods require further research and further validation in well-designed clinical trials. In the future, they could have useful applications in clinical practice as part of a personalized, comprehensive caries management system. PMID:19494675

  17. Catecholamine depletion of the diagonal band reduces baroreflex inhibition of supraoptic neurons.

    PubMed

    Cunningham, J T; Nissen, R; Renaud, L P

    1992-08-01

    In the rat, neurons in the diagonal band of Broca (DBB) participate in baroreceptor-induced depression of spontaneous activity of vasopressin neurons in the supraoptic nucleus (SON). The present study examined the role of the catecholaminergic innervation of the DBB in this response. Male rats were anesthetized with pentobarbital (50 mg/kg ip) and stereotaxically injected in the DBB with either vehicle (2 microliters), 6-hydroxydopamine (6-OHDA; 4 micrograms/2 microliters), or 6-OHDA preceded 20 min earlier by desimipramine (25 mg/kg ip), a norepinephrine uptake inhibitor. Two weeks later, the rats were reanesthetized and a transpharyngeal approach was used for extracellular recording from SON neurons. In vehicle-injected controls, baroreceptor stimulation produced by brief increases in blood pressure from metaraminol injections (10 micrograms/10 microliters iv) transiently arrested the spontaneous activity of 24 of 24 phasically active neurons tested. Sixty-three percent of the vasopressin neurons were not affected by comparable increases in blood pressure in 6-OHDA-treated rats, and the norepinephrine content of the DBB was significantly reduced. In experiments with desimipramine-pretreated rats, 92% of the vasopressin neurons were silenced by increases in blood pressure while the norepinephrine content of the DBB was not affected. Thus the noradrenergic innervation of DBB appears to participate in the baroreceptor sensitivity of SON vasopressinergic neurons. PMID:1510175

  18. Chlordiazepoxide-induced released responding in extinction and punishment-conflict procedures is not altered by neonatal forebrain norepinephrine depletion.

    PubMed

    Bialik, R J; Pappas, B A; Pusztay, W

    1982-02-01

    The effects of chlordiazepoxide (CDZ) in extinction and punishment-conflict tasks were examined in rats after neonatal systemic administration of 6-hydroxydopamine (6-OHDA) to deplete forebrain norepinephrine (NE). At about 70 days of age the rats were water deprived and trained for three days to drink in a novel apparatus. On the fourth day (test day) drinking was either extinguished by elimination of water from the drinking tube or punished by lick-contingent shock. Just prior to this test session half of the vehicle and half of the 6-OHDA treated rats were given an injection of CDZ (8 mg/kg IP). Both the injection of CDZ and forebrain NE depletion prolonged responding during extinction and reduced the suppressant effects of punishment in male rats, and these effects were of similar magnitude. Furthermore, CDZ was as effective in neonatal 6-OHDA treated male rats as in vehicle treated rats indicating that decreased transmission is ascending NE fibers caused by CDZ is not solely responsible for its behavioral effects in extinction and conflict tasks. Rather, these effects may involve cooperative mediation by both noradrenergic and serotonergic forebrain terminals. Unexpectedly, CDZ's anti-extinction effect was absent in female rats and its anti-conflict effect observed only in NE depleted females.

  19. Innervation of the rat thymus gland.

    PubMed

    Kendall, M D; al-Shawaf, A A

    1991-03-01

    Current views from different laboratories on the innervation of the thymus gland are reviewed with particular reference to the rat. Noradrenergic nerve profiles of the sympathetic nervous system have been demonstrated in the subcapsular cortex, at the corticomedullary junction and in the cortex itself, and extremely sparsely in the medulla. By following beta-adrenergic receptor development in postnatal rats, it has been shown that there is a marked increase in density and morphological organization of the receptor in the medulla with the maturation of thymocyte function (monitored by measuring the proliferation response to concanavalin A) and a sexual dimorphism during the ontogeny of the receptor. Chemical sympathectomy of adult rats with 6-hydroxydopamine (6-OHDA) or guanethidine resulted in a loss of thymus weight, decreased cellularity, and increased apoptosis but a rise in the numbers of proliferating cells in the cortex. By contrast, proliferation of peripheral T cells was reduced after the use of 6-OHDA. Chemical sympathectomy also demonstrated that there were at least three nerve nets in the gland: noradrenergic neural profiles that were destroyed with both 6-OHDA and guanethidine, vasoactive intestinal polypeptide (VIP)-positive profiles that persisted, and AChE- and CGRP-positive profiles and cells that also persisted but had a different distribution to VIP-positive fibers. Some functional correlates of thymic innervation are discussed although the subject now needs to be further researched.

  20. Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity, and fatty acid composition in the striatum of Parkinson's disease mouse model.

    PubMed

    Kabuto, Hideaki; Yamanushi, Tomoko T; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2013-01-01

    Active oxygen has been implicated in the pathogenesis of Parkinson's disease (PD); therefore, antioxidants have attracted attention as a potential way to prevent this disease. Squalene, a natural triterpene and an intermediate in the biosynthesis of cholesterol, is known to have active oxygen scavenging activities. Squalane, synthesized by complete hydrogenation of squalene, does not have active oxygen scavenging activities. We examined the effects of oral administration of squalene or squalane on a PD mouse model, which was developed by intracerebroventricular injection of 6-hydroxydopamine (6-OHDA). Squalene administration 7 days before and 7 days after one 6-OHDA injection prevented a reduction in striatal dopamine (DA) levels, while the same administration of squalane enhanced the levels. Neither squalene nor squalane administration for 7 days changed the levels of catalase, glutathione peroxidase, or superoxide dismutase activities in the striatum. Squalane increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, in the striatum. Both squalane and squalene increased the ratio of linoleic acid/linolenic acid in the striatum. These results suggest that the administration of squalene or squalane induces similar changes in the composition of fatty acids and has no effect on the activities of active oxygen scavenging enzymes in the striatum. However, squalane increases oxidative damage in the striatum and exacerbates the toxicity of 6-OHDA, while squalene prevents it. The effects of squalene or squalane treatment in this model suggest their possible uses and risks in the treatment of PD.

  1. Chlordiazepoxide-induced released responding in extinction and punishment-conflict procedures is not altered by neonatal forebrain norepinephrine depletion.

    PubMed

    Bialik, R J; Pappas, B A; Pusztay, W

    1982-02-01

    The effects of chlordiazepoxide (CDZ) in extinction and punishment-conflict tasks were examined in rats after neonatal systemic administration of 6-hydroxydopamine (6-OHDA) to deplete forebrain norepinephrine (NE). At about 70 days of age the rats were water deprived and trained for three days to drink in a novel apparatus. On the fourth day (test day) drinking was either extinguished by elimination of water from the drinking tube or punished by lick-contingent shock. Just prior to this test session half of the vehicle and half of the 6-OHDA treated rats were given an injection of CDZ (8 mg/kg IP). Both the injection of CDZ and forebrain NE depletion prolonged responding during extinction and reduced the suppressant effects of punishment in male rats, and these effects were of similar magnitude. Furthermore, CDZ was as effective in neonatal 6-OHDA treated male rats as in vehicle treated rats indicating that decreased transmission is ascending NE fibers caused by CDZ is not solely responsible for its behavioral effects in extinction and conflict tasks. Rather, these effects may involve cooperative mediation by both noradrenergic and serotonergic forebrain terminals. Unexpectedly, CDZ's anti-extinction effect was absent in female rats and its anti-conflict effect observed only in NE depleted females. PMID:7071081

  2. Inhibition of cell proliferation: a mechanism likely to mediate the prevention of neuronal cell death by melatonin.

    PubMed

    Mayo, J C; Sainz, R M; Uría, H; Antolín, I; Estéban, M M; Rodríguez

    1998-08-01

    In a previous work we demonstrated that melatonin is able to prevent apoptosis induced by low doses of 6-hydroxydopamine (6-OHDA) in undifferentiated and neuronal PC12 cells. We also reported how this neurohormone was able to prevent the decrease in the mRNA for antioxidant enzymes caused by 6-OHDA. Although the antioxidant capability of melatonin seems to be clearly implicated in its antiapoptotic activity, literature suggests that its antiproliferative property could also be involved in its prevention of apoptosis. In the present work we demonstrated that melatonin is able to inhibit cell proliferation in undifferentiated PC12 cells, decreasing cell number and the total amount of DNA, and the mRNA for the histone H4, which are known to increase during DNA synthesis. Melatonin does not decrease the number of cells in nonproliferating PC12 cells, indicating that it does not cause cell death. Additionally, we demonstrate that other inhibitors of cell proliferation, as well as other antioxidants, are able to mimic the antiapoptotic effect of melatonin. This is interpreted to mean that melatonin acts by both mechanisms to inhibit apoptosis caused by 6-OHDA and the findings support the hypothesis of a relationship between oxidative stress and regulation of the cell cycle.

  3. Cystic Lesions of the Mediastinum.

    PubMed

    Vargas, Daniel; Suby-Long, Thomas; Restrepo, Carlos S

    2016-06-01

    Cystic lesions are commonly seen in the mediastinum, and they may arise from virtually any organ. The vast majority of these lesions are benign and result in no symptoms. When large, cysts may produce symptoms related to compression of adjacent structures. The most common mediastinal cysts are pericardial and foregut duplication cysts. Both computed tomography and magnetic resonance are routinely used to evaluate these lesions. Although computed tomography offers superior spatial resolution, magnetic resonance is useful in differentiating cysts that contain proteinaceous material from solid lesions. Occasionally, cysts arise from solid lesions, such as thymoma or teratoma. Although cysts are alike in appearance, location helps narrowing the differential diagnoses.

  4. Lesion mimic mutants

    PubMed Central

    Moeder, Wolfgang

    2008-01-01

    Over the last decade a substantial number of lesion mimic mutants (LMM) have been isolated and a growing number of the genes have been cloned. It is now becoming clear that these mutants are valuable tools to dissect various aspects of programmed cell death (PCD) and pathogen resistance pathways in plants. Together with other forward genetics approaches LMMs shed light on the PCD machinery in plant cells and revealed important roles for sphingolipids, Ca2+ and chloroplast-derived porphyrin-metabolites during cell death development. PMID:19513227

  5. Thalamic Lesions: A Radiological Review

    PubMed Central

    Renard, Dimitri; Campello, Chantal; Bouly, Stephane; Le Floch, Anne; Thouvenot, Eric; Waconge, Anne; Taieb, Guillaume

    2014-01-01

    Background. Thalamic lesions are seen in a multitude of disorders including vascular diseases, metabolic disorders, inflammatory diseases, trauma, tumours, and infections. In some diseases, thalamic involvement is typical and sometimes isolated, while in other diseases thalamic lesions are observed only occasionally (often in the presence of other typical extrathalamic lesions). Summary. In this review, we will mainly discuss the MRI characteristics of thalamic lesions. Identification of the origin of the thalamic lesion depends on the exact localisation inside the thalamus, the presence of extrathalamic lesions, the signal changes on different MRI sequences, the evolution of the radiological abnormalities over time, the history and clinical state of the patient, and other radiological and nonradiological examinations. PMID:25100900

  6. Pigmented Lesion of Buccal Mucosa

    PubMed Central

    Bajpai, Manas; Kumar, Malay; Kumar, Manish; Agarwal, Deshant

    2014-01-01

    Pigmented lesions are commonly found in the mouth. Such lesions represent a variety of clinical entities, ranging from physiologic changes to manifestation of systemic illness and malignant neoplasm. Diagnosis of such lesions requires a proper case history, extraoral and intraoral examination, and, in some cases, biopsy, aspiration cytology, and laboratory investigations. Here we present a case of purple lesion on the buccal mucosa of a 34-year-old male patient which was provisionally diagnosed as mucocele but on the basis of histopathological picture it was finally diagnosed as angiofibroma, and we also discuss the clinical and histopathological differential diagnosis. PMID:25161669

  7. Stress-induced cervical lesions.

    PubMed

    Braem, M; Lambrechts, P; Vanherle, G

    1992-05-01

    The increasing occurrence of dental lesions at the cervical surfaces requires more knowledge of the causes of the process. Acidic and abrasive mechanisms have clearly been documented as causes but the stress theory by Lee and Eakle is still controversial. This report describes several incidences of possible stress-induced lesions according to the characteristics described by Lee and Eakle. The occurrences of subgingival lesions lend credence to the stress-induction theory by exclusion of other superimposing etiologic factors. With the current concepts, a perceptive approach to the treatment of cervical lesions can be executed. PMID:1527763

  8. [The focal renal lesions].

    PubMed

    Tuma, Jan

    2013-06-01

    The focal renal lesions are altogether common. Most frequently are found Columna Bertini hypertrophies (so called pseudotumors) and simple renal cysts. The role of sonography in the practice is to distinguish pseudotumors from real renal tumors, and simple renal cysts from complex cysts. The differentiation of complex renal cysts is possible with the help of the CEUS (= contrast enhanced ultrasound) and other imaging modalities such as CT or MRI. In these cases, the CEUS imaging agent has clear advantages over CT and MRI, because it is composed of gas bubbles, which are only slightly smaller than red blood cells and remains exclusively intravascularly while the CT and MRI contrast agents diffuse into the interstitial space without any real perfusion. The real tumors can be differentiated from certain focal non-tumorous changes based on the ultrasound and clinic. The further differentiation of individual kidney tumors and metastases using ultrasound, MRI, CT and CEUS is only partly possible. In all uncertain or unclear cases, therefore, an open or ultrasound-guided biopsy is useful.

  9. Differential pattern of motor impairments in neurotoxic, environmental and inflammation-driven rat models of Parkinson's disease.

    PubMed

    Naughton, Carol; Moriarty, Niamh; Feehan, Jennifer; O'Toole, Daniel; Dowd, Eilís

    2016-01-01

    One of the reasons proposed for the paucity of drug discovery for Parkinson's disease is the lack of relevant animal models of the condition. Parkinson's disease has been modelled extensively using the selective neurotoxin, 6-hydroxydopamine (6-OHDA). However, as this model bears little etiological resemblance to the human condition, there has been a drive to develop models with improved etiological validity. Two such models are those induced by the pesticide, rotenone, and the inflammagen, lipopolysaccharide (LPS). However, to date, these models have been poorly characterised in terms of their motor profiles and have never been directly compared to the more established models. Thus, the aim of this study was to characterise the behavioural profile of the rotenone and LPS models, and to compare them with the 6-OHDA model. Animals underwent baseline testing on the Stepping, Whisker, Corridor and Cylinder Tests of motor function. They were then grouped for unilateral intra-striatal infusion of 6-OHDA, rotenone or LPS. Motor testing continued for ten weeks after which the rats were processed for immunohistochemical analysis of nigrostriatal integrity. We found that, although all neurotoxins induced a similar level of nigrostriatal neurodegeneration, neither the rotenone nor LPS models were associated with amphetamine-induced rotation, and they were associated with significantly less pronounced and stable impairments in the spontaneous tasks than the 6-OHDA model. In conclusion, this study demonstrates key differences in the pattern of motor dysfunction induced by Parkinsonian neurotoxins which should be taken into consideration when selecting the most appropriate model for Parkinson's disease preclinical studies.

  10. Release properties and functional integration of noradrenergic-rich tissue grafted to the denervated spinal cord of the adult rat.

    PubMed

    Leanza, G; Cataudella, T; Dimauro, R; Monaco, S; Stanzani, S

    1999-05-01

    Noradrenaline- (NA-) containing grafts of central (embryonic locus coeruleus, LC) or peripheral (juvenile adrenal medullary, AM, autologous superior cervical ganglionic, SCG) tissue were implanted unilaterally into rat lumbar spinal cord previously depleted of its NA content by 6-hydroxydopamine (6-OHDA) intraventricularly. A microdialysis probe was implanted in the spinal cord 3-4 months after transplantation, and extracellular levels of noradrenaline were monitored in freely moving animals during basal conditions and following administration of pharmacological or behavioural stimuli. Age-matched normal and lesioned animals both served as controls. Morphometric analyses were carried out on horizontal spinal sections processed for dopamine-beta-hydroxylase (DBH) immunocitochemistry, in order to assess lesion- or graft-induced changes in the density of spinal noradrenergic innervation, relative to the normal patterns. In lesioned animals, the entire spinal cord was virtually devoid of DBH-positive fibers, resulting in a dramatic 88% reduction in baseline NA, compared with that in controls, which did not change in response to the various stimuli. LC and SCG grafts reinstated approximately 80% and 50% of normal innervation density, respectively, but they differed strikingly in their release ability. Thus, LC grafts restored baseline NA levels up to 60% of those in controls, and responded with significantly increased NA release to KCl-induced depolarization, neuronal uptake blockade and handling. In contrast, very low NA levels and only poor and inconsistent responses to the various stimuli were observed in the SCG-grafted animals. In AM-grafted animals, spinal extracellular NA levels were restored up to 45% of those in controls, probably as a result of nonsynaptic, endocrine-like release, as grafted AM cells retained the chromaffine phenotype, showed no detectable fibre outgrowth and did not respond to any of the pharmacological or behavioural challenges. Thus, both a

  11. Voxelwise Bayesian Lesion Deficit Analysis

    PubMed Central

    Chen, Rong; Hillis, Argye E.; Pawlak, Mikolaj; Herskovits, Edward H

    2008-01-01

    Relating cognitive deficits to the presence of lesions has been an important means of delineating structure-function associations in the human brain. We propose a voxel-based Bayesian method for lesion-deficit analysis, which identifies complex linear or nonlinear associations among brain-lesion locations, and neurological status. We validated this method using a simulated data set, and we applied this algorithm to data obtained from an acute-stroke study to identify associations among voxels with infarct or hypoperfusion, and impaired word reading. We found that a distributed region involving Brodmann areas (BA) 22, 37, 39, and 40 was implicated in word reading. PMID:18328733

  12. Nerve lesioning with direct current

    NASA Astrophysics Data System (ADS)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  13. No Carious Cervical Lesions: Abfraction

    PubMed Central

    Shetty, Sumanth M; Shetty, Rashmi G; Mattigatti, Sudha; Managoli, Noopur A; Rairam, Surabhi G; Patil, Ashwini M

    2013-01-01

    Abfraction or Theory of Abfraction is a theory explaining the non-carious cervical lesions (NCCL). It suggests that they are caused by flexural forces, usually from cyclic loading; the enamel, especially at the cementoenamel junction (CEJ), undergoes this pattern of destruction by separating the enamel rods. Clinical aspect importance of these ineart lesions are at most important to be detected for early intervention and treatment modalities as options during the progression of the disease. How to cite this article: Shetty SM, Shetty RG, Mattigatti S, Managoli NA, Rairam SG, Patil AM. No Carious Cervical Lesions: Abfraction. J Int Oral Health 2013; 5(5):142-5. PMID:24324319

  14. Electrocautery for Precancerous Anal Lesions

    Cancer.gov

    Results from a randomized clinical trial conducted in Amsterdam suggest that electrocautery is better than topical imiquimod or fluorouracil at treating potentially precancerous anal lesions in HIV-positive men who have sex with men.

  15. Gram stain of skin lesion

    MedlinePlus

    ... may be done along with this test. Other studies are often done on a skin sample to determine if cancer is present. Viral skin lesions like herpes simplex are examined by other tests or a viral culture.

  16. Osteochondral Lesions of Major Joints

    PubMed Central

    Durur-Subasi, Irmak; Durur-Karakaya, Afak; Yildirim, Omer Selim

    2015-01-01

    This paper provides information about osteochondral lesions (OCL) and example cases of OCL occurring in major joints, some of which are rarely seen. This simple tutorial is presented in question and answer format. PMID:26180500

  17. Asterixis in focal brain lesions.

    PubMed

    Degos, J D; Verroust, J; Bouchareine, A; Serdaru, M; Barbizet, J

    1979-11-01

    Asterixis was observed in 20 cases of focal brain lesions. Metabolic or toxic factors were excluded. An electromyogram study of asterixis was carried out in nine cases to establish the diagnosis. The site of the focal lesion was either parietal or mesencephalic and was always contralateral to the asterixis. "Focal asterixis" could result from a dysfunction of the sensorimotor integration in the parietal lobe and the midbrain.

  18. Benign Pediatric Salivary Gland Lesions.

    PubMed

    Carlson, Eric R; Ord, Robert A

    2016-02-01

    Salivary gland lesions are rare in pediatric patients. In addition, the types of salivary gland tumors are different in their distribution in specific sites in the major and minor salivary glands in children compared with adults. This article reviews benign neoplastic and nonneoplastic salivary gland disorders in pediatric patients to help clinicians to develop an orderly differential diagnosis that will lead to expedient treatment of pediatric patients with salivary gland lesions.

  19. Endoscopic Management of Dieulafoy's Lesion

    PubMed Central

    Jeon, Hye Kyung

    2015-01-01

    A Dieulafoy's lesion is a vascular abnormality consisting of a large caliber-persistent tortuous submucosal artery. A small mucosal defect with the eruption of this protruding vessel can cause bleeding. In fact, a Dieulafoy's lesion is a relatively rare but potentially life-threatening condition. It accounts for 1% to 2% of cases of acute gastrointestinal bleeding. Although there is no consensus on the treatment of Dieulafoy's lesions; treatment options depend on the mode of presentation, site of the lesion, and available expertise. Endoscopic therapy is usually successful in achieving primary hemostasis, with hemostasis success rates reaching 75% to 100%. Although various therapeutic endoscopic methods are used to control bleeding in Dieulafoy's lesions, the best method for endoscopic intervention is not clear. Combination endoscopic therapy is known to be superior to monotherapy because of a lower rate of recurrent bleeding. In addition, mechanical therapies including hemostatic clipping and endoscopic band ligation are more effective and successful in controlling bleeding than other endoscopic methods. Advances in endoscopic techniques have reduced mortality in patients with Dieulafoy's lesion-from 80% to 8%-and consequently, the need for surgical intervention has been reduced. Currently, surgical intervention is used for cases that fail therapeutic endoscopic or angiographic interventions. PMID:25844338

  20. DNA lesions: A thermodynamic perspective

    SciTech Connect

    Plum, G.E.; Breslauer, K.J.

    1994-12-31

    The studies described in this paper are part of an overall program project entitled {open_quotes}The Chemistry and Biology of Exocyclic DNA Adducts and Oxidative DNA Damage.{close_quotes}. Initially, all the project leaders discuss and agree on biologically interesting lesions to target for study. Then begins the process of developing the chemistry required to synthesize modified nucleosides that either correspond to or model the damage sites of interest. Such modified nucleotides then are incorporated into oligonucleotides that are hybridized to their complements, thereby forming lesion-containing duplex structures. In any given duplex, the identity of the lesion-opposing nucleoside on the complementary strand is systematically altered, thereby allowing us to evaluate the impact on duplex properties of the identity of the base opposite the lesion. For comparative purposes, the undamaged parent Watson-Crick duplex also is synthesized. Such families of DNA duplexes are then sent for independent physiochemical characterizations. Armed with an extensive body of biophysical data, one then searches for correlations between the physiochemical influences of the lesions on duplex properties and the biological consequences of each lesion. At this stage, our approach is highly empirical. Ultimately, we hope that our studies will reveal correlations between physiochemical properties and biological consequences such that we will develop predictive powers and gain insight into the mechanisms of recognition, repair, and mutagenesis.

  1. Simulation of spiculated breast lesions

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Alrehily, Faisal; Pinto, R. Ferrari; Rashidnasab, Alaleh; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are a promising new approach increasingly used for the evaluation and comparison of breast imaging modalities. A key component in such an assessment paradigm is the use of simulated pathology, in particular, simulation of lesions. Breast mass lesions can be generally classified into two categories based on their appearance; nonspiculated masses and spiculated masses. In our previous work, we have successfully simulated non-spiculated masses using a fractal growth process known as diffusion limited aggregation. In this new work, we have extended the DLA model to simulate spiculated lesions by using features extracted from patient DBT images containing spiculated lesions. The features extracted included spicule length, width, curvature and distribution. This information was used to simulate realistic looking spicules which were attached to the surface of a DLA mass to produce a spiculated mass. A batch of simulated spiculated masses was inserted into normal patient images and presented to an experienced radiologist for review. The study yielded promising results with the radiologist rating 60% of simulated lesions in 2D and 50% of simulated lesions in DBT as realistic.

  2. Reversal of dopaminergic degeneration in a parkinsonian rat following micrografting of human bone marrow-derived neural progenitors.

    PubMed

    Glavaski-Joksimovic, Aleksandra; Virag, Tamas; Chang, Qin A; West, Neva C; Mangatu, Thomas A; McGrogan, Michael P; Dugich-Djordjevic, Millicent; Bohn, Martha C

    2009-01-01

    Parkinson's disease (PD) is a common neurodegenerative disease characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. Various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD. Stem cells also secrete growth factors and therefore also may have therapeutic effects in promoting the health of diseased DA neurons in the PD brain. To address this possibility in an experimental model of PD, bone marrow-derived neuroprogenitor-like cells were generated from bone marrow procured from healthy human adult volunteers and their potential to elicit recovery of damaged DA axons was studied in a partial lesion rat model of PD. Following collection of bone marrow, mesenchymal stem cells (MSC) were isolated and then genetically modified to create SB623 cells by transient transfection with the intracellular domain of the Notch1 gene (NICD), a modification that upregulates expression of certain neuroprogenitor markers. Ten deposits of 0.5 microl of SB623 cell suspension adjusted from 6,000 to 21,000 cells/microl in PBS or PBS alone were stereotaxically placed in the striatum 1 week after the nigrostriatal projection had been partially lesioned in adult F344 rats by injection of 6-hydroxydopamine (6-OHDA) into the striatum. At 3 weeks, a small number of grafted SB623 cells survived in the lesioned striatum as visualized by expression of the human specific nuclear matrix protein (hNuMA). In rats that received SB623 cells, but not in control rats, dense tyrosine hydroxylase immunoreactive (TH-ir) fibers were observed around the grafts. These fibers appeared to be rejuvenated host DA axons because no TH-ir in soma of surviving SB623 cells or coexpression of TH and hNuMA-ir were observed. In addition, dense serotonin immunoreactive (5-HT-ir) fibers were observed around grafted SB623 cells and these fibers also appeared to be of the host origin. Also, in some SB623 grafted rats that were

  3. Skin lesions in returning travellers.

    PubMed

    Korzeniewski, Krzysztof; Juszczak, Dariusz; Jerzemowski, Janusz

    2015-01-01

    Skin lesions, apart from diarrhoeas, fever of unknown origin, and respiratory tract infections belong to the most frequent medical problems in travellers returned from tropical and subtropical destinations, accounting more than 10% of reported cases. Most dermatoses have their clinical onset during travel, although some of them can occur after return. Travel-related dermatological problems can have a wide spectrum of clinical picture, from macular, popular or nodular rash, linear and migratory lesions, to plaques, vesicles, bullae, erosions or ulcers. Skin conditions in returning travellers may be of infectious and non-infectious aetiologies. Infectious lesions may be originally tropical (e.g. dengue, chikungunya, schistosomiasis, leishmaniasis, myiasis, tungiasis, loiasis), although the majority are cosmopolitan (arthropod bites, sunburns, allergic rashes). The evaluation of skin lesions depends on many factors, including immune status of patients, use of medicines, exposure on health hazards (fauna, flora, risky behaviours), as well as the time, duration and location of travel. As the number of travellers to tropical and subtropical destinations has been continuously rising, the number of skin illnesses has also been increasing. This means that specialists in travel medicine need to extend their knowledge of epidemiology, clinical features and diagnosis of travel-related health problems including skin lesions in returning travellers. PMID:26394319

  4. Skin lesions in returning travellers.

    PubMed

    Korzeniewski, Krzysztof; Juszczak, Dariusz; Jerzemowski, Janusz

    2015-01-01

    Skin lesions, apart from diarrhoeas, fever of unknown origin, and respiratory tract infections belong to the most frequent medical problems in travellers returned from tropical and subtropical destinations, accounting more than 10% of reported cases. Most dermatoses have their clinical onset during travel, although some of them can occur after return. Travel-related dermatological problems can have a wide spectrum of clinical picture, from macular, popular or nodular rash, linear and migratory lesions, to plaques, vesicles, bullae, erosions or ulcers. Skin conditions in returning travellers may be of infectious and non-infectious aetiologies. Infectious lesions may be originally tropical (e.g. dengue, chikungunya, schistosomiasis, leishmaniasis, myiasis, tungiasis, loiasis), although the majority are cosmopolitan (arthropod bites, sunburns, allergic rashes). The evaluation of skin lesions depends on many factors, including immune status of patients, use of medicines, exposure on health hazards (fauna, flora, risky behaviours), as well as the time, duration and location of travel. As the number of travellers to tropical and subtropical destinations has been continuously rising, the number of skin illnesses has also been increasing. This means that specialists in travel medicine need to extend their knowledge of epidemiology, clinical features and diagnosis of travel-related health problems including skin lesions in returning travellers.

  5. Oral Lesions and Lymphoproliferative Disorders

    PubMed Central

    Castellarin, P.; Pozzato, G.; Tirelli, G.; Di Lenarda, R.; Biasotto, M.

    2010-01-01

    Lymphoproliferative disorders are heterogeneous malignancy characterized by the expansion of a lymphoid clone more or less differentiated. At the level of the oral cavity, the lymphoproliferative disorder can occur in various ways, most commonly as lymphoid lesions with extranodal externalization, but sometimes, oral lesions may represent a localization of a disease spread. With regard to the primary localizations of lymphoproliferative disorders, a careful examination of the head and neck, oral, and oropharyngeal area is necessary in order to identify suspicious lesions, and their early detection results in a better prognosis for the patient. Numerous complications have been described and frequently found at oral level, due to pathology or different therapeutic strategies. These complications require precise diagnosis and measures to oral health care. In all this, oral pathologists, as well as dental practitioners, have a central role in the treatment and long-term monitoring of these patients. PMID:20871659

  6. Benign lymphoepithelial lesion and malignancy.

    PubMed

    Hordijk, G J; Meyer, C J

    1981-01-01

    Whereas most patients with benign lymphoepithelial lesion suffer from the involvement of a major salivary gland a number evolve into a clinical form of Sjögren's syndrome or Mikulicz's disease. In a small number development of malignant lymphomas, especially non-Hodgkin's lymphomas, have been described. Therefore, regular follow-up and appropriate histological evaluation of suspected areas in all patients with a benign lymphoepithelial lesion is indicated. Histologically, diagnosis of a non-Hodgkin's lymphoma may be difficult. Demonstration of a cell pattern, monoclonal for cytoplasmic Ig by means of the immunoperoxidase technique may facilitate the diagnosis. In this report we present the history of two cases out of our series with benign lymphoepithelial lesion who developed a non-Hodgkin's lymphoma.

  7. Renal lesions of nondomestic felids.

    PubMed

    Newkirk, K M; Newman, S J; White, L A; Rohrbach, B W; Ramsay, E C

    2011-05-01

    To comprehensively evaluate the occurrence of renal lesions in a variety of nondomestic felids, necropsy cases from 1978 to 2008 were reviewed from a municipal zoo and a large cat sanctuary for those in which the kidneys were examined histologically. Seventy exotic felids were identified (25 tigers, 18 lions, 6 cougars, 5 leopards, 3 snow leopards, 3 clouded leopards, 3 Canadian lynx, 2 ocelots, 2 bobcats, 2 cheetahs, 1 jaguar), and their histologic renal lesions were evaluated and compared. The most common lesion was tubulointerstitial nephritis (TIN); 36 of 70 (51%) cats were affected to some degree. Lymphocytic interstitial nephritis was the most common lesion in the tigers (9 of 25, 36%) and was rarely seen in other species. Although the renal pelvis was not available for all cats, 28 of 47 (60%) had some degree of lymphocytic pyelitis. There was no significant association between the presence of pyelitis and that of TIN. Only 1 cat had pyelonephritis. Renal papillary necrosis was present in 13 of 70 (19%) cats and was significantly associated with historical nonsteroidal anti-inflammatory drug treatment (odds ratio, 7.1; 95% confidence interval, 1.9 to 26.8). Only 1 cat (lion) had amyloid accumulation, and it was restricted to the corticomedullary junction. Primary glomerular lesions were absent in all cats. Intraepithelial pigment was identified in many of the cats but was not correlated with severity of TIN. Despite several previous reports describing primary glomerular disease or renal amyloidosis in exotic felids, these lesions were rare to absent in this population. PMID:20876911

  8. Can Small Lesions Induce Language Reorganization as Large Lesions Do?

    ERIC Educational Resources Information Center

    Maestu, Fernando; Saldana, Cristobal; Amo, Carlos; Gonzalez-Hidalgo, Mercedes; Fernandez, Alberto; Fernandez, Santiago; Mata, Pedro; Papanicolaou, Andrew; Ortiz, Tomas

    2004-01-01

    Shift of the cortical mechanisms of language from the usually dominant left to the non-dominant right hemisphere has been demonstrated in the presence of large brain lesions. Here, we report a similar phenomenon in a patient with a cavernoma over the anterolateral superior temporal gyrus associated with epilepsy. Language mapping was performed by…

  9. Cutaneous lesions of the nose

    PubMed Central

    2010-01-01

    Skin diseases on the nose are seen in a variety of medical disciplines. Dermatologists, otorhinolaryngologists, general practitioners and general plastic and dermatologic surgeons are regularly consulted regarding cutaneous lesions on the nose. This article is the second part of a review series dealing with cutaneous lesions on the head and face, which are frequently seen in daily practice by a dermatologic surgeon. In this review, we focus on those skin diseases on the nose where surgery or laser therapy is considered a possible treatment option or that can be surgically evaluated. PMID:20525327

  10. Apraxia in deep cerebral lesions.

    PubMed Central

    Agostoni, E; Coletti, A; Orlando, G; Tredici, G

    1983-01-01

    In a series of 50 patients with cerebrovascular lesions (demonstrated with CT scan), seven patients had lesions located in the basal ganglia and/or thalamus. All these seven patients were apractic. Ideomotor apraxia was present in all patients; five also had constructional apraxia, and one had bucco-facial apraxia. None of the patients had utilisation apraxia. These observations indicated that apraxia is not only a "high cerebral (cortical) function", but may depend also on the integrity of subcortical circuits and structures. PMID:6619888

  11. Pediatric Knee Osteochondritis Dissecans Lesions.

    PubMed

    Cruz, Aristides I; Shea, Kevin G; Ganley, Theodore J

    2016-10-01

    Osteochondritis dissecans (OCD) can cause knee pain and dysfunction in children. The etiology of OCD remains unclear; theories on causes include inflammation, ischemia, ossification abnormalities, genetic factors, and repetitive microtrauma. Most OCD lesions in skeletally immature patients will heal with nonoperative treatment. The success of nonoperative treatment decreases once patients reach skeletal maturity. The goals of surgical treatment include maintenance of articular cartilage congruity, rigid fixation of unstable fragments, and repair of osteochondral defects with cells or tissues that can adequately replace lost or deficient cartilage. Unsalvageable OCD lesions can be treated with various surgical techniques. PMID:27637663

  12. Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson’s Disease

    PubMed Central

    Seiler, Stefanie; Di Santo, Stefano; Widmer, Hans Rudolf

    2016-01-01

    Transplantation of fetal human ventral mesencephalic (VM) dopaminergic neurons into the striatum is a promising strategy to compensate for the characteristic dopamine deficit observed in Parkinson’s disease (PD). This therapeutic approach, however, is currently limited by the high number of fetuses needed for transplantation and the poor survival and functional integration of grafted dopaminergic neurons into the host brain. Accumulating evidence indicates that contrasting inhibitory signals endowed in the central nervous system (CNS) might support neuronal regeneration. Hence, in the present study we aimed at improving survival and integration of grafted cells in the host brain by neutralizing Nogo-A, one of the most potent neurite growth inhibitors in the CNS. For that purpose, VM tissue cultures were transplanted into rats with a partial 6-hydroxydopamine (6-OHDA) lesion causing a hemi-PD model and concomitantly treated for 2 weeks with intra-ventricular infusion of neutralizing anti-Nogo-A antibodies. Motor behavior using the cylinder test was assessed prior to and after transplantation as functional outcome. At the end of the experimental period the number of dopaminergic fibers growing into the host brain, the number of surviving dopaminergic neurons in the grafts as well as graft size was examined. We found that anti-Nogo-A antibody infusion significantly improved the asymmetrical forelimb use observed after lesions as compared to controls. Importantly, a significantly three-fold higher dopaminergic fiber outgrowth from the transplants was detected in the Nogo-A antibody treated group as compared to controls. Furthermore, Nogo-A neutralization showed a tendency for increased survival of dopaminergic neurons (by two-fold) in the grafts. No significant differences were observed for graft volume and the number of dopaminergic neurons co-expressing G-protein-coupled inward rectifier potassium channel subunit two between groups. In sum, our findings support the

  13. Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson's Disease.

    PubMed

    Seiler, Stefanie; Di Santo, Stefano; Widmer, Hans Rudolf

    2016-01-01

    Transplantation of fetal human ventral mesencephalic (VM) dopaminergic neurons into the striatum is a promising strategy to compensate for the characteristic dopamine deficit observed in Parkinson's disease (PD). This therapeutic approach, however, is currently limited by the high number of fetuses needed for transplantation and the poor survival and functional integration of grafted dopaminergic neurons into the host brain. Accumulating evidence indicates that contrasting inhibitory signals endowed in the central nervous system (CNS) might support neuronal regeneration. Hence, in the present study we aimed at improving survival and integration of grafted cells in the host brain by neutralizing Nogo-A, one of the most potent neurite growth inhibitors in the CNS. For that purpose, VM tissue cultures were transplanted into rats with a partial 6-hydroxydopamine (6-OHDA) lesion causing a hemi-PD model and concomitantly treated for 2 weeks with intra-ventricular infusion of neutralizing anti-Nogo-A antibodies. Motor behavior using the cylinder test was assessed prior to and after transplantation as functional outcome. At the end of the experimental period the number of dopaminergic fibers growing into the host brain, the number of surviving dopaminergic neurons in the grafts as well as graft size was examined. We found that anti-Nogo-A antibody infusion significantly improved the asymmetrical forelimb use observed after lesions as compared to controls. Importantly, a significantly three-fold higher dopaminergic fiber outgrowth from the transplants was detected in the Nogo-A antibody treated group as compared to controls. Furthermore, Nogo-A neutralization showed a tendency for increased survival of dopaminergic neurons (by two-fold) in the grafts. No significant differences were observed for graft volume and the number of dopaminergic neurons co-expressing G-protein-coupled inward rectifier potassium channel subunit two between groups. In sum, our findings support the

  14. Imaging inflammatory acne: lesion detection and tracking

    NASA Astrophysics Data System (ADS)

    Cula, Gabriela O.; Bargo, Paulo R.; Kollias, Nikiforos

    2010-02-01

    It is known that effectiveness of acne treatment increases when the lesions are detected earlier, before they could progress into mature wound-like lesions, which lead to scarring and discoloration. However, little is known about the evolution of acne from early signs until after the lesion heals. In this work we computationally characterize the evolution of inflammatory acne lesions, based on analyzing cross-polarized images that document acne-prone facial skin over time. Taking skin images over time, and being able to follow skin features in these images present serious challenges, due to change in the appearance of skin, difficulty in repositioning the subject, involuntary movement such as breathing. A computational technique for automatic detection of lesions by separating the background normal skin from the acne lesions, based on fitting Gaussian distributions to the intensity histograms, is presented. In order to track and quantify the evolution of lesions, in terms of the degree of progress or regress, we designed a study to capture facial skin images from an acne-prone young individual, followed over the course of 3 different time points. Based on the behavior of the lesions between two consecutive time points, the automatically detected lesions are classified in four categories: new lesions, resolved lesions (i.e. lesions that disappear completely), lesions that are progressing, and lesions that are regressing (i.e. lesions in the process of healing). The classification our methods achieve correlates well with visual inspection of a trained human grader.

  15. Cystic Lesions in Autoimmune Pancreatitis.

    PubMed

    Gompertz, Macarena; Morales, Claudia; Aldana, Hernán; Castillo, Jaime; Berger, Zoltán

    2015-01-01

    Autoimmune pancreatitis (AIP) can be chronic or recurrent, but frequently completely reversible after steroid treatment. A cystic lesion in AIP is a rare finding, and it can mimic a pancreatic cystic neoplasm. Difficulties in an exact diagnosis interfere with treatment, and surgery cannot be avoided in some cases. We report the history of a 63-year-old male presenting with jaundice and pruritus. AIP was confirmed by imaging and elevated IgG4 blood levels, and the patient completely recovered after corticosteroid therapy. One year later, he presented with a recurrent episode of AIP with elevated IgG4 levels, accompanied by the appearance of multiple intrapancreatic cystic lesions. All but 1 of these cysts disappeared after steroid treatment, but the remaining cyst in the pancreatic head was even somewhat larger 1 year later. Pancreatoduodenectomy was finally performed. Histology showed the wall of the cystic lesion to be fibrotic; the surrounding pancreatic tissue presented fibrosis, atrophy and lymphoplasmacytic infiltration by IgG4-positive cells, without malignant elements. Our case illustrates the rare possibility that cystic lesions can be part of AIP. These pseudocysts appear in the pancreatic segments involved in the autoimmune disease and can be a consequence of the local inflammation or related to ductal strictures. Steroid treatment should be initiated, after which these cysts can completely disappear with recovery from AIP. Surgical intervention may be necessary in some exceptional cases.

  16. Cystic lesions of the pancreas

    PubMed Central

    Karoumpalis, Ioannis; Christodoulou, Dimitrios K.

    2016-01-01

    Different types of benign or malignant cystic lesions can be observed in the pancreas. Pancreatic cystic lesions are classified under pathology terms into simple retention cysts, pseudocysts and cystic neoplasms. Mucinous cystic neoplasm is a frequent type of cystic neoplasm and has a malignant potential. Serous cystadenoma follows in frequency and is usually benign. Intraductal papillary mucinous neoplasms are the most commonly resected cystic pancreatic neoplasms characterized by dilated segments of the main pancreatic duct and/or side branches, the wall of which is covered by mucus secreting cells. These neoplasms can occupy the pancreatic head or any part of the organ. Solid pseudopapillary tumor is rare, has a low tendency for malignancy, and is usually located in the pancreatic body or tail. Endoscopic ultrasound with the use of fine-needle aspiration and cytology permits discrimination of those lesions. In this review, the main characteristics of those lesions are presented, as well as recommendations regarding their follow up and management according to recent guidelines. PMID:27065727

  17. Devic disease with brainstem lesions.

    PubMed

    Chalumeau-Lemoine, Ludivine; Chretien, Fabrice; Gaëlle Si Larbi, Anne; Brugieres, Pierre; Gray, Françoise; Brun-Buisson, Christian; Creange, Alain

    2006-04-01

    We describe a patient who suffered from an unusually severe form of neuromyelitis optica with a hyperacute time-course evolution requiring mechanical ventilation within 3 days. The patient died after 72 days and autopsy showed major spinal cord, optic nerve, and brainstem necrosis, and multifocal necrotic lesions on the cerebellum and cerebral white matter. PMID:16606774

  18. SLAP lesions: a treatment algorithm.

    PubMed

    Brockmeyer, Matthias; Tompkins, Marc; Kohn, Dieter M; Lorbach, Olaf

    2016-02-01

    Tears of the superior labrum involving the biceps anchor are a common entity, especially in athletes, and may highly impair shoulder function. If conservative treatment fails, successful arthroscopic repair of symptomatic SLAP lesions has been described in the literature particularly for young athletes. However, the results in throwing athletes are less successful with a significant amount of patients who will not regain their pre-injury level of performance. The clinical results of SLAP repairs in middle-aged and older patients are mixed, with worse results and higher revision rates as compared to younger patients. In this population, tenotomy or tenodesis of the biceps tendon is a viable alternative to SLAP repairs in order to improve clinical outcomes. The present article introduces a treatment algorithm for SLAP lesions based upon the recent literature as well as the authors' clinical experience. The type of lesion, age of patient, concomitant lesions, and functional requirements, as well as sport activity level of the patient, need to be considered. Moreover, normal variations and degenerative changes in the SLAP complex have to be distinguished from "true" SLAP lesions in order to improve results and avoid overtreatment. The suggestion for a treatment algorithm includes: type I: conservative treatment or arthroscopic debridement, type II: SLAP repair or biceps tenotomy/tenodesis, type III: resection of the instable bucket-handle tear, type IV: SLAP repair (biceps tenotomy/tenodesis if >50 % of biceps tendon is affected), type V: Bankart repair and SLAP repair, type VI: resection of the flap and SLAP repair, and type VII: refixation of the anterosuperior labrum and SLAP repair.

  19. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP(+) and Rotenone Toxicity.

    PubMed

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P H

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP(+))-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson's disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  20. Effect of age on upregulation of the cardiac adrenergic beta receptors

    SciTech Connect

    Tumer, N.; Houck, W.T.; Roberts, J.

    1990-03-01

    Radioligand binding studies were performed to determine whether upregulation of postjunctional beta receptors occurs in sympathectomized hearts of aged animals. Fischer 344 rats 6, 12, and 24 months of age (n = 10) were used in these experiments. To produce sympathectomy, rats were injected with 6-hydroxydopamine hydrobromide (6-OHDA; 2 x 50 mg/kg iv) on days 1 and 8; the animals were decapitated on day 15. The depletion of norepinephrine in the heart was about 86% in each age group. 125I-Iodopindolol (IPIN), a beta adrenergic receptor antagonist, was employed to determine the affinity and total number of beta adrenergic receptors in the ventricles of the rat heart. The maximal number of binding sites (Bmax) was significantly elevated by 37%, 48%, and 50% in hearts from sympathectomized 6-, 12-, and 24-month-old rats, respectively. These results indicate that beta receptor mechanisms in older hearts can respond to procedures that cause upregulation of the beta adrenergic receptors.

  1. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP+ and Rotenone Toxicity

    PubMed Central

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  2. [Cystic testicular lesions in infancy].

    PubMed

    Calleja Escudero, J; Pascual Samaniego, M; Garrido Redondo, M; Matas Gómez, V; Fernández Domínguez, L; Fernández del Busto, E

    2004-09-01

    The present article reports a case 11 month-old infant with a right intratesticular cyst. We analyze the etiology, differential diagnosis and management off all cystic lesions of the pediatric testis. Patient age at presentation, examination features, tumor markers and sonographic appearance may assist in making a presumptive and occasionally definitive diagnosis preoperatively. The differential diagnosis include intratesticular simple cyst, epidermoid cyst, tunica albuginea cyst, testicular teratoma, juvenil granulosa cell tumor-gonadal stromal tumor, cystic dysplasia of the rete testis, cystic lymphangioma, and testicular torsion. Usually enucleation is the best treatment. A thorough understanding of potentially cystic testis lesions in children leads to the best management choices and often to preservation of a substantial portion of the affected testis.

  3. Automatic segmentation of psoriasis lesions

    NASA Astrophysics Data System (ADS)

    Ning, Yang; Shi, Chenbo; Wang, Li; Shu, Chang

    2014-10-01

    The automatic segmentation of psoriatic lesions is widely researched these years. It is an important step in Computer-aid methods of calculating PASI for estimation of lesions. Currently those algorithms can only handle single erythema or only deal with scaling segmentation. In practice, scaling and erythema are often mixed together. In order to get the segmentation of lesions area - this paper proposes an algorithm based on Random forests with color and texture features. The algorithm has three steps. The first step, the polarized light is applied based on the skin's Tyndall-effect in the imaging to eliminate the reflection and Lab color space are used for fitting the human perception. The second step, sliding window and its sub windows are used to get textural feature and color feature. In this step, a feature of image roughness has been defined, so that scaling can be easily separated from normal skin. In the end, Random forests will be used to ensure the generalization ability of the algorithm. This algorithm can give reliable segmentation results even the image has different lighting conditions, skin types. In the data set offered by Union Hospital, more than 90% images can be segmented accurately.

  4. Imaging of skull base lesions.

    PubMed

    Kelly, Hillary R; Curtin, Hugh D

    2016-01-01

    Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here. PMID:27432686

  5. Imaging of skull base lesions.

    PubMed

    Kelly, Hillary R; Curtin, Hugh D

    2016-01-01

    Skull base imaging requires a thorough knowledge of the complex anatomy of this region, including the numerous fissures and foramina and the major neurovascular structures that traverse them. Computed tomography (CT) and magnetic resonance imaging (MRI) play complementary roles in imaging of the skull base. MR is the preferred modality for evaluation of the soft tissues, the cranial nerves, and the medullary spaces of bone, while CT is preferred for demonstrating thin cortical bone structure. The anatomic location and origin of a lesion as well as the specific CT and MR findings can often narrow the differential diagnosis to a short list of possibilities. However, the primary role of the imaging specialist in evaluating the skull base is usually to define the extent of the lesion and determine its relationship to vital neurovascular structures. Technologic advances in imaging and radiation therapy, as well as surgical technique, have allowed for more aggressive approaches and improved outcomes, further emphasizing the importance of precise preoperative mapping of skull base lesions via imaging. Tumors arising from and affecting the cranial nerves at the skull base are considered here.

  6. [Benign lymphoepithelial lesion of the salivary glands].

    PubMed

    Dusek, J; Cerný, L; Wiedermann, B

    1977-05-01

    A series of eight observations serves for demonstrating the clinico-pathological picture of the benign lymphoepithelial lesion of salivary glands. The glandular lesion was associated with joint symptoms, one of the female patients developed malignant lymphoma.

  7. [Two cystic retroperitoneal lesions mimicking adrenal cysts].

    PubMed

    Grabellus, F; Dereskewitz, C; Schmitz, K J; Kaiser, G M; Kühl, H; Kersting, C; Frilling, A; Metz, K A; Baba, H A

    2005-05-01

    Adrenal cysts are uncommon lesions and most of them are found incidentally during abdominal imaging. We report on two benign extraadrenal lesions mimicking adrenal tumors in abdominal imaging. The histopathological investigation of the lesions revealed a foregut duplication cyst of the lesser gastric curvature and an epithelial inclusion cyst (epidermoid cyst) in an intrapancreatic accessory spleen respectively.

  8. [HPV-associated cutaneous lesions].

    PubMed

    Kiyofumi, Egawa

    2008-12-01

    More than 100 HPV genotypes are presently distinguished by comparing the DNA sequence of the L1 ORF of each HPV. Two important aspects of the nature of this group of heterogeneous viruses are the way in which specific HPV genotypes are associated with distinct clinical and histological morphologies and the way specific HPV genotypes affect distinct anatomical sites. The former is best evidenced by the HPV type specific cytopathic or cytopathogenic effect (CPE), whereas the latter is suggested by the marked preference of each HPV genotype for specific tissues and sites. Recent studies have also suggested that specific HPV genotypes may target epithelial stem cells at specific anatomical sites. HPV type-specific CPE is the central schema when we analyze and understand the HPV-associated diseases. The concept was suggested by the characterization of distinct HPVs from different types of warts: HPV 2/27/57 from common warts, HPV 3/10/28 from flat warts, HPV 6/11 from condyloma acuminatum, and HPV 5/8 from lesions of epidermodysplasia verruciformis (EV). In this paper, I summarize recent advances in HPV study field, especially on HPV-associated cutaneous lesions. These include inclusion warts, HPV-associated epidermoid cysts, HPV type specific activation of melanogenesis, a double infection with HPV 1 and HPV 63 within a single cell, primary target cells and life cycle of the virus, and the identification of novel genes that are associated EV. The HPV-associated cutaneous lesions thus pose important problems to be resolved in virology and human pathology. PMID:19374195

  9. Multiple lesion track structure model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1992-01-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.

  10. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  11. Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Obregón, Raquel; Shiku, Hitoshi; Matsue, Tomokazu

    2014-09-15

    We propose a novel application of dielectrophoresis (DEP) to make three-dimensional (3D) methacrylated gelatin (GelMA) hydrogels with gradients of micro- and nanoparticles. DEP forces were able to manipulate micro- and nanoparticles of different sizes and materials (i.e., C2C12 myoblasts, polystyrene beads, gold microparticles, and carbon nanotubes) within GelMA hydrogels in a rapid and facile way and create 3D gradients of these particles in a microchamber. Immobilization of drugs, such as fluorescein isothiocyanate-dextran (FITC-dextran) and 6-hydroxydopamine (6-OHDA), on gold microparticles allowed us to investigate the high-throughput release of these drugs from GelMA-gold microparticle gradient systems. The latter gradient constructs were incubated with C2C12 myoblasts for 24h to examine the cell viability through the release of 6-OHDA. The drug was released from the microparticles in a gradient manner, inducing a cell viability gradient. This novel approach to create 3D chemical gradients within hydrogels is scalable to any arbitrary length scale. It is useful for making anisotropic biomimetic materials and high-throughput platforms to investigate cell-microenvironment interactions in a rapid, simple, cost-effective, and reproducible manner.

  12. Enhanced function in the good forelimb of hemi-parkinson rats: Compensatory adaptation for contralateral postural instability?

    PubMed Central

    Woodlee, Martin T.; Kane, Jacqueline R.; Chang, Jitsen; Cormack, Lawrence K.; Schallert, Timothy

    2014-01-01

    In this paper we present two new assays of rat motor behavior which can be used to assess function linked to postural stability in each forelimb independently. Postural instability is a major deficit in Parkinson's disease that is resistant to levodopa therapy and contributes to the risk of falling. We applied both tests, one forelimb at a time, to normal rats as well as rats extensively depleted of dopamine by unilateral infusion of 6-hydroxydopamine (6-OHDA, given in the medial forebrain bundle) to produce a hemi-parkinsonian syndrome. The 6-OHDA rats showed severe postural instability in the impaired forelimb, but unexpectedly showed enhanced function in the non-impaired forelimb. The data suggest that the intact hemisphere may undergo rapid reorganization subsequent to unilateral dopamine depletion, which allows for compensatory function of the “intact” limb. Measurements of amphetamine-induced striatal c-fos expression, as well as behavior results gathered when animals were under the influence of apomorphine or haloperidol, indicate that this potential reorganization may require non-dopaminergic neural plasticity. The relevance of these findings for unilateral rat models of neurological disease is discussed. PMID:18417125

  13. Acute stress regulates nociception and inflammatory response induced by bee venom in rats: possible mechanisms.

    PubMed

    Chen, Hui-Sheng; Li, Feng-Peng; Li, Xiao-Qiu; Liu, Bao-Jun; Qu, Fang; Wen, Wei-Wei; Wang, Yang; Lin, Qing

    2013-09-01

    Restraint stress modulates pain and inflammation. The present study was designed to evaluate the effect of acute restraint stress on inflammatory pain induced by subcutaneous injection of bee venom (BV). First, we investigated the effect of 1 h restraint on the spontaneous paw-flinching reflex (SPFR), decrease in paw withdrawal mechanical threshold (PWMT) and increase in paw volume (PV) of the injected paw induced by BV. SPFR was measured immediately after BV injection, and PWMT and PV were measured 2 h before BV and 2-8 h after BV. The results showed that acute restraint inhibited significantly the SPFR but failed to affect mechanical hyperalgesia. In contrast, stress enhanced significantly inflammatory swelling of the injected paw. In a second series of experiments, the effects of pretreatment with capsaicin locally applied to the sciatic nerve, systemic 6-hydroxydopamine (6-OHDA), and systemic naloxone were examined on the antinociception and proinflammation produced by acute restraint stress. Local capsaicin pretreatment inhibited BV-induced nociception and inflammatory edema, and had additive effects with stress on nociception but reduced stress enhancement of edema. Systemic 6-OHDA treatment attenuated the proinflammatory effect of stress, but did not affect the antinociceptive effect. Systemic naloxone pretreatment eliminated the antinociceptive effect of stress, but did not affect proinflammation. Taken together, our data indicate that acute restraint stress contributes to antinociception via activating an endogenous opioid system, while sympathetic postganglionic fibers may contribute to enhanced inflammation in the BV pain model.

  14. Restraint stress enhances arterial thrombosis in vivo--role of the sympathetic nervous system.

    PubMed

    Stämpfli, Simon F; Camici, Giovanni G; Keller, Stephan; Rozenberg, Izabela; Arras, Margarete; Schuler, Beat; Gassmann, Max; Garcia, Irene; Lüscher, Thomas F; Tanner, Felix C

    2014-01-01

    Stress is known to correlate with the incidence of acute myocardial infarction. However, the molecular mechanisms underlying this correlation are not known. This study was designed to assess the effect of experimental stress on arterial thrombus formation, the key event in acute myocardial infarction. Mice exposed to 20 h of restraint stress displayed an increased arterial prothrombotic potential as assessed by photochemical injury-induced time to thrombotic occlusion. This increase was prevented by chemical sympathectomy performed through 6-hydroxydopamine (6-OHDA). Blood-born tissue factor (TF) activity was enhanced by stress and this increase could be prevented by 6-OHDA treatment. Vessel wall TF, platelet count, platelet aggregation, coagulation times (PT, aPTT), fibrinolytic system (t-PA and PAI-1) and tail bleeding time remained unaltered. Telemetric analysis revealed only minor hemodynamic changes throughout the stress protocol. Plasma catecholamines remained unaffected after restraint stress. Tumor necrosis factor alpha (TNF-α) plasma levels were unchanged and inhibition of TNF-α had no effect on stress-enhanced thrombosis. These results indicate that restraint stress enhances arterial thrombosis via the sympathetic nervous system. Blood-borne TF contributes, at least in part, to the observed effect whereas vessel wall TF, platelets, circulating coagulation factors, fibrinolysis and inflammation do not appear to play a role. These findings shed new light on the understanding of stress-induced cardiovascular events.

  15. Computer-aided tracking of MS lesions

    NASA Astrophysics Data System (ADS)

    Sturm, Deborah; Gurwitz Kletenik, Devorah; Koshy, Philip

    2011-03-01

    Multiple Sclerosis (MS) lesions are known to change over time. The location, size and shape characteristics of lesions are often used to diagnose and to track disease progression. We have improved our lesion-browsing tool that allows users to automatically locate successive significant lesions in a MRI stack. In addition, an automatic alignment feature was implemented to facilitate comparisons across stacks. A lesion stack is formed that can be browsed independently or in tandem with the image windows. Lesions of interest can then be measured, rendered and rotated. Multiple windows allow the viewer to compare the size and shape of lesions from the MRI images of the same patient taken at different time intervals.

  16. Investigating the role of Sirt1-modulated oxidative stress in relation to benign paroxysmal positional vertigo and Parkinson's disease.

    PubMed

    Tsai, Kun-Ling; Cheng, Yuan-Yang; Leu, Hsin-Bang; Lee, Yi-Yen; Chen, Tzeng-Ji; Liu, Ding-Hao; Kao, Chung-Lan

    2015-09-01

    Benign paroxysmal positional vertigo (BPPV) is one of the most frequently encountered primary complaints in dizziness clinics. The incidence of BPPV has been proven to increase with age. The relationship between BPPV and another neurodegenerative disease, Parkinson's disease (PD), has not been previously discussed. This study aimed to investigate the relationship of BPPV and PD with oxidative stress. A total of 30,811 subjects participated in our cohort study. The study cohort comprised 5057 BPPV patients and a comparison cohort of 25,754 nonBPPV patients. SIRT1 axis gene expression was investigated in BPPV patient blood samples and a PD cell model of 6-hydroxydopamine (6-OHDA)-treated PC-12 cells to elucidate the potential in vitro and in vivo mechanisms of degeneration in PD and BPPV. Our data suggest that BPPV patients with histories of head injuries show a significantly higher hazard to develop subsequent PD (hazard ratio, 3.942; confidence interval, 1.523-10.205, p = 0.005). We also observed that oxidative status is increased in blood samples from patients with BPPV. Our in vitro study suggests that SIRT1 function is inhibited by oxidative stress, which thereby promotes 6-hydroxydopamine-induced cell death. We conclude that BPPV is independently associated with an increased risk of PD. This finding may be attributed to oxidative stress-mediated inhibition of SIRT1 expression levels.

  17. Anterior ventral tegmental area dopaminergic neurons are not involved in the motivational effects of bromocriptine, pramipexole and cocaine in drug-free rats.

    PubMed

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2014-04-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. Dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease, by acting on the neuronal reward circuitry. We previously demonstrated that the posterior (p) VTA, which projects to the nucleus accumbens (NAc), is implicated in the motivational effect of dopamine receptor agonists in 6-OHDA bilateral pVTA-lesioned drug-free animals. In the present study we investigated the implication of the anterior (a) VTA in the potential reinforcement effect of dopamine receptor agonists. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists (bromocriptine and pramipexole), and cocaine in rats with a 6-OHDA bilateral lesion of the aVTA. Bromocriptine and pramipexole did not induce a significant CPP at 1mg/kg in both sham and bilateral 6-OHDA-lesioned rats. However bromocriptine induced CPP only at a dose of 3mg/kg in both animal groups. Moreover cocaine, which is known to increase dopamine release, induced reinforcing effects in both 6-OHDA-lesioned and sham rats. Our data show a lack of involvement of aVTA dopamine neurons in the motivational effects of bromocriptine, pramipexole and cocaine.

  18. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways.

    PubMed

    Gombash, S E; Manfredsson, F P; Mandel, R J; Collier, T J; Fischer, D L; Kemp, C J; Kuhn, N M; Wohlgenant, S L; Fleming, S M; Sortwell, C E

    2014-07-01

    Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons.

  19. Estradiol regulation of hypothalamic astrocyte adenosine 5'-monophosphate-activated protein kinase activity: role of hindbrain catecholamine signaling.

    PubMed

    Tamrakar, Pratistha; Briski, Karen P

    2015-01-01

    Recent work challenges the conventional notion that metabolic monitoring in the brain is the exclusive function of neurons. This study investigated the hypothesis that hypothalamic astrocytes express the ultra-sensitive energy gauge adenosine 5'-monophosphate-activated protein kinase (AMPK), and that the ovarian hormone estradiol (E) controls activation of this sensor by insulin-induced hypoglycemia (IIH). E- or oil (O)-implanted ovariectomized (OVX) rats were pretreated by caudal fourth ventricular administration of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA) prior to sc insulin or vehicle injection. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial (VMH), arcuate (ARH), and paraventricular (PVH) nuclei and the lateral hypothalamic area (LHA), and pooled within each site for Western blot analysis of AMPK and phosphoAMPK (pAMPK) protein expression. In the VMH, baseline astrocyte AMPK and pAMPK levels were respectively increased or decreased in OVX+E versus OVX+O; these profiles did not differ between E and O rats in other hypothalamic loci. In E animals, astrocyte AMPK protein was reduced [VMH] or augmented [PVH; LHA] in response to either 6-OHDA or IIH. IIH increased astrocyte pAMPK expression in each structure in vehicle-, but not 6-OHDA-pretreated E rats. Results provide novel evidence for hypothalamic astrocyte AMPK expression and hindbrain catecholamine-dependent activation of this cell-specific sensor by hypoglycemia in the presence of estrogen. Further research is needed to determine the role of astrocyte AMPK in reactivity of these glia to metabolic imbalance and contribution to restoration of neuro-metabolic stability.

  20. Bacteriology of diabetic foot lesions.

    PubMed

    Anandi, C; Alaguraja, D; Natarajan, V; Ramanathan, M; Subramaniam, C S; Thulasiram, M; Sumithra, S

    2004-01-01

    Clinical grading and bacteriological study of 107 patients with diabetic foot lesions revealed polymicrobial aetiology in 69 (64.4%) and single aetiology in 21 (19.6%). Among 107 patients 62 had ulcer. Of these 31 had mixed aerobes. Twenty six patients with cellulitis and 12 with gangrene had more than 5 types of aerobes and anaerobes such as E. coli, Klebsiella spp., Pseudomonas spp., Proteus spp., Enterobactor spp., Enterococci spp., Clostridium perfringens, Bacteroides spp., Prevotella spp. and Peptostreptococcus spp. It was noted that 50 out of 62 patients with ulcer, and all the patients with cellulitis and gangrene were given surgical management and treated with appropriate antibiotics based on antimicrobial susceptibility testing. PMID:17642727

  1. [Management of the meniscal lesion].

    PubMed

    Baillon, B; Cermak, K; Vancabeke, M

    2011-01-01

    About 1,5 million arthroscopies are each year performed in the world, 50 % for meniscal affections. The menisci participate in the femoro-tibial load transmission and in the joint shock absorption; they contribute to the knee stability and play a role in the joint lubrication. The menisci are therefore important structures, and, in the case of a lesion, surgical abstention or repair should be favoured. When a meniscectomy has to be performed, it should be economical, preserving the meniscal wall. Meniscectomy is contra-indicated in the child and in the case of knee osteoarthrosis. Meniscal healing is compromised if the knee is unstable. If after total meniscectomy a patient presents symptomatic early osteoarthrosis, without marked loss of alignment, meniscal allografting is a therapeutic option, especially at the lateral compartment.

  2. Congenital lung lesions: Postnatal management and outcome.

    PubMed

    Parikh, Dakshesh H; Rasiah, Shree Vishna

    2015-08-01

    Antenatal diagnosis of lung lesion has become more accurate resulting in dilemma and controversies of its antenatal and postnatal management. Majority of antenatally diagnosed congenital lung lesions are asymptomatic in the neonatal age group. Large lung lesions cause respiratory compromise and inevitably require urgent investigations and surgery. The congenital lung lesion presenting with hydrops requires careful postnatal management of lung hypoplasia and persistent pulmonary hypertension. Preoperative stabilization with gentle ventilation with permissive hypercapnia and delayed surgery similar to congenital diaphragmatic hernia management has been shown to result in good outcome. The diagnostic investigations and surgical management of the asymptomatic lung lesions remain controversial. Postnatal management and outcome of congenital cystic lung lesions are discussed. PMID:26051048

  3. Hemidystonia secondary to cervical demyelinating lesions.

    PubMed

    Yücesan, C; Tuncel, D; Akbostanci, M C; Yücemen, N; Mutluer, N

    2000-09-01

    Hemidystonia is usually associated with a structural lesion in the contralateral basal ganglia. We report a patient with definite multiple sclerosis, according to Poser's criteria, presenting with an acute-onset sustained left hemidystonia. Cranial T2-weighted magnetic resonance imaging (MRI) showed several hyperintense lesions in the centri semiovali and in the periventricular area without basal ganglia involvement. Moreover cervical spinal cord T2-weighted MRI showed two hyperintense lesions in the left posterolateral spine at C2 and C3, and one lesion in the right posterolateral spine at C4 levels. The hemidystonia improved completely after daily treatment with 1000 mg of methylprednisolone, and cervical MRI was performed after the improvement which showed that the lesions had become smaller and less intense. Finally we consider that the hemidystonia may be caused by the cervical spinal cord lesions of multiple sclerosis. PMID:11054144

  4. Detection of Fundus Lesions Using Classifier Selection

    NASA Astrophysics Data System (ADS)

    Nagayoshi, Hiroto; Hiramatsu, Yoshitaka; Sako, Hiroshi; Himaga, Mitsutoshi; Kato, Satoshi

    A system for detecting fundus lesions caused by diabetic retinopathy from fundus images is being developed. The system can screen the images in advance in order to reduce the inspection workload on doctors. One of the difficulties that must be addressed in completing this system is how to remove false positives (which tend to arise near blood vessels) without decreasing the detection rate of lesions in other areas. To overcome this difficulty, we developed classifier selection according to the position of a candidate lesion, and we introduced new features that can distinguish true lesions from false positives. A system incorporating classifier selection and these new features was tested in experiments using 55 fundus images with some lesions and 223 images without lesions. The results of the experiments confirm the effectiveness of the proposed system, namely, degrees of sensitivity and specificity of 98% and 81%, respectively.

  5. Malignancy and the benign lymphoepithelial lesion.

    PubMed

    Batsakis, J G; Bernacki, E G; Rice, D H; Stebler, M E

    1975-02-01

    The benign lymphoepithelial lesion of salivary glands is now considered the histological hallmark of a variety of clinical and pathological disorders affecting salivary tissues. Malignancy arising in the lesion is uncommon, but may take origin in either the epithelial or lymphoreticular components. Lymphomas and pseudolymphomas associated with salivary gland lymphoepithelial lesions have been predominately extra-salivary and strongly correlated with Sjögren's syndrome. Epithelial malignancy has not been associated with autoimmunity and with few exceptions has been of the anaplastic type. This report presents two patients with intra-salivary lymphomas arising in a benign lymphoepithelial lesion of salivary glands and a patient with anaplastic carcinoma arising in the epithelial islands of the lesion. The fourth patient manifested pseudolymphomatous lymphoreticular hyperplasia in lung and submandibular gland and illustrates the possible multiple organ involvement that may occur in patients with benign lymphoepithelial lesion, even without clinical evidence of concommitant autoimmune disorders.

  6. Facial Skin Lesions Dentists Should Know.

    PubMed

    Sibai, Louna; Kudsi, Zaki

    2015-01-01

    Facial skin lesions are common; patients may present with a.nodule, crack, ulcer or abnormal discoloration of the skin that is not normally present. Ideally, dentists should include face examination in their routine clinical examination. Any suspicious lesion should be referred to a dermatologist as an early diagnosis and treatment could be life-saving. This article will discuss the diagnosis and treatment of common lesions of the face.

  7. Human papillomavirus DNA in oral mucosal lesions.

    PubMed

    Giovannelli, Lucia; Campisi, Giuseppina; Lama, Anna; Giambalvo, Ornella; Osborn, John; Margiotta, Valerio; Ammatuna, Pietro

    2002-03-15

    This study determined the presence of human papillomavirus (HPV) DNA in oral mucosa cells from 121 patients with different types of oral mucosal lesions (13 squamous cell carcinomas, 59 potentially malignant lesions, 49 benign erosive ulcerative lesions) and from 90 control subjects. HPV DNA was detected by nested polymerase chain reaction, and genotype was determined by DNA sequencing. HPV prevalence was 61.5% in carcinomas, 27.1% in potentially malignant lesions, 26.5% in erosive ulcerative lesions, and 5.5% in control subjects. The risk of malignant or potentially malignant lesions was associated with HPV and was statistically significant. HPV-18 was found in 86.5% of HPV-positive lesions but was not associated with a particular type of lesion and was found in 80% of the HPV-positive control subjects. HPV infection was related to older age but not to sex, smoking, or alcohol use; the presence of lesions in the oral cavity increased the risk of HPV infection.

  8. Histopathological characterization of a Cameron lesion.

    PubMed

    Katz, Jordan; Brar, Sonia; Sidhu, Jagmohan S

    2012-10-01

    Cameron lesions are linear erosions located at the neck of a hiatal hernia (HH) in patients with a large HH. The prevalence has been seen in up to 5% of patients with HH who undergo esophagogastroduodenoscopy, and they can be associated with overt gastrointestinal bleeding or anemia. These lesions occur due to vascular compression by the diaphragm in a large sliding HH. Histopathologic changes seen in the biopsy tissue of a Cameron lesion are due to ischemia, but this ischemia is reversible with treatment of HH. The existence of this entity and the histopathologic picture of a Cameron lesion is not well known to pathologists, and therefore, a microscopic picture of a Cameron lesion can be easily confused with ischemic gastritis. Ischemic gastritis is the result of atherosclerosis, usually seen in older people, unrelated to HH, and is not easily reversible. The authors received a gastric biopsy of a hiatal hernia without any associated clinical diagnosis of a Cameron lesion conveyed to the pathologist. This biopsy tissue showed ischemic changes in the gastric mucosa on microscopic examination. Diagnosis of ischemic gastritis was considered but ruled out after the case was discussed with the gastroenterologist. The correct diagnosis was made once the clinical diagnosis of HH with Cameron lesion (ie, a vertical red erosion) was made known to the pathologist. By reporting this case, the authors aim to increase awareness of Cameron lesion among pathologists so that they ask about the presence of a Cameron lesion before making the diagnosis of ischemic gastritis.

  9. Polypoid Lesions of the Gallbladder in Children

    PubMed Central

    Beneck, Debra; Bostwick, Howard E.

    1997-01-01

    Polypoid lesions of the gallbladder in children are rare. We report a case of a gallbladder polyp in a 14-year-old boy who presented with recurrent right upper quadrant abdominal pain. Ultrasound examination of the abdomen revealed a polypoid lesion of the gallbladder. His symptoms resolved after laparoscopic cholecystectomy. Histological examination of the gallbladder demonstrated a benign adenomatous polyp. Although the experience with polypoid lesions of the gallbladder in children is limited, we currently recommend cholecystectomy because these lesions are associated with acalculous cholecystitis, and because their long-term effects are unknown. PMID:9876680

  10. Visual evoked potentials in occipital lobe lesions.

    PubMed

    Streletz, L J; Bae, S H; Roeshman, R M; Schatz, N J; Savino, P J

    1981-02-01

    Recording of visual evoked potentials (VEPs) to pattern reversal is considered to be a reliable diagnostic procedure for examining patients with anterior visual pathway lesions (optic nerves and chiasm). Less consistent results have been reported in studies of more posterior lesions. The VEPs were recorded in 20 patients with occipital lobe lesions. A maximal VEP response (P94) was recorded at the scalp electrodes situated over the involved occipital lobes and contralateral to the hemianoptic visual field defect, indicating a positive correlation of unilateral occipital lobe lesions, homonymous visual field loss, and the VEP abnormality.

  11. The Bennett lesion of the shoulder.

    PubMed

    De Maeseneer, M; Jaovisidha, S; Jacobson, J A; Tam, W; Schils, J P; Sartoris, D J; Fronek, J; Resnick, D

    1998-01-01

    In this article we review the imaging features and significance of the Bennett lesion of the shoulder. Standard radiographic, computed arthrotomographic, and MR findings in three baseball pitchers diagnosed with Bennett lesions of the shoulder are discussed. A crescent-shaped region of mineralization at the posteroinferior aspect of the glenoid rim, consistent with a Bennett lesion, arises at the insertion of the posterior joint capsule. The diagnosis of this lesion, typically in baseball pitchers, should raise suspicion for associated labral and rotator cuff abnormalities.

  12. Comet Lesions in Patients with Pseudoxanthoma Elasticum

    PubMed Central

    Tatlıpınar, Sinan; Şahan, Berna; Altunsoy, Muhsin

    2015-01-01

    Pseudoxanthoma elasticum (PXE) is a genetic multisystemic disorder affecting the skin, eyes and cardiovascular system. Basic fundoscopic findings in PXE result from Bruch’s membrane involvement. The most important fundoscopic findings are angioid streaks. Other significant ocular findings are peau d’orange appearance, optic disc drusen, pattern dystrophy-like macular appearance, comet lesions, and choroidal neovascularization. Comet lesions are a pathognomonic ocular finding for PXE. The presence of both angioid streaks in the fundus and typical skin lesions should alert clinicians to PXE. Herein, we present two PXE cases with comet lesions. PMID:27800246

  13. Benign lymphoepithelial lesions of the salivary glands.

    PubMed

    Kelly, D R; Spiegel, J C; Maves, M

    1975-01-01

    The benign lymphoepithelial lesion of the salivary glands has been labeled with multiple, confusing terms. We recommend the abandonment of the vague term of Mikulicz disease. The histopathologic findings of lymphoid infiltration, intraductal proliferation, epimyoepithelial islands, and acinar atrophy are presented. The relationship between this lesion and autoimmune diseases, including Sjögren syndrome, is noted. Difficulty of histopathologic differentiation between this lesion and malignant lymphoma can occur. The association of the benign lymphoepithelial lesion with the simultaneous presence or future development of lymphoma is discussed.

  14. Symmetrical thalamic lesions in infants.

    PubMed Central

    Eicke, M; Briner, J; Willi, U; Uehlinger, J; Boltshauser, E

    1992-01-01

    Clinical observations and findings on imaging are reported in six newborns with symmetrical thalamic lesions (STL). In three cases the diagnosis was confirmed by postmortem examination. Characteristic observations in this series and 17 previously reported cases include no evidence of perinatal asphyxia, high incidence of polyhydramnios, absent suck and swallow, absent primitive reflexes, appreciable spasticity at or within days of birth, lack of psychomotor development, and death within days or months. Characteristic pathological findings include loss of neurons, astrogliosis, and 'incrusted' neurons particularly in the thalamus. In two thirds of cases the basal ganglia and brain stem are involved as well. A hypoxic-ischaemic event occurring two to four weeks before birth is most likely responsible for STL. Bilateral thalamic calcification can often, but not always, be demonstrated in the newborn period by computed tomography and/or cranial ultrasound. The presence of these calcifications and the observation of spasticity at birth imply that the responsible insult occurred at least two to four weeks earlier. The small number of published cases with STL suggest that it may be easily missed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1536580

  15. [Asterixis in focal brain lesions].

    PubMed

    Velasco, F; Gomez, J C; Zarranz, J J; Lambarri, I; Ugalde, J

    2004-05-01

    Asterixis is a motor control disorder characterized by the presence of abnormal movements of the lower limbs in the vertical plane during posture maintenance. Asterixis is usually bilateral and associated with toxic-metabolic metabolic encephalopathies. Unilateral asterixis is less frequent and it normally indicates focal brain damage. We report the cases of four patients (two males/two females), aged 57 to 83 years, suffering from uni or bilateral asterixis associated with focal brain damage. All patients underwent CT brain scan and a neurophysiological study (parietal EMG and/or PES). In addition, any toxic-metabolic cause that could be produced by this clinical phenomenon was ruled out with the appropriate testing. Unilateral asterixis is a clinical symptom that may indicate the presence of focal brain damage. Often, it is ignored or overlooked during routine neurological examinations. On the other hand, the presence of a bilateral asterixis is not always indicative of a toxic-metabolic encephalopathy.Rarely, such as in one of the cases herein presented, bilateral asterixis can also appear associated with structural brain lesions. Although asterixis diagnosis is fundamentally clinical, the neurophysiological study contributes to verify the diagnosis.

  16. DEK Expression in Melanocytic Lesions

    PubMed Central

    Kappes, Ferdinand; Khodadoust, Michael S; Yu, Limin; Kim, David SL; Fullen, Douglas R; Markovitz, David M; Ma, Linglei

    2011-01-01

    The diagnosis of malignant melanoma presents a clinical challenge and relies principally on histopathological evaluation. Previous studies have indicated that increased expression of the DEK oncogene, a chromatin-bound factor, could contribute to the development of melanoma and may be a frequent event in melanoma progression. Here, we investigated DEK expression by immunohistochemistry in a total of 147 melanocytic lesions, including ordinary nevi, dysplastic nevi, Spitz nevi, melanoma in situ, primary invasive melanomas, and metastatic melanomas. Most benign nevi (ordinary, dysplastic and Spitz nevi) were negative or exhibited weak staining for DEK with only 4 of 49 cases showing strong staining. Similar to benign nevi, melanoma in situ also demonstrated low levels of DEK expression. In contrast, the expression of DEK in primary invasive melanomas was significantly higher than benign nevi (p<0.0001). Moreover, DEK expression was significantly increased in deep melanomas (Breslow depth > 1mm) and metastatic melanomas as compared to superficial melanomas (Breslow depth ≤ 1mm) (p<0.05). Our findings indicate that DEK overexpression may be a frequent event in invasive melanomas, and further augmentation of DEK expression may be associated with the acquisition of ominous features such as deep dermal invasion and metastasis. These data suggest a role of DEK in melanoma progression. PMID:21316078

  17. Focal liver lesions found incidentally.

    PubMed

    Algarni, Abdullah A; Alshuhri, Abdullah H; Alonazi, Majed M; Mourad, Moustafa Mabrouk; Bramhall, Simon R

    2016-03-28

    Incidentally found focal liver lesions are a common finding and a reason for referral to hepatobiliary service. They are often discovered in patients with history of liver cirrhosis, colorectal cancer, incidentally during work up for abdominal pain or in a trauma setting. Specific points should considered during history taking such as risk factors of liver cirrhosis; hepatitis, alcohol consumption, substance exposure or use of oral contraceptive pills and metabolic syndromes. Full blood count, liver function test and tumor markers can act as a guide to minimize the differential diagnosis and to categorize the degree of liver disease. Imaging should start with B-mode ultrasound. If available, contrast enhanced ultrasound is a feasible, safe, cost effective option and increases the ability to reach a diagnosis. Contrast enhanced computed tomography should be considered next. It is more accurate in diagnosis and better to study anatomy for possible operation. Contrast enhanced magnetic resonance is the gold standard with the highest sensitivity. If doubt still remains, the options are biopsy or surgical excision. PMID:27028805

  18. Evaluation of hepatic cystic lesions

    PubMed Central

    Lantinga, Marten A; Gevers, Tom JG; Drenth, Joost PH

    2013-01-01

    Hepatic cysts are increasingly found as a mere coincidence on abdominal imaging techniques, such as ultrasonography (USG), computed tomography (CT) and magnetic resonance imaging (MRI). These cysts often present a diagnostic challenge. Therefore, we performed a review of the recent literature and developed an evidence-based diagnostic algorithm to guide clinicians in characterising these lesions. Simple cysts are the most common cystic liver disease, and diagnosis is based on typical USG characteristics. Serodiagnostic tests and microbubble contrast-enhanced ultrasound (CEUS) are invaluable in differentiating complicated cysts, echinococcosis and cystadenoma/cystadenocarcinoma when USG, CT and MRI show ambiguous findings. Therefore, serodiagnostic tests and CEUS reduce the need for invasive procedures. Polycystic liver disease (PLD) is arbitrarily defined as the presence of > 20 liver cysts and can present as two distinct genetic disorders: autosomal dominant polycystic kidney disease (ADPKD) and autosomal dominant polycystic liver disease (PCLD). Although genetic testing for ADPKD and PCLD is possible, it is rarely performed because it does not affect the therapeutic management of PLD. USG screening of the liver and both kidneys combined with extensive family history taking are the cornerstone of diagnostic decision making in PLD. In conclusion, an amalgamation of these recent advances results in a diagnostic algorithm that facilitates evidence-based clinical decision making. PMID:23801855

  19. Precancerous lesions of oral mucosa

    PubMed Central

    Yardimci, Gurkan; Kutlubay, Zekayi; Engin, Burhan; Tuzun, Yalcin

    2014-01-01

    Precancerous lesions of oral mucosa, known as potentially malignant disorders in recent years, are consists of a group of diseases, which should be diagnosed in the early stage. Oral leukoplakia, oral submucous fibrosis, and oral erythroplakia are the most common oral mucosal diseases that have a very high malignant transformation rate. Oral lichen planus is one of the potentially malignant disorders that may be seen in six different subtypes including papular, reticular, plaque-like, atrophic, erosive, and bullous type, clinically. Atrophic and erosive subtypes have the greater increased malignant transformation risk compared to another subtypes. Although there are various etiological studies, the etiology of almost all these diseases is not fully understood. Geographically, etiologic factors may vary. The most frequently reported possible factors are tobacco use, alcohol drinking, chewing of betel quid containing areca nut, and solar rays. Early diagnosis is very important and can be lifesaving, because in late stages, they may be progressed to severe dysplasia and even carcinoma in situ and/or squamous cell carcinoma. For most diseases, treatment results are not satisfactory in spite of miscellaneous therapies. While at the forefront of surgical intervention, topical and systemic treatment alternatives such as corticosteroids, calcineurin inhibitors, and retinoids are widely used. PMID:25516862

  20. Spindle cell melanocytic lesions: part II--an approach to intradermal proliferations and horizontally oriented lesions.

    PubMed

    Sade, Shachar; Al Habeeb, Ayman; Ghazarian, Danny

    2010-05-01

    Melanocytic lesions show great morphological diversity in their architecture and the cytomorphological appearance of their composite cells. Whereas functional melanocytes show a dendritic cytomorphology and territorial isolation, lesional nevomelanocytes and melanoma cells typically show epithelioid, spindled or mixed cytomorphologies, and a range of architectural arrangements. Spindling is common to melanocytic lesions, and may either be a characteristic feature or a divergent appearance. The presence of spindle cells may mask the melanocytic nature of a lesion, and is often disconcerting, either due to its infrequent appearance in a particular lesion or its interpretation as a dedifferentiated phenotype. Spindle cell melanocytic lesions follow the full spectrum of potential biological outcomes, and difficulty may be experienced judging the nature of a lesion due to a lack of consistently reliable features to predict biological behaviour. Over time, recognition of numerous histomorphological features that may portend a more aggressive lesion have been identified; however, the translation of these features into a diagnostic entity requires a gestalt approach. Although most spindle cell melanocytic lesions may reliably be resolved through this standard approach, problem areas do exist for the surgical pathologist or dermatopathologist. With this review (part II of II), we complete our discussion of spindle cell melanocytic lesions, in order to: (1) model a systematic approach to such lesions; and (2) provide familiarity with those melanocytic lesions which either typically or occasionally display a spindled cytomorphology.

  1. Benign lesions of the external auditory canal.

    PubMed

    Tran, L P; Grundfast, K M; Selesnick, S H

    1996-10-01

    Benign mass lesions of the external auditory canal, such as exostoses and osteomas, are common findings on physical examination but most often do not require treatment. The differential diagnosis of lesions in the external auditory canal, however, should not be limited to those benign processes discussed here, but should also include infectious, dermatologic, congenital, and malignant processes.

  2. Intraventricular CNS lesions: A pictorial essay.

    PubMed

    Watts, Jane; Yap, Kelvin K; Ou, Daniel; Tartaglia, Con; Trost, Nicholas; Sutherland, Tom

    2015-08-01

    Intraventricular lesions of the central nervous system (CNS) can present a diagnostic challenge due to a range of differential diagnoses and radiological appearances. Both CT and MRI imaging findings, in combination with location and patient's age, can help limit the differentials. This pictorial essay presents the salient radiological features, location and demographics of the more common intraventricular lesions of the brain.

  3. Elementary lesions in dermatological semiology: literature review*

    PubMed Central

    Cardili, Renata Nahas; Roselino, Ana Maria

    2016-01-01

    Discrepancies in the terminology of elementary lesions persist when texts from Dermatology and Semiology books are compared, which can cause some confusion in both the teaching of undergraduate medical students and the learning acquired by professionals in the field. This review aims to compare and clarify the differences in the description of elementary lesions by many authors, used as references for specialists in dermatology.

  4. Pediatric multifocal liver lesions evaluated by MRI

    PubMed Central

    Almotairi, Majed; Oudjhane, Kamaldine; Chavhan, Govind B

    2015-01-01

    Objective: The purpose of this study is to present our experience with MRI evaluation of multifocal liver lesions in children and describe the MRI characteristics of these lesions. Patients and Methods: A retrospective review of consecutive MRI exams performed for the evaluation of multiple liver lesions between 1 January 2007 and 31 December 2012 was done to note the number of lesions, the size of the largest lesion, MR signal characteristics, and background liver. Final diagnosis was assigned to each case based on pathology in the available cases and a combination of clinical features, imaging features, and follow-up in the remaining cases. Results: A total of 48 children (22 boys, 26 girls; age between 3 months and 18 years with average age 10.58 years and median age 11 years) were included in the study. Totally 51 lesion diagnoses were seen in 48 children that included 17 focal nodular hyperplasia (FNH), 8 hemangiomas, 7 metastases, 6 regenerative nodules, 3 adenomas, 3 abscesses, and one each of angiomyolipoma, epithelioid hemangioendothelioma, focal fatty infiltration, hepatocellular carcinoma, hepatic infarction, nodular regenerative hyperplasia, and hepatic cyst. Background liver was normal in 33, cirrhotic in 10, fatty in 3, and siderotic in 2 children. Most FNH, hemangiomas, and regenerative nodules showed characteristic MRI features, while metastases were variable in signal pattern. Conclusion: Many commonly seen multifocal liver lesions in children have characteristic MRI features. MRI can help to arrive at reasonable differential diagnoses for multifocal liver lesions in children and guide further investigation and management. PMID:26288526

  5. Microscopic acute lesions after caustic exposure.

    PubMed

    Advenier, A-S; Dorandeu, A; Charlier, P; Lorin de la Grandmaison, G

    2014-01-01

    Although lesions related to chemical burns have been studied through case reports, clinical analyses and autopsy series, microscopic lesions have not yet been precisely described. Our study analyses the microscopic lesions recorded after caustic exposure in fourteen lethal and four non-lethal cases. We find that microscopic lesions after caustic exposure are various and non-specific. Moreover, the distribution of gastrointestinal lesions is inconsistent. Histological changes affect the digestive mucosa first, with the entire wall suffering damage in some cases. Multiple factors influence the pattern of lesions, including the nature of the caustic substance, the duration of contact, the amount of the substance encountering the tissue and the length of postingestion survival. The assessment of microscopic lesions, especially necrosis, can be limited by post-mortem autolysis, which quickly affects the digestive tract. Chemical pneumonia due to caustic burns is rare and, when present, typically secondary to aspiration. According to the presented findings, macroscopic examination at autopsy under- or overestimates the nature and degree of lesions. Significant complications of caustic ingestion such as chemical pneumonitis can also be found by histological analysis. Microscopic examination can be useful to rule out oesophagitis or other digestive pathologies that can mimic chemical burns.

  6. Common oral lesions associated with HIV infection.

    PubMed

    Navazesh, M; Lucatorto, F

    1993-09-01

    More than 40 different lesions involving head and neck areas have been associated with HIV infection. The oral cavity may manifest the first sign of HIV infection. Early detection of these conditions can lead to early diagnosis of HIV infection and subsequent appropriate management. Signs, symptoms and management of the most common HIV-associated oral lesions are discussed.

  7. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.

    PubMed

    O'Dell, S J; Gross, N B; Fricks, A N; Casiano, B D; Nguyen, T B; Marshall, J F

    2007-02-01

    Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary

  8. Precursor Lesions of Pancreatic Cancer

    PubMed Central

    Higashi, Michiyo; Yamada, Norishige; Goto, Masamichi

    2008-01-01

    This review article describes morphological aspects, gene abnormalities, and mucin expression profiles in precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN) of the pancreas, as well as their relation to pancreatic ductal adenocarcinoma (PDAC). The gene abnormalities in precursors of PDAC are summarized as follows: (1) KRAS mutation and p16/CDKN2A inactivation are early events whose frequencies increase with the dysplasia grade in both PanIN and IPMN; (2) TP53 mutation and SMAD4/DPC4 inactivation are late events observed in PanIN3 or carcinomatous change of IPMN in both PanIN and IPMN, although the frequency of the TP53 mutation is lower in IPMN than in PDAC; and (3) also in MCN, KRAS mutation is an early event whose frequency increases with the dysplasia grade, whereas TP53 mutation and SMAD4/DPC4 inactivation are evident only in the carcinoma. The mucin expression profiles in precursors of PDAC are summarized as follows: (1) MUC1 expression increases with the PanIN grade, and is high in PDAC; (2) the expression pattern of MUC2 differs markedly between the major subtypes of IPMN with different malignancy potentials (i.e., IPMN-intestinal type with MUC2+ expression and IPMN-gastric type with MUC2- expression); (3) MUC2 is not expressed in any grade of PanINs, which is useful for differentiating PanIN from intestinal-type IPMN; (4) de novo expression of MUC4, which appears to increase with the dysplasia grade; and (5) high de novo expression of MUC5AC in all grades of PanINs, all types of IPMN, MCN, and PDAC. PMID:20485640

  9. Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: a model for early Parkinson's disease.

    PubMed

    Eagle, Andrew L; Olumolade, Oluyemi O; Otani, Hajime

    2015-03-01

    Parkinson's disease (PD) produces progressive nigrostriatal dopamine (DA) denervation resulting in cognitive and motor impairment. However, it is unknown whether cognitive impairments, such as instrumental learning deficits, are associated with the early stage PD-induced mild DA denervation. The current study sought to model early PD-induced instrumental learning impairments by assessing the effects of low dose (5.5μg), bilateral 6OHDA-induced striatal DA denervation on acquisition of instrumental stimulus discrimination in rats. 6OHDA (n=20) or sham (n=10) lesioned rats were tested for stimulus discrimination acquisition either 1 or 2 weeks post surgical lesion. Stimulus discrimination acquisition across 10 daily sessions was used to assess discriminative accuracy, or a probability measure of the shift toward reinforced responding under one stimulus condition (Sd) away from extinction, when reinforcement was withheld, under another (S(d) phase). Striatal DA denervation was assayed by tyrosine hydroxylase (TH) staining intensity. Results indicated that 6OHDA lesions produced significant loss of dorsal striatal TH staining intensity and marked impairment in discrimination acquisition, without inducing akinetic motor deficits. Rather 6OHDA-induced impairment was associated with perseveration during extinction (S(Δ) phase). These findings suggest that partial, bilateral striatal DA denervation produces instrumental learning deficits, prior to the onset of gross motor impairment, and suggest that the current model is useful for investigating mild nigrostriatal DA denervation associated with early stage clinical PD.

  10. Characterizing lesions in corals from American Samoa

    NASA Astrophysics Data System (ADS)

    Work, T. M.; Rameyer, R. A.

    2005-11-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  11. Characterizing lesions in corals from American Samoa

    USGS Publications Warehouse

    Work, Thierry M.; Rameyer, R.A.

    2005-01-01

    The study of coral disease has suffered from an absence of systematic approaches that are commonly used to determine causes of diseases in animals. There is a critical need to develop a standardized and portable nomenclature for coral lesions in the field and to incorporate more commonly available biomedical tools in coral disease surveys to determine the potential causes of lesions in corals. We characterized lesions in corals from American Samoa based on gross and microscopic morphology and classified them as discoloration, growth anomalies, or tissue loss. The most common microscopic finding in corals manifesting discoloration was the depletion of zooxanthellae, followed by necrosis, sometimes associated with invasive algae or fungi. The most common microscopic lesion in corals manifesting tissue loss was cell necrosis often associated with algae, fungi, or protozoa. Corals with growth anomaly had microscopic evidence of hyperplasia of gastrovascular canals, followed by necrosis associated with algae or metazoa (polychaete worms). Several species of apparently normal corals also had microscopic changes, including the presence of bacterial aggregates or crustacea in tissues. A single type of gross lesion (e.g., discoloration) could have different microscopic manifestations. This phenomenon underlines the importance of using microscopy to provide a more systematic description of coral lesions and to detect potential pathogens associated with these lesions.

  12. Hepatic lesions segmentation in ultrasound nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Kissi, Adelaide A.; Cormier, Stephane; Pourcelot, Leandre; Tranquart, Francois

    2005-04-01

    Doppler has been used for many years for cardiovascular exploration in order to visualize the vessels walls and anatomical or functional diseases. The use of ultrasound contrast agents makes it possible to improve ultrasonic information. Nonlinear ultrasound imaging highlights the detection of these agents within an organ and hence is a powerful technique to image perfusion of an organ in real-time. The visualization of flow and perfusion provides important information for the diagnosis of various diseases as well as for the detection of tumors. However, the images are buried in noise, the speckle, inherent in the image formation. Furthermore at portal phase, there is often an absence of clear contrast between lesions and surrounding tissues because the organ is filled with agents. In this context, we propose a new method of automatic liver lesions segmentation in nonlinear imaging sequences for the quantification of perfusion. Our method of segmentation is divided into two stages. Initially, we developed an anisotropic diffusion step which raised the structural characteristics to eliminate the speckle. Then, a fuzzy competitive clustering process allowed us to delineate liver lesions. This method has been used to detect focal hepatic lesions (metastasis, nodular hyperplasia, adenoma). Compared to medical expert"s report obtained on 15 varied lesions, the automatic segmentation allows us to identify and delineate focal liver lesions during the portal phase which high accuracy. Our results show that this method improves markedly the recognition of focal hepatic lesions and opens the way for future precise quantification of contrast enhancement.

  13. The Management of Benign Bone Lesions

    PubMed Central

    Moore, Tillman M.; Harvey, J. Paul

    1976-01-01

    The almost bewildering variety of lesions that can affect bone contrasts sharply with the limited potential of bone to differentially respond to those lesions. This paradox can create a challenging problem when a bone lesion is shown on an x-ray film. Although heavily populated with pleuripotential primitive mesenchymal cells, there is seldom a histologic or radiographic change in the involved bone specific enough to allow a comfortable diagnostic autonomy to be enjoyed by surgical pathologists, radiologists or orthopaedic surgeons. Even when diligent and astute clinical evaluation has excluded infectious, parasitic, metabolic and metastatic causes of the change seen on x-ray studies, a physician is often still uncertain as to the exact nature of the lesion. A knowledge of the relative frequency of the common lesions, an acceptance that biopsy studies and treatment must be combined at times, an appreciation of the possibility of malignant change in a given lesion and a tendency to seek early consultation will likely lead to timely and accurate diagnosis. Once the diagnosis is made, optimum management must be selected. The best current opinion categorizes the lesions into treatment groups consisting of observation, curettage and graft, block excision, cryotherapy and radiotherapy. PMID:1246894

  14. Association of Malassezia species with psoriatic lesions.

    PubMed

    Rudramurthy, Shivaprakash M; Honnavar, Prasanna; Chakrabarti, Arunaloke; Dogra, Sunil; Singh, Pankaj; Handa, Sanjeev

    2014-08-01

    The aetiology of psoriasis remains elusive. Among multiple factors hypothesised, association of Malassezia spp. is supported by response to topical antifungals. The objective of this study was to evaluate the association of Malassezia spp. with psoriatic lesion. The subjects included 50 consecutive patients with psoriasis, and 50 age- and sex-matched healthy controls. Samples were collected using scotch tape over one square inch area from the lesional and non-lesional sites. The isolated Malassezia spp. were identified by phenotypic methods and confirmed by ITS2 PCR-RFLP and sequencing of D1/D2 region of 26S rDNA. Psoriatic lesions were seen commonly on scalp (28%, 14), chest (22%, 11) and arms (16%, 8). Majority of cases presented with chronic plaque form (76%, 38; P < 0.05). From psoriatic lesions, most frequently isolated Malassezia species was M. furfur (70.6%, 24), followed by M. japonica (11.8%, 4) and M. globosa (8.8%, 3). From healthy individuals M. furfur, M. sympodialis, mixture of M. furfur and M. globosa was isolated in 73.3%, 10% and 16.7% (22, 3 and 5) of cases respectively. The average number of colonies isolated from scalp lesions of the patients was significantly higher (P = 0.03) than healthy areas. Although no strong association of Malassezia species was formed with psoriatic lesion in general, the fungi may play a role in exacerbation of scalp psoriasis. PMID:24655111

  15. Neurovestibular Compensation following Ototoxic Lesion and Labyrinthectomy

    PubMed Central

    Yazdanshenas, Hamed; Ashouri, Anousheh; Kaufman, Galen

    2016-01-01

    Introduction Unilateral labyrinthectomy and intra-tympanic gentamycin have been employed in the treatment of Ménière's disease, but the efficacy of these techniques has not been well established. Objective The objective of this study is to measure the time course of recovery from a unilateral labyrinthectomy either after ipsilateral topical treatment with gentamicin to the inner ear or without the previous insult. Methods Twenty-nine adult Mongolian gerbils were randomized into two experimental groups. Group 1 (n = 17) received a right ear gentamicin drug-induced lesion by unilateral labyrinthectomy (UL). Group 2 (n = 12) only received a right unilateral labyrinthectomy lesion. We measured the horizontal vestibulo-ocular responses in gerbils before and after the lesion. The gerbils received an angular acceleration stimulus and their eye movements were recorded. Results The gentamicin lesion resulted in a quicker recovery. Experimental groups underwent a similar time course of recovery. Statistical analysis showed no significant difference between the two groups. Both groups displayed adaptation to the lesion by day 21, but long-term compensation did not completely revert to the original pre-lesion state. Conclusions In a lesion requiring both static and dynamic compensation as in UL, the need for a static compensation may alter pre-existing compensation from a previous dynamic insult and require a new compensation. A previous lesion and adaptation is not preserved for a second lesion and the subject has to re-compensate. Therefore, surgical treatment in Meniere's disease such as UL can be considered without prior gentamicin treatment. Static and dynamic compensations do not appear to be as independent as previous studies have suggested. PMID:27096015

  16. Sampling probability distributions of lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Looney, P.; Warren, L. M.; Dance, D. R.; Young, K. C.

    2015-03-01

    One approach to image perception studies in mammography using virtual clinical trials involves the insertion of simulated lesions into normal mammograms. To facilitate this, a method has been developed that allows for sampling of lesion positions across the cranio-caudal and medio-lateral radiographic projections in accordance with measured distributions of real lesion locations. 6825 mammograms from our mammography image database were segmented to find the breast outline. The outlines were averaged and smoothed to produce an average outline for each laterality and radiographic projection. Lesions in 3304 mammograms with malignant findings were mapped on to a standardised breast image corresponding to the average breast outline using piecewise affine transforms. A four dimensional probability distribution function was found from the lesion locations in the cranio-caudal and medio-lateral radiographic projections for calcification and noncalcification lesions. Lesion locations sampled from this probability distribution function were mapped on to individual mammograms using a piecewise affine transform which transforms the average outline to the outline of the breast in the mammogram. The four dimensional probability distribution function was validated by comparing it to the two dimensional distributions found by considering each radiographic projection and laterality independently. The correlation of the location of the lesions sampled from the four dimensional probability distribution function across radiographic projections was shown to match the correlation of the locations of the original mapped lesion locations. The current system has been implemented as a web-service on a server using the Python Django framework. The server performs the sampling, performs the mapping and returns the results in a javascript object notation format.

  17. [Liver ultrasound: focal lesions and diffuse diseases].

    PubMed

    Segura Grau, A; Valero López, I; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    Liver ultrasound is frequently used as a first-line technique for the detection and characterization of the most common liver lesions, especially those incidentally found focal liver lesions, and for monitoring of chronic liver diseases. Ultrasound is not only used in the Bmode, but also with Doppler and, more recently, contrast-enhanced ultrasound. It is mainly used in the diagnosis of diffuse liver diseases, such as steatosis or cirrhosis. This article presents a practical approach for diagnosis workup, in which the different characteristics of the main focal liver lesions and diffuse liver diseases are reviewed.

  18. [Precancerous conditions and lesions of the stomach].

    PubMed

    Falt, P; Hanousek, M; Kundrátová, E; Urban, O

    2013-01-01

    Gastric carcinoma is a common malignant disease associated with an unfavorable prognosis in the case of late dia-gnosis. The most significant precancerous condition is chronic atrophic gastritis and intestinal metaplasia caused by Helicobacter pylori infection. These longlasting changes may lead to formation of dysplastic precancerous lesions. Upper endoscopy and histologic examination of forceps bio-psy specimens play a key role in the dia-gnosis of gastric precancerous conditions and lesions. Helicobacter pylori eradication therapy and endoscopic surveillance are main therapeutic modalities of gastric precancerous conditions. Localized precancerous lesions and early gastric neoplasia without the risk of lymphatic spread could be cured by means of endoscopic resection techniques. PMID:24325159

  19. Recognizing upper-extremity stress lesions.

    PubMed

    Cervoni, T D; Martire, J R; Curl, L A; McFarland, E G

    1997-08-01

    Athletes in sports such as baseball, gymnastics, weight lifting, javelin, and racket sports are susceptible to stress lesions in the bones of the upper extremities. Injuries range from periostitis to bone spurs to stress fractures. Injuries in adolescents typically involve the growth plates, while midshaft injuries at the area of muscle insertion are more common in adults. It's especially important to detect these injuries in adolescents because untreated stress lesions at growth plates can have serious consequences. Plain films demonstrate obvious fractures and physeal injuries, but triple-phase bone scans are often needed to define the extent of stress lesions.

  20. Endoscopic management of adenomatous ampullary lesions

    PubMed Central

    Espinel, Jesús; Pinedo, Eugenia; Ojeda, Vanesa; del Rio, Maria Guerra

    2015-01-01

    Lesions of the ampulla of Vater represent an uncommon group of gastrointestinal malignancies. The majority of lesions of the ampulla of Vater are either adenomas or adenocarcinomas. Ampullary lesions are often incidental findings. Accurate preoperative diagnosis and staging of ampullary tumors is imperative for predicting prognosis and determining the most appropriate therapeutic approach. Endoscopic ampullectomy is a safe and efficacious therapeutic procedure that can obviate the need for potentially major surgical intervention. This review will provide the framework for the diagnosis and management of ampullary lesions from the perspective of the practicing gastroenterologist. Strategies for safe and successful endoscopic ampullectomy with a focus on accurate preoperative diagnosis and staging, resection technique, and management of complications are presented. PMID:26413485

  1. Placental hypoxia: the lesions of maternal malperfusion.

    PubMed

    Parks, W Tony

    2015-02-01

    The placental lesions classically ascribed to placental hypoxia, here denoted maternal malperfusion (MMP), are among the more significant that a placental pathologist may encounter. Yet the appearance of these lesions may be subtle, and the clinical implication of their diagnosis is frequently unclear. The aim of this review is to provide a more nuanced perspective on the clinical utility of placental pathology for the detection of MMP. The review will first detail MMP lesions in the placenta and discuss their associations with pregnancy complications. The review will then delve into the diagnostic and interpretive difficulties of these lesions. Finally, recent research findings that may aid in the development of better diagnostic tools will be briefly discussed.

  2. [Traumatic and iatrogenic lesions of abdominal vessels].

    PubMed

    Farah, I; Tarabula, P; Voirin, L; Magne, J L; Delannoy, P; Gattaz, F; Guidicelli, H

    1997-01-01

    Gravity of abdominal vessels traumatisms is secondary to multiple factors. It depends on the type of injured vessels, aetiology and associated lesions. Between September 1984 and March 1995, 22 abdominal vessel traumatisms in 16 patients (mean age: 39 years) were treated. At surgical exploration, 4 aortic and 2 renal vein lesions, 7 iliac artery and 3 renal artery contusions, 2 superior mesenteric artery dissections; 3 infra-renal vena cava ruptures and 1 superior mesenteric vein dilaceration were found. All lesions were caused by penetrant wounds secondary to firearm or blade injury or secondary to injuries due to ski or traffic accidents. In 5 cases, lesions were iatrogenic. There was no mortality in the post-operative period, 14 patients out of the 16 patients operated on have been followed during a period from 1 to 120 months.

  3. Lymphoepithelial lesion of the parotid gland.

    PubMed

    Goto, T K; Shimizu, M; Kobayashi, I; Chikui, T; Kanda, S; Toshitani, K; Shiratsuchi, Y; Yoshida, K

    2002-05-01

    We describe a case of lymphoepithelial lesion of the parotid gland, also known as salivary lymphoepithelial lesion. Lymphoepithelial lesions are usually seen in conjunction with autoimmune disease of the salivary glands and these lesions do not always remain benign. Our case consisted of two masses that had different imaging features. Moreover, we could investigate the changes of the size and internal architecture on imaging due to the postponement of surgical intervention on the masses. At review 6 months later, the size of the masses had increased. The aims of this paper were to: (1) investigate the contribution of gray-scale sonography, power Doppler sonography, magnetic resonance imaging, and computed tomography to the diagnosis; and (2) consider the appropriate imaging modality to follow-up this case to monitor for recurrence or malignant transformation.

  4. DIAGNOSTIC CRITERIA FOR PROLIFERATIVE THYROID LESIONS IN BONY FISHES

    EPA Science Inventory

    Thyroid proliferative lesions are rather common in bony fishes but disagreement exists in the fish pathology community concerning diagnostic criteria for hyperplastic versus neoplastic lesions. To simplify the diagnosis of proliferative thyroid lesions and to reduce confusion reg...

  5. Dark-without-pressure fundus lesions.

    PubMed Central

    Nagpal, K C; Goldberg, M F; Asdourian, G; Goldbaum, M; Huamonte, F

    1975-01-01

    Seven black patients had dark brown homogeneous geographical areas of the fundus. Six cases were associated with sickle cell haemoglobinopathies and one was associated with systemic hypertension. These flat lesions were uniform in colour and occurred in the posterior pole or in the midperiphery. They appeared to be transient and often disappeared leaving no residue. The cause is unknown. By analogy with white-without-pressure fundus lesions, we have called these areas dark-without-pressure. Images PMID:1203232

  6. Isolated plexiform neurofibroma mimicking a vascular lesion*

    PubMed Central

    Stefano, Paola Cecilia; Apa, Sebastian Nicolas; Lanoël, Agustina Maria; María, Josefina Sala; Sierre, Sergio; Pierini, Adrián Martin

    2016-01-01

    Plexiform neurofibromas are benign tumors originating from peripheral nerve sheaths, generally associated with Neurofibromatosis Type 1 (NF1). They are diffuse, painful and sometimes locally invasive, generating cosmetic problems. This report discusses an adolescent patient who presented with an isolated, giant plexiform neurofibroma on her leg that was confused with a vascular lesion due to its clinical aspects. Once the diagnosis was confirmed by surgical biopsy, excision of the lesion was performed with improvement of the symptoms. PMID:27192529

  7. Isolated plexiform neurofibroma mimicking a vascular lesion.

    PubMed

    Stefano, Paola Cecilia; Apa, Sebastian Nicolas; Lanoël, Agustina Maria; María, Josefina Sala; Sierre, Sergio; Pierini, Adrián Martin

    2016-04-01

    Plexiform neurofibromas are benign tumors originating from peripheral nerve sheaths, generally associated with Neurofibromatosis Type 1 (NF1). They are diffuse, painful and sometimes locally invasive, generating cosmetic problems. This report discusses an adolescent patient who presented with an isolated, giant plexiform neurofibroma on her leg that was confused with a vascular lesion due to its clinical aspects. Once the diagnosis was confirmed by surgical biopsy, excision of the lesion was performed with improvement of the symptoms. PMID:27192529

  8. [Surgery of benign vocal fold lesions].

    PubMed

    Olthoff, A

    2016-09-01

    Surgical treatment of benign vocal fold lesions can be indicated for clinical or functional reasons. The principles of phonosurgery have to be maintained in either case. The appropriate phonosurgical technique depends on the type of vocal fold lesion. Depending on the findings, phonosurgery aims to maintain or improve voice quality. The evaluation of clinical and functional results includes indirect laryngoscopy, videostroboscopy, and voice analysis. PMID:27552826

  9. SLAP lesions in the overhead athlete.

    PubMed

    Rokito, Steven E; Myers, Kevin R; Ryu, Richard K N

    2014-06-01

    The diagnosis and management of SLAP lesions in the overhead athlete remains a challenge for the sports medicine specialist due to variable anatomy, changes with aging, concomitant pathology, lack of dependable physical findings on examination, and lack of sensitivity and specificity with imaging studies. This article presents a comprehensive review of the epidemiology, relevant anatomy, proposed pathogenesis, diagnostic approach, and outcomes of nonoperative and operative management of SLAP lesions in the overhead athlete.

  10. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  11. Potentially malignant oral lesions: clinicopathological correlations

    PubMed Central

    Maia, Haline Cunha de Medeiros; Pinto, Najara Alcântara Sampaio; Pereira, Joabe dos Santos; de Medeiros, Ana Miryam Costa; da Silveira, Éricka Janine Dantas; Miguel, Márcia Cristina da Costa

    2016-01-01

    ABSTRACT Objective To determine the incidence of potentially malignant oral lesions, and evaluate and correlate their clinical and pathological aspects. Methods The sample consisted of cases clinically diagnosed as oral leukoplakia, oral erythroplakia, erythroleukoplakia, actinic cheilitis, and oral lichen planus treated at a diagnostic center, between May 2012 and July 2013. Statistical tests were conducted adopting a significance level of 5% (p≤0.05). Results Out of 340 patients, 106 (31.2%) had potentially malignant oral lesions; and 61 of these (17.9%) were submitted to biopsy. Actinic cheilitis was the most frequent lesion (37.5%) and the lower lip was the most affected site (49.6%). Among 106 patients in the sample, 48 (45.3%) reported nicotine consumption, 35 (33%) reported alcohol intake and 34 (32.1%) sun exposure while working. When clinical and histopathological diagnoses were compared, oral erythroplakia and atypical ulcer were the lesions that exhibited greater compatibility (100% each). Conclusion In most cases, clinical and histopathological diagnoses were compatible. An association between the occurrence of erythroplakia, leukoplakia and erythroleukoplakia with smoking was observed. Similarly, an association between actinic cheilitis and sun exposure was noted. Erythroleukoplakia presented the highest malignancy grade in this study. Finally, dental surgeons should draw special attention to diagnosis of potentially malignant oral lesions, choose the best management, and control the lesions to avoid their malignant transformation. PMID:27074232

  12. Cardiovascular lesions in collagen-vascular diseases.

    PubMed

    Ferrans, V J; Rodríguez, E R

    1985-01-01

    In this review, the cardiac lesions which develop in association with the various collagen-vascular diseases are described. In rheumatoid arthritis, the most frequent lesions are: fibrous obliterative pericarditis, with pericardial deposits of calcium, fibrin, cholesterol, and rheumatoid granulomas; granulomatous or nonspecific myocarditis; valvulitis, vasculitis, and amyloid deposits. In ankylosing spondylitis, the lesions involve mainly the valves (aortic and mitral valves) and the aorta. In systemic lupus erythematosus, the predominant cardiovascular lesions are: pericarditis, Libman-Sacks endocarditis, nonspecific myocarditis, vasculitis with fibrinoid necrosis, and acceleration of atherosclerosis. In scleroderma, the main cardiac lesion is fibrosis with only scanty inflammatory cells; pericarditis and nonbacterial thrombotic endocarditis also occur. In dermatomyositis/polymyositis, fibrous or fibrinous pericarditis can occur, as well as myocarditis with infiltrates of lymphocytes and plasma cells and with degeneration and necrosis of myocytes; valvulitis is uncommon except when the disease is related to mucinous adenocarcinoma. In polyarteritis nodosa, various stages of necrotizing vasculitis involve all layers of the arterial walls; foci of myocardial necrosis of various sizes can occur in association with these lesions; cardiac hypertrophy related to hypertension and pericarditis related to uremia, may also be found. In Wegener's granulomatosis, pericarditis, inflammatory infiltrates, necrotizing granulomas, and vasculitis have been observed in the heart.

  13. Renal lesions in cetaceans from Brazil.

    PubMed

    Gonzales-Viera, O; Ruoppolo, V; Marigo, J; Carvalho, V L; Groch, K R; Bertozzi, C P; Takakura, C; Namiyama, G; Vanstreels, R E T; Catão-Dias, J L

    2015-05-01

    This study reports the occurrence of renal lesions in cetaceans from the coast of Brazil subjected to necropsy examination between 1996 and 2011. The animals (n = 192) were by-caught in fishing nets, were found dead on beaches or died despite attempted rehabilitation. Kidney samples were evaluated grossly and microscopically and, depending on the histopathological findings, immunohistochemical and ultrastructural analyses were conducted. Due to autolysis, a diagnosis was reached in only 128 animals, of which 82 (64.1%) had kidney lesions. Cystic renal disease was the most common lesion observed in 34 cases (26.6%) and these were classified as simple cysts in eight cases (6.3%), polycystic kidney disease in one rough-toothed dolphin (Steno bredanensis), secondary glomerulocystic disease in 16 cases (12.5%) and primary glomerulocystic disease in nine cases (7%). Other lesions included membranous glomerulonephritis (28 cases; 21.9%), membranoproliferative glomerulonephritis (20 cases; 15.6%), lymphoplasmacytic interstitial nephritis (21 cases; 16.4%), lipidosis (19 cases; 14.8%), glomerulosclerosis (8 cases; 6.3%) and pyogranulomatous nephritis(five cases; 3.9%); two of the later were associated with the migration of nematode larvae. Additionally, tubular adenoma was identified in a Franciscana (Pontoporia blainvillei). The pathological implications of these lesions are discussed according the cause of death, age or sex of the animals. Furthermore, the lesions were compared with those of other marine and terrestrial mammals, including man.

  14. Human brain lesion-deficit inference remapped

    PubMed Central

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint

    2014-01-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury—the commonest aetiology in lesion-deficit studies—where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  15. Human brain lesion-deficit inference remapped.

    PubMed

    Mah, Yee-Haur; Husain, Masud; Rees, Geraint; Nachev, Parashkev

    2014-09-01

    Our knowledge of the anatomical organization of the human brain in health and disease draws heavily on the study of patients with focal brain lesions. Historically the first method of mapping brain function, it is still potentially the most powerful, establishing the necessity of any putative neural substrate for a given function or deficit. Great inferential power, however, carries a crucial vulnerability: without stronger alternatives any consistent error cannot be easily detected. A hitherto unexamined source of such error is the structure of the high-dimensional distribution of patterns of focal damage, especially in ischaemic injury-the commonest aetiology in lesion-deficit studies-where the anatomy is naturally shaped by the architecture of the vascular tree. This distribution is so complex that analysis of lesion data sets of conventional size cannot illuminate its structure, leaving us in the dark about the presence or absence of such error. To examine this crucial question we assembled the largest known set of focal brain lesions (n = 581), derived from unselected patients with acute ischaemic injury (mean age = 62.3 years, standard deviation = 17.8, male:female ratio = 0.547), visualized with diffusion-weighted magnetic resonance imaging, and processed with validated automated lesion segmentation routines. High-dimensional analysis of this data revealed a hidden bias within the multivariate patterns of damage that will consistently distort lesion-deficit maps, displacing inferred critical regions from their true locations, in a manner opaque to replication. Quantifying the size of this mislocalization demonstrates that past lesion-deficit relationships estimated with conventional inferential methodology are likely to be significantly displaced, by a magnitude dependent on the unknown underlying lesion-deficit relationship itself. Past studies therefore cannot be retrospectively corrected, except by new knowledge that would render them redundant

  16. Abfraction lesions: etiology, diagnosis, and treatment options

    PubMed Central

    Nascimento, Marcelle M; Dilbone, Deborah A; Pereira, Patricia NR; Duarte, Wagner R; Geraldeli, Saulo; Delgado, Alex J

    2016-01-01

    Abfraction is a type of noncarious cervical lesion (NCCL) characterized by loss of tooth tissues with different clinical appearances. Evidence supports that abfraction lesions, as any NCCLs, have a multifactorial etiology. Particularly, the cervical wear of abfraction can occur as a result of normal and abnormal tooth function and may also be accompanied by pathological wear, such as abrasion and erosion. The interaction between chemical, biological, and behavioral factors is critical and helps to explain why some individuals exhibit more than one type of cervical wear mechanism than others. In an era of personalized dentistry, patient risk factors for NCCLs must be identified and addressed before any treatment is performed. Marked variations exist in dental practice concerning the diagnosis and management of these lesions. The lack of understanding about the prognosis of these lesions with or without intervention may be a major contributor to variations in dentists’ management decisions. This review focuses on the current knowledge and available treatment strategies for abfraction lesions. By recognizing that progressive changes in the cervical area of the tooth are part of a physiologically dynamic process that occurs with aging, premature and unnecessary intervention can be avoided. In cases of asymptomatic teeth, where tooth vitality and function are not compromised, abfraction lesions should be monitored for at least 6 months before any invasive procedure is planned. In cases of abfraction associated with gingival recession, a combined restorative-surgical approach may be performed. Restorative intervention and occlusal adjustment are not indicated as treatment options to prevent further tooth loss or progression of abfraction. The clinical decision to restore abfraction lesions may be based on the need to replace form and function or to relieve hypersensitivity of severely compromised teeth or for esthetic reasons. PMID:27217799

  17. Abfraction lesions: etiology, diagnosis, and treatment options.

    PubMed

    Nascimento, Marcelle M; Dilbone, Deborah A; Pereira, Patricia Nr; Duarte, Wagner R; Geraldeli, Saulo; Delgado, Alex J

    2016-01-01

    Abfraction is a type of noncarious cervical lesion (NCCL) characterized by loss of tooth tissues with different clinical appearances. Evidence supports that abfraction lesions, as any NCCLs, have a multifactorial etiology. Particularly, the cervical wear of abfraction can occur as a result of normal and abnormal tooth function and may also be accompanied by pathological wear, such as abrasion and erosion. The interaction between chemical, biological, and behavioral factors is critical and helps to explain why some individuals exhibit more than one type of cervical wear mechanism than others. In an era of personalized dentistry, patient risk factors for NCCLs must be identified and addressed before any treatment is performed. Marked variations exist in dental practice concerning the diagnosis and management of these lesions. The lack of understanding about the prognosis of these lesions with or without intervention may be a major contributor to variations in dentists' management decisions. This review focuses on the current knowledge and available treatment strategies for abfraction lesions. By recognizing that progressive changes in the cervical area of the tooth are part of a physiologically dynamic process that occurs with aging, premature and unnecessary intervention can be avoided. In cases of asymptomatic teeth, where tooth vitality and function are not compromised, abfraction lesions should be monitored for at least 6 months before any invasive procedure is planned. In cases of abfraction associated with gingival recession, a combined restorative-surgical approach may be performed. Restorative intervention and occlusal adjustment are not indicated as treatment options to prevent further tooth loss or progression of abfraction. The clinical decision to restore abfraction lesions may be based on the need to replace form and function or to relieve hypersensitivity of severely compromised teeth or for esthetic reasons. PMID:27217799

  18. Phantom experiments to improve parathyroid lesion detection

    SciTech Connect

    Nichols, Kenneth J.; Tronco, Gene G.; Tomas, Maria B.; Kunjummen, Biju D.; Siripun, Lisa; Rini, Josephine N.; Palestro, Christopher J.

    2007-12-15

    This investigation tested the hypothesis that visual analysis of iteratively reconstructed tomograms by ordered subset expectation maximization (OSEM) provides the highest accuracy for localizing parathyroid lesions using {sup 99m}Tc-sestamibi SPECT data. From an Institutional Review Board approved retrospective review of 531 patients evaluated for parathyroid localization, image characteristics were determined for 85 {sup 99m}Tc-sestamibi SPECT studies originally read as equivocal (EQ). Seventy-two plexiglas phantoms using cylindrical simulated lesions were acquired for a clinically realistic range of counts (mean simulated lesion counts of 75{+-}50 counts/pixel) and target-to-background (T:B) ratios (range=2.0 to 8.0) to determine an optimal filter for OSEM. Two experienced nuclear physicians graded simulated lesions, blinded to whether chambers contained radioactivity or plain water, and two observers used the same scale to read all phantom and clinical SPECT studies, blinded to pathology findings and clinical information. For phantom data and all clinical data, T:B analyses were not statistically different for OSEM versus FB, but visual readings were significantly more accurate than T:B (88{+-}6% versus 68{+-}6%, p=0.001) for OSEM processing, and OSEM was significantly more accurate than FB for visual readings (88{+-}6% versus 58{+-}6%, p<0.0001). These data suggest that visual analysis of iteratively reconstructed MIBI tomograms should be incorporated into imaging protocols performed to localize parathyroid lesions.

  19. Systematically describing gross lesions in corals

    USGS Publications Warehouse

    Work, T.; Aeby, G.

    2006-01-01

    Many coral diseases are characterized based on gross descriptions and, given the lack or difficulty of applying existing laboratory tools to understanding causes of coral diseases, most new diseases will continued to be described based on appearance in the field. Unfortunately, many existing descriptions of coral disease are ambiguous or open to subjective interpretation, making comparisons between oceans problematic. One reason for this is that the process of describing lesions is often confused with that of assigning causality for the lesion. However, causality is usually something not obtained in the field and requires additional laboratory tests. Because a concise and objective morphologic description provides the foundation for a case definition of any disease, there is a need for a consistent and standardized process to describe lesions of corals that focuses on morphology. We provide a framework to systematically describe and name diseases in corals involving 4 steps: (1) naming the disease, (2) describing the lesion, (3) formulating a morphologic diagnosis and (4) formulating an etiologic diagnosis. This process focuses field investigators on describing what they see and separates the process of describing a lesion from that of inferring causality, the latter being more appropriately done using laboratory techniques.

  20. Osteochondral lesions of the talus: Current concept.

    PubMed

    Laffenêtre, O

    2010-09-01

    Osteochondral lesions of the talus (OTL) are among those injuries that we should not fail to recognize, especially following any type of hindfoot injury. They were thoroughly described 15 years ago in a round table session organized by Doré and Rosset for the Société orthopédique de l'Ouest. Their physiopathology has not yet been definitely determined, even though some of the pathogenic mechanisms are known. They are best characterized using the fractures, osteonecroses, geodes (FOG) radiological classification. Both their diagnosis and their surgical treatment remain a challenge to the orthopaedic surgeon: some basic surgical principles apply to all of the lesions, such as cartilage debridement and shaving of necrotic tissues, while others will be used depending on the location and size of the lesions as well as the surgeon's experience. Finally, no specific technique appears to be superior to the others. Arthroscopy appears to be the most effective procedure for lesions smaller than 1 cm(2), whereas larger lesions should be filled, either with cancellous bone or with an osteochondral graft or using autogenous chondrocyte implantation. The data available in the literature should also incite orthopaedists to consider the results of surgical management with some modesty, and conservative management should remain among the therapeutic options.

  1. Computer detection of stellate lesions in mammograms

    NASA Astrophysics Data System (ADS)

    Kegelmeyer, W. Philip, Jr.

    1992-06-01

    The three primary signs for which radiologists search when screening mammograms for breast cancer are stellate lesions, microcalcifications, and circumscribed lesions. Stellate lesions are of particular importance, as they are almost always associated with a malignancy. Further, they are often indicated only by subtle architectural distortions and so are in general easier to miss than the other signs. We have developed a method for the automatic detection of stellate lesions in digitized mammograms, and have tested them on image data where the presence or absence of malignancies is known. We extract image features from the known images, use them to grow binary decision trees, and use those trees to label each pixel of new mammograms with its probability of being located on an abnormality. The primary feature for the detection of stellate lesions is ALOE, analysis of local oriented edges, which is derived from an analysis of the histogram of edge orientations in local windows. Other features, based on the Laws texture energy measures, have been developed to respond to normal tissue, and so improve the false alarm performance of the entire system.

  2. Producing Uniform Lesion Pattern in HIFU Ablation

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Kargl, Steven G.; Hwang, Joo Ha

    2009-04-01

    High intensity focused ultrasound (HIFU) is emerging as a modality for treatment of solid tumors. The temperature at the focus can reach over 65° C denaturing cellular proteins resulting in coagulative necrosis. Typically, HIFU parameters are the same for each treated spot in most HIFU control systems. Because of thermal diffusion from nearby spots, the size of lesions will gradually become larger as the HIFU therapy progresses, which may cause insufficient treatment of initial spots, and over-treatment of later ones. It is found that the produced lesion pattern also depends on the scanning pathway. From the viewpoint of the physician creating uniform lesions and minimizing energy exposure are preferred in tumor ablation. An algorithm has been developed to adaptively determine the treatment parameters for every spot in a theoretical model in order to maintain similar lesion size throughout the HIFU therapy. In addition, the exposure energy needed using the traditional raster scanning is compared with those of two other scanning pathways, spiral scanning from the center to the outside and from the outside to the center. The theoretical prediction and proposed algorithm were further evaluated using transparent gel phantoms as a target. Digital images of the lesions were obtained, quantified, and then compared with each other. Altogether, dynamically changing treatment parameters can improve the efficacy and safety of HIFU ablation.

  3. Imaging caries lesions and lesion progression with polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Xie, John; Shafi, Sahar; Featherstone, John D. B.; Breunig, Thomas; Le, Charles Q.

    2002-06-01

    New diagnostic tools are needed for the characterization of dental caries in the early stages of development. If carious lesions are detected early enough, they can be arrested without the need for surgical intervention. The objective of this study was to demonstrate that polarization sensitive optical coherence tomography (PS-OCT) can be used for the imaging of early caries lesions and for the monitoring of lesion progression over time. High-resolution polarization resolved images were acquired of natural caries lesions and simulated caries lesions of varying severity created over time periods of 1 to 14 days. Linearly polarized light was incident on the tooth samples and the reflected intensity in both orthogonal polarizations was measured. PS-OCT was invaluable for removing the confounding influence of surface reflections and native birefringence and for resolving the surface structure of caries lesions. This study demonstrated that PS-OCT is well suited for the resolution of interproximal and occlusal caries, early root caries, and secondary caries around composite fillings. Longitudinal measurements of lesion progression established a strong correlation (p<0.001) between the reflected light from the lesion area and the square root of time indicating that PS-OCT is well suited for monitoring changes in enamel mineralization over time.

  4. Leukaemic lesions of the gastrointestinal tract

    PubMed Central

    Cornes, J. S.; Jones, T. Gwynfor; Fisher, Gloria B.

    1962-01-01

    This study is based on the clinical records and post-mortem findings of 264 patients with leukaemia. Gross leukaemic lesions in the gastrointestinal tract were found in 39 patients, an overall incidence of 14·8%. The incidence in all types of acute leukaemia was 18·4%, in chronic leukaemias 9·6%, and in myeloid leukaemia 10·9%. The ileum, stomach, and proximal colon were the sites most commonly affected. Four types of lesion were found: raised leukaemic nodules, leukaemic plaques, diffuse infiltrations with a convoluted brain-like appearance of the mucosal folds, and a multiple leukaemic polyposis. The clinical and pathological features of these lesions are described, and references are given to similar cases reported in the literature. Images PMID:13881389

  5. Morgellons Disease Presenting As an Eyelid Lesion.

    PubMed

    Sandhu, Rasanamar K; Steele, Eric A

    2016-01-01

    Morgellons disease is characterized by complaints of uncomfortable skin sensations and fibers emanating from nonhealing skin lesions. Morgellons disease is well-known in the dermatology and psychiatry literature, where it is typically considered a subtype of delusional parasitosis, but it has not yet been described in the ophthalmology literature. A patient with self-reported Morgellons disease is presented, who was referred for evaluation of left lower eyelid ectropion. She reported that her skin was infested with fibers that were "trying to get down into the eyelid." On examination, she had ectropion of the left lower eyelid, broken cilia, and an ulcerated left upper eyelid lesion concerning for carcinoma. Biopsy of the lesion was consistent with excoriation. Treatment of her ectropion was deferred out of concern for wound dehiscence, given the patient's aggressive excoriation behavior. This case is presented to make the ophthalmologist aware of this disorder and to highlight the appropriate clinical management. PMID:25192328

  6. Focal cerebral lesions and painting abilities.

    PubMed

    Mazzucchi, Anna; Sinforiani, Elena; Boller, François

    2013-01-01

    Focal lesions such as strokes significantly affect painting production in the vast majority of artists. In particular, painters, when they resume painting, show changes in their painting style. In exceptional cases, there may be an apparent improvement in style, but in most cases, the changes represent nothing short of deterioration. This, however, varies according to the hemisphere affected. Painters with left-hemisphere lesions tend to show an inability to deal adequately with perspective and also tend to use simplified colors with fewer nuances. One often witnesses an evolution toward simpler, often "naïve" techniques, and at times rigid geometric repetitive features. Painters with right-hemisphere lesions also become unable to represent tridimensionality. In addition, their figures are often drawn in very summary fashion, with lack of coordination between volumes and space and a chromatic impoverishment; their main problem, however, is visuospatial, leading to neglect of the left side of the canvas.

  7. Morgellons Disease Presenting As an Eyelid Lesion.

    PubMed

    Sandhu, Rasanamar K; Steele, Eric A

    2016-01-01

    Morgellons disease is characterized by complaints of uncomfortable skin sensations and fibers emanating from nonhealing skin lesions. Morgellons disease is well-known in the dermatology and psychiatry literature, where it is typically considered a subtype of delusional parasitosis, but it has not yet been described in the ophthalmology literature. A patient with self-reported Morgellons disease is presented, who was referred for evaluation of left lower eyelid ectropion. She reported that her skin was infested with fibers that were "trying to get down into the eyelid." On examination, she had ectropion of the left lower eyelid, broken cilia, and an ulcerated left upper eyelid lesion concerning for carcinoma. Biopsy of the lesion was consistent with excoriation. Treatment of her ectropion was deferred out of concern for wound dehiscence, given the patient's aggressive excoriation behavior. This case is presented to make the ophthalmologist aware of this disorder and to highlight the appropriate clinical management.

  8. Condylomatous lesions of the upper aerodigestive tract.

    PubMed

    Nash, M; Lucente, F E; Srinivasan, K; Gould, W J

    1987-12-01

    Condyloma acuminatum is one of four types of common human verrucous lesions that are of viral etiology. Also known as "moist wart," condyloma acuminatum is most often seen on the mucosal surfaces of the anogenital area. However, occurrences in the mucosal lined areas of the head and neck region are quite rare. Since 1901, 30 cases of condylomatous lesions have been reported in the upper aerodigestive tract, occurring mainly in the various regions of the oral cavity. Eighteen of the cases were confirmed by histopathologic documentation, while the remainder were anecdotal. We have recently encountered six new cases of condyloma acuminatum, verified by histologic examination. One occurred on the tongue, another in the tonsillar fossa, one in the hypopharynx and three on the vocal cords. We present these cases and review the previously reported cases. In addition, we will discuss the differential diagnosis of these lesions, and their importance to the practicing otolaryngologist.

  9. COMMON LESIONS OF THE URETHRA IN WOMEN

    PubMed Central

    Burkland, Carl E.

    1952-01-01

    Urethral disease in women and girls often is overlooked. As the urine may seem to be normal as determined by repeated urinalysis, the symptoms—urinary frequency and burning—may be attributed entirely to other pelvic disease or to functional disorder. Since erroneous diagnosis may lead to unnecessary procedures or to neglect of treatment with consequent development of severe disease in the kidneys or ureters, it is important to consider urethral lesions as a possible cause in any case of abdominal discomfort in women. The most common lesions of the urethra in women are urethritis, stricture, caruncle, inflammatory polyps and cysts, prolapse of the urethra, and diverticulum. In some cases diagnosis can be made simply on the basis of inspection and palpation. In others more extensive diagnostic procedures must be carried out in order that treatment may be definitive. The methods of treatment, varying with the nature of the lesion, are outlined herein. PMID:14905285

  10. Classification and prevalence of foot lesions in captive flamingos (Phoenicopteridae).

    PubMed

    Nielsen, Adriana M W; Nielsen, Søren S; King, Catherine E; Bertelsen, Mads F

    2010-03-01

    Foot lesions can compromise the health and welfare of captive birds. In this study, we estimated the prevalence of foot lesions in captive flamingos (Phoenicopteridae). The study was based on photos of 1,495 pairs of foot soles from 854 flamingos in 18 European and two Texan (USA) zoological collections. Methodology for evaluating flamingo feet lesions was developed for this project because no suitable method had been reported in the literature. Four types of foot lesions were identified: hyperkeratoses, fissures, nodular lesions, and papillomatous growths. Seven areas on each foot received a severity score from 0 to 2 for each type of lesion (0 = no lesion, 1 = mild to moderate lesion, 2 = severe lesion). The prevalence of birds with lesions (scores 1 or 2) were 100%, 87%, 17%, and 46% for hyperkeratosis, fissures, nodular lesions, and papillomatous growths, respectively. Birds with severe lesions (score 2) constituted 67%, 46%, 4%, and 12% for hyperkeratosis, fissures, nodular lesions, and papillomatous growths, respectively. Hyperkeratosis and nodular lesions were most prevalent on the base of the foot and the proximal portion of the digits, likely reflecting those areas bearing the most weight. The second and fourth digits were most affected with fissures and papillomatous lesions; these areas of the foot appear to be where the most flexion occurs during ambulation. The study demonstrates that foot lesions are highly prevalent and widely distributed in the study population, indicating that they are an extensive problem in captive flamingos.

  11. Imaging of Retrosternal Space Lesions - A Pictorial Review.

    PubMed

    Chandrashekhara, S H; Rahul, Kumar; Handa, N