Science.gov

Sample records for 6-hydroxydopamine 6-ohda-induced toxicity

  1. Botanical Drug Puerarin Attenuates 6-Hydroxydopamine (6-OHDA)-Induced Neurotoxicity via Upregulating Mitochondrial Enzyme Arginase-2.

    PubMed

    Zhao, Jia; Cheng, Yuanyuan; Yang, Chuanbin; Lau, Sam; Lao, Lixing; Shuai, Bo; Cai, Jing; Rong, Jianhui

    2016-05-01

    Inhibition of nitric oxide synthases (NOSs) shows promise to halt the progression of neurodegenerative diseases. The present study was designed to explore whether botanical isoflavone puerarin could attenuate nitric oxide (NO)-mediated neurotoxicity via modulating the enzymes in the L-arginine-NO pathway. Neurotoxin 6-hydroxydopamine (6-OHDA) is well known to induce neurodegeneration via a NO-dependent mechanism. We first validated that puerarin protected rat dopamingeric PC12 cells against 6-OHDA-induced neurotoxicity in a concentration-dependent manner. We subsequently profiled the cellular responses to puerarin by a proteomic response fingerprinting approach. A total of 16 protein spots with >1.5-fold change of intensity were selected and identified by mass spectrometry. As one of puerarin-upregulated proteins, mitochondrial arginase-2 hydrolyzes L-arginine to L-ornithine, thereby competing with neuronal NOS for substrate L-arginine in mitochondria. Thus, we hypothesize that puerain may attenuate nitric oxide (NO)-mediated mitochondrial injury via increasing arginase-2 expression. Western blot and reverse transcription polymerase chain reaction (RT-PCR) analyses confirmed that puerarin increased arginase-2 expression in a concentration- and time-dependent manner. Accordingly, puerarin suppressed 6-OHDA-induced NO production and neurotoxicity in PC12 cells and primary rat midbrain neurons. Arginase inhibitor BEC diminished the effect of puerarin on 6-OHDA-induced NO production and neurotoxicity. The activation of arginase-2 by puerarin represents an endogenous mechanism for specific control of NO-mediated mitochondrial damage. Thus, puerarin is a useful lead for suppressing NO-mediated neurotoxicity in neurodegenerative diseases. Graphical Abstract Arginase-2 dependent mechanism underlying the neuroprotective activity of puerarin.

  2. Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms.

    PubMed

    Kumar, Anil; Sharma, Neha; Gupta, Amit; Kalonia, Harikesh; Mishra, Jitendriya

    2012-08-30

    Neuro-inflammation and oxidative stress plays a key role in the pathophysiology of Parkinson's disease (PD). Studies demonstrated that neuro-inflammation and associated infiltration of inflammatory cells into central nervous system are inhibited by 3-hydroxy-3-methyl glutaryl co-enzyme A (HMG-CoA) reductase inhibitors. Based on these experimental evidences, the present study has been designed to evaluate the neuroprotective effect of HMG-CoA reductase inhibitors (atorvastatin and simvastatin) against 6-hydroxydopamine (6-OHDA) induced unilateral lesion model of PD. In the present study, the animals were divided into nine groups (n=15 per group). Group I: Naive (without treatment); Group II: Sham (surgery performed, vehicle administered); Group III: Atorvastatin (20mg/kg); Group IV: Simvastatin (30 mg/kg); Group V: Control [Intrastriatal 6-OHDA (20 μg; single unilateral injection)]; Groups VI and VII: 6-OHDA (20 μg)+atorvastatin (10mg/kg and 20mg/kg) respectively; Groups VIII and IX: 6-OHDA (20 μg)+simvastatin (15 mg/kg and 30 mg/kg) respectively. Intrastriatal administration of 6-OHDA (20 μg; 4 μl of 5 μg/μl) significantly caused impairment in body weight, locomotor activity, rota-rod performance, oxidative defense and mitochondrial enzyme complex activity, and increase in the inflammatory cytokine levels (TNF-α and IL-6) as compared to naive animals. Atorvastatin (20mg/kg) and simvastatin (30 mg/kg) drug treatment significantly improved these behavioral and biochemical alterations restored mitochondrial enzyme complex activities and attenuated neuroinflammatory markers in 6-OHDA (20 μg) treated animals as compared to control group. The findings of the present study demonstrate the neuroprotective potential of statins in experimental model of 6-OHDA induced Parkinson like symptoms.

  3. Antioxidant and neuroprotector effect of Lepidium meyenii (maca) methanol leaf extract against 6-hydroxy dopamine (6-OHDA)-induced toxicity in PC12 cells.

    PubMed

    Rodríguez-Huamán, Ángel; Casimiro-Gonzales, Sandra; Chávez-Pérez, Jorge Antonio; Gonzales-Arimborgo, Carla; Cisneros-Fernández, Richard; Aguilar-Mendoza, Luis Ángel; Gonzales, Gustavo F

    2017-01-08

    Reactive oxygen species (ROS) are normally produced during cell metabolism, there is strong evidence to suggest that ROS produced in excess impair the cell and may be etiologically related to various neurodegenerative diseases. This study was undertaken to examine the effects of Lepidium meyenii (MACA) methanol leaf extract on neurotoxicity in PC12 cell exposed to 6-hydroxydopamine (6-OHDA). Fresh samples of "maca" leaves were processed in order to obtain foliar extracts and to evaluate the neurobiological activity on PC12 cells, subjected to the cytotoxic effect of 6-OHDA through the determination of the capacity antioxidant, cell viability and cytotoxicity assays on PC12 cells. The results of the tests of antioxidant activity, showed maximum values of 2262.37 and 1305.36 expressed in Trolox equivalents (TEAC), for the methanolic and aqueous fractions respectively. Cell viability assays at a dose of 10 μg extract showed an increase of 31% and 60% at 6 and 12 h of pretreatment, respectively. Cytotoxicity assays at the same dose and exposure time showed a 31.4% and 47.8% reduction in lactate dehydrogenase (LDH) activity and an increase in superoxide dismutase (SOD) activity. The results allow us to affirm that the methanolic foliar extract of "maca" presents in vitro neurobiological activity of antioxidant protection, increase in cell viability and reduction of cytotoxicity against oxidative stress generated by 6-OHDA. In conclusion, the present study shows a protective role for Lepidium meyenii leaf extract on 6-OHDA-induced toxicity by an antioxidant effect.

  4. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum.

    PubMed

    Serratos, Iris N; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Colín-González, Ana Laura; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Sánchez-García, Aurora; Gómez, Isabel; Rangel-López, Edgar; Santamaria, Abel

    2016-04-05

    The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity.

  5. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP⁺-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity.

    PubMed

    Garcia-Garcia, Aracely; Anandhan, Annandurai; Burns, Michaela; Chen, Han; Zhou, You; Franco, Rodrigo

    2013-11-01

    Controversial reports on the role of autophagy as a survival or cell death mechanism in dopaminergic cell death induced by parkinsonian toxins exist. We investigated the alterations in autophagic flux and the role of autophagy protein 5 (Atg5)-dependent autophagy in dopaminergic cell death induced by parkinsonian toxins. Dopaminergic cell death induced by the mitochondrial complex I inhibitors 1-methyl-4-phenylpyridinium (MPP⁺) and rotenone, the pesticide paraquat, and the dopamine analog 6-hydroxydopamine (6-OHDA) was paralleled by increased autophagosome accumulation. However, when compared with basal autophagy levels using chloroquine, autophagosome accumulation was a result of impaired autophagic flux. Only 6-OHDA induced an increase in autophagosome formation. Overexpression of a dominant negative form of Atg5 increased paraquat- and MPP⁺-induced cell death. Stimulation of mammalian target of rapamycin (mTOR)-dependent signaling protected against cell death induced by paraquat, whereas MPP⁺-induced toxicity was enhanced by wortmannin, a phosphoinositide 3-kinase class III inhibitor, rapamycin, and trehalose, an mTOR-independent autophagy activator. Modulation of autophagy by either pharmacological or genetic approaches had no effect on rotenone or 6-OHDA toxicity. Cell death induced by parkinsonian neurotoxins was inhibited by the pan caspase inhibitor (Z-VAD), but only caspase-3 inhibition was able to decrease MPP⁺-induced cell death. Finally, inhibition of the lysosomal hydrolases, cathepsins, increased the toxicity by paraquat and MPP⁺, supporting a protective role of Atg5-dependent autophagy and lysosomes degradation pathways on dopaminegic cell death. These results demonstrate that in dopaminergic cells, Atg5-dependent autophagy acts as a protective mechanism during apoptotic cell death induced by paraquat and MPP⁺ but not during rotenone or 6-OHDA toxicity.

  6. 6-HYDROXYDOPAMINE INDUCES MITOCHONDRIAL ERK ACTIVATION

    PubMed Central

    Kulich, Scott M.; Horbinski, Craig; Patel, Manisha; Chu, Charleen T.

    2007-01-01

    Reactive oxygen species (ROS) are implicated in 6-hydroxydopamine (6-OHDA) injury to catecholaminergic neurons; however, the mechanism(s) are unclear. In addition to ROS generated during autoxidation, 6-OHDA may initiate secondary cellular sources of ROS that contribute to toxicity. Using a neuronal cell line, we found that catalytic metalloporphyrin antioxidants conferred protection if added 1 hour after exposure to 6-OHDA, whereas the hydrogen peroxide scavenger catalase failed to protect if added more than 15 min after 6-OHDA. There was a temporal correspondence between loss of protection and loss of the ability of the antioxidant to inhibit 6-OHDA-induced ERK phosphorylation. Time course studies of aconitase inactivation, as an indicator of intracellular superoxide, and MitoSOX red, a mitochondria targeted ROS indicator, demonstrate early intracellular ROS followed by a delayed phase of mitochondrial ROS production, associated with phosphorylation of a mitochondrial pool of ERK. Furthermore, upon initiation of mitochondrial ROS and ERK activation, 6-OHDA-injured cells became refractory to rescue by metalloporphyrin antioxidants. Together with previous studies showing that inhibition of the ERK pathway confers protection from 6-OHDA toxicity, and that phosphorylated ERK accumulates in mitochondria of degenerating human Parkinson’s disease neurons, these studies implicate mitochondrial ERK activation in Parkinsonian oxidative neuronal injury. PMID:17602953

  7. L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice.

    PubMed

    Luo, Liting; Chen, Jingkao; Su, Dan; Chen, Meihui; Luo, Bingling; Pi, Rongbiao; Wang, Lan; Shen, Wei; Wang, Rikang

    2017-02-01

    Amounting evidences demonstrated that Rho/Rho-associated kinase (ROCK) might be a novel target for the therapy of Parkinson's disease (PD). Recently, we synthesized L-F001 and revealed it was a potent ROCK inhibitor with multifunctional effects. Here we investigated the effects of L-F001 in PD models. We found that L-F001 potently attenuated 6-OHDA-induced cytotoxicity in PC12 cells and significantly decreased intracellular reactive oxygen species (ROS), prevented the 6-OHDA-induced decline of mitochondrial membrane potential and intracellular GSH levels. In addition, L-F001 increased Akt and GSK-3beta phosphorylation and induced the nuclear Nrf2 and HO-1 expression in a time- and concentration-dependent manner. Moreover, L-F001 restored the levels of p-Akt and p-GSK-3beta (Ser9) as well as HO-1 expression reduced by 6-OHDA. Those effects were blocked by the specific PI3K inhibitor, LY294002, indicating the involvement of Akt/GSK-3beta pathway in the neuroprotective effect of L-F001. In addition, L-F001 significantly attenuated the tyrosinehydroxylase immunoreactive cell loss in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice PD model. Together, our findings suggest that L-F001 prevents 6-OHDA-induced cell death through activating Akt/GSK-3beta and Nrf2/HO-1 signaling pathway and attenuates MPTP-induced dopaminergic neuron toxicity in mice. L-F001 might be a promising drug candidate for PD.

  8. RETRACTED: 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors.

    PubMed

    Tobón-Velasco, Julio C; Limón-Pacheco, Jorge H; Orozco-Ibarra, Marisol; Macías-Silva, Marina; Vázquez-Victorio, Genaro; Cuevas, Elvis; Ali, Syed F; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2013-02-08

    6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to better understand the cellular events further leading to neurodegeneration. The present work explored how 6-OHDA triggers early downstream signaling pathways that activate neurotoxicity in the rat striatum. Mitochondrial function, caspases-dependent apoptosis, kinases signaling (Akt, ERK 1/2, SAP/JNK and p38) and crosstalk between nuclear factor kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) were evaluated at early times post-lesion. We found that 6-OHDA initiates cell damage via mitochondrial complex I inhibition, cytochrome c and apoptosis-inducing factor (AIF) release, as well as activation of caspases 9 and 3 to induce apoptosis, kinase signaling modulation and NF-κB-mediated inflammatory responses, accompanied by inhibition of antioxidant systems regulated by the Nrf2 pathway. Our results suggest that kinases SAP/JNK and p38 up-regulation may play a role in the early stages of 6-OHDA toxicity to trigger intrinsic pathways for apoptosis and enhanced NF-κB activation. In turn, these cellular events inhibit the activation of cytoprotective mechanisms, thereby leading to a condition of general damage.

  9. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons.

    PubMed

    Hwang, Cheol Kyu; Chun, Hong Sung

    2012-01-01

    Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 µM) significantly attenuated 6-OHDA (50 µM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.

  10. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    SciTech Connect

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  11. Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity and endoplasmic reticulum stress: In vivo and in vitro evidence.

    PubMed

    Avagliano, Carmen; Russo, Roberto; De Caro, Carmen; Cristiano, Claudia; La Rana, Giovanna; Piegari, Giuseppe; Paciello, Orlando; Citraro, Rita; Russo, Emilio; De Sarro, Giovambattista; Meli, Rosaria; Mattace Raso, Giuseppina; Calignano, Antonio

    2016-11-01

    Several pathogenetic factors have been involved in the onset and progression of Parkinson's disease (PD), including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Palmitoylethanolamide (PEA), an endogenous N-acylethanolamine, has been shown to be a neuroprotective and anti-inflammatory molecule, acting as a peroxisome proliferator activated receptor (PPAR)-α agonist. In this study we investigated the effects of PEA on behavioral alterations and the underlying pathogenic mechanisms in the 6-hydroxydopamine (6-OHDA)-induced model of PD in male mice. Additionally, we showed the involvement of PPAR-α in PEA protective effect on SH-SY5Y neuroblastoma against 6-OHDA damage. Here, we report that PEA (3-30mg/kg/days.c.) improved behavioral impairments induced by unilateral intrastriatal injection of 6-OHDA. This effect was accompanied by a significant increase in tyrosine hydroxylase expression at striatal level, indicating PEA preserving effect on dopaminergic neurons. Moreover, we found a reduction in the expression of pro-inflammatory enzymes, i.e. inducible nitric oxide synthase and cyclooxygenase-2, a modulation between pro- and anti-apoptotic markers, suggestive of PEA capability in controlling neuroinflammation and cell death. Interestingly, PEA also showed protective scavenging effect, through superoxide dismutase induction, and dampened unfolding protein response, interfering on glucose-regulated protein 78 expression and PERK-eIF2α pathway. Similar data were found in in vitro studies, where PEA treatment was found to rescue SH-SY5Y neuroblastoma cells from 6-OHDA-induced damage and death, partly by inhibiting endoplasmic reticulum stress detrimental response. Therefore, PEA, counteracting the pathogenetic aspects involved in the development of PD, showed its therapeutic potential, possibly integrating current treatments correcting dopaminergic deficits and motor dysfunction.

  12. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research.

  13. Blockade of RyRs in the ER Attenuates 6-OHDA-Induced Calcium Overload, Cellular Hypo-Excitability and Apoptosis in Dopaminergic Neurons

    PubMed Central

    Huang, Lu; Xue, Ying; Feng, DaYun; Yang, RuiXin; Nie, Tiejian; Zhu, Gang; Tao, Kai; Gao, GuoDong; Yang, Qian

    2017-01-01

    Calcium (Ca2+) dyshomeostasis induced by endoplasmic reticulum (ER) stress is an important molecular mechanism of selective dopaminergic (DA) neuron loss in Parkinson’s disease (PD). Inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), which are located on the ER surface, are the main endogenous Ca2+ release channels and play crucial roles in regulating Ca2+ homeostasis. However, the roles of these endogenous Ca2+ release channels in PD and their effects on the function and survival of DA neurons remain unknown. In this study, using a 6-hydroxydopamine (6-OHDA)-induced in vitro PD model (SN4741 Cell line), we found that 6-OHDA significantly increased cytoplasmic Ca2+ levels ([Ca2+]i), which was attenuated by pretreatment with 4-phenyl butyric acid (4-PBA; an ER stress inhibitor) or ryanodine (a RyRs blocker). In addition, in acute midbrain slices of male Sprague-Dawley rats, we found that 6-OHDA reduced the spike number and rheobase of DA neurons, which were also reversed by pretreatment with 4-PBA and ryanodine. TUNEL staining and MTT assays also showed that 4-PBA and ryanodine obviously alleviated 6-OHDA-induced cell apoptosis and devitalization. Interestingly, a IP3Rs blocker had little effect on the above 6-OHDA-induced neurotoxicity in DA neurons. In conclusion, our findings provide evidence of the different roles of IP3Rs and RyRs in the regulation of endogenous Ca2+ homeostasis, neuronal excitability, and viability in DA neurons, and suggest a potential therapeutic strategy for PD by inhibiting the RyRs Ca2+ channels in the ER. PMID:28316566

  14. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson’s Disease Model

    PubMed Central

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R.; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress. PMID:27493838

  15. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase

    SciTech Connect

    Wu Shaoping; Fu Ailing; Wang Yuxia; Yu Leiping; Jia Peiyuan; Li Qian; Jin Guozhang; Sun Manji . E-mail: Sunmj@nic.bmi.ac.cn

    2006-07-21

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 {mu}M) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD.

  16. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD.

  17. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress.

    PubMed

    Baluchnejadmojarad, Tourandokht; Mansouri, Monireh; Ghalami, Jamileh; Mokhtari, Zahra; Roghani, Mehrdad

    2017-04-01

    Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders in elders. Sesamin is a lignan compound and the active constituent of sesame oil with antioxidant and anti-inflammatory properties. This study was carried out to explore the mechanisms underlying sesamin effect against unilateral striatal 6-hydroxydopamine (6-OHDA) model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with sesamin at doses of 10 or 20mg/kg/day for one week. Sesamin at a dose of 20mg/kg attenuated motor imbalance in narrow beam test, lowered striatal level of malondialdehyde (MDA) and reactive oxygen species (ROS), improved superoxide dismutase (SOD) activity, lowered striatal caspase 3 activity and α-synuclein expression, attenuated glial fibrillary acidic protein (GFAP) immunoreactivity, depressed nigral neuronal apoptosis, and prevented damage of dopaminergic neurons using tyrosine hydroxylase (TH) immunohistochemistry. These findings reveal the reversal effect of sesamin in 6-OHDA model of PD via attenuation of apoptosis, astrogliosis, oxidative stress, and down-regulation of α-synuclein.

  18. Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein.

    PubMed

    Pasban-Aliabadi, Hamzeh; Esmaeili-Mahani, Saeed; Sheibani, Vahid; Abbasnejad, Mehdi; Mehdizadeh, Anahita; Yaghoobi, Mohammad Mehdi

    2013-04-01

    Parkinson disease (PD) is the most common progressive neurodegenerative disorder characterized by progressive death of midbrain dopaminergic neurons. Most neurodegenerative disease treatments are, at present, palliative. However, some natural herbal products have been shown to rescue neurons from death and apoptosis in some of neurodegenerative diseases. Not only Olea europaea L. olive oil, but also the leaves of this plant have been used for medical purposes. Olive leaf extract (OLE) is being used by people as a drink across the world and as an integral ingredient in their desire to maintain and improve their health. Here, we investigated the effects of OLE and its main phenolic component oleuropein on 6-hydroxydopamine (6-OHDA)-induced toxicity in rat adrenal pheochromocytoma (PC12) cells as an in vitro model of PD. Cell damage was induced by 150 μM 6-OHDA. The cell survival rate was examined by MTT assay. Generation of intra-cellular reactive oxygen species (ROS) was studied using fluorescence spectrophotometry. Immunoblotting and DNA analysis were also employed to determine the levels of biochemical markers of apoptosis in the cells. The data showed that 6-OHDA could decrease the viability of the cells. In addition, intra-cellular ROS, activated caspase 3, Bax/Bcl-2 ratio, as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Incubation of cells with OLE (400 and 600 μg/mL) and oleuropein (20 and 25 μg/mL) could decrease cell damage and reduce biochemical markers of cell death. The results suggest that OLE and oleuropein have anti-oxidant protective effects against 6-OHDA-induced PC12 cell damage. The protective effects of OLE and oleuropein are correlative with their anti-oxidative and anti-apoptotic properties and suggest their therapeutic potential in the treatment of PD.

  19. Squamosamide derivative FLZ protected dopaminergic neuron by activating Akt signaling pathway in 6-OHDA-induced in vivo and in vitro Parkinson's disease models.

    PubMed

    Bao, Xiu-Qi; Kong, Xiang-Chen; Kong, Li-Bing; Wu, Liang-Yu; Sun, Hua; Zhang, Dan

    2014-02-14

    Parkinson's disease (PD) is a neurodegenerative disease affecting up to 80% of dopaminergic neurons in the nigrostriatal pathway. FLZ, a novel synthetic squamosamide derivative from a Chinese herb, has been shown to have neuroprotective effects in experimental PD models. In this study, we carried out a set of in vitro and in vivo experiments to address the neuroprotective effect of FLZ and related mechanism. The results showed that FLZ significantly improved motor dysfunction and dopaminergic neuronal loss of rats injured by 6-hydroxydopamine (6-OHDA). The beneficial effects of FLZ attributed to the elevation of dopaminergic neuron number, dopamine level and tyrosine hydroxylase (TH) activity. Mechanistic study showed that FLZ protected TH activity and dopaminergic neurons through decreasing α-synuclein (α-Syn) expression and the interaction between α-Syn and TH. Further studies indicated the involvement of phosphoinositide 3-kinases (PI3K)/Akt signaling pathway in the protective effect of FLZ since it showed that blocking PI3K/Akt signaling pathway prevented the expression of α-Syn and attenuated the neuroprotection of FLZ. In addition, FLZ treatment reduced the expression of RTP801, an important protein involved in the pathogenesis of PD. Taken together, these results revealed that FLZ suppressed α-Syn expression and elevated TH activity in dopaminergic neuron through activating Akt survival pathway in 6-OHDA-induced PD models. The data also provided evidence that FLZ had potent neuroprotecive effects and might become a new promising agent for PD treatment.

  20. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis

    PubMed Central

    Im, Hyung-Jun; Hahm, Jarang; Kang, Hyejin; Choi, Hongyoon; Lee, Hyekyoung; Hwang, Do Won; Kim, E. Edmund; Chung, June-Key; Lee, Dong Soo

    2016-01-01

    Movement impairments in Parkinson’s disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using 18F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD. PMID:27650055

  1. Tetramethylpyrazine Analogue CXC195 Protects Against Dopaminergic Neuronal Apoptosis via Activation of PI3K/Akt/GSK3β Signaling Pathway in 6-OHDA-Induced Parkinson's Disease Mice.

    PubMed

    Chen, Lin; Cheng, Li; Wei, Xinbing; Yuan, Zheng; Wu, Yanmei; Wang, Shuaishuai; Ren, Zhiping; Liu, Xinyong; Liu, Huiqing

    2016-12-22

    Parkinson's disease (PD) is a progressive neurodegenerative disorder and characterized by motor system disorders resulting in loss of dopaminergic (DA) neurons. CXC195, a novel tetramethylpyrazine derivative, has been shown strongest neuroprotective effects due to its anti-apoptotic activity. However, whether CXC195 protects against DA neuronal damage in PD and the mechanisms underlying its beneficial effects are unknown. The purpose of our study was to investigate the potential neuroprotective role of CXC195 and to elucidate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. CXC195 administration improved DA neurodegeneration in PD mice induced by 6-OHDA. Our further findings confirmed treatment of CXC195 at the dose of 10 mg/kg significantly inhibited the apoptosis by decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in 6-OHDA-lesioned mice. Meanwhile, 6-OHDA also decreased the amount of phosphorylated Akt while increased GSK-3β activity (the amount of phosphorylated GSK-3β at Ser9 was decreased) which was prevented by CXC195. Wortmannin, a specific PI3K inhibitor, dramatically abolished the changes induced by CXC195. Our study firstly demonstrated that CXC195 protected against DA neurodegeneration in 6-OHDA-induced PD model by its anti-apoptotic properties and PI3K/Akt/GSK3β signaling pathway was involved in it.

  2. Early toxic effect of 6-hydroxydopamine on extracellular concentrations of neurotransmitters in the rat striatum: an in vivo microdialysis study.

    PubMed

    Tobón-Velasco, Julio César; Silva-Adaya, Daniela; Carmona-Aparicio, Liliana; García, Esperanza; Galván-Arzate, Sonia; Santamaría, Abel

    2010-12-01

    The early effects of 6-OHDA as a Parkinsonian model in rodents are relevant since pharmacological and toxicological points of view, as they can explain the acute and chronic deleterious events occurring in the striatum. In this study, we focused our attention on the neurochemical and motor dysfunction produced after a pulse infusion of 6-OHDA, paying special attention to the capacity of this molecule to induce neurotransmitter release and behavioural alterations. Extracellular levels of dopamine, serotonin, norepinephrine, glutamate, glutamine, aspartate, glycine and GABA were all assessed in striatal dialysates in freely moving rats immediately after exposed to a single pulse of 6-OHDA in dorsal striatum, and major behavioural markers of motor alterations were simultaneously explored. Enhanced release of dopamine, serotonin and norepinephrine was found immediately after 6-OHDA pulse. Delayed glutamate and glycine release were detected and a biphasic effect on GABA was observed. Mostly serotonin and dopamine outflow, followed by glutamate, correlated with wet dog shakes and other behavioural qualitative alterations. Early dopamine release, accompanied by other neurotransmitters, can generate an excitatory environment affecting the striatal neurons with immediate consequences for behavioural performance. In turn, these changes might be accounting for later features of toxicity described in this model.

  3. Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production

    PubMed Central

    Wang, Yue-Hua; Xuan, Zhao-Hong; Tian, Shuo; Du, Guan-Hua

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production. PMID:25788961

  4. Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy.

    PubMed

    Silva-Adaya, Daniela; Pérez-De La Cruz, Verónica; Villeda-Hernández, Juana; Carrillo-Mora, Paul; González-Herrera, Irma Gabriela; García, Esperanza; Colín-Barenque, Laura; Pedraza-Chaverrí, José; Santamaría, Abel

    2011-01-01

    The neuroactive metabolite at the kynunerine pathway, kynurenic acid (KYNA), is a well-known competitive antagonist at the co-agonist glycine site of the N-methyl-D-aspartate receptor (NMDAr), and also decreases the extracellular levels of glutamate by blocking α7-nicotinic acetylcholine receptor (α7-nAchr) located on glutamatergic terminals. KYNA has been often reported to be neuroprotective in different neurotoxic models. The systemic administration of L-kynurenine (L-KYN)--the precursor of KYNA--together with probenecid (PROB)--an inhibitor of organic acids transport--to rodents increases KYNA levels in the brain in a dose-dependent manner. The striatal infusion of the toxin 6-hydroxydopamine (6-OHDA) to rodents is one of the common models used to simulate Parkinson's disease (PD). Different studies have linked PD alterations with excessive glutamatergic transmission in the striatum since NMDAr antagonists exert beneficial effects in PD models. In this work we investigated the effect that a systemic administration of L-KYN+PROB exerted on the toxic model induced by 6-OHDA in rats. PROB (50 mg/kg, i.p.) + L-KYN (75 mg/kg, i.p.) were given to rats for seven consecutive days. On day two of treatment, the animals were infused with a single injection of 6-OHDA (20 μg/2 μl) into the right striatum. Fourteen days post-lesion, rotation behavior was assessed as a marker of motor impairment. The total levels of dopamine (DA) were also estimated in striatal tissue samples of 6-OHDA-treated animals as a neurochemical marker of damage. In addition, twenty eight days post-lesion, the striatal damage was assessed by hematoxylin/eosin staining and immunohistochemistry against glial fibrillary acidic protein (GFAP) in the same animals. Neurodegeneration was also assessed by Fluoro Jade staining. 6-OHDA infusion increased rotation behavior, striatal reactive gliosis and neurodegeneration, while DA levels were decreased. For all markers evaluated, we observed protective

  5. Neuroprotective effect of trans-cinnamaldehyde on the 6-hydroxydopamine-induced dopaminergic injury.

    PubMed

    Pyo, Ji-Hi; Jeong, You-Kyung; Yeo, Sujung; Lee, Je-Hyun; Jeong, Mi-Young; Kim, Sung-Hoon; Choi, Yeong-Gon; Lim, Sabina

    2013-01-01

    The anti-inflammatory and neuroprotective effects of trans-cinnamaldehyde (TCA) were investigated on the inflammatory cells and the dopaminergic degeneration in mice. TCA inhibited the up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-induced inflammatory BV2 microglial cells. To investigate the TCA efficacy on the 6-hydroxydopamine (6-OHDA)-induced dopaminergic degeneration in mice, an intracerebroventricular injection of 6-OHDA was given to the mice, and TCA (30 mg/kg) was intraperitoneally administered. At 7 d after the 6-OHDA injection, 6-OHDA led to a severe loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the striatum and substantia nigra (SN). On the other hand, TCA dramatically maintained the number of TH-positive dopaminergic neurons in the striatum and SN regions of the 6-OHDA-treated mice, which indicates that TCA is able to inhibit the 6-OHDA-induced reduction of TH expression in the dopaminergic neurons in the striatum and SN regions. TCA also inhibited the induction of iNOS and COX-2 in the 6-OHDA model, similarly as shown in the LPS-induced inflammatory BV2 microglial cells. These results indicate that TCA has a neuroprotective effect on dopaminergic neurons and that this effect may be associated with the inhibition of inflammatory responses. These findings suggest that TCA may be a therapeutic candidate for the prevention of inflammation-mediated neurodegenerative diseases.

  6. Salidroside Protects Against 6-Hydroxydopamine-Induced Cytotoxicity by Attenuating ER Stress.

    PubMed

    Tao, Kai; Wang, Bao; Feng, Dayun; Zhang, Wei; Lu, Fangfang; Lai, Juan; Huang, Lu; Nie, Tiejian; Yang, Qian

    2016-02-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic strategies that halt the neurodegenerative processes are lacking, reinforcing the need to better understand the molecular drivers of this disease. Importantly, increasing evidence suggests that the endoplasmic reticulum (ER) stress-induced unfolded protein response is likely involved in DA neuronal death. Salidroside, a major compound isolated from Rhodiola rosea L., possesses potent anti-oxidative stress properties and protects against DA neuronal death. However, the underlying mechanisms are not well understood. In the present study, we demonstrate that salidroside prevents 6-hydroxydopamine (6-OHDA)-induced cytotoxicity by attenuating ER stress. Furthermore, treatment of a DA neuronal cell line (SN4741) and primary cortical neurons with salidroside significantly reduced neurotoxin-induced increases in cytoplasmic reactive oxygen species and calcium, both of which cause ER stress, and cleaved caspase-12, which is responsible for ER stress-induced cell death. Together, these results suggest that salidroside protects SN4741 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by attenuating ER stress. This provides a rationale for the investigation of salidroside as a potential therapeutic agent in animal models of PD.

  7. Effect of acupuncture on 6-hydroxydopamine-induced nigrostratal dopaminergic neuronal cell death in rats.

    PubMed

    Kim, Yeung-Kee; Lim, Hyung-Ho; Song, Yun-Kyung; Lee, Hee-Hyuk; Lim, Sabina; Han, Seung-Moo; Kim, Chang-Ju

    In this study, we investigated the effect of acupuncture at the Zusanli acupoint (ST36) on the nigrostriatal dopaminergic neuronal cell death in the rats with Parkinson's disease. Two weeks after unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum, an apomorphine-induced rotational behavior test showed significant rotational asymmetry in the rats with Parkinson's disease. Immunostaining for tyrosine hydroxylase demonstrated a dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. Acupuncture at the ST36 for 14 days significantly inhibited rotational asymmetry in the rats with Parkinson's disease, and also protected against 6-OHDA-induced nigrostriatal dopaminergic neuronal loss. These effects of acupuncture were not observed for the non-acupoint (hip) acupuncture. The present study shows that acupuncture at the ST36 acupoint can be used as a useful strategy for the treatment of Parkinson's disease.

  8. Dexmedetomidine Regulates 6-hydroxydopamine-Induced Microglial Polarization.

    PubMed

    Zhang, Pei; Li, Yu; Han, Xuechang; Xing, Qunzhi; Zhao, Lei

    2017-02-28

    Microglia have undergone extensive characterization and have been shown to present distinct phenotypes, such as the M1 or M2 phenotypes, depending on their stimuli. As a highly specific neurotoxin, 6-hydroxydopamine (6-OHDA) can be used to further our understanding of the immune response in Parkinson's disease (PD). Dexmedetomidine (DEX), a centrally selective α2-adrenoceptor agonist, performs very well as an anti-anxiety medication, sedative and analgesic. In the present study, we investigated the effects of DEX on 6-OHDA-induced microglial polarization. Our results indicate that treatment with 6-OHDA promotes microglial polarization toward the M1 state in BV2 microglia cells by increasing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor-α, which can be prevented by pretreatment with DEX. In addition, we found that 6-OHDA blocked IL-4-mediated microglial M2 polarization by suppressing expression of the microglial M2 markers arginase-1 (Arg-1), resistin-like α (Retnla/Fizz1), and chitinase 3-like 3 (Chi3l3/Ym1), which could be ameliorated by pretreatment with DEX. Notably, the inhibitory effects of 6-OHDA on IL-4-mediated induction of the anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 could be significantly alleviated by pretreatment with DEX in a dose-dependent manner (P < 0.01). Mechanistically, alternations in the activation of signal transducer and activator of transcription 6 were involved in this process. These findings suggest that administration of DEX has the potential to interrupt the process of microgliosis in PD.

  9. RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-κB signaling in dopaminergic cells.

    PubMed

    Pranski, Elaine L; Dalal, Nirjari V; Sanford, Carson Van; Herskowitz, Jeremy H; Gearing, Marla; Lazo, Carlos; Miller, Gary W; Lah, James J; Levey, Allan I; Betarbet, Ranjita S

    2013-06-01

    Chronic activation of the NF-κB pathway is associated with progressive neurodegeneration in Parkinson's disease (PD). Given the role of neuronal RING finger protein 11 (RNF11) as a negative regulator of the NF-κB pathway, in this report we investigated the function of RNF11 in dopaminergic cells in PD-associated neurodegeneration. We found that RNF11 knockdown in an in vitro model of PD mediated protection against 6-OHDA-induced toxicity. In converse, over-expression of RNF11 enhanced 6-OHDA-induced dopaminergic cell death. Furthermore, by directly manipulating NF-κB signaling, we showed that the observed RNF11-enhanced 6-OHDA toxicity is mediated through inhibition of NF-κB-dependent transcription of TNF-α, antioxidants GSS and SOD1, and anti-apoptotic factor BCL2. Experiments in an in vivo 6-OHDA rat model of PD recapitulated the in vitro results. In vivo targeted RNF11 over-expression in nigral neurons enhanced 6-OHDA toxicity, as evident by increased amphetamine-induced rotations and loss of nigral dopaminergic neurons as compared to controls. This enhanced toxicity was coupled with the downregulation of NF-κB transcribed GSS, SOD1, BCL2, and neurotrophic factor BDNF mRNA levels, in addition to decreased TNF-α mRNA levels in ventral mesenchephalon samples. In converse, knockdown of RNF11 was associated with protective phenotypes and increased expression of above-mentioned NF-κB transcribed genes. Collectively, our in vitro and in vivo data suggest that RNF11-mediated inhibition of NF-κB in dopaminergic cells exaggerates 6-OHDA toxicity by inhibiting neuroprotective responses while loss of RNF11 inhibition on NF-κB activity promotes neuronal survival. The decreased expression of RNF11 in surviving cortical and nigral tissue detected in PD patients, thus implies a compensatory response in the diseased brain to PD-associated insults. In summary, our findings demonstrate that RNF11 in neurons can modulate susceptibility to 6-OHDA toxicity through NF

  10. Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival during 6-OHDA-Induced Oxidative Stress

    PubMed Central

    Asaithambi, Arunkumar; Ay, Muhammet; Jin, Huajun; Gosh, Anamitra; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2014-01-01

    Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD. PMID:24806360

  11. Caffeine and CSC, adenosine A2A antagonists, offer neuroprotection against 6-OHDA-induced neurotoxicity in rat mesencephalic cells.

    PubMed

    Nobre, Hélio Vitoriano; Cunha, Geanne Matos de Andrade; de Vasconcelos, Lissiana Magna; Magalhães, Hemerson Iury Ferreira; Oliveira Neto, Raimundo Nogueira; Maia, Flávio Damasceno; de Moraes, Manoel Odorico; Leal, L Kalyne A Moreira; Viana, Glauce Socorro de Barros

    2010-01-01

    In this study, the cytoprotective effects of caffeine (CAF) and 8-(3-chlorostyryl)-caffeine (CSC), A(2A) receptor antagonists, were tested against 6-OHDA-induced cytotoxicity, in rat mesencephalic cells. Both drugs significantly increased the number of viable cells, after their exposure to 6-OHDA, as measured by the MTT assay. While nitrite levels in the cells were drastically increased by 6-OHDA, their concentrations were brought toward normality after CAF or CSC, indicating that both drugs block 6-OHDA-induced oxidative stress which leads to free radicals generation. A complete blockade of 6-OHDA-induced lipid peroxidation, considered as a major source of DNA damage, was observed after cells treatment with CAF or CSC. 6-OHDA decreased the number of normal cells while increasing the number of apoptotic cells. In the CAF plus 6-OHDA group, a significant recover in the number of viable cells and a decrease in the number of apoptotic cells were seen, as compared to the group treated with 6-OHDA alone. A similar effect was observed after cells exposure to CSC in the presence of 6-OHDA. Unexpectedly, while a significant lower number of activated microglia was observed after cells exposure to CAF plus 6-OHDA, this was not the case after cells exposure to CSC under the same conditions. While CAF lowered the percentage of reactive astrocytes increased by 6-OHDA, CSC presented no effect. The effects of these drugs were also examined on the releases of myeloperoxidase (MPO), an inflammatory marker, and lactate dehydrogenase (LDH), a marker for cytotoxicity, in human neutrophils, in vitro. CSC and CAF (0.1, 1 and 10 microg/ml) produced inhibitions of the MPO release from PMA-stimulated cells, ranging from 45 to 83%. In addition, CSC and CAF (5, 50 and 100 microg/ml) did not show any cytotoxicity in the range of concentrations used, as determined by the LDH assay. All together, our results showed a strong neuroptrotection afforded by caffeine or CSC, on rat mesencephalic

  12. Inhibition of Mitochondrial Clearance and Cu/Zn-SOD Activity Enhance 6-Hydroxydopamine-Induced Neuronal Apoptosis.

    PubMed

    In, Sua; Hong, Chang-Won; Choi, Boyoung; Jang, Bong-Geum; Kim, Min-Ju

    2016-01-01

    Parkinson's disease (PD) is a common movement disorder among neurodegenerative diseases, involving neuronal cell death in the substantia nigra of the midbrain. Although mechanisms of cell death in PD have been studied, the exact molecular pathogenesis is still unclear. Here, we explore the relationship between two types of cell death, autophagy and apoptosis, which have been studied separately in parkinsonian mimetic model of 6-hydroxydopamine (6-OHDA). 6-OHDA induced autophagy firstly and then later inhibition of autophagy flux occurred with apoptosis. The apoptosis was prevented by treatment of pan-caspase inhibitor, zVAD-fmk (benzyloxycarbonyl-VAD-fluoromethylketone (zVAD)), or early phase inhibitor of autophagy, 3-methyladenine (3-MA), indicating that autophagic induction was followed by the apoptosis. Interestingly, late step inhibitor of autophagy, bafilomycin A1 (BafA), aggravated 6-OHDA-induced apoptosis. This was associated with mitochondrial abnormality such as the inhibition of damaged mitochondrial clearance and aberrant increase of extracellular oxygen consumption. Furthermore, treatment of BafA did not inhibit 6-OHDA-mediated superoxide formation but strongly reduced the hydrogen peroxide production to below basal levels, indicating failure from superoxide to hydrogen peroxide. These results were accompanied by a lowered expression and activity of copper/zinc superoxide dismutase (Cu/Zn-SOD) but not of manganese SOD (MnSOD) and catalase. Thus, the present study suggests that crosstalk among apoptosis, autophagy, and oxidative stress is a causative factor of 6-OHDA-induced neuronal death and provides a mechanistic understanding of PD pathogenesis.

  13. The Effects of Crocin on 6-OHDA-Induced Oxidative/Nitrosative Damage and Motor Behaviour in Hemiparkinsonian Rats

    PubMed Central

    Hosseini, Maryam; Rajaei, Ziba; Alaei, Hojjatallah; Tajadini, Mohamadhasan

    2016-01-01

    Background Crocin is considered to prevent oxidative stress-related diseases, such as ischemia and Alzheimer’s. The aim of the present investigation was to evaluate the effects of crocin on motor behaviour and 6-OHDA-induced oxidative/nitrosative damage to the striatum in an experimental model of Parkinson’s disease. Methods Left medial forebrain bundle was lesioned by microinjection of 6-OHDA (16μg in 0.2% ascorbate-saline). Crocin (30 and 60 mg/kg) was injected intraperitoneally three days before surgery until six weeks. Rotational behaviour and biochemical analysis were used to evaluate the effect of crocin in a unilateral 6-OHDA-induced model of Parkinson’s disease. Results The contralateral rotations induced by apomorphine in 6-OHDA lesioned group were highly significant (P < 0.001) as compared to the sham group. Moreover, chronic administration of crocin at doses of 30 and 60 mg/kg over six weeks did not change the rotations. The TBARS and nitrite levels in the striatum were also significantly (P < 0.05) increased in lesioned group. Treatment with crocin at a dose of 60 mg/kg significantly decreased the nitrite levels (P < 0.05) in the striatum. Conclusion Crocin at a dose of 60 mg/kg could be effective in preventing the nitrosative damage in the striatum. Further investigations using higher doses of crocin is suggested to get the full neuroprotective effects of crocin in Parkinson’s disease. PMID:28090177

  14. Acetyl-l-carnitine protects dopaminergic nigrostriatal pathway in 6-hydroxydopamine-induced model of Parkinson's disease in the rat.

    PubMed

    Afshin-Majd, Siamak; Bashiri, Keyhan; Kiasalari, Zahra; Baluchnejadmojarad, Tourandokht; Sedaghat, Reza; Roghani, Mehrdad

    2017-02-12

    Parkinson's disease (PD) is a movement disorder and the second most common neurodegenerative disease worldwide in which nigrostriatal dopaminergic neurons within substantia nigra pars compacta (SNC) are lost, with clinical motor and non-motor symptoms including bradykinesia, resting tremor, rigidity, stooping posture and cognitive deficits. This study was undertaken to evaluate the neuroprotective potential of acetyl-l-carnitine (ALC) against unilateral striatal 6-hydroxydopamine (6-OHDA)-induced model of PD and to explore some involved mechanisms. In this experimental study, intrastriatal 6-OHDA-lesioned rats received ALC at doses of 100 or 200mg/kg/day for 1 week. ALC (200mg/kg) lowered apomorphine-induced rotational asymmetry and reduced the latency to initiate and the total time in the narrow beam test, reduced striatal malondialdehyde (MDA), increased catalase activity and glutathione (GSH) level, prevented reduction of nigral tyrosine hydroxylase (TH)-positive neurons and striatal TH-immunoreactivity, and lowered striatal glial fibrillary acidic protein (GFAP) and its immunoreactivity as an indicator of astrogliosis, and nuclear factor NF-kappa B and Toll-like receptor 4 (TLR4) as reliable markers of neuroinflammation. Meanwhile, ALC at both doses mitigated nigral DNA fragmentation as a valuable marker of apoptosis. The results of this study clearly suggest the neuroprotective effect of ALC in 6-OHDA-induced model of PD through abrogation of neuroinflammation, apoptosis, astrogliosis, and oxidative stress and it may be put forward as an ancillary therapeutic candidate for controlling PD.

  15. Fixed-ratio discrimination training as replacement therapy in Parkinson's disease: studies in a 6-hydroxydopamine-treated rat model.

    PubMed

    Van Keuren, K R; Stodgell, C J; Schroeder, S R; Tessel, R E

    1998-01-05

    Severe 6-hydroxydopamine (6-OHDA)-induced neostriatal dopamine (DA) depletion is generally held to be irreversible. Adult rats administered 6-OHDA soon after weaning, or neonatally, respectively model Parkinson's disease (PD) and Lesch-Nyhan syndrome (LNS). Prior studies in our laboratory indicate that prolonged training on incrementally more difficult fixed-ratio (FR) discriminations can reverse 'irreversible' 6-OHDA-induced neostriatal DA depletion in adult LNS rats. The present study evaluated the effects of such training on neostriatal DA depletion and its functional consequences in adult PD and control (vehicle-injected) rats. After recovery from 6-OHDA-induced hypophagia, rats were sacrificed to assess neostriatal DA depletion magnitude, or were food-deprived and either subjected to food-maintained operant FR discrimination training or allowed to remain in their home cages. 6-OHDA treatment antagonized amphetamine (AMP)-induced increases in brief rearing behavior and locomotor activity in 3-month-old PD rats prior to training, and reduced operant response rates throughout training without affecting learning rates. One week after training, AMP-increased locomotor and brief-rearing frequencies were augmented in all groups except trained controls, and the prior inhibitory effect of 6-OHDA treatment on AMP-increased behavioral frequencies was essentially eliminated. Cumulative apomorphine (APO) dose-effect curve (0.1-3.2 mg/kg) construction 3 weeks post-training revealed that 6-OHDA treatment abolished APO-induced intense licking behavior. However, training eliminated the hyperresponsiveness of 6-OHDA-treated rats to the locomotor- and brief-rearing stimulant effects of APO but did not affect the depletion of neostriatal DA. Nevertheless, 6-OHDA-induced increases in neostriatal DOPAC/DA and HVA/DA ratios were normalized by age/food-deprivation while that of 3MT/DA was not. These findings suggest that training reduces the functional responsiveness of at least some

  16. Manganese Superoxide Dismutase Protects against 6-Hydroxydopamine Injury in Mouse Brains*

    PubMed Central

    Callio, Jason; Oury, Tim D.; Chu, Charleen T.

    2007-01-01

    Dopaminergic neurons of the substantia nigra are susceptible to toxin-based insults. Intrastriatal injection of 6-hydroxydopamine results in selective toxicity to these neurons. A mechanistic role for reactive oxygen species is supported by observations that antioxidants confer protection from 6-hydroxydopamine. Although cell culture studies have suggested extracellular or nonmitochondrial mechanisms in 6-hydroxydopamine toxicity, the compartmentalization of oxidative injury mechanisms is incompletely defined in vivo. Transgenic mice overexpressing mitochondrial manganese superoxide dismutase or extracellular superoxide dismutase received unilateral intrastriatal injections of 6-hydroxydopamine. Mice that overexpress manganese superoxide dismutase showed significantly smaller striatal lesions than littermate controls. There were no differences in nonspecific striatal injury associated with contralateral vehicle injection. Manganese superoxide dismutase overexpression also protected against loss of neuronal cell bodies in the substantia nigra. In contrast, mice overexpressing extracellular superoxide dismutase showed no protection from 6-hydroxydopamine toxicity in either brain region. Protection of the nigrostriatal system by overexpression of manganese super-oxide dismutase supports a role for mitochondrially derived superoxide in 6-hydroxydopamine toxicity. Mitochondrial oxidative stress appears to be a common mechanism among diverse models of Parkinson disease, whether involving toxins, mutated genes, or cybrid cells containing patient mitochondria. Antioxidant therapies that target this subcellular compartment may prove promising. PMID:15755737

  17. Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson's disease in rats.

    PubMed

    Han, Bing; Hu, Jia; Shen, Jingyu; Gao, Yonglin; Lu, Yan; Wang, Tian

    2013-08-15

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting predominantly the dopaminergic mesotelencephalic system. Enormous progress has been made in the treatment of PD. Our previous study has shown that hydroxysafflor yellow A (HSYA) could attenuate the neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. In the present work, we examined whether HSYA had the neuroprotective effect on dopaminergic neurons of substantia nigra in a rat model of PD. Adult Sprague-Dawley rats were unilaterally injected with 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. The PD rats were treated with HSYA (2 or 8 mg/kg) via caudal vein injection daily for 4 weeks. Rotational tests showed that HSYA significantly attenuated apomorphine-induced turns in 6-OHDA-induced PD rats. HSYA treatment resulted in a significant protection against the loss of tyrosine hydroxylase-positive cells. Our data showed that HSYA also increased the levels of dopamine and its metabolites, glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in striatum of PD rats. In conclusion, these results supported a role for HSYA in preserving dopamine neuron integrity and motor function in a rodent model of PD, and implied a potential neuroprotective role for HSYA in this disease.

  18. Cortex Fraxini (Qingpi) Protects Rat Pheochromocytoma Cells against 6-Hydroxydopamine-Induced Apoptosis

    PubMed Central

    Li, Jing-Jie; Zhou, Shi-Ya; Zhang, Huan; Lam, Kim-Hung; Lee, Simon Ming-Yuen; Yu, Peter Hoi-Fu; Chan, Shun-Wan

    2015-01-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder having close relationship with oxidative stress induced by reactive oxygen species (ROS). Cortex Fraxini (QP) is a kind of traditional Chinese medicinal herb with antioxidant properties. It may be a potential candidate for preventing the development of chronic neurodegenerative diseases. Thus, the key objective of the current study was to investigate the neuroprotective effect of QP water extract on 6-hydroxydopamine (6-OHDA) induced apoptosis in rat pheochromocytoma (PC12) cells. It was found that QP water extract possesses strong antioxidant property with SC50 = 0.15 mg/mL. Total phenolic content of QP water extract was found to be 200.78 ± 2.65 mg GAE/g. QP water extract's free radical scavenging capacity was demonstrated by reversing the increased level of intracellular ROS induced by 6-OHDA, using 2′,7′-dichlorodihydrofluorescein diacetate. Moreover, QP water extract (0.5 mg/mL) could remarkably increase the viability of PC12 cells treated with 6-OHDA. The protective effect of QP water extract was found to be via inhibiting MEK/ERK pathway and reversing PI3-K/Akt/GSK3β pathway. The current results suggest that QP might be a potential candidate for preventing the development of neurodegenerative diseases, such as PD. PMID:26347850

  19. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats

    PubMed Central

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  20. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  1. Dimerumic Acid and Deferricoprogen Activate Ak Mouse Strain Thymoma/Heme Oxygenase-1 Pathways and Prevent Apoptotic Cell Death in 6-Hydroxydopamine-Induced SH-SY5Y Cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-03

    Parkinson's disease (PD) is a neurodegenerative disorder, which can be modeled using the neurotoxin 6-hydroxydopamine (6-OHDA) to generate oxidative stress. Here, we studied the effects of the antioxidants deferricoprogen (DFC) and dimerumic acid (DMA), produced by rice fermented with Monascus purpureus NTU 568, on 6-OHDA-induced apoptosis in SH-SY5Y cells and their potential protective mechanisms. DMA and DFC inhibited 6-OHDA-induced apoptosis and cellular reactive oxygen species (ROS) in SH-SY5Y human neuroblastoma cells. Molecular analysis demonstrated associated upregulation of the Ak mouse strain thymoma (Akt), heme oxygenase-1 (HO-1), and signal-regulated kinase (ERK) pathways along with inhibited phosphorylation of c-Jun N-terminal kinase (JNK) and p38 pathways and altered homodimeric glycoprotein, N-methyl-d-aspartate (NMDA) receptor, and immunoglobulin Fc receptor gene expression. These results suggested that the neuroprotection elicited by DMA and DFC against 6-OHDA-induced neurotoxicity was associated with the Akt, MAPK, and HO-1 pathways via regulating the gene expression of NMDA receptor, homodimeric glycoprotein, and immunoglobulin Fc receptor.

  2. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways.

    PubMed

    Pasban-Aliabadi, Hamzeh; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi

    2017-04-01

    Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.

  3. Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats.

    PubMed

    Tarohda, Tohru; Ishida, Yasushi; Kawai, Keiichi; Yamamoto, Masayoshi; Amano, Ryohei

    2005-09-01

    Time courses of changes in manganese, iron, copper, and zinc concentrations were examined in regions of the brain of a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations were simultaneously determined in brain section at the level of the substantia nigra 1, 3, 7, 10, 14, and 21 days after the 6-OHDA treatment and compared with those of control rats. The distributions of these elements were obtained for 18 regions of the sagittal section (1-mm thick). The ICP-MS results indicated that Mn, Fe, Cu, and Zn levels of the 6-OHDA-induced parkinsonian brain were observed to increase in all regions that lay along the dopaminergic pathway. In the substantia nigra, the increase in Mn level occurred rapidly from 3 to 7 days and preceded those in the other elements, reaching a plateau in the 6-OHDA brain. Iron and Zn levels increased gradually until 7 days and then increased rapidly from 7 to 10 days. The increase in the copper level was slightly delayed. In other regions, such as the globus pallidus, putamen, and amygdala, the levels of Mn, Fe, Cu, and Zn increased with time after 6-OHDA treatment, although the time courses of their changes were region-specific. These findings contribute to our understanding of the roles of Mn and Fe in the induction of neurological symptoms and progressive loss of dopaminergic neurons in the development of Parkinson's disease. Manganese may hold the key to disturbing cellular Fe homeostasis and accelerating Fe levels, which play the most important role in the development of Parkinson's disease.

  4. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    PubMed

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.

  5. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats

    PubMed Central

    Ma, Delin; Shuler, Jeffrey M.; Raider, Kayla D.; Rogers, Robert S.; Wheatley, Joshua L.; Geiger, Paige C.; Stanford, John A.

    2015-01-01

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson’s disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats’ nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. PMID:25862572

  6. Involvement of Mu Opioid Receptor Signaling in the Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

    PubMed Central

    Eftekhar-Vaghefi, Shahrzad; Esmaeili-Mahani, Saeed; Elyasi, Leila; Abbasnejad, Mehdi

    2015-01-01

    Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamine-induced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular calcium, reactive oxygen species and mitochondrial membrane potential were assessed by fluorescence spectrophotometry method. Immunoblot technique was used to evaluate cytochrome-c and activated caspase-3 as biochemical markers of apoptosis induction. Results: The data showed that 6-OHDA caused significant cell damage, loss of mitochondrial membrane potential and increase in intracellular reactive oxygen species and calcium levels as well as activated caspase-3 and cytochrome-c release. Incubation of SH-SY5Y cells with μ-opioid agonists, morphine and DAMGO, but not with δ-opioid agonist, DADLE, elicited protective effect and reduced biochemical markers of cell damage and death. Discussion: The results suggest that μ-opioid receptors signaling participate in the opioid neuroprotective effects against 6-OHDA-induced neurotoxicity. PMID:26904174

  7. Involvement of activation of the Nrf2/ARE pathway in protection against 6-OHDA-induced SH-SY5Y cell death by α-iso-cubebenol.

    PubMed

    Park, Sun Young; Kim, Do Yeon; Kang, Jong-Koo; Park, Geuntae; Choi, Young-Whan

    2014-09-01

    Free radical-mediated neurodegeneration is one of the many causes of Parkinson's disease (PD). As part of our ongoing studies on the identification of biologically active Schisandra chinensis components, we have isolated and structurally elucidated α-iso-cubebenol. This study was carried out in an attempt to clarify the neuroprotective effect of α-iso-cubebenol on toxin-insulted dopaminergic neuronal death using 6-hydroxy-dopamine (6-OHDA)-induced dopaminergic SH-SY5Y cells. α-iso-cubebenol significantly attenuated the loss of mitochondrial function (MTT assay) and membrane integrity (lactate dehydrogenase assay) associated with 6-OHDA-induced neurotoxicity. Pretreatment of the cells with α-iso-cubebenol diminished the intracellular accumulation of reactive oxygen species (ROS) and calcium in response to 6-OHDA. Moreover, α-iso-cubebenol protected against 6-OHDA-induced neurotoxicity through inhibition of SH-SY5Y cell apoptosis. In addition, JC-1 staining, which is a well-established measure of mitochondrial damage, was decreased after treatment with α-iso-cubebenol. Notably, α-iso-cubebenol inhibited the release of mitochondrial flavoprotein apoptosis inducing factor (AIF) from the mitochondria to the cytosol and nucleus following 6-OHDA treatment. In addition, α-iso-cubebenol reduced the 6-OHDA-induced phosphorylation of ERK and induced the phosphorylation of PKA, PKB, and CREB in a dose-dependent manner. Moreover, α-iso-cubebenol stimulated the activation of Nrf2, a downstream target of CREB. Furthermore, α-iso-cubebenol stimulated the expression of multiple antioxidant response genes (NQO-1 and HO-1). Finally, CREB and Nrf2 siRNA transfection diminished α-iso-cubebenol-mediated neuroprotection.

  8. Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities.

    PubMed

    Gharib, Ehsan; Gardaneh, Mossa; Shojaei, Sahar

    2013-06-01

    We examined the impact of strong co-presence and function of glutathione peroxidase-1 (GPX-1) and glial cell line-derived neurotrophic factor (GDNF) on protecting the rat dopaminergic pheochromocytoma cell line PC12 against 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H₂O₂) toxicities. Primarily, GPX-1 over-expression by PC12 cells infected with pLV-GPX1 lentivirus vectors significantly increased cell survival against 6-OHDA toxicity (p<0.01). Addition of conditioned medium collected from growing wild-type astrocytes (Control astro-CM) increased survival rate of pLV-GPX1 infectants by 10% compared to their un-treated counterparts (p<0.05) and 20% compared to their treated empty vector control (p<0.01). Treatment of pLV-GPX1 cells with astro-CM of GDNF-over-secreting astrocytes (Test astro-CM) significantly induced GPX-1 expression, peroxidase enzymatic activity, and intra-cellular glutathione (GSH) levels. These changes paralleled with protection of 90% of GDNF⁺/GPX1⁺ PC12 cells against toxicity, a rate that was 37% up from their un-infected un-treated (GDNF⁻/GPX1⁻) controls (p<0.001), and 12% up from pLV-GPX1 cells that received only Control astro-CM (GPX⁺/GDNF⁻) (p<0.01). GPX-1 over-expression per se suppressed intra-cellular H₂O₂ elevation upon 6-OHDA exposure, and addition of GDNF medium significantly accelerated this suppression (p<0.01). Substitution of 6-OHDA with H₂O₂ induced similar intra-cellular changes and comparable protection levels. In all cell groups, increased cell survival against either compound was further confirmed by increased live cell counts measured by double staining. Following depletion of intra-cellular GSH, only 46% of pLV-GPX1 cells survived 6-OHDA toxicity, whereas over 70% of them were saved upon GDNF treatment (p<0.001). Moreover, capase-3 activation was reduced in pLV-GPX1 cells and maximized by addition of GDNF. Comparison analyses established correlations between GPX-1-GDNF co-presence and both

  9. Complexities in the neurotoxic actions of 6-hydroxydopamine in relation to the cytoprotective properties of taurine.

    PubMed

    Hayes, J; Tipton, K F; Bianchi, L; Corte, L D

    2001-05-15

    The neurotoxin 6-hydroxydopamine was shown to cause an imbalance between the direct and indirect pathways of the striato-nigral system as evidenced by a decreased release of gamma-aminobutyric acid and taurine in the substantia nigra but not in the globus pallidus following neostriatal stimulation with kainate (100 microM). The neurotoxicity of 6-hydroxydopamine is generally believed to result from reactive-oxygen radical formation, although it is also known to inhibit mitochondrial NADH dehydrogenase. The release of Fe(II) from the unactivated form [3Fe(III)-4S] of cytoplasmic aconitase (EC(50) < 8 microM) was shown to be followed by the slower oxidation of thiol groups in the protein. Complete loss of -SH groups, and enzyme activity, was seen after incubation of glyceraldenyde-3-phosphate dehydrogenase with 200 microM 6-hydroxydopamine for 75 min at 37 degrees C (IC(50) = 70.8 +/- 0.3 microM). Thus the cellular effects of 6-hydroxydopamine are complex, involving impairment of mitochondrial function, iron- release, sulphydryl-group oxidation, and enzyme inhibition in addition to direct generation of reactive oxygen radicals. Taurine, which is known to be neuroprotective in some other systems, only affords protection against some of these effects, thereby explaining its reported ineffectiveness against 6-hydroxydopamine toxicity.

  10. Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells.

    PubMed

    Takata, Maki K; Yamaguchi, Fuminori; Nakanose, Koichi; Watanabe, Yasuo; Hatano, Naoya; Tsukamoto, Ikuko; Nagata, Mitsuhiro; Izumori, Ken; Tokuda, Masaaki

    2005-11-01

    We evaluated the neuroprotective effects of D-psicose, one of the rare sugars, on 6-hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells, the in vitro model of Parkinson's disease (PD). Apoptotic characteristics of PC12 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. The results showed that D-psicose at a concentration of 50 mM, exerted significant protective effects against the 6-OHDA (200 muM)-induced PC12 cell apoptosis, while other sugars had little or no protective effects. We have observed a significant increase in the level of intracellular glutathione after 24 h in 6-OHDA (200 muM) treated cells, while a decrease in the level was observed at 3 h and 6 h. Also, a synergistic exposure to D-psicose and 6-OHDA for 24 h showed a significant increase in intracellular glutathione level. Therefore, these results suggest that D-psicose may play a potential role as a neuroprotective agent in the treatment of neurodegenerative diseases by inducing an up-regulation of intracellular glutathione.

  11. Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson's disease rat models.

    PubMed

    Park, Hyun Jin; Zhao, Ting Ting; Lee, Kyung Sook; Lee, Seung Ho; Shin, Keon Sung; Park, Keun Hong; Choi, Hyun Sook; Lee, Myung Koo

    2015-01-01

    The present study investigated the effects of (-)-sesamin on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using PC12 cells and dopaminergic neuronal cells of 6-OHDA-lesioned rat model of Parkinson's disease (PD). In PC12 cells, treatment with (-)-sesamin (25 µM) reduced 6-OHDA (100 µM)-induced cell death and induced transient extracellular signal-regulated kinase (ERK1/2) phosphorylation and Bad phosphorylation at Ser112 (BadSer112). In contrast, sustained ERK1/2 phosphorylation, p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK1/2) phosphorylation, and cleaved-caspase-3 activity, all of which were induced by 6-OHDA (100 µM), were inhibited by treatment with (-)-sesamin (25 µM). Furthermore, co-treatment with (-)-sesamin (30 mg/kg, p.o.) once a day for 28 days significantly increased the number of tyrosine hydroxylase-immunopositive neuronal cells and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid in the substantia nigra-striatum of 6-OHDA-lesioned rat model of PD with or without L-DOPA treatment. These results suggest that (-)-sesamin protects 6-OHDA-induced cytotoxicity via the activation of transient ERK1/2-BadSer112 system and the inhibition of sustained ERK-p38MAPK-JNK1/2-caspase-3 system in PC12 cells. (-)-Sesamin also shows protective effects on long-term L-DOPA therapy in dopaminergic neuronal cells of PD rat models. (-)-Sesamin may serve as adjuvant therapeutics in PD.

  12. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.

  13. Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model.

    PubMed

    Park, Hi-Joon; Lim, Sabina; Joo, Wan-Seok; Yin, Chang-Shik; Lee, Hyang-Sook; Lee, Hye-Jung; Seo, Jung Chul; Leem, Kanghyun; Son, Yang-Sun; Kim, Youn-Jung; Kim, Chang-Ju; Kim, Yong-Sik; Chung, Joo-Ho

    2003-03-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder, and it has been suggested that treatments promoting survival and functional recovery of affected dopaminergic neurons could have a significant and long-term therapeutic value. In the present study, we investigated the neuroprotective effects of acupuncture on the nigrostriatal system in rat unilaterally lesioned with 6-hydroxydopamine (6-OHDA, 4 microg/microl, intrastriatal injection) using tyrosine hydroxylase (TH) and receptor for brain-derived neurotrophic factor, trkB, immunohistochemistries. Two weeks after the lesions were made, rats presented with asymmetry in rotational behavior (118.3 +/- 17.5 turns/h) following injection with apomorphine, a dopamine receptor agonist (0.5 mg/kg, sc). In contrast, acupunctural treatment at acupoints GB34 and LI3 was shown to significantly reduce this motor deficit (14.6 +/- 13.4 turns/h). Analysis via TH immunohistochemistry revealed a substantial loss of cell bodies in the substantia nigra (SN) (45.7% loss) and their terminals in the dorsolateral striatum ipsilateral to the 6-OHDA-induced lesion. However, acupunctural treatment resulted in the enhanced survival of dopaminergic neurons in the SN (21.4% loss) and their terminals in the dorsolateral striatum. Acupuncture also increased the expression of trkB significantly (35.6% increase) in the ipsilateral SN. In conclusion, we observed that only acupuncturing without the use of any drug has the neuroprotective effects against neuronal death in the rat PD model and these protective properties of acupuncture could be mediated by trkB.

  14. c-Fos expression after deep brain stimulation of the pedunculopontine tegmental nucleus in the rat 6-hydroxydopamine Parkinson model.

    PubMed

    Saryyeva, Assel; Nakamura, Makoto; Krauss, Joachim K; Schwabe, Kerstin

    2011-11-01

    Deep brain stimulation (DBS) is used to alleviate motor dysfunction in Parkinson's disease (PD). The pedunculopontine nucleus (PPN) may be a potential target for severe freezing and postural instability with 25 Hz stimulation being considered more effective than 130 Hz stimulation. Here we evaluated the expression of c-Fos after 25 Hz and 130 Hz DBS of the pedunculopontine tegmental nucleus (PPTg, i.e., the rodent equivalent to the human PPN) in the rat 6-hydroxydopamine (6-OHDA) PD model. Anaesthetized male Sprague Dawley rats with unilateral 6-OHDA-induced nigrostriatal lesions were stimulated with 25 Hz, 130 Hz, or 0 Hz sham-stimulation for 4h by electrodes implanted into the ipsilateral PPTg. Thereafter the distribution and number of neurons expressing the immediate early gene c-Fos, a marker for acute neuronal activity, was assessed. DBS of the PPTg induced strong ipsilateral c-Fos expression at the stimulation site, with 25 Hz having a more marked impact than 130 Hz. Additionally, c-Fos was strongly expressed in the central gray. In the dorsal part expression was stronger after 25 Hz stimulation, while in the medial and ventral part there was no difference between 25 Hz and 130 Hz stimulation. Expression in the basal ganglia was negligible. In the rat 6-OHDA PD model stimulation of the PPTg did not affect c-Fos expression in the basal ganglia, but had a strong impact on other functional circuitries. PPN stimulation in humans might therefore also have an impact on other systems than the motor system.

  15. Protective effect of tetrahydroxystilbene glucoside on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway.

    PubMed

    Tao, Lizhen; Li, Xiaofeng; Zhang, Lingling; Tian, Jiyu; Li, Xiaobing; Sun, Xin; Li, Xuefen; Jiang, Lin; Zhang, Xiaojun; Chen, Jianzong

    2011-01-01

    Oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease. The molecule, 2,3,5,4'-tetrahydr- oxystilbene-2-O-β-D-glucoside (TSG), is a potent antioxidant derived from the Chinese herb, Polygonum multiflorum Thunb. In this study, we investigated the protective effect of TSG against 6-hydroxydopamine-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. Our data demonstrated that TSG significantly reversed the 6-hydroxydopamine-induced decrease in cell viability, prevented 6-hydroxydopamine-induced changes in condensed nuclei and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, TSG slowed the accumulation of intracellular reactive oxygen species and nitric oxide, counteracted the overexpression of inducible nitric oxide syntheses as well as neuronal nitric oxide syntheses, and also reduced the level of protein-bound 3-nitrotyrosine. These results demonstrate that the protective effects of TSG on rat adrenal pheochromocytoma PC12 cells are mediated, at least in part, by the ROS-NO pathway. Our results indicate that TSG may be effective in providing protection against neurodegenerative diseases associated with oxidative stress.

  16. Deep brain stimulation of the pedunculopontine tegmental nucleus modulates neuronal hyperactivity and enhanced beta oscillatory activity of the subthalamic nucleus in the rat 6-hydroxydopamine model.

    PubMed

    Alam, Mesbah; Heissler, Hans E; Schwabe, Kerstin; Krauss, Joachim K

    2012-01-01

    Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) area has been introduced as a novel surgical therapy for dopamine refractory gait problems, freezing and postural instability in the late stage of Parkinson's disease (PD). Lesions of the pedunculopontine tegmental (PPTg) nucleus, the equivalent of the PPN in rodents, were shown to reduce the elevated discharge rate of the subthalamic nucleus (STN) in the 6-hydroxydopamine (6-OHDA) rat model of PD. In order to further elucidate the modulatory effect of the PPTg on the STN we examined the effect of 25 Hz low frequency PPTg stimulation on neuronal single unit activity and oscillatory local field potentials (LFPs) of the STN, and on the electrocorticogram (ECoG) of the primary motor cortex region in rats with unilateral 6-OHDA induced nigrostriatal lesions. Stimulation of the PPTg reduced the enhanced firing rate in the STN, without affecting the firing pattern or approximate entropy (ApEn). It also reduced the activity in the beta band (15-30 Hz) of the STN, which is elevated in 6-OHDA lesioned rats, without affecting beta activity in the motor cortex. We showed a modulatory effect of PPTg stimulation on altered neuronal STN activity in the PD 6-OHDA rat model, indicating that PPTg DBS may alter activity of the basal ganglia circuitry at least partially. It remains unclear, however, how these changes are exactly mediated and whether they are relevant with regard to the descending PPTg projections in the lower brainstem.

  17. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats

    PubMed Central

    Das, Saroj Kumar; Patel, Bhupesh

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence. PMID:27034665

  18. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    SciTech Connect

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  19. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease: involvement of antioxidative enzymes induction.

    PubMed

    Wu, Chi-Rei; Tsai, Chia-Wen; Chang, Shu-Wei; Lin, Chia-Yuan; Huang, Li-Chun; Tsai, Chia-Wen

    2015-01-05

    The neuroprotective effects of carnosic acid (CA), a phenolic diterpene isolated from rosemary (Rosmarinus officinalis), have been widely investigated in recent years, however, its protection in in vivo still unclear. In this study, we investigated the behavioral activity and neuroprotective effects of CA in a rat model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA). Rats were treated with 20mg/kg body weight of CA for 3 weeks before 6-OHDA exposure. Results indicated that CA improved the locomotor activity and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Significant protection against lipid peroxidation and GSH reduction was observed in the 6-OHDA rats pretreated with CA. Pretreatment with CA increased the protein expression of γ-glutamate-cysteine ligase catalytic subunit, γ-glutamate-cysteine ligase modifier subunit, superoxide dismutase, and glutathione reductase compared with 6-OHDA-stimulated rats and SH-SY5Y cells. Immunoblots showed that the reduction of the Bcl-2/Bax ratio, the induction of caspase 3 cleavage, and the induction of poly(ADP-ribose) polymerase (PARP) cleavage by 6-OHDA was reversed in the presence of SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) in SH-SY5Y cells. Rats treated with CA reversed the 6-OHDA-mediated the activation of c-Jun NH2-terminal kinase and p38, the down-regulation of the Bcl-2/Bax ratio, the up-regulation of cleaved caspase 3/caspase 3 and cleaved PARP/PARP ratio, and the down-regulation of tyrosine hydroxylase protein. However, BAM7, an activator of Bax, attenuated the effect of CA on apoptosis in SH-SY5Y cells. These results suggest that CA protected against 6-OHDA-induced neurotoxicity is attributable to its anti-apoptotic and anti-oxidative action. The present findings may help to clarify the possible mechanisms of rosemary in the neuroprotection of PD.

  20. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  1. An In Vivo Microdialysis Study of FLZ Penetration through the Blood-Brain Barrier in Normal and 6-Hydroxydopamine Induced Parkinson's Disease Model Rats

    PubMed Central

    Hou, Jinfeng; Liu, Qian; Li, Yingfei; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances. PMID:25045708

  2. Lever pressing responses under a fixed-ratio schedule of mice with 6-hydroxydopamine-induced dopamine depletion in the nucleus accumbens.

    PubMed

    Tsutsui, Yuji; Nishizawa, Kayo; Kai, Nobuyuki; Kobayashi, Kazuto

    2011-02-02

    In order to investigate the relationship between dopamine transmission in the nucleus accumbens and operant behavior in mice, mice with 6-hydroxydopamine (6-OHDA)-induced dopamine depletion in the nucleus accumbens were tested for their performance in lever pressing tasks under FR schedules with 8 ratios from FR5 to FR120. The mice were given one 20-mg food pellet per completed FR schedule in FR5, FR10, and FR20; they were given 2 pellets in FR40, and one more cumulatively in the rest of the schedules. Before the 6-OHDA injection surgery, all mice were trained to press a lever under all FR schedules. Then, 6-OHDA or ascorbate was injected into the nucleus accumbens. Postoperatively, the mice were tested under each FR schedule, with 3 sessions per schedule. 6-OHDA-treated mice exhibited an increase in lever pressing latency, i.e., the time interval between the last presentation of the reward and the next lever press, and a decrease in inter-response intervals, i.e., the time interval between 2 lever presses excluding lever pressing latency, irrespective of the FR ratios. Furthermore, in these 6-OHDA-treated mice, the number of lever presses during the first 300s of the session decreased under FR schedules with low ratios (5, 10, and 20). Open field activity, food motivation, and the amount of food consumed were not affected by dopamine depletion in the nucleus accumbens. These results suggest that the dopamine system in the nucleus accumbens had an important role in the control of lever pressing latency and inter-response intervals under FR reinforcement schedules.

  3. An in vivo microdialysis study of FLZ penetration through the blood-brain barrier in normal and 6-hydroxydopamine induced Parkinson's disease model rats.

    PubMed

    Hou, Jinfeng; Liu, Qian; Li, Yingfei; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances.

  4. 6-Hydroxydopamine-lesioning of the nigrostriatal pathway in rats alters basal ganglia mRNA for copper, zinc- and manganese-superoxide dismutase, but not glutathione peroxidase.

    PubMed

    Kunikowska, G; Jenner, P

    2001-12-13

    The effects of nigrostriatal pathway destruction on the mRNA levels of copper, zinc-dependent superoxide dismutase (Cu,Zn-SOD), manganese-dependent superoxide dismutase (Mn-SOD), and glutathione peroxidase in basal ganglia of adult rat were investigated using in situ hybridization histochemistry and oligodeoxynucleotide (single-stranded complementary DNA) probes. The 6-hydroxydopamine (6-OHDA)-induced destruction of the nigrostriatal pathway resulted in contralateral rotation to apomorphine and a marked loss of specific [(3)H]mazindol binding in the striatum (93%; P<0.05) and of tyrosine hydroxylase mRNA in substantia nigra pars compacta (SC) (93%; P<0.05) compared with control rats. Levels of Cu,Zn-SOD mRNA were decreased in the striatum, globus pallidus, and SC on the lesioned side of 6-OHDA-lesioned rats compared with sham-lesioned rats (P<0.05). Levels of Mn-SOD mRNA were increased in the nucleus accumbens (P<0.05), but decreased in the SC (P<0.05) on the lesioned side of 6-OHDA-treated rats compared with sham-lesioned rats. Lesioning with 6-OHDA had no effect on glutathione peroxidase mRNA levels in any region of basal ganglia examined. The significant changes in Cu,Zn-SOD and Mn-SOD mRNA indicate that SOD is primarily expressed by dopaminergic neurons of the nigrostriatal pathway, and that the Mn-SOD gene appears to be inducible in rat basal ganglia in response to both physical and chemical damage 5 weeks after 6-OHDA-lesioning. These findings may clarify the status of antioxidant enzymes, particularly Mn-SOD, in patients with Parkinson's disease and their relevance to disease pathogenesis.

  5. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-09-15

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.

  6. β-asarone and levodopa co-administration protects against 6-hydroxydopamine-induced damage in parkinsonian rat mesencephalon by regulating autophagy: down-expression Beclin-1 and light chain 3B and up-expression P62.

    PubMed

    Huang, Li-Ping; Deng, Min-Zhen; He, Yu-Ping; Fang, Yong-Qi

    2015-03-01

    In this study, we investigated Beclin-1, light chain (LC)3B, and p62 expression in 6-hydroxydopamine (6-OHDA)-induced parkinsonian rats after β-asarone and levodopa (l-dopa) co-administration. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create the models, except in sham-operated rats. Rats were divided into eight groups: sham-operated group; 6-OHDA model group; madopar group (75 mg/kg, per os (p.o.)); l-dopa group (60 mg/kg, p.o.); β-asarone group (15 mg/kg, p.o.); β-asarone + l-dopa co-administered group (15 mg/kg + 60 mg/kg, p.o.); 3-methyladenine group (500 nmol, intraperitoneal injection); and rapamycin group (1 mg/kg, intraperitoneal injection). Then, Beclin-1, LC3B, and p62 expression in the mesencephalon were detected. The mesencephalon was also observed by transmission electron microscope. The results showed that Beclin-1 and LC3B expression decreased and that p62 expression increased significantly in the madopar, l-dopa, β-asarone, and co-administered groups when compared with the 6-OHDA model. Beclin-1 and LC3B expression in the β-asarone and co-administered groups were less than in the madopar or l-dopa groups, whereas p62 expression in the β-asarone and co-administered groups was higher than in the madopar or l-dopa groups. In addition, a significant decrease in autophagosome was exhibited in the β-asarone and co-administered groups when compared with the 6-OHDA group. Our findings indicate that Beclin-1 and LC3B expression decreased, whereas p62 expression increased after co-administration treatment. In sum, all data suggest that the co-administration of β-asarone and l-dopa may contribute to the treatment of 6-OHDA-induced damage in rats by inhibiting autophagy activity.

  7. Neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    PubMed

    Choi, Hyun Sook; Park, Mi Sook; Kim, Seung Hwan; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2010-04-16

    6-Hydroxydopamine administration for 28 days (8 microg/2 microL) reduced the number of tyrosine hydroxylase (TH)-immunopositive neurons to 40.2% in the substantia nigra compared to the intact contralateral side. Dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and norepinephrine levels were reduced to 19.1%, 52.3%, 47.1% and 67.4% in the striatum of 6-hydroxydopamine-lesioned rats compared to the control group, respectively. However, an oral administration of herbal ethanol extracts from Gynostemma pentaphyllum (GP-EX) (10 mg/kg and 30 mg/kg) starting on day 3 post-lesion for 28 days markedly ameliorated the reduction of TH-immunopositive neurons induced by 6-hydroxydopamine-lesioned rat brain from 40.2% to 67.4% and 75.8% in the substantia nigra. GP-EX administration (10 and 30 mg/kg) also recovered the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and norepinephrine in post-lesion striatum to 64.1% and 65.0%, 77.9% and 89.7%, 82.6% and 90.2%, and 88.1% and 89.2% of the control group. GP-EX at the given doses did not produce any sign of toxicity such as weight loss, diarrhea and vomiting in rats during the 28 day treatment period and four gypenoside derivatives, gynosaponin TN-1, gynosaponin TN-2, gypenoside XLV and gypenoside LXXIV were identified from GP-EX. These results suggest that GP-EX might be helpful in the prevention of Parkinson's disease.

  8. Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson's disease: a longitudinal in-vivo study.

    PubMed

    Molinet-Dronda, Francisco; Gago, Belén; Quiroga-Varela, Ana; Juri, Carlos; Collantes, María; Delgado, Mercedes; Prieto, Elena; Ecay, Margarita; Iglesias, Elena; Marín, Concepció; Peñuelas, Iván; Obeso, José A

    2015-05-01

    Carbon-11 labeled dihydrotetrabenazine ((11)C-DTBZ) binds to the vesicular monoamine transporter 2 and has been used to assess nigro-striatal integrity in animal models and patients with Parkinson's disease. Here, we applied (11)C-DTBZ positron emission tomography (PET) to obtain longitudinally in-vivo assessment of striatal dopaminergic loss in the classic unilateral and in a novel bilateral 6-hydroxydopamine (6-OHDA) lesion rat model. Forty-four Sprague-Dawley rats were divided into 3 sub-groups: 1. 6-OHDA-induced unilateral lesion in the medial forebrain bundle, 2. bilateral lesion by injection of 6-OHDA in the third ventricle, and 3. vehicle injection in either site. (11)C-DTBZ PET studies were investigated in the same animals successively at baseline, 1, 3 and 6weeks after lesion using an anatomically standardized volumes-of-interest approach. Additionally, 12 rats had PET and Magnetic Resonance Imaging to construct a new (11)C-DTBZ PET template. Behavior was characterized by rotational, catalepsy and limb-use asymmetry tests and dopaminergic striatal denervation was validated post-mortem by immunostaining of the dopamine transporter (DAT). (11)C-DTBZ PET showed a significant decrease of striatal binding (SB) values one week after the unilateral lesion. At this point, there was a 60% reduction in SB in the affected hemisphere compared with baseline values in 6-OHDA unilaterally lesioned animals. A 46% symmetric reduction over baseline SB values was found in bilaterally lesioned rats at the first week after lesion. SB values remained constant in unilaterally lesioned rats whereas animals with bilateral lesions showed a modest (22%) increase in binding values at the 3rd and 6th weeks post-lesion. The degree of striatal dopaminergic denervation was corroborated histologically by DAT immunostaining. Statistical analysis revealed a high correlation between (11)C-DTBZ PET SB and striatal DAT immunostaining values (r=0.95, p<0.001). The data presented here indicate

  9. Gender-specific role of mitochondria in the vulnerability of 6-hydroxydopamine-treated mesencephalic neurons.

    PubMed

    Misiak, Magdalena; Beyer, Cordian; Arnold, Susanne

    2010-01-01

    Many neurodegenerative diseases, such as Morbus Parkinson, exhibit a gender-dependency showing a higher incidence in men than women. Most of the neurodegenerative disorders involve either causally or consequently a dysfunction of mitochondria. Therefore, neuronal mitochondria may demonstrate a gender-specificity with respect to structural and functional characteristics of these organelles during toxic and degenerative processes. The application of 6-OHDA (6-hydroxydopamine) in vitro and in vivo represents a well-accepted experimental model of Parkinson's disease causing Parkinsonian symptoms. Besides the known effects of 6-OHDA on mitochondria and neuronal survivability, we aimed to demonstrate that the mitochondrial neurotoxin affects the morphology and survival of primary dopaminergic and non-dopaminergic neurons in the mesencephalon in a gender-specific manner by influencing the transcription of mitochondrial genes, ATP and reactive oxygen species production. Our data suggest that cell death in response to 6-OHDA is primarily caused due to increased oxidative stress which is more pronounced in male than in female mesencephalic neurons.

  10. 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions.

    PubMed

    Maragos, W F; Jakel, R J; Pang, Z; Geddes, J W

    1998-12-01

    The mitochondrial inhibitors malonate and 3-nitropropionic (3NP) acid are potent neurotoxins in vivo. Administration of these compounds results in neuronal loss similar to that seen in Huntington's disease. Although the mechanism of cell death produced by these compounds likely involves activation of N-methyl-D-aspartate receptors, it remains unclear why the striatum demonstrates regional susceptibility to the toxicity of these and other mitochondrial poisons. We hypothesized that dopamine, a weak neurotoxin that occurs in high concentrations in the striatum, may contribute to the neuronal damage caused by mitochondrial inhibition. We investigated whether depletion of striatal dopamine using the catecholaminergic toxin 6-hydroxydopamine would attenuate lesions induced by mitochondrial inhibition. We found that dopamine depletion reduced significantly the extent of histological damage in the striatum elicited by both intraparenchymal injections of 0.8 micromol malonate and 20 mg/kg systemic administration of 3NP. These data suggest that dopamine or one of its metabolites may contribute to mitochondrial toxin-induced cell death.

  11. The majority of newly generated cells in the adult mouse substantia nigra express low levels of Doublecortin, but their proliferation is unaffected by 6-OHDA-induced nigral lesion or Minocycline-mediated inhibition of neuroinflammation.

    PubMed

    Worlitzer, Maik M A; Viel, Thomas; Jacobs, Andreas H; Schwamborn, Jens C

    2013-09-01

    Parkinson's disease is characterized by a selective loss of dopaminergic neurons in the substantia nigra (SN). However, whether regenerative endogenous neurogenesis is taking place in the mammalian SN of parkinsonian and non-parkinsonian brains remains of debate. Here, we tested whether proliferating cells in the SN and their neurogenic potential would be affected by anti-inflammatory treatment under physiological conditions and in the 6-hydroxy-dopamine (6-OHDA) Parkinson's disease mouse model. We report that the majority of newly generated nigral cells are positive for Doublecortin (Dcx), which is an often used marker for neural progenitor cells. Yet, Dcx expression levels in these cells were much lower than in neural progenitor cells of the subventricular zone and the dentate gyrus neural progenitor cells. Furthermore, these newly generated nigral cells are negative for neuronal lineage markers such as TuJ1 and NeuN. Therefore, their neuronal commitment is questionable. Instead, we found evidence for oligodendrogenesis and astrogliosis in the SN. Finally, neither short-term nor long-term inhibition of neuroinflammation by Minocycline- or 6-OHDA-induced lesion affected the numbers of newly generated cells in our disease paradigm. Our findings of adult generated Dcx(+) cells in the SN add important data for understanding the cellular composition and consequently the regenerative capacity of the SN.

  12. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Ma, Ruanxin; Fang, Yongqi

    2016-06-01

    Levodopa (L-dopa) is widely considered as one of the most effective drug constituents in the treatment of Parkinson's disease (PD), but the blood-brain barrier (BBB) permeability of L-dopa is <5%, which causes low efficacy. Neuroprotective effects of β-asarone on 6-hydroxydopamine (6-OHDA)-induced PD rats were demonstrated by our previous studies. Co-administration of β-asarone and L-dopa has not been explored until being investigated on PD rats in this study. PD rats were divided into four groups: untreated, L-dopa-treated, β-asarone-treated and co-administered-treated groups. All of the treatments were administered to the rats twice per day for 30 days. The L-dopa, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), S100β and neuron-specific enolase (NSE) levels were subsequently determined. The P-glycoprotein (P-gp), zonula occludens-1 (ZO-1), claudin-5, occludin and actin expression was also assessed in cortex. Changes in BBB ultrastructure were observed using transmission electron microscopy. Our results showed that the co-administered treatment increased levels of L-dopa, DA, DOPAC and HVA in striatum, and S100β in plasma, but down-regulated NSE, P-gp, ZO-1, occludin, actin and claudin-5 in cortex. Crevices were observed between capillary endothelial cells at intercellular tight junction of the striatum in co-administered-treated group, while the endothelial cells in untreated group were tightly jointing each other. In addition, the correlations of L-dopa or DA and P-gp or tight junction proteins respectively were significantly negative in co-administered- and β-asarone-treated groups. These findings suggest that co-administered treatment may enhance the L-dopa BBB permeability and attenuate brain injury, which may be beneficial to PD treatment.

  13. Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation.

    PubMed

    Li, Li; Sagot, Ben; Zhou, Fu-Ming

    2015-07-30

    The transcription factor Pitx3 null mutant (Pitx3Null) mice have a constitutive perinatal-onset and symmetric bilateral dopamine (DA) loss in the striatum. In these mice l-3,4-dihydroxyphenylalanine (l-dopa) induces apparently normal horizontal movements (walking) but also upward movements consisting of the vertical body trunk and waving paws that are absent in normal animals and in animals with the classic unilateral 6-hydroxydopamine (6-OHDA) lesion-induced DA denervation. Thus, a concern is that the perinatal timing of the DA loss and potential developmental abnormalities in Pitx3Null mice may underlie these upward movements, thus reducing the usefulness as a DA denervation model. Here we show that in normal wild-type (Pitx3WT) mice with adult-onset symmetric, bilateral 6-OHDA-induced DA lesion in the dorsal striatum, l-dopa induces normal horizontal movements and upward movements that are qualitatively identical to those in Pitx3Null mice. Furthermore, after unilateral 6-OHDA lesion of the residual DA innervation in the striatum in Pitx3Null mice, l-dopa induces contraversive rotation that is similar to that in Pitx3WT mice with the classic unilateral 6-OHDA lesion. These results indicate that in Pitx3Null mice, the bilateral symmetric DA denervation in the dorsal striatum is sufficient for expressing the l-dopa-induced motor phenotype and the perinatal timing of their DA loss is not a determining factor, providing further evidence that Pitx3Null mice are a convenient and suitable mouse model to study the consequences of DA loss and dopaminergic replacement therapy in Parkinson's disease.

  14. Effects of zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] and eugenol [2-methoxy-4-(2-propenyl)phenol] on the pathological progress in the 6-hydroxydopamine-induced Parkinson's disease mouse model.

    PubMed

    Kabuto, Hideaki; Yamanushi, Tomoko T

    2011-12-01

    Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the nigrostriatal system and dopamine (DA) depletion in the striatum. The most popular therapeutic medicine for treating PD, 3-(3,4-Dihydroxyphenyl)-L-alanine (L-DOPA), has adverse effects, such as dyskinesia and disease acceleration. As superoxide (·O(2)(-)) and hydroxyl radical (·OH) have been implicated in the pathogenesis of PD, free radical scavenging and antioxidants have attracted attention as agents to prevent disease progression. Rodents injected with 6-hydroxydopamine (6-OHDA) intracerebroventricularly are considered to be a good animal model of PD. Zingerone and eugenol, essential oils extracted from ginger and cloves, are known to have free radical scavenging and antioxidant effects. Therefore, we examined the effects of zingerone and eugenol on the behavioral problems in mouse model and on the DA concentration and antioxidant activities in the striatum after 6-OHDA administration and L-DOPA treatment. Daily oral administration of eugenol/zingerone and injection of L-DOPA intraperitoneally for 4 weeks following a single 6-OHDA injection did not improve abnormal behaviors induced by L-DOPA treatment. 6-OHDA reduced the DA level in the striatum; surprisingly, zingerone and eugenol enhanced the reduction of striatal DA and its metabolites. Zingerone decreased catalase activity, and increased glutathione peroxidase activity and the oxidized L-ascorbate level in the striatum. We previously reported that pre-treatment with zingerone or eugenol prevents 6-OHDA-induced DA depression by preventing lipid peroxidation. However, the present study shows that post-treatment with these substances enhanced the DA decrease. These substances had adverse effects dependent on the time of administration relative to model PD onset. These results suggest that we should be wary of ingesting these spice elements after the onset of PD symptoms.

  15. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells.

    PubMed

    Tian, Lin-Lin; Wang, Xue-Jun; Sun, Yu-Ning; Li, Chun-Rong; Xing, Ya-Ling; Zhao, Hai-Bao; Duan, Ming; Zhou, Zhe; Wang, Sheng-Qi

    2008-01-01

    Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.

  16. Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis.

    PubMed

    Esmaeilzadeh, Emran; Gardaneh, Mossa; Gharib, Ehsan; Sabouni, Farzaneh

    2013-08-01

    We have investigated the mechanism of shikonin function on protection of dopaminergic neurons against 6-OHDA-induced neurotoxicity. Treatment of rat pheochromocytoma cell line PC12 by serial dilutions of shikonin determined 10 μM of the compound as its optimum concentration for protection saving nearly 70 % of the cells against toxicity. Reverse transcription-PCR analysis of shikonin-treated cells showed threefold increase in mRNA levels of glutathione peroxidase-1 (GPX-1) as a representative component of the intracellular anti-oxidant defense system. To elucidate shikonin-GPX1 relationships and maximize protection, we transduced PC12 cells using recombinant lentivirus vectors that harbored GPX-1 coding sequence. This change upregulated GPX-1 expression, increased peroxidase activity and made neuronal cells resistant to 6-OHDA-mediated toxicity. More importantly, addition of shikonin to GPX1-overexpressing PC12 cells augmented GPX-1 protein content by eightfold leading to fivefold increase of enzymatic activity, 91 % cell survival against neurotoxicity and concomitant increases in intracellular glutathione (GSH) levels. Depletion of intracellular GSH rendered all cell groups highly susceptible to toxicity; however, shikonin was capable of partially saving them. Subsequently, GSH-independent superoxide dismutase mRNA was found upregulated by shikonin. As signs of apoptosis inhibition, the compound upregulated Bcl-2, downregulated Bax, and prevented cell nuclei from undergoing morphological changes typical of apoptosis. Also, a co-staining method demonstrated GPX-1 overexpression significantly increases the percent of live cells that is maximized by shikonin treatment. Our data indicate that shikonin as an antioxidant compound protects dopaminergic neurons against 6-OHDA toxicity and enhances their survival via both glutathione-dependent and direct anti-apoptotic pathways.

  17. Forskolin promotes the development of ethanol tolerance in 6-hydroxydopamine-treated mice

    SciTech Connect

    Szabo, G.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    Partial depletion of brain norepinephrine by 6-hydroxydopamine prevents the development of functional tolerance to ethanol in mice. This blockade of tolerance development was overcome by daily intracerebroventricular injections of forskolin. These results suggest that interaction of norepinephrine with post-synaptic ..beta..-adrenergic receptors, and activation of adenylate cyclase, is important for the development of ethanol tolerance. Interaction of norepinephrine with ..cap alpha../sub 1/-adrenergic receptors may be less crucial, since treatment with a phorbol ester activator of protein kinase C did not restore the development of tolerance in mice treated with 6-hydroxydopamine. The importance of the ..beta..-adrenergic receptor-coupled adenylate cyclase system for development of ethanol tolerance, in addition to its previously-reported role in long-term potentiation, suggests that this system may influence neuroadaptive processes in general. 26 references, 2 figures.

  18. Long-term changes in striatal opioid systems after 6-hydroxydopamine lesion of rat substantia nigra.

    PubMed

    Smith, J A; Leslie, F M; Broide, R S; Loughlin, S E

    1993-08-01

    The effects of unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway on striatal opioid peptides and receptors were determined at different time-intervals, from three days up to 24 weeks, post-lesion. Mu, delta and kappa opioid binding site densities in the ipsilateral caudate-putamen were decreased by 25-50% in rats which exhibited a greater than 90% loss of dopamine uptake sites. Differentiation of radioligand binding to kappa1 and kappa2 subtypes demonstrated a selective loss of kappa2 sites post-lesion. The onset of significant 6-hydroxydopamine lesion-induced changes in striatal opioid binding sites was delayed with respect to the loss of dopamine uptake sites. Furthermore, maximal loss of dopamine uptake sites was apparent within seven days post-lesion, but not until two to four weeks for mu, delta and kappa sites. In animals which exhibited an incomplete loss of dopamine uptake sites (less than 80%) there was no significant change in opioid binding site density. Striatal proenkephalin and prodynorphin messenger RNA levels were increased and decreased, respectively, after complete 6-hydroxydopamine lesion. Modulation of peptide messenger RNA levels was apparent within seven days and was maintained up to 24 weeks post-lesion. In contrast, proenkephalin and prodynorphin messenger RNA levels were unchanged in animals which exhibited an incomplete loss of striatal dopamine uptake sites. Taken together, these observations suggest that the majority of mu, delta and kappa2 opioid binding sites are localized on non-dopaminergic elements in the caudate-putamen, but that substantia nigra innervation plays a role in the control of striatal opioid receptor expression. The 6-hydroxydopamine lesion-induced decreases in striatal opioid binding site density may, in part, be a function of agonist-induced receptor downregulation. Alternatively, both opioid receptor and peptide expression in the caudate-putamen may be directly, but independently, regulated by ventral

  19. Hypericum Perforatum Hydroalcoholic Extract Mitigates Motor Dysfunction and is Neuroprotective in Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson's Disease.

    PubMed

    Kiasalari, Zahra; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2016-05-01

    Parkinson's disease is the second most common neurodegenerative disorder with selective and progressive decline of nigral dopaminergic neurons. Hypericum perforatum L. (H. perforatum, St. John's wort) has been traditionally used for management of different disorders, especially mild-to-moderate depression. This study was conducted to evaluate the effect of H. perforatum extract against unilateral striatal 6-hydroxydopamine (6-OHDA) toxicity and to unmask some involved mechanisms. Intrastriatal 6-OHDA-lesioned rats were treated with H. perforatum hydroalcoholic extract at a dose of 200 mg/kg/day started 1 week pre-surgery for 1 week post-surgery. The extract attenuated apomorphine-induced rotational behavior, decreased the latency to initiate and the total time on the narrow beam task, lowered striatal level of malondialdehyde and enhanced striatal catalase activity and reduced glutathione content, normalized striatal expression of glial fibrillary acidic protein, tumor necrosis factor α with no significant effect on mitogen-activated protein kinase, lowered nigral DNA fragmentation, and prevented damage of nigral dopaminergic neurons with a higher striatal tyrosine hydroxylase immunoreactivity. These findings reveal the beneficial effect of H. perforatum via attenuation of DNA fragmentation, astrogliosis, inflammation, and oxidative stress.

  20. Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine

    SciTech Connect

    Kavanagh, Edel T.; Loughlin, John P.; Herbert, Kate Reed; Dockery, Peter; Samali, Afshin; Doyle, Karen M.; Gorman, Adrienne M. . E-mail: adrienne.gorman@nuigalway.ie

    2006-12-29

    6-Hydroxydopamine (6-OHDA) is often used in models of Parkinson's disease since it can selectively target and kill dopaminergic cells of the substantia nigra. In this study, pre-treatment of PC12 cells with nerve growth factor (NGF) inhibited apoptosis and necrosis by 6-OHDA, including caspase activity and lactate dehydrogenase release. Notably, cells exposed to 6-OHDA in the presence of NGF were subsequently capable of proliferation (when replated without NGF), or neurite outgrowth (with continued presence of NGF). Following 7 days growth in the presence of NGF, expression of {beta}III tubulin and tyrosine hydroxylase and increased intracellular catecholamines was detectable in PC12 cells, features characteristic of functional dopaminergic neurons. NGF-pre-treated PC12 cells retained expression of {beta}III-tubulin and tyrosine hydroxylase, but not catecholamine content following 6-OHDA exposure. These data indicate that NGF-protected cells maintained some aspects of functionality and were subsequently capable of proliferation or differentiation.

  1. 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria.

    PubMed

    Gupta, Sonam; Goswami, Poonam; Biswas, Joyshree; Joshi, Neeraj; Sharma, Sharad; Nath, C; Singh, Sarika

    2015-01-15

    The present study was conducted to investigate the effect of the neurotoxins 6-hydroxydopamine and lipopolysaccharide on astrocytes. Rat astrocyte C6 cells were treated with different concentration of 6-hydroxydopamine (6-OHDA)/lipopolysaccharides (LPS) for 24 h. Both neurotoxins significantly decreased the viability of astrocytes, augmented the expression of inducible nitric oxide synthase (iNOS) and the astrocyte marker--glial fibrillar acidic protein. A significantly decreased mitochondrial dehydrogenase activity, mitochondrial membrane potential, augmented reactive oxygen species (ROS) level, caspase-3 mRNA level, chromatin condensation and DNA damage was observed in 6-OHDA/LPS treated astroglial cells. 6-OHDA/LPS treatment also caused the significantly increased expression of iNOS and nitrite level. Findings showed that 6-OHDA/LPS treatment caused mitochondrial dysfunction mediated death of astrocytes, which significantly involve the nitric oxide. Since we have observed significantly increased level of iNOS along with mitochondrial impairment and apoptotic cell death in astrocytes, therefore to validate the role of iNOS, the cells were co-treated with iNOS inhibitor aminoguanidine (AG, 100 μM). Co-treatment of AG significantly attenuated the 6-OHDA/LPS induced cell death, mitochondrial activity, augmented ROS level, chromatin condensation and DNA damage. GFAP and caspase-3 expression were also inhibited with co-treatment of AG, although the extent of inhibition was different in both experimental sets. In conclusion, the findings showed that iNOS mediated increased level of nitric oxide acts as a key regulatory molecule in 6-OHDA/LPS induced mitochondrial dysfunction, DNA damage and apoptotic death of astrocytes.

  2. Effects of Neonatal Treatment With 6-Hydroxydopamine and Endocrine Disruptors on Motor Activity and Gene Expression in Rats

    PubMed Central

    Masuo, Yoshinori; Ishido, Masami; Morita, Masatoshi; Oka, Syuichi

    2004-01-01

    To investigate the mechanisms underlying motor hyperactivity, we performed intracisternal injection of 6-hydroxydopamine or endocrine disruptors in rats on postnatal day 5. 6-Hydroxydopamine (100 μg, 488 nmol) caused a significant increase in spontaneous motor activities at 4 weeks of age. Gene-expression profiling using a cDNA membrane array revealed alterations in several classes of gene at 8 weeks of age. In the midbrain, gene expression was enhanced in dopamine transporter 1; a platelet-derived growth factor receptor; dopamine receptor D4; galanin receptor 2; arginine vasopressin receptor 2; neuropeptide Y; tachykinin 2; and fibroblast growth factor 10. Expression was also enhanced in the glutamate/aspartate transporter gene in the striatum. Rats received an endocrine disruptor (87 nmol), such as bisphenol A, nonylphenol, p-octylphenol, or diethylhexylphthalate, which also caused motor hyperactivity at 4 weeks. The effects of bisphenol A on motor activity were dose-dependent from 0.87 to 87 nmol. The phenols caused a deficit in dopamine neurons, similarly to the deficit caused by 6-hydroxydopamine. Gene-expression profiles after treatment with endocrine disruptors showed variation and differed from those of 6- hydroxydopamine. The results suggest that neonatal treatment with environmental chemicals can generate an animal model of attention-deficit hyperactivity disorder, in which clinical symptoms are pervasive. PMID:15303306

  3. Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease.

    PubMed

    Tatenhorst, Lars; Tönges, Lars; Saal, Kim-Ann; Koch, Jan C; Szegő, Éva M; Bähr, Mathias; Lingor, Paul

    2014-08-01

    Chronic degeneration of nigrostriatal projections, followed by nigral dopaminergic cell death, is a key feature of Parkinson disease (PD). This study examines the neuroprotective potential of the rho kinase inhibitor fasudil in the 6-hydroxydopamine (6-OHDA) mouse model of PD in vivo. C57Bl/6 mice were lesioned by striatal stereotactic injections with 4 μg of 6-OHDA and treated with fasudil 30 or 100 mg/kg body weight via drinking water. Motor behavior was tested biweekly; histologic and biochemical analyses were performed at 4 and 12 weeks after lesion. Motor behavior was severely impaired after 6-OHDA lesion and was not improved by fasudil treatment. Fasudil 100 mg/kg did not significantly increase the number of dopaminergic cells in the substantia nigra after 12 weeks versus lesion controls. Interestingly, however, high-performance liquid chromatography analysis of dopamine metabolites revealed that striatal levels of 3,4-dihydroxyphenylacetic acid were significantly increased after 12 weeks, suggesting a regenerative response. In contrast to recent findings in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin model, fasudil effects seem limited in this severe 6-OHDA model of PD. Nevertheless, high therapeutic concentrations of fasudil are suggestive of a proregenerative potential for dopaminergic neurons, making further evaluations of rho kinase inhibition as a proregenerative therapeutic strategy in PD promising.

  4. Treatment with 6-hydroxydopamine in planaria (Dugesia gonocephala s.l.): morphological and behavioral study.

    PubMed

    Caronti, B; Margotta, V; Merante, A; Pontieri, F E; Palladini, G

    1999-07-01

    Morpho-functional and behavioral effects of exposure to 6-hydroxydopamine (OHDA)-HCI (24 microg/ml per day for 24 h and 7 days) were studied in planarias (Dugesia gonocephala s.l.). Exposure to 6-OHDA-HC1 for 24 h produced hypokinesia of the specimens. These behavioral changes were more pronounced, leading to complete immobility, after 7 days of exposure to the neurotoxin. Moreover, specimens exposed to 6-OHDA-HCI for 24 h and 7 days failed to show any behavioral response to nomifensine, thus furnishing evidence of the damage of presynaptic dopamine terminals. Exposure to 6-OHDA-HCl for 24 h significantly reduced cathecolamine content in neuropil region, as demonstrated by histochemistry, and electron-dense presynaptic vesicles, as observed on electron microscopy examination. All these alterations were significantly more pronounced and were accompanied by swelling and strong increase of electron-density in cytoplasm of numerous neurons after exposure to the neurotoxin for 7 days. This appears to be the first demonstration of the neurotoxic effects of 6-OHDA-HCI in flatworms.

  5. Electroacupuncture Produces the Sustained Motor Improvement in 6-Hydroxydopamine-Lesioned Mice

    PubMed Central

    Deng, Jiahui; Sun, Min; Jia, Jun; Wang, Xiaomin

    2016-01-01

    Clinical and research evidence has shown that electroacupuncture (EA) promotes recovery of motor function in patients with Parkinson’s disease (PD). However, the “efficacy span” of EA treatment, especially the long-term effect of EA that is thought to last after the cessation of EA treatment, has not been investigated. The present study thus investigated and compared the effect of EA during and after chronic EA application on motor activity and dopamine lesions in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Chronic EA treatment (30 min a day, 6 days a week for 2 or 4 weeks) significantly attenuated motor deficiency and reduced dopamine neuron degeneration. Remarkably, EA showed a long-lasting effect after the cessation of EA stimulation. At 2 and 4 weeks after the termination of EA, EA continued to improve motor function in 6-OHDA-lesioned mice. Consistent with sustained behavioral effects, EA induced an enduring increase in the dopamine turnover ratio in the striatum 2 weeks after the cessation of EA treatment. Here we demonstrated that the therapeutic effect of EA outlasted the duration of EA application. During a relatively long period of time after the completion of EA treatment, EA is able to continue to improve motor function and enhance dopamine availability in 6-OHDA-lesioned PD mice. PMID:26894437

  6. Motor activity and gene expression in rats with neonatal 6-hydroxydopamine lesions.

    PubMed

    Masuo, Yoshinori; Ishido, Masami; Morita, Masatoshi; Oka, Syuichi; Niki, Etsuo

    2004-10-01

    A rat model of a hyperkinetic disorder was used to investigate the mechanisms underlying motor hyperactivity. Rats received an intracisternal injection of 6-hydroxydopamine on post-natal day 5. At 4 weeks of age, the animals showed significant motor hyperactivity during the dark phase, which was attenuated by methamphetamine injection. Gene expression profiling was carried out in the striatum and midbrain using a DNA macroarray. In the striatum at 4 weeks, there was increased gene expression of the NMDA receptor 1 and tachykinins, and decreased expression of a GABA transporter. At 8 weeks, expression of the NMDA receptor 1 in the striatum was attenuated, with enhanced expression of the glial glutamate/aspartate transporter. In the midbrain, a number of genes, including the GABA transporter gene, showed decreased expression at 4 weeks. At 8 weeks, gene expression was augmented for the dopamine transporter, D4 receptor, and several genes encoding peptides, such as tachykinins and their receptors. These results suggest that in the striatum the neurotransmitters glutamate, GABA and tachykinin may play crucial roles in motor hyperactivity during the juvenile period. Several classes of neurotransmitters, including dopamine and peptides, may be involved in compensatory mechanisms during early adulthood. These data may prompt further neurochemical investigations in hyperkinetic disorders.

  7. Androgens exacerbate motor asymmetry in male rats with unilateral 6-hydroxydopamine lesion.

    PubMed

    Cunningham, Rebecca L; Macheda, Teresa; Watts, Lora Talley; Poteet, Ethan; Singh, Meharvan; Roberts, James L; Giuffrida, Andrea

    2011-11-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by dopamine neuron loss in the nigrostriatal pathway that shows greater incidence in men than women. The mechanisms underlying this gender bias remain elusive, although one possibility is that androgens may increase dopamine neuronal vulnerability to oxidative stress. Motor impairment can be modeled in rats receiving a unilateral injection of 6-hydroxydopamine (6-OHDA), a neurotoxin producing nigrostriatal degeneration. To investigate the role of androgens in PD, we compared young (2 months) and aged (24 months) male rats receiving gonadectomy (GDX) and their corresponding intact controls. One month after GDX, rats were unilaterally injected with 6-OHDA, and their motor impairment and asymmetry were assessed 2 weeks later using the cylinder test and the amphetamine-induced rotation test. Plasma samples were also collected to assess the concentration of testosterone and advanced oxidation protein products, a product of oxidative stress. GDX decreased lesion-induced asymmetry along with oxidative stress and increased amphetamine-induced rotations. These results show that GDX improves motor behaviors by decreasing motor asymmetry in 6-OHDA-treated rats, an effect that may be ascribed to increased release of striatal dopamine and decreased oxidative stress. Collectively, the data support the hypothesis that androgens may underlie the gender bias observed in PD.

  8. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    PubMed

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  9. The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Noelker, Carmen; Bacher, Michael; Gocke, Petra; Wei, Xing; Klockgether, Thomas; Du, Yansheng; Dodel, Richard

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta. 6-Hydroxydopamine (6-OHDA) is specific to dopaminergic neurons in intrastriatal rodent models. It induces neuronal death either via uncoupling mitochondrial oxidative phosphorylation resulting in energy deprivation or alternatively, is associated with its ability to produce hydrogen peroxide, hydroxyl and superoxide radicals. Caffeic acid phenethyl ester (CAPE), an antioxidant flavanoid, has antiviral, anti-inflammatory, antioxidant, and immunomodulatory properties. Recent studies have shown that CAPE has also a neuroprotective effects in ischemia and low potassium-induced neuronal apoptotic models. In cerebellar granule neurons CAPE significantly blocks 6-OHDA mediated cell death (70 microM) in a dose-dependent manner. Furthermore, CAPE was able to modulate the Ca(2+)-induced release of cyctochrome c in isolated liver mitochondria. Caspase-3 activation following 6-OHDA treatment was markedly inhibited in the presence of CAPE. Although the molecular mechanisms associated with CAPE's neuroprotective effects remain to be elucidated in more detail, our results clearly demonstrate a considerable neuroprotective effect of CAPE. Since a mitochondrial insult is a major cause for the degeneration of nigral neurons in PD, we hypothesize that propolis derivatives, in particular CAPE, may have a neuroprotective effect on those cells and may be a promising drug candidate to be taken into in vivo models of PD.

  10. Protective effect of planarian DJ-1 against 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Tsushima, Jun; Nishimura, Kaneyasu; Tashiro, Natsuka; Takata, Kazuyuki; Ashihara, Eishi; Yoshimoto, Kanji; Ariga, Hiroyoshi; Agata, Kiyokazu; Kitamura, Yoshihisa

    2012-12-01

    DJ-1/PARK7 has multiple functions as an antioxidant, an oncogene, and a molecular chaperone in vertebrates, and loss-of-function mutations in DJ-1 cause early onset of Parkinson's disease. However, the function of invertebrate DJ-1 remains unknown. In order to investigate the function of planarian DJ-1, we isolated the planarian DJ-1 gene Dugesia japonica DJ-1 (DjDJ-1) and analyzed its expression and function. In situ hybridization analysis revealed that DjDJ-1 mRNA was expressed throughout the body, including the central nervous system, cells surrounding the pharynx, and stem cells. Planarian DjDJ-1 protein exhibited antioxidant function, similar to human DJ-1, as evidenced by the fact that recombinant DjDJ-1 protein reduced reactive oxygen species and protected human neuroblastoma SH-SY5Y cells from cell death. In addition, dopaminergic neurons in DjDJ-1(RNAi) planarians became susceptible to 6-hydroxydopamine, a dopaminergic neurotoxin. These results suggest that planarians have a DJ-1 ortholog, which has conserved antioxidant and neuroprotective functions.

  11. Central effects of 6-hydroxydopamine on the body temperature of the rat

    PubMed Central

    Simmonds, M. A.; Uretsky, N. J.

    1970-01-01

    1. Rats which had been pretreated with intraventricular injections of 6-hydroxydopamine (6-OHDA) to cause a selective depletion of brain noradrenaline (NA) to 20·7% of control brain NA and brain dopamine (DA) to 34·6% of control brain DA retained an unimpaired ability to regulate their body temperatures on exposure to heat or cold. This is discussed in relation to the possible role of brain NA in the central control of body temperature. 2. Intraventricular injections of 6-OHDA in normal rats at room temperature caused an acute, dose dependent hypothermia of up to 4·5° C which lasted for 4-5 hours. Depletion of brain NA and DA by prior treatment with 6-OHDA markedly reduced the hypothermic response to a subsequent dose of 6-OHDA. Selective depletion of brain NA without affecting brain DA did not reduce the response to 6-OHDA. The acute hypothermic response to 6-OHDA, may therefore, be related to a release of DA in the brain. PMID:5495172

  12. Astragalus Polysaccharide Suppresses 6-Hydroxydopamine-Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Li, Haifeng; Ding, Fei; Wang, Hongyu; Han, Wenjing; Ma, Fangli; Hu, Minghua; Ma, Chung Wah

    2016-01-01

    Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson's disease (PD). However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus, against the neurotoxicity of 6-hydroxydopamine (6-OHDA), a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans. Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration. PMID:27885333

  13. 6-Hydroxydopamine and radiofrequency lesions of the lateral entorhinal cortex facilitate an operant appetitive conditioning task in mice.

    PubMed

    Gauthier, M; Soumireu-Mourat, B

    1981-07-02

    The entorhinal cortex seems heterogeneous as dopaminergic terminals are present only in the anterior part of the lateral entorhinal cortex. In order to clarify the interaction of this cortex with the hippocampus in memory processes, the effects of either 6-hydroxydopamine or radiofrequency bilateral lesions were compared. Both lesions enhance the retention of a Skinner task with continuous reinforcement schedule. Involvement of dopamine in memory processes is discussed.

  14. Enhanced frustrative nonreward effect following 6-hydroxydopamine lesions of the lateral septum in the rat.

    PubMed

    Taghzouti, K; Le Moal, M; Simon, H

    1985-12-01

    The effect of local injections of 6-hydroxydopamine (6-OHDA) into the lateral septum was tested in a paradigm known to lead to an energizing behavior, through a possible frustrative effect, induced by partial or total omission of reward in hungry rats. Biochemical assays in the septum showed that 6-OHDA reduced endogenous dopamine and, to a lesser extent, noradrenaline concentrations and left intact noncatecholaminergic neurons such as serotoninergic terminals. The first behavioral experiment was conducted in a double straight alley. The animals were submitted to three phases of testing with differing degrees of reinforcement: (a) an acquisition phase, in which the reinforcement was continuously delivered in the goal box of the two alleys, (b) a partial reinforced phase, in which animals received 50% partial reinforcement in the first alley and continuous reinforcement in the second alley, and (c) an extinction phase performed in one alley without any reinforcement. Animals with lesions ran faster for food than controls in the partial reinforcement or extinction situation, although there was no difference between the two groups in the acquisition phase of the continuous schedule of reinforcement or in the 50% reinforced trials of the partial reinforcement phase. The two groups also behaved similarly after the first six trials of the extinction phase. In a second experiment, the animals were tested in a lever-press conditioning task. Animals with lesions and control animals learned this task equally well, both with respect to the number of lever presses and the time to obtain a fixed number of food pellets.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat.

    PubMed

    Yu, Yong-Peng; Ju, Wei-Ping; Li, Zhen-Guang; Wang, Dao-Zhen; Wang, Yuan-Chen; Xie, An-Mu

    2010-06-08

    Increasing evidence suggests the beneficial effects of acupuncture on Parkinson's disease (PD). Although clinical evidence for the acupuncture anti-Parkinson's disease effect has been demonstrated, the precise mechanism still remains elusive. It has been suggested a relationship between PD and reactive oxygen species (ROS) can result in neurodegeneration. The aim of this study was to evaluate the status of oxidative stress, as well as the antioxidant enzyme response, and the role of acupuncture stimulation at GB34 (Yanglingquan), LR3 (Taichong), ST36 (Zusanli) and SP10 (Xuehai) acupoints on regulating oxidative stress in the nigrostriatal system in the 6-hydroxydopamine (6-OHDA) lesioned rat. Two weeks after unilateral injection of 6-OHDA into the left medial forebrain bundle (MFB), an apomorphine induced rotational behavior test was performed. The levels of enzymatic, viz., superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and nonenzymatic, viz., reduced glutathione (GSH), and the levels of malondialdehyde (MDA) in the nigrostriatal system were measured to assess the oxidative stress status. Brain MDA levels significantly increased, while GSH levels were decreased in impaired groups with 6-OHDA injection only, accompanied by a marked reduction in the level of SOD and GSH-Px. The levels of oxidative stress related parameters except CAT, as well as the rotational asymmetry, were reversed by acupuncture stimulation. These results showed that acupuncture treatment displayed antioxidative and/or neuroprotective properties in the 6-OHDA lesioned rat and these protective properties might be mediated, at least in part, by involving regulation of the antioxidant defense system.

  16. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-03

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.

  17. Increasing extracellular potassium results in subthalamic neuron activity resembling that seen in a 6-hydroxydopamine lesion.

    PubMed

    Strauss, Ulf; Zhou, Fu-Wen; Henning, Jeannette; Battefeld, Arne; Wree, Andreas; Köhling, Rüdiger; Haas, Stefan Jean-Pierre; Benecke, Reiner; Rolfs, Arndt; Gimsa, Ulrike

    2008-06-01

    Abnormal neuronal activity in the subthalamic nucleus (STN) plays a crucial role in the pathophysiology of Parkinson's disease (PD). Although altered extracellular potassium concentration ([K+]o) and sensitivity to [K+]o modulates neuronal activity, little is known about the potassium balance in the healthy and diseased STN. In vivo measurements of [K+]o using ion-selective electrodes demonstrated a twofold increase in the decay time constant of lesion-induced [K+]o transients in the STN of adult Wistar rats with a unilateral 6-hydroxydopamine (6-OHDA) median forebrain bundle lesion, employed as a model of PD, compared with nonlesioned rats. Various [K+]o concentrations (1.5-12.5 mM) were applied to in vitro slice preparations of three experimental groups of STN slices from nonlesioned control rats, ipsilateral hemispheres, and contralateral hemispheres of lesioned rats. The majority of STN neurons of nonlesioned rats and in slices contralateral to the lesion fired spontaneously, predominantly in a regular pattern, whereas those in slices ipsilateral to the lesion fired more irregularly or even in bursts. Experimentally increased [K+]o led to an increase in the number of spontaneously firing neurons and action potential firing rates in all groups. This was accompanied by a decrease in the amplitude of post spike afterhyperpolarization (AHP) and the amplitude and duration of the posttrain AHP. Lesion effects in ipsilateral neurons at physiological [K+]o resembled the effects of elevated [K+]o in nonlesioned rats. Our data suggest that changed potassium sensitivity due to conductivity alterations and delayed clearance may be critical for shaping STN activity in parkinsonian states.

  18. Lesioning of the Striatum Reverses Motor Asymmetry in the 6-Hydroxydopamine Rodent Model of Parkinsonism

    PubMed Central

    Friehs, G. M.; Parker, R. G.; He, L. S.; Haines, S. J.; Turner, D. A.; Ebner, T. J.

    1991-01-01

    In the rat several paradigms of grafting of adrenal medulla into the striatum were studied following the induction of a parkinsonian model, using a unilateral 6-hydroxydopamine (6-OHDA) lesion of the substantia nigra . Direct autologous grafting of adrenal medulla into the caudate-putamen complex, a radiofrequency lesion of the striatum alone, and a radiofrequency lesion followed by delayed grafting of adrenal medulla were compared by analyzing rotational behavior. Direct grafting of adrenal medulla produced an overall reduction in apomorphine induced turning behavior by 43.5% when compared with controls. Radiofrequency lesioning of the striatum without graft showed the best improvement over control animals with a 92% reduction in the total number of rotations induced by apomorphine. Delayed grafting into the caudate lesion cavity also produced a dramatic reduction in motor asymmetry but did not improve the behavioral outcome over that of the lesion alone. Animals receiving only radiofrequency lesions exhibited a band of increased tyrosine hydroxylase like immunoreactivity bordering the lesion cavity. Graft survival was limited in the nonlesioned animals but appeared enhanced in the animals whose striatum was previously lesioned. Lesion location within the striatum influenced the behavioral outcome. Large reductions in apomorphine-induced rotations could result from small lesions of the dorso-lateral striatum. These findings indicate that selective destruction of the caudate-putamen complex without tissue transplantation produces a dramatic reduction in the motor asymmetry of 6-OHDA treated rats. Suggested explanations for the decrease in induced rotational behavior with radiofrequency lesions include a decrease in the number of striatal dopamine receptors following cell destruction and lesioninduced recovery of host dopaminergic afferents. Striatal damage in critical areas can reverse some of the motor behavior associated with the 6-OHDA model and needs to be

  19. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats

    PubMed Central

    Cass, Wayne A.; Peters, Laura E.; Fletcher, Anita M.; Yurek, David M.

    2014-01-01

    Current therapies for Parkinson's disease (PD) offer symptomatic relief but do not provide a cure or slow the disease process. Treatments that could halt progression of the disease or help restore function to damaged neurons would be of substantial benefit. Calcitriol, the active metabolite of vitamin D, has been shown to have significant effects on the brain. These effects include upregulating trophic factor levels, and reducing the severity of some central nervous system lesions. While previous studies have shown that calcitriol can be neuroprotective in 6-hydroxydopamine (6-OHDA) rodent models of PD, the present experiments were designed to examine the ability of calcitriol to promote restoration of extracellular DA levels and tissue content of DA in animals previously lesioned with 6-OHDA. Male Fischer-344 rats were given a single injection of 12 µg 6-OHDA into the right striatum. Four weeks later the animals were administered vehicle or calcitriol (0.3 or 1.0 µg/kg, s.c.) once a day for eight consecutive days. Three weeks after the calcitriol treatments in vivo microdialysis experiments were conducted to measure potassium and amphetamine evoked overflow of DA from both the left and right striata. In control animals treated with 6-OHDA and vehicle there were significant reductions in both potassium and amphetamine evoked overflow of DA on the lesioned side of the brain compared to the contralateral side. In animals treated with 6-OHDA followed by calcitriol there was significantly greater potassium and amphetamine evoked overflow of DA from the lesioned striatum compared to that from the control animals. The calcitriol treatments also led to increases in postmortem tissue levels of DA in the striatum and substantia nigra. These results suggest that calcitriol may help promote recovery of dopaminergic functioning in injured nigrostriatal neurons. PMID:24858239

  20. c-jun expression in substantia nigra neurons following striatal 6-hydroxydopamine lesions in the rat.

    PubMed

    Jenkins, R; O'Shea, R; Thomas, K L; Hunt, S P

    1993-03-01

    The proto-oncogene c-jun is thought to play a role in the control of growth and differentiation of many cell types. It has been demonstrated previously that damage to axons of peripheral motor or sensory neurons resulted within 24 h in substantially increased levels of the c-jun gene in the parent cell bodies. These increased levels of c-jun protein and messenger RNA are maintained if the damaged nerve is ligated, but return to basal levels if the peripheral nerve is allowed to regenerate. We have examined the expression of immediate early genes in central neurons of the rat and now show that a 6-hydroxydopamine-induced axotomy of the dopaminergic nigrostriatal pathway results in a substantial increase in the levels of c-jun (but not c-fos) messenger RNA and protein within neurons of the substantia nigra pars compacta. However, the central neuronal response differs from the peripheral nerve response in that it becomes maximal at four to eight days post-lesion and is transient, declining to control levels in nigral neurons by 14 days post-lesion. These expression patterns may be related to the differential capacity of central and peripheral neurons to regenerate. The precise role of c-jun in these processes, or in the regenerative response, is unclear but it remains possible that c-jun activation following axon damage leads to an increased expression of genes which are essential for the regenerative response. The nature of the mechanism by which c-jun levels are attenuated in central neurons is also unclear, but inhibitory factors, generated by the central environment, may play a role.

  1. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    SciTech Connect

    Maguire, G.W.; Smith, E.L. III

    1985-06-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by (/sup 3/H)dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced (/sup 3/H)dopamine uptake compared with that of their matched controls. Normal appearing (/sup 3/H)GABA and (/sup 3/H)-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry.

  2. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    PubMed

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson's disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson's disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson's disease induced by 6-hydroxydopamine.

  3. Depressive-like behavior observed with a minimal loss of locus coeruleus (LC) neurons following administration of 6-hydroxydopamine is associated with electrophysiological changes and reversed with precursors of norepinephrine

    PubMed Central

    Szot, Patricia; Franklin, Allyn; Miguelez, Cristina; Wang, Yangqing; Vidaurrazaga, Igor; Ugedo, Luisa; Sikkema, Carl; Wilkinson, Charles W.; Raskind, Murray A.

    2016-01-01

    Depression is a common co-morbid condition most often observed in subjects with mild cognitive impairment (MCI) and during the early stages of Alzheimer’s disease (AD). Dysfunction of the central noradrenergic nervous system is an important component in depression. In AD, locus coeruleus (LC) noradrenergic neurons are significantly reduced pathologically and the reduction of LC neurons is hypothesized to begin very early in the progression of the disorder; however, it is not known if dysfunction of the noradrenergic system due to early LC neuronal loss is involved in mediating depression in early AD. Therefore, the purpose of this study was to determine in an animal model if a loss of noradrenergic LC neurons results in depressive-like behavior. The LC noradrenergic neuronal population was reduced by the bilateral administration of the neurotoxin 6-hydroxydopamine (6-OHDA) directly into the LC. Forced swim test (FST) was performed three weeks after the administration of 6-OHDA (5, 10 and 14 μg/μl), animals administered the 5 μg/μl of 6-OHDA demonstrated a significant increase in immobility, indicating depressive-like behavior. This increase in immobility at the 5 μg/μl dose was observed with a minimal loss of LC noradrenergic neurons as compared to LC neuronal loss observed at 10 and 14 μg/μl dose. A significant positive correlation between the number of surviving LC neurons after 6-OHDA and FST immobile time was observed, suggesting that in animals with a minimal loss of LC neurons (or a greater number of surviving LC neurons) following 6-OHDA demonstrated depressive-like behavior. As the 6-OHDA-induced loss of LC neurons is increased, the time spent immobile is reduced. Depressive-like behavior was also observed with the 5 μg/μl dose of 6-OHDA with a second behavior test, sucrose consumption. FTS increased immobility following 6-OHDA (5 μg/μl) was reversed by the administration of a single dose of L-1-3-4-dihydroxyphenylalanine (DOPA) or L-threo-3

  4. Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice

    PubMed Central

    Willard, Amanda M.; Bouchard, Rachel S.; Gittis, Aryn H.

    2015-01-01

    Parkinson’s disease (PD) is a movement disorder whose cardinal motor symptoms arise due to the progressive loss of dopamine. Although this dopamine loss typically progresses slowly over time, currently there are very few animal models that enable incremental dopamine depletion over time within the same animal. This type of gradual dopamine depletion model would be useful in studies aimed at the prodromal phase of PD, when dopamine levels are pathologically low but motor symptoms have not yet presented. Utilizing the highly characterized neurotoxin 6-hydroxydopamine (6-OHDA), we have developed a paradigm to gradually deplete dopamine levels in the striatum over a user-defined time course – spanning weeks to months – in C57BL/6 mice. Dopamine depletions were achieved by administration of five low dose injections (0.75 µg) of 6-OHDA through an implanted intracranial bilateral cannula targeting the medial forebrain bundle. Levels of dopamine within the striatum declined linearly with successive injections, quantified using tyrosine hydroxylase immunostaining and high-performance liquid chromatography. Behavioral testing was carried out at each time point to study the onset and progression of motor impairments as a function of dopamine loss over time. We found that spontaneous locomotion, measured in an open field, was robust to loss of dopamine until ~70% of striatal dopamine was lost. Beyond this point, additional dopamine loss caused a sharp decline in motor performance, reaching a final level comparable to that of acutely depleted mice. Similarly, although rearing behavior was more sensitive to dopamine loss and declined linearly as a function of dopamine levels, it eventually declined to levels similar to that seen in acutely depleted mice. In contrast, motor coordination, measured on a vertical pole task, was only moderately impaired in gradually depleted mice, despite severe impairments observed in acutely depleted mice. These results demonstrate the

  5. Fibroblast growth factor 1attenuates 6-hydroxydopamine-induced neurotoxicity: an in vitro and in vivo investigation in experimental models of parkinson’s disease

    PubMed Central

    Wei, Xiaojie; He, Songbin; Wang, Zhouguang; Wu, Jiamin; Zhang, Jinjing; Cheng, Yi; Yang, Jie; Xu, Xinlong; Chen, Zaifeng; Ye, Junmin; Chen, Li; Lin, Li; Xiao, Jian

    2014-01-01

    Parkinson’s disease (PD) is a degenerative disorder of the central nervous system and is characterized by motor system disorders resulting in loss of dopamine producing brain cells. Acidic fibroblast growth factor, also called FGF1, promotes the survival of neurons. The aims of the present study were to confirm FGF1 could protect neurons cultures from 6-hydroxydopamine (6-OHDA) toxicity in vitro and in vivo. Our results demonstrated FGF1 administration improved the motor function recovery, increased the TH-positive neurons survival and up-regulated the levels of neurotransmitters in PD rats. Meanwhile, FGF1 prevents the death of DA neuron at least in part by reducing the levels of α-synuclein and ER stress. The administration of FGF1 activated downstream signals PI3K/Akt and ERK1/2. In conclusion, FGF1 diminished α-synuclein neurotoxicity by down regulating ER stress mediators and the level of apoptosis, and these effects may underlying the activation of the PI3K/Akt and ERK1/2 signal pathway. PMID:25628778

  6. Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats

    PubMed Central

    Cadet, Jean Lud; Brannock, Christie; Krasnova, Irina N.; Ladenheim, Bruce; McCoy, Michael T.; Chou, Jenny; Lehrmann, Elin; Wood, William H.; Becker, Kevin G.; Wang, Yun

    2010-01-01

    Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)–denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (± 1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also

  7. Methamphetamine-induced dopamine-independent alterations in striatal gene expression in the 6-hydroxydopamine hemiparkinsonian rats.

    PubMed

    Cadet, Jean Lud; Brannock, Christie; Krasnova, Irina N; Ladenheim, Bruce; McCoy, Michael T; Chou, Jenny; Lehrmann, Elin; Wood, William H; Becker, Kevin G; Wang, Yun

    2010-12-13

    Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)-denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (±1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also caused

  8. Amantadine increases L-DOPA-derived extracellular dopamine in the striatum of 6-hydroxydopamine-lesioned rats.

    PubMed

    Arai, Akira; Kannari, Kazuya; Shen, Huo; Maeda, Tetsuya; Suda, Toshihiro; Matsunaga, Muneo

    2003-05-16

    We investigated the effect of amantadine on L-DOPA-derived extracellular dopamine (DA) levels and aromatic L-amino acid decarboxylase (AADC) activity in the striatum of rats with nigrostriatal dopaminergic denervation by 6-hydroxydopamine (6-OHDA). Pretreatment with 30 mg/kg amantadine increased the cumulative amount of extracellular DA in the striatum of 6-OHDA-lesioned rats treated with 10 mg/kg benserazide and 50 mg/kg L-DOPA to 250% of that without amantadine (P<0.01). Under pretreatment with 10 mg/kg benserazide, AADC activity after 30 mg/kg amantadine administration was reduced to 43% of controls (P<0.01). Amantadine-induced increase in L-DOPA-derived extracellular DA provides the basis for the clinical usefulness of amantadine in combination with L-DOPA. However, the effect of amantadine on L-DOPA-derived extracellular DA may not be caused by changes in AADC activity.

  9. Atomoxetine blocks motor hyperactivity in neonatal 6-hydroxydopamine-lesioned rats: implications for treatment of attention-deficit hyperactivity disorder.

    PubMed

    Moran-Gates, Taylor; Zhang, Kehong; Baldessarini, Ross J; Tarazi, Frank I

    2005-09-01

    We recently reported that selective inhibitors of neuronal transport of norepinephrine (NE), desipramine and nisoxetine, reversed motor hyperactivity in an animal model of attention-deficit hyperactivity disorder (ADHD). In this study, we examined behavioural effects of atomoxetine, a potent new NE reuptake blocker, in juvenile male rats with neonatal 6-hydroxydopamine (6-OHDA) lesions of dopamine projections to the forebrain. 6-OHDA (100 microg) was administered intracisternally on postnatal day (PD) 5 following desipramine (25 mg/kg s.c.) pretreatment to protect noradrenergic neurons. Atomoxetine (1 mg/kg) was given intraperitoneally before recording motor activity for 90 min at PD 23-26 in a novel environment. Atomoxetine greatly reduced motor hyperactivity in 6-OHDA-lesioned rats while exhibiting transient sedative effects in sham controls. The observed effects in this animal model for ADHD are consistent with the emerging clinical use of atomoxetine as a novel, non-stimulant treatment for ADHD.

  10. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson's disease.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-02-01

    Oxidative stress and neuroinflammation underlie the major pathogenesis in Parkinson's disease (PD). Antioxidants are known to protect against the degeneration of dopaminergic neurons. Monascus purpureus-fermented rice, a traditional Chinese medicine as well as a health food, includes multifunctional metabolites. The present study was designed to investigate the effects of the antioxidant-containing M. purpureus NTU 568-fermented rice extract (extracted with 50% ethanol, so called R50E) in 6-hydrodopamine (6-OHDA)-induced neurotoxicity in vitro and in vivo. In vitro, treatment with R50E reduced 6-OHDA-induced SH-SY5Y cell death. In vivo, two doses of R50E (5.5 and 11.0 mg kg(-1)) were administered for a period of 28 days following 6-OHDA-induced lesioning. The administration of R50E reduced parkinsonian motor dysfunction and the number of tyrosine hydroxylase (TH)-immunoreactive neurons present in 6-OHDA-induced lesioned rats. Moreover, the administration of R50E reversed the elevation of reactive oxygen species (ROS) and malondialdehyde (MDA) levels and promoted the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione reductase, and glutathione peroxidase via down-regulation of p47 phox, NOX1, and NOX2 expression in the 6-OHDA-lesion rats. Furthermore, treatment with R50E attenuated nitric oxide (NO) and tumor necrosis factor (TNF-α) levels in the 6-OHDA-lesion rats. In conclusion, R50E may prevent neurodegeneration via anti-oxidative and anti-inflammatory mechanisms, suggesting its potential therapeutic value for PD treatment. This is the first study for evaluating the neuroprotective effects of red mold fermented products in PD models.

  11. Benserazide dosing regimen affects the response to L-3,4-dihydroxyphenylalanine in the 6-hydroxydopamine-lesioned rat.

    PubMed

    Tayarani-Binazir, Kayhan A; Jackson, Michael J; Strang, Isobel; Jairaj, Mark; Rose, Sarah; Jenner, Peter

    2012-04-01

    Peripheral aromatic amino acid decarboxylase (AADC) inhibitors, such as benserazide, are routinely used to potentiate the effects of L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease (PD) and in experimental models of PD. However, there is little information available on the optimal dose or the timing of administration relative to L-DOPA treatment. We now assess the effect of dose, timing, and supplemental administration of benserazide on the rotational response induced by L-DOPA in unilateral 6-hydroxydopamine-lesioned rats. L-DOPA (12.5 mg/kg, p.o.) concomitant with benserazide (3.125-15 mg/kg, p.o.) produced a dose-dependent increase in contraversive rotation compared with the effects of L-DOPA alone. The optimal L-DOPA response was achieved with 10 mg/kg of benserazide and this dose was used in subsequent experiments. When L-DOPA treatment was delayed for 1, 2, or 3 h after benserazide, the rotational response declined suggesting loss of AADC inhibition. Unexpectedly, there was also a progressive decline in response when benserazide and L-DOPA were given together but at increasingly later time points of 08.00, 09.00, 10.00, and 11.00 h. To assess supplemental administration of benserazide, an additional dose was given 2 h after the initial benserazide/L-DOPA treatment. This produced a further increase in the number of contralateral rotations indicating that the effect of benserazide declines while plasma levels of L-DOPA are maintained. Therefore, optimization of the dose and timing of benserazide administration is essential to achieve a consistent L-DOPA response in 6-hydroxydopamine-lesioned rats. These findings may have implications for the way in which peripheral AADC inhibitors are used in the treatment of PD.

  12. Protective effect of metabotropic glutamate mGluR5 receptor elimination in a 6-hydroxydopamine model of Parkinson’s disease

    PubMed Central

    Black, Yolanda D.; Xiao, Danqing; Pellegrino, Daniela; Kachroo, Anil; Brownell, Anna-Liisa; Schwarzschild, Michael A.

    2010-01-01

    Pharmacologic or genetic blockade of metabotropic glutamate mGlu5 receptors (mGluR5) has been shown to attenuate parkinsonian motor deficits and protect nigrostriatal neurons from damage in the acute MPTP model of Parkinson’s disease (PD), suggesting that therapeutically targeting the mGluR5 receptor may offer a novel approach to improving motor symptoms and/or slowing neurodegeneration in PD. This study further explored the neuroprotective potential of targeting mGluR5 receptors. We examined the behavioral and neurochemical effects of receptor elimination on toxicity induced by intra-striatal application of 6-hydroxydopamine (6-OHDA), thought to represent a comparatively progressive model of PD. mGluR5 knockout (KO) mice and wild-type (WT) littermates received unilateral 6-OHDA infusions. Reflecting the imbalance expected following unilateral infusion, WT but not KO mice demonstrated predominantly ipsilateral forepaw use and robust ipsilateral amphetamine-induced rotation. Further, performance on the vertical pole descent task was profoundly impaired in WT mice, while KO mice completed the task significantly faster. Consistent with the behavioral observations, neurochemical analyses of striatal dopamine depletion showed significantly diminished severity in KO mice with only 64% of striatal dopamine lost, compared to 92% in WT mice. The absence of brain mGluR5 receptors in living KO mice was verified using positron emission tomography (PET). Our findings substantiate the key role of mGluR5 receptors in animal models of PD, strengthening the rationale for the development of mGluR5 antagonists for their neuroprotective, as well as symptomatic, benefit. PMID:20854878

  13. Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model

    PubMed Central

    Sedaghat, Reza; Roghani, Mehrdad; Khalili, Mohsen

    2014-01-01

    Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD. PMID:24734075

  14. [COMPARISON OF CYTOPROTECTIVE EFFECTS OF HEMANTANE AND AMANTADINE UNDER CONDITIONS OF 6-HYDROXYDOPAMINE NEUROTOXIN ACTION ON CULTURED HUMAN NEUROBLASTOMA CELLS].

    PubMed

    Logvinov, I O; Antipova, T A; Nepoklonov, A V; Valdman, E A

    2016-01-01

    Potential neuroprotective activity of the novel antiparkinsonian drug hemantane (hydrochloride N-2-(adamantyl)-hexamethylenimine) in comparison to amantadine has been studied in various regimes of administration on human neuroblastoma SH-SY5Y cell line injury induced by 6-hydroxydopamine (6-OHDA), which is used as in vitro model of dopaminergic neurons for Parkinson's disease. Two regimes of hemantane and amantadine administration in a range of final concentrations 10⁻⁶-10⁻⁸ M were used either prior to or immediately after 6-OHDA introduction. MTT colorimetric assay was used to assess the viability of test cells. Significant decrease in viability of SH-SY5Y cells treated with 6-OHDA was observed. The addition of hemantane to cell medium produced cytoprotective effects in both regimes of administration--before and after 6-OHDA--at concentrations 10⁻⁷ M and 10⁻⁶-10⁻⁸ M, respectively. Amantadine in con- centrations 10⁻⁷-10⁻⁸ M was effective to increase cell survival only when administered after 6-OHDA. These results show that hemantane has a greater neu-roprotective potential in comparison to amantadine.

  15. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson’s rats

    PubMed Central

    Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju

    2013-01-01

    Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson’s disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson’s rats. Parkinson’s rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson’s rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson’s disease. PMID:24278884

  16. Impact of the Chronic Omega-3 Fatty Acids Supplementation in Hemiparkinsonism Model Induced by 6-Hydroxydopamine in Rats.

    PubMed

    Barros, Alexandre Sales; Crispim, Rafael Yuri Gouveia; Uchoa, Juliana Cavalcante; Souza, Ricardo Basto; Lemos, Jonatas Cavalcante; Filho, Gerardo Cristino; Bezerra, Mirna Marques; Pinheiro, Thales Fontenele Moraes; de Vasconcelos, Silvânia Maria Mendes; Macêdo, Danielle Silveira; de Barros Viana, Glauce Socorro; Aguiar, Lissiana Magna Vasconcelos

    2016-11-24

    Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra. The neuronal degeneration may result from the convergence of a number of different pathogenic factors, including apoptosis, excitotoxicity and oxidative stress. Many studies emphasize the importance of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in vital processes such as maintenance of the properties of cell membranes and the participation in signal transduction and biodynamic activity of neuronal membranes. In the present study, the protective effect of ω-3 PUFAs administration on the 6-hydroxydopamine (6-OHDA) model of PD in rats was investigated. ω-3 PUFAs (1.5 and 3.0 g/kg) was orally administered by gavage during 28 consecutive days to male Wistar rats. On the 4(th) day, hemiparkinsonism was induced through intrastriatal injection of 6-OHDA. On the 25(th) day, the animals were submitted to behavioural analysis. On the 28(th) day, after euthanasia, the brain areas were collected for neurochemical evaluation. ω-3 PUFAs (1.5 and 3.0 g/kg) restored monoamine and amino acids levels on the striatum from hemiparkinsonian rats, followed by reduction of the number of apomorphine-induced rotations and promotion of a partial locomotor recovery. In addition, ω-3 PUFAs (1.5 and 3.0 g/kg) decreased the lipid peroxidation levels and nitrite levels in the brain areas from hemiparkinsonian rats. Thus, the present study suggests that supplementation with ω-3 PUFAs prevents behavioural and neurochemical disturbances induced by 6-OHDA, presenting a potential neuroprotective action. This article is protected by copyright. All rights reserved.

  17. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Haas, Stefan Jean-Pierre; Zhou, Xiaolai; Machado, Venissa; Wree, Andreas; Krieglstein, Kerstin; Spittau, Björn

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor β1 (Tgfβ1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfβ1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO). PMID:26869879

  18. Lack of synergism between caffeine and SKF 38393 on rotational behavior in 6-hydroxydopamine-denervated rats.

    PubMed

    Casas, M; Prat, G; Rubio, A; Barbanoj, M; Jané, F

    2000-05-19

    We have recently shown a synergistic effect between caffeine and the dopamine D(2) receptor agonist, bromocriptine, on contralateral rotational behavior in unilaterally 6-hydroxydopamine-denervated rats. In addition, we found that bromocriptine prevented caffeine-induced tolerance to this behavior following repeated treatment. In the present study, we investigated whether or not the dopamine D(1) receptor agonist, (+/-)-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF 38393), presented similar characteristics. Different groups of rats received simultaneous injections of either vehicle plus vehicle, caffeine (40 mg/kg) plus vehicle, SKF 38393 (0.5, 1, 2, and 4 mg/kg) plus vehicle, or caffeine plus SKF 38393 (0.5, 1, 2, and 4 mg/kg) for 5 consecutive days, and both ipsilateral and contralateral rotational behavior was measured. Results showed that, on the first day of treatment, caffeine produced significantly more rotational behavior than did a low dose of SKF 38393 (0.5 mg/kg), and significantly less turning than at higher doses (2 and 4 mg/kg). Combined treatment with caffeine and a high dose of SKF 38393 (4 mg/kg) produced significantly more rotational behavior than did caffeine plus vehicle. With repeated administration, caffeine produced sustained tolerance to its effects on rotational behavior, whereas SKF 38393 did not. In the groups treated with low doses of SKF 38393 (0.5, and 1 mg/kg) plus caffeine, tolerance was observed while in the groups that received high doses of SKF 38393 (2 and 4 mg/kg) plus caffeine, no tolerance was observed to rotational behavior. These results suggest that maximal stimulation of dopamine D(1) receptors may be needed to prevent the tolerance effects of caffeine in this animal model. This finding may have clinical relevance to the therapeutic treatment of Parkinson's disease.

  19. Moderate traumatic brain injury increases the vulnerability to neurotoxicity induced by systemic administration of 6-hydroxydopamine in mice.

    PubMed

    de Oliveira, Paulo Alexandre; Ben, Juliana; Matheus, Filipe Carvalho; Schwarzbold, Marcelo Liborio; Moreira, Eduardo Luiz Gasnhar; Rial, Daniel; Walz, Roger; Prediger, Rui Daniel

    2017-03-10

    Moderate traumatic brain injury (TBI) might increase the vulnerability to neuronal neurodegeneration, but the basis of such selective neuronal susceptibility has remained elusive. In keeping with the disruption of the blood-brain barrier (BBB) caused by TBI, changes in BBB permeability following brain injury could facilitate the access of xenobiotics into the brain. To test this hypothesis, here we evaluated whether TBI would increase the susceptibility of nigrostriatal dopaminergic fibers to the systemic administration of 6-hydroxydopamine (6-OHDA), a classic neurotoxin used to trigger a PD-like phenotype in mice, but that in normal conditions is unable to cross the BBB. Adult Swiss mice were submitted to a moderate TBI using a free weight-drop device and, 5 h later, they were injected intraperitoneally with a single dose of 6-OHDA (100 mg/kg). Afterwards, during a period of 4 weeks, the mice were submitted to a battery of behavioral tests, including the neurological severity score (NSS), the open field and the rotarod. Animals from the TBI plus 6-OHDA group displayed significant motor and neurological impairments that were improved by acute L-DOPA administration (25 mg/kg, i.p.). Moreover, the observation of the motor deficits correlates with (i) a significant decrease in the tyrosine hydroxylase levels mainly in the rostral striatum and (ii) a significant increase in the levels of striatal glial fibrillary acidic protein (GFAP) levels. On the whole, the present findings demonstrate that a previous moderate TBI event increases the susceptibility to motor, neurological and neurochemical alterations induced by systemic administration of the dopaminergic neurotoxin 6-OHDA in mice.

  20. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson’s Disease in Rats

    PubMed Central

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson’s disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson’s disease induced by 6-hydroxydopamine. PMID:27610168

  1. Exercise partly reverses the effect of maternal separation on hippocampal proteins in 6-hydroxydopamine-lesioned rat brain.

    PubMed

    Dimatelis, J J; Hendricks, S; Hsieh, J; Vlok, N M; Bugarith, K; Daniels, W M U; Russell, V A

    2013-01-01

    Animals subjected to maternal separation stress during the early stages of development display behavioural, endocrine and growth factor abnormalities that mirror the clinical findings in anxiety/depression. In addition, maternal separation has been shown to exacerbate the behavioural deficits induced by 6-hydroxydopamine (6-OHDA) in a rat model of Parkinson's disease. In contrast, voluntary exercise reduced the detrimental effects of 6-OHDA in the rat model. The beneficial effects of exercise appeared to be largely due to compensation in the non-lesioned hemisphere. The aim of the present study was to investigate whether voluntary exercise for 3 weeks could reverse the effects of maternal separation in rats challenged with the neurotoxin 6-OHDA infused into the medial forebrain bundle after 1 week of exercise, at postnatal day 60. The rats were killed 2 weeks later, at postnatal day 74. Their brains were dissected and the hippocampus rapidly removed for proteomic analysis by isobaric tagging (iTRAQ) and quantification of peptides by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Maternal separation upregulated hippocampal proteins functionally involved in energy metabolism (nucleoside diphosphate kinase B, enolase and triosephosphate isomerase) and synaptic plasticity (α-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere. Exercise reversed many of these changes by downregulating the levels of hippocampal proteins functionally associated with energy metabolism (nucleoside diphosphate kinase B, enolase and triosephosphate isomerase) and synaptic plasticity (α-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere of rats subjected to maternal separation. Exercise and maternal separation therefore appeared to have opposing effects on the hippocampus in the non-lesioned hemisphere of the rat brain. Exercise seemed partly to reverse the

  2. Effects of the neuroprotectant lubeluzole on the cytotoxic actions of veratridine, barium, ouabain and 6-hydroxydopamine in chromaffin cells

    PubMed Central

    Cano-Abad, María F; López, Manuela G; Hernández-Guijo, Jesús M; Zapater, Pedro; Gandía, Luis; Sánchez-García, Pedro; García, Antonio G

    1998-01-01

    Incubation of bovine adrenal chromaffin cells with veratridine (10–100 μM) during 24 h, caused a concentration-dependent release of the cytosolic lactate dehydrogenase (LDH) into the bathing medium, an indicator of cell death. Lubeluzole or its R(−) enantiomer, R91154, did not enhance LDH release. Both lubeluzole and R91154 (0.3–10 μM) decreased the veratridine-induced LDH release. Penfluridol did not increase LDH release at concentrations 0.003–1 μM; 3–10 μM increased LDH release to 50–60%, after 24 h exposure. Penfluridol (0.03–0.3 μM) did not protect against the cytotoxic effects of veratridine; at 1 μM, 15% protection was produced. Higher concentrations (3–10 μM) enhanced the cytotoxic effects of veratridine. Ba2+ ions caused a concentration-dependent increase of LDH release. This cytotoxic effect was partially prevented by 3 μM lubeluzole and fully counteracted by 1 μM penfluridol. R91154 was less potent than lubeluzole and only protected against the lesion induced by 0.5 mM Ba2+. Ouabain (10 μM during 24 h) increased LDH release to about 30%. Both lubeluzole (0.3–10 μM) and the lower concentrations of penfluridol (0.003–0.3 μM) prevented the ouabain cytotoxic effects. At higher concentrations (3 μM), penfluridol increased drastically the ouabain cytotoxic effects. 6-Hydroxydopamine (6-OHDA) caused significant cytotoxic effects at 30 and 100 μM. Lubeluzole (3–10 μM) or penfluridol (0.03–0.3 μM) had no cytoprotective effects against 6-OHDA. Lubeluzole (3 μM), R91154 (3 μM) and penfluridol (1 μM) blocked the current through Na+ channels in voltage-clamped chromaffin cells (INa) by around 20–30%. Ca2+ current through Ca2+ channels (ICa) was inhibited 57% by lubeluzole and R91154 and 50% by penfluridol. The effects of penfluridol were not washed out, but those of lubeluzole and R91154 were readily reversible. Lubeluzole (3 μM) induced reversible blockade of the

  3. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study.

    PubMed

    Shobana, Chandrasekar; Kumar, Radhakrishnan Ramesh; Sumathi, Thangarajan

    2012-10-01

    Parkinson's disease is one of the commonest neurodegenerative diseases, and oxidative stress has been evidenced to play a vital role in its causation. In this study, we evaluated whether alcoholic extract of Bacopa monniera (AEBM), an antioxidant and memory enhancer can slow the neuronal injury in a 6-OHDA-rat model of Parkinson's. Rats were treated with 20 and 40 mg/kg bodyweight of AEBM for 3 weeks. On Day 21, 2 μl of 6-OHDA (12 μg in 0.01 % in ascorbic acid-saline) was infused into the right striatum, while the control group received 2 μl of vehicle. Three weeks after the 6-OHDA injection, the rats were tested for neurobehavioral activity (rotarod, locomotor activity, grip test, forced swim test, radial arm maze) and were killed after 6 weeks for the estimation of lipid peroxidation, reduced glutathione (GSH) content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase (SOD), and catalase (CAT). The deficits in behavioral activity due to 6-OHDA lesioning were significantly and dose dependently restored by AEBM. Lesioning was followed by an increased lipid peroxidation and significant depletion of reduced GSH content in the substantia nigra, which was prevented with AEBM pretreatment. The activities of GSH-dependent enzymes, CAT and SOD in striatum were reduced significantly by lesioning, which were restored significantly and dose dependently by AEBM. This study indicates that the extract of B. monniera might be helpful in attenuating 6-OHDA-induced lesioning in rats.

  4. The C-terminal domain of the heavy chain of tetanus toxin given by intramuscular injection causes neuroprotection and improves the motor behavior in rats treated with 6-hydroxydopamine.

    PubMed

    Mendieta, Liliana; Bautista, Elizabeth; Sánchez, Alejandra; Guevara, Jorge; Herrando-Grabulosa, Mireia; Moran, José; Martínez, Rebeca; Aguilera, José; Limón, Ilhuicamina Daniel

    2012-10-01

    We have previously shown that the intrastriatal injection of the C-terminal domain of tetanus toxin (Hc-TeTx) protects the nigrostriatal-dopaminergic pathways and improves motor behavior in hemiparkinsonism-rat models caused by MPP(+) (1-methyl-4-phenylpyridinium). Here we have investigated the protective effects of the intramuscular application of the Hc-TeTx on motor asymmetry and neurodegeneration in the striatum of 6-hydroxydopamine (6-OHDA)-treated rats. Adult male rats were intramuscularly injected with the recombinant Hc-TeTx protein (0.1-20μg/kg, daily) 3days before the stereotaxic injection of 6-OHDA into the left striatum. Our results showed that the motor-improvement functions were extended for 4weeks in all Hc-TeTx-treated groups, obtaining the maximum performance with the highest dose of Hc-TeTx (20μg/kg). The improvements found were 97%, 87%, and 70% in the turning behavior, stepping test, and cylinder test, respectively. The striatal levels of dopamine and its metabolites did not vary compared to the control group. Moreover, the peripheral treatment with Hc-TeTx in rats prevents, for 30days, the neurodegeneration in the striatum caused by the toxicity of the 6-OHDA. Our results lead us to believe that the Hc-TeTx could be a potential therapeutic agent in pathologies caused by impairment of dopaminergic innervations such as Parkinson's disease.

  5. Sensorimotor impairment and elevated levels of dopamine metabolites in the neostriatum occur rapidly after intranigral injection of 6-hydroxydopamine or gamma-hydroxybutyrate in awake rats.

    PubMed

    Altar, C A; O'Neil, S; Marshall, J F

    1984-03-01

    The unilateral injection of 6-hydroxydopamine (8 micrograms) into the ventral tegmental area of awake rats produced a rapidly developing and irreversible sensory neglect to contralateral tactile stimuli. This neglect developed in a caudal to rostral direction on the affected body surface and coincided with significant elevation in the concentrations of dopamine and two of its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the ipsilateral neostriatum. The unilateral injection of procaine or gamma-hydroxybutyric acid (GHB) into the substantia nigra of awake animals also produced a contralateral neglect that developed in a caudal to rostral direction, but the behavioral effect of these drugs diminished within 1 hr. Concentrations of dopamine, dihydroxyphenylacetic acid and homovanillic acid in the neostriatum were markedly elevated during continuous infusions of procaine or gamma-hydroxybutyric acid. The extent of sensory neglect and changes in dopamine metabolism in the neostriatum varied according to the amount of gamma-hydroxybutyric acid injected into the nigra and according to the proximity of injections of gamma-hydroxybutyric acid to the pars compacta. The rapid onset of sensory neglect following microinjections of 6-hydroxydopamine, procaine or gamma-hydroxybutyric acid is consistent with the ability of each of these drugs to block the conduction of impulses in mesostriatal neurons and suggests that concomitant increases in levels of dopamine, dihydroxyphenylacetic acid and homovanillic acid in the neostriatum resulted from decreases in the release of dopamine coupled with increased synthesis of dopamine. These findings also indicate that the catabolism of dopamine to dihydroxyphenylacetic acid or homovanillic acid may originate intraneuronally, without prior release of dopamine and its recapture by mesostriatal terminals, if the flow of impulses in this pathway has been blocked.

  6. Effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABA(A) receptor subunit gene expression in the rodent basal ganglia and thalamus.

    PubMed

    Chadha, A; Dawson, L G; Jenner, P G; Duty, S

    2000-01-01

    In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABA(A) receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABA(A) receptor subunits (alpha(1-4), beta(1-3), gamma(1-3) and delta) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of alpha1 and beta2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11 +/- 4% and 17 +/- 1%, respectively), and significantly reduced in the globus pallidus (18 +/- 3% and 16 +/- 3%, respectively) and parafascicular nucleus (19 +/- 3% and 16 +/- 5%, respectively). Smaller changes in the messenger RNA levels encoding the alpha1 subunit in the lateral amygdala (8 +/- 1% decrease) and the alpha4 and gamma2 subunits in the striatum (10 +/- 2% and 6 +/- 1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABA(A) receptor subunit gene expression occurs following a nigrostriatal tract lesion. The changes in expression of the alpha1 and beta2 subunit genes probably contribute to the documented changes in GABA(A) receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.

  7. [Effects of hypothalamic microinjections of 6-hydroxydopamine (6-OHDA) on estral cycle and morphology of the genital tract in the female rat (author's transl)].

    PubMed

    Sala, M A; Oteui, J T; Benedetti, W I

    1975-01-01

    To determine whether central catecholaminergic pathways are involved in the neural contral of gonadotrophin secretion, they were interrupted at the hypothalamic level by microinjections of 6-hydroxydopamine (6-OHDA). The effects on ovulation, estral cycle and ovarian and uterine histology were studied. Microinjections of 50 mug of 6-OHDA hydrobromyde were made bilaterally into the anterolateral hypothalamus in a group of rats. Another group was injected with 25 mug of 6-OHDA, while a control group recieved an equivalent volume (5 mul) of saline with ascorbic acid. Animals injected with 50 mug of 6-OHDA showed blockade of ovulation, vaginal cytology characteristics of persistent estrous, polyfollicular ovaries and enlarged uteri with hypertrophic endometrial glands. In the group injected with 25 mug, similiar effects were demonstrated, but the number of affected animals was smaller than that in the 50 mug group. Control animals dit not show modifications, either in estral cycle or in ovarian and uterine histology. These results suggest that 6-OHDA injected into the anterolateral hypothalmus interferes with catecholaminergic pathways that participate in the neural control of ovulation.

  8. Enhancing effect of taurine in the rat caudate spindle. II. Effect of bilateral 6-hydroxydopamine lesions of the nigro-striatal dopamine system.

    PubMed

    Hashimoto-Kitsukawa, S; Okuyama, S; Aihara, H

    1988-10-01

    Bilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle of rats resulted in destruction of dopamine (DA) nerve terminals in the striatum. DA contents decreased to 16.8, 15.0 and 13.7% of control values on 3, 5 and 7 days after the lesions, respectively. The time course of the effect of 6-OHDA lesions on apomorphine (0.5 mg/kg, IV)-induced stereotypy was investigated as the index of the development of supersensitivity. Stereotypy was unchanged on 3 days, but was enhanced 5 and 7 days after 6-OHDA lesions. Therefore, the sensitivity of postsynaptic DA receptors for apomorphine did not change 3 days after 6-OHDA lesions, although the striatal DA was depleted. The effects of bilateral injections of taurine into the striatum on the rat caudate spindle were determined 3 days after 6-OHDA lesions. Taurine, at a dose of 30 micrograms, enhanced the spindle in sham-operated rats, but this enhancement was not seen after 6-OHDA lesions. Intravenous administration of apomorphine (0.5 mg/kg) to lesioned rats suppressed the spindle, and this effect was prevented by a lower dose (3 micrograms) of taurine. These results provide further evidence that taurine enhances the spindle, possibly by decreasing the activity of the nigro-striatal DA system at the pre- and postsynaptic sites.

  9. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson's rats.

    PubMed

    Song, Lu; Zhang, Zhanzhao; Hu, Rongguo; Cheng, Jie; Li, Lin; Fan, Qinyi; Wu, Na; Gan, Jing; Zhou, Mingzhu; Liu, Zhenguo

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-dopa) remains the most effective therapy for Parkinson's disease (PD), but its long-term administration is associated with the development of debilitating motor complications known as L-dopa-induced dyskinesia (LID). Enhanced function of dopamine D1 receptor (D1R) and N-methyl-D-aspartate receptor (NMDAR) is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1) interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2). In this study, we demonstrated in 6-hydroxydopamine (6-OHDA)-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson's patients.

  10. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson's disease: Possible involvement of PI3K/ERβ signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Jamali-Raeufy, Nida; Zabihnejad, Sedigheh; Rabiee, Nafiseh; Roghani, Mehrdad

    2017-04-15

    Parkinson's disease (PD) is a neurodegenerative disease with progressive loss of mesencephalic dopaminergic neurons of the substantia nigra and with multiple incapacitating motor and non-motor symptoms. Troxerutin is a natural bioflavonoid with nephro- and hepato-protective, antioxidant, and anti-inflammatory properties. In this study, we evaluated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with troxerutin at a dose of 150mg/kg/day for 1 week. Results showed that troxerutin mitigates apomorphine-induced motor asymmetry and lowered the latency to initiate and the total time in the narrow beam task and this beneficial effect was lost following central application of estrogen receptor β (ERβ) antagonist or phosphatidylinositol 3-kinase (PI3K) inhibitor. In addition, troxerutin reduced striatal malondialdehyde (MDA) as an index of lipid peroxidation, reactive oxygen species, glial fibrillary acid protein (GFAP) as a marker of astrogliosis, and DNA fragmentation as an apoptotic marker with no significant alteration of catalase activity and nitrite level. Meanwhile, troxerutin was capable to prevent loss of nigral tyrosine hydroxylase (TH)-positive neurons. These findings indicate neuroprotective potential of troxerutin in 6-OHDA rat model of PD through mitigation of apoptosis, astrogliosis, and oxidative stress and part of its effect is dependent on PI3K/ERβ signaling.

  11. Neuroprotective Effects of Sulphated Agaran from Marine Alga Gracilaria cornea in Rat 6-Hydroxydopamine Parkinson's Disease Model: Behavioural, Neurochemical and Transcriptional Alterations.

    PubMed

    Souza, Ricardo Basto; Frota, Annyta Fernandes; Sousa, Rayane Siqueira; Cezario, Nayara Araújo; Santos, Tarcizio Brito; Souza, Luziana Mara Frota; Coura, Chistiane Oliveira; Monteiro, Valdécio Silvano; Cristino Filho, Gerardo; Vasconcelos, Silvânia Maria Mendes; da Cunha, Rodrigo Maranguape Silva; Aguiar, Lissiana Magna Vasconcelos; Benevides, Norma Maria Barros

    2017-02-01

    Parkinson's disease (PD) is a multifactorial disease associated with the degeneration of dopaminergic neurons and behavioural alterations. Natural bioactive compounds may provide new therapeutic alternatives for neurodegenerative disorders, such as PD. The sulphated polysaccharides isolated from marine algae are heterogenic molecules that show different biological activities. The red marine alga Gracilaria cornea has a sulphated polysaccharide (SA-Gc) with structure and anti-inflammatory and antinociceptive activities reported in the literature. Therefore, this study aimed to evaluate the neuroprotective effects of SA-Gc in rat model PD induced by 6-hydroxydopamine (6-OHDA). Firstly, we established the PD model in rats, induced by an intrastriatal injection (int.) of 6-OHDA, followed by a single administration of SA-Gc (15, 30 or 60 μg; int.). On the 14th day, behavioural tests were performed. After killing, brain areas were dissected and used for neurochemical and/or transcriptional analyses. The results showed that SA-Gc (60 μg, int.) promoted neuroprotective effects in vivo through reducing the oxidative/nitroactive stress and through alterations in the monoamine contents induced by 6-OHDA. Furthermore, SA-Gc modulated the transcription of neuroprotective and inflammatory genes, as well as returning behavioural activities and weight gain to normal conditions. Thus, this study reports the neuroprotective effects of SA-Gc against 6-OHDA in rats.

  12. Decreased response of interneurons in the medial prefrontal cortex to 5-HT₁A receptor activation in the rat 6-hydroxydopamine Parkinson model.

    PubMed

    Zhang, Qiaojun; Wang, Shuang; Zhang, Lina; Zhang, Huan; Qiao, Hongfei; Niu, Xiaolin; Liu, Jian

    2014-08-01

    This study examined the response of interneurons in the medial prefrontal cortex (mPFC) to 5-HT1A receptor agonist 8-OH-DPAT and change in expression of 5-HT1A receptor on glutamate decarboxylase 67 (GAD67)-positive neurons in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc). Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT dose-dependently inhibited the firing rate of the interneurons at all doses tested in sham-operated rats. In 6-OHDA-lesioned rats, 8-OH-DPAT, at the same doses, also inhibited the firing rate of the interneurons, whereas the inhibition was significant only at a high cumulative dose. Furthermore, injection of 8-OH-DPAT into the mPFC inhibited the interneurons in sham-operated rats, while having no effect on firing rate of the interneurons in 6-OHDA-lesioned rats. In contrast to sham-operated rats, SNc lesion reduced the expression of 5-HT1A receptor on GAD67-positive neurons in the prelimbic cortex, a sub-region of the mPFC. Our results indicate that degeneration of the nigrostriatal pathway leads to decreased response of mPFC interneurons to 5-HT1A receptor activation, which attributes to the down-regulation of 5-HT1A receptor expression in these interneurons.

  13. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease: Possible involvement of ERβ/Nrf2/HO-1 signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Rabiee, Nafiseh; Zabihnejad, Sedigheh; Roghani, Mehrdad

    2017-02-23

    Parkinson's disease (PD) is a prevalent movement disorder in the elderly with progressive loss of mesencephalic dopaminergic neurons and incapacitating motor and non-motor complications. Ellagic acid is a natural phenolic compound with potent antioxidant and anti-inflammatory properties. In this study, we investigated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with ellagic acid at a dose of 50 mg/kg/day for 1 week. Results showed that ellagic acid attenuates apomorphine-induced rotational bias and lowers the latency to initiate and the total time in the narrow beam task and this beneficial effect was partially abrogated following intracerebroventricular microinjection of estrogen receptor β (ERβ) antagonist. Furthermore, ellagic acid reduced striatal malondialdehyde (MDA), reactive oxygen species (ROS), and DNA fragmentation, and improved monoamine oxidase B (MAO-B), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase 1 (HO-1). Meanwhile, ellagic acid prevented loss of tyrosine hydroxylase (TH)-positive neurons within substantia nigra pars compacta (SNC). These findings indicate neuroprotective potential of ellagic acid in 6-OHDA rat model of PD via amelioration of apoptosis and oxidative stress, suppression of MAO-B, and its favorable influence is partly reliant on ERβ/Nrf2/HO-1 signaling cascade.

  14. EPO-dependent activation of PI3K/Akt/FoxO3a signalling mediates neuroprotection in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Jia, Yu; Mo, Shi-Jing; Feng, Qi-Qi; Zhan, Ma-Li; OuYang, Li-Si; Chen, Jia-Chang; Ma, Yu-Xin; Wu, Jia-Jia; Lei, Wan-Long

    2014-05-01

    Erythropoietin (EPO) may become a potential therapeutic candidate for the treatment of the neurodegenerative disorder -- Parkinson's disease (PD), since EPO has been found to prevent neuron apoptosis through the activation of cell survival signalling. However, the underlying mechanisms of how EPO exerts its neuroprotective effect are not fully elucidated. Here we investigated the mechanism by which EPO suppressed 6-hydroxydopamine (6-OHDA)-induced neuron death in in vitro and in vivo models of PD. EPO knockdown conferred 6-OHDA-induced cytotoxicity. This effect was reversed by EPO administration. Treatment of PC12 cells with EPO greatly diminished the toxicity induced by 6-OHDA in a dose- and time-dependent manner. EPO effectively reduced apoptosis of striatal neurons and induced a significant improvement on the neurological function score in the rat models of PD. Furthermore, EPO increased the expression of phosphorylated Akt and phosphorylated FoxO3a, and abrogated the 6-OHDA-induced dysregulation of Bcl-2, Bax and Caspase-3 in PC12 cells and in striatal neurons. Meanwhile, the EPO-dependent neuroprotection was notably reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that PI3K/Akt/FoxO3a signalling pathway may be a possible mechanism involved in the neuroprotective effect of EPO in PD.

  15. Attenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson’s disease

    PubMed Central

    Wang, Chen-Tao; Mao, Cheng-Jie; Zhang, Xiao-Qi; Zhang, Cai-Yi; Lv, Dong-Jun; Yang, Ya-Ping; Xia, Kai-Lin; Liu, Jun-Yi; Wang, Fen; Hu, Li-Fang; Xu, Guang-Yin

    2017-01-01

    Background Although pain is one of the most distressing non-motor symptoms among patients with Parkinson’s disease, the underlying mechanisms of pain in Parkinson’s disease remain elusive. The aim of the present study was to investigate the role of serotonin (5-hydroxytryptamine) in the rostral ventromedial medulla (RVM) and spinal cord in pain sensory abnormalities in a 6-hydroxydopamine-treated rat model of Parkinson’s disease. Methods The rotarod test was used to evaluate motor function. The radiant heat test and von Frey test were conducted to evaluate thermal and mechanical pain thresholds, respectively. Immunofluorescence was used to examine 5-hydroxytryptamine neurons and fibers in the rostral ventromedial medulla and spinal cord. High-performance liquid chromatography was used to determine 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels. Results The duration of running time on the rotarod test was significantly reduced in 6-hydroxydopamine-treated rats. Nociceptive thresholds of both mechanical and heat pain were reduced compared to sham-treated rats. In addition to the degeneration of cell bodies and fibers in the substantia nigra pars compacta, the number of rostral ventromedial medulla 5-hydroxytryptamine neurons and 5-hydroxytryptamine fibers in the spinal dorsal horn was dramatically decreased. 5-Hydroxytryptamine concentrations in both the rostral ventromedial medulla and spinal cord were reduced. Furthermore, the administration of citalopram significantly attenuated pain hypersensitivity. Interestingly, Intra-rostral ventromedial medulla (intra-RVM) microinjection of 5,7-dihydroxytryptamine partially reversed pain hypersensitivity of 6-hydroxydopamine-treated rats. Conclusions These results suggest that the decreased 5-hydroxytryptamine contents in the rostral ventromedial medulla and spinal dorsal horn may be involved in hyperalgesia in the 6-hydroxydopamine-induced rat model of Parkinson’s disease. PMID:28326933

  16. Pharmacognostical Analysis and Protective Effect of Standardized Extract and Rizonic Acid from Erythrina velutina against 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Silva, Aline H.; Fonseca, Francisco Noé; Pimenta, Antônia T. A.; Lima, MaryAnne S.; Silveira, Edilberto Rocha; Viana, Glauce S. B.; Vasconcelos, Silvânia M. M.; Leal, Luzia Kalyne A. M.

    2016-01-01

    Background: Erythrina velutina is a tree common in the northeast of Brazil extensively used by traditional medicine for the treatment of central nervous system disorders. Objective: To develop a standardized ethanol extract of E. velutina (EEEV) and to investigate the neuroprotective potential of the extract and rizonic acid (RA) from E. velutina on neuronal cells. Materials and methods: The plant drug of E. velutina previously characterized was used for the production of EEEV. Three methods were evaluated in order to obtain an extract with higher content of phenols. The neuroprotective effect of standardized EEEV (HPLC-PDA) and RA was investigated on SH-SY5Y cell exposure to the neurotoxin 6-hydroxydopamine (6-OHDA). Results: The powder of the plant drug was classified as moderately coarse and several quality control parameters were determined. EEEV produced by percolation gave the highest phenol content when related to others extractive methods, and its HPLC-PDA analysis allowed to identify four flavonoids and RA, some reported for the first time for the species. EEEV and RA reduced significantly the neurotoxicity induced by 6-OHDA in SH-SY5Y cells determined by the MTT assay and the nitrite concentration. EEEV also showed a free radical scavenging activity. Conclusion: This is the first pharmacological study about E. velutina which used a controlled standardized extract since the preparation of the herbal drug. This extract and RA, acting as an antioxidant, presents a neuroprotective effect suggesting that they have potential for future development as a therapeutic agent in neurodegenerative disease as Parkinson. SUMMARY The powder of Erythrina velutina was classified as moderately coarse and several quality-control parameters were determined.Ethanolic extract from E. velutina (EEEV) produced by percolation gave the highest phenol content when related to others extractive methods and its HPLC–PDA analysis of EEEV allowed to identify four flavonoids and rizonic

  17. Repeated administration of the monoamine reuptake inhibitor BTS 74 398 induces ipsilateral circling in the 6-hydroxydopamine lesioned rat without sensitizing motor behaviours.

    PubMed

    Lane, E L; Cheetham, S C; Jenner, P

    2005-01-01

    BTS 74 398 (1-[1-(3,4-dichlorophenyl)cyclobutyl]-2-(3-diaminethylaminopropylthio)ethanone monocitrate) is a monoamine reuptake inhibitor that reverses motor deficits in MPTP-treated (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) common marmosets without provoking established dyskinesia. However, it is not known whether BTS 74 398 primes the basal ganglia for dyskinesia induction. In this study, the ability of BTS 74 398 to sensitize 6-hydroxydopamine (6-OHDA)-lesioned rats for the production of abnormal motor behaviours and the induction of striatal DeltaFosB were determined in comparison with l-3,4-dihydroxyphenylalanine methyl ester (L-dopa). Acute administration of BTS 74 398 induced a dose-dependent ipsilateral circling response in unilaterally 6-OHDA-lesioned rats whereas L-dopa produced dose-dependent contraversive rotation. The ipsilateral circling response to BTS 74 398 did not alter during 21 days of administration. In contrast, L-dopa treatment for 21 days caused a marked increase in rotational response. Repeated administration of both L-dopa and BTS 74 398 increased general motor activity and stereotypic behaviour. In L-dopa-treated rats, orolingual, locomotive, forelimb and axial abnormal movements developed whereas BTS 74 398 produced only locomotion with a side bias but no other abnormal movements. Sensitization of circling responses and the development of abnormal movements in 6-OHDA-lesioned rats have been associated with the potential of dopaminergic drugs to induce dyskinesia. Furthermore, striatal DeltaFosB immunoreactivity, shown to correlate with dyskinesia induction, was increased by L-dopa but was unaffected by repeated BTS 74 398 administration. The lack of such changes following repeated BTS 74 398 treatment suggests that it may be an effective antiparkinsonian therapy that is unlikely to produce involuntary movements.

  18. Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    PubMed

    Pinna, Annalisa; Pontis, Silvia; Borsini, Franco; Morelli, Micaela

    2007-08-01

    Evidence obtained in rodent and primate models of Parkinson's disease (PD) and preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising nondopaminergic therapeutic tool for the treatment of PD. Those studies demonstrated the ability of adenosine A(2A) receptor antagonists to potentiate l-dopa-mediated motor improvement, whereas very little is known about counteraction of specific motor deficits and on the effects of these compounds when administered alone. To this aim we evaluated the effects of different adenosine A(2A) receptor antagonists on initiation of movement deficits, gait impairment and sensory-motor deficits, induced in rats by a unilateral 6-hydroxydopamine lesion of dopaminergic nigrostriatal neurons. The following tests were used: (1) initiation time of stepping; (2) adjusting step (stepping with forelimb was measured as the forelimb was dragged laterally); (3) vibrissae-elicited forelimb placing (as index of sensory-motor integration deficits). Acute administration of the A(2A) receptor antagonists SCH 58261 (5 mg/kg i.p.) and ST 1535 (20 mg/kg i.p.) similarly to l-dopa (6 mg/kg i.p.) counteracted the impairments in the initiation time of stepping test, in the adjusting step and in the vibrissae-elicited forelimb placing induced by the lesion. The intensity of the effect was l-dopa > SCH 58261 > ST 1535. The results provide the first evidence that blockade of A(2A) receptors is effective in antagonizing specific motor deficit induced by DA neuron degeneration, such as initiation of movement and sensory-motor integration deficits, even without l-dopa combined administration.

  19. Vulnerabilities of ventral mesencephalic neurons projecting to the nucleus accumbens following infusions of 6-hydroxydopamine into the medial forebrain bundle in the rat.

    PubMed

    Lancia, Andrew J; Williams, Evelyn A; McKnight, Lucas V; Zahm, Daniel S

    2004-01-30

    The terminal arbors of dopaminergic projections in the nucleus accumbens (Acb) core degenerate more rapidly, completely and permanently in a variety of neurotoxic circumstances than do those in the medial shell. It is unknown if this always reflects purely losses of the distal parts of axons from the core (as proposed in methamphetamine intoxication), or whether, in some circumstances, the disproportionate loss of core axons may also stem from an intrinsic vulnerability to degeneration of core-projecting neuronal perikarya. Experiments described here addressed this issue in the following manner. Three days after Fluoro-Gold (FG), a retrogradely transported tracer, had been iontophoresed selectively into the core or medial shell of male Sprague-Dawley rats, each received an infusion of saline vehicle containing or lacking 6-hydroxydopamine (6-OHDA) in the ipsilateral medial forebrain bundle (MFB). Twenty-one days later the brains were processed to exhibit ventral mesencephalic neurons containing FG. Application of an unbiased sampling method revealed substantially greater losses of FG labeled neurons relative to controls in rats that had received 6-OHDA lesions and deposition of FG in the Acb core as compared to the medial shell. Of the few core-projecting neurons that remained in the ventral mesencephalon after these lesions, 54% did not co-localize tyrosine hydroxylase immunoreactivity (TH-ir) and, thus, were not expected to degenerate. The capacity to selectively remove core-projecting dopaminergic neurons may be useful in the determination of molecular correlates of vulnerability and resistance to neurotoxicity and to possibly test the role of the core in reinforcement paradigms.

  20. Activation of GSK-3β and Caspase-3 Occurs in Nigral Dopamine Neurons during the Development of Apoptosis Activated by a Striatal Injection of 6-Hydroxydopamine

    PubMed Central

    Hernandez-Baltazar, Daniel; Mendoza-Garrido, Maria E.; Martinez-Fong, Daniel

    2013-01-01

    The 6-Hydroxydopamine (6-OHDA) rat model of Parkinson's disease is essential for a better understanding of the pathological processes underlying the human disease and for the evaluation of promising therapeutic interventions. This work evaluated whether a single striatal injection of 6-OHDA causes progressive apoptosis of dopamine (DA) neurons and activation of glycogen synthase kinase 3β (GSK-3β) and caspase-3 in the substantia nigra compacta (SNc). The loss of DA neurons was shown by three neuron markers; tyrosine hydroxylase (TH), NeuN, and β-III tubulin. Apoptosis activation was determined using Apostain and immunostaining against cleaved caspase-3 and GSK-3β pY216. We also explored the possibility that cleaved caspase-3 is produced by microglia and astrocytes. Our results showed that the 6-OHDA caused loss of nigral TH(+) cells, progressing mainly in rostrocaudal and lateromedial directions. In the neostriatum, a severe loss of TH(+) terminals occurred from day 3 after lesion. The disappearance of TH(+) cells was associated with a decrease in NeuN and β-III tubulin immunoreactivity and an increase in Apostain, cleaved caspase-3, and GSK-3β pY216 in the SNc. Apostain immunoreactivity was observed from days 3 to 21 postlesion. Increased levels of caspase-3 immunoreactivity in TH(+) cells were detected from days 1 to 15, and the levels then decreased to day 30 postlesion. The cleaved caspase-3 also collocated with microglia and astrocytes indicating its participation in glial activation. Our results suggest that caspase-3 and GSK-3β pY216 activation might participate in the DA cell death and that the active caspase-3 might also participate in the neuroinflammation caused by the striatal 6-OHDA injection. PMID:23940672

  1. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease

    PubMed Central

    Karasawa, H.; Pietra, C.; Giuliano, C.; Garcia-Rubio, S.; Xu, X.; Yakabi, S.; Taché, Y.; Wang, L.

    2015-01-01

    Background Constipation and L-dopa-induced gastric dysmotility are common gastrointestinal (GI) symptoms in Parkinson’s disease (PD). We investigate the novel ghrelin agonist, HM01 influence on GI motor dysfunctions in 6-hydroxydopamine (6-OHDA) rats. Methods HM01 pharmacological profiles were determined in vitro and in vivo in rats. We assessed changes in fecal output and water content, and gastric emptying (GE) in 6-OHDA rats treated or not with orogastric (og) HM01 and L-dopa/carbidopa (LD/CD, 20/2 mg kg−1). Fos immunoreactivity (ir) cells in specific brain and lumbosacral spinal cord were quantified. Key results HM01 displayed a high binding affinity to ghrelin receptor (Ki: 1.42 ± 0.36 nM), 4.3±1.0 h half-life and high brain/plasma ratio. 6-OHDA rats had reduced daily fecal output (22%) and water intake (23%) compared to controls. HM01 (3 and 10 mg kg−1) similarly reversed the decreased 4-h fecal weight and water content in 6-OHDA rats. Basal GE was not modified in 6-OHDA rats, however, LD/CD (once or daily for 8 days) delayed GE in 6-OHDA and control rats that was prevented by HM01 (3 mg kg−1 acute or daily before LD/CD). HM01 increased Fos-ir cell number in the area postrema, arcuate nucleus, nucleus tractus solitarius and lumbosacral intermediolateral column of 6-OHDA rats where 6-OHDA had a lowering effect compared to controls. Conclusions & Inferences 6-OHDA rats display constipation- and adipsia-like features of PD and L-dopa-inhibited GE. The new orally active ghrelin agonist, HM01 crosses the blood brain barrier and alleviates these alterations suggesting a potential benefit for PD with GI disorders. PMID:25327342

  2. Yokukansan, a Traditional Japanese Medicine, Enhances the L-DOPA-Induced Rotational Response in 6-Hydroxydopamine-Lesioned Rats: Possible Inhibition of COMT.

    PubMed

    Ishida, Yasushi; Ebihara, Kosuke; Tabuchi, Masahiro; Imamura, Sachiko; Sekiguchi, Kyoji; Mizoguchi, Kazushige; Kase, Yoshio; Koganemaru, Go; Abe, Hiroshi; Ikarashi, Yasushi

    2016-01-01

    The aim of the present study was to investigate the effects of the traditional Japanese medicine yokukansan (YKS) on the function of dopamine (DA) in the rat nigrostriatal system. Unilateral 6-hydroxydopamine lesions were produced in the rat nigrostriatal system. Despite a marked loss in the striatal immunoreactivity of tyrosine hydroxylase on the lesion side, striatal serotonin (5-HT) immunoreactivity was not affected. Treatment using L-3,4-dihydroxyphenylalanine (L-DOPA) in conjunction with benserazide for 15 d induced abnormal involuntary movements (AIMs) such as locomotive (rotational response), axial, forelimb, and orolingual movements in the lesioned rats. The L-DOPA-induced locomotive and axial, but not forelimb and orolingual, AIMs were significantly increased and prolonged by the pre-administration of YKS. We next investigated the effects of YKS on the production of DA from L-DOPA in 5-HT synthetic RIN 14B cells. RIN 14B cells produced DA and its metabolite, 3-methoxytyramine (3-MT), following L-DOPA treatment. YKS significantly augmented DA production and inhibited its metabolism to 3-MT in a manner similar to the catechol-O-methyltransferase (COMT) inhibitor entacapone. YKS and some alkaloids (corynoxeine: CX, geissoschizine methyl ether: GM) in Uncaria hook, a constituent herb of YKS, also inhibited COMT activity, indicating that the augmenting effect of YKS on L-DOPA-induced DA production in 5-HT synthetic cells was due to the inhibition of COMT by CX and GM. Our results suggest that YKS facilitates the DA supplemental effect of L-DOPA, and that COMT inhibition by CX and GM contributes, at least in part, to the effects of YKS.

  3. Improvement of neurological deficits in 6-hydroxydopamine-lesioned rats after transplantation with allogeneic simian virus 40 large tumor antigen gene-induced immortalized dopamine cells

    PubMed Central

    Clarkson, Edward D.; Rosa, Francisco G. La; Edwards-Prasad, Judith; Weiland, David A.; Witta, Samir E.; Freed, Curt R.; Prasad, Kedar N.

    1998-01-01

    The replacement of dopamine (DA) by DA neuron transplants in the treatment of advanced Parkinson disease (PD) is a rational approach. Because of limitations associated with fetal tissue transplants, a clone (1RB3AN27) of simian virus 40 large tumor antigen (LTa) gene-induced immortalized DA neurons were used in this study. These allogeneic immortalized dopamine neurons, when grafted into striata of normal rats, did not divide, did not form tumors, did not produce LTa, did not extend neurites to host neurons, and were not rejected, for as long as 13 months after transplantation. Grafted cells when recultured in vitro resumed cell proliferation and LTa production, suggesting the presence of a LTa gene-inhibiting factor in the brain. The grafting of undifferentiated and differentiated 1RB3AN27 cells or differentiated murine neuroblastoma (NBP2) cells into striata of 6-hydroxydopamine-lesioned rats (an animal model of PD) caused a time-dependent improvement in neurological deficits (reduction in the methamphetamine-induced turning rate). At 3 months after transplantation, 100% of the animals receiving differentiated 1RB3AN27 cells, 63% of the animals receiving undifferentiated 1RB3AN27 cells, 56% of the animals receiving differentiated NBP2 cells, and 0% of the sham-transplanted animals showed improvements in neurological deficits. At 6 months after transplantation, there was a progressive increase in spontaneous recovery in sham-transplanted animals. These results suggest that immortalized DA neurons should be further studied for their potential use in transplant therapy in advanced PD patients. PMID:9448320

  4. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease.

    PubMed

    Im, Hyung-Jun; Hwang, Do Won; Lee, Han Kyu; Jang, Jaeho; Lee, Song; Youn, Hyewon; Jin, Yeona; Kim, Seung U; Kim, E Edmund; Kim, Yong Sik; Lee, Dong Soo

    2013-06-01

    Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.

  5. Lesioning noradrenergic neurons of the locus coeruleus in C57Bl/6 mice with unilateral 6-hydroxydopamine injection, to assess molecular, electrophysiological and biochemical changes in noradrenergic signaling

    PubMed Central

    Szot, P.; Knight, L.; Franklin, A.; Sikkema, C.; Foster, S.; Wilkinson, C.W.; White, S.S.; Raskind, M.A.

    2012-01-01

    The locus coeruleus (LC) is the major loci of noradrenergic innervation to the forebrain. Due to the extensive central nervous system innervation of the LC noradrenergic system, a reduction in the number of LC neurons could result in significant changes in noradrenergic function in many forebrain regions. LC noradrenergic neurons were lesioned in adult male C57Bl/6 mice with the unilateral administration of 6-hydroxydopamine (6OHDA) (vehicle on the alternate side). Noradrenergic markers were measured 3 weeks later to determine the consequence of LC loss in the forebrain. Direct administration of 6OHDA into the LC results in the specific reduction of noradrenergic neurons in the LC (as measured by electrophysiology, immunoreactivity and in situ hybridization), the lateral tegmental neurons and dopaminergic neurons in the substantia nigra (SN) and ventral tegmental region were unaffected. The loss of LC noradrenergic neurons did not result in compensatory changes in the expression of mRNA for norepinephrine (NE) synthesizing enzymes. The loss of LC noradrenergic neurons is associated with reduced NE tissue concentration and NE transporter (NET) binding sites in the frontal cortex and hippocampus, as well as other forebrain regions such as the amygdala and SN. Adrenoreceptor (AR) binding sites (α1- and α2-AR) were not significantly affected on the 6OHDA-treated side compared to the vehicle-treated side, although there is a reduction of AR binding sites on both the vehicle- and 6OHDA-treated side in specific forebrain regions. These studies indicate that unilateral stereotaxic injection of 6OHDA into mice reduces noradrenergic LC neurons and reduces noradrenergic innervation to many forebrain regions, including the contralateral side. PMID:22542679

  6. Behavioral and cellular modulation of L-DOPA-induced dyskinesia by beta-adrenoceptor blockade in the 6-hydroxydopamine-lesioned rat.

    PubMed

    Lindenbach, David; Ostock, Corinne Y; Eskow Jaunarajs, Karen L; Dupre, Kristin B; Barnum, Christopher J; Bhide, Nirmal; Bishop, Christopher

    2011-06-01

    Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as L-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective β-adrenergic receptor (βAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with L-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF L-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through βAR blockade, we subsequently examined each enantiomer separately because only the (-)enantiomer has significant βAR affinity. We next investigated the effects of a localized striatal βAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic L-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (-)propranolol had anti-LID properties indicating βAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through βAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action.

  7. Behavioral and Cellular Modulation of l-DOPA-Induced Dyskinesia by β-Adrenoceptor Blockade in the 6-Hydroxydopamine-Lesioned Rat

    PubMed Central

    Lindenbach, David; Ostock, Corinne Y.; Eskow Jaunarajs, Karen L.; Dupre, Kristin B.; Barnum, Christopher J.; Bhide, Nirmal

    2011-01-01

    Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as l-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective β-adrenergic receptor (βAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with l-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF l-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through βAR blockade, we subsequently examined each enantiomer separately because only the (−)enantiomer has significant βAR affinity. We next investigated the effects of a localized striatal βAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic l-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (−)propranolol had anti-LID properties indicating βAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through βAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action. PMID:21402691

  8. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery.

    PubMed

    Lapchak, P A; Miller, P J; Collins, F; Jiao, S

    1997-05-01

    The effects of intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor were tested on low dose (0.05 mg/kg) apomorphine-induced rotations and tyrosine hydroxylase activity in the substantia nigra and striatum of stable 6-hydroxydopamine-lesioned rats. In addition, we determined if 6-hydroxydopamine lesions in the absence or presence of treatment affected neuropeptide (substance P, met-enkephalin, dynorphin) content in the striatum. Glial cell line-derived neurotrophic factor, when administered intranigrally, prevented apomorphine-induced rotational behaviour for 11 weeks following a single injection. In comparison, intraventricularly-administered glial cell line-derived neurotrophic factor produced a transient reduction in rotational behaviour that lasted for two to three weeks following a single injection. We also show that rotational behaviour is reduced following each subsequent intraventricular injection of glial cell line-derived neurotrophic factor given every six weeks, a time-point when baseline rotation deficits were re-established. Intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor significantly reduced weight gain in all 6-hydroxydopamine-lesioned rats in this study. Following behavioural analysis where a confirmed improvement of behaviour was established, tissues were dissected for neurochemical analysis. In lesioned rats with intranigral injections of administered glial cell line-derived neurotrophic factor, significant increases of nigral, but not striatal tyrosine hydroxylase activity were measured. Additionally, 6-hydroxydopamine lesions significantly increased striatal dynorphin (61-139%) and met-enkephalin (81-139%), but not substance P levels. In these rats, intranigrally-administered glial cell line-derived neurotrophic factor injections reversed lesion-induced increases in nigral dynorphin A levels and increased nigral dopamine levels, but did not alter nigral met

  9. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: relation to motor and cellular parameters of nigrostriatal function.

    PubMed

    Winkler, Christian; Kirik, Deniz; Björklund, Anders; Cenci, M Angela

    2002-07-01

    In order to assess the role of striatal dopamine (DA) afferents in L-DOPA-induced dyskinesia, we have studied a large series of rats sustaining 2, 3, or 4 unilateral injections of 6-hydroxydopamine (6-OHDA) in the lateral striatum. This type of lesion produced a dose-dependent depletion of DA fibers in the caudate-putamen, which was most pronounced in the lateral aspects of this structure. An additional group of rats was injected with 6-OHDA in the medial forebrain bundle to obtain complete DA denervation on one side of the brain. During a course of chronic L-DOPA treatment, rats with intrastriatal 6-OHDA lesions developed abnormal involuntary movements (AIMs), which mapped onto striatal domains exhibiting at least approximately 90% denervation, as judged by DA transporter autoradiography. The denervated areas showed local upregulation of preproenkephalin and prodynorphin mRNA, and FosB-like immunoreactivity, which were highly correlated with the rats' AIM scores. When compared to completely DA-denervated animals, the rats with intrastriatal 6-OHDA lesions showed an overall lower incidence, lower severity and different topographic distribution of AIMs. The involvement of proximal limb and axial muscles in the abnormal movements was proportional to the spreading of the lesion from lateral towards medial aspects of the caudate-putamen. Locomotive AIMs were only seen in rats with complete lesions, but not in any of the animals with intrastriatal 6-OHDA (which showed > 5% DA fiber sparing in the medial striatum). Intrastriatally 6-OHDA-lesioned rats had a larger therapeutic window for L-DOPA than did rats with complete bundle lesions, since they exhibited an overall lower predisposition to dyskinesia but a similar degree of drug-induced motor improvement in a test of forelimb stepping. Our results are the first to demonstrate that selective and partial DA denervation in the sensorimotor part of the striatum can confer cellular and behavioral supersensitivity to L

  10. In vivo effect of 5-HT₇ receptor agonist on pyramidal neurons in medial frontal cortex of normal and 6-hydroxydopamine-lesioned rats: an electrophysiological study.

    PubMed

    Fan, L L; Zhang, Q J; Liu, J; Feng, J; Gui, Z H; Ali, U; Zhang, L; Hou, C; Wang, T; Hui, Y P; Sun, Y N; Wu, Z H

    2011-09-08

    The 5-hydroxytryptamine (5-HT)-7 receptor began to be cloned and pharmacologically characterized close to 20 years ago. It couples positively via G-proteins to adenylyl cyclase and activation of this receptor increases neuronal excitability, and several studies have shown that degeneration of the nigrostriatal pathway leads to an impairment of 5-HT system. Here we reported that systemic and local administration of 5-HT₇ receptor agonist AS 19 produced excitation, inhibition and no change in the firing rate of pyramidal neurons in medial prefrontal cortex (mPFC) of normal and 6-hydroxydopamine-lesioned rats. In normal rats, the mean response of the pyramidal neurons to AS 19 by systemic and local administration in mPFC was excitatory. The inhibitory effect by systemic administration of AS 19 was reversed by GABA(A) receptor antagonist picrotoxinin. Systemic administration of picrotoxinin excited all the neurons examined in normal rats, and after treatment with picrotoxinin, the local administration of AS 19 further increased the firing rate of the neurons. In the lesioned rats, systemic administration of AS 19, at the same doses, also increased the mean firing rate of the pyramidal neurons. However, cumulative dose producing excitation in the lesioned rats was higher than that of normal rats. Systemic administration of AS 19 produced inhibitory effect in the lesioned rats, which was partially reversed by picrotoxinin. The local administration of AS 19, at the same dose, did not change the firing rate of the neurons in the lesioned rats. Systemic administration of picrotoxinin and the local administration of AS 19 did not affect the firing rate of the neurons in the lesioned rats. These results indicate that activity of mPFC pyramidal neurons is regulated through activation of 5-HT₇ receptor by direct or indirect action, and degeneration of the nigrostriatal pathway leads to decreased response of these neurons to AS 19, suggesting dysfunction and/or down

  11. Locomotor effects of imidazoline I2-site-specific ligands and monoamine oxidase inhibitors in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway

    PubMed Central

    MacInnes, Nicholas; Duty, Susan

    2004-01-01

    The present study examined the ability of the selective imidazoline I2-site ligands 2-(-2-benzofuranyl)-2-imidazoline (2-BFI) and 2-[4,5-dihydroimidaz-2-yl]-quinoline (BU224) and selected monoamine oxidase (MAO) inhibitors to evoke locomotor activity in rats bearing a lesion of the nigrostriatal pathway. Male Sprague–Dawley rats were injected with 12.5 μg 6-hydroxydopamine (6-OHDA) into the right median forebrain bundle to induce a unilateral lesion of the nigrostriatal tract. After 6 weeks, test drugs were administered either alone or in combination with L-DOPA (L-3,4-dihydroxyphenylamine) and the circling behaviour of animals was monitored as an index of anti-Parkinsonian activity. Intraperitoneal (i.p.) administration of the irreversible MAO-B inhibitor deprenyl (20 mg kg−1) or the imidazoline I2-site ligands BU224 (14 mg kg−1) and 2-BFI (7 and 14 mg kg−1) produced significant increases in ipsiversive rotations compared to vehicle controls totaling, at the highest respective doses tested, 521±120, 131±37 and 92.5±16.3 net contraversive rotations in 30 (deprenyl) or 60 (BU224 and 2-BFI) min. In contrast, the reversible MAO-A inhibitor moclobemide (2.5–10 mg kg−1) and the reversible MAO-B inhibitor lazabemide (2.5–10 mg kg−1) failed to instigate significant rotational behaviour compared to vehicle. Coadministration of lazabemide (10 mg kg−1), moclobemide (10 mg kg−1) or 2-BFI (14 mg kg−1) with L-DOPA (20 mg kg−1) significantly increased either the duration or total number of contraversive rotations emitted over the testing period in comparison to L-DOPA alone. These data suggest that I2-specific ligands have dual effects in the 6-OHDA-lesioned rat model of Parkinson's disease; a first effect associated with an increase in activity in the intact hemisphere, probably via an increase in striatal dopamine content, and a secondary action which, through the previously documented inhibition of MAO-A and/or MAO-B, increases the availability of

  12. Regional development of norepinephrine, dopamine-beta-hydroxylase and tyrosine hydroxylase in the rat brain subsequent to neonatal treatment with subcutaneous 6-hydroxydopamine.

    PubMed

    Schmidt, R H; Bhatnagar, R K

    1979-04-27

    Neonatal rats were injected subcutaneously with 100 mg/kg 6-hydroxydopamine (6-OHDA), or vehicle, on postnatal days 1, 2 and 3. At several times thereafter, determinations of tyrosine hydroxylase (TOH) and dopamine-beta-hydroxylase (DBH) activities, and norepinephrine (NE) concentration were made in the parietal cortex, cerebellum and pons-medulla in order to assess the extent of initial noradrenergic degeneration induced, and the rate of any ensuing regeneration. By the day following completion of the treatment (postnatal day 4), degeneration of noradrenergic terminals in the parietal cortex and cerebellum was very extensive, with NE levels and DBH activities reduced by more than 80%, and TOH activities reduced by 50%. In the parietal cortex noradrenergic degeneration remained virtually complete; and 9 and 70 days postnatal NE concentration and DBH and TOH activities were all decreased by more than 90--95%. In the cerebellum a progressive regeneration and apparent sprouting of NE fibers was observed. By postnatal day 9, NE, DBH and TOH in this tissue had all recovered to near control levels, and by day 70 these measures exceeded control levels by 95%, 115% and 50% respectively. In the pons-medulla, the initial effect of 6-OHDA on any of the measured parameters was negligible. By postnatal day 9 an increase in NE concentration was apparent, which increased further by day 70 to surpass the control level by 70%. At this same time DBH activity was increased by only 15% and TOH activity was unchanged. Separate analysis of the rostral half of the pons, which contains the locus coeruleus, revealed that on day 70 NE and DBH levels were increased much more substantially than in the whole pons-medulla, and TOH activity was also significantly elevated. This data indicates that the initial amount of degeneration induced by the 6-OHDA treatment is similar in both the parietal cortex and cerebellum, but regeneration proceeds only in the cerebellum. This suggests that

  13. Alterations of BDNF and trkB mRNA Expression in the 6-Hydroxydopamine-Induced Model of Preclinical Stages of Parkinson’s Disease: An Influence of Chronic Pramipexole in Rats

    PubMed Central

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; Głowacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively. PMID:25739024

  14. Alterations of BDNF and trkB mRNA expression in the 6-hydroxydopamine-induced model of preclinical stages of Parkinson's disease: an influence of chronic pramipexole in rats.

    PubMed

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; Głowacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson's disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively.

  15. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  16. Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson's model.

    PubMed

    Cunha, Mauricio Peña; Martín-de-Saavedra, Maria D; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K; Tasca, Carla I; Farina, Marcelo; Rodrigues, Ana Lúcia S; López, Manuela G

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson's model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine(473)) and GSK3β (Serine(9)). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons.

  17. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.

  18. The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT₂A/₂C receptor activation is decreased in rats with 6-hydroxydopamine lesions.

    PubMed

    Sun, Yi-Na; Li, Li-Bo; Zhang, Qiao-Jun; Hui, Yan-Ping; Wang, Yong; Zhang, Li; Chen, Li; Han, Ling-Na; Guo, Yuan; Liu, Jian

    2013-10-01

    Here we report that juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part (BLA) of rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) showed a more burst-firing pattern, while having no change in the firing rate. In sham-operated and the lesioned rats, systemic administration of 5-HT(2A/2C) receptor agonist DOI produced excitation, inhibition and unchanged in the firing rate of the interneurons, and the mean response of DOI was excitatory. However, cumulative dose producing excitation in the lesioned rats was higher than that of sham-operated rats. The local administration of DOI in the BLA also produced three types of responses in two groups of rats. Furthermore, the local administration of DOI excited the interneurons in sham-operated rats, whereas the mean firing rate of the interneurons in the lesioned rats was not affected at the same dose. The excitatory effect of the majority of the interneurons after systemic and local administration of DOI was not reversed by the selective 5-HT(2C) receptor antagonist SB242084, and the inhibitory effect of DOI in all the interneurons examined was reversed by GABA(A) receptor antagonist picrotoxinin. The SNc lesion in rats did not change the density of GAD67/5-HT(2A) receptor co-expressing neurons in the BLA. These results indicate that the SNc lesion changes the firing activity of BLA GABA interneurons. Moreover, DOI regulated the firing activity of the interneurons mainly through activation of 5-HT(2A) receptor, and the lesion led to a decreased response of the interneurons to DOI, which attributes to dysfunction of 5-HT(2A) receptor on these interneurons.

  19. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  20. Chronic treatment with the mGlu5R antagonist MPEP reduces the functional effects of the mGlu5R agonist CHPG in the striatum of 6-hydroxydopamine-lesioned rats: possible relevance to the effects of mGlu5R blockade in Parkinson's disease.

    PubMed

    Domenici, Maria Rosaria; Potenza, Rosa Luisa; Martire, Alberto; Coccurello, Roberto; Pèzzola, Antonella; Reggio, Rosaria; Tebano, Maria Teresa; Popoli, Patrizia

    2005-06-01

    This study was designed to test whether chronic treatment with the metabotropic glutamate receptor 5 (mGlu5R) antagonist MPEP showed antiparkinsonian effects in rats unilaterally lesioned with 6-hydroxydopamine (6-OHDA) (a "classic" model of Parkinson's disease, PD), and to evaluate whether chronic MPEP influenced the functional properties and/or the expression of striatal mGlu5Rs. Wistar rats were lesioned with 6-OHDA and then treated with MPEP (3 mg/kg/day, i.p.) or its vehicle over 2 weeks. Chronic MPEP did not induce measurable antiparkinsonian effects, since no differences were found between MPEP- and vehicle-treated animals in the pattern of L-DOPA-induced contralateral rotations. In corticostriatal slices taken from animals chronically treated with MPEP, the functional effects of the mGlu5R agonist CHPG were significantly reduced in the lesioned vs. the intact side, while no changes were found in slices taken from vehicle-treated rats. The binding of [3H]MPEP to striatal membranes showed that neither the maximal number of binding sites (Bmax) nor the dissociation constant (Kd) were changed by the lesion and/or by chronic MPEP. While chronic MPEP did not potentiate L-DOPA-induced turning in a classical model of PD, its ability to reduce mGlu5R-associated signal could help to explain the neuroprotective/antiparkinsonian effects observed in other models of PD.

  1. RETRACTED: S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades.

    PubMed

    Tobón-Velasco, Julio César; Vázquez-Victorio, Genaro; Macías-Silva, Marina; Cuevas, Elvis; Ali, Syed F; Maldonado, Perla D; González-Trujano, María Eva; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2012-09-01

    Pharmacological activation at the basal ganglia of the transcription factor Nrf2, guardian of redox homeostasis, holds a strong promise for the slow progression of Parkinson's disease (PD). However, a potent Nrf2 activator in the brain still must be found. In this study, we have investigated the potential use of the antioxidant compound S-allyl cysteine (SAC) in the activation of Nrf2 in 6-hydoxydopamine (6-OHDA)-intoxicated rats. In the rat striatum, SAC by itself promoted the Nrf2 dissociation of Keap-1, its nuclear translocation, the subsequent association with small MafK protein, and further binding of the Nrf2/MafK complex to ARE sequence, as well as the up-regulation of Nrf2-dependent genes encoding the antioxidant enzymes HO-1, NQO-1, GR, and SOD-1. In vivo and in vitro experiments to identify signaling pathways activated by SAC pointed to Akt as the most likely kinase participating in Nrf2 activation by SAC. In PC12 cells, SAC stimulated the activation of Akt and ERK1/2 and inhibited JNK1/2/3 activation. In the rat striatum, the SAC-induced activation of Nrf2 is likely to contribute to inhibit the toxic effects of 6-OHDA evidenced by phase 2 antioxidant enzymes up-regulation, glutathione recovery, and attenuation of reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxides formation. These early protective effects correlated with the long-term preservation of the cellular redox status, the striatal dopamine (DA) and tyrosine hydroxylase (TH) levels, and the improvement of motor skills. Therefore, this study indicates that, in addition to direct scavenging actions, the activation of Nrf2 by SAC might confer neuroprotective responses through the modulation of kinase signaling pathways in rodent models of PD, and suggests that this antioxidant molecule may have a therapeutic value in this human pathology.

  2. PEGylated rhFGF-2 conveys long-term neuroprotection and improves neuronal function in a rat model of Parkinson's disease.

    PubMed

    Zhu, Guanghui; Chen, Ganping; Shi, Lu; Feng, Jenny; Wang, Yan; Ye, Chaohui; Feng, Wenke; Niu, Jianlou; Huang, Zhifeng

    2015-02-01

    Fibroblast growth factor 2 (FGF-2) has a neurotrophic effect on dopaminergic neurons in vitro and in vivo, and exhibits beneficial effects in animal models of neurodegenerative disorders such as Parkinson's disease (PD). The poor stability and short half-life of FGF-2, however, have hampered its clinical use for neurological diseases. In the present study, we modified native recombinant human FGF-2 (rhFGF-2) by covalently attaching polyethylene glycol (PEG) polymers, named PEGylation, to enhance its neuroprotection efficacy in 6-hydroxydopamine (6-OHDA)-induced model of PD. In vitro, PEG-rhFGF-2 performed better biostability in 6-OHDA-induced PC-12 cells than native rhFGF-2. The in vivo data showed that, compared with native rhFGF-2, PEGylated rhFGF-2 was more efficacious in preventing 6-OHDA-induced lesion upon tyrosine hydroxylase-positive neurons in the substantia nigra (SN), improving the apomorphine-induced rotational behavior and the 6-OHDA-induced decline in tissue concentration of dopamine (DA) and its metabolites. Importantly, our data showed that the superior pharmacological activity of PEGylated rhFGF-2 is probably due to its greater permeability through the blood-brain barrier and better in vivo stability compared to native rhFGF-2. The enhanced stability and bioavailability of PEGylated rhFGF-2 make this molecule a great therapeutic candidate for neurodegenerative diseases such as PD and mood disorders.

  3. Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions

    NASA Astrophysics Data System (ADS)

    Yadav, Amol P.; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M.; Nicolelis, Miguel A. L.

    2014-01-01

    Although L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.

  4. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion.

    PubMed

    Yamamoto, N; Soghomonian, J-J

    2008-06-26

    Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine

  5. Neuronal effects of 4-t-Butylcatechol: A model for catechol-containing antioxidants

    SciTech Connect

    Lo, Y.-C. Liu Yuxin; Lin, Y.-C.; Shih, Y.-T.; Liu, C.-M.; Burka, Leo T.

    2008-04-15

    Many herbal medicines and dietary supplements sold as aids to improve memory or treat neurodegenerative diseases or have other favorable effects on the CNS contain a catechol or similar 1,2-dihydroxy aromatic moiety in their structure. As an approach to isolate and examine the neuroprotective properties of catechols, a simple catechol 4-t-Butylcatechol (TBC) has been used as a model. In this study, we investigated the effects of TBC on lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity by using the in vitro model of coculture murine microglial-like cell line HAPI with the neuronal-like human neuroblastoma cell line SH-SY5Y. We also examined the effects of TBC on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. TBC at concentrations from 0.1-10 {mu}M had no toxic effect on HAPI cells and SH-SY5Y cells, and it inhibited LPS (100 ng/ml)-induced increases of superoxide, intracellular ROS, gp91{sup Phox}, iNOS and a decrease of HO-1 in HAPI cells. Under coculture condition, TBC significantly reduced LPS-activated microglia-induced dopaminergic SH-SY5Y cells death. Moreover, TBC (0.1-10 {mu}M) inhibited 6-OHDA-induced increases of intracellular ROS, iNOS, nNOS, and a decrease of mitochondria membrane potential, and cell death in SH-SY5Y cells. However, the neurotoxic effects of TBC (100 {mu}M) on SH-SY5Y cells were also observed including the decrease in mitochondria membrane potential and the increase in COX-2 expression and cell death. TBC-induced SH-SY5Y cell death was attenuated by pretreatment with NS-398, a selective COX-2 inhibitor. In conclusion, this study suggests that TBC might possess protective effects on inflammation- and oxidative stress-related neurodegenerative disorders. However, the high concentration of TBC might be toxic, at least in part, for increasing COX-2 expression.

  6. Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson’s Disease

    PubMed Central

    Feng, Chien-Wei; Hung, Han-Chun; Huang, Shi-Ying; Chen, Chun-Hong; Chen, Yun-Ru; Chen, Chun-Yu; Yang, San-Nan; Wang, Hui-Min David; Sung, Ping-Jyun; Sheu, Jyh-Horng; Tsui, Kuan-Hao; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and gait impairment. In a previous study, we found that the marine-derived compound 11-dehydrosinulariolide (11-de) upregulates the Akt/PI3K pathway to protect cells against 6-hydroxydopamine (6-OHDA)-mediated damage. In the present study, SH-SY5Y, zebrafish and rats were used to examine the therapeutic effect of 11-de. The results revealed the mechanism by which 11-de exerts its therapeutic effect: the compound increases cytosolic or mitochondrial DJ-1 expression, and then activates the downstream Akt/PI3K, p-CREB, and Nrf2/HO-1 pathways. Additionally, we found that 11-de could reverse the 6-OHDA-induced downregulation of total swimming distance in a zebrafish model of PD. Using a rat model of PD, we showed that a 6-OHDA-induced increase in the number of turns, and increased time spent by rats on the beam, could be reversed by 11-de treatment. Lastly, we showed that 6-OHDA-induced attenuation in tyrosine hydroxylase (TH), a dopaminergic neuronal marker, in zebrafish and rat models of PD could also be reversed by treatment with 11-de. Moreover, the patterns of DJ-1 expression observed in this study in the zebrafish and rat models of PD corroborated the trend noted in previous in vitro studies. PMID:27763504

  7. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP+ and Rotenone Toxicity

    PubMed Central

    Bayer Andersen, Kirsten; Leander Johansen, Jens; Hentzer, Morten; Smith, Garrick Paul; Dietz, Gunnar P. H.

    2016-01-01

    The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP+)-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson’s disease (PD) models and potential for GPR139 agonists in neuroprotection. PMID:27445691

  8. Evaluation of the importance of astrocytes when screening for acute toxicity in neuronal cell systems.

    PubMed

    Woehrling, E K; Hill, E J; Coleman, M D

    2010-02-01

    Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.

  9. The NLRP3 Inflammasome is Involved in the Pathogenesis of Parkinson's Disease in Rats.

    PubMed

    Mao, Zhijuan; Liu, Chanchan; Ji, Suqiong; Yang, Qingmei; Ye, Hongxiang; Han, Haiyan; Xue, Zheng

    2017-02-28

    The etiology and pathogenesis of Parkinson's disease (PD) are complicated and have not been fully elucidated, but an important association has been identified between inflammation and PD. In this study, we investigated the role of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing (NLRP) 3 inflammasome, consisting of NLRP3, caspase-1 and cytokines of the IL-1 family, in lipopolysaccharide (LPS)-induced and 6-hydroxydopamine (6-OHDA)-induced PD rats. Microinjection of different doses of caspase-1 inhibitor (Ac-YVAD-CMK, 300 or 1200 ng/rat) was performed for seven consecutive days. Then, rotational behavior, the number of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), and the mRNA and protein expression levels of NLRP3 inflammasome components were measured 14 days after the microinjection setup was established. Results showed that high mRNA and protein expression levels of NLRP3 inflammasome components were observed in the injected side of the LPS- and 6-OHDA-induced PD rats; Ac-YVAD-CMK inhibited the mRNA and protein expression of NLRP3 inflammasome components in both LPS- and 6-OHDA-induced PD rats. Moreover, the number of rotations was significantly decreased, and the number of DA neurons in the SNc improved. Our data indicate that the NLRP3 inflammasome participates in the pathogenesis of PD and that inhibiting the downstream pathway of the NLRP3/caspase-1/IL-1β axis can alleviate the occurrence of PD symptoms, providing a new basis for the prevention and treatment of PD.

  10. Mitochondrial Dynamics and Mitophagy in the 6-Hydroxydopamine Preclinical Model of Parkinson's Disease

    PubMed Central

    Galindo, Maria F.; Solesio, Maria E.; Atienzar-Aroca, Sandra; Zamora, Maria J.; Jordán Bueso, Joaquín

    2012-01-01

    We discuss the participation of mitochondrial dynamics and autophagy in the 6-hydroxidopamine-induced Parkinson's disease model. The regulation of dynamic mitochondrial processes such as fusion, fission, and mitophagy has been shown to be an important mechanism controlling cellular fate. An imbalance in mitochondrial dynamics may contribute to both familial and sporadic neurodegenerative diseases including Parkinson's disease. With special attention we address the role of second messengers as the role of reactive oxygen species and the mitochondria as the headquarters of cell death. The role of molecular signaling pathways, for instance, the participation of Dynamin-related protein 1(Drp1), will also be addressed. Furthermore evidence demonstrates the therapeutic potential of small-molecule inhibitors of mitochondrial division in Parkinson's disease. For instance, pharmacological inhibition of Drp1, through treatment with the mitochondrial division inhibitor-1, results in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. Deciphering the signaling cascades that underlie mitophagy triggered by 6-OHDA, as well as the mechanisms that determine the selectivity of this response, will help to better understand this process and may have impact on human treatment strategies of Parkinson's disease. PMID:22966477

  11. Mitochondrial dynamics and mitophagy in the 6-hydroxydopamine preclinical model of Parkinson's disease.

    PubMed

    Galindo, Maria F; Solesio, Maria E; Atienzar-Aroca, Sandra; Zamora, Maria J; Jordán Bueso, Joaquín

    2012-01-01

    We discuss the participation of mitochondrial dynamics and autophagy in the 6-hydroxidopamine-induced Parkinson's disease model. The regulation of dynamic mitochondrial processes such as fusion, fission, and mitophagy has been shown to be an important mechanism controlling cellular fate. An imbalance in mitochondrial dynamics may contribute to both familial and sporadic neurodegenerative diseases including Parkinson's disease. With special attention we address the role of second messengers as the role of reactive oxygen species and the mitochondria as the headquarters of cell death. The role of molecular signaling pathways, for instance, the participation of Dynamin-related protein 1(Drp1), will also be addressed. Furthermore evidence demonstrates the therapeutic potential of small-molecule inhibitors of mitochondrial division in Parkinson's disease. For instance, pharmacological inhibition of Drp1, through treatment with the mitochondrial division inhibitor-1, results in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. Deciphering the signaling cascades that underlie mitophagy triggered by 6-OHDA, as well as the mechanisms that determine the selectivity of this response, will help to better understand this process and may have impact on human treatment strategies of Parkinson's disease.

  12. The neuroprotective effects of α-iso-cubebene on dopaminergic cell death: involvement of CREB/Nrf2 signaling.

    PubMed

    Park, Sun Young; Son, Beung Gu; Park, Young Hoon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2014-09-01

    As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.

  13. NADPH Oxidase and the Degeneration of Dopaminergic Neurons in Parkinsonian Mice

    PubMed Central

    Hernandes, Marina S.; Café-Mendes, Cecília C.; Britto, Luiz R. G.

    2013-01-01

    Several lines of investigation have implicated oxidative stress in Parkinson's disease (PD) pathogenesis, but the mechanisms involved are still unclear. In this study, we characterized the involvement of NADPH oxidase (Nox), a multisubunit enzyme that catalyzes the reduction of oxygen, in the 6-hydroxydopamine- (6-OHDA-) induced PD mice model and compared for the first time the effects of this neurotoxin in mice lacking gp91phox−/−, the catalytic subunit of Nox2, and pharmacological inhibition of Nox with apocynin. Six-OHDA induced increased protein expression of p47phox, a Nox subunit, in striatum. gp91phox−/− mice appear to be completely protected from dopaminergic cell loss, whereas the apocynin treatment conferred only a limited neuroprotection. Wt mice treated with apocynin and gp91phox−/− mice both exhibited ameliorated apomorphine-induced rotational behavior. The microglial activation observed within the striatum and the substantia nigra pars compacta (SNpc) of 6-OHDA-injected Wt mice was prevented by apocynin treatment and was not detected in gp91phox−/− mice. Apocynin was not able to attenuate astrocyte activation in SN. The results support a role for Nox2 in the 6-OHDA-induced degeneration of dopaminergic neurons and glial cell activation in the nigrostriatal pathway and reveal that no comparable 6-OHDA effects were observed between apocynin-treated and gp91phox−/− mice groups. PMID:24379900

  14. Toxic megacolon

    MedlinePlus

    ... disease - toxic megacolon; Crohn disease - toxic megacolon; Ulcerative colitis - toxic megacolon ... people with an inflamed colon due to: Ulcerative colitis , or Crohn disease that is not well controlled ...

  15. Functional supersensitivity of alpha 1-adrenergic system in spinal ventral horn is due to absence of an uptake system and not to postsynaptic change.

    PubMed

    Hirayama, T; Ono, H; Fukuda, H

    1991-01-25

    The excitatory effects of adrenoceptor agonists on ventral horn cells were compared using an extracellular recording technique in spinal cord slices isolated from non-treated and 6-hydroxydopamine (6-OHDA)-treated rats (intracisternally 14 days previously). In spinal cord slices isolated from 6-OHDA-treated rats, the concentration-response curves for the alpha 1-adrenoceptor-mediated facilitatory effects produced by noradrenaline and phenylephrine but not those produced by methoxamine and isoproterenol were shifted to the left. 6-OHDA pretreatment decreased the level and uptake of noradrenaline and increased the number of [3H]prazosin binding sites in the spinal cord. These results suggest that in 6-OHDA-induced denervation, functional supersensitivity of the alpha 1-adrenergic system in the spinal ventral horn is due to absence of an uptake system, and not to postsynaptic change.

  16. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats.

    PubMed

    Mu, Xin; Yuan, Xia; Du, Li-Da; He, Guo-Rong; Du, Guan-Hua

    2016-01-01

    Quercetin, a flavonoid present in many plants, is reported to be effective in models of neurodegenerative diseases. The aim of the present study was to evaluate the anti-tremor effects of quercetin in 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. In rats, quercetin had no effect on apomorphine-induced rotations, but it could significantly attenuate muscle tremor of 6-OHDA lesioned rats. Interestingly, quercetin could decrease the burst frequency in a dose- and time-dependent manner. These results suggest that quercetin may have a protective effect on models to mimic muscle tremors of Parkinson's disease. This effect of quercetin may be associated with serotonergic system, but further study is needed.

  17. Toxic Synovitis

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Toxic Synovitis KidsHealth > For Parents > Toxic Synovitis A A A ... and causes no long-term problems. About Toxic Synovitis Toxic synovitis (also known as transient synovitis ) is ...

  18. Toxic Hepatitis

    MedlinePlus

    Toxic hepatitis Overview By Mayo Clinic Staff Toxic hepatitis is an inflammation of your liver in reaction to certain substances to which you're exposed. Toxic hepatitis can be caused by alcohol, chemicals, drugs or ...

  19. Multifunctional D2/D3 Agonist D-520 with High in Vivo Efficacy: Modulator of Toxicity of Alpha-Synuclein Aggregates

    PubMed Central

    2014-01-01

    We have developed a series of dihydroxy compounds and related analogues based on our hybrid D2/D3 agonist molecular template to develop multifunctional drugs for symptomatic and neuroprotective treatment for Parkinson’s disease (PD). The lead compound (−)-24b (D-520) exhibited high agonist potency at D2/D3 receptors and produced efficacious activity in the animal models for PD. The data from thioflavin T (ThT) assay and from transmission electron microscopy (TEM) analysis demonstrate that D-520 is able to modulate aggregation of alpha-synuclein (αSN). Additionally, coincubation of D-520 with αSN is able to reduce toxicity of preformed aggregates of αSN compared to control αSN alone. Finally, in a neuroprotection study with dopaminergic MN9D cells, D-520 clearly demonstrated the effect of neuroprotection from toxicity of 6-hydroxydopamine. Thus, compound D-520 possesses properties characteristic of multifunctionality conducive to symptomatic and neuroprotective treatment of PD. PMID:24960209

  20. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  1. Aminophylline toxicity.

    PubMed

    Albert, S

    1987-02-01

    Aminophylline therapy has undergone change in the past decade. With the changes in usage and dosage forms, the frequency of toxicity in the pediatric population, especially in adolescents, has increased dramatically. Two distinct patterns, chronic and acute, have been recognized and treatment methods for both are changing. Table 4 summarizes the emerging state-of-the-art therapy for aminophylline toxicity. Judging from the activity seen in the literature, investigation into aminophylline toxicity will continue to be a priority. We will see a greater understanding of the disease process and a refining of the therapeutic process. The ultimate goal is the elimination of mortality and the minimization of morbidity from aminophylline toxicity.

  2. Lidocaine toxicity.

    PubMed

    Mehra, P; Caiazzo, A; Maloney, P

    1998-01-01

    Local anesthetics are the most commonly used drugs in dentistry. The number of adverse reactions reported, particularly toxic reactions, are extraordinarily negligible. This article reports a case of lidocaine toxicity with its typical manifestation in a 37-yr-old healthy male. The toxic reaction followed transoral/transpharyngeal topical spraying of lidocaine preoperatively during preparation for general anesthesia. A review of dosages of the most commonly used local anesthetic drugs in dentistry and the management of a toxic reaction is presented. Clinicians need to be in a position to recognize and successfully manage this potential adverse reaction.

  3. Toxic Encephalopathy

    PubMed Central

    Kim, Jae Woo

    2012-01-01

    This article schematically reviews the clinical features, diagnostic approaches to, and toxicological implications of toxic encephalopathy. The review will focus on the most significant occupational causes of toxic encephalopathy. Chronic toxic encephalopathy, cerebellar syndrome, parkinsonism, and vascular encephalopathy are commonly encountered clinical syndromes of toxic encephalopathy. Few neurotoxins cause patients to present with pathognomonic neurological syndromes. The symptoms and signs of toxic encephalopathy may be mimicked by many psychiatric, metabolic, inflammatory, neoplastic, and degenerative diseases of the nervous system. Thus, the importance of good history-taking that considers exposure and a comprehensive neurological examination cannot be overemphasized in the diagnosis of toxic encephalopathy. Neuropsychological testing and neuroimaging typically play ancillary roles. The recognition of toxic encephalopathy is important because the correct diagnosis of occupational disease can prevent others (e.g., workers at the same worksite) from further harm by reducing their exposure to the toxin, and also often provides some indication of prognosis. Physicians must therefore be aware of the typical signs and symptoms of toxic encephalopathy, and close collaborations between neurologists and occupational physicians are needed to determine whether neurological disorders are related to occupational neurotoxin exposure. PMID:23251840

  4. Tungsten toxicity.

    PubMed

    Witten, Mark L; Sheppard, Paul R; Witten, Brandon L

    2012-04-05

    There is emerging evidence that tungsten has toxic health effects. We summarize the recent tungsten toxicity research in this short review. Tungsten is widely used in many commercial and military applications because it has the second highest melting temperature of any element. Consequently, it is important to elucidate the potential health effects of tungsten.

  5. Digitalis toxicity

    MedlinePlus

    ... may be rapid, or slow and irregular. An ECG is done to check for irregular heartbeats. Blood ... A. Digitalis toxicity. In: Goldberger AL, ed. Clinical Electrocardiography : A Simplified Approach, 8th ed. Philadelphia, PA: Elsevier ...

  6. Beryllium Toxicity

    MedlinePlus

    ... Digg Facebook Google Bookmarks Yahoo MyWeb Beryllium Toxicity Patient Education Care Instruction Sheet Course : WB 1095 CE Original ... of Contents Introduction Printer-Friendly version of the Patient Education Sheet [PDF - 48 KB] What Is Beryllium? Beryllium ...

  7. Toxic'' terminology

    SciTech Connect

    Powers, J.

    1991-01-01

    A number of terms (e.g., toxic chemicals,'' toxic pollutants,'' toxic waste,'' and similar nomenclature) refer to substances that are subject to regulation under one or more federal environmental laws. State laws and regulations also provide additional, similar, or identical terminology that may be confused with the federally defined terms. Many of these terms appear synonymous, and it is easy to use them interchangeably. However, in a regulatory context, inappropriate use of narrowly defined terms can lead to confusion about the substances referred to, the statutory provisions that may apply, and the regulatory requirements for compliance under the applicable federal statues. This information Brief provides regulatory definitions, a brief discussion of compliance requirements, and reference for the precise terminology that should be used when referring to toxic'' substances regulated under federal environmental laws. A companion CERCLA Information Brief (EH-231-003/0191) addresses hazardous'' nomenclature.

  8. Antimony Toxicity

    PubMed Central

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients) and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically. PMID:21318007

  9. Proteomic identification of calcium-binding chaperone calreticulin as a potential mediator for the neuroprotective and neuritogenic activities of fruit-derived glycoside amygdalin.

    PubMed

    Cheng, Yuanyuan; Yang, Chuanbin; Zhao, Jia; Tse, Hung Fat; Rong, Jianhui

    2015-02-01

    Amygdalin is a fruit-derived glycoside with the potential for treating neurodegenerative diseases. This study was designed to identify the neuroprotective and neuritogenic activities of amygdalin. We initially demonstrated that amygdalin enhanced nerve growth factor (NGF)-induced neuritogenesis and attenuated 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat dopaminergic PC12 cells. To define protein targets for amygdalin, we selected a total of 11 mostly regulated protein spots from two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels for protein identification by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. We verified the effect of amygdalin on six representative proteins (i.e., calreticulin, Hsp90β, Grp94, 14-3-3η, 14-3-3ζ/δ and Rab GDI-α) for biological relevance to neuronal survival and differentiation. Calcium-binding chaperone calreticulin is of special interest for its activities to promote folding, oligomeric assembly and quality control of proteins that modulate cell survival and differentiation. We transiently knocked down calreticulin expression by specific siRNA and studied its effect on the neuroprotective and neuritogenic activities of amygdalin. We found that amygdalin failed to enhance NGF-induced neuritogenesis in calreticulin-siRNA transfected cells. On the other hand, amygdalin rescued 6-OHDA-induced loss of calreticulin expression. We also found that amygdalin increased the intracellular calcium concentration possibly via inducing calreticulin. Collectively, our results demonstrated the role of calreticulin in mediating the neuroprotective and neuritogenic activities of amygdalin.

  10. ALCAR Exerts Neuroprotective and Pro-Neurogenic Effects by Inhibition of Glial Activation and Oxidative Stress via Activation of the Wnt/β-Catenin Signaling in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Shukla, Shubha

    2016-09-01

    Oxidative stress and neuroinflammation are known causative factors in progressive degeneration of dopaminergic (DAergic) neurons in Parkinson's disease (PD). Neural stem cells (NSCs) contribute in maintaining brain plasticity; therefore, survival of NSCs and neuroblasts during neurodegenerative process becomes important in replenishing the pool of mature neuronal population. Acetyl-L-carnitine (ALCAR), present in almost all body cells, increases endogenous antioxidants and regulates bioenergetics. Currently, no information is available about the putative mechanism and neuroprotective effects of ALCAR in 6-hydroxydopamine (6-OHDA)-induced rat model of PD-like phenotypes. Herein, we investigated the effect of ALCAR on death/survival of DAergic neurons, neuroblasts and NSCs and associates mechanism of neuroprotection in 6-OHDA-induced rat model of PD-like phenotypes. ALCAR (100 mg/kg/day, intraperitoneal (i.p.)) treatment started 3 days prior to 6-OHDA lesioning and continued for another 14 day post-lesioning. We found that ALCAR pretreatment in 6-OHDA-lesioned rats increased expression of neurogenic and the Wnt pathway genes in the striatum and substantia nigra pars compacta (SNpc) region. It suppressed the glial cell activation, improved antioxidant status, increased NSC/neuroblast population and rescued the DAergic neurons in nigrostriatal pathway. ALCAR pretreatment in 6-OHDA-lesioned rats decreased GSK-3β activation and increased nuclear translocation of β-catenin. Functional deficits were restored following ALCAR pretreatment in 6-OHDA-lesioned rats as demonstrated by improved motor coordination and rotational behaviour, confirming protection of DAergic innervations in lesioned striatum. These results indicate that ALCAR exerts neuroprotective effects through the activation of Wnt/β-catenin pathway, suggesting its therapeutic use to treat neurodegenerative diseases by enhancing regenerative capacity.

  11. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: A model on the dissociation of bradykinesia from hypokinesia.

    PubMed

    Ribeiro, Renata Pietsch; Santos, Danúbia Bonfanti; Colle, Dirleise; Naime, Aline Aita; Gonçalves, Cinara Ludvig; Ghizoni, Heloisa; Hort, Mariana Appel; Godoi, Marcelo; Dias, Paulo Fernando; Braga, Antonio Luiz; Farina, Marcelo

    2016-05-15

    Bradykinesia and hypokinesia represent well-known motor symptoms of Parkinson's disease (PD). While bradykinesia (slow execution of movements) is present in less affected PD patients and aggravates as the disease severity increases, hypokinesia (reduction of movement) seems to emerge prominently only in the more affected patients. Here we developed a model based on the central infusion of low dose (40μg) 6-hydroxydopamine (6-OHDA) in mice in an attempt to discriminate bradykinesia (accessed through forelimb inability) from hypokinesia (accessed through locomotor and exploratory activities). The potential beneficial effects of succinobucol against 6-OHDA-induced forelimb inability were also evaluated. One week after the beginning of treatment with succinobucol (i.p. injections, 10mg/kg/day), mice received a single i.c.v. infusion of 6-OHDA (40μg/site). One week after 6-OHDA infusion, general locomotor/exploratory activities (open field test), muscle strength (grid test), forelimb skill (single pellet task), as well as striatal biochemical parameters related to oxidative stress and cellular homeostasis (glutathione peroxidase, glutathione reductase and NADH dehydrogenases activities, lipid peroxidation and TH levels), were evaluated. 6-OHDA infusions did not change locomotor/exploratory activities and muscle strength, as well as the evaluated striatal biochemical parameters. However, 6-OHDA infusions caused significant reductions (50%) in the single pellet reaching task performance, which detects forelimb skill inability and can be used to experimentally identify bradykinesia. Succinobucol partially protected against 6-OHDA-induced forelimb inability. The decreased forelimb ability with no changes in locomotor/exploratory behavior indicates that our 6-OHDA-based protocol represents a useful tool to mechanistically study the dissociation of bradykinesia and hypokinesia in PD.

  12. Toxic Myopathies

    PubMed Central

    Pasnoor, Mamatha; Barohn, Richard J.; Dimachkie, Mazen M.

    2014-01-01

    Muscle tissue is highly sensitive to many substances. Early recognition of toxic myopathies is important, as they potentially are reversible on removal of the offending drug or toxin, with greater likelihood of complete resolution the sooner this is achieved. Clinical features range from mild muscle pain and cramps to severe weakness with rhabdomyolysis, renal failure, and even death. The pathogenic bases can be multifactorial. This article reviews some of the common toxic myopathies and their clinical presentation, histopathologic features and possible underlying cellular mechanisms. PMID:25037083

  13. Toxic remediation

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1994-01-01

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  14. Cadmium toxicity

    PubMed Central

    Wan, Lichuan; Zhang, Haiyan

    2012-01-01

    Cadmium is a well-known environmental pollutant with distinctly toxic effects on plants. It can displace certain essential metals from a wealth of metalloproteins, and thus disturb many normal physiological processes and cause severe developmental aberrant. The harmful effects of cadmium stress include, but are not limited to: reactive oxygen species overproduction, higher lipid hydroperoxide contents, and chloroplast structure change, which may lead to cell death. Plants have developed diverse mechanisms to alleviate environmental cadmium stress, e.g., cadmium pump and transporting cadmium into the leaf vacuoles. This mini-review focuses on the current research into understanding the cellular mechanisms of cadmium toxicity on cytoskeleton, vesicular trafficking and cell wall formation in plants. PMID:22499203

  15. Toxic gases.

    PubMed Central

    Matthews, G.

    1989-01-01

    An overview of the widespread use of gases and some volatile solvents in modern society is given. The usual circumstances in which undue exposure may occur are described. The most prominent symptoms and general principles of diagnosis and treatment are given and are followed by more specific information on the commoner, more toxic materials. While acute poisonings constitute the greater part of the paper, some indication of chronic disorders arising from repeated or prolonged exposure is also given. PMID:2687827

  16. Studying toxicity

    USGS Publications Warehouse

    Elkus, A.; LeBlanc, L.; Kim, C.; Van Beneden, R.; Mayer, G.

    2006-01-01

    With funding from the George Mitchell Center for the Environment at the University of Maine, a team of scientists used a simple laboratory-based sediment resuspension design, and two well-established aquatic toxicology models, fathead minnows (Pimephales promelas) and zebrafish (Danio rerio), to evaluate if resuspension of Penobscot river sediment significantly elevates the toxicity of river water and to provide preliminary information on the types of chemicals likely to desorb during resuspension. The group collected sediments from two sites with known chemical contamination downstream of the Great Works and Veazie dams. The sediments were examined to determine the dynamics of PAH desorption and degradation under different resuspension frequencies. The scientists used clarified water from resuspension experiments for toxicity tests with the water-flea Ceriodaphnia dubia, and other aquatic test organisms to infer toxicity from sediments from northern California rivers. Data from the study will help ascertain whether metals and/or xenoestrogens are present in the desorption water and give insight into possible avenues of sediment remediation.

  17. Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    PubMed Central

    2015-01-01

    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations

  18. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

    PubMed

    Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely; Nandakumar, Renu; Huang, Yuting; Madayiputhiya, Nandakumar; Stanton, Robert C; Dodds, Eric D; Powers, Robert; Franco, Rodrigo

    2014-09-19

    Parkinson's disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in

  19. Thermal Stress and Toxicity

    EPA Science Inventory

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral te...

  20. Toxic terror

    SciTech Connect

    Whelan, E.M.

    1985-01-01

    A review of toxic materials in the environment explores the evolution of public awareness of the problem, public and governmental reaction, the effort to establish standards of safe levels and danger thresholds, and the struggle to implement and enforce environmental policy. Separate chapters deal with environmental premises and scientific realities, the DDT debate and birth of environmentalism, the disaster of Love Canal, pesticides, PCBs, PBBs, formaldehyde, dioxin, air pollution, water pollution, nuclear energy and radioactive materials, acid rain, and the status of American health. The book concludes with a chapter on the need for scientific research and hard evidence to either prove or disprove the pessimism of those who warn of a threat to human health and survival.

  1. Sediment Toxicity Identification Evaluation

    EPA Science Inventory

    Approach combining chemical manipulations and aquatic toxicity testing, generally with whole organisms, to systematically characterize, identify and confirm toxic substances causing toxicity in whole sediments and sediment interstitial waters. The approach is divided into thre...

  2. The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning.

    PubMed

    Lex, Bjoern; Hauber, Wolfgang

    2010-02-01

    Considerable evidence suggests that dopamine in the core subregion of the nucleus accumbens is not only involved in Pavlovian conditioning but also supports instrumental performance. However, it is largely unknown whether NAc dopamine is required for outcome encoding which plays an important role both in Pavlovian stimulus-outcome learning and instrumental action-outcome learning. Therefore, we tested rats with 6-hydroxydopamine (6-OHDA) induced dopamine depletion of the NAc core for their sensitivity to outcome devaluation in a Pavlovian and an instrumental task. Results indicate that 6-OHDA-lesioned animals were sensitive to outcome devaluation in an instrumental task. This finding provides support to the notion that NAc core dopamine may not be crucial in encoding action-outcome associations. However, during instrumental conditioning lever pressing rates in 6-OHDA-lesioned animals were markedly lower which could reflect an impaired behavioral activation. By contrast, after outcome-specific devaluation in a Pavlovian task, performance in 6-OHDA-lesioned animals was impaired, i.e. their magazine-directed responding was non-selectively reduced. One possibility to explain non-selective responding is that NAc core DA depletion impaired the ability of conditioned stimuli to activate the memory of the current value of the reinforcer.

  3. Preventive effects of soy meal (+/- isoflavone) on spatial cognitive deficiency and body weight in an ovariectomized animal model of Parkinson's disease.

    PubMed

    Sarkaki, A; Badavi, M; Aligholi, H; Moghaddam, A Zand

    2009-10-15

    The aim of the present study was to investigate the preventive effect of 4 weeks soy meal (+/- isoflavone) on post-menopausal cognitive deficiency and body weight alteration in ovariectomized (OVX)-6-hydroxy dopamine (6-OHDA)-induced animal model of Parkinson's Disease (PD) which mimics status in menopause women. Female Wistar rats (250-300 g, 5-6 months old) were divided into 2 main groups. (1) Control; (2) OVX; included 5 subgroups that were pre-treated with 10 or 20 g soy with isoflavone in 30 g daily diet (10 and 20 groups, respectively), 10 or 20 g soy without isoflavone in 30 g daily diet (-10 and -20 groups, respectively) and 0 g soy (sham treated group) during 4 weeks after OVX. To induce animal model ofPD in main second group (OVX rats) the substantia nigra pars compacta (SNpc) was lesioned by 6-hydroxydopamine (6-OHDA) (8 microg kg(-1) 4 microL(-1) normal saline contains 0.1% ascorbate). All animals were trained in Morris water maze for evaluating the spatial learning and memory. The results indicated that pre-treatment of Parkinsonian rats with different doses of dietary soy meal (+/- isoflavone) improved the spatial learning and memory and prevents increasing the body weight after menopause significantly. Our data show that, long-duration dietary soy meal may have the potential neuroprotective effect against post-menopausal cognitive deficiency induced by degeneration of nigrostriatal dopaminergic system and constant body weight during post-menopausal life cycle.

  4. A Novel Immunosuppressor, (5R)-5-Hydroxytriptolide, Alleviates Movement Disorder and Neuroinflammation in a 6-OHDA Hemiparkinsonian Rat Model

    PubMed Central

    Su, Ruijun; Sun, Min; Wang, Wei; Zhang, Jianliang; Zhang, Li; Zhen, Junli; Qian, Yanjing; Zheng, Yan; Wang, Xiaomin

    2017-01-01

    Parkinson’s disease (PD) is one of the most common age-related neurodegenerative diseases. Promising therapies for PD still need to be explored. Immune dysfunction has been found to be involved in PD pathogenesis. Here, a novel immunosuppressor, (5R)-5-hydroxytriptolide (LLDT8), was used to treat 6-hydroxydopamine (6-OHDA)-induced hemiparkinson rats. We found that oral administration of LLDT8 significantly alleviated apomorphine-induced rotations at a dose of 125 µg/kg, and improved performance in cylinder and rotarod tests at a lower dose of 31.25 µg/kg, in 6-OHDA hemiparkinsonian rats. Moreover, loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the 6-OHDA rat was attenuated in response to LLDT8 treatment in a dose-dependent manner. In addition, inflammatory factors IL-1β, IL-6 and TNF-α, were significantly inhibited in LLDT8-treated hemiparkisonian rats, compared with vehicle. Notably, the level of dopamine (DA) in the striatum of PD rats was restored by LLDT8 treatment. Furthermore, we also detected that the disequilibrium of peripheral lymphocytes was reversed by LLDT8 administration. Taken together, the results imply that the immunosuppressor, LLDT8, can rescue dopaminergic neurodegeneration in 6-OHDA hemiparkinsonian rats, thus providing a potential therapeutic strategy for PD. PMID:28203480

  5. Using Gelatin Nanoparticle Mediated Intranasal Delivery of Neuropeptide Substance P to Enhance Neuro-Recovery in Hemiparkinsonian Rats

    PubMed Central

    Xiang, Qi; Yu, Wen-Ze; Lin, Qian; Tian, Fu-Rong; Mao, Kai-Li; Lv, Chuan-Zhu; Wáng, Yi-Xiáng J.; Lu, Cui-Tao

    2016-01-01

    Purpose Intranasal administration of phospholipid-based gelatin nanoparticles (GNP) was prepared to investigate the neuro-recovery effects of neuropeptide Substance P (SP) on hemiparkinsonian rats. Methods The SP-loaded gelatin nanoparticles (SP-GNP) were prepared by a water-in-water emulsion method and possessed high stability, encapsulating efficiency and loading capacity. PC-12 cells were used to examine the growth enhancement of SP-GNP in vitro by MTT assays and flow cytometry (FCM). The therapeutic effects of SP-GNP on 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats were assessed by quantifying rotational behavior and the levels of tyrosine hydroxylase (TH), phosphorylated c-Jun protein (p-c-Jun) and Caspase-3 (Cas-3) expressed in substantia nigra (SN) region of hemiparkinsonian rats. Results PC-12 cells under SP-GNP treatment showed better cell viability and lower degree of apoptosis than those under SP solution treatment. Hemiparkinsonian rats under intranasal SP-GNP administration demonstrated better behavioral improvement, higher level of TH in SN along with much lower extent of p-c-Jun and Cas-3 than those under intranasal SP solution administration and intravenous SP-GNP administration. Conclusions With the advantages of GNP and nose-to-brain pathway, SP can be effectively delivered into the damaged SN region and exhibit its neuro-recovery function through the inhibition on JNK pathway and dopaminergic neuron apoptosis. PMID:26894626

  6. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Ryu, Junghwa; Zhang, Rui; Hong, Bo-Hyun; Yang, Eun-Jung; Kang, Kyoung Ah; Choi, Moonseok; Kim, Ki Cheon; Noh, Su-Jin; Kim, Hee Soo; Lee, Nam-Ho; Hyun, Jin Won; Kim, Hye-Sun

    2013-01-01

    In this study, we investigated whether phloroglucinol (1,3,5-trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD.

  7. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats.

    PubMed

    Teixeira, M D A; Souza, C M; Menezes, A P F; Carmo, M R S; Fonteles, A A; Gurgel, J P; Lima, F A V; Viana, G S B; Andrade, G M

    2013-09-01

    This study was designed to investigate the beneficial effect of catechin in a model of Parkinson's disease. Unilateral, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were pretreated with catechin (10 and 30 mg/kg) by intraperitoneal (i.p.) injection 2h before surgery and for 14 days afterwards. After treatments, apomorphine-induced rotations, locomotor activity, working memory and early and late aversive memories were evaluated. The mesencephalon was used to determine the levels of monoamines and measurement of glutathione (GSH). Immunohistochemical staining was also used to evaluate the expression of tyrosine hydroxylase (TH) in mesencephalic and striatal tissues. Catechin administration attenuated the increase in rotational behavior and the decrease in locomotor activity observed in lesioned rats. Although catechin did not rescue the impairment of late aversive memory, it protected the animals against 6-OHDA-induced working memory deficits. Furthermore, catechin treatment restored GSH levels, and significantly increased dopamine and DOPAC content, and TH-immunoreactivity in 6-OHDA-lesioned rats. Catechin protected 6-OHDA-lesioned rats due to its antioxidant action, indicating that it could be useful as an adjunctive therapy for the treatment of Parkinson's disease.

  8. Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity

    PubMed Central

    Hong, Bo-Hyun; Yang, Eun-Jung; Kang, Kyoung Ah; Choi, Moonseok; Kim, Ki Cheon; Noh, Su-Jin; Kim, Hee Soo; Lee, Nam-Ho; Hyun, Jin Won; Kim, Hye-Sun

    2013-01-01

    In this study, we investigated whether phloroglucinol (1, 3, 5 - trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD. PMID:23976995

  9. (R)-α-lipoyl-glycyl-L-prolyl-L-glutamyl dimethyl ester codrug as a multifunctional agent with potential neuroprotective activities.

    PubMed

    Cacciatore, Ivana; Baldassarre, Leonardo; Fornasari, Erika; Cornacchia, Catia; Di Stefano, Antonio; Sozio, Piera; Cerasa, Laura Serafina; Fontana, Antonella; Fulle, Stefania; Di Filippo, Ester Sara; La Rovere, Rita Maria Laura; Pinnen, Francesco

    2012-11-01

    The (R)-α-lipoyl-glycyl-L-prolyl-L-glutamyl dimethyl ester codrug (LA-GPE, 1) was synthesized as a new multifunctional drug candidate with antioxidant and neuroprotective properties for the treatment of neurodegenerative diseases. Physicochemical properties, chemical and enzymatic stabilities were evaluated, along with the capacity of LA-GPE to penetrate the blood-brain barrier (BBB) according to an in vitro parallel artificial membrane permeability assay for the BBB. We also investigated the potential effectiveness of LA-GPE against the cytotoxicity induced by 6-hydroxydopamine (6-OHDA) and H2O2 on the human neuroblastoma cell line SH-SY5Y by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Our results show that codrug 1 is stable at both pH 1.3 and 7.4, exhibits good lipophilicity (log P=1.51) and a pH-dependent permeability profile. Furthermore, LA-GPE was demonstrated to be significantly neuroprotective and to act as an antioxidant against H2O2- and 6-OHDA-induced neurotoxicity in SH-SY5Y cells.

  10. Exposure to Mitochondrial Genotoxins and Dopaminergic Neurodegeneration in Caenorhabditis elegans

    PubMed Central

    Bodhicharla, Rakesh K.; McKeever, Madeline G.; Arrant, Andrew E.; Margillo, Kathleen M.; Ryde, Ian T.; Cyr, Derek D.; Kosmaczewski, Sara G.; Hammarlund, Marc; Meyer, Joel N.

    2014-01-01

    Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms. PMID:25486066

  11. Neuroprotective Effects of β-Asarone Against 6-Hydroxy Dopamine-Induced Parkinsonism via JNK/Bcl-2/Beclin-1 Pathway.

    PubMed

    Zhang, Sheng; Gui, Xue-Hong; Huang, Li-Ping; Deng, Min-Zhen; Fang, Ruo-Ming; Ke, Xue-Hong; He, Yu-Ping; Li, Ling; Fang, Yong-Qi

    2016-01-01

    β-asarone, a major component of Acorus tatarinowii Schott, has positive effects in neurodegeneration disease, however, its effect on the Parkinson's disease (PD) remains unclear. In this study, the effects of β-asarone on behavioral tests, neurotransmitters, tyrosine hydroxylase (TH), and α-synuclein (α-syn) were investigated in 6-hydroxydopamine (6-OHDA) induced rats. Furthermore, the JNK/Bcl-2/Beclin-1 autophagy pathway was also studied. The results showed that β-asarone improved the behavioral symptoms of rats in the open field, rotarod test, initiation time, and stepping time. And it increased the HVA, Dopacl, and 5-HIAA levels in striatum but not the DA and 5-HT levels. After administration of β-asarone, the TH level was elevated but the α-syn was declined in rats. It inhibited the expressions of LC3-II, but increased the p62 expression in SN4741 cells. Moreover, it affected the expressions of Beclin-1, Bcl-2, JNK, and p-JNK in vivo. We deduced that β-asarone may firstly downregulate expressions of JNK and p-JNK, and then indirectly increase the expression of Bcl-2. And the function of Beclin-1 could be inhibited, which could inhibit autophagy activation. Collectively, all data indicated that β-asarone may be explored as a potential therapeutic agent in PD therapy.

  12. FTY720 Attenuates 6-OHDA-Associated Dopaminergic Degeneration in Cellular and Mouse Parkinsonian Models.

    PubMed

    Ren, Manru; Han, Minxing; Wei, Xinbing; Guo, Ying; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G; Lou, Haiyan

    2017-02-01

    FTY720 (fingolimod) is the first oral drug approved for treating relapsing-remitting forms of multiple sclerosis. It is also protective in other neurological models including ischemia, Alzheimer's disease, Huntington disease and Rett syndrome. However, whether it might protect in a 6-hydroxydopamine (6-OHDA) mouse model associated with the dopaminergic pathology of Parkinson's disease (PD), has not been explored. Therefore, in the present study, we investigated the effects of FTY720 on 6-OHDA-induced neurotoxicity in cell cultures and mice. Here we show that FTY720 protected against 6-OHDA cytotoxicity and apoptosis in SH-SY5Y cells. We also show that prior administration of FTY720 to 6-OHDA lesioned mice ameliorated both motor deficits and nigral dopaminergic neurotoxicity, while also reducing 6-OHDA-associated inflammation. The protective effects of FTY720 were associated with activation of AKT and ERK1/2 pro-survival pathways and an increase in brain derived neurotrophic factor (BDNF) expression in vitro and in vivo. These findings suggest that FTY720 holds promise as a PD therapeutic acting, at least in part, through AKT/ERK1/2/P-CREB-associated BDNF expression.

  13. Anti-Parkinson Activity of Petroleum Ether Extract of Ficus religiosa (L.) Leaves

    PubMed Central

    Bhangale, Jitendra O.; Acharya, Sanjeev R.

    2016-01-01

    In the present study, we evaluated anti-Parkinson's activity of petroleum ether extract of Ficus religiosa (PEFRE) leaves in haloperidol and 6 hydroxydopamine (6-OHDA) induced experimental animal models. In this study, effects of Ficus religiosa (100, 200, and 400 mg/kg, p.o.) were studied using in vivo behavioral parameters like catalepsy, muscle rigidity, and locomotor activity and its effects on neurochemical parameters (MDA, CAT, SOD, and GSH) in rats. The experiment was designed by giving haloperidol to induce catalepsy and 6-OHDA to induce Parkinson's disease-like symptoms. The increased cataleptic scores (induced by haloperidol) were significantly (p < 0.001) found to be reduced, with the PEFRE at a dose of 200 and 400 mg/kg (p.o.). 6-OHDA significantly induced motor dysfunction (muscle rigidity and hypolocomotion). 6-OHDA administration showed significant increase in lipid peroxidation level and depleted superoxide dismutase, catalase, and reduced glutathione level. Daily administration of PEFRE (400 mg/kg) significantly improved motor performance and also significantly attenuated oxidative damage. Thus, the study proved that Ficus religiosa treatment significantly attenuated the motor defects and also protected the brain from oxidative stress. PMID:26884755

  14. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    PubMed

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  15. Tissue specific regulation of peripheral-type benzodiazepine receptor density after chemical sympathectomy

    SciTech Connect

    Basile, A.S.; Skolnick, P.

    1988-01-01

    The characteristics of (/sup 3/H)Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of (/sup 3/H)Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50% respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of (/sup 3/H)Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the B/sub max/ of (/sup 3/H)Ro 5-4684 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for (/sup 3/H)Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion. 33 references, 4 tables.

  16. Intranasal Administration of GDNF Protects Against Neural Apoptosis in a Rat Model of Parkinson's Disease Through PI3K/Akt/GSK3β Pathway.

    PubMed

    Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang

    2017-02-28

    Glial cell line-derived neurotrophic factor (GDNF) plays important roles in protecting the damaged or dying dopamine neurons in the animal models of Parkinson's disease (PD). This study was to determine the effect and mechanisms of GDNF on the apoptosis of neurons in 6-hydroxydopamine (6-OHDA) induced Parkinson's disease model of rats. Healthy male Sprague-Dawley rats (220-240 g) were randomly divided into six groups (n = 10). 6-OHDA was used to establish the PD rat model. Tyrosine hydroxylase (TH) immunohistochemistry was used to assess the neuron loss in 6-OHDA-lesioned rats. TUNEL and western blot were used to identify the effects and mechanisms of GDNF in the rat model of PD. The numbers of TH-positive neurons in the 6-OHDA-injected lesioned substantia nigra (SN) decreased significantly compared with the Sham group. GDNF treatment effectively ameliorated the apoptosis of neuronal cells in SN induced by 6-OHDA. In addition, GDNF significantly increased serine protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) phosphorylation induced by 6-OHDA. In contrast, application of LY294002 or triciribine reversed the roles of GDNF in PD models. The results implicated that the anti-apoptosis effects of GDNF in neurons might be mediated through PI3K/Akt/GSK3β pathway. Therefore, GDNF may be a promising agent for PD treatment.

  17. A Novel Immunosuppressor, (5R)-5-Hydroxytriptolide, Alleviates Movement Disorder and Neuroinflammation in a 6-OHDA Hemiparkinsonian Rat Model.

    PubMed

    Su, Ruijun; Sun, Min; Wang, Wei; Zhang, Jianliang; Zhang, Li; Zhen, Junli; Qian, Yanjing; Zheng, Yan; Wang, Xiaomin

    2017-02-01

    Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases. Promising therapies for PD still need to be explored. Immune dysfunction has been found to be involved in PD pathogenesis. Here, a novel immunosuppressor, (5R)-5-hydroxytriptolide (LLDT8), was used to treat 6-hydroxydopamine (6-OHDA)-induced hemiparkinson rats. We found that oral administration of LLDT8 significantly alleviated apomorphine-induced rotations at a dose of 125 µg/kg, and improved performance in cylinder and rotarod tests at a lower dose of 31.25 µg/kg, in 6-OHDA hemiparkinsonian rats. Moreover, loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the 6-OHDA rat was attenuated in response to LLDT8 treatment in a dose-dependent manner. In addition, inflammatory factors IL-1β, IL-6 and TNF-α, were significantly inhibited in LLDT8-treated hemiparkisonian rats, compared with vehicle. Notably, the level of dopamine (DA) in the striatum of PD rats was restored by LLDT8 treatment. Furthermore, we also detected that the disequilibrium of peripheral lymphocytes was reversed by LLDT8 administration. Taken together, the results imply that the immunosuppressor, LLDT8, can rescue dopaminergic neurodegeneration in 6-OHDA hemiparkinsonian rats, thus providing a potential therapeutic strategy for PD.

  18. Toxic Shock Syndrome

    MedlinePlus

    ... burn to avoid getting a staph infection. Toxic shock syndrome treatment Because toxic shock syndrome gets worse quickly, you may be seriously ... toxic shock syndrome in a wound? Resources Toxic Shock Syndrome ... treatment, women's health Family Health, Women January 2017 Copyright © ...

  19. Assessing aquatic terrestrial toxicity

    SciTech Connect

    Hall, W.S.; Mirenda, R.J.

    1993-06-01

    it is recognized that the toxic effects of environmental samples cannot be predicted based on chemical concentration data alone. The EPA recommends an integrated approach that uses both chemical specific and whole effluent toxicity testing methods to control effluent toxicity. Toxicity tests allow for the consideration of site-specific factors that may increase or decrease the toxicity of a chemical in a given medium.

  20. Toxic Shock Syndrome

    MedlinePlus

    ... toxic shock syndrome results from toxins produced by Staphylococcus aureus (staph) bacteria, but the condition may also ... a skin or wound infection. Bacteria, most commonly Staphylococcus aureus (staph), causes toxic shock syndrome. It can ...

  1. Sediment Toxicity Testing

    EPA Science Inventory

    Sediment toxicity testing has become a fundamental component of regulatory frameworks for assessing the risks posed by contaminated sediments and for development of chemical sediment quality guidelines. Over the past two decades, sediment toxicity testing methods have advanced co...

  2. Toxic substances handbook

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  3. Whole Effluent Toxicity (WET)

    EPA Pesticide Factsheets

    Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).

  4. Toxic gases from fires.

    PubMed

    Terrill, J B; Montgomery, R R; Reinhardt, C F

    1978-06-23

    The major lethal factors in uncontrolled fires are toxic gases, heat, and oxygen deficiency. The predominant toxic gas is carbon monoxide, which is readily generated from the combusion of wood and other cellulosic materials. Increasing use of a variety of synthetic polymers has stimulated interest in screening tests to evaluated the toxicity of polymeric materials when thermally decomposed. As yet, this country lacks a standardized fire toxicity test protocol.

  5. How Toxic Is It?

    ERIC Educational Resources Information Center

    Crellin, John R.

    1989-01-01

    Discusses the relative danger from toxicity of some typical chemicals. Notes that some materials in solutions have low toxicity, but in dust form have high toxicity. Suggests that more chemical compounds should be treated as the dangerous compounds they are. Lists common compounds found in the lab. (MVL)

  6. Toxic Hazards Research Unit

    NASA Technical Reports Server (NTRS)

    Macewen, J. D.; Vernot, E. H.

    1971-01-01

    The activities of the Toxic Hazards Research Unit (THRU) for the period of June 1970 through May 1971 reviewed. Modification of the animal exposure facilities primarily for improved human safety but also for experimental integrity and continuity are discussed. Acute toxicity experiments were conducted on hydrogen fluoride (HF), hydrogen chloride (HCl), nitrogen dioxide (NO2), and hydrogen cyanide (HCN) both singly and in combination with carbon dioxide (CO). Additional acute toxicity experiments were conducted on oxygen difluoride (OF2) and chlorine pentafluoride (ClF5). Subacute toxicity studies were conducted on methylisobutylketone and dichloromethane (methylene dichloride). The interim results of further chronic toxicity experiments on monomethylhydrazine (MMH) are also described.

  7. Effect of different doses of estrogen on the nigrostriatal dopaminergic system in two 6-hydroxydopamine-induced lesion models of Parkinson's disease.

    PubMed

    Cordellini, Marcela Ferreira; Piazzetta, Giovana; Pinto, Karin Cristine; Delattre, Ana Márcia; Matheussi, Francesca; Carolino, Ruither O G; Szawka, Raphael Escorsim; Anselmo-Franci, Janete A; Ferraz, Anete Curte

    2011-06-01

    Parkinson's disease results from a degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc) and it is more prevalent in men than in women. Estrogen has neuroprotective action of the nigrostriatal dopaminergic (NSDA) neurons. It was investigated whether differences in plasma 17β-estradiol (E2) levels alter the degree of neuroprotection in NSDA neurons. Ovariectomized rats, implanted with subcutaneous capsules containing 400, 800 or 1,600 μg of E2 or corn oil, were injected with 1 μg of 6-OHDA in the SNpc or the medial forebrain bundle (MFB). Striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and plasma E2 levels were measured. Only at 400 μg, E2 protected striatal DA against lesion of the MFB. In the SNpc, E2 failed to prevent DA depletion, but increased DOPAC/DA ratio in the striatum. In an NSDA moderate lesion, E2 has a neuroprotective action. In a severe lesion, E2 could stimulate DA activity in remaining neurons.

  8. Neuronal markers expression of NGF-primed bone marrow cells (BMCs) transplanted in the brain of 6-hydroxydopamine and ibotenic acid lesioned littermate mice.

    PubMed

    Triaca, Viviana; Aloe, Luigi

    In the present study, we aim to show that non-adherent bone marrow cells (BMCs) express TrkA, the nerve growth factor (NGF) receptor, and that addition of NGF promotes the survival and neuronal commitment of BMC transplanted into the experimentally injured brain of littermates mice. Immunohistochemical analysis revealed that transplanted BMCs express tyrosine hydroxylase (TH) in proximity of the damaged dopaminergic tissues and choline acetyltransferase (ChAT) in the lesioned cholinergic regions. These results suggest that NGF supports the survival and differentiation of uncommitted BMCs and concurs with other local environmental signals to promote the expression of neuronal markers in these cells. The possible functional significance of these observations will be discussed.

  9. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways

    PubMed Central

    Zhang, Chao; Li, Chuwen; Chen, Shenghui; Li, Zhiping; Ma, Lijuan; Jia, Xuejing; Wang, Kai; Bao, Jiaolin; Liang, Yeer; Chen, Meiwan; Li, Peng; Su, Huanxing; Lee, Simon Ming Yuen; Liu, Kechun; Wan, Jian-Bo; He, Chengwei

    2017-01-01

    Hormesis is an adaptive response of living organisms to a moderate stress. However, its biomedical implication and molecular mechanisms remain to be intensively investigated. Panaxatriol saponins (PTS) is the major bioactive components extracted from Panax notoginseng, a widely used herbal medicine for cerebrovascular diseases. This study aims to examine the hormetic and neuroprotective effects of PTS in PC12 cells and zebrafish Parkinson’s disease (PD) models. Our results demonstrated that PTS stimulated PC12 cell growth by about 30% at low doses, while PTS at high doses inhibited cell growth, which is a typical hormetic effect. Moreover, we found that low dose PTS pretreatment significantly attenuated 6-OHDA-induced cytotoxicity and up-regulated PI3K/AKT/mTOR cell proliferation pathway and AMPK/SIRT1/FOXO3 cell survival pathway in PC12 cells. These results strongly suggested that neuroprotective effects of PTS may be attributable to the hormetic effect induced by PTS through activating adaptive response-related signaling pathways. Notably, low dose PTS could significantly prevent the 6-OHDA-induced dopaminergic neuron loss and improve the behavior movement deficiency in zebrafish, whereas relative high dose PTS exhibited neural toxicity, further supporting the hormetic and neuroprotective effects of PTS. This study indicates that PTS may have the potential in the development of future therapeutic medicines for PD. PMID:28112228

  10. Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson’s Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects

    PubMed Central

    Cerri, Silvia; Greco, Rosaria; Levandis, Giovanna; Ghezzi, Cristina; Mangione, Antonina Stefania; Fuzzati-Armentero, Marie-Therese; Bonizzi, Arianna; Avanzini, Maria Antonietta; Maccario, Rita

    2015-01-01

    Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for Parkinson’s disease (PD) and systemic administration of these cells has been tested in preclinical and clinical studies. However, no information on survival and actual capacity of MSCs to reach the brain has been provided. In this study, we evaluated homing of intraarterially infused rat MSCs (rMSCs) in the brain of rats bearing a 6-hydroxydopamine (6-OHDA)-induced lesion of the nigrostriatal tract, to establish whether the toxin-induced damage is sufficient to grant MSC passage across the blood-brain barrier (BBB) or if a transient BBB disruption is necessary. The rMSC distribution in peripheral organs and the effects of cell infusion on neurodegenerative process and motor deficits were also investigated. rMSCs were infused 14 days after 6-OHDA injection. A hyperosmolar solution of mannitol was used to transiently permeabilize the BBB. Behavioral impairment was assessed by adjusting step test and response to apomorphine. Animals were sacrificed 7 and 28 days after cell infusion. Our work shows that appreciable delivery of rMSCs to the brain of 6-OHDA-lesioned animals can be obtained only after mannitol pretreatment. A notable percentage of infused cells accumulated in peripheral organs. Infusion of rMSCs did not modify the progression of 6-OHDA-induced damage or the motor impairment at the stepping test, but induced progressive normalization of the pathological response (contralateral turning) to apomorphine administration. These findings suggest that many aspects should be further investigated before considering any translation of MSC systemic administration into the clinical setting for PD treatment. Significance This study demonstrates that mesenchymal stem cells infused through the carotid artery do not efficiently cross the blood-brain barrier in rats with a Parkinson’s disease-like degeneration of nigrostriatal neurons, unless a permeabilizing agent (e.g., mannitol) is

  11. Toxicity of carbon nanotubes.

    PubMed

    Wang, Jing; Xu, Yuanzhi; Yang, Zhi; Huang, Renhuan; Chen, Jing; Wang, Raorao; Lin, Yunfeng

    2013-10-01

    Carbon nanotubes (CNTs) find their extensive application as a promising material in medicine due to unique characteristics. However, such materials have been accompanied with potentially hazardous effects on human health. The toxicity of CNTs may vary depending on their structural characteristics, surface properties and chemical composition. To gain insight into the toxicity of CNTs in vivo and in vitro, we summarize contributing factors for the toxic effects of CNTs in this review. In addition, we elaborate on the toxic effects and mechanisms in target sites at systemic, organic, cellular, and biomacromolecule levels. Various issues are reported to be effected when exposed to CNTs including (1) blood circulation, (2) lymph circulation, (3) lung, (4) heart, (5) kidney, (6) spleen, (7) bone marrow, and (8) blood brain barrier. Though there have been published reports on the toxic effects of CNTs to date, more studies will still be needed to gain full understanding of their potential toxicity and underlying mechanisms.

  12. Toxic substances alert program

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1978-01-01

    A toxicity profile is provided, of 187 toxic substances procured by NASA Lewis Research Center during a 3 1/2 year period, including 27 known or suspected carcinogens. The goal of the program is to assure that the center's health and safety personnel are aware of the procurement and use of toxic substances and to alert and inform the users of these materials as to the toxic characteristics and the control measures needed to ensure their safe use. The program also provides a continuing record of the toxic substances procured, who procured them, what other toxic substances the user has obtained in the past, and where similar materials have been used elsewhere at the center.

  13. Acute toxicity of arsenobetaine

    SciTech Connect

    Kaise, T.; Watanabe, S.; Itoh, K.

    1985-01-01

    The acute toxicity of arsenobetaine was studied in male mice. No deaths were observed with oral administration of 10 g/kg of arsenobetaine. Therefore the LD/sub 50/ value was higher than 10 g/kg. This compound was found in urine in the non-metabolized form. No particular toxic symptoms were observed following administration. These suggest that arsenobetaine has low toxicity and is not metabolized in mice.

  14. Toxic hazards research unit

    SciTech Connect

    Macewen, J.D.; Vernot, E.H.

    1980-08-01

    Chronic toxicity or oncogenic studies were carried out with methylcyclohexane, tricyclodecane, purified 1,1-dimethylhydrazine, and bicycloheptadiene. A subchronic inhalation study was conducted with shale derived JP-5 and DFM fuels. Acute toxicity studies were conducted on a variety of chemical agents used by the Air Force and Navy.

  15. Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical c...

  16. ENGINEERING BULLETIN: BIOLOGICAL TOXICITY TESTING

    EPA Science Inventory

    This Engineering Bulletin is intended to provide site managers with information on ecological assessment and biological toxicity testing, applicability of biological toxicity testing, planning effective biological toxicity assessments, descriptions of test methods, limitations, c...

  17. Digitalis toxicity: ECG vignette.

    PubMed

    Vyas, Aniruddha; Bachani, Neeta; Thakur, Hrishikesh; Lokhandwala, Yash

    2016-09-01

    "Digitalis toxicity, often candidly indexed as poisoning, has plagued the medical profession for over 200 years. The situation qualifies as a professional disgrace on the basis of three items: the situation persists, physicians are often slow to recognize it and, over the decades, writers have been harsh in their denunciation of fellow physicians when toxicity has occurred…." These are the opening remarks of an essay published in 1983 on the 2nd centenary of William Withering's 'magic potion from foxglove's extract for dropsy.' Even today, after many decades, these words appear relevant! We present and discuss an interesting ECG of digitalis toxicity.

  18. National Air Toxics Assessment

    EPA Pesticide Factsheets

    NATA is an ongoing comprehensive evaluation of air toxics in the U.S. As a screening tool, it helps air agencies prioritize pollutants, emission sources and locations of interest for further study to gain a better understanding of risks.

  19. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  20. Toxic shock syndrome

    MedlinePlus

    ... by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock-like ... men. Risk factors include: Recent childbirth Infection with Staphylococcus aureus ( S aureus ), commonly called a Staph infection Foreign ...

  1. WASTE WATER TOXICITY IDENTIFCATIONS

    EPA Science Inventory

    Toxicity Identification Evaluation (TIE) technology has been used in the scientific and regulatory evaluation of wastewaters for approximately 20 years. This article provides a review of the general and regional considerations, data analysis, specific methods and improvements, m...

  2. BIOMARKERS OF REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Identification and verification of anatomical, endocrine, cellular and molecular biomarkers is crucial for successful clinical diagnosis and treatment of toxicity and disease, as well as basic toxicological, epidemiological and other research. Various in situ biomarkers of repro...

  3. The Effect of Toxic Leadership

    DTIC Science & Technology

    2012-03-15

    personal characteristics.12 Therefore, toxic leaders create toxic climates by changing the content of the culture.13 The resulting damage to the...resilient and resistant to change ; however, in a favorable climate , toxic subcultures not only form, but also thrive. How do organizations become a...emphasize the symptoms of toxicity (individual characteristics, traits) and not the disease (culture, climate , outcomes). Although characteristics

  4. Lead toxicity: a review.

    PubMed

    Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad

    2015-06-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates.

  5. Lead toxicity: a review

    PubMed Central

    Ara, Anjum; Usmani, Jawed Ahmad

    2015-01-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates. PMID:27486361

  6. What Renders TAU Toxic

    PubMed Central

    Götz, Jürgen; Xia, Di; Leinenga, Gerhard; Chew, Yee Lian; Nicholas, Hannah R.

    2013-01-01

    TAU is a microtubule-associated protein that under pathological conditions such as Alzheimer’s disease (AD) forms insoluble, filamentous aggregates. When 20 years after TAU’s discovery the first TAU transgenic mouse models were established, one declared goal that was achieved was the modeling of authentic TAU aggregate formation in the form of neurofibrillary tangles. However, as we review here, it has become increasingly clear that TAU causes damage much before these filamentous aggregates develop. In fact, because TAU is a scaffolding protein, increased levels and an altered subcellular localization (due to an increased insolubility and impaired clearance) result in the interaction of TAU with cellular proteins with which it would otherwise either not interact or do so to a lesser degree, thereby impairing their physiological functions. We specifically discuss the non-axonal localization of TAU, the role phosphorylation has in TAU toxicity and how TAU impairs mitochondrial functions. A major emphasis is on what we have learned from the four available TAU knock-out models in mice, and the knock-out of the TAU/MAP2 homolog PTL-1 in worms. It has been proposed that in human pathological conditions such as AD, a rare toxic TAU species exists which needs to be specifically removed to abrogate TAU’s toxicity and restore neuronal functions. However, what is toxic in one context may not be in another, and simply reducing, but not fully abolishing TAU levels may be sufficient to abrogate TAU toxicity. PMID:23772223

  7. Toxicity of adipic acid.

    PubMed

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests.

  8. Iron metabolism and toxicity

    SciTech Connect

    Papanikolaou, G.; Pantopoulos, K. . E-mail: kostas.pantopoulos@mcgill.ca

    2005-01-15

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer.

  9. Neuromuscular toxicity of therapy.

    PubMed

    Mollman, J E

    1992-06-01

    The peripheral nervous system is frequently impaired in patients who have cancer. This impairment often results from toxicity of treatment but may also be due to direct invasion by tumor or may be part of a paraneoplastic syndrome. This review summarizes the recent literature regarding peripheral neuropathies and myopathies that are seen in patients with cancer. Highlights include the neuromuscular toxicity of some of the newer chemotherapeutic agents and immune mediators such as taxol and interleukin-2; a discussion of some of the agents being investigated for chemoprotection and rescue; an assessment of the evidence supporting the concept of motor neuron disease as a paraneoplastic disorder; and an interesting case report of megakaryoblastic leukemia invading peripheral nerves. Also summarized are some nice reviews and prospective studies of the toxicity of more conventional treatments.

  10. Aquatic toxicity of triclosan.

    PubMed

    Orvos, David R; Versteeg, Donald J; Inauen, Josef; Capdevielle, Marie; Rothenstein, Arthur; Cunningham, Virginia

    2002-07-01

    The aquatic toxicity of triclosan (TCS), a chlorinated biphenyl ether used as an antimicrobial in consumer products, was studied with activated-sludge microorganisms, algae, invertebrates, and fish. Triclosan, a compound used for inhibiting microbial growth, was not toxic to wastewater microorganisms at concentrations less than aqueous solubility. The 48-h Daphnia magna median effective concentration (EC50) was 390 microg/L and the 96-h median lethal concentration values for Pimephales promelas and Lepomis macrochirus were 260 and 370 microg/L, respectively. A no-observed-effect concentration (NOEC) and lowest-observed-effect concentration of 34.1 microg/L and 71.3 microg/L, respectively, were determined with an early life-stage toxicity test with Oncorhynchus mykiss. During a 96-h Scenedesmus study, the 96-h biomass EC50 was 1.4 microg/L and the 96-h NOEC was 0.69 microg/L. Other algae and Lemna also were investigated. Bioconcentration was assessed with Danio rerio. The average TCS accumulation factor over the five-week test period was 4,157 at 3 microg/L and 2,532 at 30 microg/L. Algae were determined to be the most susceptible organisms. Toxicity of a TCS-containing wastewater secondary effluent to P. promelas and Ceriodaphnia was evaluated and no observed differences in toxicity between control and TCS-treated laboratory units were detected. The neutral form of TCS was determined to be associated with toxic effects. Ionization and sorption will mitigate those effects in the aquatic compartment.

  11. Toxic Hazards Research Unit

    DTIC Science & Technology

    1977-09-01

    showed that OMP-4 had produced eschar formation and destruction of the dermal layer down to the fascia, thus classifying it as a corrosive material. Both...dimethylamino Ethyl Corporationrial wer pr aredp- cresol with corn oil or pro- (solid) pylene glycol and ad- N,N’-disalicylidene-l,2- duPontpropane diamine...amino guanidine Rat >5000 5000(0) Below toxic 2,6,di-tert-butyl-di- Rata 1189(669-2111) 500(0),1000(3),2000(4) Toxic methylamino-p- cresol Mousea 307(190

  12. The toxicity of refrigerants

    SciTech Connect

    Calm, J.M.

    1996-07-01

    This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. It then outlines current classification methods for refrigerant safety and relates them to standard and code usage.

  13. Fire toxicity scaling

    SciTech Connect

    Braun, E.; Levin, B.C.; Paabo, M.; Gurman, J.; Holt, T.

    1987-02-01

    The toxicity of the thermal-decomposition products from two flexible polyurethane foams (with and without a fire retardant) and a cotton upholstery fabric was evaluated by a series of small-scale and large-scale tests single mock-up upholstery chair tests during smoldering or flaming decomposition. In addition other fire property data such as rates of heat release, effective heats of combustion, specific gas species yields, and smoke obscuration were measured. The degree of toxicity observed during and following the flaming tests (both large-scale room burns and the NBS Toxicity Tests) could be explained by a 3-Gas Model which includes the combined toxicological effects of CO, CO/sub 2/, and HCN. Essentially, no animal deaths were noted during the thirty minute exposures to the non-flaming or smoldering combustion products produced in the NBS Toxicity Test Method or the large-scale room test. In the large-scale room tests, little toxicological difference was noted between decomposition products from the burn room and a second room 12 meters away.

  14. Quebec's Toxic Pollution Concern.

    ERIC Educational Resources Information Center

    Mingie, Walter

    The best solution to the problems of increased pollution of Quebec lakes and rivers with toxic wastes and increased incidence of pollution related diseases is to educate children, to make them aware of the environment and man's interrelationship with it. Attitudes of concern, based on knowledge, must be developed so that as adults, they will take…

  15. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  16. Respiratory Toxicity Biomarkers

    EPA Science Inventory

    The advancement in high throughput genomic, proteomic and metabolomic techniques have accelerated pace of lung biomarker discovery. A recent growth in the discovery of new lung toxicity/disease biomarkers have led to significant advances in our understanding of pathological proce...

  17. Iron toxicity screening.

    PubMed

    Cheng, C S; Sullivan, T D; Li, P K

    1979-06-01

    Fischer's method for rapid detection of acute iron toxicity is modified to suit pediatric cases. TPTZ (2,4,6-tripyridyl-s-triazine) is the chromogen of choice since in a small volume of serum slight to moderate hemolysis can cause a false positive result bathophenanthroline. Ordinary labware is amenable to this simplified procedure.

  18. Comparing toxic air pollutant programs

    SciTech Connect

    Hawkins, S.C.

    1997-05-01

    This article compares state and federal toxic air pollutant programs. The Clean Air Act Ammendments created a program for the control of Hazardous Air Pollutants based on the establishment of control technology standards. State toxic programs can be classified into two categories: control technology-based and ambient concentration-based. Many states have opened to implement the MACT standards while enforcing their own state air toxics programs. Specific topics discussed include the following: the Federal air toxics program; existing state regulations; New Jersey Air Toxic Program; New York Toxics program.

  19. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST)

    EPA Science Inventory

    Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Since experimental measurements of toxicity are extremely time consuming and expensive, it is imperative that alternative methods to estimate toxicity are developed.

  20. Predictive Modeling of Developmental Toxicity

    EPA Science Inventory

    The use of alternative methods in conjunction with traditional in vivo developmental toxicity testing has the potential to (1) reduce cost and increase throughput of testing the chemical universe, (2) prioritize chemicals for further targeted toxicity testing and risk assessment,...

  1. Transient neuroprotection by SRY upregulation in dopamine cells following injury in males.

    PubMed

    Czech, Daniel P; Lee, Joohyung; Correia, Jeanne; Loke, Hannah; Möller, Eva K; Harley, Vincent R

    2014-07-01

    Emerging evidence suggest sex-specific regulation of dopamine neurons may underlie susceptibility of males to disorders such as Parkinson's disease (PD). In healthy male dopamine neurons, the Y-chromosome gene product, the sex-determining region on the Y chromosome (SRY) modulates dopamine biosynthesis and motor function. We investigated the regulation and function of SRY in a model of dopamine cell injury. Treatment with the dopaminergic toxin, 6-hydroxydopamine (6-OHDA), significantly elevated SRY mRNA expression (9-fold) in human male dopamine M17 cells. SRY up-regulation occurred via the p-quinone pathway, associated with a 3.5-fold increase in expression of GADD45γ, a DNA damage inducible factor gene and known SRY regulator. In turn, a signaling cascade involving GADD45γ/p38-MAPK/GATA activated the SRY promoter. Knockdown of SRY mRNA in 6-OHDA-treated M17 cells was deleterious, increasing levels of reactive oxygen species (ROS), pro-apoptotic marker PUMA mRNA, and cell injury (+25%, +32% and +34%, respectively). Conversely, ectopic over-expression of SRY in 6-OHDA-treated female SH-SY5Y cells was protective, decreasing ROS, PUMA, and cell injury (-40%, -46%, and -30%, respectively). However, the 6-OHDA-induced increase in SRY expression was diminished with higher concentrations of toxins or with chronic exposure to 6-OHDA. We conclude that SRY upregulation after dopamine cell injury is initially a protective response in males, but diminishes with gradual loss in dopamine cells. We speculate that dysregulation of SRY may contribute the susceptibility of males to PD.

  2. MK-801 (Dizocilpine) Regulates Multiple Steps of Adult Hippocampal Neurogenesis and Alters Psychological Symptoms via Wnt/β-Catenin Signaling in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Shubha

    2017-03-15

    Adult hippocampal neurogenesis is directly involved in regulation of stress, anxiety, and depression that are commonly observed nonmotor symptoms in Parkinson's disease (PD). These symptoms do not respond to pharmacological dopamine replacement therapy. Excitotoxic damage to neuronal cells by N-methyl-d-aspartate (NMDA) receptor activation is also a major contributing factor in PD development, but whether it regulates hippocampal neurogenesis and nonmotor symptoms in PD is yet unexplored. Herein, for the first time, we studied the effect of MK-801, an NMDA receptor antagonist, on adult hippocampal neurogenesis and behavioral functions in 6-OHDA (6-hydroxydopamine) induced rat model of PD. MK-801 treatment (0.2 mg/kg, ip) increased neural stem cell (NSC) proliferation, self-renewal capacity, long-term survival, and neuronal differentiation in the hippocampus of rat model of PD. MK-801 potentially enhanced long-term survival, improved dendritic arborization of immature neurons, and reduced 6-OHDA induced neurodegeneration via maintaining the NSC pool in hippocampus, leading to decreased anxiety and depression-like phenotypes in the PD model. MK-801 inhibited glycogen synthase kinase-3β (GSK-3β) through up-regulation of Wnt-3a, which resulted in the activation of Wnt/β-catenin signaling leading to enhanced hippocampal neurogenesis in PD model. Additionally, MK-801 treatment protected the dopaminergic (DAergic) neurons in the nigrostriatal pathway and improved motor functions by increasing the expression of Nurr-1 and Pitx-3 in the PD model. Therefore, MK-801 treatment serves as a valuable tool to enhance hippocampal neurogenesis in PD, but further studies are needed to revisit the role of MK-801 in the neurodegenerative disorder before proposing a potential therapeutic candidate.

  3. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2016-12-14

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  4. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats.

    PubMed

    Yelkenli, İbrahim Halil; Ulupinar, Emel; Korkmaz, Orhan Tansel; Şener, Erol; Kuş, Gökhan; Filiz, Zeynep; Tunçel, Neşe

    2016-06-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used in animal models of Parkinson's disease. In various neurodegenerative diseases, astrocytes play direct, active, and critical roles in mediating neuronal survival and functions. Vasoactive intestinal peptide (VIP) has neurotrophic actions and modulates a number of astrocytic activities. In this study, the effects of VIP on the striatal neurochemistry were investigated in parkinsonian rats. Adult Sprague-Dawley rats were divided into sham-operated, unilaterally 6-OHDA-lesioned, and lesioned + VIP-administered (25 ng/kg i.p.) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection and then every 2 days throughout 15 days. Extracellular striatal concentration of glutathione (GSH), gamma-aminobutyric acid (GABA), glutamate (GLU), and lactate were measured in microdialysates by high-performance liquid chromatography (HPLC). Quantification of GABA and activity dependent neuroprotective protein (ADNP)-expressing cells were determined by glutamic acid decarboxylase (GAD)/ADNP + glial fibrillary acidic protein (GFAP) double immunohistochemistry. Our results demonstrated that a 6-OHDA lesion significantly increased the density of astrocytes in the striatum and VIP treatment slightly reduced the gliosis. Extracellular concentration of GABA, GLU, and lactate levels did not change, but GSH level significantly increased in the striatum of parkinsonian rats. VIP treatment reduced GSH level comparable to sham-operated groups, but enhanced GABA and GLU levels. Our double labeling results showed that VIP primarily acts on neurons to increase ADNP and GAD expression for protection. These results suggest that, in the 6-OHDA-induced neurodegeneration model, astrocytes were possibly activated for forefront defensiveness by modulating striatal neurochemistry.

  5. 6-OHDA injections into A8-A9 dopaminergic neurons modelling early stages of Parkinson's disease increase the harmaline-induced tremor in rats.

    PubMed

    Kolasiewicz, Wacław; Kuter, Katarzyna; Berghauzen, Klemencja; Nowak, Przemysław; Schulze, Gert; Ossowska, Krystyna

    2012-10-05

    The aim of the present study was to examine the influence of a unilateral 6-hydroxydopamine (6-OHDA)-induced partial lesion of both the substantia nigra pars compacta (SNc, A9) and retrorubral field (RRF, A8) on the tremor evoked by harmaline. 6-OHDA (8μg/2μl) was injected unilaterally into the region of the posterior part of the SNc and RRF. Harmaline was administered in a dose of 7.5mg/kg ip on the eighth day after the operation and tremor of forelimbs, head and trunk was measured. We found that the lesion increased intensity of the tremor induced by harmaline but did not influence its character. Stereological examination of the lesion extent revealed losses of dopaminergic (tyrosine hydroxylase-immunoreactive) neurons in the anterior (30%) and posterior (72%) SNc, as well as in RRF (72% on the average). Levels of dopamine and all its metabolites, as well as noradrenaline concentrations, were ipsilaterally moderately decreased in the caudate-putamen in the lesioned animals, however, dopamine and DOPAC in the anterior cerebellum were increased. In the caudate-putamen, the ipsi/contra ratio of dopamine level correlated negatively, while that of dopamine turnover positively with the tremor intensity. However, in the anterior cerebellum an inverse relationship was found. Moreover, this symptom correlated positively with the serotonin level and negatively with the 5-HIAA/serotonin ratio on the contralateral side of the posterior cerebellum. The present results seem to indicate that the modulation of dopaminergic and serotonergic transmissions by the lesion modelling early stages of Parkinson's disease may influence tremor triggered in the cerebellum.

  6. Contralateral retinal dopamine decrease and melatonin increase in progression of hemiparkinsonium rat.

    PubMed

    Meng, Tao; Zheng, Zhi-Hong; Liu, Ting-Ting; Lin, Ling

    2012-05-01

    Both dopamine (DA) and melatonin (MLT) are abundant neuromodulators located in vertebrate retina. The retinal DA deficiency and variations in MLT levels have been linked to Parkinson's disease (PD). No studies have investigated the ipsilateral and contralateral DA and MLT in retina and their relationships in 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats. We established PD rat model by unilateral injection of 6-OHDA into the right substantia nigra and the right medial forebrain bundle. Eye tissue was collected and the levels of MLT and DA were measured twice daily at 10:00 and 22:00. The concentrations of DA and its metabolites, 3,4-dihydroxyphenylacetic (DOPAC) and homovanillic acid (HVA), as well as MLT were determined by HPLC. The results show that DA levels in the eye contralateral to the side of a unilateral intracerebral 6-OHDA lesion significantly decreased (P < 0.001). Both the ratios of DOPAC/DA and HVA/DA were increased in comparison with the vehicle groups after 3 weeks post-lesion. The concentrations of MLT at 10:00 and 22:00 in both eyes were distinctly increased compared with the vehicle groups (P < 0.05). The change of DA and its metabolites, as well as MLT appeared to correlate well with the rotation behavior of rats. These findings suggest that rats receive a unilateral intracerebral injection of 6-OHDA that mainly causes the contralateral eye destruction of DA-containing neurons. Increased retinal MLT level probably is associated with the progression of PD.

  7. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson's disease in vivo, but not enough to restore the lesioned dopaminergic system.

    PubMed

    Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2016-02-01

    We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD.

  8. Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum.

    PubMed

    Schallert, T; Upchurch, M; Wilcox, R E; Vaughn, D M

    1983-05-01

    Nigrostriatal dopaminergic neurons are thought to be critically important for somato-sensorimotor behavior. Following unilateral irreversible elimination of these neurons, an animal shows an ipsiversive postural bias and permanently fails to orient its head toward tactile stimuli placed on the contralateral side of the body. In response to apomorphine, a dopamine agonist, these rats display contraversive circling. This effect is thought to reflect denervation-induced proliferation of dopamine receptors in the ipsilateral striatum. We have developed a sensitive procedure that measures sensorimotor function independent of postural and circling biases. We record the latencies to remove small pieces of adhesive stimuli placed onto the snout or radial surface of the forelimbs. The stimuli are placed symmetrically and simultaneously, which is analogous to tactile-extinction procedures used clinically. In the first study we found that rats with unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the nigrostriatal pathway showed a contralateral sensorimotor bias in response to doses of apomorphine below those necessary to produce contraversive circling. In a second study, unilateral striatal microinjections of kainic acid (KA) were used to destroy the neurons on which the postsynaptic dopaminergic receptors of the nigrostriatal system are contained. Compared to 6-OHDA, KA produced unexpected results in standard orientation tests. None of the KA-treated rats showed contralateral neglect, and some even showed ipsilateral deficits. However, the standard orientation tests are confounded by postural asymmetries, which were irregular in the KA-treated group. Using again the posture-independent sensorimotor procedure, we found that all KA-treated rats, like the 6-OHDA-treated rats, uniformly displayed ipsilateral sensorimotor biases. Sensorimotor function relating to inter-striatal asymmetries may be more specifically assessed with the bilateral-adhesive tests.

  9. Catecholaminergic depletion within the prelimbic medial prefrontal cortex enhances latent inhibition.

    PubMed

    Nelson, A J D; Thur, K E; Marsden, C A; Cassaday, H J

    2010-09-29

    Latent inhibition (LI) refers to the reduction in conditioning to a stimulus that has received repeated non-reinforced pre-exposure. Investigations into the neural substrates of LI have focused on the nucleus accumbens (NAc) and its inputs from the hippocampal formation and adjacent cortical areas. Previous work has suggested that lesions to the medial prefrontal cortex (mPFC), another major source of input to the NAc, do not disrupt LI. However, a failure to observe disrupted LI does not preclude the possibility that a particular brain region is involved in the expression of LI. Moreover, the mPFC is a heterogeneous structure and there has been no investigation of a possible role of different regions within the mPFC in regulating LI under conditions that prevent LI in controls. Here, we tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of dopamine (DA) terminals within the prelimbic (PL) and infralimbic (IL) mPFC would lead to the emergence of LI under conditions that do produce LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures to a noise conditioned stimulus (CS) and two conditioning trials. Sham-operated and IL-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the PL, however, produced potentiation of LI. These results provide the first demonstration that the PL mPFC is a component of the neural circuitry underpinning LI.

  10. High correlation between in vivo [123I]β-CIT SPECT/CT imaging and post-mortem immunohistochemical findings in the evaluation of lesions induced by 6-OHDA in rats

    PubMed Central

    2013-01-01

    Background 6-Hydroxydopamine (6-OHDA) is widely used in pre-clinical animal studies to induce degeneration of midbrain dopamine neurons to create animal models of Parkinson's disease. The aim of our study was to evaluate the potential of combined single-photon emission computed tomography/computed tomography (SPECT/CT) for the detection of differences in 6-OHDA-induced partial lesions in a dose- and time-dependent manner using the dopamine transporter (DAT) ligand 2β-carbomethoxy-3β-(4-[123I]iodophenyl)tropane ([123I]β-CIT). Methods Rats were unilaterally lesioned with intrastriatal injections of 8 or 2 × 10 μg 6-OHDA. At 2 or 4 weeks post-lesion, 40 to 50 MBq [123I]β-CIT was administered intravenously and rats were imaged with small-animal SPECT/CT under isoflurane anesthesia. The striatum was delineated and mean striatal activity in the lesioned side was compared to the intact side. After the [123I]β-CIT SPECT/CT scan, the rats were tested for amphetamine-induced rotation asymmetry, and their brains were immunohistochemically stained for DAT and tyrosine hydroxylase (TH). The fiber density of DAT- and TH-stained striata was estimated, and TH-immunoreactive cells in the rat substantia nigra pars compacta (SNpc) were stereologically counted. Results The striatal uptake of [123I]β-CIT differed significantly between the lesion groups and the results were highly correlated to both striatal DAT- and TH-immunoreactive fiber densities and to TH-immunoreactive cell numbers in the rat SNpc. No clear progression of the lesion could be seen. Conclusions [123I]β-CIT SPECT/CT is a valuable tool in predicting the condition of the rat midbrain dopaminergic pathway in the unilateral partial 6-OHDA lesion model of Parkinson's disease and it offers many advantages, allowing repeated non-invasive analysis of living animals. PMID:23758882

  11. Microglial Cells Are Involved in the Susceptibility of NADPH Oxidase Knockout Mice to 6-Hydroxy-Dopamine-Induced Neurodegeneration

    PubMed Central

    Hernandes, Marina S.; Santos, Graziella D. R.; Café-Mendes, Cecília C.; Lima, Larissa S.; Scavone, Cristoforo; Munhoz, Carolina D.; Britto, Luiz R. G.

    2013-01-01

    We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease (PD) model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN) of wild-type (wt) mice after PD induction. Gp91phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA) neurons in the SN of wt mice. In gp91phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction. PMID:24086556

  12. Catecholaminergic depletion within the prelimbic medial prefrontal cortex enhances latent inhibition

    PubMed Central

    Nelson, A.J.D.; Thur, K.E.; Marsden, C.A.; Cassaday, H.J.

    2010-01-01

    Latent inhibition (LI) refers to the reduction in conditioning to a stimulus that has received repeated non-reinforced pre-exposure. Investigations into the neural substrates of LI have focused on the nucleus accumbens (NAc) and its inputs from the hippocampal formation and adjacent cortical areas. Previous work has suggested that lesions to the medial prefrontal cortex (mPFC), another major source of input to the NAc, do not disrupt LI. However, a failure to observe disrupted LI does not preclude the possibility that a particular brain region is involved in the expression of LI. Moreover, the mPFC is a heterogeneous structure and there has been no investigation of a possible role of different regions within the mPFC in regulating LI under conditions that prevent LI in controls. Here, we tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of dopamine (DA) terminals within the prelimbic (PL) and infralimbic (IL) mPFC would lead to the emergence of LI under conditions that do produce LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures to a noise conditioned stimulus (CS) and two conditioning trials. Sham-operated and IL-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the PL, however, produced potentiation of LI. These results provide the first demonstration that the PL mPFC is a component of the neural circuitry underpinning LI. PMID:20619321

  13. Toxic compensation bills

    SciTech Connect

    Anderson, R.C.

    1985-10-01

    Congress has demonstrated interest in toxic compensation legislation, but not enough agreement to make significant progress. Advocates of reform claim that the legal system is heavily weighed against victims who seek compensation through the courts. Proposed reforms include a compensation fund and a cause of action in federal court. Critics have questioned whether these changes in the law would represent an improvement. Existing income replacement, medical cost reimbursement, and survivor insurance programs largely cover the losses of individuals with chronic disease. Thus, the need for an additional compensation is not clear. Furthermore, experience with compensation funds such as the Black Lung Fund suggests that political rather than scientific criteria may be used to determine eligibility. Finally, under the proposed financing mechanisms the compensation funds that are being debated would not increase incentives for care in the handling of hazardous wastes or toxic substances.

  14. Tungsten Toxicity in Plants

    PubMed Central

    Adamakis, Ioannis-Dimosthenis S.; Panteris, Emmanuel; Eleftheriou, Eleftherios P.

    2012-01-01

    Tungsten (W) is a rare heavy metal, widely used in a range of industrial, military and household applications due to its unique physical properties. These activities inevitably have accounted for local W accumulation at high concentrations, raising concerns about its effects for living organisms. In plants, W has primarily been used as an inhibitor of the molybdoenzymes, since it antagonizes molybdenum (Mo) for the Mo-cofactor (MoCo) of these enzymes. However, recent advances indicate that, beyond Mo-enzyme inhibition, W has toxic attributes similar with those of other heavy metals. These include hindering of seedling growth, reduction of root and shoot biomass, ultrastructural malformations of cell components, aberration of cell cycle, disruption of the cytoskeleton and deregulation of gene expression related with programmed cell death (PCD). In this article, the recent available information on W toxicity in plants and plant cells is reviewed, and the knowledge gaps and the most pertinent research directions are outlined. PMID:27137642

  15. Toxic compensation bills.

    PubMed Central

    Anderson, R C

    1985-01-01

    Congress has demonstrated interest in toxic compensation legislation, but not enough agreement to make significant progress. Advocates of reform claim that the legal system is heavily weighed against victims who seek compensation through the courts. Proposed reforms include a compensation fund and a cause of action in federal court. Critics have questioned whether these changes in the law would represent an improvement. Existing income replacement, medical cost reimbursement, and survivor insurance programs largely cover the losses of individuals with chronic disease. Thus, the need for an additional compensation is not clear. Furthermore, experience with compensation funds such as the Black Lung Fund suggests that political rather than scientific criteria may be used to determine eligibility. Finally, under the proposed financing mechanisms the compensation funds that are being debated would not increase incentives for care in the handling of hazardous wastes or toxic substances. PMID:4085440

  16. Toxic Substances Control Act

    SciTech Connect

    Not Available

    1992-05-15

    This Reference Book contains a current copy of the Toxic Substances Control Act and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

  17. Kombucha--toxicity alert.

    PubMed

    The Kombucha mushroom, also known as Manchurian mushroom, is a mail-order product touted to lower blood pressure and raise T-cell counts. No controlled trials have been conducted to test these claims. Aspergillus, a mold that may grow on the Kombucha mushroom, attacks the brain and may be fatal to persons with weakened immune systems. Reported toxicity reactions have included stomach problems and yeast infections. Taking Kombucha in combination with other drugs may affect the drugs potency.

  18. Carbon Nanotubes Toxicity

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano

    We describe current and possible future developments in nanotechnology for biological and medical applications. Nanostructured, composite materials for drug delivery, biosensors, diagnostics and tumor therapy are reviewed as examples, placing special emphasis on silica composites. Carbon nanotubes are discussed as a primary example of emerging nanomaterials for many of the above-mentioned applications. Toxicity effects of this novel nanomaterial are discussed and the need for further study of potential hazards for human health, professionally exposed workers and the environment is motivated.

  19. Olfactory toxicity in fishes.

    PubMed

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  20. Separations chemistry of toxic metals

    SciTech Connect

    Smith, P.; Barr, M.; Barrans, R.

    1996-04-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects.

  1. The toxicity of methanol

    SciTech Connect

    Tephly, T.R. )

    1991-01-01

    Methanol toxicity in humans and monkeys is characterized by a latent period of many hours followed by a metabolic acidosis and ocular toxicity. This is not observed in most lower animals. The metabolic acidosis and blindness is apparently due to formic acid accumulation in humans and monkeys, a feature not seen in lower animals. The accumulation of formate is due to a deficiency in formate metabolism which is, in turn, related, in part, to low hepatic tetrahydrofolate (H{sub 4}folate). An excellent correlation between hepatic H{sub 4} folate and formate oxidation rates has been shown within and across species. Thus, humans and monkeys possess low hepatic H{sub 4}folate levels, low rates of formate oxidation and accumulation of formate after methanol. Formate, itself, produces blindness in monkeys in the absence of metabolic acidosis. In addition to low hepatic H{sub 4}folate concentrations, monkeys and humans also have low hepatic 10-formyl H{sub 4}folate dehydrogenase levels, the enzyme which is the ultimate catalyst for conversion of formate to carbon dioxide. This review presents the basis for the role of folic acid-dependent reactions in the regulation of methanol toxicity.

  2. Toxicity of nanomaterials

    PubMed Central

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter

    2015-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There are few studies of the long-term consequences of nanoparticles on human health, but governmental agencies, including the United States National Institute for Occupational Safety and Health and Japan’s Ministry of Health, have recently raised the question of whether seemingly innocuous materials such as carbon-based nanotubes should be treated with the same caution afforded known carcinogens such as asbestos. Since nanomaterials are increasing a part of everyday consumer products, manufacturing processes, and medical products, it is imperative that both workers and end-users be protected from inhalation of potentially toxic NPs. It also suggests that NPs may need to be sequestered into products so that the NPs are not released into the atmosphere during the product’s life or during recycling. Further, non-inhalation routes of NP absorption, including dermal and medical injectables, must be studied in order to understand possible toxic effects. Fewer studies to date have addressed whether the body can eventually eliminate nanomaterials to prevent particle build-up in tissues or organs. This critical review discusses the biophysicochemical properties of various nanomaterials with emphasis on currently available toxicology data and methodologies for evaluating nanoparticle toxicity. PMID:22170510

  3. Modern toxic antipersonnel projectiles.

    PubMed

    Gaillard, Yvan; Regenstreif, Philippe; Fanton, Laurent

    2014-12-01

    In the spring of 1944, Kurt von Gottberg, the SS police chief in Minsk, was shot and injured by 2 Soviet agents. Although he was only slightly injured, he died 6 hours later. The bullets were hollow and contained a crystalline white powder. They were 4-g bullets, semi-jacketed in cupronickel, containing 28 mg of aconitine. They were later known as akonitinnitratgeschosse. The Sipo (the Nazi security police) then ordered a trial with a 9-mm Parabellum cartridge containing Ditran, an anticholinergic drug with hallucinogenic properties causing intense mental confusion. In later years, QNB was used and given the NATO code BZ (3-quinuclidinyl-benzylate). It was proven that Saddam Hussein had this weapon (agent 15) manufactured and used it against the Kurds. Serbian forces used the same type of weapon in the Bosnian conflict, particularly in Srebrenica.The authors go on to list the Cold War toxic weapons developed by the KGB and the Warsaw pact countries for the discreet elimination of dissidents and proindependence leaders who had taken refuge in the West. These weapons include PSZh-13 launchers, the Troika electronic sequential pistol, and the ingenious 4-S110T captive piston system designed by the engineer Stechkin. Disguised as a cigarette case, it could fire a silent charge of potassium cyanide. This rogues gallery also includes the umbrella rigged to inject a pellet of ricin (or another phytalbumin of similar toxicity, such as abrin or crotin) that was used to assassinate the Bulgarian writer and journalist Georgi Markov on September 7, 1978, in London.During the autopsy, the discovery of a bullet burst into 4 or 5 parts has to make at once suspecting the use of a toxic substance. Toxicological analysis has to look for first and foremost aconitine, cyanide, suxamethonium, Ditran, BZ, or one of the toxic phytalbumins. The use of such complex weapons has to make suspect a powerful organization: army, secret service, terrorism. The existence of the Russian UDAR spray

  4. [Toxicity of puffer fish fins].

    PubMed

    Honda, Shunichi; Ichimaru, Shunichi; Arakawa, Osamu; Takatani, Tomohiro; Noguchi, Tamao; Ishizaki, Shoichiro; Nagashima, Yuji

    2007-10-01

    Puffer fish is prized as a Japanese traditional food and its fin is also used in the cuisine. However, whether the fin is edible or not is determined for convenience from the toxicity of skin, since little information is available about the toxicity of puffer fish fins. In the present study, we examined the toxicity of fins and skin of three toxic species, Takifugu vermicularis, T. snyderi, and T. porphyreus. The toxicity of T. vermicularis fins (< 5-52.4 MU/g) was significantly lower than that of skin (<5-1200 MU/g). HPLC analysis showed that tetrodotoxin was a major toxic principle irrespective of the toxicity value in each tissue of T. vermicularis. In the case of T. snyderi and T. porphyreus, the toxicity of fins was at almost the same level as that of the skin. The toxicity (< 10-12 MU/g) of caudal fins of T. porphyreus was apparently increased to 16.5-22.0 MU/g by drying. However, the toxin amounts in the dried fins were slightly decreased as compared with those of the non-dried fins. These results demonstrate that puffer fish with toxic skin also have toxic fins.

  5. Toxic metals and autophagy.

    PubMed

    Chatterjee, Sarmishtha; Sarkar, Shuvasree; Bhattacharya, Shelley

    2014-11-17

    The earth's resources are finite, and it can no longer be considered a source of inexhaustible bounty for the human population. However, this realization has not been able to contain the human desire for rapid industrialization. The collateral to overusing environmental resources is the high-level contamination of undesirable toxic metals, leading to bioaccumulation and cellular damage. Cytopathological features of biological systems represent a key variable in several diseases. A review of the literature revealed that autophagy (PCDII), a high-capacity process, may consist of selective elimination of vital organelles and/or proteins that intiate mechanisms of cytoprotection and homeostasis in different biological systems under normal physiological and stress conditions. However, the biological system does survive under various environmental stressors. Currently, there is no consensus that specifies a particular response as being a dependable biomarker of toxicology. Autophagy has been recorded as the initial response of a cell to a toxic metal in a concentration- and time-dependent manner. Various signaling pathways are triggered through cellular proteins and/or protein kinases that can lead to autophagy, apoptosis (or necroptosis), and necrosis. Although the role of autophagy in tumorigenesis is associated with promoting tumor cell survival and/or acting as a tumor suppressive mechanism, PCDII in metal-induced toxicity has not been extensively studied. The aim of this review is to analyze the comparative cytotoxicity of metals/metalloids and nanoparticles (As, Cd, Cr, Hg, Fe, and metal-NP) in cells enduring autophagy. It is noted that metals/metalloids and nanoparticles prefer ATG8/LC3 as a potent inducer of autophagy in several cell lines or animal cells. MAP kinases, death protein kinases, PI3K, AKT, mTOR, and AMP kinase have been found to be the major components of autophagy induction or inhibition in the context of cellular responses to metals/metalloids and

  6. [Toxic epidermal necrolysis].

    PubMed

    Carrillo-Esper, Raúl; Elizondo-Argueta, Sandra; Sánchez-Zúñiga, Martín de Jesús; Visoso-Palacios, Porfirio; Cedillo-Torres, Héctor; Carrillo-Córdova, Jorge Raúl

    2006-01-01

    Toxic epidermal necrolysis is the prototype of a proapoptotic disease characterized by system CD95 dysrregulation. Drugs constitute the main antigenic triggers. Hystopatologically it is characterized by epidermis detachment and necrosis with apoptotic keratinocytes. Clinical presentation includes erithematous-ampullous lesions in the skin and mucous membranes. It is associated with serious complications such as severe sepsis and septic shock. The management in the intensive care unit includes support treatment and specific treatment with immunoglobulins that alter disease course. Recombinant activated Factor VII is effective to control the associated microvascular haemorraghe.

  7. Nanoparticle toxicity and cancer

    NASA Astrophysics Data System (ADS)

    Prevenslik, T.

    2011-07-01

    Nanoparticles (NPs) have provided significant advancements in cancer treatment. But as in any technology, there is a darkside. Experiments have shown NPs in body fluids pose a health risk by causing DNA damage that in of itself may lead to cancer. To avoid the dilemma that NPs are toxic to both cancer cells and DNA alike, the mechanism of NP toxicity must be understood so that the safe use of NPs may go forward. Reactive oxidative species (ROS) of peroxide and hydroxyl radicals damage the DNA by chemical reaction, but require NPs provide energies of about 5 eV not possible by surface effects. Only electromagnetic (EM) radiations beyond ultraviolet (UV) levels may explain the toxicity of NPs. Indeed, experiments show DNA damage from <100 nm NPs mimic the same reaction pathways of conventional sources of ionizing radiation, Hence, it is reasonable to hypothesize that NPs produce their own source of UV radiation, albeit at low intensity. Ionizing radiation from NPs at UV levels is consistent with the theory of QED induced EM radiation. QED stands for quantum electrodynamics. By this theory, fine < 100 nm NPs absorb low frequency thermal energy in the far infrared (FIR) from collisions with the water molecules in body fluids. Since quantum mechanics (QM) precludes NPs from having specific heat, absorbed EM collision energy cannot be conserved by an increase in temperature. But total internal reflection (TIR) momentarily confines the absorbed EM energy within the NP. Conservation proceeds by the creation of QED photons by frequency up-conversion of the absorbed EM energy to the TIR confinement frequency, typically beyond the UV. Subsequently, the QED photons upon scattering from atoms within the NP avoid TIR confinement and leak UV to the surroundings, thereby explaining the remarkable toxicity of NPs. But QED radiation need not be limited to natural or man-made NPs. Extensions suggest UV radiation is produced from biological NPs within the body, e.g., enzyme induced

  8. Toxicity of kava kava.

    PubMed

    Fu, Peter P; Xia, Qingsu; Guo, Lei; Yu, Hongtao; Chan, Po-Chuen

    2008-01-01

    Kava is a traditional beverage of various Pacific Basin countries. Kava has been introduced into the mainstream U.S. market principally as an anti-anxiety preparation. The effects of the long-term consumption of kava have not been documented adequately. Preliminary studies suggest possible serious organ system effects. The potential carcinogenicity of kava and its principal constituents are unknown. As such, kava extract was nominated for the chronic tumorigenicity bioassay conducted by the National Toxicology Program (NTP). At present toxicological evaluation of kava extract is being conducted by the NTP. The present review focuses on the recent findings on kava toxicity and the mechanisms by which kava induces hepatotoxicity.

  9. Toxicity of fire smoke.

    PubMed

    Alarie, Yves

    2002-07-01

    This review is an attempt to present and describe the major immediate toxic threats in fire situations. These are carbon monoxide, a multitude of irritating organic chemicals in the smoke, oxygen depletion, and heat. During the past 50 years, synthetic polymers have been introduced in buildings in very large quantities. Many contain nitrogen or halogens, resulting in the release of hydrogen cyanide and inorganic acids in fire smoke as additional toxic threats. An analysis of toxicological findings in fire and nonfire deaths and the results of animal exposures to smoke from a variety of burning materials indicate that carbon monoxide is still likely to be the major toxicant in modern fires. However, the additional toxic threats mentioned above can sometimes be the principal cause of death or their addition can result in much lower than expected carboxyhemoglobin levels in fire victims. This analysis also revealed that hydrogen cyanide is likely to be present in appreciable amounts in the blood of fire victims in modern fires. The mechanisms of action of acute carbon monoxide and hydrogen cyanide poisonings are reviewed, with cases presented to illustrate how each chemical can be a major contributor or how they may interact. Also, lethal levels of carboxyhemoglobin and cyanide in blood are suggested from an analysis of the results of a large number of fire victims from different fire scenarios. The contribution of oxygen depletion and heat stress are more difficult to establish. From the analysis of several fire scenarios, they may play a major role in the room of origin at the beginning of a fire. The results in animal studies indicate that when major oxygen depletion (<10%) is added to lethal or sublethal levels of carbon monoxide or hydrogen cyanide its major role is to substantially reduce the time to death. In these experiments the carboxyhemoglobin level at death was slightly reduced from the expected level with exposure to carbon monoxide alone. However, blood

  10. Toxic shock syndrome.

    PubMed Central

    Todd, J K

    1988-01-01

    In the past 10 years, we have learned much about TSS and S. aureus and its toxins. A number of important biologic principles have been reemphasized in this first decade of TSS research: S. aureus is a very complex organism, one not likely to yield quick answers; in vitro observations must always be confirmed in the patient; animal models may not always be reliable replicates of human disease; and epidemiologic associations cannot be equated with causation. Toxic shock is an intricate phenomenon with many interesting scientific facets. Unraveling its mysteries will undoubtedly teach us more about the complex interaction of patients and microorganisms. PMID:3069202

  11. Neurological oxygen toxicity.

    PubMed

    Farmery, Scott; Sykes, Oliver

    2012-10-01

    SCUBA diving has several risks associated with it from breathing air under pressure--nitrogen narcosis, barotrauma and decompression sickness (the bends). Trimix SCUBA diving involves regulating mixtures of nitrogen, oxygen and helium in an attempt to overcome the risks of narcosis and decompression sickness during deep dives, but introduces other potential hazards such as hypoxia and oxygen toxicity convulsions. This study reports on a seizure during the ascent phase, its potential causes and management and discusses the hazards posed to the diver and his rescuer by an emergency ascent to the surface.

  12. Toxicant-associated Steatohepatitis

    PubMed Central

    Wahlang, Banrida; Beier, Juliane I.; Clair, Heather B.; Bellis-Jones, Heather J.; Falkner, K. Cameron; McClain, Craig J.; Cave, Matt C.

    2016-01-01

    Hepatotoxicity is the most common organ injury due to occupational and environmental exposures to industrial chemicals. A wide range of liver pathologies ranging from necrosis to cancer have been observed following chemical exposures both in humans and in animal models. Toxicant-associated fatty liver disease (TAFLD) is a recently named form of liver injury pathologically similar to alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Toxicant-associated steatohepatitis (TASH) is a more severe form of TAFLD characterized by hepatic steatosis, inflammatory infiltrate, and in some cases, fibrosis. While subjects with TASH have exposures to industrial chemicals, such as vinyl chloride, they do not have traditional risk factors for fatty liver such as significant alcohol consumption or obesity. Conventional biomarkers of hepatotoxicity including serum alanine aminotransferase activity may be normal in TASH, making screening problematic. This article examines selected chemical exposures associated with TAFLD in human subjects or animal models and concisely reviews the closely related NAFLD and ALD. PMID:23262638

  13. Controlling toxic chemicals

    SciTech Connect

    Postel, S.

    1988-01-01

    The use of pesticides in agriculture and the disposal of industrial chemical wastes constitute two major pathways by which people are inadvertently exposed to toxics. These practices release hundreds of millions of tons of potentially hazardous substances into the environment each year. In many ways the situation with industrial chemical waste parallels the predicament with pesticides: Not only are current practices contaminating the environment and creating health risks, but they are unsustainable over the long term. Strategies that reduce pesticide use in agriculture and minimize waste generation in industry offer cost-effective approaches to decreasing risks from toxics. Such strategies differ fundamentally from current practice and require new ways of thinking. The quick fixes of pesticide spraying and end-of-pipe pollution control are replaced with new production systems aimed at reconciling economic profits with environmental protection. Current efforts in integrated pest management and industrial waste reduction, although clearly promising, only hint at their long-term potential for detoxifying the environment.

  14. Individual susceptibility to toxicity.

    PubMed

    Grandjean, P

    1992-12-01

    Individual variation in susceptibility to chemical toxicity may be due to differences in toxicokinetic patterns or effect modification. Well-documented interspecies genetic differences in susceptibility to chemicals had lead to studies of such variation also within species. Epidemiological evidence now suggests that common variations, particularly in the P-450 enzymes, may play a major role in determining individual susceptibility to chemically-induced disease. Physiologic factors are involved in the particular susceptibility of the fetus, the newborn, and the old. Constitutional susceptibility is also affected by acquired conditions, including chronic disease, such as diabetes mellitus. Perhaps the most complex area relates to the increase in vulnerability caused by previous or contemporary exposure to other factors, thus eliciting, e.g., synergistic effects. Although amply demonstrated by experimental studies, epidemiological or clinical confirmation is generally lacking. One hypothesis suggests that a chemical exposure may affect the reserve capacity of the body, though not resulting in any immediate adverse effect. Subsequently, the body becomes unable to compensate for an additional stress, and toxicity then develops. Epidemiological approaches are available and need to be expanded. Research in this area has potential ethical implications which should be dealt with in an open, informed forum.

  15. [Toxicity of monkshood. Review.].

    PubMed

    Ingolfsdottir, K; Olafsson, K

    1997-03-01

    Monkshood, Aconitum napellus L. (Ranunculaceae), is considered one of the most poisonous plants growing in Europe. Monkshood and other Aconitum species are still used in Oriental and homeopathic medicine as analgesics, febrifuges and hypotensives. The neurotoxin aconitine is the principal alkaloid in most subspecies of monkshood. A review is presented, which includes historical aspects of monkshood as a poisonous and medicinal plant, the mode of action of aconitine, symptoms of toxicity, treatment and reports of recent poisoning incidents. In addition, results of quantitative HPLC examination of hypogeous and epigeous organs from a population of A. napellus ssp. vulgare cultivated in Iceland are discussed. The fact that children in Iceland have commonly been known to eat the sweet tasting nectaries in monkshood prompted an investigation of the alkaloidal content of these organs specifically. The low aconitine content found in the nectaries as well as in whole flowers accords with the absence of reported toxicity arising from the handling of flowers and consumption of nectaries from A. napellus in this country.

  16. [Toxic complex from parrotfish].

    PubMed

    Chungue, E; Bagnis, R; Fusetani, N; Yasumoto, T

    1977-01-01

    Clinical and epidemiological observations suggested that a complex toxic molecule is involved in the parrotfish flesh (Scarus gibbus) poisoning from Gambier Islands. The fat soluble extract obtained from the muscles upon ciguatoxin preparation showed two toxic substances after fractionation by DEAE cellulose column chromatography. The major toxin is different from ciguatoxin judging by its chromatographic behaviour. The other is closely similar to (or identical with) ciguatoxin from the moray eel Gymnothorax javanicus. They were named SG1 for the new toxin and SG2 for the ciguatoxin like compound. Successive filtrations on Sephadex LH-20 of SG1 and SG2 gave respectively a lethality to mice of 0.03 microgram/g and 0.06 microgram/g. SG1, specifically occurs in the muscles of the parrotfish family (scaritoxin) while it is absent from other ciguateric fishes. According to that specificity and the lack of SG1 in S. gibbus liver and gut contents, the origin of scaritoxin is briefly discussed.

  17. Toxic compounds in honey.

    PubMed

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food.

  18. Molecular toxicity of nanomaterials.

    PubMed

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  19. SEDIMENT TOXICITY IDENTIFICATION EVALUATION (TIE) ...

    EPA Pesticide Factsheets

    Sediment contamination in the United States has been amply documented and, in order to comply with the 1972 Clean Water Act, the U.S. Environmental Protection Agency must address the issue of toxic sediments. Contaminated sediments from a number of freshwater and marine sites have demonstrated acute and/or chronic toxicity to a variety of test species, as well as adverse ecological effects such as population declines and changes in community structure. However, simply knowing that a sediment is toxic has limited use. This document provides guidance on the performance of sediment Toxicity Identification and Evaluation (TIE). TIE methods allow for the identification of toxic chemicals or chemical classes causing observed toxicity. The identification of pollutants responsible for toxicity of contaminated sediments has broad application in a number of EPA programs as the methods can be used within the total maximum daily load (TMDL) framework, to link sediment toxicity to specific dischargers, to design cost-effective remediation programs, and to identify environmentally protective options for dredged material disposal. In addition, the identification of specific problem contaminants in sediments could prove to be very useful to EPA programs involved in the development of water or sediment quality guidelines, and the registration of new products such as pesticides. Finally, knowledge of the causes of toxicity that influence ecological changes such as community struc

  20. Predicting mud toxicity

    SciTech Connect

    Bleler, R. )

    1991-10-01

    Acute toxicity of drilling muds is measured in the U.S. by the mysid shrimp test. Drilling muds that fail the test cannot be discharged into the Gulf of Mexico, and such muds and their cuttings must be brought onshore for disposal. Discharge of water-based muds that pass the test is permitted in most instances. Because of the economic implications associated with hauling cuttings and fluids, a model that predicts test results on the basis of mud composition is clearly desirable. This paper focuses on the modeling of mysid shrimp test data. European laboratories use different test species and procedures. It seems plausible to expect, however, that the line of reasoning used here could apply to the modeling of aquatic data on other test species once a sufficient quantity of such data becomes available.

  1. Toxic epidermal necrolysis

    PubMed Central

    Hoetzenecker, Wolfram; Mehra, Tarun; Saulite, Ieva; Glatz, Martin; Schmid-Grendelmeier, Peter; Guenova, Emmanuella; Cozzio, Antonio; French, Lars E.

    2016-01-01

    Toxic epidermal necrolysis (TEN) is a rare, life-threatening drug-induced skin disease with a mortality rate of approximately 30%. The clinical hallmark of TEN is a marked skin detachment caused by extensive keratinocyte cell death associated with mucosal involvement. The exact pathogenic mechanism of TEN is still uncertain. Recent advances in this field have led to the identification of several factors that might contribute to the induction of excessive apoptosis of keratinocytes. In addition, specific human leukocyte antigen types seem to be associated with certain drugs and the development of TEN. As well-controlled studies are lacking, patients are treated with various immunomodulators (e.g. intravenous immunoglobulin) in addition to the best supportive care. PMID:27239294

  2. Coaching the toxic leader.

    PubMed

    de Vries, Manfred F R Kets

    2014-04-01

    In his work as an executive coach, psychotherapist Kets de Vries sometimes comes across bosses with mental demons. The four kinds he encounters most frequently are pathological narcissists, who are selfish and entitled, have grandiose fantasies, and pursue power at all costs; manic-depressives, who can leave a trail of emotional blazes behind them; passive-aggressives, who shy away from confrontation but are obstructive and under-handed; and the emotionally disconnected--literal-minded people who cannot describe or even recognize their feelings. Left unchecked, these personalities can warp the interactions, plans, and systems of entire organizations. But with appropriate coaching, toxic bosses can learn to manage their conditions and become effective mentors and leaders. This article describes how to recognize each pathology and, step by step, guide people who suffer from it toward healthier and more-productive interactions.

  3. Deoxynivalenol and its toxicity

    PubMed Central

    Sobrova, Pavlina; Adam, Vojtech; Vasatkova, Anna; Beklova, Miroslava; Zeman, Ladislav; Kizek, Rene

    2010-01-01

    Deoxynivalenol (DON) is one of several mycotoxins produced by certain Fusarium species that frequently infect corn, wheat, oats, barley, rice, and other grains in the field or during storage. The exposure risk to human is directly through foods of plant origin (cereal grains) or indirectly through foods of animal origin (kidney, liver, milk, eggs). It has been detected in buckwheat, popcorn, sorgum, triticale, and other food products including flour, bread, breakfast cereals, noodles, infant foods, pancakes, malt and beer. DON affects animal and human health causing acute temporary nausea, vomiting, diarrhea, abdominal pain, headache, dizziness, and fever. This review briefly summarizes toxicities of this mycotoxin as well as effects on reproduction and their antagonistic and synergic actions. PMID:21217881

  4. Lead toxicity: current concerns.

    PubMed Central

    Goyer, R A

    1993-01-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. Images FIGURE 2. PMID:8354166

  5. Lead toxicity: Current concerns

    SciTech Connect

    Goyer, R.A. )

    1993-04-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. 97 refs.

  6. TOXICITY CHARACTERIZATION PROCEDURES FOR ORGANIC TOXICANTS IN BULK SEDIMENTS

    EPA Science Inventory

    We have been pursuing development of toxicant characterization, isolation, and identification procedures for organic toxicants that can be applied in the context of 10-d solid-phase sediment tests measuring survival and growth of freshwater in the context of 10-d solid-phase sedi...

  7. Children's Ability to Recognise Toxic and Non-Toxic Fruits

    ERIC Educational Resources Information Center

    Fancovicova, Jana; Prokop, Pavol

    2011-01-01

    Children's ability to identify common plants is a necessary prerequisite for learning botany. However, recent work has shown that children lack positive attitudes toward plants and are unable to identify them. We examined children's (aged 10-17) ability to discriminate between common toxic and non-toxic plants and their mature fruits presented in…

  8. Development of toxicant identification procedures for whole sediment toxicity tests

    SciTech Connect

    Mount, D.R.; Henke, C.E.; Ingersoll, C.G.; Besser, J.M.; Ankley, G.T.; Norberg-King, T.J.; West, C.W.

    1995-12-31

    To effectively assess and manage contaminated sediments, identifying the specific contaminants responsible for sediment toxicity is highly desirable. Though effective toxicity identification evaluation (TIE) methods are well established for water column toxicity, new TIE methodologies are needed that address the special characteristics of whole sediment toxicity tests. Much of the effort to date has focused on the assessment of ammonia toxicity. Whereas pH manipulation is a key tool used to characterize ammonia toxicity in water column TIE, control of pH in interstitial water is much more challenging. Direct addition of hard acid has shown undesirable side effects (e.g., liberation and oxidation of iron), while CO{sub 2}-enrichment is limited in penetration of fine-grained sediments. Biological buffers (MES and POPSO) incorporated into the sediment are effective at altering interstitial pH without causing direct toxicity to Chironomus tentans, Lumbriculus variegatus, and to a lesser extent Hyalella azteca, but the range of pH control achieved has been small ({+-} 0.5 units). Introduction of aquatic plants reduces ammonia concentrations in the water column, but may not provide sufficient control of interstitial water. To date, the most promising results have been achieved using zeolite; adding zeolite to sediment produces moderate reductions in interstitial ammonia concentrations and is non-toxic to the organisms referenced above. Attempts to induce microbial removal of ammonia have been unsuccessful thus far. This presentation will review these and other sediment TIE methods currently under development in laboratories.

  9. How toxic is coal ash? A laboratory toxicity case study

    SciTech Connect

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authority (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.

  10. How toxic is coal ash? A laboratory toxicity case study

    DOE PAGES

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authoritymore » (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.« less

  11. Toxic Leadership in Educational Organizations

    ERIC Educational Resources Information Center

    Green, James E.

    2014-01-01

    While research on the traits and skills of effective leaders is plentiful, only recently has the phenomenon of toxic leadership begun to be investigated. This research report focuses on toxic leadership in educational organizations--its prevalence, as well as the characteristics and early indicators. Using mixed methods, the study found four…

  12. POREWATER TOXICITY TESTING: AN OVERVIEW

    EPA Science Inventory

    Sediments act as sinks for contaminants, where they may build up to toxic levels. Sediments containing toxic levels of contaminants pose a risk to aquatic life, human health, and wildlife. There is an overwhelming amount of evidence that demonstrates chemicals in sediments are re...

  13. Toxic Substances in the Environment.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Discusses the nature of toxic substances, examining pesticides and herbicides, heavy metals, industrial chemicals, and household substances. Includes a list of major toxic substances (indicating what they are, where they are found, and health concerns) and a student activity on how pesticides enter the food chain. (JN)

  14. EXPANDING CHEMICAL-TOXICITY INFORMATION ...

    EPA Pesticide Factsheets

    We find that the connection between structure and biological response is not symmetric, with biological response better at predicting chemical structure than vice versa. *ToxCast Toxicity Reference Database. We find that the connection between structure and biological response is not symmetric, with biological response better at predicting chemical structure than vice versa. *ToxCast Toxicity Reference Database.

  15. Toxic Substances List. 1972 Edition.

    ERIC Educational Resources Information Center

    Christensen, Herbert E., Ed.; And Others

    The second edition of the Toxic Substances List, containing some 13,000 entries, is prepared annually by the National Institute for Occupational Safety and Health (NIOSH) in compliance with the Occupational Safety and Health Act of 1970. The purpose of the List is to identify all known toxic substances but not to quantitate the hazard. The List…

  16. DISTRIBUTED STRUCTURE-SEARCHABLE TOXICITY ...

    EPA Pesticide Factsheets

    The ability to assess the potential genotoxicity, carcinogenicity, or other toxicity of pharmaceutical or industrial chemicals based on chemical structure information is a highly coveted and shared goal of varied academic, commercial, and government regulatory groups. These diverse interests often employ different approaches and have different criteria and use for toxicity assessments, but they share a need for unrestricted access to existing public toxicity data linked with chemical structure information. Currently, there exists no central repository of toxicity information, commercial or public, that adequately meets the data requirements for flexible analogue searching, SAR model development, or building of chemical relational databases (CRD). The Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network is being proposed as a community-supported, web-based effort to address these shared needs of the SAR and toxicology communities. The DSSTox project has the following major elements: 1) to adopt and encourage the use of a common standard file format (SDF) for public toxicity databases that includes chemical structure, text and property information, and that can easily be imported into available CRD applications; 2) to implement a distributed source approach, managed by a DSSTox Central Website, that will enable decentralized, free public access to structure-toxicity data files, and that will effectively link knowledgeable toxicity data s

  17. VARIATIONS IN REPRODUCTIVE TOXICANT IDENTIFICATION

    SciTech Connect

    Simmons, F

    2008-05-13

    Reproductive toxicants are a very important class of compounds. They present unique hazards to those of child bearing ages, perform their 'dirty work' using a wide variety of mechanisms on a number of different organs, and are regulatorily important. Because of all of this, properly identifying reproductive toxicants is important, but fraught with difficulty. In this paper we will describe types or reproductive toxicants, their importance, and both mistakes and good practices that people who are not experts in reproductive toxicology may use in their attempts to identify them. Additionally, this paper will focus on chemical reproductive toxicants and will not address biological agents that could affect reproductive toxicity although many principles outlined here could be applied to that endeavor.

  18. Crassostrea virginica grazing on toxic and non-toxic diatoms.

    PubMed

    Thessen, A E; Soniat, T M; Dortch, Q; Doucette, G J

    2010-01-01

    Despite high abundances of toxic Pseudo-nitzschia spp. over Louisiana oyster beds (Crassostrea virginica; eastern oyster) there have been no documented cases of amnesic shellfish poisoning (ASP) in the state. Two possible explanations are that oysters do not readily feed on long pointed chains of Pseudo-nitzschia cells or they discriminate against toxic cells while grazing. To test these hypotheses, short-term grazing experiments were conducted with several diatoms, including the domoic acid (DA)-producing Pseudo-nitzschia multiseries (1.31+/-0.057 pg DA cell(-1)) and the non-toxic Pseudo-nitzschia delicatissima, Thalassiosira weissflogii, and Ditylum brightwellii. Grazing rates on the small centric species T. weissflogii were significantly higher than on the larger and pointier D. brightwellii and either Pseudo-nitzschia species. Grazing on toxic P. multiseries and non-toxic P. delicatissima was not significantly different. Pseudofeces production was higher and feces production was occasionally lower in oysters fed Pseudo-nitzschia spp. than in oysters fed the other two diatoms. Our data demonstrate lower filtration rates of C. virginica on Pseudo-nitzschia spp. relative to the other diatoms tested and comparable filtration on toxic and non-toxic Pseudo-nitzschia spp. These findings suggest that eastern oysters do not discriminate amongst food types due to DA content.

  19. SuperToxic: a comprehensive database of toxic compounds

    PubMed Central

    Schmidt, Ulrike; Struck, Swantje; Gruening, Bjoern; Hossbach, Julia; Jaeger, Ines S.; Parol, Roza; Lindequist, Ulrike; Teuscher, Eberhard; Preissner, Robert

    2009-01-01

    Within our everyday life, we are confronted with a variety of toxic substances of natural or artificial origin. Toxins are already used, e.g. in medicine, but there is still an increasing number of toxic compounds, representing a tremendous potential to extract new substances. Since predictive toxicology gains in importance, the careful and extensive investigation of known toxins is the basis to assess the properties of unknown substances. In order to achieve this aim, we have collected toxic compounds from literature and web sources in the database SuperToxic. The current version of this database compiles about 60 000 compounds and their structures. These molecules are classified according to their toxicity, based on more than 2 million measurements. The SuperToxic database provides a variety of search options like name, CASRN, molecular weight and measured values of toxicity. With the aid of implemented similarity searches, information about possible biological interactions can be gained. Furthermore, connections to the Protein Data Bank, UniProt and the KEGG database are available, to allow the identification of targets and those pathways, the searched compounds are involved in. This database is available online at: http://bioinformatics.charite.de/supertoxic. PMID:19004875

  20. Molecular toxicity mechanism of nanosilver.

    PubMed

    McShan, Danielle; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Silver is an ancient antibiotic that has found many new uses due to its unique properties on the nanoscale. Due to its presence in many consumer products, the toxicity of nanosilver has become a hot topic. This review summarizes recent advances, particularly the molecular mechanism of nanosilver toxicity. The surface of nanosilver can easily be oxidized by O(2) and other molecules in the environmental and biological systems leading to the release of Ag(+), a known toxic ion. Therefore, nanosilver toxicity is closely related to the release of Ag(+). In fact, it is difficult to determine what portion of the toxicity is from the nano-form and what is from the ionic form. The surface oxidation rate is closely related to the nanosilver surface coating, coexisting molecules, especially thiol-containing compounds, lighting conditions, and the interaction of nanosilver with nucleic acids, lipid molecules, and proteins in a biological system. Nanosilver has been shown to penetrate the cell and become internalized. Thus, nanosilver often acts as a source of Ag(+) inside the cell. One of the main mechanisms of toxicity is that it causes oxidative stress through the generation of reactive oxygen species and causes damage to cellular components including DNA damage, activation of antioxidant enzymes, depletion of antioxidant molecules (e.g., glutathione), binding and disabling of proteins, and damage to the cell membrane. Several major questions remain to be answered: (1) the toxic contribution from the ionic form versus the nano-form; (2) key enzymes and signaling pathways responsible for the toxicity; and (3) effect of coexisting molecules on the toxicity and its relationship to surface coating.

  1. Other Priority Air Toxics in New England | Air Toxics | New ...

    EPA Pesticide Factsheets

    2017-04-10

    The air toxics of greatest concern in New England were selected due to risk modeling for only the inhalation route of exposure and these pollutants exceeded the health benchmarks in one or more of the New England states.

  2. Toxic Picoplanktonic Cyanobacteria—Review

    PubMed Central

    Jakubowska, Natalia; Szeląg-Wasielewska, Elżbieta

    2015-01-01

    Cyanobacteria of a picoplanktonic cell size (0.2 to 2.0 µm) are common organisms of both freshwater and marine ecosystems. However, due to their small size and relatively short study history, picoplanktonic cyanobacteria, in contrast to the microplanktonic cyanobacteria, still remains a poorly studied fraction of plankton. So far, only little information on picocyanobacteria toxicity has been reported, while the number of reports concerning their presence in ecosystems is increasing. Thus, the issue of picocyanobacteria toxicity needs more researchers’ attention and interest. In this report, we present information on the current knowledge concerning the picocyanobacteria toxicity, as well as their harmfulness and problems they can cause. PMID:25793428

  3. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  4. Multidrug toxicity involving sumatriptan.

    PubMed

    Knittel, Jessica L; Vorce, Shawn P; Levine, Barry; Hughes, Rhome L; Bosy, Thomas Z

    2015-01-01

    A multidrug fatality involving sumatriptan is reported. Sumatriptan is a tryptamine derivative that acts at 5-HT(1B/1D) receptors and is used for the treatment of migraines. The decedent was a 21-year-old white female found dead in bed by her spouse. No signs of physical trauma were observed and a large number of prescription medications were discovered at the scene. Toxicological analysis of the central blood revealed sumatriptan at a concentration of 1.03 mg/L. Following therapeutic dosing guidelines, sumatriptan concentrations do not exceed 0.095 mg/L. Sumatriptan was isolated by solid-phase extraction and analyzed using liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode. A tissue distribution study was completed with the following concentrations measured: 0.61 mg/L in femoral blood, 0.56 mg/L in iliac blood, 5.01 mg/L in urine, 0.51 mg/kg in liver, 3.66 mg/kg in kidney, 0.09 mg/kg in heart, 0.32 mg/kg in spleen, 0.01 mg/kg in brain, 15.99 mg/kg in lung and 78.54 mg/45 mL in the stomach contents. Carisoprodol, meprobamate, fluoxetine, doxylamine, orphenadrine, dextromethorphan and hydroxyzine were also present in the blood at the following concentrations: 3.35, 2.36, 0.63, 0.19, 0.06, 0.55 and 0.16 mg/L. The medical examiner ruled the cause of death as acute mixed drug toxicity and the manner of death as accident.

  5. Toxic Substances; Biphenyl; Test Rule

    EPA Pesticide Factsheets

    This rule promulgates EPA’s decision to require manufacturers and processors to test biphenyl (CAS No: 92—52—4) for environmental effects and chemical fate under section 4(a) of the Toxic Substances Control Act (TSCA).

  6. Sediment toxicity in Savannah Harbor

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1995-01-01

    Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Potential release of contaminants stored in harbor sediments through dredging and shipping operations requires that contaminated areas be identified for proper management of the system and protection of wildlife resources. During 1991, Hyalella azteca were exposed in 10-d static-renewal toxicity tests to pore-water and solid-phase sediment samples collected from 26 sites within Savannah Harbor. Pore-water toxicity was more pronounced than that for solidphase sediment. Toxicity and reduced leaf consumption demonstrated impaired sediment quality at specific sites within Savannah Harbor and Back River. Factors responsible for the decreased sediment quality were ammonia, alkalinity, and metal concentrations (cadmium, chromium, lead, molybdenum, and nickel). Elevated concentrations of metals and toxicities in Back River sediments indicated impacts from adjacent dredge-spoil areas.

  7. Acute toxicity of ingested fluoride.

    PubMed

    Whitford, Gary Milton

    2011-01-01

    This chapter discusses the characteristics and treatment of acute fluoride toxicity as well as the most common sources of overexposure, the doses that cause acute toxicity, and factors that can influence the clinical outcome. Cases of serious systemic toxicity and fatalities due to acute exposures are now rare, but overexposures causing toxic signs and symptoms are not. The clinical course of systemic toxicity from ingested fluoride begins with gastric signs and symptoms, and can develop with alarming rapidity. Treatment involves minimizing absorption by administering a solution containing calcium, monitoring and managing plasma calcium and potassium concentrations, acid-base status, and supporting vital functions. Approximately 30,000 calls to US poison control centers concerning acute exposures in children are made each year, most of which involve temporary gastrointestinal effects, but others require medical treatment. The most common sources of acute overexposures today are dental products - particularly dentifrices because of their relatively high fluoride concentrations, pleasant flavors, and their presence in non-secure locations in most homes. For example, ingestion of only 1.8 ounces of a standard fluoridated dentifrice (900-1,100 mg/kg) by a 10-kg child delivers enough fluoride to reach the 'probably toxic dose' (5 mg/kg body weight). Factors that may influence the clinical course of an overexposure include the chemical compound (e.g. NaF, MFP, etc.), the age and acid-base status of the individual, and the elapsed time between exposure and the initiation of treatment. While fluoride has well-established beneficial dental effects and cases of serious toxicity are now rare, the potential for toxicity requires that fluoride-containing materials be handled and stored with the respect they deserve.

  8. Nordic criteria for reproductive toxicity.

    PubMed

    Taskinen, H K

    1995-08-01

    Scientific criteria for assessment of the reproductive toxicity of chemicals have been proposed by a Nordic group of experts and regulatory representatives. The criteria take into account the results of clinical studies as well as of experimental research. The criteria should be useful in, for example, product control and labeling and planning of a safe work environment. The proposed Nordic criteria and examples of the assessment of the reproductive toxicity of some chemicals are presented.

  9. Joint Actions of Developmental Toxicants.

    DTIC Science & Technology

    1991-06-01

    chemicals on mortality and inhibition of reproduction of Daphnia magna . Aquat Toxicol 5:315-322, 1984. 29. Broderius S, Kahl M: Acute toxicity of...acute toxicity to Daphnia magna of industrial organic chemicals at low concentrations. Aquat Toxicol 12:33-38, 1988. 31. Sprague JB: Measurement of...quantal responses to mixtures of drugs . Biometrics 23:27-44, 1967. 26. Hewlett PS, Plackett RL: A unified theory for quantal responses to mixtures of drugs

  10. Low-Toxicity PMR Polyimide

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Ely, Robert M.; Stanfield, Clarence E.; Dickerson, George E.; Snoha, John J.; Srinivasan, Krishna; Hou, Tan

    1994-01-01

    New low-toxicity PMR system developed and designated LaRC-RP46. Exhibits better processability, toughness, and thermo-oxidative stability than does PMR-15. Polyimide inexpensive and readily processed into high-quality graphite-fiber-reinforced composite. Used as high-performance, high-temperature-resistant adhesive, molding, composite, film, and coating material where low toxicity desired characteristic. Significantly extends applications of PMR-type polyimides.

  11. Ocular toxicity of targeted therapies.

    PubMed

    Renouf, Daniel J; Velazquez-Martin, Juan P; Simpson, Rand; Siu, Lillian L; Bedard, Philippe L

    2012-09-10

    Molecularly targeted agents are commonly used in oncology practice, and many new targeted agents are currently being tested in clinical trials. Although these agents are thought to be more specific and less toxic then traditional cytotoxic chemotherapy, they are associated with a variety of toxicities, including ocular toxicity. Many of the molecules targeted by anticancer agents are also expressed in ocular tissues. We reviewed the literature for described ocular toxicities associated with both approved and investigational molecularly targeted agents. Ocular toxicity has been described with numerous approved targeted agents and also seems to be associated with several classes of agents currently being tested in early-phase clinical trials. We discuss the proposed pathogenesis, monitoring guidelines, and management recommendations. It is important for oncologists to be aware of the potential for ocular toxicity, with prompt recognition of symptoms that require referral to an ophthalmologist. Ongoing collaboration between oncologists and ocular disease specialists is critical as the use of molecularly targeted agents continues to expand and novel targeted drug combinations are developed.

  12. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Toxicity characteristic. 261.24... Toxicity characteristic. (a) A solid waste (except manufactured gas plant waste) exhibits the characteristic of toxicity if, using the Toxicity Characteristic Leaching Procedure, test Method 1311 in...

  13. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Toxicity characteristic. 261.24... Toxicity characteristic. (a) A solid waste (except manufactured gas plant waste) exhibits the characteristic of toxicity if, using the Toxicity Characteristic Leaching Procedure, test Method 1311 in...

  14. TOXICITY TESTS FOR SEDIMENT QUALITY ASSESSMENTS

    EPA Science Inventory

    Toxic sediments have contributed to a wide-variety of environmental problems around the world. The observed effects include direct toxic effects to aquatic life, bio-magnification of toxicants in the food chain, and economic impacts. This chapter discusses the use of toxicity...

  15. Molecular mechanisms of homocysteine toxicity.

    PubMed

    Boldyrev, A A

    2009-06-01

    Hyperhomocysteinemia is a risk factor for a number of cardiovascular and neurodegenerative processes as well as a complicating factor in normal pregnancy. Toxic effects of homocysteine and the product of its spontaneous oxidation, homocysteic acid, are based on their ability to activate NMDA receptors, increasing intracellular levels of ionized calcium and reactive oxygen species. Even a short-term exposure of cells to homocysteic acid at concentrations characteristic of hyperhomocysteinemia induces their apoptotic transformation. The discovery of NMDA receptors both in neuronal tissue and in several other tissues and organs (including immunocompetent cells) makes them a target for toxic action of homocysteine. The neuropeptide carnosine was found to protect the organism from homocysteine toxicity. Treatment of pregnant rats with carnosine under conditions of alimentary hyperhomocysteinemia increases viability and functional activity of their progeny.

  16. Possible theophylline toxicity during anesthesia.

    PubMed Central

    Redden, R. J.

    1996-01-01

    Asthmatic patients who undergo outpatient anesthesia are typically prescribed one or more drugs for treatment. Some of these agents have narrow therapeutic ranges and are associated with potentially serious adverse reactions, toxic effects, or drug interactions. Various clinical signs of toxicity may be first uncovered during routine monitoring of an office anesthetic. The case reported here demonstrates the need for proper understanding of the asthmatic patient's medical history and an appreciation for the medications used to control the disease. A sudden cardiovascular event possibly related to drug toxicity is witnessed and treated in an asthmatic patient during intravenous sedation. A possible drug interaction with a non-asthmatic medication taken concomitantly by the patient is implicated and discussed. In addition to the case report, the broad classification of drugs employed for bronchial asthma and their effects is reviewed. PMID:10323129

  17. Sediment spiking for toxicity testing

    SciTech Connect

    Murdoch, M.H.; Norman, D.M.; Chapman, P.M.; Norman, D.M.; Quintino, V.M.

    1994-12-31

    Sediment toxicity testing integrates responses to sediment variables and hence does not directly indicate cause-and-effect. One tool for determining cause-and-effect is sediment spiking in which relatively uncontaminated sediment is amended with known amounts of contaminants, then tested for toxicity. Based on the concentration-response relationship(s), the relative toxicity of the spiked contaminants and their significance in sediment mixtures can be assessed. However, sediment spiking methods vary considerably. The present study details an appropriate methodology for amending sediments with a range of organic contaminant concentrations including different solvent schemes and an equilibration period. This methodology is described as appropriate because predicted and actual concentrations were similar, and responses in an acute 10-d amphipod test matched predictions and other data.

  18. Nanoparticle-induced pulmonary toxicity.

    PubMed

    Li, Jasmine Jia'en; Muralikrishnan, Sindu; Ng, Cheng-Teng; Yung, Lin-Yue Lanry; Bay, Boon-Huat

    2010-09-01

    In recent decades, advances in nanotechnology engineering have given rise to the rapid development of many novel applications in the biomedical field. However, studies into the health and safety of these nanomaterials are still lacking. The main concerns are the adverse effects to health caused by acute or chronic exposure to nanoparticles (NPs), especially in the workplace environment. The lung is one of the main routes of entry for NPs into the body and, hence, a likely site for accumulation of NPs. Once NPs enter the interstitial air spaces and are quickly taken up by alveolar cells, they are likely to induce toxic effects. In this review, we highlight the different aspects of lung toxicity resulting from NP exposure, such as generation of oxidative stress, DNA damage and inflammation leading to fibrosis and pneumoconiosis, and the underlying mechanisms causing pulmonary toxicity.

  19. Possible theophylline toxicity during anesthesia.

    PubMed

    Redden, R J

    1996-01-01

    Asthmatic patients who undergo outpatient anesthesia are typically prescribed one or more drugs for treatment. Some of these agents have narrow therapeutic ranges and are associated with potentially serious adverse reactions, toxic effects, or drug interactions. Various clinical signs of toxicity may be first uncovered during routine monitoring of an office anesthetic. The case reported here demonstrates the need for proper understanding of the asthmatic patient's medical history and an appreciation for the medications used to control the disease. A sudden cardiovascular event possibly related to drug toxicity is witnessed and treated in an asthmatic patient during intravenous sedation. A possible drug interaction with a non-asthmatic medication taken concomitantly by the patient is implicated and discussed. In addition to the case report, the broad classification of drugs employed for bronchial asthma and their effects is reviewed.

  20. Cadmium as a respiratory toxicant

    SciTech Connect

    Grose, E.C.; Graham, J.A.

    1987-01-01

    Cadmium is a major respiratory toxicant as evidenced by numerous human and animal studies. Controlled animal inhalation studies provide supporting evidence to the associations observed in epidemiological studies that Cd has the potential to cause lung fibrosis, emphysema, cancer, and kidney disease after prolonged exposure. Shorter-term exposure studies indicate that mechanisms thought to be involved in several of these chronic disease states (especially fibrosis and emphysema) are acutely activated. The evidence of toxicity is sufficiently clear that a TLV has been set and the International Agency for Research on Cancer has named Cd as a Group B1 substance (probable human carcinogen). The risk to Cd exposure is enhanced by its chemical and physical properties that result in bioaccumulation. Thus, even a low-level exposure over long periods of time would be expected to reach doses that could be toxic.

  1. Aloe-induced Toxic Hepatitis

    PubMed Central

    Yang, Ha Na; Kim, Young Mook; Kim, Byoung Ho; Sohn, Kyoung Min; Choi, Myung Jin; Choi, Young Hee

    2010-01-01

    Aloe has been widely used in phytomedicine. Phytomedicine describes aloe as a herb which has anti-inflammatory, anti-proliferative, anti-aging effects. In recent years several cases of aloe-induced hepatotoxicity were reported. But its pharmacokinetics and toxicity are poorly described in the literature. Here we report three cases with aloe-induced toxic hepatitis. A 57-yr-old woman, a 62-yr-old woman and a 55-yr-old woman were admitted to the hospital for acute hepatitis. They had taken aloe preparation for months. Their clinical manifestation, laboratory findings and histologic findings met diagnostic criteria (RUCAM scale) of toxic hepatitis. Upon discontinuation of the oral aloe preparations, liver enzymes returned to normal level. Aloe should be considered as a causative agent in hepatotoxicity. PMID:20191055

  2. Identification and confirmation of ammonia toxicity in contaminated sediments using a modified toxicity identification evaluation approach

    SciTech Connect

    Sprang, P.A. Van; Janssen, C.R.

    1997-12-01

    Toxicity identification of sediment pore waters from four sites in the Upper Scheldt (Belgium) was assessed using a simplified and discriminative toxicity identification evaluation procedure. The samples from all locations exhibited acute toxicity toward the freshwater crustacean Thamnocephalus platyurus. Toxicity was removed or considerably reduced by the cation exchange resins and air stripping at pH 11. In addition, the toxicity of the pore waters was found to be highly pH dependent. Increased toxicity was observed at higher pH levels, whereas reduced toxicity was found at lower pH levels. Based on these results, ammonia was suggested as the main toxic agent. The presence of ammonia concentrations exceeding the 24-h median lethal concentration and comparison of the toxicity characterization profiles of the pore waters with those of the suspected toxicant supported this hypothesis. Furthermore, a significant positive correlation between the observed toxicity of the pore waters and the expected toxicity (due to the presence of the suspected toxicant) confirmed ammonia as the true toxic agent. Finally, the ratio between the expected ammonia toxicity and the observed toxicity from the characterization tests was approx. 1, meaning that all or most of the observed toxicity was caused by the presence of one toxicant (i.e., ammonia). The developed toxicity identification evaluation procedure is suggested as a useful tool for the identification and confirmation of toxicants in contaminated sediments.

  3. CADDIS Volume 2. Sources, Stressors and Responses: Unspecified Toxic Chemicals

    EPA Pesticide Factsheets

    Intro to the unspecified toxic chemicals module, when to list toxic chemicals as a candidate cause, ways to measure toxic chemicals, simple and detailed conceptual diagrams for toxic chemicals, toxic chemicals module references and literature reviews.

  4. Metallothionein protection of cadmium toxicity

    SciTech Connect

    Klaassen, Curtis D. Liu, Jie; Diwan, Bhalchandra A.

    2009-08-01

    The discovery of the cadmium (Cd)-binding protein from horse kidney in 1957 marked the birth of research on this low-molecular weight, cysteine-rich protein called metallothionein (MT) in Cd toxicology. MT plays minimal roles in the gastrointestinal absorption of Cd, but MT plays important roles in Cd retention in tissues and dramatically decreases biliary excretion of Cd. Cd-bound to MT is responsible for Cd accumulation in tissues and the long biological half-life of Cd in the body. Induction of MT protects against acute Cd-induced lethality, as well as acute toxicity to the liver and lung. Intracellular MT also plays important roles in ameliorating Cd toxicity following prolonged exposures, particularly chronic Cd-induced nephrotoxicity, osteotoxicity, and toxicity to the lung, liver, and immune system. There is an association between human and rodent Cd exposure and prostate cancers, especially in the portions where MT is poorly expressed. MT expression in Cd-induced tumors varies depending on the type and the stage of tumor development. For instance, high levels of MT are detected in Cd-induced sarcomas at the injection site, whereas the sarcoma metastases are devoid of MT. The use of MT-transgenic and MT-null mice has greatly helped define the role of MT in Cd toxicology, with the MT-null mice being hypersensitive and MT-transgenic mice resistant to Cd toxicity. Thus, MT is critical for protecting human health from Cd toxicity. There are large individual variations in MT expression, which might in turn predispose some people to Cd toxicity.

  5. Relationships among rat ultrasonic vocalizations, behavioral measures of striatal dopamine loss, and striatal tyrosine hydroxylase immunoreactivity at acute and chronic time points following unilateral 6-hydroxydopamine-induced dopamine depletion.

    PubMed

    Grant, Laura M; Barnett, David G; Doll, Emerald J; Leverson, Glen; Ciucci, Michelle

    2015-09-15

    Voice deficits in Parkinson disease (PD) emerge early in the disease process, but do not improve with standard treatments targeting dopamine. Experimental work in the rat shows that severe and chronic unilateral nigrostriatal dopamine depletion with 6-OHDA results in decreased intensity, bandwidth, and complexity of ultrasonic vocalizations. However, it is unclear if mild/acute dopamine depletion, paralleling earlier stages of PD, results in vocalization deficits, or to what degree vocalization parameters are correlated with other dopamine-dependent indicators of lesion severity or percent of tyrosine hydroxylase (%TH) loss. Here, we assayed ultrasonic vocalizations, forelimb asymmetry, and apomorphine rotations in rats with a range of unilateral dopamine loss resulting from 6-OHDA or vehicle control infusions to the medial forebrain bundle at acute (72 h) and chronic (4 weeks) time points post-infusion. The %TH loss was evaluated at 4 weeks. At 72 h, forelimb asymmetry and %TH loss were significantly correlated, while at 4 weeks, all measures of lesion severity were significantly correlated with each other. Call complexity was significantly correlated with all measures of lesion severity at 72 h but only with %TH loss at 4 weeks. Bandwidth was correlated with forelimb asymmetry at both time points. Duration was significantly correlated with all dopamine depletion measures at 4 weeks. Notably, not all parameters were affected universally or equally across time. These results suggest that vocalization deficits may be a sensitive index of acute and mild catecholamine loss and further underscores the need to characterize the neural mechanisms underlying vocal deficits in PD.

  6. Metronidazole-Induced Cerebellar Toxicity

    PubMed Central

    Agarwal, Amit; Kanekar, Sangam; Sabat, Shyam; Thamburaj, Krishnamurthy

    2016-01-01

    Metronidazole is a very common antibacterial and antiprotozoal with wide usage across the globe, including the least developed countries. It is generally well-tolerated with a low incidence of serious side-effects. Neurological toxicity is fairly common with this drug, however majority of these are peripheral neuropathy with very few cases of central nervous toxicity reported. We report the imaging findings in two patients with cerebellar dysfunction after Metronidazole usage. Signal changes in the dentate and red nucleus were seen on magnetic resonance imaging in these patients. Most of the cases reported in literature reported similar findings, suggesting high predilection for the dentate nucleus in metronidazole induced encephalopathy. PMID:27127600

  7. Gossypol Toxicity from Cottonseed Products

    PubMed Central

    Gadelha, Ivana Cristina N.; Fonseca, Nayanna Brunna S.; Oloris, Silvia Catarina S.; Melo, Marília M.

    2014-01-01

    Gossypol is a phenolic compound produced by pigment glands in cotton stems, leaves, seeds, and flower buds (Gossypium spp.). Cottonseed meal is a by-product of cotton that is used for animal feeding because it is rich in oil and proteins. However, gossypol toxicity limits cottonseed use in animal feed. High concentrations of free gossypol may be responsible for acute clinical signs of gossypol poisoning which include respiratory distress, impaired body weight gain, anorexia, weakness, apathy, and death after several days. However, the most common toxic effects is the impairment of male and female reproduction. Another important toxic effect of gossypol is its interference with immune function, reducing an animal's resistance to infections and impairing the efficiency of vaccines. Preventive procedures to limit gossypol toxicity involve treatment of the cottonseed product to reduce the concentration of free gossypol with the most common treatment being exposure to heat. However, free gossypol can be released from the bound form during digestion. Agronomic selection has produced cotton varieties devoid of glands producing gossypol, but these varieties are not normally grown because they are less productive and are more vulnerable to attacks by insects. PMID:24895646

  8. The Problem with Toxic Wastes.

    ERIC Educational Resources Information Center

    Beecher, John L.; Fossa, Arthur J.

    1980-01-01

    Traced is the historical development of toxic waste problems in western New York State from 1825 to the present. Three major data sources are described: Industrial Chemical Survey, Inventory of Industrial Waste Generation Study, and the Interagency Task Force Study, developed by the Department of Environmental Conservation to prevent future…

  9. Holiday Plants with Toxic Misconceptions

    PubMed Central

    Evens, Zabrina N.; Stellpflug, Samuel J.

    2012-01-01

    Several plants are used for their decorative effect during winter holidays. This review explores the toxic reputation and proposed management for exposures to several of those, namely poinsettia (Euphorbia pulcherrima), English holly (Ilex aquifolium), American holly (Ilex opaca), bittersweet (Solanum dulcamara), Jerusalem cherry (Solanum pseudocapsicum), American mistletoe (Phoradendron serotinum), and European mistletoe (Viscum album). PMID:23359840

  10. Iodine toxicity and its amelioration.

    PubMed

    Baker, David H

    2004-06-01

    Iodine (I) toxicity is rare in animals and humans, but nuclear explosions that give off radioactive I and excessive stable I ingestion in parts of the world where seaweed is consumed represent specialized I toxicity concerns. Chronic overconsumption of I reduces organic binding of I by the thyroid gland, which results in hypothyroidism and goiter. Bromine can replace I on position 5 of both T(3) and T(4) with no loss of thyroid hormone activity. Avian work has also demonstrated that oral bromide salts can reverse the malaise and growth depressions caused by high doses of I (as KI) added as supplements to the diet. Newborn infants by virtue of having immature thyroid glands are most susceptible to I toxicity, whether of stable or radioactive origin. For the latter, the 1986 Chernobyl nuclear accident in Belarus has provided evidence that KI blockage therapy for exposed individuals 18 years of age and younger is effective in minimizing the development of thyroid cancer. Whether bromide therapy has a place in I toxicity situations remains to be determined.

  11. Toxic Remediation System And Method

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1996-07-23

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  12. Risk assessment for neurobehavioral toxicity

    SciTech Connect

    McMillan, D.E.

    1987-12-01

    A study of the National Academy of Sciences/National Research Council (NAS/NRC) found neurobehavioral toxicity to be one of the areas where almost no data are available for the assessment of toxicity. Using the NAS/NRC report and a data base from the American Conference of Government Industrial Hygienists (ACGIH), an estimate of the number of neurobehavioral toxins in commercial chemicals can be made. Although the assumption made in making such a calculation may be invalid, the exercise suggests that the number of neurobehavioral toxins may be quite large. There does seem to be general agreement as to what type of neurobehavioral test procedures are appropriate for regulatory purposes. Select committees have consistently recommended the use of test batteries that include schedule-controlled behavior, motor activity, and neuropathological examination following in vivo perfusion, for regulatory purposes. Alkyltin data developed from such a battery were applied to the risk assessment model employed by the United States Environmental Protection Agency (EPA) in their calculations of acceptable daily intake. Using this test battery and the EPA risk assessment model, the acceptable daily intake calculated is of the same order of magnitude as the total limit values established by the ACGIH. A number of special issues in neurobehavioral toxicity also are discussed, including the definition of adverse neurobehavioral toxic effect, species extrapolation, correlation of behavior and neuropathology, alternative methods, and quality of life issues.

  13. Niagara River Toxics Management Plan

    EPA Pesticide Factsheets

    This 2007 Progress Report of the Niagara River Toxics Management Plan (NRTMP) summarizes progress made by the four parties in dealing with the 18 “Priority Toxics” through reductions in point and non-point sources to the Niagara River.

  14. Chromium-induced toxic hepatitis.

    PubMed

    Lança, Sara; Alves, Amanda; Vieira, Ana Isabel; Barata, José; de Freitas, João; de Carvalho, Alvaro

    2002-12-01

    A clinical case of acute hepatitis in a patient undergoing an alternative medicine weight-reduction regimen is reported. Chromium polynicotinate had been ingested in combination with vegetable extracts over a 5-month period. Liver biopsy was compatible with toxic hepatitis and greatly elevated hepatic chromium levels were found (>10x normal). The clinical picture regressed following suspension of the medication.

  15. Borocaptate sodium (BSH) toxicity issues

    SciTech Connect

    LaHann, T.

    1995-11-01

    ISU`s Center for Toxicology Research has been conducting toxicity testing of borocaptate sodium (BSH) to aid in assessing if proposed human studies of BSH are likely to be acceptably safe. This report describes BSH interactions with other biological agents.

  16. Mercury toxicity. Agency for Toxic Substance and Disease Registry

    SciTech Connect

    Not Available

    1992-12-01

    Because mercury has several forms and because it produces subtle effects at chronic low-level exposures, mercury toxicity can be a difficult diagnosis to establish. Elemental mercury vapor accounts for most occupational and many accidental exposures. The main source of organic methyl mercury exposure in the general population is fish consumption. Children are at increased risk of exposure to elemental mercury vapor in the home because it tends to settle to the floor. The chemical and physical forms of mercury determine its absorption, metabolism, distribution and excretion pathways. The central nervous system and kidneys are key targets of mercury toxicity. Chelation therapy has been used successfully in treating patients who have ingested mercury salts or inhaled elemental mercury. There is no antidote for patients poisoned with organic mercury.7 references.

  17. Effects of micronutrients on metal toxicity.

    PubMed Central

    Peraza, M A; Ayala-Fierro, F; Barber, D S; Casarez, E; Rael, L T

    1998-01-01

    There is growing evidence that micronutrient intake has a significant effect on the toxicity and carcinogenesis caused by various chemicals. This paper examines the effect of micronutrient status on the toxicity of four nonessential metals: cadmium, lead, mercury, and arsenic. Unfortunately, few studies have directly examined the effect of dietary deficiency or supplementation on metal toxicity. More commonly, the effect of dietary alteration must be deduced from the results of mechanistic studies. We have chosen to separate the effect of micronutrients on toxic metals into three classes: interaction between essential micronutrients and toxic metals during uptake, binding, and excretion; influence of micronutrients on the metabolism of toxic metals; and effect of micronutrients on secondary toxic effects of metals. Based on data from mechanistic studies, the ability of micronutrients to modulate the toxicity of metals is indisputable. Micronutrients interact with toxic metals at several points in the body: absorption and excretion of toxic metals; transport of metals in the body; binding to target proteins; metabolism and sequestration of toxic metals; and finally, in secondary mechanisms of toxicity such as oxidative stress. Therefore, people eating a diet deficient in micronutrients will be predisposed to toxicity from nonessential metals. PMID:9539014

  18. A Literature Review - Problem Definition Studies on Selected Toxic Chemicals

    DTIC Science & Technology

    1978-06-16

    toxicity . . . . . . . . . 27 3. Acute gastrointestinal and pulmonary toxicity . . . 28 4. Chronic cutaneous toxicity . . . . . . . . .. . 29 5. Other...cancer . . . . . . . 37 d. gastrointestinal toxicity and cancer . . ... 42 e. general mortality . . . . . . . . . . 42 f. other effects... gastrointestinal toxicity . . . . . . . . .. 45 c. pulmonary toxicity and lung cancer . . . - 46 d. carcinogenicity . . . ........ . 49 IV. ANIMAL TOXICITY

  19. Air Toxics in New England | US EPA

    EPA Pesticide Factsheets

    2017-04-10

    Find general information about air toxics, what EPA is doing to reduce ambient air toxics levels, information on the reductions we have seen to date from large New England manufacturing companies, as well as links to other related websites.

  20. Toxicity reduction of photo processing wastewaters

    USGS Publications Warehouse

    Wang, W.

    1992-01-01

    The photo processing industry can be characterized by treatment processes and subsequent silver recovery. The effluents generated all contain various amounts of silver. The objectives of this study were to determine toxicity of photo processing effluents and to explore their toxicity mitigation. Six samples, from small shops to a major photo processing center, were studied. Two samples (I and VI) were found to be extremely toxic, causing 100 and 99% inhibition of duckweed frond reproduction, respectively, and were used for subsequent toxicity reduction experiments. Lime and sodium sulfide were effective for the toxicity reduction of Sample VI; both reduced its toxicity to negligible. Sample I was far more toxic and was first diluted to 2.2% and then treated with 0.5 g lime/100 mL, reducing toxicity from 100% to 12% inhibition.

  1. Guidelines for Reproductive Toxicity Risk Assessment

    EPA Pesticide Factsheets

    These guidelines discuss the scientific basis for concern about exposure to agents that cause reproductive toxicity and describe the principles and procedures to be followed in conducting risk assessments for reproductive toxicity.

  2. Distributed Structure-Searchable Toxicity (DSSTox) Database

    EPA Pesticide Factsheets

    The Distributed Structure-Searchable Toxicity network provides a public forum for publishing downloadable, structure-searchable, standardized chemical structure files associated with chemical inventories or toxicity data sets of environmental relevance.

  3. Toxic responses of bivalves to metal mixtures

    SciTech Connect

    Mathew, P.; Menon, N.R. )

    1992-02-01

    Although there is a growing body of information on the toxicity of individual heavy metals to economically important on the toxicity of individual heavy metals to economically important species of bivalves, literature on the lethal toxicity of metal mixtures to bivalves under controlled conditions is rather limited. In the present investigation the toxic effects of combinations of copper - mercury and copper - mercury and copper - cadmium at lethal levels of two marine bivalve species, Perna indica and Donax incarnatus, have been delineated.

  4. Toxicity evaluation and hazard review Cold Smoke

    SciTech Connect

    Archuleta, M.M.; Stocum, W.E.

    1993-12-01

    Cold Smoke is a dense white smoke produced by the reaction of titanium tetrachloride and aqueous ammonia aerosols. Early studies on the toxicity of this nonpyrotechnically generated smoke indicated that the smoke itself is essentially non-toxic (i.e. exhibits to systemic toxicity or organ damage due to exposure) under normal deployment conditions. The purpose of this evaluation was to review and summarize the recent literature data available on the toxicity of Cold Smoke, its chemical constituents, and its starting materials.

  5. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride.

  6. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  7. Behavioral toxicity of selected radioprotectors

    NASA Astrophysics Data System (ADS)

    Landauer, M. R.; Davis, H. D.; Kumar, K. S.; Weiss, J. F.

    1992-10-01

    Effective radioprotection with minimal behavioral disruption is essential for the selection of protective agents to be used in manned spaceflight. This overview summarizes the studies on the behavioral toxicity of selected radioprotectors classified as phosphorothioates (WR-2721, WR-3689), bioactive lipids (16, 16 dimethylprostaglandin E2(DiPGE2), platelet activating factor (PAF), leukotriene C4), and immunomodulators (glucan, synthetic trehalose dicorynomycolate, and interleukin-1). Behavioral toxicity was examined in laboratory mice using a locomotor activity test. For all compounds tested, there was a dose-dependent decrease in locomotor behavior that paralleled the dose-dependent increase in radioprotection. While combinations of radioprotective compounds (DiPGE2 plus WR-2721) increased radioprotection, they also decreased locomotor activity. The central nervous system stimulant, caffeine, was able to mitigate the locomotor decrement produced by WR-3689 or PAF.

  8. Abacavir-induced liver toxicity.

    PubMed

    Pezzani, Maria Diletta; Resnati, Chiara; Di Cristo, Valentina; Riva, Agostino; Gervasoni, Cristina

    2016-01-01

    Abacavir-induced liver toxicity is a rare event almost exclusively occurring in HLA B*5701-positive patients. Herein, we report one case of abnormal liver function tests occurring in a young HLA B*5701-negative woman on a stable nevirapine-based regimen with no history of liver problems or alcohol abuse after switching to abacavir from tenofovir. We also investigated the reasons for abacavir discontinuation in a cohort of patients treated with abacavir-lamivudine-nevirapine.

  9. Chemical toxicity of red cells.

    PubMed Central

    Piomelli, S

    1981-01-01

    Exposure to toxic chemicals may result in alterations of red cell function. In certain cases, the toxic effect requires a genetic predisposition and thus affects only a restricted number of individuals; in other instances, the toxic effect is exerted on the hematopoietic system of every person. Glucose-6-phosphate dehydrogenase deficiency is probably the most widespread genetic disorder. It is observed at highest frequency in populations from subtropical countries as a result of its selective advantage vis à vis falciparum malaria. The gene controlling this enzyme is located on the X-chromosome; thus, the defect is sex-linked. Individuals with a genetic defect of this enzyme are extremely susceptible to hemolysis, when exposed to oxidant drugs (such as certain antimalarials and sulfonamides) because of the inability of their red cells to regenerate NADPH. Lead poisoning result in profound effects on the process of heme synthesis. Among the steps most sensitive to lead toxicity are the enzyme delta-aminolevulinic acid dehydratase and the intramitochondrial step that leads to the incorporation of iron into protoporphyrin. By these mechanisms, in severe lead intoxication there is an accumulation of large amounts of delta-aminolevulinic acid (a compound with inherent neurotoxicity), and there are abnormalities of mitochondrial function in all cells of the body. Individuals living in an industrialized society are unavoidably exposed to some environmental lead. Recent evidence indicates that, even at levels of exposure which do not increase the blood lead level above values presently considered normal, abnormalities of heme synthesis are clearly detectable. PMID:7016524

  10. Systemic Toxicity of Intraperitoneal Vancomycin

    PubMed Central

    Kumar, Teerath; Teo, Iris

    2016-01-01

    Intraperitoneal vancomycin is used for empiric treatment of peritoneal dialysis peritonitis. It is dosed intermittently and a high systemic concentration is often achieved. Despite this, there are very few reports of systemic toxicity from intraperitoneal vancomycin. We report the course of a patient who developed a drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome after three weeks of intraperitoneal vancomycin. We review the literature and conclude that this is the first ever reported case of DRESS syndrome from intraperitoneal vancomycin. PMID:27840751

  11. Photoenhanced Toxicity of Oil to Larval Fish

    EPA Science Inventory

    Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV), compared to toxicity elicited under conditions of minimal UV. Oil products, weathered oils, combusted oil products, and specific polycyclic aromatic compounds in oil ha...

  12. 40 CFR 798.3260 - Chronic toxicity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3260 Chronic toxicity. (a) Purpose. The objective of a chronic toxicity study is to determine the effects of a substance in a mammalian species following prolonged and repeated exposure. Under the conditions of the chronic toxicity test, effects...

  13. 40 CFR 798.3260 - Chronic toxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3260 Chronic toxicity. (a) Purpose. The objective of a chronic toxicity study is to determine the effects of a substance in a mammalian species following prolonged and repeated exposure. Under the conditions of the chronic toxicity test, effects...

  14. Air toxics issues in the 1990s

    SciTech Connect

    Not Available

    1991-01-01

    This book on air toxic issues is organized under the following headings: initiatives by state and local regulatory agencies; industry's role in meeting air toxics goals of the reauthorized Clean Air Act; implementation of strategies and public health impacts; regulatory, permitting, and enforcement strategies; air toxics control; emission estimation, impact analysis and monitoring.

  15. Toxicity of vanadium to different freshwater organisms

    SciTech Connect

    Beusen, J.M.; Neven, B.

    1987-08-01

    The aim of this study is to determine the acute and subchronic toxicity of vanadium for various species of freshwater fish. The long-term toxicity and the effect of vanadium on the reproduction of Daphnia magna is also evaluated and compared with the toxicity of other metals.

  16. TOXICITY OF SILVER NANOPARTICLES TO DAPHNIA MAGNA

    EPA Science Inventory

    Relatively little is known regarding toxicity of nanoparticles in the environment. It is widely assumed that the toxicity of nanoparticles will be less than that of their metallic ions. Also the effect of organics on metal toxicity is well established. Presented here are the resu...

  17. Toxicogenomic Biomarkers for Liver Toxicity

    PubMed Central

    Kiyosawa, Naoki; Ando, Yosuke; Manabe, Sunao; Yamoto, Takashi

    2009-01-01

    Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate the molecular mechanisms of toxicity. A number of candidate TGx biomarkers have now been identified and are utilized for both assessing and predicting toxicities. Further accumulation of novel TGx biomarkers will lead to more efficient, appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with a more profound understanding of the molecular mechanisms of drug-induced toxicity. In this paper, we overview some practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis. Since clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented target organ for TGx studies to date, and we therefore focused on information from liver TGx studies. In this review, we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment. PMID:22271975

  18. Nanoparticles: Is Toxicity a Concern?

    PubMed Central

    Rao, Pragna

    2011-01-01

    Nanotechnology involving manipulation of atoms and molecules at the nanoscale is one of the frontier areas of research in modern science. During the last few years, nanotechnology has witnessed breakthroughs in the fields of medicine, environment, therapeutics, drug development and biotechnology. This is due to the unique properties of nanomaterials (e.g. chemical, mechanical, optical, magnetic, and biological) which make them desirable for commercial and medical applications. Considering the theory and practice of using nanoparticles, nanotechnology has a great potential in improving treatment of various disorders and in vitro diagnostics. However, there is not much information available on the toxicity of nanoparticles in relation to human health. Toxic effect of nanomaterials on humans is the primary concern of the health industry. Nanomaterials are able to cross biological membranes and access cells, tissues and organs that larger-sized particles normally cannot. Nanomaterials can gain access to the blood stream via inhalation or ingestion. This may lead to both genotoxicity and biochemical toxicity. In this review we try to show which types, sizes and concentrations of nanoparticles are safe for human use and this will help in developing diagnostic, prognostic and therapeutic models using nanoparticles. PMID:27683397

  19. Acute and chronic arsenic toxicity

    PubMed Central

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water. PMID:12897217

  20. Mitochondrial toxicity: myths and facts.

    PubMed

    Moyle, Graeme

    2004-05-01

    Nucleoside analogue reverse transcriptase inhibitors (NRTIs) represent key components of the antiretroviral combinations used to manage HIV infection. A range of nucleoside analogues are currently available which differ in their convenience of administration, frequency of dosing, resistance profile and frequency and severity of adverse effects. Many of the important and treatment limiting side-effects of nucleoside analogues have been suggested to be related to the impact of these agents on mitochondrial DNA polymerase gamma. Depletion of mitochondrial DNA or impacts of these agents on mitochondrial enzymes during chronic nucleoside analogue therapy may lead to cellular respiratory dysfunction and both generalised and tissue specific toxicities. In particular, fatal lactic acidosis represents a rare but clinically important manifestation of nucleoside analogue induced mitochondrial dysfunction. Other potentially severe toxicities which are well-characterised include peripheral neuropathy (PN) and myopathy. Management of potentially mitochondrial toxicity during nucleoside analogue therapy remains a challenge. A range of nutritional supplements, both as treatments and prophylaxes have been proposed and some investigated in vitro but not as yet in vivo. At present, therefore, interruption of nucleoside analogue therapy, or substitution of the probable causative agent with nucleoside analogues which appear better tolerated represent the mainstay of management.

  1. Developmental toxicity testing of vaccines.

    PubMed

    Barrow, Paul C; Allais, Linda

    2013-01-01

    Preventative and therapeutic vaccines are increasingly used during pregnancy and present special considerations for developmental toxicity testing. The various components of the vaccine formulation (i.e., protein or polysaccharide antigen, adjuvants, and excipients) need to be assessed for direct effects on the developing conceptus. In addition, possible adverse influences of the induced antibodies on fetal and/or postnatal development need to be evaluated. A guidance document on the preclinical testing of preventative and therapeutic vaccines for developmental toxicity was issued by the FDA in 2006. Preclinical studies are designed to assess possible influences of vaccines on pre- and postnatal development. The choice of model animal for these experiments is influenced by species differences in the timing and extent of the transfer of the induced maternal antibodies to the fetus. The cross-placental transport of maternal immunoglobulins generally only occurs in late gestation and tends to be greater in humans and monkeys than in non-primate species. For many vaccines, the rabbit shows a greater rate of prenatal transfer of the induced antibodies than rodents. For biotechnology-derived vaccines that are not immunogenic in lower species, nonhuman primates may be the only appropriate models. It may be advisable to test new adjuvants using the ICH study designs for conventional pharmaceuticals in addition to the developmental toxicity study with the final vaccine formulation.

  2. [Comprehensive Toxicity Evaluation and Toxicity Identification Used in Tannery and Textile Wastewaters].

    PubMed

    Huang, Li; Chen, Wen-yan; Wan, Yu-shan; Zheng, Guo-juan; Zhao, Yuan; Cai, Qiang

    2015-07-01

    To better evaluate the toxicity of tannery and textile effluents from various emission stages, the research attempted battery of toxicological bioassays and toxicological indices. The bioassays employed Microtox test, zebra fish embryo-larval test and algae (Chlorella vulgaris) test. Meanwhile, toxicological indices including Toxicity Unit (TU), Average Toxicity (AvTx), Toxic Print (TxPr), Most Sensitive Test (MST) and Potential Ecotoxic Effects Probe (PEEP) were applied. The results illustrated that PEEP was the most comprehensive index to take account of the emissions and toxic potential of effluents. PEEP values showed that the reduction rates of toxicity in tannery and textile effluents were 36. 8% and 23. 2%, respectively. Finally, based on the Microtox toxicity test, toxicants in textile effluent were identified through the toxicity identification evaluation (TIE) studies. The results indicated that the main toxicant of textile effluent was non-polar organic pollutants, followed by filterable compounds, heavy metals, oxidizing substances and volatile components.

  3. Discovering less toxic ionic liquids by using the Microtox® toxicity test.

    PubMed

    Hernández-Fernández, F J; Bayo, J; Pérez de los Ríos, A; Vicente, M A; Bernal, F J; Quesada-Medina, J

    2015-06-01

    New Microtox® toxicity data of 16 ionic liquids of different cationic and anionic composition were determined. The ionic liquids 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMPyr(+)][TFO(-)], 1-butyl-1-methylpyrrolidinium chloride, [BMPyr(+)][Cl(-)], hydroxypropylmethylimidazolium fluoroacetate, [HOPMIM(+)][FCH2COO(-)], and hydroxypropylmethylimidazolium glycolate [HOPMIM(+)][glycolate(-)] were found to be less toxic than conventional organic solvent such as chloroform or toluene, accoding the Microtox® toxicity assays. The toxicity of pyrrolidinium cation was lower than the imidazolium and pyridinium ones. It was found that the inclusion of an hydroxyl group in the alkyl chain length of the cation also reduce the toxicity of the ionic liquid. To sum up, the Microtox® toxicity assays can be used as screening tool to easily determined the toxicity of a wide range of ionic liquids and the toxicity data obtained could allow the obtention of structure-toxicity relationships to design less toxic ionic liquids.

  4. Surfactant toxicity identification with a municipal wastewater

    SciTech Connect

    Amato, J.R.; Wayment, D.D.

    1998-12-31

    An acute toxicity identification evaluation following US EPA guidelines was performed with a municipal wastewater to identify effluent components responsible for lethality of larval fathead minnows (Pimephales promelas) and Ceriodaphnia dubia. Ammonia toxicity, also present in the effluent, was not the object of this study. The study was designed to characterize effluent toxicity not due to ammonia. To minimize ammonia toxicity interferences, all Phase 1 testing was performed at pH`s where ammonia toxicity would be negligible. Phase 1 toxicity characterization results indicated surfactants as the class of compounds causing acute non-ammonia toxicity for both test species. A distinct toxicant characteristic, specifically sublation at alkaline pH, was employed to track suspect surfactant loadings in the collection system. Concurrently, effluent surfactant residue testing determined nonionic surfactants were at adequate concentrations and were sufficiently toxic to cause the measured adverse effects. Influent surfactant toxicity was determined to be much less than in the final effluent indicating the treatment process was enhancing surfactant toxicity.

  5. Toxic photoproducts of phenanthrene in sunlight

    SciTech Connect

    McConkey, B.L.; Duxbury, C.L.; El-Alawi, Y.S.; Dixon, D.G.; Greenberg, B.M.

    1995-12-31

    Phenanthrene, one of the most prevalent PAHs, undergoes a significant increase in toxicity on exposure to sunlight. Over a period of several days exposure to light, the toxicity of an aqueous phenanthrene solution increased dramatically. This increase in toxicity is largely due to the primary photoproduct, 9,10-phenanthrenequinone. This compound is more toxic than phenanthrene at equimolar concentrations, and is more water soluble than phenanthrene, increasing its bioavailability. Although many PAHs are potent photosensitizers, phenanthrene did not exhibit a significant increase in toxicity due to photosensitization. Photo-oxidation was the principal cause of photoinduced toxicity, with 9,10-phenanthrenequinone being formed via an unstable intermediate. In addition, mixtures of phenanthrene and 9,10-phenanthrenequinone exhibited potentially synergistic effects, as shown by joint toxicity testing using Photobacterium phosphoreum. Thus, mixtures of oxidized PAHs produced by photoaction in the environment create a significant risk to the biosphere.

  6. 7 day chronic ceriodaphnia toxicity test -- reproductive

    SciTech Connect

    Not Available

    1989-01-01

    This toxicity test was conducted to determine if the effluent causes death (acute toxicity) or reduction in the reproduction of the test organisms (chronic toxicity) during a seven day period. A series of dilutions of the effluent are set to determine how much the effluent must be diluted before toxic effects are no longer noted. Acute toxicity is checked by statistically analyzing whether significantly more organisms die in the effluent dilutions than in the control treatment, and, if significantly more die, how much the effluent must be diluted so as to kill only 50% of the test organisms (the LC50). Chronic toxicity is checked by statistically analyzing whether significantly fewer young are produced by test organisms exposed to the effluent dilutions. Results indicate the lowest effluent concentration which shows a toxic effect (the LOEC) and the highest effluent concentration which does not demonstrate an effect (NOEC).

  7. Cryoprotectant Toxicity: Facts, Issues, and Questions

    PubMed Central

    2015-01-01

    Abstract High levels of penetrating cryoprotectants (CPAs) can eliminate ice formation during cryopreservation of cells, tissues, and organs to cryogenic temperatures. But CPAs become increasingly toxic as concentration increases. Many strategies have been attempted to overcome the problem of eliminating ice while minimizing toxicity, such as attempting to optimize cooling and warming rates, or attempting to optimize time of adding individual CPAs during cooling. Because strategies currently used are not adequate, CPA toxicity remains the greatest obstacle to cryopreservation. CPA toxicity stands in the way of cryogenic cryopreservation of human organs, a procedure that has the potential to save many lives. This review attempts to describe what is known about CPA toxicity, theories of CPA toxicity, and strategies to reduce CPA toxicity. Critical analysis and suggestions are also included. PMID:25826677

  8. Toxicants inhibiting anaerobic digestion: a review.

    PubMed

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  9. Pulmonary toxicity of manufactured nanoparticles

    NASA Astrophysics Data System (ADS)

    Peebles, Brian Christopher

    Manufactured nanomaterials have become ubiquitous in science, industry, and medicine. Although electron microscopy and surface probe techniques have improved understanding of the physicochemical properties of nanomaterials, much less is known about what makes nanomaterials toxic. Particulate matter less than 2.5 mum in effective aerodynamic diameter is easily inhaled and taken deep into the lungs. The toxicity of inhaled particulate matter is related to its size and surface chemistry; for instance, the smaller the size of particles, the greater their specific surface area. The chemistry and toxicity of insoluble particles depends on their surface area, since chemical reactions may happen with the environment on the surface. Oxidation and reduction may occur on the surfaces of particles after they are produced. For instance, it is known that carbonaceous particles from vehicle exhaust and industrial emission may interact with reactive species like ozone in their ambient environment, altering the surface chemistry of the particles. Reaction with species in the environment may cause changes in the chemical functionality of the surface and change the toxic properties of the particles when they are inhaled. Furthermore, metals on the surface of inhalable particles can contribute to their toxicity. Much attention has been given to the presence of iron on the surfaces of inhalable particles in the environment. After particle inhalation, particles are endocytosed by alveolar macrophages in the immune response to foreign matter. They are exposed to hydrogen peroxide in the oxidative burst, which can cause the iron-mediated production of hydroxyl free radicals via the Fenton reaction, causing oxidative stress that leads to inflammation and cell death. The toxicity of particles that contain metals depends on the redox activity and bioavailability of the metals, the causes of thich have not yet been adequately explored. In this thesis, electron paramagnetic spectroscopy showed

  10. Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...

  11. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  12. Environmental complex mixture toxicity assessment.

    PubMed

    Gardner, H S; Brennan, L M; Toussaint, M W; Rosencrance, A B; Boncavage-Hennessey, E M; Wolfe, M J

    1998-12-01

    Trichloroethylene (TCE) was found as a contaminant in the well supplying water to an aquatic testing laboratory. The groundwater was routinely screened by a commercial laboratory for volatile and semivolatile compounds, metals, herbicides, pesticides, and polychlorinated biphenyls using U.S. Environmental Protection Agency methods. Although TCE was the only reportable peak on the gas chromatograph, with average concentrations of 0.200 mg/l, other small peaks were also present, indicating the possibility that the contamination was not limited to TCE alone. A chronic 6-month carcinogenicity assay was conducted on-site in a biomonitoring trailer, using the Japanese medaka fish (Oryzias latipes) in an initiation-promotion protocol, with diethylnitrosamine (DEN) as the initiator and the TCE-contaminated groundwater as a promoter. Study results indicated no evidence of carcinogenic potential of the groundwater without initiation. There was, however, a tumor-promotional effect of the groundwater after DEN initiation. A follow-up laboratory study was conducted using reagent grade TCE added to carbon-filtered groundwater to simulate TCE concentrations comparable to those found in the contaminated groundwater. Study results indicated no promotional effects of TCE. These studies emphasize the necessity for on-site bioassays to assess potential environmental hazards. In this instance, chemical analysis of the groundwater identified TCE as the only reportable contaminant, but other compounds present below reportable limits were noted and may have had a synergistic effect on tumor promotion observed with the groundwater exposure. Laboratory toxicity testing of single compounds can produce toxicity data specific to that compound for that species but cannot take into account the possible toxic effects of mixtures of compounds.

  13. Lysophospholipase inhibition by organophosphorus toxicants.

    PubMed

    Quistad, Gary B; Casida, John E

    2004-05-01

    Lysophospholipases (LysoPLAs) are a large family of enzymes for removing lysophospholipids from cell membranes. Potent inhibitors are needed to define the importance of LysoPLAs as targets for toxicants and potential therapeutics. This study considers organophosphorus (OP) inhibitors with emphasis on mouse brain total LysoPLA activity relative to the mipafox-sensitive neuropathy target esterase (NTE)-LysoPLA recently established as 17% of the total activity and important in the action of OP delayed toxicants. The most potent inhibitors of total LysoPLA in mouse brain are isopropyl dodecylphosphonofluoridate (also for LysoPLA of Vibrio bacteria), ethyl octylphosphonofluoridate (EOPF), and two alkyl-benzodioxaphosphorin 2-oxides (BDPOs)[(S)-octyl and dodecyl] (IC50 2-8 nM). OP inhibitors acting in vitro and in vivo differentiate a more sensitive portion but not a distinct NTE-LysoPLA compared with total LysoPLA activity. For 10 active inhibitors, NTE-LysoPLA is 17-fold more sensitive than total LysoPLA, but structure-activity comparisons give a good correlation (r(2) = 0.94) of IC50 values, suggesting active site structural similarity or identity. In mice 4 h after intraperitoneal treatment with discriminating doses, EOPF, tribufos (a plant defoliant), and dodecanesulfonyl fluoride inhibit 41-57% of the total brain LysoPLA and 85-99% of the NTE-LysoPLA activity. Total LysoPLA as well as NTE-LysoPLA is decreased in activity in Nte(+/-)-haploinsufficient mice compared to their Nte(+/+) littermates. The lysolecithin level of spinal cord but not brain is elevated significantly following EOPF treatment (3 mg/kg), thereby focusing attention on localized rather than general alterations in lysophospholipid metabolism in OP-induced hyperactivity and toxicity.

  14. Dithiobiuret toxicity in the rat

    SciTech Connect

    Williams, K.D.

    1985-01-01

    Raising the daily dose of dithiobiuret (DTB) in male rats from 0.5 to 1 to 5 mg/kg shortened the latency to the onset of flaccid muscle tone and associated diminished performance in a treadmill test from 7 to 5 to 3 days, respectively. Concomitant with the development of flaccid muscle tone gastrocnemius muscle contractions elicited by high frequency motor nerve stimulation were lower in peak tension and tended to fade more rapidly in DTB-treated rats than in control rats. Remarkably, rats treated with highly daily doses (10-16 mg/kg) of DTB were resistant to the expected development of DTB-induced flaccid muscle tone, and tetanic contractile abnormalities but a corresponding refractoriness to body weight loss, decreased fed and water intake, diuresis, and depression in water balance was not present. This nonselectivity of the refractory responses supported the results of a histopathological study indicating that DTB-induced neuromuscular toxicity was unlikely to be secondary to effect on other organ systems. It is not known whether the ultimate neurotoxin is DTB or a metabolite. In this regard, two pathways for the metabolism of DTB were proposed based on the results of thin-layer chromatography of urine samples from rats treated with either /sup 14/C- or /sup 35/S-DTB. One pathway involved the reversible oxidation of DTB to the disulfide-containing compound thiuret, and the other involved the replacement of a sulfur atom with oxygen to form monothiobiuret. Thiuret, but not monothiobiuret, possessed comparable toxicity to STB. This further suggested that redox cycling between DTB and thiuret could be an important contributing factor to the toxicity of DTB.

  15. Environmental complex mixture toxicity assessment.

    PubMed Central

    Gardner, H S; Brennan, L M; Toussaint, M W; Rosencrance, A B; Boncavage-Hennessey, E M; Wolfe, M J

    1998-01-01

    Trichloroethylene (TCE) was found as a contaminant in the well supplying water to an aquatic testing laboratory. The groundwater was routinely screened by a commercial laboratory for volatile and semivolatile compounds, metals, herbicides, pesticides, and polychlorinated biphenyls using U.S. Environmental Protection Agency methods. Although TCE was the only reportable peak on the gas chromatograph, with average concentrations of 0.200 mg/l, other small peaks were also present, indicating the possibility that the contamination was not limited to TCE alone. A chronic 6-month carcinogenicity assay was conducted on-site in a biomonitoring trailer, using the Japanese medaka fish (Oryzias latipes) in an initiation-promotion protocol, with diethylnitrosamine (DEN) as the initiator and the TCE-contaminated groundwater as a promoter. Study results indicated no evidence of carcinogenic potential of the groundwater without initiation. There was, however, a tumor-promotional effect of the groundwater after DEN initiation. A follow-up laboratory study was conducted using reagent grade TCE added to carbon-filtered groundwater to simulate TCE concentrations comparable to those found in the contaminated groundwater. Study results indicated no promotional effects of TCE. These studies emphasize the necessity for on-site bioassays to assess potential environmental hazards. In this instance, chemical analysis of the groundwater identified TCE as the only reportable contaminant, but other compounds present below reportable limits were noted and may have had a synergistic effect on tumor promotion observed with the groundwater exposure. Laboratory toxicity testing of single compounds can produce toxicity data specific to that compound for that species but cannot take into account the possible toxic effects of mixtures of compounds. Images Figure 2 PMID:9860885

  16. Azalea toxicity: an overrated problem?

    PubMed

    Klein-Schwartz, W; Litovitz, T

    1985-01-01

    One-hundred-and-fifty-two azalea ingestions reported to two regional poison centers over a three year period are reviewed. Twenty-eight exposures were the result of sucking nectar from the flower; the remainder involved ingestion of leaves or flowers. Nine patients developed symptoms, but these were minor or probably unrelated in eight. A single patient was significantly symptomatic, experiencing repeated vomiting and transient hypertension. Emergency department treatment was rendered in 9.2% of patients, and hospital admission for less than 24 hours was required in only one case. Ingestion of moderate amounts of azalea pose little toxic hazard.

  17. Chronic juvenile toxic epidemic syndrome.

    PubMed Central

    Izquierdo, M; Mateo, I; Rodrígo, M; Mena, C; Sebastián, M; Conde, J; Gómez-Reino, J J

    1985-01-01

    The clinical manifestations in 21 children with chronic toxic epidemic syndrome (TES) and musculoskeletal manifestations were analysed and compared with those of the adult population. The sex ratio (2.5:1, F/M) was different from the one found in adults (6:1, F/M). The neuromuscular syndrome, the scleroderma-like picture, the pulmonary hypertension, and the Raynaud's phenomenon characteristic of TES were similar to those in adults but milder in children. The less severe vascular endothelial lesions found on microscopic examination might explain the better prognosis in this age group. Images PMID:3977416

  18. Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors.

    PubMed

    Pearcy, Krysta; Elphick, James; Burnett-Seidel, Charlene

    2015-07-01

    The present study was performed to investigate the toxicity of fluoride to a variety of freshwater aquatic organisms and to establish whether water quality variables contribute substantively to modifying its toxicity. Water hardness, chloride, and alkalinity were tested as possible toxicity modifying factors for fluoride using acute toxicity tests with Hyalella azteca and Oncorhynchus mykiss. Chloride appeared to be the major toxicity modifying factor for fluoride in these acute toxicity tests. The chronic toxicity of fluoride was evaluated with a variety of species, including 3 fish (Pimephales promelas, O. mykiss, and Salvelinus namaycush), 3 invertebrates (Ceriodaphnia dubia, H. azteca, and Chironomus dilutus), 1 plant (Lemna minor), and 1 alga (Pseudokirchneriella subcapitata). Hyalella azteca was the most sensitive species overall, and O. mykiss was the most sensitive species of fish. The role of chloride as a toxicity modifying factor was inconsistent between species in the chronic toxicity tests.

  19. Environmental toxicants in developing countries.

    PubMed Central

    Ostrosky-Wegman, P; Gonsebatt, M E

    1996-01-01

    Health effects from environmental toxicants may be a more serious problem in developing countries compared with developed countries because the problem is potentiated by other factors: a) the lack of or failure to enforce regulations, which allows human exposures to genotoxic agents; b) undernourishment of the lower economic and social classes that comprise the most exposed populations from industrial and agricultural activities; and c) parasitic infections that afflict a wide range of populations in both urban and rural areas. Data on the genotoxic effects of different types of exposures, including environmental exposes (natural and industrial), occupational exposures, and infections and medical treatments, are presented and discussed with the point of view that all these factors must be taken into account with respect to regulation and the protection of human health. Occupational exposures in developing countries are higher than in developed countries due to lack of stringent regulations, lack of knowledge of the risks involved, and the negligence of workers. General pollution is another important issue since developed countries have established strict regulations and risky industrial processes are being exported to developing countries, along with banned substances and dangerous industrial wastes. It should be emphasized that stringent regulations in developed countries will not prevent exposures in the long term because toxic substances that are released into the environment will ultimately reach all our future generations. PMID:8781389

  20. Toxic Pfiesteria and human health.

    PubMed

    Matuszak, D L; Sanders, M; Taylor, J L; Wasserman, M P

    1997-01-01

    Toxic activity of a Pfiesteria-like organism occurred for much of 1997 in the waters of the lower Pocomoke River on Maryland's Eastern Shore. Maryland's experience with these toxic blooms of dinoflagellates, current knowledge of their potential human health effects, and the actions taken by state government agencies in response to a potential public health threat are reviewed. A medical diagnostic team commissioned by the Department of Health and Mental Hygiene evaluated a group of persons with intense exposures to lesioned fish or the waters from which they came and/or prominent symptoms following exposure to affected waters or lesioned fish. The principal findings of the team included consistent complaints of memory problems, acute burning of the skin following direct contact with water, and respiratory irritation. Findings on examination were limited to neurocognitive deficits in short-term memory and learning difficulties. Physicians and citizens are asked to continue to report, through their local health departments, illnesses thought to be related to exposure to lesioned fish or the waters from which they are taken. Persons with questions or wishing to report finding lesioned fish should call the state Pfiesteria hotline at 1-888-584-3110.

  1. The Toxicity of Depleted Uranium

    PubMed Central

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447

  2. Some food toxic for pets

    PubMed Central

    Kovalkovičová, Natália; Šutiaková, Irena; Pistl, Juraj; Šutiak, Václav

    2009-01-01

    According to world statistics, dogs and cats are the species that owners most frequently seek assistance with potential poisonings, accounting 95–98% of all reported animal cases. Exposures occur more commonly in the summer and in December that is associated with the holiday season. The majority (>90%) of animal poisonings are accidental and acute in nature and occur near or at the animal owner's home. Feeding human foodstuff to pets may also prove dangerous for their health. The aim of this review was to present common food items that should not be fed (intentionally or unintentionally) to dogs, i.e. chocolate, caffeine, and other methylxanthines, grapes, raisins, onion, garlic, avocado, alcohol, nuts, xylitol contained in chewing gum and candies, etc. Onion and avocado are toxic for cats, too. The clinical effects of individual toxicants and possible therapy are also mentioned. Knowing what human food has the potential to be involved in serious toxicoses should allow veterinarians to better educate their clients on means of preventing pet poisonings. It can be concluded that the best advice must surely be to give animal fodder or treats specifically developed for their diets. PMID:21217849

  3. Photoinduced toxicity of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Jones, Philip Scott

    Engineered nanomaterials including metal, metal oxide and carbon based nanomaterials are extensively used in a wide variety of applications to the extent that their presence in the environment is expected to increase dramatically over the next century. These nanomaterials may be photodegraded by solar radiation and thereby release metal ions into the environment that can produce cytotoxic and genotoxic effects. Photoinduced toxicity experiments are performed exposing human lung epithelial carcinoma cells [H1650] to engineered semiconductor nanoparticles such as CdSe quantum dots and ZnO nanoparticles after exposure to 3, 6, and 9 hours of solar simulated radiation. Cytotoxicity and genotoxicity of the metal ions are evaluated using ZnSO4 and CdCl2 solutions for the MTT assay and Comet assay respectively. The objective of the dissertation is to obtain quantitative information about the environmental transformation of engineered nanomaterials and their mechanism of toxicity. This information is critical for addressing the environmental health and safety risks of engineered nanomaterials to workers, consumers and the environment.

  4. Oral Chromium Exposure and Toxicity

    PubMed Central

    Sun, Hong; Brocato, Jason

    2015-01-01

    Hexavalent chromium [Cr(VI)] is a known carcinogen when inhaled. However, inhalational exposure to Cr(VI) affects only a small portion of the population, mainly by occupational exposures. In contrast, oral exposure to Cr(VI) is widespread and affects many people throughout the globe. In 2008, the National Toxicology Program (NTP) released a 2-year study demonstrating that ingested Cr(VI) was carcinogenic in rats and mice. The effects of Cr(VI) oral exposure is mitigated by reduction in the gut, however a portion evades the reductive detoxification and reaches target tissues. Once Cr(VI) enters the cell, it ultimately gets reduced to Cr(III), which mediates its toxicity via induction of oxidative stress during the reduction while Cr intermediates react with protein and DNA. Cr(III) can form adducts with DNA that may lead to mutations. This review will discuss the potential adverse effects of oral exposure to Cr(VI) by presenting up-to-date human and animal studies, examining the underlying mechanisms that mediate Cr(VI) toxicity, as well as highlighting opportunities for future research. PMID:26231506

  5. Male-mediated developmental toxicity

    PubMed Central

    Anderson, Diana; Schmid, Thomas E; Baumgartner, Adolf

    2014-01-01

    Male-mediated developmental toxicity has been of concern for many years. The public became aware of male-mediated developmental toxicity in the early 1990s when it was reported that men working at Sellafield might be causing leukemia in their children. Human and animal studies have contributed to our current understanding of male-mediated effects. Animal studies in the 1980s and 1990s suggested that genetic damage after radiation and chemical exposure might be transmitted to offspring. With the increasing understanding that there is histone retention and modification, protamine incorporation into the chromatin and DNA methylation in mature sperm and that spermatozoal RNA transcripts can play important roles in the epigenetic state of sperm, heritable studies began to be viewed differently. Recent reports using molecular approaches have demonstrated that DNA damage can be transmitted to babies from smoking fathers, and expanded simple tandem repeats minisatellite mutations were found in the germline of fathers who were exposed to radiation from the Chernobyl nuclear power plant disaster. In epidemiological studies, it is possible to clarify whether damage is transmitted to the sons after exposure of the fathers. Paternally transmitted damage to the offspring is now recognized as a complex issue with genetic as well as epigenetic components. PMID:24369136

  6. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  7. [Selenium toxicity in domestic animals].

    PubMed

    Mihajlović, M

    1992-01-01

    The earliest written report of selenium poisoning is thought to be the description by Marco Polo of a necrotic hoof disease of horses that occurred in China in 13. century. However recognition of Se as toxic principle come in the early 1930s. Severity of Se poisoning depends on chemical forms of the element, species of animals and routes of administration. The soluble Se salts (Na2SeO3 and Na2SeO4) appear to be among the more toxic compounds; the Se inherent in grains and selenoamino acids (selenomethionine and selenocystine) appear to have relative moderate toxicity; the poorly soluble forms (e.g., elemental Se, Na2Se, SeS2 and diphenyl selenide) are among the least toxic of the Se compounds. In general, toxicity of Se compounds are substantially less when they are administered orally than when they are given parenterally. Rosenfeld and Beath described three clinical types of Se intoxication: acute selenosis, subacute selenosis (i.e., blind staggers type), and chronic selenosis (i.e., alkali disease type). Acute poisoning occurs when high Se content plants are consumed in large quantities within short period. Accidental acute poisoning occurs as consequence of errors in formulation of a Se supplemented diet. The most characteristic sign of acute selenosis is garlic breath due to the pulmonary excretion of volatile Se metabolites. Other signs include lethargy, excessive salivation, vomiting, dyspnea, muscle tremors and respiratory distress. Pathological findings are: congestion of the liver and kidney, fatty degeneration and focal necrosis of the liver, endocarditis and myocarditis. Subacute selenosis ("blind staggers") occurs as a consequence of exposure to large doses of Se over a longer period of time and manifests with neurological signs (e.g., blindness, ataxia, disorientation) and respiratory distress. This form of selenosis is most frequently observed in grazing animals that have consumed Se-accumulated plants. Chronic selenosis ("alkali disease") comes

  8. Toxicity of pyrolysis gases from synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Soriano, J. A.; Kosola, K. L.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    The screening test method was used to investigate toxicity in polyethylene, polystyrene, polymethyl methacrylate, polyaryl sulfone, polyether sulfone, polyphenyl sulfone, and polyphenylene sulfide. Changing from a rising temperature program to a fixed temperature program resulted on shorter times to animal responses. This effect was attributed in part to more rapid generation of toxicants. The toxicants from the sulfur containing polymers appeared to act more rapidly than the toxicants from the other polymers. It was not known whether this effect was due primarily to difference in concentration or in the nature of the toxicants. The carbon monoxide concentration found did not account for the results observed with the sulfur containing polymers. Polyphenyl sulfone appeared to exhibit the least toxicity among the sulfur containing polymers evaluated under these test conditions.

  9. Comparative Dietary Toxicities of Pesticides to Birds

    USGS Publications Warehouse

    Heath, R.G.; Spann, J.W.; Hill, E.F.; Kreitzer, J.F.

    1972-01-01

    This report presents measurements of the lethal dietary toxicity of 89 pesticidal chemicals to young bowhites, Japanese quail, ring-necked pheasants, and mallards. Toxicity is expressed as the median lethal concentration (LC 50) of active chemical in a 5-day ad libitum diet. LC 50's and associated statistics are derived by methods of probit analysis. Endrin consistently was the most toxic chemical while aldrin and dieldrin were among the six most toxic chemicals of those tested on all species. In general, organophosphates were less toxic than aldrin or dieldrin and herbicides were of a low order of toxicity. There were obvious inconsistencies in the relative sensitivity of the four species to various chemicals.

  10. Reduced Toxicity Fuel Satellite Propulsion System

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  11. Toxic Leadership in the Military Profession

    DTIC Science & Technology

    2012-01-15

    that, then how do toxic leaders survive and move up? Toxic leaders survive in organizations because service members often fail to speak out about...are not identified is due to the fear of reprisal. If soldiers do speak out against a toxic leader they worry about the unintended consequences...situations. Superior leaders demonstrate lots of energy and are extroverted people with a high level of charisma. Charisma Charismatic leadership is a

  12. Diagnosis and Treatment of Cyanide Toxicity

    DTIC Science & Technology

    2009-02-01

    treat toxic amblyopia and optic neuritises caused by the cyanide present in tobacco smoke.64,65 Hydroxycobalamin therapy is usually well tolerated,44,59...JAN 2009 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Diagnosis and treatment of cyanide toxicity 5a. CONTRACT NUMBER 5b...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Diagnosis and Treatment of Cyanide Toxicity

  13. Comparison of motor performance, brain biochemistry and histology of two A30P α-synuclein transgenic mouse strains.

    PubMed

    Piltonen, M; Savolainen, M; Patrikainen, S; Baekelandt, V; Myöhänen, T T; Männistö, P T

    2013-02-12

    Three point mutations in the SNCA gene encoding α-synuclein (aSyn) have been associated with autosomal dominant forms of Parkinson's disease. To better understand the role of the A30P mutant aSyn, we compared two transgenic mouse strains: a knock-in mouse with an introduced A30P point mutation in the wild-type (WT) gene (Snca(tm(A30P))) and a transgenic (Tg) mouse overexpressing the human A30P aSyn gene under the prion promoter [tg(Prnp-SNCA A30P)]. The brain aSyn load, motor performance, brain dopamine (DA) and sensitivity to 6-hydroxydopamine (6-OHDA) were studied in these mice. aSyn was evidently accumulating with age in all mice, particularly in tg(Prnp-SNCA A30P) Tg mice. There were no robust changes in basal locomotor activities of the mice of either line at 6 months, but after 1 year, tg(Prnp-SNCA A30P) Tg mice developed severe problems with vertical movements. However, the younger Tg mice had a reduced locomotor response to 1mg/kg of d-amphetamine. Snca(tm(A30P)) mice with the targeted mutation (Tm) were slightly hyperactive at all ages. Less 6-OHDA was required in tg(Prnp-SNCA A30P) Tg (1 μg) than in WT (3μg) mice for an ipsilateral rotational bias by d-amphetamine. That was not seen with the Snca(tm(A30P)) strain. A small dose of 6-OHDA (0.33 μg) led to contralateral rotations and elevated striatal DA in Tg/Tm mice of both lines but otherwise 6-OHDA-induced striatal DA depletion was similar in all mice, indicating no A30P-aSyn-related toxin sensitivity. 3,4-Dihydroxyphenylacetic acid/DA-ratio was elevated in tg(Prnp-SNCA A30P) mice, suggesting an enhanced DA turnover. This ratio and homovanillic acid/DA-ratio were declined in Snca(tm(A30P)) mice. Our results demonstrate that the two differently constructed A30P-aSyn mouse strains have distinct behavioral and biochemical characteristics, some of which are opposite. Since the two lines with the same background were not identically produced, the deviations found may be partially caused by factors other

  14. Bridging environmental mixtures and toxic effects

    PubMed Central

    Allan, Sarah E.; Smith, Brian W.; Tanguay, Robert L.; Anderson, Kim A.

    2012-01-01

    BRIDGES is a bioanalytical tool that combines passive sampling with the embryonic zebrafish developmental toxicity bioassay to provide a quantitative measure of the toxicity of bioavailable complex mixtures. Passive sampling devices (PSDs), which sequester and concentrate bioavailable organic contaminants from the environment, were deployed in the Willamette and Columbia Rivers within and outside of the Portland Harbor Superfund site in Portland, Oregon. Six sampling events were conducted in the summer and fall of 2009 and 2010. PSD extracts were analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and screened for 1201 chemicals of concern using deconvolution reporting software. The developmental toxicity of the extracts was analyzed using the embryonic zebrafish bioassay. BRIDGES provided site-specific, temporally resolved information about environmental contaminant mixtures and their toxicity. Multivariate modeling approaches were applied to paired chemical and toxic effects data sets to help unravel chemistry-toxicity associations. Modeling demonstrated a significant correlation between PAH concentrations and the toxicity of the samples and identified a subset of PAH analytes that were the most highly correlated with observed toxicity. Although this research highlights the complexity of discerning specific bioactive compounds in complex mixtures, it demonstrates methods for associating toxic effects with chemical characteristics of environmental samples. PMID:23001962

  15. Tier 3 Toxicity Value White Paper

    EPA Pesticide Factsheets

    The purpose of this white paper is to articulate the issues pertaining to Tier 3 toxicity values and provide recommendations on processes that will improve the transparency and consistency of identifying, evaluating, selecting, and documenting Tier 3 toxicity values for use in the Superfund and Resource Conservation and Recovery Act (RCRA) programs. This white paper will be used to assist regional risk assessors in selecting Tier 3 toxicity values as well as provide the foundation for future regional and national efforts to improve guidance and policy on Tier 3 toxicity values.

  16. Spiking sediment with organochlorines for toxicity testing

    SciTech Connect

    Murdoch, M.H.; Chapman, P.M.; Norman, D.M.; Quintino, V.M.

    1997-07-01

    Sediment toxicity testing integrates responses to sediment variables and hence does not directly indicate cause and effect. One tool for determining cause and effect is sediment spiking, in which relatively uncontaminated sediment is amended with known amounts of contaminants, then tested for toxicity. However, sediment spiking methods vary considerably. The present study details appropriate methodologies (dry and wet spiking) for amending sediments with a range of organic contaminant concentrations, i.e., polychlorinated biphenyl (PCB). Target and actual concentrations were similar. A dose-response was determined, but PCB was not toxic in an acute sediment toxicity test. Chronic testing of these same sediments is reported in a companion article in this issue.

  17. Toxicity evaluation of PAH mixtures using Microtox

    SciTech Connect

    Thompkins, J.; Guthrie, E.; Pfaender, F.

    1995-12-31

    Polycyclic aromatic hydrocarbons (PAH) are produced from both natural and anthropogenic combustion processes. PAHs are known to be toxic and carcinogenic, are prevalent at many hazardous waste sites, and pose a potential risk to both ecological and human health. To date, few researchers have assessed the toxicity of polycyclic aromatic hydrocarbon (PAH) mixtures. The toxicity of chrysene, anthracene, pyrene, phenanthrene, fluoranthrene, acenaphthene, fluorene, and naphthalene were evaluated using Microtox, and acute toxicity assay that uses bioluminescent bacteria, Photobacterium phosphoreum, to measure toxicity. In this study, the toxicities of 2, 3, and 4 ring PAHs were determined for individual compounds. Synergistic or additive effects of PAH mixtures was assessed by comparing the toxicity of mixtures with that of pure compounds. Each PAH or mixture was evaluated at their respective water solubility concentrations, For individual PAHs tested, the toxicity of PAHs is inversely related to water solubility. Mixtures of two and three PAHs with disparate water solubilities resulted in synergistic interactions. Antagonistic interactions, a decrease in toxicity, were observed for mixtures of similar water solubilities.

  18. Streptococcus agalactiae Toxic Shock-Like Syndrome

    PubMed Central

    Al Akhrass, Fadi; Abdallah, Lina; Berger, Steven; Hanna, Rami; Reynolds, Nina; Thompson, Shellie; Hallit, Rabih; Schlievert, Patrick M.

    2013-01-01

    Abstract We present 2 patients with Streptococcus agalactiae toxic shock-like syndrome and review another 11 well-reported cases from the literature. Streptococcal toxic shock-like syndrome is a devastating illness with a high mortality rate, therefore we stress the importance of early supportive management, antimicrobial therapy, and surgical intervention. Toxic shock-like syndrome is likely to be underestimated in patients with invasive Streptococcus agalactiae infection who present with shock. Early diagnosis requires high suspicion of the illness, along with a thorough mucocutaneous examination. Streptococcus agalactiae produces uncharacterized pyrogenic toxins, which explains the ability of the organism to cause toxic shock-like syndrome. PMID:23263717

  19. Acute copper toxicity following copper glycinate injection.

    PubMed

    Oon, S; Yap, C-H; Ihle, B U

    2006-11-01

    We present a patient who developed multi-organ failure due to severe copper toxicity following attempted suicide by s.c. injection of copper glycinate. Acute copper toxicity is rare in the developed world, although it occurs more frequently in developing world countries, where it is a common mode of suicide. Acute toxicity usually results from oral ingestion and there are several local and systemic effects. Specific management can be difficult as there is little evidence regarding the efficacy of chelating agents in acute toxicity.

  20. A case of infantile star anise toxicity.

    PubMed

    Madden, Gregory Russell; Schmitz, Kristine Held; Fullerton, Katherine

    2012-03-01

    Chinese star anise (Illicium verum) is a popular herbal remedy for infantile colic. Contamination with a related species of Japanese star anise (Illicium anisatum) has been related to cases of toxicity in infants. We report the case of a 3-month-old infant girl who presented to the emergency department with signs and symptoms of toxicity after recent star anise ingestion. Her presentation is consistent with other reports of toxicity that include particular gastrointestinal and neurological findings. A discussion of the clinical aspects of star anise toxicity, differential diagnosis, and management follows.

  1. Toxic emissions from open burning.

    PubMed

    Estrellan, Carl Renan; Iino, Fukuya

    2010-06-01

    This review compiled the data from recent actual and simulation studies on toxic emissions from open burning and categorized into sources, broadly as biomass and anthropogenic fuels. Emission factors, in mass of pollutant per mass of material being burned, and actual concentrations, in mass of pollutant per unit volume have been compared based on source classifications. In addition to gaseous emissions, this review presents the updated data on emissions to air in the form of particulate matter, and emissions to soil and water environment. Data from forest fires, accidental fires such as vehicle fires, house fires, and unintentional landfill fires are included in this review as well as combustion involving traditional and recreational activities.

  2. Toxic hazards of underground excavation

    SciTech Connect

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  3. Toxic Factors of Mould Origin

    PubMed Central

    Feuell, A. J.

    1966-01-01

    The chemistry and effects of mycotoxins associated with human and animal foodstuffs are reviewed. The aflatoxins, metabolites of Aspergillus flavus, have been implicated in fatal diseases of farm stock fed on infected peanut cake. Muscarine and the phalloidins are the causative agents in mushroom poisoning. Lysergic acid alkaloids are involved in ergotism. “Yellow rice” toxicity arises from infection with Penicillium islandicum, the active principles being islanditoxin and luteoskyrin. Various species of Penicillium, Aspergillus and Fusarium have been linked with other mycotoxicoses and their metabolites characterized. Several fungal metabolites are active hepatotoxins or carcinogens, and the possible etiological significance of mouldy foods is briefly considered, especially in relation to the high incidence of tropical liver disease. Better agricultural practices and more stringent testing to control and detect fungal contamination are advocated. PMID:5948367

  4. [Cardiac toxicity of 5-fluorouracil].

    PubMed

    Fournier, C; Benahmed, M; Blondeau, M

    1989-02-01

    A 67 year-old patient receives 5-fluorouracil for vocal chord cancer. During the perfusion, atypical angina pain occurs, accompanied with offset of ST above the baseline in standard leads and in V4 through V6. The pain subsides spontaneously in 45 minutes. These ECG alterations are followed 48 hours later by diffuse inverted T waves with lengthened QT. Cardiac ultrasonography and isotopic angiography do not show any abnormality of the left ventricular function, but myocardial tomoscintigraphy with labelled thallium show a lower hypofixation on exertion. The cardiac toxicity of 5-fluorouracil is in frequent. It is usually believed that it involves a coronary spasm, as suggested by the ECG tracing in the reported cases. The incident, which may be painful or painless, may result in a myocardial infarction or even sudden death during the perfusion. Therefore, it is advisable to discontinue the treatment as soon as an angina-type pain occurs.

  5. Toxicities of raw Alocasia odora.

    PubMed

    Moon, Jeong Mi; Lee, Byeong Kook; Chun, Byeong Jo

    2011-10-01

    Alocasia, the Araceae family, is a genus of more than 100 species of perennial, herbaceous, diminutive to extremely large, usually robust herbs with a clear-to-milky latex. They are distributed throughout subtropical and tropical Asia and in the tropical western pacific as well as eastern Australia. Despite easy access to A odora, there have been no published reports in English regarding the toxic symptoms following the ingestion of raw A odora. Here, the clinical manifestations of 2 patients that ingested raw A odora are described. Two patients experienced oral numbness and intractable tongue pain, and 1 patient required endotracheal intubation because of upper respiratory tract obstruction. Although conservative treatment is the primary approach to A odora poisoning, physicians should be aware of the potential for upper respiratory obstruction in patients exposed to A odora, as well as the need for controlling tongue pain.

  6. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells.

  7. CHARACTERIZATION AND ISOLATION OF ORGANIC TOXICANTS IN WHOLE SEDIMENT TOXICITY INDENTIFICATION EVALUATIONS (TIES)

    EPA Science Inventory

    Development of whole sediment toxicity identification and evaluation (TIEs) methods has been under way for approximately four years. These methods are necessary to define cause and effect relationships in toxic sediments during ecological risk assessments, remediation and disposa...

  8. Profiling the reproductive toxicity of chemicals from multigeneration studies in the toxicity reference database

    EPA Science Inventory

    Multigeneration reproduction studies are used to characterize parental and offspring systemic toxicity, as well as reproductive toxicity of pesticides, industrial chemicals and pharmaceuticals. Results from 329 multigeneration studies on 316 chemicals have been digitized into sta...

  9. Triterpenes of toxic and non-toxic taxa of Lantana camara.

    PubMed

    Hart, N K; Lamberton, J A; Sioumis, A A; Suares, H; Seawright, A A

    1976-04-15

    The taxa of Lantana camara toxic to animals contain lantadene A lantadene B, whereas in two non-toxic taxa other triterpenes predominate. Several new triterpenes have been characterized. Contrary to earlier claims, lantadene A and to a lesser extent lantadene B are toxic when administered intraruminally to sheep.

  10. DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK

    EPA Science Inventory

    A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...

  11. Neuroprotective effects of nicotinamide N-methyltransferase and its metabolite 1-methylnicotinamide.

    PubMed

    Milani, Zeinab H; Ramsden, David B; Parsons, Richard B

    2013-09-01

    Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) catalyses the N-methylation of nicotinamide to 1-methylnicotinamide (MeN). We have previously shown that the ectopic expression of NNMT in SH-SY5Y human neuroblastoma cells increased adenosine triphosphate synthesis and complex I activity, effects of which were replicated by the addition of MeN. In this study, we investigated whether NNMT expression in SH-SY5Y conferred protection against mitotoxicity induced by rotenone, potassium cyanide (KCN), 2,4-dinitrophenol, and 6-hydroxydopamine, and whether any effects observed were mediated via increased MeN production. NNMT expression abolished the toxic effects of KCN, 2,4-dinitrophenol, and 6-hydroxydopamine, and reduced that of rotenone. In contrast, although MeN significantly reduced the toxicity of rotenone, it had no effect upon the toxicity of KCN, 2,4-dinitrophenol, and 6-hydroxydopamine. These data show that NNMT is cytoprotective against toxins that inhibit various aspects of mitochondrial function, and that these are not mediated solely via increased MeN production, but in combination with other unidentified mechanisms.

  12. Toxicity of Ordnance Wastes in Aquatic Environments

    DTIC Science & Technology

    1976-01-30

    Pacific Northwest Laboratory, Corvallis, Ore. 82 pp. Crosby, D.G., R.K. Tucker, and N. Aharonson. 1966. The detection of acute toxicity with Daphnia ... magna . Fd. Cosmet. Toxicol. 4:503-514. Dacre, 1. and R.W. Tew. 1973. Mammalian toxicology and toxicity to aquatic organisms of nitroglycerine, a

  13. America's Poisoned Playgrounds: Children and Toxic Chemicals.

    ERIC Educational Resources Information Center

    Freedberg, Louis

    Next to chemical and farm workers, today's children are at the greatest risk from toxic chemicals. Through their normal play activities, children are exposed to a frightening array of toxic hazards, including lead, pesticides, arsenic, and unknown dangers from abandoned landfills and warehouses. Through a series of documented examples, the author…

  14. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  15. Treating the Treatment: Toxicity of Cancer Chemotherapy

    PubMed Central

    Plenderleith, Ian H.

    1990-01-01

    Many cancer chemotherapeutic agents can produce toxicity, even at the usual therapeutic doses. Family physicians are often called upon to treat symptoms of these toxicities and to advise patients about them. This brief discussion may help family physicians to anticipate some of the problems, to avoid some, and to manage others more effectively. PMID:21234006

  16. MISFIT BETWEEN SEDIMENT TOXICITY AND CHEMISTRY

    EPA Science Inventory

    In the United States, the EPA EMAP-Estuaries Program and the NOAA Bioeffects Surveys provide large data sets with which to test prosed relationships between sediment chemistry and toxicity. The conclusion is that no chemical measurement reliably predicts sediment toxicity. These ...

  17. 40 CFR 798.2250 - Dermal toxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clinical abnormalities, gross lesions, identified target organs, body weight changes, effect on mortality... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Subchronic Exposure § 798.2250 Dermal toxicity. (a) Purpose. In...-observed-effect level and toxic effects associated with continuous or repeated exposure to a test...

  18. 40 CFR 798.2250 - Dermal toxicity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clinical abnormalities, gross lesions, identified target organs, body weight changes, effect on mortality... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Subchronic Exposure § 798.2250 Dermal toxicity. (a) Purpose. In...-observed-effect level and toxic effects associated with continuous or repeated exposure to a test...

  19. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  20. Comprehension of drug toxicity: software and databases.

    PubMed

    Toropov, Andrey A; Toropova, Alla P; Raska, Ivan; Leszczynska, Danuta; Leszczynski, Jerzy

    2014-02-01

    Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool (in silico) to rapidly predict various endpoints in general, and drug toxicity in particular. However, this dynamic evolution of experimental data (expansion of existing experimental data on drugs toxicity) leads to the problem of critical estimation of the data. The carcinogenicity, mutagenicity, liver effects and cardiac toxicity should be evaluated as the most important aspects of the drug toxicity. The toxicity is a multidimensional phenomenon. It is apparent that the main reasons for the increase in applications of in silico prediction of toxicity include the following: (i) the need to reduce animal testing; (ii) computational models provide reliable toxicity prediction; (iii) development of legislation that is related to use of new substances; (iv) filling data gaps; (v) reduction of cost and time; (vi) designing of new compounds; (vii) advancement of understanding of biology and chemistry. This mini-review provides analysis of existing databases and software which are necessary for use of robust computational assessments and robust prediction of potential drug toxicities by means of in silico methods.

  1. Teach with Databases: Toxics Release Inventory. [Multimedia].

    ERIC Educational Resources Information Center

    Barracato, Jay; Spooner, Barbara

    This curriculum unit provides students with real world applications of science as it pertains to toxic releases into the environment. This boxed package contains the Toxics Release Inventory (TRI) Teacher's Guide, TRI Database Basics guide, comprehensive TRI compact disk with user's guide, "Getting Started: A Guide to Bringing Environmental…

  2. Toxicity of Pesticides. Agrichemical Fact Sheet 2.

    ERIC Educational Resources Information Center

    Hock, Winand K.

    This fact sheet gives the acute oral and dermal toxicity (LD 50) of over 250 pesticides in lab animals. The chemicals are categorized as fungicides, herbicides, insecticides, or miscellaneous compounds. One or more trade names are given for each pesticide. In addition, a brief explanation of toxicity determination is given. (BB)

  3. Save the Bay's "Toxic Diet" Project.

    ERIC Educational Resources Information Center

    Wilder, Diana

    1994-01-01

    Although progress has been made in curbing industrial pollutants in larger communities, small, nonindustrial communities lack strategies for reducing unregulated toxic sources to the influent stream. This article outlines one environmental organization's model for reducing these toxic sources that can be used to help small communities nationwide.…

  4. INTERNATIONAL SOURCE WATER TOXICITY MONITORING CONSORTIUM

    EPA Science Inventory

    Many researchers in the field of time-relevant, on-line toxicity monitors for source water protection believe that some mechanism to guide and prioritize research in this emerging field would be beneficial. On-line toxicity monitors are tools designed to screen water quality and ...

  5. BIOEQUIVALENCE APPROACH FOR WHOLE EFFLUENT TOXICITY TESTING

    EPA Science Inventory

    Increased use of whole effluent toxicity (WET) tests in the regulatory arena has brought increased concern over the statistical analysis of WET test data and the determination of toxicity. One concern is the issue of statistical power. A number of WET tests may pass the current...

  6. The facts about sunn hemp toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunn hemp (Crotalaria juncea L.) is an annual plant widely grown in the tropics. The genus Crotalaria includes some species known to be toxic to animals. Development of seed producing cultivars for the continental USA at Auburn University, AL, has raised the question if its seed and forage are toxic...

  7. Copper toxicity in aquaculture: A practical approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate is used as a therapeutant for various applications in aquaculture. There is a great deal of information on the toxicity of copper, especially in low-alkalinity waters; however, much of this information is fragmented, and a comprehensive guide of copper toxicity and safe concentration...

  8. Biological effects of magnetic fluids: toxicity studies

    NASA Astrophysics Data System (ADS)

    Lacava, Z. G. M.; Azevedo, R. B.; Martins, E. V.; Lacava, L. M.; Freitas, M. L. L.; Garcia, V. A. P.; Rébula, C. A.; Lemos, A. P. C.; Sousa, M. H.; Tourinho, F. A.; Da Silva, M. F.; Morais, P. C.

    1999-07-01

    Toxicity of ionic and citrate-based magnetic fluids administrated intraperitoneally to mice was investigated through cytogenetic analysis, evaluation of mitotic index and morphological and cytometric alterations. Both magnetic fluid samples cause severe inflammatory reactions, being very toxic and thus not biocompatible. Peritoneal cells and tissues studies may provide a useful strategy to investigate the in vivo biological effects of magnetic nanoparticles.

  9. Chapter 6: Selenium Toxicity to Aquatic Organisms

    EPA Science Inventory

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  10. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... characteristic of toxicity if, using the Toxicity Characteristic Leaching Procedure, test Method 1311 in “Test...-49-2 1.0 D011 Silver 7440-22-4 5.0 D039 Tetrachloroethyl-ene 127-18-4 0.7 D015 Toxaphene 8001-35-2...

  11. The toxicity of inhaled methanol vapors

    SciTech Connect

    Kavet, R.; Nauss, K.M. )

    1990-01-01

    Methanol could become a major automotive fuel in the U.S., and its use may result in increased exposure of the public to methanol vapor. Nearly all of the available information on methanol toxicity in humans relates to the consequences of acute, rather than chronic, exposures. Acute methanol toxicity evolves in a well-understood pattern and consists of an uncompensated metabolic acidosis with superimposed toxicity to the visual system. The toxic properties of methanol are rooted in the factors that govern both the conversion of methanol to formic acid and the subsequent metabolism of formate to carbon dioxide in the folate pathway. In short, the toxic syndrome sets in if formate generation continues at a rate that exceeds its rate of metabolism. Current evidence indicates that formate accumulation will not challenge the metabolic capacity of the folate pathway at the anticipated levels of exposure to automotive methanol vapor.117 references.

  12. Toxicities of selected substances to freshwater biota

    SciTech Connect

    Hohreiter, D.W.

    1980-05-01

    The amount of data available concerning the toxicity of various substances to freshwater biota is so large that it is difficult to use in a practical situation, such as environmental impact assessment. In this document, summary tables are presented showing acute and/or chronic toxicity of selected substances for various groups of aquatic biota. Each entry is referenced to its original source so that details concerning experimental conditions may be consulted. In addition, general information concerning factors modifying toxicity, synergisms, evidence of bioaccumulation, and water quality standards and criteria for the selected substances is given. The final table is a general toxicity table designed to provide an easily accessible and general indication of toxicity of selected substances in aquatic systems.

  13. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  14. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  15. Toxicity study of lead naphthenate

    PubMed Central

    Peteghem, Th. Van; Devos, H.

    1974-01-01

    van Peteghem, Th., and de Vos, H. (1974).British Journal of Industrial Medicine,31, 233-238. Toxicity study of lead naphthenate. Lead naphthenate is added to oils and greases in order to increase their resistance to high pressures. Experiments on animals and humans showed the possibility of a small amount of percutaneous absorption. An investigation was performed on technicians regularly dealing with these lubricants in order to explore to what extent they had absorbed the lead naphthenate. The degree of absorption was evaluated by measuring the lead content of the blood and the δ-aminolevulinic acid concentration in the urine. Individual results did not permit clearcut conclusions whether an increase in lead absorption had occured or not. Therefore the group of technicians was compared with a group without any occupational contact with lead-containing lubricants but otherwise comparable in occupational and general exposure to lead. To test the significance of the difference between the means of the samples a one-sided t test not assuming equal standard deviations for both populations was used. For any of two compared populations the t test was repeated after rejection of the larger values which were 2·5 standard deviations from the mean value in the exposed population. It appeared that the lead concentration in the blood and the δ-aminolevulinic acid concentration in the urine of people exposed to lead naphthenate-containing lubricants were significantly higher than those concentrations observed in non-exposed persons. PMID:4416678

  16. Review of Toxic Epidermal Necrolysis

    PubMed Central

    Harris, Victoria; Jackson, Christopher; Cooper, Alan

    2016-01-01

    Toxic epidermal necrolysis (TEN) is a rare but life threatening mucocutaneous reaction to drugs or their metabolites. It is characterised by widespread keratinocyte apoptosis and sloughing of the skin, erosions of the mucous membranes, painful blistering, and severe systemic disturbance. The pathophysiology of TEN is incompletely understood. Historically, it has been regarded as a drug-induced immune reaction initiated by cytotoxic lymphocytes via a human leukocyte antigen (HLA)-restricted pathway. Several mediators have been identified as contributors to the cell death seen in TEN, including; granulysin, soluble Fas ligand, perforin/granzyme, tumour necrosis factor-α (TNF-α), and TNF-related apoptosis-inducing ligand. Currently, granulysin is accepted as the most important mediator of T cell proliferation. There is uncertainty around the accepted management of TEN. The lack of definitive management guidelines for TEN is explained in part by the rarity of the disease and its high mortality rate, which makes it difficult to conduct randomised control trials on emerging therapies. Developments have been made in pharmacogenomics, with numerous HLA alleles identified; however, these have largely been ethnically specific. These associations have translated into screening recommendations for Han Chinese. PMID:27999358

  17. Rapidly Developing Toxic Epidermal Necrolysis

    PubMed Central

    Nielsen, Jonas

    2013-01-01

    Severe cutaneous reactions with potentially fatal outcomes can have many different causes. The Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare. They are characterized by a low incidence but high mortality, and drugs are most commonly implicated. Urgent active therapy is required. Prompt recognition and withdrawal of suspect drug and rapid intervention can result in favourable outcome. No further international guidelines for treatment exist, and much of the treatment relies on old or experimental concepts with no scientific evidence. We report on a 54-year-old man experiencing rapidly developing drug-induced severe TEN and presented multiorgan failure involving the respiratory and circulatory system, coagulopathy, and renal insufficiency. Detachment counted 30% of total body surface area (TBSA). SCORTEN = 5, indicating a mortality rate >90%. The patient was sedated and mechanically ventilated, supported with fluids and inotropes to maintain a stable circulation. Component therapy was guided by thromboelastography (TEG). The patient received plasmapheresis, and shock reversal treatment was initiated. He was transferred to a specialized intensive care burn unit within 24 hours from admittance. The initial care was continued, and hemodialysis was started. Pulmonary, circulatory, and renal sequelae resolved with intensive care, and re-epithelialization progressed slowly. The patient was discharged home on hospital day 19. PMID:24069541

  18. Prevention of Childhood Lead Toxicity.

    PubMed

    2016-07-01

    Blood lead concentrations have decreased dramatically in US children over the past 4 decades, but too many children still live in housing with deteriorated lead-based paint and are at risk for lead exposure with resulting lead-associated cognitive impairment and behavioral problems. Evidence continues to accrue that commonly encountered blood lead concentrations, even those below 5 µg/dL (50 ppb), impair cognition; there is no identified threshold or safe level of lead in blood. From 2007 to 2010, approximately 2.6% of preschool children in the United States had a blood lead concentration ≥5 µg/dL (≥50 ppb), which represents about 535 000 US children 1 to 5 years of age. Evidence-based guidance is available for managing increased lead exposure in children, and reducing sources of lead in the environment, including lead in housing, soil, water, and consumer products, has been shown to be cost-beneficial. Primary prevention should be the focus of policy on childhood lead toxicity.

  19. Lead toxicity in Saccharomyces cerevisiae.

    PubMed

    Van der Heggen, Maarten; Martins, Sara; Flores, Gisela; Soares, Eduardo V

    2010-12-01

    The effect of Pb on Saccharomyces cerevisiae cell structure and function was examined. Membrane integrity was assessed by the release of UV-absorbing compounds and by the intracellular K(+) efflux. No leakage of UV(260)-absorbing compounds or loss of K(+) were observed in Pb (until 1,000 μmol/l) treated cells up to 30 min; these results suggest that plasma membrane seems not to be the immediate and primary target of Pb toxicity. The effect of Pb on yeast metabolism was examined using the fluorescent probe FUN-1 and compared with the ability to reproduce, evaluated by colony-forming units counting. The exposition of yeast cells, during 60 min to 1,000 μmol/l Pb, induces a decrease in the ability to process FUN-1 although the cells retain its proliferation capacity. A more prolonged contact time (120 min) of yeast cells with Pb induces a marked (> 50%) loss of yeast cells metabolic activity and replication competence through a mechanism which most likely requires protein synthesis.

  20. COMT inhibitors and liver toxicity.

    PubMed

    Watkins, P

    2000-01-01

    This paper reviews the issue of hepatotoxicity with the use of the catechol-O-methly transferase (COMT) inhibitors tolcapone and entacapone. Neither drug caused hepatotoxicity in preclinical toxicity testing. However, in clinical trials of tolcapone, liver chemistry tests were elevated more than 3 times above the upper limit of normal in approximately 1% of patients who took the 100 mg dose and in approximately 3% of patients who took the 200 mg dose. These observations led to the recommendation that periodic monitoring of liver function be performed. Post-marketing surveillance studies noted 3 instances of acute liver failure with death after 60,000 patients had received tolcapone for a total of 40,000 patient-years. For this reason, the drug was withdrawn from the market in Europe and Canada, and a black box warning issued in the United States. In contrast, clinical trials with entacapone demonstrated no increase in liver enzymes above those observed with placebo. Further, no instances of acute liver failure or death attributed to the drug have been observed in post-marketing surveillance studies. Consequently, liver monitoring is not required with this agent. These data demonstrate that tolcapone is associated with a risk of hepatotoxicity but that no such risk has been detected with entacapone.

  1. Lead shot toxicity to passerines

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Heinz, G.H.

    2001-01-01

    This study evaluated the toxicity of a single size 7.5 lead shot to passerines. No mortalities or signs of plumbism were observed in dosed cowbirds (Molothrus ater) fed a commercial diet, but when given a more natural diet, three of 10 dosed birds died within 1 day. For all survivors from which shot were recovered, all but one excreted the shot within 24 h of dosing, whereas, the dead birds retained their shot. Shot erosion was significantly greater (P < 0.05) when weathered shot were ingested compared to new shot, and the greatest erosion was observed in those birds that died (2.2-9.7%). Blood lead concentrations of birds dosed with new shot were not significantly different (P=0.14) from those of birds exposed to weathered shot. Liver lead concentrations of birds that died ranged from 71 to 137 ppm, dry weight. Despite the short amount of time the shot was retained, songbirds may absorb sufficient lead to compromise their survival.

  2. Toxic congener-specific analysis of PCBs: assessment of toxicity in equivalents of TCDD

    SciTech Connect

    Olafsson, P.G.; Bryan, A.M.

    1987-01-01

    High resolution capillary gas chromatographic analysis of the polychlorobiphenyls (PCBs) present in snapping turtle eggs, provided quantitative data on selected toxic congeners. The concentrations of these congeners have been converted into equivalent toxic concentrations of 2,3,7,8-tetrachloro-p-dibenzodioxin (TCDD). The toxic equivalent factors (TEFs), necessary to effect this transformation were derived from EC/sub 50/ values (half the concentration of the toxic congener required to produce the maximum effect) for aryl hydrocarbon hydroxylase (AHH) induction associated with the corresponding toxic PCB congener or isomer. Summation of the resulting toxic equivalents provided a composite assessment of the toxicity of the PCB mixture in terms of an equivalent concentration of TCDD.

  3. Alternative acute oral toxicity assessment under REACH based on sub-acute toxicity values.

    PubMed

    Gissi, Andrea; Louekari, Kimmo; Hoffstadt, Laurence; Bornatowicz, Norbert; Aparicio, Alberto Martin

    2016-11-08

    The REACH Regulation requires information on acute oral toxicity for substances produced or imported in quantities greater than one tonne per year. When registering, animal testing should be used as last resort. The standard acute oral toxicity test requires use of animals. Therefore, the European Chemicals Agency examined whether alternative ways exist to generate information on acute oral toxicity. The starting hypothesis was that low acute oral toxicity can be predicted from the results of low toxicity in oral sub-acute toxicity studies. Proving this hypothesis would allow avoiding acute toxicity oral testing whenever a sub-acute oral toxicity study is required or available and indicates low toxicity. ECHA conducted an analysis of the REACH database and found suitable studies on both acute oral and sub-acute oral toxicities for 1,256 substances. 415 of these substances had low toxicity in the sub-acute toxicity study (i.e. NO(A)EL at or above the classification threshold of 1,000 mg/kg). For 98% of these substances, low acute oral toxicity was also reported (i.e. LD₅₀ above the classification threshold of 2,000 mg/kg). On the other hand, no correlation was found between lower NO(A)ELs and LD₅₀. According to the REACH regulation, this approach for predicting acute oral toxicity needs to be considered as part of a weight of evidence analysis. Therefore, additional sources of information to support this approach are presented. Ahead of the last REACH registration deadline in 2018, ECHA estimates that registrants of about 550 substances can omit the in vivo acute oral study by using this adaptation.

  4. Predicting the toxicity of metal mixtures

    USGS Publications Warehouse

    Balistrieri, Laurie S.; Mebane, Christopher A.

    2013-01-01

    The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout.

  5. Toxic material advisory report - 2-mercaptoethanol

    SciTech Connect

    Bernholc, N. M.; White, O. Jr.; Baloyi, R. S.; Silverstein, B. D.

    1983-03-01

    A review of the animal toxicity data for 2-ME is presented. The results revealed that chronic inhalation exposures at a concentration of 6 mg/m/sup 3/ produced decreased oxygen consumption, lymphopenia, and neutrophilia. Comparison of acute toxicity data for 2-ME with data of structurally similar compounds suggests that 2-ME may be 2.3 times more toxic than butanethiol (TLV = 0.5 ppM), 6.5 times more toxic than ethanethiol, and 6 times more toxic than propanethiol (TLV = 0.5 ppM) via oral administration but may be comparable to propanethiol and less toxic than butanethiol and ethanethiol by the inhalation route of exposure. The TLVs for ethanethiol, methanethiol, and butanethiol were based on discomfort to human volunteers rather than toxicity. Since 2-ME has many effects similar to those of the thiols discussed and its odor threshold falls in the range of other thiols, by analogy the exposure limit for 2-ME should be comparable to the TLVs for butanethiol and ethanethiol. An interim exposure limit (IEL) of 0.5 ppM for a time-weighted average concentration during an 8-hour work shift is recommended. As with other thiols, a nuisance problem due to 2-ME odors and complaints of odor may serve as a primary reason for controlling workplace concentrations.

  6. Acute toxicity of gymnodimine to mice.

    PubMed

    Munday, Rex; Towers, Neale R; Mackenzie, Lincoln; Beuzenberg, Veronica; Holland, Patrick T; Miles, Christopher O

    2004-08-01

    The acute toxicity of the phycotoxin gymnodimine to female Swiss mice by intraperitoneal injection and by oral administration has been determined. Gymnodimine was highly toxic by injection, the LD50 being only 96 microg/kg. Animals either died within 10 min of injection or made a full recovery with no perceptible long-term effects. Gymnodimine was also toxic after oral administration by gavage (LD50 755 microg/kg), but was much less toxic when administered with food. No signs of toxicity were seen in mice voluntarily ingesting food containing gymnodimine at a level sufficient to give a dose of approximately 7500 microg/kg. Pre-treatment with physostigmine or neostigmine protected against injected gymnodimine, suggesting that the latter exerts its toxic effects via blockade of nicotinic receptors at the neuromuscular junction. The low toxicity of gymnodimine when ingested with food suggests that this compound is of low risk to humans, a conclusion that is consonant with anecdotal evidence for the absence of harmful effects in individuals consuming shellfish contaminated with gymnodimine.

  7. Svarna - vanga - a short duration toxicity study.

    PubMed

    Sharma; Gyaneshwar; Joshi, D; Aryya, N C; Pandey, V B

    1985-10-01

    Swarna - Vanga, an Ayurvedic preparation, is used in the treatment mainly of Pramehas (genitor urinary and metabolic disorders), Sveta Pradara (Leucorrhoea), Kasa - Swasa (Respiratory disorders), etc. The drug contains tin and sulphur as major components along with traces of mercury, iron and aluminum. According to modern point of view certain metals have been claimed toxic to both human and animal. Since Svarna - Vanga contains these metals, it is essential to screen out its toxic effect, if any, although it is claimed in Ayurveda that when a metal is processed as prescribed, it become non - toxic or the least toxic. Considering the above facts, an animal experiment was carried out for short duration (14 days) to screen the toxic effects of Svarna - Vanga (SV) in increasing doses of the drug starting from the maximum therapeutic dose (12.5 mg / 100 gm b.wt / day). The drug was found to have no toxic effects in tissues of the animal at doses of 12.5 mg and 25 mg / 100 gm b.wt. / day. Fine fatty vacuolization in liver and focal superficial mucosal degeneration and necrosis of small intestine confined to one animal each at dose of 50 mg / 100gm b.wt. and 100 mg/ 100 gm. b.wt. / day were observed. Our study indicates that the drug has no toxic effect on tissues at therapeutic dose.

  8. Toxicity of common ions to marine organisms

    SciTech Connect

    Pillard, D.A.; DuFresne, D.L.; Evans, J.

    1995-12-31

    Produced waters from oil and gas drilling operations are typically very saline, and these may cause acute toxicity to marine organisms due to osmotic imbalances as well as to an excess or deficiency of specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow (Cyprinodon variegatus), and inland silverside (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Organisms were exposed for 48 hours. Individual ions (sodium, potassium, calcium, magnetsium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that the salinity of the test solution may play an important role in the responses of the organisms to the produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in a produced water is a result of common ions, salinity, or some other unknown toxicant.

  9. Automated Test Systems for Toxic Vapor Detectors

    NASA Technical Reports Server (NTRS)

    Mattson, C. B.; Hammond, T. A.; Schwindt, C. J.

    1997-01-01

    The NASA Toxic Vapor Detection Laboratory (TVDL) at the Kennedy Space Center (KSC), Florida, has been using Personal Computer based Data Acquisition and Control Systems (PCDAS) for about nine years. These systems control the generation of toxic vapors of known concentrations under controlled conditions of temperature and humidity. The PCDAS also logs the test conditions and the test article responses in data files for analysis by standard spreadsheets or custom programs. The PCDAS was originally developed to perform standardized qualification and acceptance tests in a search for a commercial off-the-shelf (COTS) toxic vapor detector to replace the hydrazine detectors for the Space Shuttle launch pad. It has since become standard test equipment for the TVDL and is indispensable in producing calibration standards for the new hydrazine monitors at the 10 part per billion (ppb) level. The standard TVDL PCDAS can control two toxic vapor generators (TVG's) with three channels each and two flow/temperature/humidity (FIFH) controllers and it can record data from up to six toxic vapor detectors (TVD's) under test and can deliver flows from 5 to 50 liters per minute (L/m) at temperatures from near zero to 50 degrees Celsius (C) using an environmental chamber to maintain the sample temperature. The concentration range for toxic vapors depends on the permeation source installed in the TVG. The PCDAS can provide closed loop control of temperature and humidity to two sample vessels, typically one for zero gas and one for the standard gas. This is required at very low toxic vapor concentrations to minimize the time required to passivate the sample delivery system. Recently, there have been several requests for information about the PCDAS by other laboratories with similar needs, both on and off KSC. The purpose of this paper is to inform the toxic vapor detection community of the current status and planned upgrades to the automated testing of toxic vapor detectors at the Kennedy

  10. T3DB: the toxic exposome database

    PubMed Central

    Wishart, David; Arndt, David; Pon, Allison; Sajed, Tanvir; Guo, An Chi; Djoumbou, Yannick; Knox, Craig; Wilson, Michael; Liang, Yongjie; Grant, Jason; Liu, Yifeng; Goldansaz, Seyed Ali; Rappaport, Stephen M.

    2015-01-01

    The exposome is defined as the totality of all human environmental exposures from conception to death. It is often regarded as the complement to the genome, with the interaction between the exposome and the genome ultimately determining one's phenotype. The ‘toxic exposome’ is the complete collection of chronically or acutely toxic compounds to which humans can be exposed. Considerable interest in defining the toxic exposome has been spurred on by the realization that most human injuries, deaths and diseases are directly or indirectly caused by toxic substances found in the air, water, food, home or workplace. The Toxin-Toxin-Target Database (T3DB - www.t3db.ca) is a resource that was specifically designed to capture information about the toxic exposome. Originally released in 2010, the first version of T3DB contained data on nearly 2900 common toxic substances along with detailed information on their chemical properties, descriptions, targets, toxic effects, toxicity thresholds, sequences (for both targets and toxins), mechanisms and references. To more closely align itself with the needs of epidemiologists, toxicologists and exposome scientists, the latest release of T3DB has been substantially upgraded to include many more compounds (>3600), targets (>2000) and gene expression datasets (>15 000 genes). It now includes extensive data on ‘normal’ toxic compound concentrations in human biofluids as well as detailed chemical taxonomies, informative chemical ontologies and a large number of referential NMR, MS/MS and GC-MS spectra. This manuscript describes the most recent update to the T3DB, which was previously featured in the 2010 NAR Database Issue. PMID:25378312

  11. RESULTS OF APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation TIE) methods for contaminated sediments and are focusing on three toxicant groups (amm...

  12. Enhanced toxic cloud knockdown spray system for decontamination applications

    SciTech Connect

    Betty, Rita G.; Tucker, Mark D.; Brockmann, John E.; Lucero, Daniel A.; Levin, Bruce L.; Leonard, Jonathan

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  13. APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS

    EPA Science Inventory

    Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation (TIE) methods for contaminated sediments and focusing on three toxicant groups (ammoni...

  14. Final Recommendations of the Air Toxics Work Group

    EPA Pesticide Factsheets

    The Air Toxics Workgroup was organized under the Clean Air Act Advisory Committee for the purpose of discussing and identifying recommendations related to Urban Air Toxics. The workgroup is part of the Permits, New Source Review and Toxics Subcommittee.

  15. Decreased behavioral response to intranigrally administered GABAA agonist muscimol in the lactacystin model of Parkinson's disease may result from partial lesion of nigral non-dopamine neurons: comparison to the classical neurotoxin 6-OHDA.

    PubMed

    Konieczny, Jolanta; Czarnecka, Anna; Kamińska, Kinga; Lenda, Tomasz; Nowak, Przemysław

    2015-04-15

    Lactacystin is a selective UPS inhibitor recently used to destroy dopamine (DA) neurons in animal models of Parkinson's disease (PD). However, both in vitro and in vivo studies show discrepancies in terms of the sensitivity of non-DA neurons to its toxicity. Therefore, our study was aimed to examine the toxic effect of intranigral administration of lactacystin on DA and non-DA neurons in the rat substantia nigra (SN), compared to the classic neurotoxin 6-OHDA. Tissue DA levels in the striatum and SN and GABA levels in the SN were also examined. Moreover, behavioral response of nigral GABAA receptors to locally administered muscimol was evaluated in these two PD models. We found that both lactacystin and 6-OHDA induced a strong decrease in DA level in the lesioned striatum and SN but only lactacystin slightly reduced GABA levels in the SN. A stereological analysis showed that both neurotoxins highly decreased the number of DA neurons in the SN, while only lactacystin moderately reduced the number of non-DA ones. Finally, in the lactacystin group, the number of contralateral rotations after intranigrally administrated muscimol was decreased in contrast to the increased response in the 6-OHDA model. Our study proves that, although lactacystin is not a fully selective to DA neurons, these neurons are much more vulnerable to its toxicity. Partial lesion of nigral non-DA neurons in this model may explain the decreased behavioral response to the GABAA agonist muscimol.

  16. [An acute toxicity study of bromantane].

    PubMed

    Bugaeva, L I; Verovskiĭ, V E; Iezhitsa, I N; Spasov, A A

    2000-01-01

    The toxicity of bromantan was evaluated by conventional acute tests (according to Belen'kiĭ) and by the behavioral activity data (according to Irvin). A method of integral graphical representation of the behavioral activity data is suggested, according to which the results are plotted as a "dose trajectory." Using the dose trajectory constructed for bromantan, the levels of therapeutic, toxic, and lethal doses were calculated. It was established that catecholaminergic effects account for the mechanism of therapeutic action of bromantan, while cholinergic effects determine the drug action in toxic doses.

  17. Applicability of Early Indicators of Iron Toxicity

    PubMed Central

    Knasel, Anne L.; Collins-Barrow, Millicent D.

    1986-01-01

    Leukocytosis, blood glucose, vomiting, diarrhea, and abdominal radiograph have been reported as early indicators of toxic serum iron levels. To test the applicability of this battery of five variables, the charts of 64 patients admitted for toxic iron ingestion were reviewed. When these variables were subjected to tests of sensitivity, specificity, and predictive negative and positive values in 42 patients meeting study criteria, they failed to reach statistical significance. Only vomiting was found to approach statistical significance and, therefore, may serve as an early indicator of toxicity. In addition, several epidemiological issues relevant to the study population are discussed. PMID:3795282

  18. Applicability of early indicators of iron toxicity.

    PubMed

    Knasel, A L; Collins-Barrow, M D

    1986-11-01

    Leukocytosis, blood glucose, vomiting, diarrhea, and abdominal radiograph have been reported as early indicators of toxic serum iron levels. To test the applicability of this battery of five variables, the charts of 64 patients admitted for toxic iron ingestion were reviewed. When these variables were subjected to tests of sensitivity, specificity, and predictive negative and positive values in 42 patients meeting study criteria, they failed to reach statistical significance. Only vomiting was found to approach statistical significance and, therefore, may serve as an early indicator of toxicity. In addition, several epidemiological issues relevant to the study population are discussed.

  19. Ranking chemicals based on chronic toxicity data.

    PubMed

    De Rosa, C T; Stara, J F; Durkin, P R

    1985-12-01

    During the past 3 years, EPA's ECAO/Cincinnati has developed a method to rank chemicals based on chronic toxicity data. This ranking system reflects two primary attributes of every chemical: the minimum effective dose and the type of effect elicited at that dose. The purpose for developing this chronic toxicity ranking system was to provide the EPA with the technical background required to adjust the RQs of hazardous substances designated in Section 101(14) of CERCLA or "Superfund." This approach may have applications to other areas of interest to the EPA and other regulatory agencies where ranking of chemicals based on chronic toxicity is desired.

  20. Neural stem cells in lead toxicity.

    PubMed

    Chen, W-W; Zhang, X; Huang, W-J

    2016-12-01

    Lead (Pb) exposure in the early stages of neurodevelopment results in long-lasting alterations that ultimately cognitive function and behaviour. The prime targets of lead toxicity are the multipotent neural stem cells (NSCs). The present review will discuss the basic molecular physiology involved in the toxicity mechanisms induced by lead and its resultant counter effects on nervous system and physiology. The article shall help researchers working in the area to design new drugs and therapeutics for the efficient management of neuro-toxic states especially upon prenatal exposure to lead.

  1. Parkinson's Disease: Is It a Toxic Syndrome?

    PubMed Central

    Gad ELhak, Seham A.; Ghanem, Abdel Aziz A.; AbdelGhaffar, Hassan; El Dakroury, Sahar; Salama, Mohamed M.

    2010-01-01

    Parkinson's disease (PD) is one of the neurodegenerative diseases which we can by certainty identify its pathology, however, this confidence disappeares when talking about the cause. A long history of trials, suggestions, and theories tried linking PD to a specific causation. In this paper, a new suggestion is trying to find its way, could it be toxicology? Can we—in the future—look to PD as an occupational disease, in fact, many clues point to the possible toxic responsibility—either total or partial—in causing this disease. Searching for possible toxic causes for PD would help in designing perfect toxic models in animals. PMID:21152209

  2. Hazard index for underground toxic material

    NASA Astrophysics Data System (ADS)

    Smith, C. F.; Cohen, J. J.; McKone, T. E.

    1980-06-01

    Work in the area of hazard indices was reviewed. A geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground is presented. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking water levels; a persistence factor to chracterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  3. Toxicity of Engineered Nanoparticles in the Environment

    PubMed Central

    Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Murphy, Catherine J.; Haynes, Christy L.

    2014-01-01

    While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address. PMID:23427995

  4. Olanzapine overdose presenting with acute muscle toxicity

    PubMed Central

    Keyal, Niraj; Shrestha, Gentle Sunder; Pradhan, Saurabh; Maharjan, Ramesh; Acharya, Subhash Prasad; Marhatta, Moda Nath

    2017-01-01

    Olanzapine is an atypical antipsychotic drug that is being increasingly used as an intentional overdose. It usually presents with reduced and fluctuating level of consciousness and coma. It may rarely present with muscle toxicity by binding to HT2A receptor in skeletal muscle and increasing its permeability. We report a case of such poisoning which had no obvious symptoms but was brought to emergency due to overdose and was found to have acute muscle toxicity as evidenced by raised creatine phosphokinase (CPK) levels. From this, we also want to emphasize that CPK levels should be checked in all the patient's prescribed olanzapine to look for muscle toxicity.

  5. Toxicity following laundry detergent pod ingestion.

    PubMed

    Schneir, Aaron B; Rentmeester, Landen; Clark, Richard F; Cantrell, F Lee

    2013-06-01

    Laundry detergent pods (LDPs) have only recently become available in the United States, and there has been increasing concern regarding pediatric ingestions of them. We describe a 15-month-old female infant who ingested an LDP and had a depressed level of consciousness, metabolic acidosis, pulmonary toxicity, and swallowing difficulties. It is currently unclear what the exact etiologic agent(s) is responsible for the toxicity associated with LDPs. The case demonstrates the potential for significant toxicity following the ingestion of an LDP. Clearly, measures should be taken to avoid ingestions of these products.

  6. Oregon's Toxic Household Products Law.

    PubMed

    Neumann, C M; Giffin, S; Hall, R; Henderson, M; Buhler, D R

    2000-01-01

    In 1991, Oregon became the first state in the U.S. to require the addition of an aversive agent to ethylene glycol-containing antifreeze and methanol-containing windshield wiper fluid. This new law, entitled "Toxic Household Products (THP) Act," was designed to reduce pediatric and animal poisonings from accidental ingestion of these two potentially lethal consumer automotive products. While not the stated intention of the law, addition of aversive agents to consumer automotive products could also reduce adult poisonings associated with intentional (suicides or alcoholics ingesting methanol-containing windshield wiper fluid) or accidental exposures. This law went into effect April 30, 1995, following settlement of a lawsuit brought by the Chemical Manufacturing Specialties Association (CSMA), a trade group representing the five largest manufacturers of ethylene glycol-based antifreeze in the U.S. This paper discusses the major policy issues that arose following the passage of Oregon's THP Act. Major provisions of the law are provided along with a discussion of CSMA's opposition to the Act's implementation. A description of the eventual settlement that was reached with CSMA as well as the major components of Oregon Health Division's (OHD) enforcement program are also highlighted. Data are presented for 1987 through 1998 on the number of exposures and severity of effects for pediatric cases (children < 6 years old) following exposure to both of these potentially lethal automotive products. However, because of the low incidence of exposures each year, these data are insufficient to draw any conclusions on the impact of the THP Act.

  7. Toxicity of amphetamines: an update.

    PubMed

    Carvalho, Márcia; Carmo, Helena; Costa, Vera Marisa; Capela, João Paulo; Pontes, Helena; Remião, Fernando; Carvalho, Félix; Bastos, Maria de Lourdes

    2012-08-01

    Amphetamines represent a class of psychotropic compounds, widely abused for their stimulant, euphoric, anorectic, and, in some cases, emphathogenic, entactogenic, and hallucinogenic properties. These compounds derive from the β-phenylethylamine core structure and are kinetically and dynamically characterized by easily crossing the blood-brain barrier, to resist brain biotransformation and to release monoamine neurotransmitters from nerve endings. Although amphetamines are widely acknowledged as synthetic drugs, of which amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are well-known examples, humans have used natural amphetamines for several millenniums, through the consumption of amphetamines produced in plants, namely cathinone (khat), obtained from the plant Catha edulis and ephedrine, obtained from various plants in the genus Ephedra. More recently, a wave of new amphetamines has emerged in the market, mainly constituted of cathinone derivatives, including mephedrone, methylone, methedrone, and buthylone, among others. Although intoxications by amphetamines continue to be common causes of emergency department and hospital admissions, it is frequent to find the sophism that amphetamine derivatives, namely those appearing more recently, are relatively safe. However, human intoxications by these drugs are increasingly being reported, with similar patterns compared to those previously seen with classical amphetamines. That is not surprising, considering the similar structures and mechanisms of action among the different amphetamines, conferring similar toxicokinetic and toxicological profiles to these compounds. The aim of the present review is to give an insight into the pharmacokinetics, general mechanisms of biological and toxicological actions, and the main target organs for the toxicity of amphetamines. Although there is still scarce knowledge from novel amphetamines to draw mechanistic insights, the long-studied classical

  8. Application of toxicity identification evaluation procedure to toxic industrial effluent in South Korea.

    PubMed

    Ra, Jin-Sung; Jeong, Tae-Yong; Lee, Sun-Hong; Kim, Sang Don

    2016-01-01

    Toxicity identification evaluation (TIE) was applied to the effluent from a pharmaceutical industrial complex, following the US EPA TIE guidelines. The whole effluent toxicity (WET) test found toxicity greater than 16toxic units (TU) in the effluent. Dissolved non-polar organic compounds were identified as the major contributor to the observed toxicity in the TIE manipulations in phases I and II. Among the 48 organic compounds identified, three compounds (i.e., acetophenone, benzoimide, and benzothiazole) were related to the pharmaceutical production procedure; however, no contribution to toxicity was predicted in the compounds. The results of the ECOSAR model, which predicts toxicity, indicated that the alkane compounds caused significant toxicity in the effluent. The toxicity test and heavy metal analysis, which used IC and ICP/MS, identified that particulate and heavy metals, such as Cu and Zn, contributed to the remaining toxicity, except dissolved organics. The results showed the applicability of the TIE method for predicting regional effluents produced by the industrial pharmaceutical complex in this study. Although the location was assumed to be affected by discharge of pharmaceutical related compounds in the river, no correlations were observed in the study. Based on the results, advanced treatment processes, such as activated carbon adsorption, are recommended for the wastewater treatment process in this location.

  9. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  10. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  11. Toxicity Determination of Explosive Contaminated Soil Leachates to Daphnia magna Using an Adapted Toxicity Characteristic Leaching Procedure

    DTIC Science & Technology

    1993-06-01

    An adapted toxicity characteristic leaching procedure was used to determine toxicity of soils to Daphnia magna . Soil samples were collected from U.S...vol/vol). Contaminated boils, Munition residues, Daphnia magna , EC50 Toxicity.

  12. USE OF TOXICITY IDENTIFICATION EVALUATION METHODS TO CHARACTERIZE IDENTIFY, AND CONFIRM HEXAVALENT CHROMIUM TOXICITY IN AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...

  13. Mitochondria as a Target of Environmental Toxicants

    PubMed Central

    Meyer, Joel N.

    2013-01-01

    Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria. PMID:23629515

  14. Warmer Waters May Mean More Toxic Shellfish

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_162947.html Warmer Waters May Mean More Toxic Shellfish New scientific tool ... in shellfish to ocean conditions caused by warm water phases of natural climate event cycles," said study ...

  15. Toxic Substances; Mesityl Oxide; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule establishing testing requirements under section 4(a) of the Toxic Substances Control Act (TSCA) for manufacturers and processors of mesityl oxide (MO; CAS No. 141-97-7).

  16. [Acute toxic hepatitis due to drinking water].

    PubMed

    Martínez Amate, Eva; Rodríguez Manrique, Marco A; González Sánchez, Mercedes; Casado Martin, Marta

    2010-11-01

    Toxic-induced liver disease is uncommon, although the true proportion of cases of hepatotoxicity is unknown, as this entity is underdiagnosed and underreported. The main reasons why toxic-induced liver disease goes unnoticed is the lack of pathognomonic data and the lack of spontaneous reporting by doctors and pharmacists. In some cases, the toxic substance can leave its «signature» in the form of clinical semiology suggestive of an underlying toxic cause. We present a case of hepatotoxicity induced by drinking water (chlorinated), which produced a reactive metabolites syndrome (trihalomethanes from the reaction of chlorine with organic products). Although the clinical presentation was typical, the case posed a diagnostic challenge for the various professionals involved.

  17. SYSTEMIC TOXIC REACTIONS TO LOCAL ANESTHETICS

    PubMed Central

    Moore, Daniel C.; Green, John

    1956-01-01

    The topical use of anesthetic agents involves an element of risk. Systemic toxic reactions are rare, but they do occur and may result in death. When a reaction occurs from a topical application, it usually progresses rapidly to respiratory and cardiovascular collapse, and thus therapy must be instituted with more haste to avoid deaths. Fatal systemic toxic reactions from topically administered anesthetic drugs are, in effect, usually not due to well informed use of the drug but to misuse owing to less than complete understanding of absorption. Emphasis is placed on the causes, prophylaxis and treatment of severe systemic toxic reactions which follow the topical application of local anesthetic drugs. If systemic toxic reactions resulting from a safe dose of a local anesthetic agent are correctly treated, there will usually follow an uneventful recovery rather than a catastrophe. PMID:13343009

  18. Unknown toxic exposures. Arts and crafts materials.

    PubMed

    Grabo, T N

    1997-03-01

    1. Arts and crafts material containing toxic chemicals have been found to be hazardous to human health. 2. Artists/craftspersons, who also may be employed in industry, often are unaware or not adequately informed about the toxic nature of many art products. 3. The occupational health nurse is in a critical position to identify and monitor the worker exposed to toxic chemicals both in the workplace and at home/art studio. 4. Education about hazardous substances can prevent illness or injury. With expertise in public health, occupational health nurses are in a key position to provide community education about the dangers of toxic art materials to the general public and the health care community.

  19. Poultry litter toxicity comparison from various bioassays

    SciTech Connect

    Gupta, G.; Kelly, P. )

    1992-01-01

    Poultry litter contains many toxic chemicals including Cu, As, Pb, Cd, Hg, Se and PCBs. Poultry litter leachate has been shown to be more toxic to marine luminescent organisms (Photobacterium phosphoreum) than other farm animal manures. A comparison of toxicity of the poultry litter leachate was undertaken using various bioassays. The EC{sub 50} (or LC{sub 50}) value for the leachate with the Microtox and Daphnia bioassays was 2.9 g/L/ Nitrobacter and Pseudomonas bioassays were not useful in determining the leachate toxicity because of the nutritional properties of the litter. Poultry litter leachate was found to be mutagenic to strains TA 97, TA 98, TA 100 and TA 102 using the Ames Test.

  20. Using Toxicity Tests in Ecological Risk Assessment

    EPA Pesticide Factsheets

    Toxicity tests are used to expose test organisms to a medium-water, sediment, or soil-and evaluate the effects of contamination on the survival, growth, reproduction, behavior and or other attributes of these organisms.