Science.gov

Sample records for 6-hydroxydopamine 6-ohda-lesioned rats

  1. The involvement of RGS9 in l-3,4-dihydroxyphenylalanine-induced dyskinesias in unilateral 6-OHDA lesion rat model.

    PubMed

    Yin, Lin-Lin; Geng, Xing-Chao; Zhu, Xing-Zu

    2011-11-25

    Chronic dopamine (DA) replacement therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease (PD) often leads to abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia (LID), mediated by DA receptors. However, mechanisms underlying LID occurrence are still unclear. Regulator of G-protein signaling RGS9, a member of the RGS family of GTPase accelerating proteins, is expressed specifically in the striatum, has been reported participated in LID. L-DOPA-induced AIMs can be modeled in rats with 6-hydroxydopamine (6-OHDA) lesions by chronic injection of L-DOPA. Herein, we compared the rotational responses and AIMs in 6-OHDA lesioned rats with L-DOPA/benserazide (10/2.5 mg/kg, once per day, i.p.) administration for 14 days whereas control animals received injections of saline. Furthermore, whether sub-chronic L-DOPA treatment impact RGS9 mRNA or protein expression in 6-OHDA lesion rats were also evaluated. As results shown, rotational behavior was not increased significantly, while an obvious AIMs were observed in rats with L-DOPA/benserazide (10/2.5mg/kg, i.p.) administration sub-chronically. In addition, expressions of RGS9 protein or mRNA analyzed by Western blot or real-time PCR with striatal extracts increased significantly after L-DOPA/benserazide. These data demonstrate that RGS9 expression can be modulated by sub-chronic L-DOPA/benserazide administration and increased RGS9 expression in striatum may be one of the reasons for the side effects such as dyskinesia induced by L-DOPA therapy.

  2. Induction and expression of abnormal involuntary movements is related to the duration of dopaminergic stimulation in 6-OHDA-lesioned rats.

    PubMed

    Papathanou, Maria; Rose, Sarah; McCreary, Andrew; Jenner, Peter

    2011-06-01

    Dyskinesia induction in Parkinson's disease (PD) appears less marked with long-acting dopamine agonists than with short-acting L-Dopa, but the relationship to duration of drug action is unknown. It is also unclear whether the duration of drug action affects the expression of established dyskinesia. This study compared the ability of L-Dopa and four dopamine agonists of different duration of action to induce abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats, and their ability to express established AIMs following prior exposure to L-Dopa. 6-OHDA-lesioned rats were treated with saline, L-Dopa/benserazide, apomorphine, ropinirole, pramipexole or pergolide once daily for 15 days. Repeated administration of the short-acting dopamine agonists, apomorphine (duration 80 min) and ropinirole (duration 90 min) induced marked axial, limb and orolingual AIMs at peak effect. L-Dopa (duration 100 min) produced moderate AIMs at peak effect, while administration of the long-acting dopamine agonists, pramipexole (duration 150 min) and pergolide (duration 240 min) resulted in mild AIMs. In rats primed to exhibit severe AIMs following repeated L-Dopa administration, acute administration of apomorphine, ropinirole and L-Dopa induced severe AIMs. By contrast, pramipexole and pergolide evoked only mild-moderate AIMs. Again, there was a negative correlation between duration of effect and the severity of AIMs expressed. These studies show that both the induction and expression of AIMs in 6-OHDA-lesioned rats are related to the duration of action of dopaminergic drugs. These findings suggest that continuous dopaminergic stimulation could be used both to avoid dyskinesia induction and to improve motor function in late-stage PD when troublesome dyskinesia is evident.

  3. ACTIVATION OF PPAR GAMMA RECEPTORS REDUCES LEVODOPA-INDUCED DYSKINESIAS IN 6-OHDA-LESIONED RATS

    PubMed Central

    Martinez, A. A.; Morgese, M. G.; Pisanu, A.; Macheda, T.; Paquette, M. A.; Seillier, A.; Cassano, T.; Carta, A.R.; Giuffrida, A.

    2014-01-01

    Long-term administration of L-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson’s disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb and oro-facial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) [1]. In this study, we showed that stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268 and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa antiparkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID. PMID:25486547

  4. Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats.

    PubMed

    Martinez, A A; Morgese, M G; Pisanu, A; Macheda, T; Paquette, M A; Seillier, A; Cassano, T; Carta, A R; Giuffrida, A

    2015-02-01

    Long-term administration of l-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson's disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb, and orofacial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that the direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) (Morgese et al., 2007). In this study, we showed that the stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that the direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268, and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa anti-parkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID.

  5. Use of [18F]FDOPA-PET for in vivo evaluation of dopaminergic dysfunction in unilaterally 6-OHDA-lesioned rats

    PubMed Central

    2011-01-01

    Background We evaluated the utility of L-3,4-dihydroxy-6-[18F]fluoro-phenylalanine ([18F]FDOPA) positron emission tomography (PET) as a method for assessing the severity of dopaminergic dysfunction in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats by comparing it with quantitative biochemical, immunohistochemical, and behavioral measurements. Methods Different doses of 6-OHDA (0, 7, 14, and 28 μg) were unilaterally injected into the right striatum of male Sprague-Dawley rats. Dopaminergic functional activity in the striatum was assessed by [18F]FDOPA-PET, measurement of striatal dopamine (DA) and DA metabolite levels, tyrosine hydroxylase (TH) immunostaining, and methamphetamine-induced rotational testing. Results Accumulation of [18F]FDOPA in the bilateral striatum was observed in rats pretreated with both aromatic L-amino acid decarboxylase and catechol-O-methyltransferase (COMT) inhibitors. Unilateral intrastriatal injection of 6-OHDA produced a significant site-specific reduction in [18F]FDOPA accumulation. The topological distribution pattern of [18F]FDOPA accumulation in the ipsilateral striatum agreed well with the pattern in TH-stained corresponding sections. A significant positive relationship was found between Patlak plot Ki values and striatal levels of DA and its metabolites (r = 0.958). A significant negative correlation was found between both Ki values (r = -0.639) and levels of DA and its metabolites (r = -0.719) and the number of methamphetamine-induced rotations. Conclusions Ki values determined using [18F]FDOPA-PET correlated significantly with the severity of dopaminergic dysfunction. [18F]FDOPA-PET makes it possible to perform longitudinal evaluation of dopaminergic function in 6-OHDA-lesioned rats, which is useful in the development of new drugs and therapies for Parkinson's disease (PD). PMID:22214344

  6. Effects of Cultured Adrenal Chromaffin Cell Implants on Hindlimb Reflexes of the 6-OHDA Lesioned Rat

    PubMed Central

    Pulford, Bruce E.; Mihajlov, Andrea R.; Nornes, Howard O.; Whalen, L. Ray

    1994-01-01

    The effects of implantation of cultured adrenal medullary cells on the recovery of neurotransmitter specific reflex activity were studied in the rat spinal cord using electrophysiological testing methods. Cell suspensions of cultured neonatal adrenal medullary chromaffin (AM) cells (which produce catecholamines), or Schwann (Sc) cells (controls) were implanted into the lumbar region of the spinal cord 2 weeks after catecholamine (CA) denervation by intracisternal injection of 6-hydroxydopamine (6-OHDA). All cells were taken from 7 day neonates and cultured for 10 days in the presence of nerve growth factor (NGF). Three months after implantation, the extent of implant-associated recovery of reflex activity was determined by measuring electromyogram (EMG) activity and force associated with the long latency component of the hindlimb withdrawal reflex (which is CA modulated). After the electrophysiological testing, rats were anesthetized, and the spinal cords were rapidly removed and frozen. Spinal cords were sectioned longitudinally, and implanted cells were visualized using glyoxylic acid techniques. Labelled sections were examined to determine cell survival. Results indicate that 1) chromaffin cells survive for 3 months in the segments of the cord into which they have been implanted and 2) rats implanted with AM cells have significantly more forceful withdrawal reflexes than those that received Sc cells or received no implant after lesioning. PMID:7703294

  7. Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD).

    PubMed

    Caballero, Miguel; Núñez, Fabiana; Ahern, Siobhán; Cuffí, Maria L; Carbonell, Lourdes; Sánchez, Silvia; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2011-04-20

    Nowadays the pharmacological treatment of the attention deficit hyperactivity disorder (ADHD) is based on amphetamine derivatives (i.e. methylphenidate). However, these drugs induce a large array of adverse side effects, thus less aggressive psychostimulant drugs (i.e. caffeine) are being proposed in the management of ADHD. Following this tendency, we decided to study the possible therapeutic use of caffeine in an animal model of ADHD, namely the neonatal 6-hydroxy-dopamine (6-OHDA)-lesioned rat. Therefore, at postnatal day 7 rats were lesioned at the left striatum with 6-OHDA or with saline. Thereafter, at postnatal day 25 their activity and attention were measured with the Olton maze before caffeine was administered ad libitum in the drinking water. Next, after 14 days of caffeine treatment, we repeated these measurements to assess the effect of caffeine on motor activity and attention deficit. Interestingly, while no changes in the motor activity measurements were observed before and after caffeine administration, a significant improvement in the attention deficit of the 6-OHDA lesioned rats was achieved after caffeine treatment. Thus, our results led us to hypothesize that caffeine might be useful to manage the attention deficit during the prepubertal period of ADHD.

  8. L-DOPA-induced dyskinesia in adult rats with a unilateral 6-OHDA lesion of dopamine neurons is paralleled by increased c-fos gene expression in the subthalamic nucleus.

    PubMed

    Soghomonian, Jean-Jacques

    2006-05-01

    Levodopa (L-DOPA), the metabolic precursor of dopamine, is widely used as a pharmacological agent for the symptomatic treatment of Parkinson's disease. However, long-term L-DOPA use results in abnormal involuntary movements such as dyskinesias. There is evidence that abnormal cell signaling in the basal ganglia is involved in L-DOPA-induced dyskinesia. The subthalamic nucleus (STN) plays a key role in the circuitry of the basal ganglia and in the pathophysiology of Parkinson's disease. However, the contribution of the STN to L-DOPA-induced dyskinesias remains unclear. The objective of this work was to study the effects of acute or chronic systemic administration of L-DOPA to adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of dopamine neurons on c-fos expression in the STN and test the hypothesis that these effects correlate with L-DOPA-induced dyskinesias. c-fos mRNA expression was measured in the STN by in situ hybridization histochemistry at the single cell level. Our results confirm earlier evidence that the chronic administration of L-DOPA to rats with a unilateral 6-OHDA lesion increases c-fos expression in the STN. We also report that c-fos expression can be increased following an acute injection of L-DOPA to 6-OHDA-lesioned rats but not following a chronic injection of L-DOPA to sham-operated, unlesioned rats. Finally, we provide evidence that the occurrence and severity of dyskinesia is correlated with c-fos mRNA levels in the ipsilateral STN. These results suggest that altered cell signaling in the STN is involved in some of the behavioral effects induced by systemic L-DOPA administration.

  9. Dual effects of intermittent or continuous L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-OHDA lesion.

    PubMed

    Nielsen, Kirsten M; Soghomonian, Jean-Jacques

    2003-09-15

    Intermittent oral doses of levodopa (L-DOPA) are routinely used to treat Parkinson's disease, but with prolonged use can result in adverse motor complications, such as dyskinesia. Continuous administration of L-DOPA achieves therapeutic efficacy without producing this effect, yet the molecular mechanisms are unclear. This study examined, by in situ hybridization histochemistry, the effects of continuous or intermittent L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Results were compared to 6-OHDA-treated rats receiving vehicle. Our results provide original evidence that continuous L-DOPA normalizes the 6-OHDA-lesion-induced increase in mRNA levels encoding for the 67 kDa isoform of glutamate decarboxylase in neurons of the globus pallidus and cytochrome oxidase subunit I mRNA levels in the subthalamic nucleus. The extent of normalization did not differ between the continuous and intermittent groups. In addition, intermittent L-DOPA induced an increase in the mRNA levels encoding for the 65 kDa isoform of glutamate decarboxylase in globus pallidus neurons ipsilateral to the lesion and a bilateral increase in c-fos mRNA expression in the subthalamic nucleus. These results suggest that continuous L-DOPA tends to normalize the 6-OHDA-lesion-induced alterations in cell signaling in the pallido-subthalamic loop. On the other hand, we propose that chronic intermittent L-DOPA exerts a dual effect by normalizing cell signaling in a subpopulation of neurons in the globus pallidus and subthalamic nucleus while inducing abnormal signaling in another subpopulation.

  10. Effect of memantine on L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson's disease.

    PubMed

    Tronci, E; Fidalgo, C; Zianni, E; Collu, M; Stancampiano, R; Morelli, M; Gardoni, F; Carta, M

    2014-04-18

    An increasing body of experimental evidence demonstrates that the glutamatergic system is involved in the genesis of l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID). Indeed, the N-methyl-d-aspartate (NMDA) receptor antagonist amantadine is the only anti-dyskinetic compound used in patients, albeit with limited efficacy and side effects. In this study, we investigated the anti-dyskinetic properties of memantine, a non-competitive NMDA receptor antagonist in clinical use for the treatment of dementia, in the 6-hydroxy-dopamine (6-OHDA)-lesion rat model of Parkinson's disease. For comparison, parallel experiments were also performed with amantadine. First, we investigated the acute effect of different doses of memantine (5, 10, 15 and 20mg/kg), and amantadine (10, 20, 40, 60mg/kg) on established dyskinesia induced by L-DOPA (6mg/kg plus benserazide). Results showed that both memantine and amantadine produced a significant reduction of LID. Afterward, drug-naïve and L-DOPA-primed 6-OHDA-lesioned rats were sub-chronically treated with daily injections of L-DOPA (6mg/kg plus benserazide) alone, or in combination with the effective doses of memantine, while amantadine was tested in already dyskinetic rats. Results showed that memantine significantly dampened dyskinesia in both drug-naïve and L-DOPA-primed rats, but only during the first few days of administration. In fact, the anti-dyskinetic effect of memantine was completely lost already at the fifth administration, indicating a rapid induction of tolerance. Interestingly, a 3-week washout period was not sufficient to restore the anti-dyskinetic effect of the drug. Similarly, amantadine was able to dampen already established dyskinesia only during the first day of administration. Moreover, memantine partially decreased the therapeutic effect of L-DOPA, as showed by the result of the stepping test. Finally, loss of the anti-dyskinetic effect of memantine was associated to increased synaptic GluN2A/GluN2B

  11. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    PubMed

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  12. Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors, including pro-inflammatory cytokines and histone deacetylase inhibitions.

    PubMed

    Machado-Filho, João Ananias; Correia, Alyne Oliveira; Montenegro, Anyssa Brilhante Aires; Nobre, Maria Elizabeth Pereira; Cerqueira, Gilberto Santos; Neves, Kelly Rose Tavares; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Esper Abrão; de Castro Brito, Gerly Anne; de Barros Viana, Glauce Socorro

    2014-05-01

    Several lines of evidences have shown the inversion association between coffee consumption and Parkinson's disease (PD) development. Caffeine is a methylxanthine known as a non-selective inhibitor of A2A and A1 adenosine receptors in the brain and shown to be a neuroprotective drug. The objectives were to study caffeine effects in a unilateral 6-OHDA model of PD in rats. Male rats were divided into the following groups: sham-operated (SO), striatal 6-OHDA-lesioned and 6-OHDA-lesioned and treated for 2 weeks with caffeine (10 and 20mg/kg, p.o.). Then, animals were subjected to behavioral (open field and apomorphine-induced rotations), neurochemical (striatal determinations of DA and DOPAC), histological (cresyl violet staining) and immunohistochemical (TH, TNF-α, IL-1β and HDAC) evaluations. The results showed that while the 6-OHDA group presented a decreased locomotor activity and a high number of apomorphine-induced rotations, these behaviors were partially blocked by caffeine. Caffeine itself increased DA contents and reversed the decrease in striatal DA observed in the 6-OHDA-lesioned group. Furthermore, it improved the hippocampal neuronal viability and significantly increased TH immunoreactivity in the striatum of the 6-OHDA-lesioned group. In addition, caffeine treatment also decreased the number of immunopositive cells for HDAC and pro-inflammatory cytokines TNF-α and IL-1β. All these effects points out to a neuroprotective effect of caffeine and its potential benefit in the prevention and treatment of PD.

  13. The H3 receptor agonist immepip does not affect l-dopa-induced abnormal involuntary movements in 6-OHDA-lesioned rats.

    PubMed

    Papathanou, Maria; Jenner, Peter; Iravani, Mahmoud; Jackson, Michael; Stockwell, Kim; Strang, Isabel; Zeng, Bai-Yun; McCreary, Andrew C; Rose, Sarah

    2014-10-15

    The treatment of dyskinesia in Parkinson׳s disease remains poor but H3 receptor agonists have been suggested as a novel pharmacological approach. We examined the effects of the H3 agonist, immepip, in 6-OHDA-lesioned rats exhibiting AIMs (abnormal involuntary movements), a rat analogue of dyskinesia, in response to l-dopa compared to the known anti-dyskinetic agents amantadine, MK-801 and 8-OHDPAT. We then attempted to extend these studies in to dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated common marmosets. Amantadine, MK-801 and 8-OHDPAT all dose-dependently reduced l-dopa-induced axial, lingual and oral (ALO) AIMs in 6-OHDA-lesioned animals accompanied by a reduction in contralateral rotation with higher doses of amantadine and MK-801. By contrast, immepip had no effect on AIMs expression or contralateral rotation. In the MPTP-treated common marmoset exhibiting dyskinesia to l-dopa, immepip alone induced retching and in combination with l-dopa administered subcutaneously or orally induced the rapid onset of retching and vomiting which was not controlled by pretreatment with domperidone. Administration of the unrelated H3 agonist, imetit had the same effect. Despite causing negative side-effects, it appears that both agonists reduced the antiparkinsonian response to l-dopa resulting in reduced dyskinesia. H3 agonists appear unlikely candidates for the treatment of dyskinesia in PD based on lack of evidence of efficacy and potential adverse effects.

  14. Characterisation of spatial neglect induced by unilateral 6-OHDA lesions on a choice reaction time task in rats.

    PubMed

    Heuer, Andreas; Dunnett, Stephen B

    2013-01-15

    Unilateral dopamine depletion and excitotoxic lesions of the striatum have been shown to induce a contralateral neglect when rats have to respond in a choice reaction time setting. Whereas, in a lateralised setting when response options are to either side of the animal's head all contralateral responding is impaired, testing animals only on one side of the head per day but with a near and far response option, rats are able to correctly respond to contralateral stimuli, but rather bias their responses towards the near hole. Here, we further investigated the nature of the contralateral neglect in egocentric space coding in more detail. Firstly, we tested the effects of near-complete unilateral dopamine depletion on this type of task. Secondly, previous observations suggested that lesioned rats shifted their response strategy which resulted in a response bias towards the most proximal location in contralateral space. In order to "encourage" dopamine depleted rats to respond to the neglected response location we implemented an error correction procedure to the task. Near-complete unilateral dopamine depletion, via 6-hydroxydopamine infusions into the medial forebrain bundle of female Lister Hood rats, resulted in a reduction of usable trials, a near hole bias when animals were tested on the side contralateral to the lesion, as well as increased reaction and movement time latencies. The introduction of an error-correction procedure had no effect on the animals' response bias towards the near contralateral location. Probe trials showed that the bias is most likely the result of responses being misdirected when in a choice situation. The findings further highlight the role of dopamine and an intact striatum to code responses into egocentrically defined space.

  15. Enhancing effect of taurine in the rat caudate spindle. II. Effect of bilateral 6-hydroxydopamine lesions of the nigro-striatal dopamine system.

    PubMed

    Hashimoto-Kitsukawa, S; Okuyama, S; Aihara, H

    1988-10-01

    Bilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle of rats resulted in destruction of dopamine (DA) nerve terminals in the striatum. DA contents decreased to 16.8, 15.0 and 13.7% of control values on 3, 5 and 7 days after the lesions, respectively. The time course of the effect of 6-OHDA lesions on apomorphine (0.5 mg/kg, IV)-induced stereotypy was investigated as the index of the development of supersensitivity. Stereotypy was unchanged on 3 days, but was enhanced 5 and 7 days after 6-OHDA lesions. Therefore, the sensitivity of postsynaptic DA receptors for apomorphine did not change 3 days after 6-OHDA lesions, although the striatal DA was depleted. The effects of bilateral injections of taurine into the striatum on the rat caudate spindle were determined 3 days after 6-OHDA lesions. Taurine, at a dose of 30 micrograms, enhanced the spindle in sham-operated rats, but this enhancement was not seen after 6-OHDA lesions. Intravenous administration of apomorphine (0.5 mg/kg) to lesioned rats suppressed the spindle, and this effect was prevented by a lower dose (3 micrograms) of taurine. These results provide further evidence that taurine enhances the spindle, possibly by decreasing the activity of the nigro-striatal DA system at the pre- and postsynaptic sites.

  16. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.

  17. Atomoxetine blocks motor hyperactivity in neonatal 6-hydroxydopamine-lesioned rats: implications for treatment of attention-deficit hyperactivity disorder.

    PubMed

    Moran-Gates, Taylor; Zhang, Kehong; Baldessarini, Ross J; Tarazi, Frank I

    2005-09-01

    We recently reported that selective inhibitors of neuronal transport of norepinephrine (NE), desipramine and nisoxetine, reversed motor hyperactivity in an animal model of attention-deficit hyperactivity disorder (ADHD). In this study, we examined behavioural effects of atomoxetine, a potent new NE reuptake blocker, in juvenile male rats with neonatal 6-hydroxydopamine (6-OHDA) lesions of dopamine projections to the forebrain. 6-OHDA (100 microg) was administered intracisternally on postnatal day (PD) 5 following desipramine (25 mg/kg s.c.) pretreatment to protect noradrenergic neurons. Atomoxetine (1 mg/kg) was given intraperitoneally before recording motor activity for 90 min at PD 23-26 in a novel environment. Atomoxetine greatly reduced motor hyperactivity in 6-OHDA-lesioned rats while exhibiting transient sedative effects in sham controls. The observed effects in this animal model for ADHD are consistent with the emerging clinical use of atomoxetine as a novel, non-stimulant treatment for ADHD.

  18. Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat.

    PubMed

    Carta, Anna R; Frau, Lucia; Lucia, Frau; Pinna, Annalisa; Annalisa, Pinna; Pontis, Silvia; Silvia, Pontis; Simola, Nicola; Nicola, Simola; Schintu, Nicoletta; Nicoletta, Schintu; Morelli, Micaela; Micaela, Morelli

    2008-07-01

    Prolonged treatment with L-DOPA induces highly disabling dyskinesia in Parkinson's disease (PD) patients. In contrast, dopaminergic agonists display variably dyskinetic outcome, depending on pharmacokinetic/pharmacodynamic profile. The present study was aimed at assessing behavioral and biochemical correlates of intense or mild dyskinesia displayed by the different dopamine (DA) receptors stimulation in a rat model of PD. The effect of subchronic stimulation of the D(1) receptor by SKF38393, and the D(2)/D(3) receptor by ropinirole was evaluated in unilaterally 6-hydroxyDA-lesioned rats. Sensitization of contralateral turning (SCT) behavior and abnormal involuntary movements (AIMs) were assessed as behavioral correlates of dyskinetic responses. Opioid peptides mRNA in the dorsolateral striatum (dlStr) and glutamic acid decarboxylase (GAD67) mRNA content in globus pallidus (GP), were evaluated as an index of neuroadaptive changes occurring in the direct and indirect basal ganglia pathways. Subchronic SKF38393 caused AIMs and SCT whereas ropinirole elicited SCT only, indicating that both drugs induced some dyskinetic response, albeit of different type. Peptides mRNA evaluation in dlStr, showed that SKF38393 subchronic treatment was associated to an overexpression of both dynorphin (DYN) and enkephalin (ENK) mRNAs, in the direct and indirect striatal pathway respectively. In contrast, a decrease in DYN mRNA levels only was observed after treatment with ropinirole. Analysis of GAD67 mRNA levels in the GP showed an increase after both D(1) and D(2)/D(3) agonist treatments. Results suggest that presence of SCT alone or SCT plus AIMs might represent correlates of the differential severity of dyskinetic movements induced by treatment with low (ropinirole) or high (SKF38393) dyskinetic potential. Neuroadaptive increases in opioid peptide expression in both direct and indirect striatal pathways were associated to the appearance of AIMs alone. In contrast, increase of GAD67 m

  19. Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats.

    PubMed

    Padovan-Neto, Fernando Eduardo; Cavalcanti-Kiwiatkoviski, Roberta; Carolino, Ruither Oliveira Gomes; Anselmo-Franci, Janete; Del Bel, Elaine

    2015-02-01

    It is well known that nitric oxide (NO) interacts with dopamine (DA) within the striatal circuitry. The anti-dyskinetic properties of NO synthase (NOS) inhibitors demonstrate the importance of NO in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID). Here, we investigated the ability of a daily co-treatment of the preferential neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI, 30 mg/kg), with L-DOPA (30 mg/kg) to counteract LID in unilaterally 6-OHDA-lesioned rats. We analyzed striatal nNOS-expressing interneurons, DA and 5-HT neurochemistry in the striatum and alterations of the Fos-B/ΔFosB expression in the corticostriatal, nigrostriatal and mesolimbic pathways. Prolonged administration of 7-NI inhibited the manifestation of chronic L-DOPA treatment-induced abnormal involuntary movements (AIMs). LID was associated with an up-regulation in the number of nNOS-expressing interneurons in the lateral but not medial striatum. nNOS inhibition reduced the number of nNOS-expressing interneurons. The anti-dyskinetic effects of 7-NI correlated with a reduction in DA and 5-HT turnover in the striatum. At postsynaptic striatal sites, 7-NI prevented L-DOPA-induced Fos-B/ΔFosB up-regulation in the motor cortex, nucleus accumbens and striatum. Finally, 7-NI blocked Fos-B/ΔFosB expression in nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d)-positive interneurons in the striatum. These results provide further evidence of the molecular mechanisms by which NOS-inhibiting compounds attenuate LID. The involvement of NO with DA and 5-HT neurochemistry may contribute to the understanding of this new, non-dopaminergic therapy for the management of LID.

  20. Decreased response of interneurons in the medial prefrontal cortex to 5-HT₁A receptor activation in the rat 6-hydroxydopamine Parkinson model.

    PubMed

    Zhang, Qiaojun; Wang, Shuang; Zhang, Lina; Zhang, Huan; Qiao, Hongfei; Niu, Xiaolin; Liu, Jian

    2014-08-01

    This study examined the response of interneurons in the medial prefrontal cortex (mPFC) to 5-HT1A receptor agonist 8-OH-DPAT and change in expression of 5-HT1A receptor on glutamate decarboxylase 67 (GAD67)-positive neurons in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc). Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT dose-dependently inhibited the firing rate of the interneurons at all doses tested in sham-operated rats. In 6-OHDA-lesioned rats, 8-OH-DPAT, at the same doses, also inhibited the firing rate of the interneurons, whereas the inhibition was significant only at a high cumulative dose. Furthermore, injection of 8-OH-DPAT into the mPFC inhibited the interneurons in sham-operated rats, while having no effect on firing rate of the interneurons in 6-OHDA-lesioned rats. In contrast to sham-operated rats, SNc lesion reduced the expression of 5-HT1A receptor on GAD67-positive neurons in the prelimbic cortex, a sub-region of the mPFC. Our results indicate that degeneration of the nigrostriatal pathway leads to decreased response of mPFC interneurons to 5-HT1A receptor activation, which attributes to the down-regulation of 5-HT1A receptor expression in these interneurons.

  1. Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat.

    PubMed

    Yu, Yong-Peng; Ju, Wei-Ping; Li, Zhen-Guang; Wang, Dao-Zhen; Wang, Yuan-Chen; Xie, An-Mu

    2010-06-08

    Increasing evidence suggests the beneficial effects of acupuncture on Parkinson's disease (PD). Although clinical evidence for the acupuncture anti-Parkinson's disease effect has been demonstrated, the precise mechanism still remains elusive. It has been suggested a relationship between PD and reactive oxygen species (ROS) can result in neurodegeneration. The aim of this study was to evaluate the status of oxidative stress, as well as the antioxidant enzyme response, and the role of acupuncture stimulation at GB34 (Yanglingquan), LR3 (Taichong), ST36 (Zusanli) and SP10 (Xuehai) acupoints on regulating oxidative stress in the nigrostriatal system in the 6-hydroxydopamine (6-OHDA) lesioned rat. Two weeks after unilateral injection of 6-OHDA into the left medial forebrain bundle (MFB), an apomorphine induced rotational behavior test was performed. The levels of enzymatic, viz., superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and nonenzymatic, viz., reduced glutathione (GSH), and the levels of malondialdehyde (MDA) in the nigrostriatal system were measured to assess the oxidative stress status. Brain MDA levels significantly increased, while GSH levels were decreased in impaired groups with 6-OHDA injection only, accompanied by a marked reduction in the level of SOD and GSH-Px. The levels of oxidative stress related parameters except CAT, as well as the rotational asymmetry, were reversed by acupuncture stimulation. These results showed that acupuncture treatment displayed antioxidative and/or neuroprotective properties in the 6-OHDA lesioned rat and these protective properties might be mediated, at least in part, by involving regulation of the antioxidant defense system.

  2. Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model

    PubMed Central

    Sedaghat, Reza; Roghani, Mehrdad; Khalili, Mohsen

    2014-01-01

    Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD. PMID:24734075

  3. Amantadine increases L-DOPA-derived extracellular dopamine in the striatum of 6-hydroxydopamine-lesioned rats.

    PubMed

    Arai, Akira; Kannari, Kazuya; Shen, Huo; Maeda, Tetsuya; Suda, Toshihiro; Matsunaga, Muneo

    2003-05-16

    We investigated the effect of amantadine on L-DOPA-derived extracellular dopamine (DA) levels and aromatic L-amino acid decarboxylase (AADC) activity in the striatum of rats with nigrostriatal dopaminergic denervation by 6-hydroxydopamine (6-OHDA). Pretreatment with 30 mg/kg amantadine increased the cumulative amount of extracellular DA in the striatum of 6-OHDA-lesioned rats treated with 10 mg/kg benserazide and 50 mg/kg L-DOPA to 250% of that without amantadine (P<0.01). Under pretreatment with 10 mg/kg benserazide, AADC activity after 30 mg/kg amantadine administration was reduced to 43% of controls (P<0.01). Amantadine-induced increase in L-DOPA-derived extracellular DA provides the basis for the clinical usefulness of amantadine in combination with L-DOPA. However, the effect of amantadine on L-DOPA-derived extracellular DA may not be caused by changes in AADC activity.

  4. Levodopa/benserazide microsphere (LBM) prevents L-dopa induced dyskinesia by inactivation of the DR1/PKA/P-tau pathway in 6-OHDA-lesioned Parkinson's rats.

    PubMed

    Xie, Cheng-long; Wang, Wen-Wen; Zhang, Su-fang; Yuan, Ming-Lu; Che, Jun-Yi; Gan, Jing; Song, Lu; Yuan, Wei-En; Liu, Zhen-Guo

    2014-12-16

    L-3, 4-dihydroxyphenylalanine (L-dopa) is the gold standard for symptomatic treatment of Parkinson's disease (PD), but long-term therapy is associated with the emergence of L-dopa-induced dyskinesia (LID). In the present study, L-dopa and benserazide were loaded by poly (lactic-co-glycolic acid) microspheres (LBM), which can release levodopa and benserazide in a sustained manner in order to continuous stimulate dopaminergic receptors. We investigated the role of striatal DR1/PKA/P-tau signal transduction in the molecular event underlying LID in the 6-OHDA-lesioned rat model of PD. We found that animals rendered dyskinetic by L-dopa treatment, administration of LBM prevented the severity of AIM score, as well as improvement in motor function. Moreover, we also showed L-dopa elicits profound alterations in the activity of three LID molecular markers, namely DR1/PKA/P-tau (ser396). These modifications are totally prevented by LBM treatment, a similar way to achieve continuous dopaminergic delivery (CDD). In conclusion, our experiments provided evidence that intermittent administration of L-dopa, but not continuous delivery, and DR1/PKA/p-tau (ser396) activation played a critical role in the molecular and behavioural induction of LID in 6-OHDA-lesioned rats. In addition, LBM treatment prevented the development of LID by inhibiting the expression of DR1/PKA/p-tau, as well as PPEB mRNA in dyskintic rats.

  5. High frequency electro-acupuncture enhances striatum DAT and D1 receptor expression, but decreases D2 receptor level in 6-OHDA lesioned rats.

    PubMed

    Rui, Gao; Guangjian, Zhang; Yong, Wang; Jie, Feng; Yanchao, Cui; Xi, Jia; Fen, Li

    2013-01-15

    The direct effects of electro-acupuncture (EA) on the dopaminergic neurotransmitter system in Parkinson's disease (PD) patients remain elusive. In the present study, 0, 2 or 100Hz EA was applied to acupoints Sanyinjiao (SP6), Yanglingquan (GB34) and Zusanli (ST36) in a rat model unilaterally lesioned by 6-hydroxydopamine. Rotational behavior tests were performed and the animals were then decapitated. Levels of striatal dopamine (DA), dopamine transporter, and D1- and D2-like DA receptors were subsequently evaluated. EA at 100 Hz was shown to significantly enhance survival of dopaminergic neurons in the substantia nigra (52.10 ± 11.41% of the level on the non-lesioned rats vs. 21.22 ± 5.52% in the non-EA group, P<0.05) and reduce motor deficits (207.80 ± 31.14 vs. 476.11 ± 68.80 turns/30 min, P<0.05), whereas it only slightly restored the 6-hydroxydopamine-induced loss of striatal DA (P>0.05 vs. the non-EA group). There was a 253.78% increase in dopamine transporter protein expression in the striatum in the 100 Hz EA group (P<0.05 vs. the non-EA group). Moreover, high frequency EA induced increases in striatal D1-like receptor mRNA and protein levels of 81.88% and 62.62%, respectively (P<0.001 and P<0.05 vs. the non-EA group). However, the D2-like DA receptor up-regulation observed in the non-EA group was suppressed in high frequency group (P>0.05 vs. the sham operation group). These findings suggest that high-frequency EA might work by acting on presynaptic dopamine transporter and postsynaptic dopamine receptors simultaneously to achieve a therapeutic effect in PD patients and models. This might shed some light on the mechanism by which EA affects the DA neurotransmitter system.

  6. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats

    PubMed Central

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  7. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    PubMed

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.

  8. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats

    PubMed Central

    Ma, Delin; Shuler, Jeffrey M.; Raider, Kayla D.; Rogers, Robert S.; Wheatley, Joshua L.; Geiger, Paige C.; Stanford, John A.

    2015-01-01

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson’s disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats’ nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. PMID:25862572

  9. Repeated administration of the monoamine reuptake inhibitor BTS 74 398 induces ipsilateral circling in the 6-hydroxydopamine lesioned rat without sensitizing motor behaviours.

    PubMed

    Lane, E L; Cheetham, S C; Jenner, P

    2005-01-01

    BTS 74 398 (1-[1-(3,4-dichlorophenyl)cyclobutyl]-2-(3-diaminethylaminopropylthio)ethanone monocitrate) is a monoamine reuptake inhibitor that reverses motor deficits in MPTP-treated (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) common marmosets without provoking established dyskinesia. However, it is not known whether BTS 74 398 primes the basal ganglia for dyskinesia induction. In this study, the ability of BTS 74 398 to sensitize 6-hydroxydopamine (6-OHDA)-lesioned rats for the production of abnormal motor behaviours and the induction of striatal DeltaFosB were determined in comparison with l-3,4-dihydroxyphenylalanine methyl ester (L-dopa). Acute administration of BTS 74 398 induced a dose-dependent ipsilateral circling response in unilaterally 6-OHDA-lesioned rats whereas L-dopa produced dose-dependent contraversive rotation. The ipsilateral circling response to BTS 74 398 did not alter during 21 days of administration. In contrast, L-dopa treatment for 21 days caused a marked increase in rotational response. Repeated administration of both L-dopa and BTS 74 398 increased general motor activity and stereotypic behaviour. In L-dopa-treated rats, orolingual, locomotive, forelimb and axial abnormal movements developed whereas BTS 74 398 produced only locomotion with a side bias but no other abnormal movements. Sensitization of circling responses and the development of abnormal movements in 6-OHDA-lesioned rats have been associated with the potential of dopaminergic drugs to induce dyskinesia. Furthermore, striatal DeltaFosB immunoreactivity, shown to correlate with dyskinesia induction, was increased by L-dopa but was unaffected by repeated BTS 74 398 administration. The lack of such changes following repeated BTS 74 398 treatment suggests that it may be an effective antiparkinsonian therapy that is unlikely to produce involuntary movements.

  10. Carbidopa-based modulation of the functional effect of the AAV2-hAADC gene therapy in 6-OHDA lesioned rats.

    PubMed

    Ciesielska, Agnieszka; Sharma, Nitasha; Beyer, Janine; Forsayeth, John; Bankiewicz, Krystof

    2015-01-01

    Progressively blunted response to L-DOPA in Parkinson's disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC). We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC) infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor) administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg) co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the controlling of

  11. Acetyl-l-carnitine protects dopaminergic nigrostriatal pathway in 6-hydroxydopamine-induced model of Parkinson's disease in the rat.

    PubMed

    Afshin-Majd, Siamak; Bashiri, Keyhan; Kiasalari, Zahra; Baluchnejadmojarad, Tourandokht; Sedaghat, Reza; Roghani, Mehrdad

    2017-02-12

    Parkinson's disease (PD) is a movement disorder and the second most common neurodegenerative disease worldwide in which nigrostriatal dopaminergic neurons within substantia nigra pars compacta (SNC) are lost, with clinical motor and non-motor symptoms including bradykinesia, resting tremor, rigidity, stooping posture and cognitive deficits. This study was undertaken to evaluate the neuroprotective potential of acetyl-l-carnitine (ALC) against unilateral striatal 6-hydroxydopamine (6-OHDA)-induced model of PD and to explore some involved mechanisms. In this experimental study, intrastriatal 6-OHDA-lesioned rats received ALC at doses of 100 or 200mg/kg/day for 1 week. ALC (200mg/kg) lowered apomorphine-induced rotational asymmetry and reduced the latency to initiate and the total time in the narrow beam test, reduced striatal malondialdehyde (MDA), increased catalase activity and glutathione (GSH) level, prevented reduction of nigral tyrosine hydroxylase (TH)-positive neurons and striatal TH-immunoreactivity, and lowered striatal glial fibrillary acidic protein (GFAP) and its immunoreactivity as an indicator of astrogliosis, and nuclear factor NF-kappa B and Toll-like receptor 4 (TLR4) as reliable markers of neuroinflammation. Meanwhile, ALC at both doses mitigated nigral DNA fragmentation as a valuable marker of apoptosis. The results of this study clearly suggest the neuroprotective effect of ALC in 6-OHDA-induced model of PD through abrogation of neuroinflammation, apoptosis, astrogliosis, and oxidative stress and it may be put forward as an ancillary therapeutic candidate for controlling PD.

  12. Hypericum Perforatum Hydroalcoholic Extract Mitigates Motor Dysfunction and is Neuroprotective in Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson's Disease.

    PubMed

    Kiasalari, Zahra; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2016-05-01

    Parkinson's disease is the second most common neurodegenerative disorder with selective and progressive decline of nigral dopaminergic neurons. Hypericum perforatum L. (H. perforatum, St. John's wort) has been traditionally used for management of different disorders, especially mild-to-moderate depression. This study was conducted to evaluate the effect of H. perforatum extract against unilateral striatal 6-hydroxydopamine (6-OHDA) toxicity and to unmask some involved mechanisms. Intrastriatal 6-OHDA-lesioned rats were treated with H. perforatum hydroalcoholic extract at a dose of 200 mg/kg/day started 1 week pre-surgery for 1 week post-surgery. The extract attenuated apomorphine-induced rotational behavior, decreased the latency to initiate and the total time on the narrow beam task, lowered striatal level of malondialdehyde and enhanced striatal catalase activity and reduced glutathione content, normalized striatal expression of glial fibrillary acidic protein, tumor necrosis factor α with no significant effect on mitogen-activated protein kinase, lowered nigral DNA fragmentation, and prevented damage of nigral dopaminergic neurons with a higher striatal tyrosine hydroxylase immunoreactivity. These findings reveal the beneficial effect of H. perforatum via attenuation of DNA fragmentation, astrogliosis, inflammation, and oxidative stress.

  13. 6-Hydroxydopamine-lesioning of the nigrostriatal pathway in rats alters basal ganglia mRNA for copper, zinc- and manganese-superoxide dismutase, but not glutathione peroxidase.

    PubMed

    Kunikowska, G; Jenner, P

    2001-12-13

    The effects of nigrostriatal pathway destruction on the mRNA levels of copper, zinc-dependent superoxide dismutase (Cu,Zn-SOD), manganese-dependent superoxide dismutase (Mn-SOD), and glutathione peroxidase in basal ganglia of adult rat were investigated using in situ hybridization histochemistry and oligodeoxynucleotide (single-stranded complementary DNA) probes. The 6-hydroxydopamine (6-OHDA)-induced destruction of the nigrostriatal pathway resulted in contralateral rotation to apomorphine and a marked loss of specific [(3)H]mazindol binding in the striatum (93%; P<0.05) and of tyrosine hydroxylase mRNA in substantia nigra pars compacta (SC) (93%; P<0.05) compared with control rats. Levels of Cu,Zn-SOD mRNA were decreased in the striatum, globus pallidus, and SC on the lesioned side of 6-OHDA-lesioned rats compared with sham-lesioned rats (P<0.05). Levels of Mn-SOD mRNA were increased in the nucleus accumbens (P<0.05), but decreased in the SC (P<0.05) on the lesioned side of 6-OHDA-treated rats compared with sham-lesioned rats. Lesioning with 6-OHDA had no effect on glutathione peroxidase mRNA levels in any region of basal ganglia examined. The significant changes in Cu,Zn-SOD and Mn-SOD mRNA indicate that SOD is primarily expressed by dopaminergic neurons of the nigrostriatal pathway, and that the Mn-SOD gene appears to be inducible in rat basal ganglia in response to both physical and chemical damage 5 weeks after 6-OHDA-lesioning. These findings may clarify the status of antioxidant enzymes, particularly Mn-SOD, in patients with Parkinson's disease and their relevance to disease pathogenesis.

  14. Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson's disease rat models.

    PubMed

    Park, Hyun Jin; Zhao, Ting Ting; Lee, Kyung Sook; Lee, Seung Ho; Shin, Keon Sung; Park, Keun Hong; Choi, Hyun Sook; Lee, Myung Koo

    2015-01-01

    The present study investigated the effects of (-)-sesamin on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using PC12 cells and dopaminergic neuronal cells of 6-OHDA-lesioned rat model of Parkinson's disease (PD). In PC12 cells, treatment with (-)-sesamin (25 µM) reduced 6-OHDA (100 µM)-induced cell death and induced transient extracellular signal-regulated kinase (ERK1/2) phosphorylation and Bad phosphorylation at Ser112 (BadSer112). In contrast, sustained ERK1/2 phosphorylation, p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK1/2) phosphorylation, and cleaved-caspase-3 activity, all of which were induced by 6-OHDA (100 µM), were inhibited by treatment with (-)-sesamin (25 µM). Furthermore, co-treatment with (-)-sesamin (30 mg/kg, p.o.) once a day for 28 days significantly increased the number of tyrosine hydroxylase-immunopositive neuronal cells and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid in the substantia nigra-striatum of 6-OHDA-lesioned rat model of PD with or without L-DOPA treatment. These results suggest that (-)-sesamin protects 6-OHDA-induced cytotoxicity via the activation of transient ERK1/2-BadSer112 system and the inhibition of sustained ERK-p38MAPK-JNK1/2-caspase-3 system in PC12 cells. (-)-Sesamin also shows protective effects on long-term L-DOPA therapy in dopaminergic neuronal cells of PD rat models. (-)-Sesamin may serve as adjuvant therapeutics in PD.

  15. Deep brain stimulation of the pedunculopontine tegmental nucleus modulates neuronal hyperactivity and enhanced beta oscillatory activity of the subthalamic nucleus in the rat 6-hydroxydopamine model.

    PubMed

    Alam, Mesbah; Heissler, Hans E; Schwabe, Kerstin; Krauss, Joachim K

    2012-01-01

    Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) area has been introduced as a novel surgical therapy for dopamine refractory gait problems, freezing and postural instability in the late stage of Parkinson's disease (PD). Lesions of the pedunculopontine tegmental (PPTg) nucleus, the equivalent of the PPN in rodents, were shown to reduce the elevated discharge rate of the subthalamic nucleus (STN) in the 6-hydroxydopamine (6-OHDA) rat model of PD. In order to further elucidate the modulatory effect of the PPTg on the STN we examined the effect of 25 Hz low frequency PPTg stimulation on neuronal single unit activity and oscillatory local field potentials (LFPs) of the STN, and on the electrocorticogram (ECoG) of the primary motor cortex region in rats with unilateral 6-OHDA induced nigrostriatal lesions. Stimulation of the PPTg reduced the enhanced firing rate in the STN, without affecting the firing pattern or approximate entropy (ApEn). It also reduced the activity in the beta band (15-30 Hz) of the STN, which is elevated in 6-OHDA lesioned rats, without affecting beta activity in the motor cortex. We showed a modulatory effect of PPTg stimulation on altered neuronal STN activity in the PD 6-OHDA rat model, indicating that PPTg DBS may alter activity of the basal ganglia circuitry at least partially. It remains unclear, however, how these changes are exactly mediated and whether they are relevant with regard to the descending PPTg projections in the lower brainstem.

  16. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson's disease: Possible involvement of PI3K/ERβ signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Jamali-Raeufy, Nida; Zabihnejad, Sedigheh; Rabiee, Nafiseh; Roghani, Mehrdad

    2017-04-15

    Parkinson's disease (PD) is a neurodegenerative disease with progressive loss of mesencephalic dopaminergic neurons of the substantia nigra and with multiple incapacitating motor and non-motor symptoms. Troxerutin is a natural bioflavonoid with nephro- and hepato-protective, antioxidant, and anti-inflammatory properties. In this study, we evaluated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with troxerutin at a dose of 150mg/kg/day for 1 week. Results showed that troxerutin mitigates apomorphine-induced motor asymmetry and lowered the latency to initiate and the total time in the narrow beam task and this beneficial effect was lost following central application of estrogen receptor β (ERβ) antagonist or phosphatidylinositol 3-kinase (PI3K) inhibitor. In addition, troxerutin reduced striatal malondialdehyde (MDA) as an index of lipid peroxidation, reactive oxygen species, glial fibrillary acid protein (GFAP) as a marker of astrogliosis, and DNA fragmentation as an apoptotic marker with no significant alteration of catalase activity and nitrite level. Meanwhile, troxerutin was capable to prevent loss of nigral tyrosine hydroxylase (TH)-positive neurons. These findings indicate neuroprotective potential of troxerutin in 6-OHDA rat model of PD through mitigation of apoptosis, astrogliosis, and oxidative stress and part of its effect is dependent on PI3K/ERβ signaling.

  17. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease: Possible involvement of ERβ/Nrf2/HO-1 signaling.

    PubMed

    Baluchnejadmojarad, Tourandokht; Rabiee, Nafiseh; Zabihnejad, Sedigheh; Roghani, Mehrdad

    2017-02-23

    Parkinson's disease (PD) is a prevalent movement disorder in the elderly with progressive loss of mesencephalic dopaminergic neurons and incapacitating motor and non-motor complications. Ellagic acid is a natural phenolic compound with potent antioxidant and anti-inflammatory properties. In this study, we investigated its possible neuroprotective effect in 6-hydroxydopamine (6-OHDA) rat model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with ellagic acid at a dose of 50 mg/kg/day for 1 week. Results showed that ellagic acid attenuates apomorphine-induced rotational bias and lowers the latency to initiate and the total time in the narrow beam task and this beneficial effect was partially abrogated following intracerebroventricular microinjection of estrogen receptor β (ERβ) antagonist. Furthermore, ellagic acid reduced striatal malondialdehyde (MDA), reactive oxygen species (ROS), and DNA fragmentation, and improved monoamine oxidase B (MAO-B), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase 1 (HO-1). Meanwhile, ellagic acid prevented loss of tyrosine hydroxylase (TH)-positive neurons within substantia nigra pars compacta (SNC). These findings indicate neuroprotective potential of ellagic acid in 6-OHDA rat model of PD via amelioration of apoptosis and oxidative stress, suppression of MAO-B, and its favorable influence is partly reliant on ERβ/Nrf2/HO-1 signaling cascade.

  18. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson's rats.

    PubMed

    Song, Lu; Zhang, Zhanzhao; Hu, Rongguo; Cheng, Jie; Li, Lin; Fan, Qinyi; Wu, Na; Gan, Jing; Zhou, Mingzhu; Liu, Zhenguo

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-dopa) remains the most effective therapy for Parkinson's disease (PD), but its long-term administration is associated with the development of debilitating motor complications known as L-dopa-induced dyskinesia (LID). Enhanced function of dopamine D1 receptor (D1R) and N-methyl-D-aspartate receptor (NMDAR) is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1) interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2). In this study, we demonstrated in 6-hydroxydopamine (6-OHDA)-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson's patients.

  19. Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson's disease: a longitudinal in-vivo study.

    PubMed

    Molinet-Dronda, Francisco; Gago, Belén; Quiroga-Varela, Ana; Juri, Carlos; Collantes, María; Delgado, Mercedes; Prieto, Elena; Ecay, Margarita; Iglesias, Elena; Marín, Concepció; Peñuelas, Iván; Obeso, José A

    2015-05-01

    Carbon-11 labeled dihydrotetrabenazine ((11)C-DTBZ) binds to the vesicular monoamine transporter 2 and has been used to assess nigro-striatal integrity in animal models and patients with Parkinson's disease. Here, we applied (11)C-DTBZ positron emission tomography (PET) to obtain longitudinally in-vivo assessment of striatal dopaminergic loss in the classic unilateral and in a novel bilateral 6-hydroxydopamine (6-OHDA) lesion rat model. Forty-four Sprague-Dawley rats were divided into 3 sub-groups: 1. 6-OHDA-induced unilateral lesion in the medial forebrain bundle, 2. bilateral lesion by injection of 6-OHDA in the third ventricle, and 3. vehicle injection in either site. (11)C-DTBZ PET studies were investigated in the same animals successively at baseline, 1, 3 and 6weeks after lesion using an anatomically standardized volumes-of-interest approach. Additionally, 12 rats had PET and Magnetic Resonance Imaging to construct a new (11)C-DTBZ PET template. Behavior was characterized by rotational, catalepsy and limb-use asymmetry tests and dopaminergic striatal denervation was validated post-mortem by immunostaining of the dopamine transporter (DAT). (11)C-DTBZ PET showed a significant decrease of striatal binding (SB) values one week after the unilateral lesion. At this point, there was a 60% reduction in SB in the affected hemisphere compared with baseline values in 6-OHDA unilaterally lesioned animals. A 46% symmetric reduction over baseline SB values was found in bilaterally lesioned rats at the first week after lesion. SB values remained constant in unilaterally lesioned rats whereas animals with bilateral lesions showed a modest (22%) increase in binding values at the 3rd and 6th weeks post-lesion. The degree of striatal dopaminergic denervation was corroborated histologically by DAT immunostaining. Statistical analysis revealed a high correlation between (11)C-DTBZ PET SB and striatal DAT immunostaining values (r=0.95, p<0.001). The data presented here indicate

  20. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  1. Vulnerabilities of ventral mesencephalic neurons projecting to the nucleus accumbens following infusions of 6-hydroxydopamine into the medial forebrain bundle in the rat.

    PubMed

    Lancia, Andrew J; Williams, Evelyn A; McKnight, Lucas V; Zahm, Daniel S

    2004-01-30

    The terminal arbors of dopaminergic projections in the nucleus accumbens (Acb) core degenerate more rapidly, completely and permanently in a variety of neurotoxic circumstances than do those in the medial shell. It is unknown if this always reflects purely losses of the distal parts of axons from the core (as proposed in methamphetamine intoxication), or whether, in some circumstances, the disproportionate loss of core axons may also stem from an intrinsic vulnerability to degeneration of core-projecting neuronal perikarya. Experiments described here addressed this issue in the following manner. Three days after Fluoro-Gold (FG), a retrogradely transported tracer, had been iontophoresed selectively into the core or medial shell of male Sprague-Dawley rats, each received an infusion of saline vehicle containing or lacking 6-hydroxydopamine (6-OHDA) in the ipsilateral medial forebrain bundle (MFB). Twenty-one days later the brains were processed to exhibit ventral mesencephalic neurons containing FG. Application of an unbiased sampling method revealed substantially greater losses of FG labeled neurons relative to controls in rats that had received 6-OHDA lesions and deposition of FG in the Acb core as compared to the medial shell. Of the few core-projecting neurons that remained in the ventral mesencephalon after these lesions, 54% did not co-localize tyrosine hydroxylase immunoreactivity (TH-ir) and, thus, were not expected to degenerate. The capacity to selectively remove core-projecting dopaminergic neurons may be useful in the determination of molecular correlates of vulnerability and resistance to neurotoxicity and to possibly test the role of the core in reinforcement paradigms.

  2. (6aR)-11-amino-N-propyl-noraporphine, a new dopamine D2 and serotonin 5-HT1A dual agonist, elicits potent antiparkinsonian action and attenuates levodopa-induced dyskinesia in a 6-OHDA-lesioned rat model of Parkinson's disease.

    PubMed

    Zhao, Rui; Lu, Weijian; Fang, Xing; Guo, Lin; Yang, Zhi; Ye, Na; Zhao, Jiahao; Liu, Zhili; Jia, Jia; Zheng, Longtai; Zhao, Bin; Zhang, Ao; Zhen, Xuechu

    2014-09-01

    Parkinson's disease (PD) drug therapy remains a challenge. Dual modulation of dopamine and 5-HT receptors has emerged as a promising approach in anti-PD drug development. Taking advantage of the newly discovered aporphine analogue(s), (6aR)-11-amino-N-propyl-noraporphine (SOMCL-171), which exhibited dual D2/5-HT1A receptor agonistic activity, we studied the effects of the compound on levodopa-induced dyskinesia (LID) in a PD animal model. The results demonstrated that SOMCL-171 elicited a potent anti-PD effect in a 6-OHDA-lesioned rat model. Chronic use of SOMCL-171 reduced LID without compromising the antiparkinsonian efficacy. Furthermore, we found that the antidyskinesia effect of SOMCL-171 is associated with its 5-HT1A agonistic activity and the up-regulation of the striatal 5-HT1A receptor. The present data indicated that chronic SOMCL-171 alone produced potent antiparkinsonian effects with weak dyskinesia, compared with that of levodopa. In addition, chronic SOMCL-171 application attenuated the development of levodopa-induced LID at no expense to the antiparkinsonian efficacy. Taken together, our data suggested that dual modulation of D2/5-HT1A receptors may provide a novel approach for drug development in PD and LID.

  3. LPA signaling is required for dopaminergic neuron development and is reduced through low expression of the LPA1 receptor in a 6-OHDA lesion model of Parkinson's disease.

    PubMed

    Yang, Xiao-Yun; Zhao, Ethan Y; Zhuang, Wen-Xin; Sun, Feng-Xiang; Han, Hai-Lin; Han, Hui-Rong; Lin, Zhi-Juan; Pan, Zhi-Fang; Qu, Mei-Hua; Zeng, Xian-Wei; Ding, Yuchuan

    2015-11-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that activates at least five known G-protein-coupled receptors (GPCRs): LPA1-LPA5. The nervous system is a major locus for LPA1 expression. LPA has been shown to regulate neuronal proliferation, migration, and differentiation during central nervous system development as well as neuronal survival. Furthermore, deficient LPA signaling has been implicated in several neurological disorders including neuropathic pain and schizophrenia. Parkinson's disease (PD) is a neurodegenerative movement disorder that results from the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The specific molecular pathways that lead to DA neuron degeneration, however, are poorly understood. The influence of LPA in the differentiation of mesenchymal stem cells (MSCs) into DA neurons in vitro and LPA1 expression in a 6-hydroxydopamine (6-OHDA) lesion model of PD in vivo were examined in the present study. LPA induced neuronal differentiation in 80.2 % of the MSC population. These MSCs developed characteristic neuronal morphology and expressed the neuronal marker, neuron-specific enolase (NSE), while expression of the glial marker, glial fibrillary acidic protein (GFAP), was absent. Moreover, 27.6 % of differentiated MSCs were positive for tyrosine hydroxylase (TH), a marker for DA neurons. In the 6-OHDA PD rat model, LPA1 expression in the substantia nigra was significantly reduced compared to control. These results suggest LPA signaling via activation of LPA1 may be necessary for DA neuron development and survival. Furthermore, reduced LPA/LPA1 signaling may be involved in DA neuron degeneration thus contributing to the pathogenesis of PD.

  4. Long-term changes in striatal opioid systems after 6-hydroxydopamine lesion of rat substantia nigra.

    PubMed

    Smith, J A; Leslie, F M; Broide, R S; Loughlin, S E

    1993-08-01

    The effects of unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway on striatal opioid peptides and receptors were determined at different time-intervals, from three days up to 24 weeks, post-lesion. Mu, delta and kappa opioid binding site densities in the ipsilateral caudate-putamen were decreased by 25-50% in rats which exhibited a greater than 90% loss of dopamine uptake sites. Differentiation of radioligand binding to kappa1 and kappa2 subtypes demonstrated a selective loss of kappa2 sites post-lesion. The onset of significant 6-hydroxydopamine lesion-induced changes in striatal opioid binding sites was delayed with respect to the loss of dopamine uptake sites. Furthermore, maximal loss of dopamine uptake sites was apparent within seven days post-lesion, but not until two to four weeks for mu, delta and kappa sites. In animals which exhibited an incomplete loss of dopamine uptake sites (less than 80%) there was no significant change in opioid binding site density. Striatal proenkephalin and prodynorphin messenger RNA levels were increased and decreased, respectively, after complete 6-hydroxydopamine lesion. Modulation of peptide messenger RNA levels was apparent within seven days and was maintained up to 24 weeks post-lesion. In contrast, proenkephalin and prodynorphin messenger RNA levels were unchanged in animals which exhibited an incomplete loss of striatal dopamine uptake sites. Taken together, these observations suggest that the majority of mu, delta and kappa2 opioid binding sites are localized on non-dopaminergic elements in the caudate-putamen, but that substantia nigra innervation plays a role in the control of striatal opioid receptor expression. The 6-hydroxydopamine lesion-induced decreases in striatal opioid binding site density may, in part, be a function of agonist-induced receptor downregulation. Alternatively, both opioid receptor and peptide expression in the caudate-putamen may be directly, but independently, regulated by ventral

  5. Locomotor effects of imidazoline I2-site-specific ligands and monoamine oxidase inhibitors in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway

    PubMed Central

    MacInnes, Nicholas; Duty, Susan

    2004-01-01

    The present study examined the ability of the selective imidazoline I2-site ligands 2-(-2-benzofuranyl)-2-imidazoline (2-BFI) and 2-[4,5-dihydroimidaz-2-yl]-quinoline (BU224) and selected monoamine oxidase (MAO) inhibitors to evoke locomotor activity in rats bearing a lesion of the nigrostriatal pathway. Male Sprague–Dawley rats were injected with 12.5 μg 6-hydroxydopamine (6-OHDA) into the right median forebrain bundle to induce a unilateral lesion of the nigrostriatal tract. After 6 weeks, test drugs were administered either alone or in combination with L-DOPA (L-3,4-dihydroxyphenylamine) and the circling behaviour of animals was monitored as an index of anti-Parkinsonian activity. Intraperitoneal (i.p.) administration of the irreversible MAO-B inhibitor deprenyl (20 mg kg−1) or the imidazoline I2-site ligands BU224 (14 mg kg−1) and 2-BFI (7 and 14 mg kg−1) produced significant increases in ipsiversive rotations compared to vehicle controls totaling, at the highest respective doses tested, 521±120, 131±37 and 92.5±16.3 net contraversive rotations in 30 (deprenyl) or 60 (BU224 and 2-BFI) min. In contrast, the reversible MAO-A inhibitor moclobemide (2.5–10 mg kg−1) and the reversible MAO-B inhibitor lazabemide (2.5–10 mg kg−1) failed to instigate significant rotational behaviour compared to vehicle. Coadministration of lazabemide (10 mg kg−1), moclobemide (10 mg kg−1) or 2-BFI (14 mg kg−1) with L-DOPA (20 mg kg−1) significantly increased either the duration or total number of contraversive rotations emitted over the testing period in comparison to L-DOPA alone. These data suggest that I2-specific ligands have dual effects in the 6-OHDA-lesioned rat model of Parkinson's disease; a first effect associated with an increase in activity in the intact hemisphere, probably via an increase in striatal dopamine content, and a secondary action which, through the previously documented inhibition of MAO-A and/or MAO-B, increases the availability of

  6. Effect of acupuncture on 6-hydroxydopamine-induced nigrostratal dopaminergic neuronal cell death in rats.

    PubMed

    Kim, Yeung-Kee; Lim, Hyung-Ho; Song, Yun-Kyung; Lee, Hee-Hyuk; Lim, Sabina; Han, Seung-Moo; Kim, Chang-Ju

    In this study, we investigated the effect of acupuncture at the Zusanli acupoint (ST36) on the nigrostriatal dopaminergic neuronal cell death in the rats with Parkinson's disease. Two weeks after unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum, an apomorphine-induced rotational behavior test showed significant rotational asymmetry in the rats with Parkinson's disease. Immunostaining for tyrosine hydroxylase demonstrated a dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. Acupuncture at the ST36 for 14 days significantly inhibited rotational asymmetry in the rats with Parkinson's disease, and also protected against 6-OHDA-induced nigrostriatal dopaminergic neuronal loss. These effects of acupuncture were not observed for the non-acupoint (hip) acupuncture. The present study shows that acupuncture at the ST36 acupoint can be used as a useful strategy for the treatment of Parkinson's disease.

  7. Neuroprotective effect of hydroxysafflor yellow A on 6-hydroxydopamine-induced Parkinson's disease in rats.

    PubMed

    Han, Bing; Hu, Jia; Shen, Jingyu; Gao, Yonglin; Lu, Yan; Wang, Tian

    2013-08-15

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting predominantly the dopaminergic mesotelencephalic system. Enormous progress has been made in the treatment of PD. Our previous study has shown that hydroxysafflor yellow A (HSYA) could attenuate the neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. In the present work, we examined whether HSYA had the neuroprotective effect on dopaminergic neurons of substantia nigra in a rat model of PD. Adult Sprague-Dawley rats were unilaterally injected with 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. The PD rats were treated with HSYA (2 or 8 mg/kg) via caudal vein injection daily for 4 weeks. Rotational tests showed that HSYA significantly attenuated apomorphine-induced turns in 6-OHDA-induced PD rats. HSYA treatment resulted in a significant protection against the loss of tyrosine hydroxylase-positive cells. Our data showed that HSYA also increased the levels of dopamine and its metabolites, glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in striatum of PD rats. In conclusion, these results supported a role for HSYA in preserving dopamine neuron integrity and motor function in a rodent model of PD, and implied a potential neuroprotective role for HSYA in this disease.

  8. Androgens exacerbate motor asymmetry in male rats with unilateral 6-hydroxydopamine lesion.

    PubMed

    Cunningham, Rebecca L; Macheda, Teresa; Watts, Lora Talley; Poteet, Ethan; Singh, Meharvan; Roberts, James L; Giuffrida, Andrea

    2011-11-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by dopamine neuron loss in the nigrostriatal pathway that shows greater incidence in men than women. The mechanisms underlying this gender bias remain elusive, although one possibility is that androgens may increase dopamine neuronal vulnerability to oxidative stress. Motor impairment can be modeled in rats receiving a unilateral injection of 6-hydroxydopamine (6-OHDA), a neurotoxin producing nigrostriatal degeneration. To investigate the role of androgens in PD, we compared young (2 months) and aged (24 months) male rats receiving gonadectomy (GDX) and their corresponding intact controls. One month after GDX, rats were unilaterally injected with 6-OHDA, and their motor impairment and asymmetry were assessed 2 weeks later using the cylinder test and the amphetamine-induced rotation test. Plasma samples were also collected to assess the concentration of testosterone and advanced oxidation protein products, a product of oxidative stress. GDX decreased lesion-induced asymmetry along with oxidative stress and increased amphetamine-induced rotations. These results show that GDX improves motor behaviors by decreasing motor asymmetry in 6-OHDA-treated rats, an effect that may be ascribed to increased release of striatal dopamine and decreased oxidative stress. Collectively, the data support the hypothesis that androgens may underlie the gender bias observed in PD.

  9. Effects of Neonatal Treatment With 6-Hydroxydopamine and Endocrine Disruptors on Motor Activity and Gene Expression in Rats

    PubMed Central

    Masuo, Yoshinori; Ishido, Masami; Morita, Masatoshi; Oka, Syuichi

    2004-01-01

    To investigate the mechanisms underlying motor hyperactivity, we performed intracisternal injection of 6-hydroxydopamine or endocrine disruptors in rats on postnatal day 5. 6-Hydroxydopamine (100 μg, 488 nmol) caused a significant increase in spontaneous motor activities at 4 weeks of age. Gene-expression profiling using a cDNA membrane array revealed alterations in several classes of gene at 8 weeks of age. In the midbrain, gene expression was enhanced in dopamine transporter 1; a platelet-derived growth factor receptor; dopamine receptor D4; galanin receptor 2; arginine vasopressin receptor 2; neuropeptide Y; tachykinin 2; and fibroblast growth factor 10. Expression was also enhanced in the glutamate/aspartate transporter gene in the striatum. Rats received an endocrine disruptor (87 nmol), such as bisphenol A, nonylphenol, p-octylphenol, or diethylhexylphthalate, which also caused motor hyperactivity at 4 weeks. The effects of bisphenol A on motor activity were dose-dependent from 0.87 to 87 nmol. The phenols caused a deficit in dopamine neurons, similarly to the deficit caused by 6-hydroxydopamine. Gene-expression profiles after treatment with endocrine disruptors showed variation and differed from those of 6- hydroxydopamine. The results suggest that neonatal treatment with environmental chemicals can generate an animal model of attention-deficit hyperactivity disorder, in which clinical symptoms are pervasive. PMID:15303306

  10. Motor activity and gene expression in rats with neonatal 6-hydroxydopamine lesions.

    PubMed

    Masuo, Yoshinori; Ishido, Masami; Morita, Masatoshi; Oka, Syuichi; Niki, Etsuo

    2004-10-01

    A rat model of a hyperkinetic disorder was used to investigate the mechanisms underlying motor hyperactivity. Rats received an intracisternal injection of 6-hydroxydopamine on post-natal day 5. At 4 weeks of age, the animals showed significant motor hyperactivity during the dark phase, which was attenuated by methamphetamine injection. Gene expression profiling was carried out in the striatum and midbrain using a DNA macroarray. In the striatum at 4 weeks, there was increased gene expression of the NMDA receptor 1 and tachykinins, and decreased expression of a GABA transporter. At 8 weeks, expression of the NMDA receptor 1 in the striatum was attenuated, with enhanced expression of the glial glutamate/aspartate transporter. In the midbrain, a number of genes, including the GABA transporter gene, showed decreased expression at 4 weeks. At 8 weeks, gene expression was augmented for the dopamine transporter, D4 receptor, and several genes encoding peptides, such as tachykinins and their receptors. These results suggest that in the striatum the neurotransmitters glutamate, GABA and tachykinin may play crucial roles in motor hyperactivity during the juvenile period. Several classes of neurotransmitters, including dopamine and peptides, may be involved in compensatory mechanisms during early adulthood. These data may prompt further neurochemical investigations in hyperkinetic disorders.

  11. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    PubMed

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  12. Central effects of 6-hydroxydopamine on the body temperature of the rat

    PubMed Central

    Simmonds, M. A.; Uretsky, N. J.

    1970-01-01

    1. Rats which had been pretreated with intraventricular injections of 6-hydroxydopamine (6-OHDA) to cause a selective depletion of brain noradrenaline (NA) to 20·7% of control brain NA and brain dopamine (DA) to 34·6% of control brain DA retained an unimpaired ability to regulate their body temperatures on exposure to heat or cold. This is discussed in relation to the possible role of brain NA in the central control of body temperature. 2. Intraventricular injections of 6-OHDA in normal rats at room temperature caused an acute, dose dependent hypothermia of up to 4·5° C which lasted for 4-5 hours. Depletion of brain NA and DA by prior treatment with 6-OHDA markedly reduced the hypothermic response to a subsequent dose of 6-OHDA. Selective depletion of brain NA without affecting brain DA did not reduce the response to 6-OHDA. The acute hypothermic response to 6-OHDA, may therefore, be related to a release of DA in the brain. PMID:5495172

  13. Cortex Fraxini (Qingpi) Protects Rat Pheochromocytoma Cells against 6-Hydroxydopamine-Induced Apoptosis

    PubMed Central

    Li, Jing-Jie; Zhou, Shi-Ya; Zhang, Huan; Lam, Kim-Hung; Lee, Simon Ming-Yuen; Yu, Peter Hoi-Fu; Chan, Shun-Wan

    2015-01-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder having close relationship with oxidative stress induced by reactive oxygen species (ROS). Cortex Fraxini (QP) is a kind of traditional Chinese medicinal herb with antioxidant properties. It may be a potential candidate for preventing the development of chronic neurodegenerative diseases. Thus, the key objective of the current study was to investigate the neuroprotective effect of QP water extract on 6-hydroxydopamine (6-OHDA) induced apoptosis in rat pheochromocytoma (PC12) cells. It was found that QP water extract possesses strong antioxidant property with SC50 = 0.15 mg/mL. Total phenolic content of QP water extract was found to be 200.78 ± 2.65 mg GAE/g. QP water extract's free radical scavenging capacity was demonstrated by reversing the increased level of intracellular ROS induced by 6-OHDA, using 2′,7′-dichlorodihydrofluorescein diacetate. Moreover, QP water extract (0.5 mg/mL) could remarkably increase the viability of PC12 cells treated with 6-OHDA. The protective effect of QP water extract was found to be via inhibiting MEK/ERK pathway and reversing PI3-K/Akt/GSK3β pathway. The current results suggest that QP might be a potential candidate for preventing the development of neurodegenerative diseases, such as PD. PMID:26347850

  14. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson's Disease in Rats.

    PubMed

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson's disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson's disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson's disease induced by 6-hydroxydopamine.

  15. Enhanced frustrative nonreward effect following 6-hydroxydopamine lesions of the lateral septum in the rat.

    PubMed

    Taghzouti, K; Le Moal, M; Simon, H

    1985-12-01

    The effect of local injections of 6-hydroxydopamine (6-OHDA) into the lateral septum was tested in a paradigm known to lead to an energizing behavior, through a possible frustrative effect, induced by partial or total omission of reward in hungry rats. Biochemical assays in the septum showed that 6-OHDA reduced endogenous dopamine and, to a lesser extent, noradrenaline concentrations and left intact noncatecholaminergic neurons such as serotoninergic terminals. The first behavioral experiment was conducted in a double straight alley. The animals were submitted to three phases of testing with differing degrees of reinforcement: (a) an acquisition phase, in which the reinforcement was continuously delivered in the goal box of the two alleys, (b) a partial reinforced phase, in which animals received 50% partial reinforcement in the first alley and continuous reinforcement in the second alley, and (c) an extinction phase performed in one alley without any reinforcement. Animals with lesions ran faster for food than controls in the partial reinforcement or extinction situation, although there was no difference between the two groups in the acquisition phase of the continuous schedule of reinforcement or in the 50% reinforced trials of the partial reinforcement phase. The two groups also behaved similarly after the first six trials of the extinction phase. In a second experiment, the animals were tested in a lever-press conditioning task. Animals with lesions and control animals learned this task equally well, both with respect to the number of lever presses and the time to obtain a fixed number of food pellets.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Calcitriol promotes augmented dopamine release in the lesioned striatum of 6-hydroxydopamine treated rats

    PubMed Central

    Cass, Wayne A.; Peters, Laura E.; Fletcher, Anita M.; Yurek, David M.

    2014-01-01

    Current therapies for Parkinson's disease (PD) offer symptomatic relief but do not provide a cure or slow the disease process. Treatments that could halt progression of the disease or help restore function to damaged neurons would be of substantial benefit. Calcitriol, the active metabolite of vitamin D, has been shown to have significant effects on the brain. These effects include upregulating trophic factor levels, and reducing the severity of some central nervous system lesions. While previous studies have shown that calcitriol can be neuroprotective in 6-hydroxydopamine (6-OHDA) rodent models of PD, the present experiments were designed to examine the ability of calcitriol to promote restoration of extracellular DA levels and tissue content of DA in animals previously lesioned with 6-OHDA. Male Fischer-344 rats were given a single injection of 12 µg 6-OHDA into the right striatum. Four weeks later the animals were administered vehicle or calcitriol (0.3 or 1.0 µg/kg, s.c.) once a day for eight consecutive days. Three weeks after the calcitriol treatments in vivo microdialysis experiments were conducted to measure potassium and amphetamine evoked overflow of DA from both the left and right striata. In control animals treated with 6-OHDA and vehicle there were significant reductions in both potassium and amphetamine evoked overflow of DA on the lesioned side of the brain compared to the contralateral side. In animals treated with 6-OHDA followed by calcitriol there was significantly greater potassium and amphetamine evoked overflow of DA from the lesioned striatum compared to that from the control animals. The calcitriol treatments also led to increases in postmortem tissue levels of DA in the striatum and substantia nigra. These results suggest that calcitriol may help promote recovery of dopaminergic functioning in injured nigrostriatal neurons. PMID:24858239

  17. c-jun expression in substantia nigra neurons following striatal 6-hydroxydopamine lesions in the rat.

    PubMed

    Jenkins, R; O'Shea, R; Thomas, K L; Hunt, S P

    1993-03-01

    The proto-oncogene c-jun is thought to play a role in the control of growth and differentiation of many cell types. It has been demonstrated previously that damage to axons of peripheral motor or sensory neurons resulted within 24 h in substantially increased levels of the c-jun gene in the parent cell bodies. These increased levels of c-jun protein and messenger RNA are maintained if the damaged nerve is ligated, but return to basal levels if the peripheral nerve is allowed to regenerate. We have examined the expression of immediate early genes in central neurons of the rat and now show that a 6-hydroxydopamine-induced axotomy of the dopaminergic nigrostriatal pathway results in a substantial increase in the levels of c-jun (but not c-fos) messenger RNA and protein within neurons of the substantia nigra pars compacta. However, the central neuronal response differs from the peripheral nerve response in that it becomes maximal at four to eight days post-lesion and is transient, declining to control levels in nigral neurons by 14 days post-lesion. These expression patterns may be related to the differential capacity of central and peripheral neurons to regenerate. The precise role of c-jun in these processes, or in the regenerative response, is unclear but it remains possible that c-jun activation following axon damage leads to an increased expression of genes which are essential for the regenerative response. The nature of the mechanism by which c-jun levels are attenuated in central neurons is also unclear, but inhibitory factors, generated by the central environment, may play a role.

  18. Time-course of SKF-81297-induced increase in glutamic acid decarboxylase 65 and 67 mRNA levels in striatonigral neurons and decrease in GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, in adult rats with a unilateral 6-hydroxydopamine lesion.

    PubMed

    Yamamoto, N; Soghomonian, J-J

    2008-06-26

    Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. After a single injection of SKF-81297, striatal GAD65 mRNA levels were significantly increased at 3 but not 72 h. In contrast, striatal GAD67 mRNA levels were increased and nigral alpha1 mRNA levels were decreased at 72 but not 3 h. Single cell analysis on double-labeled sections indicated that increased GAD or vGAT mRNA levels after acute SKF-81297 occurred in striatonigral neurons identified by their lack of preproenkephalin expression. Subchronic SKF-81297 induced significant increases in striatal GAD67, GAD65, preprodynorphin and vGAT mRNA levels and decreases in nigral alpha1 mRNA levels. In the striatum contralateral to the 6-OHDA lesion, subchronic but not acute SKF-81297 induced a significant increase in GAD65 mRNA levels. The other mRNA levels were not significantly altered. Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine

  19. Neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    PubMed

    Choi, Hyun Sook; Park, Mi Sook; Kim, Seung Hwan; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2010-04-16

    6-Hydroxydopamine administration for 28 days (8 microg/2 microL) reduced the number of tyrosine hydroxylase (TH)-immunopositive neurons to 40.2% in the substantia nigra compared to the intact contralateral side. Dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and norepinephrine levels were reduced to 19.1%, 52.3%, 47.1% and 67.4% in the striatum of 6-hydroxydopamine-lesioned rats compared to the control group, respectively. However, an oral administration of herbal ethanol extracts from Gynostemma pentaphyllum (GP-EX) (10 mg/kg and 30 mg/kg) starting on day 3 post-lesion for 28 days markedly ameliorated the reduction of TH-immunopositive neurons induced by 6-hydroxydopamine-lesioned rat brain from 40.2% to 67.4% and 75.8% in the substantia nigra. GP-EX administration (10 and 30 mg/kg) also recovered the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and norepinephrine in post-lesion striatum to 64.1% and 65.0%, 77.9% and 89.7%, 82.6% and 90.2%, and 88.1% and 89.2% of the control group. GP-EX at the given doses did not produce any sign of toxicity such as weight loss, diarrhea and vomiting in rats during the 28 day treatment period and four gypenoside derivatives, gynosaponin TN-1, gynosaponin TN-2, gypenoside XLV and gypenoside LXXIV were identified from GP-EX. These results suggest that GP-EX might be helpful in the prevention of Parkinson's disease.

  20. L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: relation to motor and cellular parameters of nigrostriatal function.

    PubMed

    Winkler, Christian; Kirik, Deniz; Björklund, Anders; Cenci, M Angela

    2002-07-01

    In order to assess the role of striatal dopamine (DA) afferents in L-DOPA-induced dyskinesia, we have studied a large series of rats sustaining 2, 3, or 4 unilateral injections of 6-hydroxydopamine (6-OHDA) in the lateral striatum. This type of lesion produced a dose-dependent depletion of DA fibers in the caudate-putamen, which was most pronounced in the lateral aspects of this structure. An additional group of rats was injected with 6-OHDA in the medial forebrain bundle to obtain complete DA denervation on one side of the brain. During a course of chronic L-DOPA treatment, rats with intrastriatal 6-OHDA lesions developed abnormal involuntary movements (AIMs), which mapped onto striatal domains exhibiting at least approximately 90% denervation, as judged by DA transporter autoradiography. The denervated areas showed local upregulation of preproenkephalin and prodynorphin mRNA, and FosB-like immunoreactivity, which were highly correlated with the rats' AIM scores. When compared to completely DA-denervated animals, the rats with intrastriatal 6-OHDA lesions showed an overall lower incidence, lower severity and different topographic distribution of AIMs. The involvement of proximal limb and axial muscles in the abnormal movements was proportional to the spreading of the lesion from lateral towards medial aspects of the caudate-putamen. Locomotive AIMs were only seen in rats with complete lesions, but not in any of the animals with intrastriatal 6-OHDA (which showed > 5% DA fiber sparing in the medial striatum). Intrastriatally 6-OHDA-lesioned rats had a larger therapeutic window for L-DOPA than did rats with complete bundle lesions, since they exhibited an overall lower predisposition to dyskinesia but a similar degree of drug-induced motor improvement in a test of forelimb stepping. Our results are the first to demonstrate that selective and partial DA denervation in the sensorimotor part of the striatum can confer cellular and behavioral supersensitivity to L

  1. Benserazide dosing regimen affects the response to L-3,4-dihydroxyphenylalanine in the 6-hydroxydopamine-lesioned rat.

    PubMed

    Tayarani-Binazir, Kayhan A; Jackson, Michael J; Strang, Isobel; Jairaj, Mark; Rose, Sarah; Jenner, Peter

    2012-04-01

    Peripheral aromatic amino acid decarboxylase (AADC) inhibitors, such as benserazide, are routinely used to potentiate the effects of L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease (PD) and in experimental models of PD. However, there is little information available on the optimal dose or the timing of administration relative to L-DOPA treatment. We now assess the effect of dose, timing, and supplemental administration of benserazide on the rotational response induced by L-DOPA in unilateral 6-hydroxydopamine-lesioned rats. L-DOPA (12.5 mg/kg, p.o.) concomitant with benserazide (3.125-15 mg/kg, p.o.) produced a dose-dependent increase in contraversive rotation compared with the effects of L-DOPA alone. The optimal L-DOPA response was achieved with 10 mg/kg of benserazide and this dose was used in subsequent experiments. When L-DOPA treatment was delayed for 1, 2, or 3 h after benserazide, the rotational response declined suggesting loss of AADC inhibition. Unexpectedly, there was also a progressive decline in response when benserazide and L-DOPA were given together but at increasingly later time points of 08.00, 09.00, 10.00, and 11.00 h. To assess supplemental administration of benserazide, an additional dose was given 2 h after the initial benserazide/L-DOPA treatment. This produced a further increase in the number of contralateral rotations indicating that the effect of benserazide declines while plasma levels of L-DOPA are maintained. Therefore, optimization of the dose and timing of benserazide administration is essential to achieve a consistent L-DOPA response in 6-hydroxydopamine-lesioned rats. These findings may have implications for the way in which peripheral AADC inhibitors are used in the treatment of PD.

  2. Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats

    PubMed Central

    Cadet, Jean Lud; Brannock, Christie; Krasnova, Irina N.; Ladenheim, Bruce; McCoy, Michael T.; Chou, Jenny; Lehrmann, Elin; Wood, William H.; Becker, Kevin G.; Wang, Yun

    2010-01-01

    Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)–denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (± 1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also

  3. Methamphetamine-induced dopamine-independent alterations in striatal gene expression in the 6-hydroxydopamine hemiparkinsonian rats.

    PubMed

    Cadet, Jean Lud; Brannock, Christie; Krasnova, Irina N; Ladenheim, Bruce; McCoy, Michael T; Chou, Jenny; Lehrmann, Elin; Wood, William H; Becker, Kevin G; Wang, Yun

    2010-12-13

    Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle are used extensively as a model of Parkinson's disease. The present experiments sought to identify genes that were affected in the dopamine (DA)-denervated striatum after 6-hydroxydopamine-induced destruction of the nigrostriatal dopaminergic pathway in the rat. We also examined whether a single injection of methamphetamine (METH) (2.5 mg/kg) known to cause changes in gene expression in the normally DA-innervated striatum could still influence striatal gene expression in the absence of DA. Unilateral injections of 6-hydroxydopamine into the medial forebrain bundle resulted in METH-induced rotational behaviors ipsilateral to the lesioned side and total striatal DA depletion on the lesioned side. This injection also caused decrease in striatal serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels. DA depletion was associated with increases in 5-HIAA/5-HT ratios that were potentiated by the METH injection. Microarray analyses revealed changes (±1.7-fold, p<0.025) in the expression of 67 genes on the lesioned side in comparison to the intact side of the saline-treated hemiparkinsonian animals. These include follistatin, neuromedin U, and tachykinin 2 which were up-regulated. METH administration caused increases in the expression of c-fos, Egr1, and Nor-1 on the intact side. On the DA-depleted side, METH administration also increased the expression of 61 genes including Pdgf-d and Cox-2. There were METH-induced changes in 16 genes that were common in the DA-innervated and DA-depleted sides. These include c-fos and Nor-1 which show greater changes on the normal DA side. Thus, the present study documents, for the first time, that METH mediated DA-independent changes in the levels of transcripts of several genes in the DA-denervated striatum. Our results also implicate 5-HT as a potential player in these METH-induced alterations in gene expression because the METH injection also caused

  4. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson’s rats

    PubMed Central

    Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju

    2013-01-01

    Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson’s disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson’s rats. Parkinson’s rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson’s rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson’s disease. PMID:24278884

  5. Electroacupuncture Produces the Sustained Motor Improvement in 6-Hydroxydopamine-Lesioned Mice

    PubMed Central

    Deng, Jiahui; Sun, Min; Jia, Jun; Wang, Xiaomin

    2016-01-01

    Clinical and research evidence has shown that electroacupuncture (EA) promotes recovery of motor function in patients with Parkinson’s disease (PD). However, the “efficacy span” of EA treatment, especially the long-term effect of EA that is thought to last after the cessation of EA treatment, has not been investigated. The present study thus investigated and compared the effect of EA during and after chronic EA application on motor activity and dopamine lesions in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Chronic EA treatment (30 min a day, 6 days a week for 2 or 4 weeks) significantly attenuated motor deficiency and reduced dopamine neuron degeneration. Remarkably, EA showed a long-lasting effect after the cessation of EA stimulation. At 2 and 4 weeks after the termination of EA, EA continued to improve motor function in 6-OHDA-lesioned mice. Consistent with sustained behavioral effects, EA induced an enduring increase in the dopamine turnover ratio in the striatum 2 weeks after the cessation of EA treatment. Here we demonstrated that the therapeutic effect of EA outlasted the duration of EA application. During a relatively long period of time after the completion of EA treatment, EA is able to continue to improve motor function and enhance dopamine availability in 6-OHDA-lesioned PD mice. PMID:26894437

  6. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress.

    PubMed

    Baluchnejadmojarad, Tourandokht; Mansouri, Monireh; Ghalami, Jamileh; Mokhtari, Zahra; Roghani, Mehrdad

    2017-04-01

    Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders in elders. Sesamin is a lignan compound and the active constituent of sesame oil with antioxidant and anti-inflammatory properties. This study was carried out to explore the mechanisms underlying sesamin effect against unilateral striatal 6-hydroxydopamine (6-OHDA) model of PD. Intrastriatal 6-OHDA-lesioned rats were pretreated with sesamin at doses of 10 or 20mg/kg/day for one week. Sesamin at a dose of 20mg/kg attenuated motor imbalance in narrow beam test, lowered striatal level of malondialdehyde (MDA) and reactive oxygen species (ROS), improved superoxide dismutase (SOD) activity, lowered striatal caspase 3 activity and α-synuclein expression, attenuated glial fibrillary acidic protein (GFAP) immunoreactivity, depressed nigral neuronal apoptosis, and prevented damage of dopaminergic neurons using tyrosine hydroxylase (TH) immunohistochemistry. These findings reveal the reversal effect of sesamin in 6-OHDA model of PD via attenuation of apoptosis, astrogliosis, oxidative stress, and down-regulation of α-synuclein.

  7. Impact of the Chronic Omega-3 Fatty Acids Supplementation in Hemiparkinsonism Model Induced by 6-Hydroxydopamine in Rats.

    PubMed

    Barros, Alexandre Sales; Crispim, Rafael Yuri Gouveia; Uchoa, Juliana Cavalcante; Souza, Ricardo Basto; Lemos, Jonatas Cavalcante; Filho, Gerardo Cristino; Bezerra, Mirna Marques; Pinheiro, Thales Fontenele Moraes; de Vasconcelos, Silvânia Maria Mendes; Macêdo, Danielle Silveira; de Barros Viana, Glauce Socorro; Aguiar, Lissiana Magna Vasconcelos

    2016-11-24

    Parkinson's disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra. The neuronal degeneration may result from the convergence of a number of different pathogenic factors, including apoptosis, excitotoxicity and oxidative stress. Many studies emphasize the importance of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in vital processes such as maintenance of the properties of cell membranes and the participation in signal transduction and biodynamic activity of neuronal membranes. In the present study, the protective effect of ω-3 PUFAs administration on the 6-hydroxydopamine (6-OHDA) model of PD in rats was investigated. ω-3 PUFAs (1.5 and 3.0 g/kg) was orally administered by gavage during 28 consecutive days to male Wistar rats. On the 4(th) day, hemiparkinsonism was induced through intrastriatal injection of 6-OHDA. On the 25(th) day, the animals were submitted to behavioural analysis. On the 28(th) day, after euthanasia, the brain areas were collected for neurochemical evaluation. ω-3 PUFAs (1.5 and 3.0 g/kg) restored monoamine and amino acids levels on the striatum from hemiparkinsonian rats, followed by reduction of the number of apomorphine-induced rotations and promotion of a partial locomotor recovery. In addition, ω-3 PUFAs (1.5 and 3.0 g/kg) decreased the lipid peroxidation levels and nitrite levels in the brain areas from hemiparkinsonian rats. Thus, the present study suggests that supplementation with ω-3 PUFAs prevents behavioural and neurochemical disturbances induced by 6-OHDA, presenting a potential neuroprotective action. This article is protected by copyright. All rights reserved.

  8. Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson's disease model.

    PubMed

    Park, Hi-Joon; Lim, Sabina; Joo, Wan-Seok; Yin, Chang-Shik; Lee, Hyang-Sook; Lee, Hye-Jung; Seo, Jung Chul; Leem, Kanghyun; Son, Yang-Sun; Kim, Youn-Jung; Kim, Chang-Ju; Kim, Yong-Sik; Chung, Joo-Ho

    2003-03-01

    Parkinson's disease (PD) is a chronic neurodegenerative disorder, and it has been suggested that treatments promoting survival and functional recovery of affected dopaminergic neurons could have a significant and long-term therapeutic value. In the present study, we investigated the neuroprotective effects of acupuncture on the nigrostriatal system in rat unilaterally lesioned with 6-hydroxydopamine (6-OHDA, 4 microg/microl, intrastriatal injection) using tyrosine hydroxylase (TH) and receptor for brain-derived neurotrophic factor, trkB, immunohistochemistries. Two weeks after the lesions were made, rats presented with asymmetry in rotational behavior (118.3 +/- 17.5 turns/h) following injection with apomorphine, a dopamine receptor agonist (0.5 mg/kg, sc). In contrast, acupunctural treatment at acupoints GB34 and LI3 was shown to significantly reduce this motor deficit (14.6 +/- 13.4 turns/h). Analysis via TH immunohistochemistry revealed a substantial loss of cell bodies in the substantia nigra (SN) (45.7% loss) and their terminals in the dorsolateral striatum ipsilateral to the 6-OHDA-induced lesion. However, acupunctural treatment resulted in the enhanced survival of dopaminergic neurons in the SN (21.4% loss) and their terminals in the dorsolateral striatum. Acupuncture also increased the expression of trkB significantly (35.6% increase) in the ipsilateral SN. In conclusion, we observed that only acupuncturing without the use of any drug has the neuroprotective effects against neuronal death in the rat PD model and these protective properties of acupuncture could be mediated by trkB.

  9. c-Fos expression after deep brain stimulation of the pedunculopontine tegmental nucleus in the rat 6-hydroxydopamine Parkinson model.

    PubMed

    Saryyeva, Assel; Nakamura, Makoto; Krauss, Joachim K; Schwabe, Kerstin

    2011-11-01

    Deep brain stimulation (DBS) is used to alleviate motor dysfunction in Parkinson's disease (PD). The pedunculopontine nucleus (PPN) may be a potential target for severe freezing and postural instability with 25 Hz stimulation being considered more effective than 130 Hz stimulation. Here we evaluated the expression of c-Fos after 25 Hz and 130 Hz DBS of the pedunculopontine tegmental nucleus (PPTg, i.e., the rodent equivalent to the human PPN) in the rat 6-hydroxydopamine (6-OHDA) PD model. Anaesthetized male Sprague Dawley rats with unilateral 6-OHDA-induced nigrostriatal lesions were stimulated with 25 Hz, 130 Hz, or 0 Hz sham-stimulation for 4h by electrodes implanted into the ipsilateral PPTg. Thereafter the distribution and number of neurons expressing the immediate early gene c-Fos, a marker for acute neuronal activity, was assessed. DBS of the PPTg induced strong ipsilateral c-Fos expression at the stimulation site, with 25 Hz having a more marked impact than 130 Hz. Additionally, c-Fos was strongly expressed in the central gray. In the dorsal part expression was stronger after 25 Hz stimulation, while in the medial and ventral part there was no difference between 25 Hz and 130 Hz stimulation. Expression in the basal ganglia was negligible. In the rat 6-OHDA PD model stimulation of the PPTg did not affect c-Fos expression in the basal ganglia, but had a strong impact on other functional circuitries. PPN stimulation in humans might therefore also have an impact on other systems than the motor system.

  10. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats.

    PubMed

    Teixeira, M D A; Souza, C M; Menezes, A P F; Carmo, M R S; Fonteles, A A; Gurgel, J P; Lima, F A V; Viana, G S B; Andrade, G M

    2013-09-01

    This study was designed to investigate the beneficial effect of catechin in a model of Parkinson's disease. Unilateral, intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were pretreated with catechin (10 and 30 mg/kg) by intraperitoneal (i.p.) injection 2h before surgery and for 14 days afterwards. After treatments, apomorphine-induced rotations, locomotor activity, working memory and early and late aversive memories were evaluated. The mesencephalon was used to determine the levels of monoamines and measurement of glutathione (GSH). Immunohistochemical staining was also used to evaluate the expression of tyrosine hydroxylase (TH) in mesencephalic and striatal tissues. Catechin administration attenuated the increase in rotational behavior and the decrease in locomotor activity observed in lesioned rats. Although catechin did not rescue the impairment of late aversive memory, it protected the animals against 6-OHDA-induced working memory deficits. Furthermore, catechin treatment restored GSH levels, and significantly increased dopamine and DOPAC content, and TH-immunoreactivity in 6-OHDA-lesioned rats. Catechin protected 6-OHDA-lesioned rats due to its antioxidant action, indicating that it could be useful as an adjunctive therapy for the treatment of Parkinson's disease.

  11. Lesioning of the Striatum Reverses Motor Asymmetry in the 6-Hydroxydopamine Rodent Model of Parkinsonism

    PubMed Central

    Friehs, G. M.; Parker, R. G.; He, L. S.; Haines, S. J.; Turner, D. A.; Ebner, T. J.

    1991-01-01

    In the rat several paradigms of grafting of adrenal medulla into the striatum were studied following the induction of a parkinsonian model, using a unilateral 6-hydroxydopamine (6-OHDA) lesion of the substantia nigra . Direct autologous grafting of adrenal medulla into the caudate-putamen complex, a radiofrequency lesion of the striatum alone, and a radiofrequency lesion followed by delayed grafting of adrenal medulla were compared by analyzing rotational behavior. Direct grafting of adrenal medulla produced an overall reduction in apomorphine induced turning behavior by 43.5% when compared with controls. Radiofrequency lesioning of the striatum without graft showed the best improvement over control animals with a 92% reduction in the total number of rotations induced by apomorphine. Delayed grafting into the caudate lesion cavity also produced a dramatic reduction in motor asymmetry but did not improve the behavioral outcome over that of the lesion alone. Animals receiving only radiofrequency lesions exhibited a band of increased tyrosine hydroxylase like immunoreactivity bordering the lesion cavity. Graft survival was limited in the nonlesioned animals but appeared enhanced in the animals whose striatum was previously lesioned. Lesion location within the striatum influenced the behavioral outcome. Large reductions in apomorphine-induced rotations could result from small lesions of the dorso-lateral striatum. These findings indicate that selective destruction of the caudate-putamen complex without tissue transplantation produces a dramatic reduction in the motor asymmetry of 6-OHDA treated rats. Suggested explanations for the decrease in induced rotational behavior with radiofrequency lesions include a decrease in the number of striatal dopamine receptors following cell destruction and lesioninduced recovery of host dopaminergic afferents. Striatal damage in critical areas can reverse some of the motor behavior associated with the 6-OHDA model and needs to be

  12. Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats.

    PubMed

    Tarohda, Tohru; Ishida, Yasushi; Kawai, Keiichi; Yamamoto, Masayoshi; Amano, Ryohei

    2005-09-01

    Time courses of changes in manganese, iron, copper, and zinc concentrations were examined in regions of the brain of a 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations were simultaneously determined in brain section at the level of the substantia nigra 1, 3, 7, 10, 14, and 21 days after the 6-OHDA treatment and compared with those of control rats. The distributions of these elements were obtained for 18 regions of the sagittal section (1-mm thick). The ICP-MS results indicated that Mn, Fe, Cu, and Zn levels of the 6-OHDA-induced parkinsonian brain were observed to increase in all regions that lay along the dopaminergic pathway. In the substantia nigra, the increase in Mn level occurred rapidly from 3 to 7 days and preceded those in the other elements, reaching a plateau in the 6-OHDA brain. Iron and Zn levels increased gradually until 7 days and then increased rapidly from 7 to 10 days. The increase in the copper level was slightly delayed. In other regions, such as the globus pallidus, putamen, and amygdala, the levels of Mn, Fe, Cu, and Zn increased with time after 6-OHDA treatment, although the time courses of their changes were region-specific. These findings contribute to our understanding of the roles of Mn and Fe in the induction of neurological symptoms and progressive loss of dopaminergic neurons in the development of Parkinson's disease. Manganese may hold the key to disturbing cellular Fe homeostasis and accelerating Fe levels, which play the most important role in the development of Parkinson's disease.

  13. Lack of synergism between caffeine and SKF 38393 on rotational behavior in 6-hydroxydopamine-denervated rats.

    PubMed

    Casas, M; Prat, G; Rubio, A; Barbanoj, M; Jané, F

    2000-05-19

    We have recently shown a synergistic effect between caffeine and the dopamine D(2) receptor agonist, bromocriptine, on contralateral rotational behavior in unilaterally 6-hydroxydopamine-denervated rats. In addition, we found that bromocriptine prevented caffeine-induced tolerance to this behavior following repeated treatment. In the present study, we investigated whether or not the dopamine D(1) receptor agonist, (+/-)-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF 38393), presented similar characteristics. Different groups of rats received simultaneous injections of either vehicle plus vehicle, caffeine (40 mg/kg) plus vehicle, SKF 38393 (0.5, 1, 2, and 4 mg/kg) plus vehicle, or caffeine plus SKF 38393 (0.5, 1, 2, and 4 mg/kg) for 5 consecutive days, and both ipsilateral and contralateral rotational behavior was measured. Results showed that, on the first day of treatment, caffeine produced significantly more rotational behavior than did a low dose of SKF 38393 (0.5 mg/kg), and significantly less turning than at higher doses (2 and 4 mg/kg). Combined treatment with caffeine and a high dose of SKF 38393 (4 mg/kg) produced significantly more rotational behavior than did caffeine plus vehicle. With repeated administration, caffeine produced sustained tolerance to its effects on rotational behavior, whereas SKF 38393 did not. In the groups treated with low doses of SKF 38393 (0.5, and 1 mg/kg) plus caffeine, tolerance was observed while in the groups that received high doses of SKF 38393 (2 and 4 mg/kg) plus caffeine, no tolerance was observed to rotational behavior. These results suggest that maximal stimulation of dopamine D(1) receptors may be needed to prevent the tolerance effects of caffeine in this animal model. This finding may have clinical relevance to the therapeutic treatment of Parkinson's disease.

  14. Fixed-ratio discrimination training as replacement therapy in Parkinson's disease: studies in a 6-hydroxydopamine-treated rat model.

    PubMed

    Van Keuren, K R; Stodgell, C J; Schroeder, S R; Tessel, R E

    1998-01-05

    Severe 6-hydroxydopamine (6-OHDA)-induced neostriatal dopamine (DA) depletion is generally held to be irreversible. Adult rats administered 6-OHDA soon after weaning, or neonatally, respectively model Parkinson's disease (PD) and Lesch-Nyhan syndrome (LNS). Prior studies in our laboratory indicate that prolonged training on incrementally more difficult fixed-ratio (FR) discriminations can reverse 'irreversible' 6-OHDA-induced neostriatal DA depletion in adult LNS rats. The present study evaluated the effects of such training on neostriatal DA depletion and its functional consequences in adult PD and control (vehicle-injected) rats. After recovery from 6-OHDA-induced hypophagia, rats were sacrificed to assess neostriatal DA depletion magnitude, or were food-deprived and either subjected to food-maintained operant FR discrimination training or allowed to remain in their home cages. 6-OHDA treatment antagonized amphetamine (AMP)-induced increases in brief rearing behavior and locomotor activity in 3-month-old PD rats prior to training, and reduced operant response rates throughout training without affecting learning rates. One week after training, AMP-increased locomotor and brief-rearing frequencies were augmented in all groups except trained controls, and the prior inhibitory effect of 6-OHDA treatment on AMP-increased behavioral frequencies was essentially eliminated. Cumulative apomorphine (APO) dose-effect curve (0.1-3.2 mg/kg) construction 3 weeks post-training revealed that 6-OHDA treatment abolished APO-induced intense licking behavior. However, training eliminated the hyperresponsiveness of 6-OHDA-treated rats to the locomotor- and brief-rearing stimulant effects of APO but did not affect the depletion of neostriatal DA. Nevertheless, 6-OHDA-induced increases in neostriatal DOPAC/DA and HVA/DA ratios were normalized by age/food-deprivation while that of 3MT/DA was not. These findings suggest that training reduces the functional responsiveness of at least some

  15. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson’s Disease in Rats

    PubMed Central

    Rezaei, Maryam; Nasri, Sima; Roughani, Mehrdad; Niknami, Zeinab; Ziai, Seyed Ali

    2016-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders. There are many documents about the effects of oxidative stress in Parkinson’s disease etiology. Angiotensin II activates NADPH dependent oxidases and causes superoxides formation. Peganum harmala L. extract, which has angiotensin converting enzyme (ACE) inhibitory effect, is considered to evaluate oxidative stress inhibition and Parkinson's disease improvement. Male rats weighting 200-250 g were divided into 5 groups: Control, Neurotoxin (injection of 6-hydroxydopamine into left hemisphere substantia nigra), Peganum harmala's seeds aqueous extract (10 mg/kg) and captopril (5 mg/kg). Peganum harmala and captopril were injected intraperitonealy -144, -120, -96, -72, -48, -24, -2, 4 and 24 h relative to 6-hydroxydopamine injection time. Muscle stiffness, apomorphine induced unilateral rotation, amount of brain's protein oxidation and lipid peroxidation, ACE activity and histology of substantia nigra were assayed in all groups. Peganum harmala improved Muscle stiffness and one-direction rotation behavior significantly. It also reduced brain's lipid and protein oxidation levels in neurotoxin-injected rats significantly. In Peganum harmala group compared to control group, brain's ACE activity was significantly inhibited. In histological study, Peganum harmala prevented degeneration of dopaminergic neurons, too. In conclusion, aqueous extract of Peganum harmala could prevent symptoms and reduced oxidative stress markers in rats with Parkinson’s disease induced by 6-hydroxydopamine. PMID:27610168

  16. Exercise partly reverses the effect of maternal separation on hippocampal proteins in 6-hydroxydopamine-lesioned rat brain.

    PubMed

    Dimatelis, J J; Hendricks, S; Hsieh, J; Vlok, N M; Bugarith, K; Daniels, W M U; Russell, V A

    2013-01-01

    Animals subjected to maternal separation stress during the early stages of development display behavioural, endocrine and growth factor abnormalities that mirror the clinical findings in anxiety/depression. In addition, maternal separation has been shown to exacerbate the behavioural deficits induced by 6-hydroxydopamine (6-OHDA) in a rat model of Parkinson's disease. In contrast, voluntary exercise reduced the detrimental effects of 6-OHDA in the rat model. The beneficial effects of exercise appeared to be largely due to compensation in the non-lesioned hemisphere. The aim of the present study was to investigate whether voluntary exercise for 3 weeks could reverse the effects of maternal separation in rats challenged with the neurotoxin 6-OHDA infused into the medial forebrain bundle after 1 week of exercise, at postnatal day 60. The rats were killed 2 weeks later, at postnatal day 74. Their brains were dissected and the hippocampus rapidly removed for proteomic analysis by isobaric tagging (iTRAQ) and quantification of peptides by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Maternal separation upregulated hippocampal proteins functionally involved in energy metabolism (nucleoside diphosphate kinase B, enolase and triosephosphate isomerase) and synaptic plasticity (α-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere. Exercise reversed many of these changes by downregulating the levels of hippocampal proteins functionally associated with energy metabolism (nucleoside diphosphate kinase B, enolase and triosephosphate isomerase) and synaptic plasticity (α-synuclein, tenascin-R, Ba1-667, brevican and neurocan core protein) in the non-lesioned hemisphere of rats subjected to maternal separation. Exercise and maternal separation therefore appeared to have opposing effects on the hippocampus in the non-lesioned hemisphere of the rat brain. Exercise seemed partly to reverse the

  17. Tio2-dopamine complex implanted unilaterally in the caudate nucleus improves motor activity and behavior function of rats with induced hemiparkinsonism.

    PubMed

    Vergara-Aragón, Patricia; Domínguez-Marrufo, Leonardo Eduardo; Ibarra-Guerrero, Patricia; Hernandez-Ramírez, Heidi; Hernández-Téllez, Beatriz; López-Martínez, Irma Elena; Sánchez-Cervantes, Ivonne; Santiago-Jacinto, Patricia; García-Macedo, Jorge Alberto; Valverde-Aguilar, Guadalupe; Santiago, Julio

    2011-01-01

    Parkinson's disease (PD) is characterized by malfunction of dopaminergic systems, and the current symptomatic treatment is to replace lost dopamine. For investigating mechanisms of pathogenesis and alternative treatments to compensate lack of dopamine (DA) activity in PD, the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD has been useful, these animals display apomorphine-induced contralateral rotational behavior, when they are examined after lesion. The purpose of this study was to assess Titania-dopamine (TiO2-DA) complexes implanted on the caudate nucleus for diminishing motor behavior alterations of the 6-OHDA rat model. Rats with 6-OHDA unilateral lesions received TiO2 alone or TiO2-DA implants, and were tested for open field (OF) gross motor crossing and rearing behaviors, and apomorphine-induced rotation (G) behavior. TiO2 complex have no effects on rearing OF and G behaviors, and a significant reducing effect on crossing motor behavior of normal rats compared to control non-treated rats throughout 56 days of observation. Interestingly, TiO2-DA treatment significant recovered motor crossing and rearing behaviors in 6-OHDA-lesioned rats, and diminished the G behaviors during 56 days of examination. Additionally, in the 6-OHDA-lesioned rats TiO2 treatment had a moderate recovering effect only on crossing behavior compared to lesioned non treated rats. Our results suggest that continuous release of dopamine in the caudate nucleus from TiO2-DA complex is capable of reversing gross motor deficits observed in the 6-OHDA-lesioned rat model of PD. Thistype of delivery system of DA represents a promising therapy for PD in humans.

  18. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson's disease.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-02-01

    Oxidative stress and neuroinflammation underlie the major pathogenesis in Parkinson's disease (PD). Antioxidants are known to protect against the degeneration of dopaminergic neurons. Monascus purpureus-fermented rice, a traditional Chinese medicine as well as a health food, includes multifunctional metabolites. The present study was designed to investigate the effects of the antioxidant-containing M. purpureus NTU 568-fermented rice extract (extracted with 50% ethanol, so called R50E) in 6-hydrodopamine (6-OHDA)-induced neurotoxicity in vitro and in vivo. In vitro, treatment with R50E reduced 6-OHDA-induced SH-SY5Y cell death. In vivo, two doses of R50E (5.5 and 11.0 mg kg(-1)) were administered for a period of 28 days following 6-OHDA-induced lesioning. The administration of R50E reduced parkinsonian motor dysfunction and the number of tyrosine hydroxylase (TH)-immunoreactive neurons present in 6-OHDA-induced lesioned rats. Moreover, the administration of R50E reversed the elevation of reactive oxygen species (ROS) and malondialdehyde (MDA) levels and promoted the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione reductase, and glutathione peroxidase via down-regulation of p47 phox, NOX1, and NOX2 expression in the 6-OHDA-lesion rats. Furthermore, treatment with R50E attenuated nitric oxide (NO) and tumor necrosis factor (TNF-α) levels in the 6-OHDA-lesion rats. In conclusion, R50E may prevent neurodegeneration via anti-oxidative and anti-inflammatory mechanisms, suggesting its potential therapeutic value for PD treatment. This is the first study for evaluating the neuroprotective effects of red mold fermented products in PD models.

  19. ALCAR Exerts Neuroprotective and Pro-Neurogenic Effects by Inhibition of Glial Activation and Oxidative Stress via Activation of the Wnt/β-Catenin Signaling in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Shukla, Shubha

    2016-09-01

    Oxidative stress and neuroinflammation are known causative factors in progressive degeneration of dopaminergic (DAergic) neurons in Parkinson's disease (PD). Neural stem cells (NSCs) contribute in maintaining brain plasticity; therefore, survival of NSCs and neuroblasts during neurodegenerative process becomes important in replenishing the pool of mature neuronal population. Acetyl-L-carnitine (ALCAR), present in almost all body cells, increases endogenous antioxidants and regulates bioenergetics. Currently, no information is available about the putative mechanism and neuroprotective effects of ALCAR in 6-hydroxydopamine (6-OHDA)-induced rat model of PD-like phenotypes. Herein, we investigated the effect of ALCAR on death/survival of DAergic neurons, neuroblasts and NSCs and associates mechanism of neuroprotection in 6-OHDA-induced rat model of PD-like phenotypes. ALCAR (100 mg/kg/day, intraperitoneal (i.p.)) treatment started 3 days prior to 6-OHDA lesioning and continued for another 14 day post-lesioning. We found that ALCAR pretreatment in 6-OHDA-lesioned rats increased expression of neurogenic and the Wnt pathway genes in the striatum and substantia nigra pars compacta (SNpc) region. It suppressed the glial cell activation, improved antioxidant status, increased NSC/neuroblast population and rescued the DAergic neurons in nigrostriatal pathway. ALCAR pretreatment in 6-OHDA-lesioned rats decreased GSK-3β activation and increased nuclear translocation of β-catenin. Functional deficits were restored following ALCAR pretreatment in 6-OHDA-lesioned rats as demonstrated by improved motor coordination and rotational behaviour, confirming protection of DAergic innervations in lesioned striatum. These results indicate that ALCAR exerts neuroprotective effects through the activation of Wnt/β-catenin pathway, suggesting its therapeutic use to treat neurodegenerative diseases by enhancing regenerative capacity.

  20. Adenosine A2A Receptor Gene Knockout Prevents l-3,4-Dihydroxyphenylalanine-Induced Dyskinesia by Downregulation of Striatal GAD67 in 6-OHDA-Lesioned Parkinson’s Mice

    PubMed Central

    Yin, Su-bing; Zhang, Xiao-guang; Chen, Shuang; Yang, Wen-ting; Zheng, Xia-wei; Zheng, Guo-qing

    2017-01-01

    l-3,4-Dihydroxyphenylalanine (l-DOPA) remains the primary pharmacological agent for the symptomatic treatment of Parkinson’s disease (PD). However, the development of l-DOPA-induced dyskinesia (LID) limits the long-term use of l-DOPA for PD patients. Some data have reported that adenosine A2A receptor (A2AR) antagonists prevented LID in animal model of PD. However, the mechanism in which adenosine A2AR blockade alleviates the symptoms of LID has not been fully clarified. Here, we determined to knock out (KO) the gene of A2AR and explored the possible underlying mechanisms implicated in development of LID in a mouse model of PD. A2AR gene KO mice were unilaterally injected into the striatum with 6-hydroxydopamine (6-OHDA) in order to damage dopamine neurons on one side of the brain. 6-OHDA-lesioned mice were then injected once daily for 21 days with l-DOPA. Abnormal involuntary movements (AIMs) were evaluated on days 3, 8, 13, and 18 after l-DOPA administration, and real-time polymerase chain reaction and immunohistochemistry for glutamic acid decarboxylase (GAD) 65 and GAD67 were performed. We found that A2AR gene KO was effective in reducing AIM scores and accompanied with decrease of striatal GAD67, rather than GAD65. These results demonstrated that the possible mechanism involved in alleviation of AIM symptoms by A2AR gene KO might be through reducing the expression of striatal GAD67. PMID:28377741

  1. Neuroprotective effect of D-psicose on 6-hydroxydopamine-induced apoptosis in rat pheochromocytoma (PC12) cells.

    PubMed

    Takata, Maki K; Yamaguchi, Fuminori; Nakanose, Koichi; Watanabe, Yasuo; Hatano, Naoya; Tsukamoto, Ikuko; Nagata, Mitsuhiro; Izumori, Ken; Tokuda, Masaaki

    2005-11-01

    We evaluated the neuroprotective effects of D-psicose, one of the rare sugars, on 6-hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells, the in vitro model of Parkinson's disease (PD). Apoptotic characteristics of PC12 cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. The results showed that D-psicose at a concentration of 50 mM, exerted significant protective effects against the 6-OHDA (200 muM)-induced PC12 cell apoptosis, while other sugars had little or no protective effects. We have observed a significant increase in the level of intracellular glutathione after 24 h in 6-OHDA (200 muM) treated cells, while a decrease in the level was observed at 3 h and 6 h. Also, a synergistic exposure to D-psicose and 6-OHDA for 24 h showed a significant increase in intracellular glutathione level. Therefore, these results suggest that D-psicose may play a potential role as a neuroprotective agent in the treatment of neurodegenerative diseases by inducing an up-regulation of intracellular glutathione.

  2. Sensorimotor impairment and elevated levels of dopamine metabolites in the neostriatum occur rapidly after intranigral injection of 6-hydroxydopamine or gamma-hydroxybutyrate in awake rats.

    PubMed

    Altar, C A; O'Neil, S; Marshall, J F

    1984-03-01

    The unilateral injection of 6-hydroxydopamine (8 micrograms) into the ventral tegmental area of awake rats produced a rapidly developing and irreversible sensory neglect to contralateral tactile stimuli. This neglect developed in a caudal to rostral direction on the affected body surface and coincided with significant elevation in the concentrations of dopamine and two of its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the ipsilateral neostriatum. The unilateral injection of procaine or gamma-hydroxybutyric acid (GHB) into the substantia nigra of awake animals also produced a contralateral neglect that developed in a caudal to rostral direction, but the behavioral effect of these drugs diminished within 1 hr. Concentrations of dopamine, dihydroxyphenylacetic acid and homovanillic acid in the neostriatum were markedly elevated during continuous infusions of procaine or gamma-hydroxybutyric acid. The extent of sensory neglect and changes in dopamine metabolism in the neostriatum varied according to the amount of gamma-hydroxybutyric acid injected into the nigra and according to the proximity of injections of gamma-hydroxybutyric acid to the pars compacta. The rapid onset of sensory neglect following microinjections of 6-hydroxydopamine, procaine or gamma-hydroxybutyric acid is consistent with the ability of each of these drugs to block the conduction of impulses in mesostriatal neurons and suggests that concomitant increases in levels of dopamine, dihydroxyphenylacetic acid and homovanillic acid in the neostriatum resulted from decreases in the release of dopamine coupled with increased synthesis of dopamine. These findings also indicate that the catabolism of dopamine to dihydroxyphenylacetic acid or homovanillic acid may originate intraneuronally, without prior release of dopamine and its recapture by mesostriatal terminals, if the flow of impulses in this pathway has been blocked.

  3. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.

  4. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats

    PubMed Central

    Das, Saroj Kumar; Patel, Bhupesh

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence. PMID:27034665

  5. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease

    PubMed Central

    Karasawa, H.; Pietra, C.; Giuliano, C.; Garcia-Rubio, S.; Xu, X.; Yakabi, S.; Taché, Y.; Wang, L.

    2015-01-01

    Background Constipation and L-dopa-induced gastric dysmotility are common gastrointestinal (GI) symptoms in Parkinson’s disease (PD). We investigate the novel ghrelin agonist, HM01 influence on GI motor dysfunctions in 6-hydroxydopamine (6-OHDA) rats. Methods HM01 pharmacological profiles were determined in vitro and in vivo in rats. We assessed changes in fecal output and water content, and gastric emptying (GE) in 6-OHDA rats treated or not with orogastric (og) HM01 and L-dopa/carbidopa (LD/CD, 20/2 mg kg−1). Fos immunoreactivity (ir) cells in specific brain and lumbosacral spinal cord were quantified. Key results HM01 displayed a high binding affinity to ghrelin receptor (Ki: 1.42 ± 0.36 nM), 4.3±1.0 h half-life and high brain/plasma ratio. 6-OHDA rats had reduced daily fecal output (22%) and water intake (23%) compared to controls. HM01 (3 and 10 mg kg−1) similarly reversed the decreased 4-h fecal weight and water content in 6-OHDA rats. Basal GE was not modified in 6-OHDA rats, however, LD/CD (once or daily for 8 days) delayed GE in 6-OHDA and control rats that was prevented by HM01 (3 mg kg−1 acute or daily before LD/CD). HM01 increased Fos-ir cell number in the area postrema, arcuate nucleus, nucleus tractus solitarius and lumbosacral intermediolateral column of 6-OHDA rats where 6-OHDA had a lowering effect compared to controls. Conclusions & Inferences 6-OHDA rats display constipation- and adipsia-like features of PD and L-dopa-inhibited GE. The new orally active ghrelin agonist, HM01 crosses the blood brain barrier and alleviates these alterations suggesting a potential benefit for PD with GI disorders. PMID:25327342

  6. Neuroprotective Effects of Sulphated Agaran from Marine Alga Gracilaria cornea in Rat 6-Hydroxydopamine Parkinson's Disease Model: Behavioural, Neurochemical and Transcriptional Alterations.

    PubMed

    Souza, Ricardo Basto; Frota, Annyta Fernandes; Sousa, Rayane Siqueira; Cezario, Nayara Araújo; Santos, Tarcizio Brito; Souza, Luziana Mara Frota; Coura, Chistiane Oliveira; Monteiro, Valdécio Silvano; Cristino Filho, Gerardo; Vasconcelos, Silvânia Maria Mendes; da Cunha, Rodrigo Maranguape Silva; Aguiar, Lissiana Magna Vasconcelos; Benevides, Norma Maria Barros

    2017-02-01

    Parkinson's disease (PD) is a multifactorial disease associated with the degeneration of dopaminergic neurons and behavioural alterations. Natural bioactive compounds may provide new therapeutic alternatives for neurodegenerative disorders, such as PD. The sulphated polysaccharides isolated from marine algae are heterogenic molecules that show different biological activities. The red marine alga Gracilaria cornea has a sulphated polysaccharide (SA-Gc) with structure and anti-inflammatory and antinociceptive activities reported in the literature. Therefore, this study aimed to evaluate the neuroprotective effects of SA-Gc in rat model PD induced by 6-hydroxydopamine (6-OHDA). Firstly, we established the PD model in rats, induced by an intrastriatal injection (int.) of 6-OHDA, followed by a single administration of SA-Gc (15, 30 or 60 μg; int.). On the 14th day, behavioural tests were performed. After killing, brain areas were dissected and used for neurochemical and/or transcriptional analyses. The results showed that SA-Gc (60 μg, int.) promoted neuroprotective effects in vivo through reducing the oxidative/nitroactive stress and through alterations in the monoamine contents induced by 6-OHDA. Furthermore, SA-Gc modulated the transcription of neuroprotective and inflammatory genes, as well as returning behavioural activities and weight gain to normal conditions. Thus, this study reports the neuroprotective effects of SA-Gc against 6-OHDA in rats.

  7. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum.

    PubMed

    Serratos, Iris N; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Colín-González, Ana Laura; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Sánchez-García, Aurora; Gómez, Isabel; Rangel-López, Edgar; Santamaria, Abel

    2016-04-05

    The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity.

  8. [Effects of hypothalamic microinjections of 6-hydroxydopamine (6-OHDA) on estral cycle and morphology of the genital tract in the female rat (author's transl)].

    PubMed

    Sala, M A; Oteui, J T; Benedetti, W I

    1975-01-01

    To determine whether central catecholaminergic pathways are involved in the neural contral of gonadotrophin secretion, they were interrupted at the hypothalamic level by microinjections of 6-hydroxydopamine (6-OHDA). The effects on ovulation, estral cycle and ovarian and uterine histology were studied. Microinjections of 50 mug of 6-OHDA hydrobromyde were made bilaterally into the anterolateral hypothalamus in a group of rats. Another group was injected with 25 mug of 6-OHDA, while a control group recieved an equivalent volume (5 mul) of saline with ascorbic acid. Animals injected with 50 mug of 6-OHDA showed blockade of ovulation, vaginal cytology characteristics of persistent estrous, polyfollicular ovaries and enlarged uteri with hypertrophic endometrial glands. In the group injected with 25 mug, similiar effects were demonstrated, but the number of affected animals was smaller than that in the 50 mug group. Control animals dit not show modifications, either in estral cycle or in ovarian and uterine histology. These results suggest that 6-OHDA injected into the anterolateral hypothalmus interferes with catecholaminergic pathways that participate in the neural control of ovulation.

  9. An In Vivo Microdialysis Study of FLZ Penetration through the Blood-Brain Barrier in Normal and 6-Hydroxydopamine Induced Parkinson's Disease Model Rats

    PubMed Central

    Hou, Jinfeng; Liu, Qian; Li, Yingfei; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances. PMID:25045708

  10. An in vivo microdialysis study of FLZ penetration through the blood-brain barrier in normal and 6-hydroxydopamine induced Parkinson's disease model rats.

    PubMed

    Hou, Jinfeng; Liu, Qian; Li, Yingfei; Sun, Hua; Zhang, Jinlan

    2014-01-01

    FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide) is a novel synthetic squamosamide derivative and a potential anti-Parkinson's disease (PD) agent. The objective of the present study was to investigate the penetration of free FLZ across the BBB and the effects of P-gp inhibition on FLZ transport in normal and 6-hydroxydopamine (6-OHDA) induced PD model rats. In vivo microdialysis was used to collect FLZ containing brain and blood dialysates following intravenous (i.v.) drug administration either with or without pretreatment with the specific P-gp inhibitor, zosuquidar trihydrochloride (zosuquidar·3HCl). A sensitive, rapid, and reliable ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed and validated to quantitate free FLZ levels in the dialysates. No significant differences were observed in the brain/blood FLZ area under the concentration-time curve (AUC) ratio between normal and PD model rats. However, pretreatment with zosuquidar·3HCl markedly increased the AUC ratio in both rat models. In addition, FLZ penetration was similar in zosuquidar·3HCl-pretreated normal and PD rats. These results suggest that P-gp inhibition increases BBB permeability to FLZ, thereby supporting the hypothesis that P-gp normally restricts FLZ transfer to the brain. These findings could provide reference data for future clinical trials and may aid investigation of the BBB permeability of other CNS-active substances.

  11. In vivo effect of 5-HT₇ receptor agonist on pyramidal neurons in medial frontal cortex of normal and 6-hydroxydopamine-lesioned rats: an electrophysiological study.

    PubMed

    Fan, L L; Zhang, Q J; Liu, J; Feng, J; Gui, Z H; Ali, U; Zhang, L; Hou, C; Wang, T; Hui, Y P; Sun, Y N; Wu, Z H

    2011-09-08

    The 5-hydroxytryptamine (5-HT)-7 receptor began to be cloned and pharmacologically characterized close to 20 years ago. It couples positively via G-proteins to adenylyl cyclase and activation of this receptor increases neuronal excitability, and several studies have shown that degeneration of the nigrostriatal pathway leads to an impairment of 5-HT system. Here we reported that systemic and local administration of 5-HT₇ receptor agonist AS 19 produced excitation, inhibition and no change in the firing rate of pyramidal neurons in medial prefrontal cortex (mPFC) of normal and 6-hydroxydopamine-lesioned rats. In normal rats, the mean response of the pyramidal neurons to AS 19 by systemic and local administration in mPFC was excitatory. The inhibitory effect by systemic administration of AS 19 was reversed by GABA(A) receptor antagonist picrotoxinin. Systemic administration of picrotoxinin excited all the neurons examined in normal rats, and after treatment with picrotoxinin, the local administration of AS 19 further increased the firing rate of the neurons. In the lesioned rats, systemic administration of AS 19, at the same doses, also increased the mean firing rate of the pyramidal neurons. However, cumulative dose producing excitation in the lesioned rats was higher than that of normal rats. Systemic administration of AS 19 produced inhibitory effect in the lesioned rats, which was partially reversed by picrotoxinin. The local administration of AS 19, at the same dose, did not change the firing rate of the neurons in the lesioned rats. Systemic administration of picrotoxinin and the local administration of AS 19 did not affect the firing rate of the neurons in the lesioned rats. These results indicate that activity of mPFC pyramidal neurons is regulated through activation of 5-HT₇ receptor by direct or indirect action, and degeneration of the nigrostriatal pathway leads to decreased response of these neurons to AS 19, suggesting dysfunction and/or down

  12. Yokukansan, a Traditional Japanese Medicine, Enhances the L-DOPA-Induced Rotational Response in 6-Hydroxydopamine-Lesioned Rats: Possible Inhibition of COMT.

    PubMed

    Ishida, Yasushi; Ebihara, Kosuke; Tabuchi, Masahiro; Imamura, Sachiko; Sekiguchi, Kyoji; Mizoguchi, Kazushige; Kase, Yoshio; Koganemaru, Go; Abe, Hiroshi; Ikarashi, Yasushi

    2016-01-01

    The aim of the present study was to investigate the effects of the traditional Japanese medicine yokukansan (YKS) on the function of dopamine (DA) in the rat nigrostriatal system. Unilateral 6-hydroxydopamine lesions were produced in the rat nigrostriatal system. Despite a marked loss in the striatal immunoreactivity of tyrosine hydroxylase on the lesion side, striatal serotonin (5-HT) immunoreactivity was not affected. Treatment using L-3,4-dihydroxyphenylalanine (L-DOPA) in conjunction with benserazide for 15 d induced abnormal involuntary movements (AIMs) such as locomotive (rotational response), axial, forelimb, and orolingual movements in the lesioned rats. The L-DOPA-induced locomotive and axial, but not forelimb and orolingual, AIMs were significantly increased and prolonged by the pre-administration of YKS. We next investigated the effects of YKS on the production of DA from L-DOPA in 5-HT synthetic RIN 14B cells. RIN 14B cells produced DA and its metabolite, 3-methoxytyramine (3-MT), following L-DOPA treatment. YKS significantly augmented DA production and inhibited its metabolism to 3-MT in a manner similar to the catechol-O-methyltransferase (COMT) inhibitor entacapone. YKS and some alkaloids (corynoxeine: CX, geissoschizine methyl ether: GM) in Uncaria hook, a constituent herb of YKS, also inhibited COMT activity, indicating that the augmenting effect of YKS on L-DOPA-induced DA production in 5-HT synthetic cells was due to the inhibition of COMT by CX and GM. Our results suggest that YKS facilitates the DA supplemental effect of L-DOPA, and that COMT inhibition by CX and GM contributes, at least in part, to the effects of YKS.

  13. Attenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson’s disease

    PubMed Central

    Wang, Chen-Tao; Mao, Cheng-Jie; Zhang, Xiao-Qi; Zhang, Cai-Yi; Lv, Dong-Jun; Yang, Ya-Ping; Xia, Kai-Lin; Liu, Jun-Yi; Wang, Fen; Hu, Li-Fang; Xu, Guang-Yin

    2017-01-01

    Background Although pain is one of the most distressing non-motor symptoms among patients with Parkinson’s disease, the underlying mechanisms of pain in Parkinson’s disease remain elusive. The aim of the present study was to investigate the role of serotonin (5-hydroxytryptamine) in the rostral ventromedial medulla (RVM) and spinal cord in pain sensory abnormalities in a 6-hydroxydopamine-treated rat model of Parkinson’s disease. Methods The rotarod test was used to evaluate motor function. The radiant heat test and von Frey test were conducted to evaluate thermal and mechanical pain thresholds, respectively. Immunofluorescence was used to examine 5-hydroxytryptamine neurons and fibers in the rostral ventromedial medulla and spinal cord. High-performance liquid chromatography was used to determine 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels. Results The duration of running time on the rotarod test was significantly reduced in 6-hydroxydopamine-treated rats. Nociceptive thresholds of both mechanical and heat pain were reduced compared to sham-treated rats. In addition to the degeneration of cell bodies and fibers in the substantia nigra pars compacta, the number of rostral ventromedial medulla 5-hydroxytryptamine neurons and 5-hydroxytryptamine fibers in the spinal dorsal horn was dramatically decreased. 5-Hydroxytryptamine concentrations in both the rostral ventromedial medulla and spinal cord were reduced. Furthermore, the administration of citalopram significantly attenuated pain hypersensitivity. Interestingly, Intra-rostral ventromedial medulla (intra-RVM) microinjection of 5,7-dihydroxytryptamine partially reversed pain hypersensitivity of 6-hydroxydopamine-treated rats. Conclusions These results suggest that the decreased 5-hydroxytryptamine contents in the rostral ventromedial medulla and spinal dorsal horn may be involved in hyperalgesia in the 6-hydroxydopamine-induced rat model of Parkinson’s disease. PMID:28326933

  14. Improvement of neurological deficits in 6-hydroxydopamine-lesioned rats after transplantation with allogeneic simian virus 40 large tumor antigen gene-induced immortalized dopamine cells

    PubMed Central

    Clarkson, Edward D.; Rosa, Francisco G. La; Edwards-Prasad, Judith; Weiland, David A.; Witta, Samir E.; Freed, Curt R.; Prasad, Kedar N.

    1998-01-01

    The replacement of dopamine (DA) by DA neuron transplants in the treatment of advanced Parkinson disease (PD) is a rational approach. Because of limitations associated with fetal tissue transplants, a clone (1RB3AN27) of simian virus 40 large tumor antigen (LTa) gene-induced immortalized DA neurons were used in this study. These allogeneic immortalized dopamine neurons, when grafted into striata of normal rats, did not divide, did not form tumors, did not produce LTa, did not extend neurites to host neurons, and were not rejected, for as long as 13 months after transplantation. Grafted cells when recultured in vitro resumed cell proliferation and LTa production, suggesting the presence of a LTa gene-inhibiting factor in the brain. The grafting of undifferentiated and differentiated 1RB3AN27 cells or differentiated murine neuroblastoma (NBP2) cells into striata of 6-hydroxydopamine-lesioned rats (an animal model of PD) caused a time-dependent improvement in neurological deficits (reduction in the methamphetamine-induced turning rate). At 3 months after transplantation, 100% of the animals receiving differentiated 1RB3AN27 cells, 63% of the animals receiving undifferentiated 1RB3AN27 cells, 56% of the animals receiving differentiated NBP2 cells, and 0% of the sham-transplanted animals showed improvements in neurological deficits. At 6 months after transplantation, there was a progressive increase in spontaneous recovery in sham-transplanted animals. These results suggest that immortalized DA neurons should be further studied for their potential use in transplant therapy in advanced PD patients. PMID:9448320

  15. Early toxic effect of 6-hydroxydopamine on extracellular concentrations of neurotransmitters in the rat striatum: an in vivo microdialysis study.

    PubMed

    Tobón-Velasco, Julio César; Silva-Adaya, Daniela; Carmona-Aparicio, Liliana; García, Esperanza; Galván-Arzate, Sonia; Santamaría, Abel

    2010-12-01

    The early effects of 6-OHDA as a Parkinsonian model in rodents are relevant since pharmacological and toxicological points of view, as they can explain the acute and chronic deleterious events occurring in the striatum. In this study, we focused our attention on the neurochemical and motor dysfunction produced after a pulse infusion of 6-OHDA, paying special attention to the capacity of this molecule to induce neurotransmitter release and behavioural alterations. Extracellular levels of dopamine, serotonin, norepinephrine, glutamate, glutamine, aspartate, glycine and GABA were all assessed in striatal dialysates in freely moving rats immediately after exposed to a single pulse of 6-OHDA in dorsal striatum, and major behavioural markers of motor alterations were simultaneously explored. Enhanced release of dopamine, serotonin and norepinephrine was found immediately after 6-OHDA pulse. Delayed glutamate and glycine release were detected and a biphasic effect on GABA was observed. Mostly serotonin and dopamine outflow, followed by glutamate, correlated with wet dog shakes and other behavioural qualitative alterations. Early dopamine release, accompanied by other neurotransmitters, can generate an excitatory environment affecting the striatal neurons with immediate consequences for behavioural performance. In turn, these changes might be accounting for later features of toxicity described in this model.

  16. The Vermicelli Handling Test: A Simple Quantitative Measure of Dexterous Forepaw Function in Rats

    PubMed Central

    Allred, Rachel P.; Adkins, DeAnna L.; Woodlee, Martin T.; Husbands, Lincoln C.; Maldonado, Mónica A.; Kane, Jacqueline R.; Schallert, Timothy; Jones, Theresa A.

    2008-01-01

    Loss of function in the hands occurs with many brain disorders, but there are few measures of skillful forepaw use in rats available to model these impairments that are both sensitive and simple to administer. Whishaw and Coles (1996) previously described the dexterous manner in which rats manipulate food items with their paws, including thin pieces of pasta. We set out to develop a measure of this food handling behavior that would be quantitative, easy to administer, sensitive to the effects of damage to sensory and motor systems of the CNS and useful for identifying the side of lateralized impairments. When rats handle 7 cm lengths of vermicelli, they manipulate the pasta by repeatedly adjusting the forepaw hold on the pasta piece. As operationally defined, these adjustments can be easily identified and counted by an experimenter without specialized equipment. After unilateral sensorimotor cortex (SMC) lesions, transient middle cerebral artery occlusion (MCAO) and striatal dopamine depleting (6-hydroxydopamine, 6-OHDA) lesions in adult rats, there were enduring reductions in adjustments made with the contralateral forepaw. Additional pasta handling characteristics distinguished between the lesion types. MCAO and 6-OHDA lesions increased the frequency of several identified atypical handling patterns. Severe dopamine depletion increased eating time and adjustments made with the ipsilateral forepaw. However, contralateral forepaw adjustment number most sensitively detected enduring impairments across lesion types. Because of its ease of administration and sensitivity to lateralized impairments in skilled forepaw use, this measure may be useful in rat models of upper extremity impairment. PMID:18325597

  17. Adenosine A2A receptor antagonists improve deficits in initiation of movement and sensory motor integration in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    PubMed

    Pinna, Annalisa; Pontis, Silvia; Borsini, Franco; Morelli, Micaela

    2007-08-01

    Evidence obtained in rodent and primate models of Parkinson's disease (PD) and preliminary clinical trials, indicates that adenosine A(2A) receptor antagonists might represent a promising nondopaminergic therapeutic tool for the treatment of PD. Those studies demonstrated the ability of adenosine A(2A) receptor antagonists to potentiate l-dopa-mediated motor improvement, whereas very little is known about counteraction of specific motor deficits and on the effects of these compounds when administered alone. To this aim we evaluated the effects of different adenosine A(2A) receptor antagonists on initiation of movement deficits, gait impairment and sensory-motor deficits, induced in rats by a unilateral 6-hydroxydopamine lesion of dopaminergic nigrostriatal neurons. The following tests were used: (1) initiation time of stepping; (2) adjusting step (stepping with forelimb was measured as the forelimb was dragged laterally); (3) vibrissae-elicited forelimb placing (as index of sensory-motor integration deficits). Acute administration of the A(2A) receptor antagonists SCH 58261 (5 mg/kg i.p.) and ST 1535 (20 mg/kg i.p.) similarly to l-dopa (6 mg/kg i.p.) counteracted the impairments in the initiation time of stepping test, in the adjusting step and in the vibrissae-elicited forelimb placing induced by the lesion. The intensity of the effect was l-dopa > SCH 58261 > ST 1535. The results provide the first evidence that blockade of A(2A) receptors is effective in antagonizing specific motor deficit induced by DA neuron degeneration, such as initiation of movement and sensory-motor integration deficits, even without l-dopa combined administration.

  18. Behavioral and cellular modulation of L-DOPA-induced dyskinesia by beta-adrenoceptor blockade in the 6-hydroxydopamine-lesioned rat.

    PubMed

    Lindenbach, David; Ostock, Corinne Y; Eskow Jaunarajs, Karen L; Dupre, Kristin B; Barnum, Christopher J; Bhide, Nirmal; Bishop, Christopher

    2011-06-01

    Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as L-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective β-adrenergic receptor (βAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with L-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF L-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through βAR blockade, we subsequently examined each enantiomer separately because only the (-)enantiomer has significant βAR affinity. We next investigated the effects of a localized striatal βAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic L-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (-)propranolol had anti-LID properties indicating βAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through βAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action.

  19. Behavioral and Cellular Modulation of l-DOPA-Induced Dyskinesia by β-Adrenoceptor Blockade in the 6-Hydroxydopamine-Lesioned Rat

    PubMed Central

    Lindenbach, David; Ostock, Corinne Y.; Eskow Jaunarajs, Karen L.; Dupre, Kristin B.; Barnum, Christopher J.; Bhide, Nirmal

    2011-01-01

    Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as l-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective β-adrenergic receptor (βAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with l-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF l-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through βAR blockade, we subsequently examined each enantiomer separately because only the (−)enantiomer has significant βAR affinity. We next investigated the effects of a localized striatal βAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic l-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (−)propranolol had anti-LID properties indicating βAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through βAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action. PMID:21402691

  20. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery.

    PubMed

    Lapchak, P A; Miller, P J; Collins, F; Jiao, S

    1997-05-01

    The effects of intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor were tested on low dose (0.05 mg/kg) apomorphine-induced rotations and tyrosine hydroxylase activity in the substantia nigra and striatum of stable 6-hydroxydopamine-lesioned rats. In addition, we determined if 6-hydroxydopamine lesions in the absence or presence of treatment affected neuropeptide (substance P, met-enkephalin, dynorphin) content in the striatum. Glial cell line-derived neurotrophic factor, when administered intranigrally, prevented apomorphine-induced rotational behaviour for 11 weeks following a single injection. In comparison, intraventricularly-administered glial cell line-derived neurotrophic factor produced a transient reduction in rotational behaviour that lasted for two to three weeks following a single injection. We also show that rotational behaviour is reduced following each subsequent intraventricular injection of glial cell line-derived neurotrophic factor given every six weeks, a time-point when baseline rotation deficits were re-established. Intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor significantly reduced weight gain in all 6-hydroxydopamine-lesioned rats in this study. Following behavioural analysis where a confirmed improvement of behaviour was established, tissues were dissected for neurochemical analysis. In lesioned rats with intranigral injections of administered glial cell line-derived neurotrophic factor, significant increases of nigral, but not striatal tyrosine hydroxylase activity were measured. Additionally, 6-hydroxydopamine lesions significantly increased striatal dynorphin (61-139%) and met-enkephalin (81-139%), but not substance P levels. In these rats, intranigrally-administered glial cell line-derived neurotrophic factor injections reversed lesion-induced increases in nigral dynorphin A levels and increased nigral dopamine levels, but did not alter nigral met

  1. Neuroprotective Activity of Peripherally Administered Liver Growth Factor in a Rat Model of Parkinson’s Disease

    PubMed Central

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucía; Reimers, Diana; Herranz, Antonio Sánchez; Rodríguez-Serrano, Macarena; Miranda, Cristina; Jiménez-Escrig, Adriano; Díaz-Gil, Juan José; Bazán, Eulalia

    2013-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease. PMID:23861803

  2. Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy.

    PubMed

    Silva-Adaya, Daniela; Pérez-De La Cruz, Verónica; Villeda-Hernández, Juana; Carrillo-Mora, Paul; González-Herrera, Irma Gabriela; García, Esperanza; Colín-Barenque, Laura; Pedraza-Chaverrí, José; Santamaría, Abel

    2011-01-01

    The neuroactive metabolite at the kynunerine pathway, kynurenic acid (KYNA), is a well-known competitive antagonist at the co-agonist glycine site of the N-methyl-D-aspartate receptor (NMDAr), and also decreases the extracellular levels of glutamate by blocking α7-nicotinic acetylcholine receptor (α7-nAchr) located on glutamatergic terminals. KYNA has been often reported to be neuroprotective in different neurotoxic models. The systemic administration of L-kynurenine (L-KYN)--the precursor of KYNA--together with probenecid (PROB)--an inhibitor of organic acids transport--to rodents increases KYNA levels in the brain in a dose-dependent manner. The striatal infusion of the toxin 6-hydroxydopamine (6-OHDA) to rodents is one of the common models used to simulate Parkinson's disease (PD). Different studies have linked PD alterations with excessive glutamatergic transmission in the striatum since NMDAr antagonists exert beneficial effects in PD models. In this work we investigated the effect that a systemic administration of L-KYN+PROB exerted on the toxic model induced by 6-OHDA in rats. PROB (50 mg/kg, i.p.) + L-KYN (75 mg/kg, i.p.) were given to rats for seven consecutive days. On day two of treatment, the animals were infused with a single injection of 6-OHDA (20 μg/2 μl) into the right striatum. Fourteen days post-lesion, rotation behavior was assessed as a marker of motor impairment. The total levels of dopamine (DA) were also estimated in striatal tissue samples of 6-OHDA-treated animals as a neurochemical marker of damage. In addition, twenty eight days post-lesion, the striatal damage was assessed by hematoxylin/eosin staining and immunohistochemistry against glial fibrillary acidic protein (GFAP) in the same animals. Neurodegeneration was also assessed by Fluoro Jade staining. 6-OHDA infusion increased rotation behavior, striatal reactive gliosis and neurodegeneration, while DA levels were decreased. For all markers evaluated, we observed protective

  3. Regional development of norepinephrine, dopamine-beta-hydroxylase and tyrosine hydroxylase in the rat brain subsequent to neonatal treatment with subcutaneous 6-hydroxydopamine.

    PubMed

    Schmidt, R H; Bhatnagar, R K

    1979-04-27

    Neonatal rats were injected subcutaneously with 100 mg/kg 6-hydroxydopamine (6-OHDA), or vehicle, on postnatal days 1, 2 and 3. At several times thereafter, determinations of tyrosine hydroxylase (TOH) and dopamine-beta-hydroxylase (DBH) activities, and norepinephrine (NE) concentration were made in the parietal cortex, cerebellum and pons-medulla in order to assess the extent of initial noradrenergic degeneration induced, and the rate of any ensuing regeneration. By the day following completion of the treatment (postnatal day 4), degeneration of noradrenergic terminals in the parietal cortex and cerebellum was very extensive, with NE levels and DBH activities reduced by more than 80%, and TOH activities reduced by 50%. In the parietal cortex noradrenergic degeneration remained virtually complete; and 9 and 70 days postnatal NE concentration and DBH and TOH activities were all decreased by more than 90--95%. In the cerebellum a progressive regeneration and apparent sprouting of NE fibers was observed. By postnatal day 9, NE, DBH and TOH in this tissue had all recovered to near control levels, and by day 70 these measures exceeded control levels by 95%, 115% and 50% respectively. In the pons-medulla, the initial effect of 6-OHDA on any of the measured parameters was negligible. By postnatal day 9 an increase in NE concentration was apparent, which increased further by day 70 to surpass the control level by 70%. At this same time DBH activity was increased by only 15% and TOH activity was unchanged. Separate analysis of the rostral half of the pons, which contains the locus coeruleus, revealed that on day 70 NE and DBH levels were increased much more substantially than in the whole pons-medulla, and TOH activity was also significantly elevated. This data indicates that the initial amount of degeneration induced by the 6-OHDA treatment is similar in both the parietal cortex and cerebellum, but regeneration proceeds only in the cerebellum. This suggests that

  4. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats.

    PubMed

    Mu, Xin; Yuan, Xia; Du, Li-Da; He, Guo-Rong; Du, Guan-Hua

    2016-01-01

    Quercetin, a flavonoid present in many plants, is reported to be effective in models of neurodegenerative diseases. The aim of the present study was to evaluate the anti-tremor effects of quercetin in 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. In rats, quercetin had no effect on apomorphine-induced rotations, but it could significantly attenuate muscle tremor of 6-OHDA lesioned rats. Interestingly, quercetin could decrease the burst frequency in a dose- and time-dependent manner. These results suggest that quercetin may have a protective effect on models to mimic muscle tremors of Parkinson's disease. This effect of quercetin may be associated with serotonergic system, but further study is needed.

  5. Exercise-induced rescue of tongue function without striatal dopamine sparing in a rat neurotoxin model of Parkinson disease.

    PubMed

    Ciucci, Michelle R; Schaser, Allison J; Russell, John A

    2013-09-01

    Unilateral lesions to the medial forebrain bundle with 6-hydroxydopamine (6-OHDA) lead to force and timing deficits during a complex licking task. We hypothesized that training targeting tongue force generation during licking would improve timing and force measures and also lead to striatal dopamine sparing. Nine month-old male Fisher344/Brown Norway rats were used in this experiment. Sixteen rats were in the control condition and received tongue exercise (n=8) or no exercise (n=8). Fourteen rats were in the 6-OHDA lesion condition and underwent tongue exercise (n=7) and or no exercise (n=7). Following 4 weeks of training and post-training measures, all animals underwent bilateral stimulation of the hypoglossal nerves to measure muscle contractile properties and were then transcardially perfused and brain tissues collected for immunohistochemistry to examine striatal dopamine content. Results demonstrated that exercise animals performed better for maximal force, average force, and press rate than their no-exercise counterparts, and the 6-OHDA animals that underwent exercise performed as well as the Control No Exercise group. Interestingly, there were no group differences for tetanic muscle force, despite behavioral recovery of forces. Additionally, behavioral and neurochemical analyses indicate that there were no differences in striatal dopamine. Thus, targeted exercise can improve tongue force and timing deficits related to 6-OHDA lesions and this exercise likely has a central, versus peripheral (muscle strength) mechanism. However, this mechanism is not related to sparing of striatal dopamine content.

  6. Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease.

    PubMed

    Tatenhorst, Lars; Tönges, Lars; Saal, Kim-Ann; Koch, Jan C; Szegő, Éva M; Bähr, Mathias; Lingor, Paul

    2014-08-01

    Chronic degeneration of nigrostriatal projections, followed by nigral dopaminergic cell death, is a key feature of Parkinson disease (PD). This study examines the neuroprotective potential of the rho kinase inhibitor fasudil in the 6-hydroxydopamine (6-OHDA) mouse model of PD in vivo. C57Bl/6 mice were lesioned by striatal stereotactic injections with 4 μg of 6-OHDA and treated with fasudil 30 or 100 mg/kg body weight via drinking water. Motor behavior was tested biweekly; histologic and biochemical analyses were performed at 4 and 12 weeks after lesion. Motor behavior was severely impaired after 6-OHDA lesion and was not improved by fasudil treatment. Fasudil 100 mg/kg did not significantly increase the number of dopaminergic cells in the substantia nigra after 12 weeks versus lesion controls. Interestingly, however, high-performance liquid chromatography analysis of dopamine metabolites revealed that striatal levels of 3,4-dihydroxyphenylacetic acid were significantly increased after 12 weeks, suggesting a regenerative response. In contrast to recent findings in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin model, fasudil effects seem limited in this severe 6-OHDA model of PD. Nevertheless, high therapeutic concentrations of fasudil are suggestive of a proregenerative potential for dopaminergic neurons, making further evaluations of rho kinase inhibition as a proregenerative therapeutic strategy in PD promising.

  7. Selective destruction of nigrostriatal dopaminergic neurons does not alter [3H]-ryanodine binding in rat striatum.

    PubMed

    Noël, F; Geurts, M; Maloteaux, J M

    2000-02-01

    Dopamine nigrostriatal neurons are important for motor control and may contain a particularly dense population of ryanodine receptors involved in the control of dopamine release. To test this hypothesis, we used a classical model of unilateral selective lesion of these neurons in rats based on 6-hydroxydopamine (6-OHDA) injection into the substantia nigra. Binding of [3H]-GBR 12935, used as a presynaptic marker since it labels specifically the dopamine uptake complex, was dramatically decreased by 83-100% in striatum homogenates after 6-OHDA lesion. On the contrary, no reduction of [3H]-ryanodine binding was observed. The present data indicate that [3H]-ryanodine binding sites present in rat striatum are not preferentially localized in dopaminergic terminals.

  8. Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson's disease.

    PubMed

    Harms, Ashley S; Barnum, Christopher J; Ruhn, Kelly A; Varghese, Steve; Treviño, Isaac; Blesch, Armin; Tansey, Malú G

    2011-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder typified by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Recent evidence indicates that neuroinflammation may play a critical role in the pathogenesis of PD, particularly tumor necrosis factor (TNF). We have previously shown that soluble TNF (solTNF) is required to mediate robust degeneration induced by 6-hydroxydopamine (6-OHDA) or lipopolysaccharide. What remains unknown is whether TNF inhibition can attenuate the delayed and progressive phase of neurodegeneration. To test this, rats were injected in the SNpc with lentivirus encoding dominant-negative TNF (lenti-DN-TNF) 2 weeks after receiving a 6-OHDA lesion. Remarkably, when examined 5 weeks after the initial 6-OHDA lesion, no further loss of nigral DA neurons was observed. Lenti-DN-TNF also attenuated microglial activation. Together, these data suggest that TNF is likely a critical mediator of nigral DA neuron death during the delayed and progressive phase of neurodegeneration, and that microglia may be the principal cell type involved. These promising findings provide compelling reasons to perform DN-TNF gene transfer studies in nonhuman primates with the long-term goal of using it in the clinic to prevent the delayed and progressive degeneration of DA neurons that gives rise to motor symptoms in PD.

  9. Delayed Dominant-Negative TNF Gene Therapy Halts Progressive Loss of Nigral Dopaminergic Neurons in a Rat Model of Parkinson's Disease

    PubMed Central

    Harms, Ashley S; Barnum, Christopher J; Ruhn, Kelly A; Varghese, Steve; Treviño, Isaac; Blesch, Armin; Tansey, Malú G

    2011-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder typified by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Recent evidence indicates that neuroinflammation may play a critical role in the pathogenesis of PD, particularly tumor necrosis factor (TNF). We have previously shown that soluble TNF (solTNF) is required to mediate robust degeneration induced by 6-hydroxydopamine (6-OHDA) or lipopolysaccharide. What remains unknown is whether TNF inhibition can attenuate the delayed and progressive phase of neurodegeneration. To test this, rats were injected in the SNpc with lentivirus encoding dominant-negative TNF (lenti-DN-TNF) 2 weeks after receiving a 6-OHDA lesion. Remarkably, when examined 5 weeks after the initial 6-OHDA lesion, no further loss of nigral DA neurons was observed. Lenti-DN-TNF also attenuated microglial activation. Together, these data suggest that TNF is likely a critical mediator of nigral DA neuron death during the delayed and progressive phase of neurodegeneration, and that microglia may be the principal cell type involved. These promising findings provide compelling reasons to perform DN-TNF gene transfer studies in nonhuman primates with the long-term goal of using it in the clinic to prevent the delayed and progressive degeneration of DA neurons that gives rise to motor symptoms in PD. PMID:20959812

  10. Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation.

    PubMed

    Li, Li; Sagot, Ben; Zhou, Fu-Ming

    2015-07-30

    The transcription factor Pitx3 null mutant (Pitx3Null) mice have a constitutive perinatal-onset and symmetric bilateral dopamine (DA) loss in the striatum. In these mice l-3,4-dihydroxyphenylalanine (l-dopa) induces apparently normal horizontal movements (walking) but also upward movements consisting of the vertical body trunk and waving paws that are absent in normal animals and in animals with the classic unilateral 6-hydroxydopamine (6-OHDA) lesion-induced DA denervation. Thus, a concern is that the perinatal timing of the DA loss and potential developmental abnormalities in Pitx3Null mice may underlie these upward movements, thus reducing the usefulness as a DA denervation model. Here we show that in normal wild-type (Pitx3WT) mice with adult-onset symmetric, bilateral 6-OHDA-induced DA lesion in the dorsal striatum, l-dopa induces normal horizontal movements and upward movements that are qualitatively identical to those in Pitx3Null mice. Furthermore, after unilateral 6-OHDA lesion of the residual DA innervation in the striatum in Pitx3Null mice, l-dopa induces contraversive rotation that is similar to that in Pitx3WT mice with the classic unilateral 6-OHDA lesion. These results indicate that in Pitx3Null mice, the bilateral symmetric DA denervation in the dorsal striatum is sufficient for expressing the l-dopa-induced motor phenotype and the perinatal timing of their DA loss is not a determining factor, providing further evidence that Pitx3Null mice are a convenient and suitable mouse model to study the consequences of DA loss and dopaminergic replacement therapy in Parkinson's disease.

  11. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    SciTech Connect

    Maguire, G.W.; Smith, E.L. III

    1985-06-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by (/sup 3/H)dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced (/sup 3/H)dopamine uptake compared with that of their matched controls. Normal appearing (/sup 3/H)GABA and (/sup 3/H)-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry.

  12. T-Lymphocyte Deficiency Exacerbates Behavioral Deficits in the 6-OHDA Unilateral Lesion Rat Model for Parkinson’s Disease

    PubMed Central

    Wheeler, Christopher J; Seksenyan, Akop; Koronyo, Yosef; Rentsendorj, Altan; Sarayba, Danielle; Wu, Henry; Gragg, Ashley; Siegel, Emily; Thomas, Deborah; Espinosa, Andres; Thompson, Kerry; Black, Keith; Koronyo-Hamaoui, Maya; Pechnick, Robert; Irvin, Dwain K

    2014-01-01

    T-lymphocytes have been previously implicated in protecting dopaminergic neurons in the substantianigra from induced cell death. However, the role of T-cells in neurodegenerative models such as Parkinson’s disease (PD) has not been fully elucidated. To examine the role of T-lymphocytes on motor behavior in the 6-hydroxydopamine (6-OHDA) unilateral striatal partial lesion PD rat model, we assessed progression of hemi-parkinsonian lesions in the substantia nigra, induced by 6-OHDA striatal injections, in athymic rats (RNU−/−, T-lymphocyte-deficient) as compared to RNU−/+ rats (phenotypically normal). Motor skills were determined by the cylinder and D-amphetamine sulfate-induced rotational behavioral tests. Cylinder behavioral test showed no significant difference between unilaterally lesioned RNU−/− and RNU−/+ rats. However both unilaterally lesioned RNU−/− and RNU−/+ rats favored the use of the limb ipsilateral to lesion. Additionally, amphetamine-induced rotational test revealed greater rotational asymmetry in RNU−/− rats compared to RNU−/+ rats at two- and six-week post-lesion. Quantitative immunohistochemistry confirmed loss of striatal TH-immunopositive fibers in RNU−/− and RNU−/+ rat, as well as blood-brain-barrier changes associated with PD that may influence passage of immune cells into the central nervous system in RNU−/− brains. Specifically, GFAP immunopositive cells were decreased, as were astrocytic end-feet (AQP4) contacting blood vessels (laminin) in the lesioned relative to contralateral striatum. Flow cytometric analysis in 6-OHDA lesioned RNU−/+rats revealed increased CD4+ and decreased CD8+ T cells specifically within lesioned brain. These results suggest that both major T cell subpopulations are significantly and reciprocally altered following 6-OHDA-lesioning, and that global T cell deficiency exacerbates motor behavioral defects in this rat model of PD. PMID:25346865

  13. The C-terminal domain of the heavy chain of tetanus toxin given by intramuscular injection causes neuroprotection and improves the motor behavior in rats treated with 6-hydroxydopamine.

    PubMed

    Mendieta, Liliana; Bautista, Elizabeth; Sánchez, Alejandra; Guevara, Jorge; Herrando-Grabulosa, Mireia; Moran, José; Martínez, Rebeca; Aguilera, José; Limón, Ilhuicamina Daniel

    2012-10-01

    We have previously shown that the intrastriatal injection of the C-terminal domain of tetanus toxin (Hc-TeTx) protects the nigrostriatal-dopaminergic pathways and improves motor behavior in hemiparkinsonism-rat models caused by MPP(+) (1-methyl-4-phenylpyridinium). Here we have investigated the protective effects of the intramuscular application of the Hc-TeTx on motor asymmetry and neurodegeneration in the striatum of 6-hydroxydopamine (6-OHDA)-treated rats. Adult male rats were intramuscularly injected with the recombinant Hc-TeTx protein (0.1-20μg/kg, daily) 3days before the stereotaxic injection of 6-OHDA into the left striatum. Our results showed that the motor-improvement functions were extended for 4weeks in all Hc-TeTx-treated groups, obtaining the maximum performance with the highest dose of Hc-TeTx (20μg/kg). The improvements found were 97%, 87%, and 70% in the turning behavior, stepping test, and cylinder test, respectively. The striatal levels of dopamine and its metabolites did not vary compared to the control group. Moreover, the peripheral treatment with Hc-TeTx in rats prevents, for 30days, the neurodegeneration in the striatum caused by the toxicity of the 6-OHDA. Our results lead us to believe that the Hc-TeTx could be a potential therapeutic agent in pathologies caused by impairment of dopaminergic innervations such as Parkinson's disease.

  14. The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT₂A/₂C receptor activation is decreased in rats with 6-hydroxydopamine lesions.

    PubMed

    Sun, Yi-Na; Li, Li-Bo; Zhang, Qiao-Jun; Hui, Yan-Ping; Wang, Yong; Zhang, Li; Chen, Li; Han, Ling-Na; Guo, Yuan; Liu, Jian

    2013-10-01

    Here we report that juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part (BLA) of rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) showed a more burst-firing pattern, while having no change in the firing rate. In sham-operated and the lesioned rats, systemic administration of 5-HT(2A/2C) receptor agonist DOI produced excitation, inhibition and unchanged in the firing rate of the interneurons, and the mean response of DOI was excitatory. However, cumulative dose producing excitation in the lesioned rats was higher than that of sham-operated rats. The local administration of DOI in the BLA also produced three types of responses in two groups of rats. Furthermore, the local administration of DOI excited the interneurons in sham-operated rats, whereas the mean firing rate of the interneurons in the lesioned rats was not affected at the same dose. The excitatory effect of the majority of the interneurons after systemic and local administration of DOI was not reversed by the selective 5-HT(2C) receptor antagonist SB242084, and the inhibitory effect of DOI in all the interneurons examined was reversed by GABA(A) receptor antagonist picrotoxinin. The SNc lesion in rats did not change the density of GAD67/5-HT(2A) receptor co-expressing neurons in the BLA. These results indicate that the SNc lesion changes the firing activity of BLA GABA interneurons. Moreover, DOI regulated the firing activity of the interneurons mainly through activation of 5-HT(2A) receptor, and the lesion led to a decreased response of the interneurons to DOI, which attributes to dysfunction of 5-HT(2A) receptor on these interneurons.

  15. Methodology and effects of repeated intranasal delivery of DNSP-11 in a rat model of Parkinson’s disease

    PubMed Central

    Stenslik, Mallory J.; Potts, Lisa F.; Sonne, James W.H.; Cass, Wayne A.; Turchan-Cholewo, Jadwiga; Pomerleau, Francois; Huettl, Peter; Ai, Yi; Gash, Don M.; Gerhardt, Greg A.; Bradley, Luke H.

    2015-01-01

    Background To circumvent the challenges associated with delivering large compounds directly to the brain for the treatment of Parkinson’s disease (PD), non-invasive procedures utilizing smaller molecules with protective and/or restorative actions on dopaminergic neurons are needed. New Method We developed a methodology for evaluating the effects of a synthetic neuroactive peptide, DNSP-11, on the nigrostriatal system using repeated intranasal delivery in both normal and a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of PD. Results Normal rats repeatedly administered varying doses of DNSP-11 intranasally for 3 weeks exhibited a significant increase in dopamine (DA) turnover in both the striatum and substantia nigra (SN) at 300 μg, suggestive of a stimulative effect of the dopaminergic system. Additionally, a protective effect was observed following repeated intranasal administration in 6-OHDA lesioned rats, as suggested by: a significant decrease in d-amphetamine-induced rotation at 2 weeks; a decrease in DA turnover in the lesioned striatum; and an increased sparing of tyrosine hydroxylase (TH) positive neurons in a specific sub-region of the lesioned substantia nigra pars compacta. Finally, tracer studies showed 125I-DNSP-11 distributed diffusely throughout the brain, including the striatum and SN, as quickly as 30 minutes after a single intranasal dose. Comparison with Existing Methods The results of bilateral intranasal administration of DNSP-11 are compared to our unilateral single infusion studies to the brain in rats. Conclusions These studies support that DNSP-11 can be delivered intranasally and maintain its neuroactive properties in both normal rats and in a unilateral 6-OHDA rat model of PD. PMID:25999268

  16. The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson's disease.

    PubMed

    Frau, Roberto; Savoia, Paola; Fanni, Silvia; Fiorentini, Chiara; Fidalgo, Camino; Tronci, Elisabetta; Stancampiano, Roberto; Meloni, Mario; Cannas, Antonino; Marrosu, Francesco; Bortolato, Marco; Devoto, Paola; Missale, Cristina; Carta, Manolo

    2017-05-01

    Levodopa-induced dyskinesia (LID) is a disabling motor complication occurring in Parkinson's disease patients (PD) after long-term l-DOPA treatment. Although its etiology remains unclear, there is accumulating evidence that LID relies on an excessive dopamine receptor transmission, particularly at the downstream signaling of D1 receptors. We previously reported that the pharmacological blockade of 5-alpha reductase (5AR), the rate limiting enzyme in neurosteroids synthesis, rescued a number of behavioral aberrations induced by D1 receptor-selective and non-selective agonists, without inducing extrapyramidal symptoms. Thus, the present study was designed to verify whether the 5AR inhibitor finasteride (FIN) may counteract the dyskinesias induced by dopaminergic agonists in 6-hydroxydopamine (6-OHDA)-lesioned rats. First, we assessed the acute and chronic effect of different doses of FIN (30-60mg/kg) on LID, in male 6-OHDA-lesioned dyskinetic rats. Thereafter, to fully characterize the therapeutic potential of FIN on LID and its impact on l-DOPA efficacy, we assessed abnormal involuntary movements and forelimb use in hemiparkinsonian male rats chronically injected with FIN (30-60mg/kg/24days) either prior to- or concomitant with l-DOPA administration. In addition, to investigate whether the impact of FIN on LID may be ascribed to a modulation of the D1- or D2/D3-receptor function, dyskinesias were assessed in l-DOPA-primed 6-OHDA-lesioned rats that received FIN in combination with selective direct dopaminergic agonists. Finally, we set to investigate whether FIN may produce similar effect in female hemiparkinsonian rats, as seen in males. The results indicated that FIN administrations significantly dampened LID in all tested treatment regimens, without interfering with the ability of l-DOPA to ameliorate forelimb use in the stepping test. The antidyskinetic effect appears to be due to modulation of both D1- and D2/D3-receptor function, as FIN also reduced abnormal

  17. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Ma, Ruanxin; Fang, Yongqi

    2016-06-01

    Levodopa (L-dopa) is widely considered as one of the most effective drug constituents in the treatment of Parkinson's disease (PD), but the blood-brain barrier (BBB) permeability of L-dopa is <5%, which causes low efficacy. Neuroprotective effects of β-asarone on 6-hydroxydopamine (6-OHDA)-induced PD rats were demonstrated by our previous studies. Co-administration of β-asarone and L-dopa has not been explored until being investigated on PD rats in this study. PD rats were divided into four groups: untreated, L-dopa-treated, β-asarone-treated and co-administered-treated groups. All of the treatments were administered to the rats twice per day for 30 days. The L-dopa, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), S100β and neuron-specific enolase (NSE) levels were subsequently determined. The P-glycoprotein (P-gp), zonula occludens-1 (ZO-1), claudin-5, occludin and actin expression was also assessed in cortex. Changes in BBB ultrastructure were observed using transmission electron microscopy. Our results showed that the co-administered treatment increased levels of L-dopa, DA, DOPAC and HVA in striatum, and S100β in plasma, but down-regulated NSE, P-gp, ZO-1, occludin, actin and claudin-5 in cortex. Crevices were observed between capillary endothelial cells at intercellular tight junction of the striatum in co-administered-treated group, while the endothelial cells in untreated group were tightly jointing each other. In addition, the correlations of L-dopa or DA and P-gp or tight junction proteins respectively were significantly negative in co-administered- and β-asarone-treated groups. These findings suggest that co-administered treatment may enhance the L-dopa BBB permeability and attenuate brain injury, which may be beneficial to PD treatment.

  18. Continuous and intermittent nicotine treatment reduces L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson's disease.

    PubMed

    Bordia, Tanuja; Campos, Carla; Huang, Luping; Quik, Maryka

    2008-10-01

    The development of abnormal involuntary movements (AIMs) or dyskinesias is a serious complication of L-DOPA [L-3,4-dihydroxyphenylalanine] therapy for Parkinson's disease. Our previous work had shown that intermittent nicotine dosing reduced L-DOPA-induced dyskinetic-like movements in nonhuman primates. A readily available nicotine formulation is the nicotine patch, which provides a constant source of nicotine. However, constant nicotine administration more readily desensitizes nicotinic receptors, to possibly yield alternate behavioral outcomes. Therefore, we investigated whether constant nicotine administration reduced L-DOPA-induced AIMs in a rat parkinsonian model, with results compared with those with intermittent nicotine dosing. Rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion were exposed to either intermittent (drinking water) or constant (minipump) nicotine for > or = 2 weeks at doses that yielded plasma levels of the nicotine metabolite cotinine similar to those in smokers. The rats were next treated with L-DOPA/benserazide (8 or 12 mg/kg/15 mg/kg) for > or = 3 weeks to allow for the development of AIMs, with nicotine treatment continued. Both modes of nicotine administration resulted in > or = 50% decline in L-DOPA-induced AIMs. Nicotine treatment also significantly reduced AIMs in L-DOPA-primed rats using either dosing regimen, whereas nicotine removal led to an increase in AIMs. There was no effect of nicotine on various measures of motor performance in 6-OHDA-lesioned rats. In summary, nicotine provided either via the drinking water or minipump reduced L-DOPA-induced AIMs in a rat model of Parkinson's disease. These results suggest that either intermittent or constant nicotine treatment may be useful in the treatment of L-DOPA-induced dyskinesias in patients with Parkinson's disease.

  19. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2016-12-14

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  20. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats.

    PubMed

    Yelkenli, İbrahim Halil; Ulupinar, Emel; Korkmaz, Orhan Tansel; Şener, Erol; Kuş, Gökhan; Filiz, Zeynep; Tunçel, Neşe

    2016-06-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used in animal models of Parkinson's disease. In various neurodegenerative diseases, astrocytes play direct, active, and critical roles in mediating neuronal survival and functions. Vasoactive intestinal peptide (VIP) has neurotrophic actions and modulates a number of astrocytic activities. In this study, the effects of VIP on the striatal neurochemistry were investigated in parkinsonian rats. Adult Sprague-Dawley rats were divided into sham-operated, unilaterally 6-OHDA-lesioned, and lesioned + VIP-administered (25 ng/kg i.p.) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection and then every 2 days throughout 15 days. Extracellular striatal concentration of glutathione (GSH), gamma-aminobutyric acid (GABA), glutamate (GLU), and lactate were measured in microdialysates by high-performance liquid chromatography (HPLC). Quantification of GABA and activity dependent neuroprotective protein (ADNP)-expressing cells were determined by glutamic acid decarboxylase (GAD)/ADNP + glial fibrillary acidic protein (GFAP) double immunohistochemistry. Our results demonstrated that a 6-OHDA lesion significantly increased the density of astrocytes in the striatum and VIP treatment slightly reduced the gliosis. Extracellular concentration of GABA, GLU, and lactate levels did not change, but GSH level significantly increased in the striatum of parkinsonian rats. VIP treatment reduced GSH level comparable to sham-operated groups, but enhanced GABA and GLU levels. Our double labeling results showed that VIP primarily acts on neurons to increase ADNP and GAD expression for protection. These results suggest that, in the 6-OHDA-induced neurodegeneration model, astrocytes were possibly activated for forefront defensiveness by modulating striatal neurochemistry.

  1. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test.

    PubMed

    Olsson, M; Nikkhah, G; Bentlage, C; Björklund, A

    1995-05-01

    Methods for the assessment of akinesia in the unilateral rat Parkinson model have so far been lacking. The experiments reported here evaluate the usefulness of a new "stepping test" to monitor forelimb akinesia in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesencephalic dopamine (DA) system, and to assess the ability of DA-receptor agonists and fetal DA neuron transplants to reverse these deficits. The 6-OHDA lesion induced marked and long-lasting impairments in the initiation of stepping movements with the contralateral paw. Systemic injections of low doses (chosen to be subthreshold for induction of rotation) of the mixed D1 and D2 receptor agonist apomorphine, the D1-selective agonist SKF 38393, and to a lesser extent also the D2-selective agonist quinpirole were effective in reversing these deficits. Similar effects was seen after a subrotational dose of L-dopa, whereas amphetamine had no effect. Fetal nigral transplants, implanted as multiple deposits in the ipsilateral caudate-putamen and substantia nigra, restored initiation of stepping to a similar degree as the DA agonists. Nigral grafts placed in substantia nigra alone were also effective, although the improvement was less pronounced. Apomorphine, at a dose effective in the lesion-only animals, had no additive effect in the grafted rats, whereas amphetamine appeared to further improve stepping in the rats with intranigral transplants. Identical experiments were performed on skilled forelimb use in the so-called staircase test. Interestingly, neither the DA agonist drugs nor the nigral transplants had any effects on the lesion induced deficits in this more complex task. The results show that forelimb stepping is a highly useful test to monitor lesion-/and transplant-induced changes in forelimb akinesia, a behavioral parameter that may be analogous to limb akinesia and gait problems seen in patients with Parkinson's disease.

  2. β-asarone and levodopa co-administration protects against 6-hydroxydopamine-induced damage in parkinsonian rat mesencephalon by regulating autophagy: down-expression Beclin-1 and light chain 3B and up-expression P62.

    PubMed

    Huang, Li-Ping; Deng, Min-Zhen; He, Yu-Ping; Fang, Yong-Qi

    2015-03-01

    In this study, we investigated Beclin-1, light chain (LC)3B, and p62 expression in 6-hydroxydopamine (6-OHDA)-induced parkinsonian rats after β-asarone and levodopa (l-dopa) co-administration. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create the models, except in sham-operated rats. Rats were divided into eight groups: sham-operated group; 6-OHDA model group; madopar group (75 mg/kg, per os (p.o.)); l-dopa group (60 mg/kg, p.o.); β-asarone group (15 mg/kg, p.o.); β-asarone + l-dopa co-administered group (15 mg/kg + 60 mg/kg, p.o.); 3-methyladenine group (500 nmol, intraperitoneal injection); and rapamycin group (1 mg/kg, intraperitoneal injection). Then, Beclin-1, LC3B, and p62 expression in the mesencephalon were detected. The mesencephalon was also observed by transmission electron microscope. The results showed that Beclin-1 and LC3B expression decreased and that p62 expression increased significantly in the madopar, l-dopa, β-asarone, and co-administered groups when compared with the 6-OHDA model. Beclin-1 and LC3B expression in the β-asarone and co-administered groups were less than in the madopar or l-dopa groups, whereas p62 expression in the β-asarone and co-administered groups was higher than in the madopar or l-dopa groups. In addition, a significant decrease in autophagosome was exhibited in the β-asarone and co-administered groups when compared with the 6-OHDA group. Our findings indicate that Beclin-1 and LC3B expression decreased, whereas p62 expression increased after co-administration treatment. In sum, all data suggest that the co-administration of β-asarone and l-dopa may contribute to the treatment of 6-OHDA-induced damage in rats by inhibiting autophagy activity.

  3. 6-HYDROXYDOPAMINE INDUCES MITOCHONDRIAL ERK ACTIVATION

    PubMed Central

    Kulich, Scott M.; Horbinski, Craig; Patel, Manisha; Chu, Charleen T.

    2007-01-01

    Reactive oxygen species (ROS) are implicated in 6-hydroxydopamine (6-OHDA) injury to catecholaminergic neurons; however, the mechanism(s) are unclear. In addition to ROS generated during autoxidation, 6-OHDA may initiate secondary cellular sources of ROS that contribute to toxicity. Using a neuronal cell line, we found that catalytic metalloporphyrin antioxidants conferred protection if added 1 hour after exposure to 6-OHDA, whereas the hydrogen peroxide scavenger catalase failed to protect if added more than 15 min after 6-OHDA. There was a temporal correspondence between loss of protection and loss of the ability of the antioxidant to inhibit 6-OHDA-induced ERK phosphorylation. Time course studies of aconitase inactivation, as an indicator of intracellular superoxide, and MitoSOX red, a mitochondria targeted ROS indicator, demonstrate early intracellular ROS followed by a delayed phase of mitochondrial ROS production, associated with phosphorylation of a mitochondrial pool of ERK. Furthermore, upon initiation of mitochondrial ROS and ERK activation, 6-OHDA-injured cells became refractory to rescue by metalloporphyrin antioxidants. Together with previous studies showing that inhibition of the ERK pathway confers protection from 6-OHDA toxicity, and that phosphorylated ERK accumulates in mitochondria of degenerating human Parkinson’s disease neurons, these studies implicate mitochondrial ERK activation in Parkinsonian oxidative neuronal injury. PMID:17602953

  4. Nitric Oxide Synthase Inhibitor Improves De Novo and Long-Term l-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats

    PubMed Central

    Padovan-Neto, Fernando Eduardo; Echeverry, Marcela Bermúdez; Chiavegatto, Silvana; Del-Bel, Elaine

    2011-01-01

    Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (l-DOPA)-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of l-DOPA-induced abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-l-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated AIMs induced by chronic and acute l-DOPA. In contrast, rotational behavior was attenuated only after chronic l-DOPA. The 6-OHDA lesion and the l-DOPA treatment induced a bilateral increase (1.5 times) in the neuronal nitric oxide synthase (nNOS) protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic l-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under l-DOPA acute and chronic treatment. The l-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that l-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the l-DOPA structural modifications in the Parkinsonian brain. Taken together, these data provided a rationale for further evaluation of NOS inhibitors in the treatment of l-DOPA-induced dyskinesia. PMID:21713068

  5. Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [18F]LBT-999 in a Parkinson’s Disease Rat Model

    PubMed Central

    Sérrière, Sophie; Doméné, Aurélie; Vercouillie, Johnny; Mothes, Céline; Bodard, Sylvie; Rodrigues, Nuno; Guilloteau, Denis; Routier, Sylvain; Page, Guylène; Chalon, Sylvie

    2015-01-01

    The inverse association between nicotine intake and Parkinson’s disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [18F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [3H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD. PMID:26389120

  6. Progressive impairment in motor skill learning at 12 and 20 weeks post 6-OHDA- SNc lesion in rats.

    PubMed

    Gambhir, Hardeep; Mathur, Rashmi; Behari, Madhuri

    2011-07-01

    Deficiency in skilled motor activity is primarily attributed to the loss of dopaminergic neurons in the pars compacta of substantia nigra (SNc), which can be detected by performance of the rotarod test. Previous reports have demonstrated impaired skilled motor behavior in rats during the pre-motor stage of Parkinson's disease (PD) (3-8 weeks post 6-OHDA lesion of striatum). We studied skilled motor learning in 6-hydroxydopamine (6-OHDA) SNc lesion rats at 12 and 20 weeks by rotarod task after providing sufficient training to give allowance for ageing (3 sessions/day for 14 consecutive days). On each day, the stay duration on rotarod was noted and compared between the groups (Group 1 = Control, Group 2 = Post lesion (PL) week 12, Group 3 = PL week 20). In Group 2 rats, the duration of stay on rotarod gradually increased from day 1 through 7 {day 7 = 193.1 (81.8-247.4) vs. control group day 7 = 202.1 (87.7-279.8), p = 0.771} and declined thereafter. While, the stay duration in Group 3 rats remained lower {day 7 = 32.5 (20.4-52.1), p = 0.011} than that of the control rats throughout the study period. The results of our study suggest a slower brief learning of skilled motor tasks at post lesion week 12 whereas no learning at all at post-lesion week 20.

  7. Intranasal Administration of GDNF Protects Against Neural Apoptosis in a Rat Model of Parkinson's Disease Through PI3K/Akt/GSK3β Pathway.

    PubMed

    Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang

    2017-02-28

    Glial cell line-derived neurotrophic factor (GDNF) plays important roles in protecting the damaged or dying dopamine neurons in the animal models of Parkinson's disease (PD). This study was to determine the effect and mechanisms of GDNF on the apoptosis of neurons in 6-hydroxydopamine (6-OHDA) induced Parkinson's disease model of rats. Healthy male Sprague-Dawley rats (220-240 g) were randomly divided into six groups (n = 10). 6-OHDA was used to establish the PD rat model. Tyrosine hydroxylase (TH) immunohistochemistry was used to assess the neuron loss in 6-OHDA-lesioned rats. TUNEL and western blot were used to identify the effects and mechanisms of GDNF in the rat model of PD. The numbers of TH-positive neurons in the 6-OHDA-injected lesioned substantia nigra (SN) decreased significantly compared with the Sham group. GDNF treatment effectively ameliorated the apoptosis of neuronal cells in SN induced by 6-OHDA. In addition, GDNF significantly increased serine protein kinase B (Akt) and glycogen synthase kinase 3 beta (GSK3β) phosphorylation induced by 6-OHDA. In contrast, application of LY294002 or triciribine reversed the roles of GDNF in PD models. The results implicated that the anti-apoptosis effects of GDNF in neurons might be mediated through PI3K/Akt/GSK3β pathway. Therefore, GDNF may be a promising agent for PD treatment.

  8. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase

    SciTech Connect

    Wu Shaoping; Fu Ailing; Wang Yuxia; Yu Leiping; Jia Peiyuan; Li Qian; Jin Guozhang; Sun Manji . E-mail: Sunmj@nic.bmi.ac.cn

    2006-07-21

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 {mu}M) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD.

  9. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    PubMed Central

    Mpofana, Thabisile; Daniels, Willie M. U.; Mabandla, Musa V.

    2016-01-01

    Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA), we measured corticosterone (CORT) in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life. PMID:26881180

  10. Alterations in primary motor cortex neurotransmission and gene expression in hemi-Parkinsonian rats with drug-induced dyskinesia

    PubMed Central

    Lindenbach, David; Conti, Melissa M.; Ostock, Corinne Y.; Dupre, Kristin B.; Bishop, Christopher

    2015-01-01

    Treatment of Parkinson’s disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression are altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD / dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD / dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  11. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-03

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets.

  12. Effects of Postnatal Enriched Environment in a Model of Parkinson's Disease in Adult Rats.

    PubMed

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-02-14

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson's disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life.

  13. Effects of Postnatal Enriched Environment in a Model of Parkinson’s Disease in Adult Rats

    PubMed Central

    Jungling, Adel; Reglodi, Dora; Karadi, Zsofia Nozomi; Horvath, Gabor; Farkas, Jozsef; Gaszner, Balazs; Tamas, Andrea

    2017-01-01

    Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson’s disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life. PMID:28216584

  14. Dual actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum.

    PubMed

    Dong, Z J; Guo, X; Chen, L J; Han, Y F; Jin, G Z

    1997-01-01

    (-)-Stepholidine (SPD) is an antagonist of normosensitive dopamine (DA) receptors, but it exhibits D1 agonistic action on rotational behaviour in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNC). In the present study, agonistic and antagonistic effects of SPD on the DA receptor-mediated synaptosomal adenylate cyclase (AC) activity in rat striatum were investigated. After blockade of D2 receptors, SPD augmented AC activity dose-dependently. The EC50 value was 41.1 +/- 8.6 micromol/L. At the concentration of 10 micromol/L, SPD increased cAMP formation from a basal level (50.8 +/- 10.3 pmol/mg protein/min) to 133.7 +/- 31.8 pmol/mg protein/min. The SPD-induced stimulation of AC activity was almost completely reversed by 10 micromol/L Sch23390. These results indicate that SPD possesses an agonistic action on the D1 receptor. Forskolin-stimulated adenylate cyclase (FSAC) activity was used as a model to elucidate the effect of SPD on D2 receptors. The results indicate that DA inhibited FSAC activity dose-dependently, while SPD partially restored FSAC activity. Taken together, these results support the conclusion that SPD has dual actions on DA receptors that mediate AC activity, i.e., an agonistic action on D1 receptors and an antagonistic action on D2 receptors.

  15. Striatal Glutamate and GABA after High Frequency Subthalamic Stimulation in Parkinsonian Rat

    PubMed Central

    Lee, Kyung Jin; Shim, Insop; Sung, Jae Hoon; Hong, Jae Taek; Kim, Il sup; Cho, Chul Bum

    2017-01-01

    Objective High frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment of advanced Parkinson’s disease. However, the neurochemical basis of its effects remains unknown. The aim of this study is to investigate the effects of STN HFS in intact and 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rat model on changes of principal neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA) in the striatum. Methods The authors examined extracellular glutamate and GABA change in the striatum on sham group, 6-OHDA group, and 6-OHDA plus deep brain stimulation (DBS) group using microdialysis methods. Results High-pressure liquid chromatography was used to quantify glutamate and GABA. The results show that HFS-STN induces a significant increase of extracellular glutamate and GABA in the striatum of 6-OHDA plus DBS group compared with sham and 6-OHDA group. Conclusion Therefore, the clinical results of STN-HFS are not restricted to the direct STN targets but involve widespread adaptive changes within the basal ganglia. PMID:28264233

  16. Roles of dopaminergic innervation of nucleus accumbens shell and dorsolateral caudate-putamen in cue-induced morphine seeking after prolonged abstinence and the underlying D1- and D2-like receptor mechanisms in rats

    PubMed Central

    Gao, Jun; Li, Yonghui; Zhu, Ning; Brimijoin, Stephen; Sui, Nan

    2013-01-01

    Drug-associated cues can elicit relapse to drug seeking after abstinence. Studies with extinction–reinstatement models implicate dopamine (DA) in the nucleus accumbens shell (NAshell) and dorsolateral caudate-putamen (dlCPu) in cocaine seeking. However, less is known about their roles in cue-induced opiate seeking after prolonged abstinence. Using a morphine self-administration and abstinence–relapse model, we explored the roles of NAshell and dlCPu DA and the D1/D2-like receptor mechanisms underlying morphine rewarding and/or seeking. Acquisition of morphine self-administration was examined following 6-Hydroxydopamine hydrobromide (6-OHDA) lesions of the NAshell and dlCPu. For morphine seeking, rats underwent 3 weeks’ morphine self-administration followed by 3 weeks’ abstinence from morphine and the training environment. Prior to testing, 6-OHDA, D1 antagonist SCH23390, or D2 antagonist eticlopride was locally injected; then rats were exposed to morphine-associated contextual and discrete cues. Results show that acquisition of morphine self-administration was inhibited by NAshell (not dlCPu) lesions, while morphine seeking was attenuated by lesions of either region, by D1 (not D2) receptor blockade in NAshell, or by blockade of either D1 or D2 receptors in dlCPu. These data indicate a critical role of dopaminergic transmission in the NAshell (via D1-like receptors) and dlCPu (via D1- and D2-like receptors) in morphine seeking after prolonged abstinence. PMID:23151613

  17. Chronic treatment with the mGlu5R antagonist MPEP reduces the functional effects of the mGlu5R agonist CHPG in the striatum of 6-hydroxydopamine-lesioned rats: possible relevance to the effects of mGlu5R blockade in Parkinson's disease.

    PubMed

    Domenici, Maria Rosaria; Potenza, Rosa Luisa; Martire, Alberto; Coccurello, Roberto; Pèzzola, Antonella; Reggio, Rosaria; Tebano, Maria Teresa; Popoli, Patrizia

    2005-06-01

    This study was designed to test whether chronic treatment with the metabotropic glutamate receptor 5 (mGlu5R) antagonist MPEP showed antiparkinsonian effects in rats unilaterally lesioned with 6-hydroxydopamine (6-OHDA) (a "classic" model of Parkinson's disease, PD), and to evaluate whether chronic MPEP influenced the functional properties and/or the expression of striatal mGlu5Rs. Wistar rats were lesioned with 6-OHDA and then treated with MPEP (3 mg/kg/day, i.p.) or its vehicle over 2 weeks. Chronic MPEP did not induce measurable antiparkinsonian effects, since no differences were found between MPEP- and vehicle-treated animals in the pattern of L-DOPA-induced contralateral rotations. In corticostriatal slices taken from animals chronically treated with MPEP, the functional effects of the mGlu5R agonist CHPG were significantly reduced in the lesioned vs. the intact side, while no changes were found in slices taken from vehicle-treated rats. The binding of [3H]MPEP to striatal membranes showed that neither the maximal number of binding sites (Bmax) nor the dissociation constant (Kd) were changed by the lesion and/or by chronic MPEP. While chronic MPEP did not potentiate L-DOPA-induced turning in a classical model of PD, its ability to reduce mGlu5R-associated signal could help to explain the neuroprotective/antiparkinsonian effects observed in other models of PD.

  18. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    SciTech Connect

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  19. Comparative assessment of 6-[(18) F]fluoro-L-m-tyrosine and 6-[(18) F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson's disease rat model.

    PubMed

    Becker, Guillaume; Bahri, Mohamed Ali; Michel, Anne; Hustadt, Fabian; Garraux, Gaëtan; Luxen, André; Lemaire, Christian; Plenevaux, Alain

    2017-03-10

    Because of the progressive loss of nigro-striatal dopaminergic terminals in Parkinson's disease (PD), in vivo quantitative imaging of dopamine (DA) containing neurons in animal models of PD is of critical importance in the preclinical evaluation of highly awaited disease-modifying therapies. Among existing methods, the high sensitivity of positron emission tomography (PET) is attractive to achieve that goal. The aim of this study was to perform a quantitative comparison of brain images obtained in 6-hydroxydopamine (6-OHDA) lesioned rats using two dopaminergic PET radiotracers, namely [(18) F]fluoro-3,4-dihydroxyphenyl-L-alanine ([(18) F]FDOPA) and 6-[(18) F]fluoro-L-m-tyrosine ([(18) F]FMT). Because the imaging signal is theoretically less contaminated by metabolites, we hypothesized that the latter would show stronger relationship with behavioural and post-mortem measures of striatal dopaminergic deficiency. We used a within-subject design to measure striatal [(18) F]FMT and [(18) F]FDOPA uptake in eight partially lesioned, eight fully lesioned and ten sham-treated rats. Animals were pretreated with an L-aromatic amino acid decarboxylase inhibitor. A catechol-O-methyl transferase inhibitor was also given before [(18) F]FDOPA PET. Quantitative estimates of striatal uptake were computed using conventional graphical Patlak method. Striatal dopaminergic deficiencies were measured with apomorphine-induced rotations and post-mortem striatal DA content. We observed a strong relationship between [(18) F]FMT and [(18) F]FDOPA estimates of decreased uptake in the denervated striatum using the tissue-derived uptake rate constant Kc . However, only [(18) F]FMT Kc succeeded to discriminate between the partial and the full 6-OHDA lesion and correlated well with the post-mortem striatal DA content. This study indicates that the [(18) F]FMT could be more sensitive, with respect of [(18) F]FDOPA, to investigate DA terminals loss in 6-OHDA rats, and open the way to in vivo L

  20. RETRACTED: S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades.

    PubMed

    Tobón-Velasco, Julio César; Vázquez-Victorio, Genaro; Macías-Silva, Marina; Cuevas, Elvis; Ali, Syed F; Maldonado, Perla D; González-Trujano, María Eva; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2012-09-01

    Pharmacological activation at the basal ganglia of the transcription factor Nrf2, guardian of redox homeostasis, holds a strong promise for the slow progression of Parkinson's disease (PD). However, a potent Nrf2 activator in the brain still must be found. In this study, we have investigated the potential use of the antioxidant compound S-allyl cysteine (SAC) in the activation of Nrf2 in 6-hydoxydopamine (6-OHDA)-intoxicated rats. In the rat striatum, SAC by itself promoted the Nrf2 dissociation of Keap-1, its nuclear translocation, the subsequent association with small MafK protein, and further binding of the Nrf2/MafK complex to ARE sequence, as well as the up-regulation of Nrf2-dependent genes encoding the antioxidant enzymes HO-1, NQO-1, GR, and SOD-1. In vivo and in vitro experiments to identify signaling pathways activated by SAC pointed to Akt as the most likely kinase participating in Nrf2 activation by SAC. In PC12 cells, SAC stimulated the activation of Akt and ERK1/2 and inhibited JNK1/2/3 activation. In the rat striatum, the SAC-induced activation of Nrf2 is likely to contribute to inhibit the toxic effects of 6-OHDA evidenced by phase 2 antioxidant enzymes up-regulation, glutathione recovery, and attenuation of reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxides formation. These early protective effects correlated with the long-term preservation of the cellular redox status, the striatal dopamine (DA) and tyrosine hydroxylase (TH) levels, and the improvement of motor skills. Therefore, this study indicates that, in addition to direct scavenging actions, the activation of Nrf2 by SAC might confer neuroprotective responses through the modulation of kinase signaling pathways in rodent models of PD, and suggests that this antioxidant molecule may have a therapeutic value in this human pathology.

  1. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson's disease with levodopa-induced dyskinesias.

    PubMed

    Jin, Xingxing; Schwabe, Kerstin; Krauss, Joachim K; Alam, Mesbah

    2016-04-01

    The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12-19 Hz) and high (19-30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

  2. Alterations of BDNF and trkB mRNA Expression in the 6-Hydroxydopamine-Induced Model of Preclinical Stages of Parkinson’s Disease: An Influence of Chronic Pramipexole in Rats

    PubMed Central

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; Głowacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively. PMID:25739024

  3. Alterations of BDNF and trkB mRNA expression in the 6-hydroxydopamine-induced model of preclinical stages of Parkinson's disease: an influence of chronic pramipexole in rats.

    PubMed

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; Głowacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson's disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively.

  4. Relationships among rat ultrasonic vocalizations, behavioral measures of striatal dopamine loss, and striatal tyrosine hydroxylase immunoreactivity at acute and chronic time points following unilateral 6-hydroxydopamine-induced dopamine depletion.

    PubMed

    Grant, Laura M; Barnett, David G; Doll, Emerald J; Leverson, Glen; Ciucci, Michelle

    2015-09-15

    Voice deficits in Parkinson disease (PD) emerge early in the disease process, but do not improve with standard treatments targeting dopamine. Experimental work in the rat shows that severe and chronic unilateral nigrostriatal dopamine depletion with 6-OHDA results in decreased intensity, bandwidth, and complexity of ultrasonic vocalizations. However, it is unclear if mild/acute dopamine depletion, paralleling earlier stages of PD, results in vocalization deficits, or to what degree vocalization parameters are correlated with other dopamine-dependent indicators of lesion severity or percent of tyrosine hydroxylase (%TH) loss. Here, we assayed ultrasonic vocalizations, forelimb asymmetry, and apomorphine rotations in rats with a range of unilateral dopamine loss resulting from 6-OHDA or vehicle control infusions to the medial forebrain bundle at acute (72 h) and chronic (4 weeks) time points post-infusion. The %TH loss was evaluated at 4 weeks. At 72 h, forelimb asymmetry and %TH loss were significantly correlated, while at 4 weeks, all measures of lesion severity were significantly correlated with each other. Call complexity was significantly correlated with all measures of lesion severity at 72 h but only with %TH loss at 4 weeks. Bandwidth was correlated with forelimb asymmetry at both time points. Duration was significantly correlated with all dopamine depletion measures at 4 weeks. Notably, not all parameters were affected universally or equally across time. These results suggest that vocalization deficits may be a sensitive index of acute and mild catecholamine loss and further underscores the need to characterize the neural mechanisms underlying vocal deficits in PD.

  5. 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria.

    PubMed

    Gupta, Sonam; Goswami, Poonam; Biswas, Joyshree; Joshi, Neeraj; Sharma, Sharad; Nath, C; Singh, Sarika

    2015-01-15

    The present study was conducted to investigate the effect of the neurotoxins 6-hydroxydopamine and lipopolysaccharide on astrocytes. Rat astrocyte C6 cells were treated with different concentration of 6-hydroxydopamine (6-OHDA)/lipopolysaccharides (LPS) for 24 h. Both neurotoxins significantly decreased the viability of astrocytes, augmented the expression of inducible nitric oxide synthase (iNOS) and the astrocyte marker--glial fibrillar acidic protein. A significantly decreased mitochondrial dehydrogenase activity, mitochondrial membrane potential, augmented reactive oxygen species (ROS) level, caspase-3 mRNA level, chromatin condensation and DNA damage was observed in 6-OHDA/LPS treated astroglial cells. 6-OHDA/LPS treatment also caused the significantly increased expression of iNOS and nitrite level. Findings showed that 6-OHDA/LPS treatment caused mitochondrial dysfunction mediated death of astrocytes, which significantly involve the nitric oxide. Since we have observed significantly increased level of iNOS along with mitochondrial impairment and apoptotic cell death in astrocytes, therefore to validate the role of iNOS, the cells were co-treated with iNOS inhibitor aminoguanidine (AG, 100 μM). Co-treatment of AG significantly attenuated the 6-OHDA/LPS induced cell death, mitochondrial activity, augmented ROS level, chromatin condensation and DNA damage. GFAP and caspase-3 expression were also inhibited with co-treatment of AG, although the extent of inhibition was different in both experimental sets. In conclusion, the findings showed that iNOS mediated increased level of nitric oxide acts as a key regulatory molecule in 6-OHDA/LPS induced mitochondrial dysfunction, DNA damage and apoptotic death of astrocytes.

  6. Unilateral lesion of the nigrostriatal pathway decreases the response of fast-spiking interneurons in the medial prefrontal cortex to 5-HT1A receptor agonist and expression of the receptor in parvalbumin-positive neurons in the rat.

    PubMed

    Gui, Z H; Zhang, Q J; Liu, J; Zhang, L; Ali, U; Hou, C; Fan, L L; Sun, Y N; Wu, Z H; Hui, Y P

    2011-10-01

    5-Hydroxytryptamine(1A) (5-HT(1A)) receptors are expressed in the prefrontal cortical interneurons. Among these interneurons, calcium-binding protein parvalbumin (PV)-positive fast spiking (FS) interneurons play an important role in regulatory function of the prefrontal cortex. In the present study, the response of medial prefrontal cortex (mPFC) FS interneurons to the selective 5-HT(1A) receptor agonist 8-OH-DPAT and change in expression of 5-HT(1A) receptor on PV-positive neurons were examined in rats with 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) by using extracellular recording and double-labeling immunofluorescence histochemistry. Systemic administration of 8-OH-DPAT (1-243 μg/kg, i.v.) dose-dependently inhibited the mean firing rate of the FS interneurons in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition in the lesioned rats (243 μg/kg) was significantly higher than that of sham-operated rats (27 μg/kg). Furthermore, the local application of 8-OH-DPAT (0.01 μg) in the mPFC inhibited the FS interneurons in sham-operated rats, while having no effect on firing rate of the FS interneurons in the lesioned rats. In contrast to sham-operated rats, the lesion of the SNc in rats did not cause the change of PV-positive neurons in the prelimbic prefrontal cortex, a subregion of the mPFC, whereas the lesion of the SNc markedly reduced in percentage of PV-positive neurons expressing 5-HT(1A) receptors. Our results indicate that degeneration of the nigrostriatal pathway results in the decreased response of FS interneurons in the mPFC to 5-HT(1A) receptor stimulation, which attributes to down-regulation of 5-HT(1A) receptor expression in these interneurons.

  7. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  8. The unilateral 6-OHDA rat model of Parkinson's disease revisited: an electromyographic and behavioural analysis.

    PubMed

    Metz, Gerlinde A; Tse, Arthur; Ballermann, Mark; Smith, Lori K; Fouad, Karim

    2005-08-01

    The characteristic locomotor disturbances of Parkinson's disease (PD) include shuffling gait, short steps and low walking velocity. In this study we investigated features of walking and turning in a rat model of PD caused by unilateral infusion of the neurotoxin 6-hydroxydopamine (6-OHDA). We assessed gait and electromyographic (EMG) patterns of the ankle flexor tibialis anterior and the knee extensor vastus lateralis of the hindlimb, and triceps brachii of the forelimb, during overground locomotion, spontaneous rotation (turning) and apomorphine-induced rotation. When compared with control rats, rats with unilateral dopamine depletion displayed a shuffling gait and short stride lengths. This locomotor pattern was accompanied by prolonged ankle flexor activity on the ipsilateral side, and prolonged activity of knee extensors on the contralateral side. The dopamine depletion also led to enhanced contraversive rotations after an apomorphine challenge. The EMG recordings during drug-induced rotation suggested that hindlimb stepping was a reflective response to an active drive produced by forelimbs. The EMG recordings of the contralateral side during rotation were marked by reduced ankle flexor activity and increased knee extensor activity. Furthermore, EMG recordings indicated that dopamine-agonists induce rotational bias by altering the coupling between ipsi- and contralateral hindlimbs, and between forelimbs. In straight walking, however, the gait of 6-OHDA lesion animals reflected normal, coupled hindlimb stepping as controlled by spinal pattern generators. The data suggest that the unilateral rat model of PD resembles key features of human parkinsonian gait, and that asymmetric descending input may underlie the observed changes in gait patterns.

  9. Contralateral retinal dopamine decrease and melatonin increase in progression of hemiparkinsonium rat.

    PubMed

    Meng, Tao; Zheng, Zhi-Hong; Liu, Ting-Ting; Lin, Ling

    2012-05-01

    Both dopamine (DA) and melatonin (MLT) are abundant neuromodulators located in vertebrate retina. The retinal DA deficiency and variations in MLT levels have been linked to Parkinson's disease (PD). No studies have investigated the ipsilateral and contralateral DA and MLT in retina and their relationships in 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats. We established PD rat model by unilateral injection of 6-OHDA into the right substantia nigra and the right medial forebrain bundle. Eye tissue was collected and the levels of MLT and DA were measured twice daily at 10:00 and 22:00. The concentrations of DA and its metabolites, 3,4-dihydroxyphenylacetic (DOPAC) and homovanillic acid (HVA), as well as MLT were determined by HPLC. The results show that DA levels in the eye contralateral to the side of a unilateral intracerebral 6-OHDA lesion significantly decreased (P < 0.001). Both the ratios of DOPAC/DA and HVA/DA were increased in comparison with the vehicle groups after 3 weeks post-lesion. The concentrations of MLT at 10:00 and 22:00 in both eyes were distinctly increased compared with the vehicle groups (P < 0.05). The change of DA and its metabolites, as well as MLT appeared to correlate well with the rotation behavior of rats. These findings suggest that rats receive a unilateral intracerebral injection of 6-OHDA that mainly causes the contralateral eye destruction of DA-containing neurons. Increased retinal MLT level probably is associated with the progression of PD.

  10. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  11. Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958.

    PubMed

    Bishop, Christopher; Daut, Gregory S; Walker, Paul D

    2005-09-01

    While recent work has indicated that D1 receptor agonist-induced hyperlocomotion in DA-depleted rats is reduced by striatal 5-HT2 receptor antagonism, the 5-HT receptor(s) subtypes mediating these effects are not yet known. In the present study, we examined the influence(s) of striatal 5-HT2A and 5-HT2C receptors on locomotor behavior induced by D1 agonism in neonatal DA-depleted rats. On postnatal day 3, male Sprague-Dawley rats (n=68) were treated with either vehicle or 6-hydroxydopamine (6-OHDA; 60 microg) which produced >98% DA depletion. Sixty days later, all rats were fitted with bilateral striatal cannulae. A subset of control and 6-OHDA-lesioned rats (n=20) was tested for locomotor responses to striatal infusion of the D1 agonist SKF 82958 (0, 0.1, 1.0, 10 microg/side). The remaining rats (n=48) were tested for locomotor responses to intrastriatal SKF 82958 (2.0 microg/side) alone or in combination with the 5-HT2A- or 5-HT2C-preferring antagonists M100907 or RS102221 (0.1 or 1.0 microg/side), respectively. Intrastriatal SKF 82958 dose-dependently increased measures of motor activity within DA-depleted rats. This hyperlocomotor activity was suppressed by co-infusion of M100907, but not RS102221. These results indicate that DA depletion strengthens striatal 5-HT2A/D1 receptor interactions and suggest that 5-HT2A receptor antagonists may prove useful in reducing D1-related movements.

  12. Dexmedetomidine Regulates 6-hydroxydopamine-Induced Microglial Polarization.

    PubMed

    Zhang, Pei; Li, Yu; Han, Xuechang; Xing, Qunzhi; Zhao, Lei

    2017-02-28

    Microglia have undergone extensive characterization and have been shown to present distinct phenotypes, such as the M1 or M2 phenotypes, depending on their stimuli. As a highly specific neurotoxin, 6-hydroxydopamine (6-OHDA) can be used to further our understanding of the immune response in Parkinson's disease (PD). Dexmedetomidine (DEX), a centrally selective α2-adrenoceptor agonist, performs very well as an anti-anxiety medication, sedative and analgesic. In the present study, we investigated the effects of DEX on 6-OHDA-induced microglial polarization. Our results indicate that treatment with 6-OHDA promotes microglial polarization toward the M1 state in BV2 microglia cells by increasing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor-α, which can be prevented by pretreatment with DEX. In addition, we found that 6-OHDA blocked IL-4-mediated microglial M2 polarization by suppressing expression of the microglial M2 markers arginase-1 (Arg-1), resistin-like α (Retnla/Fizz1), and chitinase 3-like 3 (Chi3l3/Ym1), which could be ameliorated by pretreatment with DEX. Notably, the inhibitory effects of 6-OHDA on IL-4-mediated induction of the anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 could be significantly alleviated by pretreatment with DEX in a dose-dependent manner (P < 0.01). Mechanistically, alternations in the activation of signal transducer and activator of transcription 6 were involved in this process. These findings suggest that administration of DEX has the potential to interrupt the process of microgliosis in PD.

  13. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats

    PubMed Central

    Barnum, Christopher J.; Bhide, Nirmal; Lindenbach, David; Surrena, Margaret A.; Goldenberg, Adam A.; Tignor, Stefanie; Klioueva, Anna; Walters, Hannah; Bishop, Christopher

    2011-01-01

    While L-3,4-dihydroxyphenylalanine (L-DOPA) remains the standard treatment for Parkinson’s disease (PD), long-term efficacy is often compromised by L-DOPA-induced dyskinesia (LID). Recent research suggests that targeting the noradrenergic (NE) system may provide relief from both PD and LID, however, most PD patients exhibit NE loss which may modify response to such strategies. Therefore this investigation aimed to characterize the development and expression of LID and the anti-dyskinetic potential of the α2- and β-adrenergic receptor antagonists idazoxan and propranolol, respectively, in rats receiving 6-OHDA lesions with (DA lesion) or without desipramaine protection (DA + NE lesion). Male Sprague–Dawley rats (N = 110) received unilateral 6-hydroxydopamine lesions. Fifty-three rats received desipramine to protect NE neurons (DA lesion) and 57 received no desipramine reducing striatal and hippocampal NE content 64% and 86% respectively. In experiment 1, the development and expression of L-DOPA-induced abnormal involuntary movements (AIMs) and rotations were examined. L-DOPA efficacy using the forepaw adjusting steps (FAS) test was also assessed in DA- and DA + NE-lesioned rats. In experiment 2, DA- and DA + NE-lesioned rats received pre-treatments of idazoxan or propranolol followed by L-DOPA after which the effects of these adrenergic compounds were observed. Results demonstrated that moderate NE loss reduced the development and expression of AIMs and rotations but not L-DOPA efficacy while anti-dyskinetic efficacy of α2- and β-adrenergic receptor blockade was maintained. These findings suggest that the NE system modulates LID and support the continued investigation of adrenergic compounds for the improved treatment of PD. PMID:21978941

  14. Peripheral administration of the selective inhibitor of soluble Tumor Necrosis Factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats

    PubMed Central

    Barnum, Christopher J.; Chen, Xi; Chung, Jaegwon; Chang, Jianjun; Williams, Martha; Grigoryan, Nelly; Tesi, Raymond J.; Tansey, Malú G.

    2014-01-01

    BACKGROUND Parkinson's disease (PD) is a complex multi-system age-related neurodegenerative disorder. Targeting the ongoing neuroinflammation in PD patients is one strategy postulated to slow down or halt disease progression. Proof-of-concept studies from our group demonstrated that selective inhibition of soluble Tumor Necrosis Factor (solTNF) by intranigral delivery of dominant negative TNF (DN-TNF) inhibitors reduced neuroinflammation and nigral dopamine (DA) neuron loss in endotoxin and neurotoxin rat models of nigral degeneration. OBJECTIVE As a next step toward human clinical trials, we aimed to determine the extent to which peripherally administered DN-TNF inhibitor XPro®1595 could: i) cross the blood-brain-barrier in therapeutically relevant concentrations, ii) attenuate neuroinflammation (microglia and astrocyte), and iii) mitigate loss of nigral DA neurons in rats receiving a unilateral 6-hydroxydopamine (6-OHDA) striatal lesion. METHODS Rats received unilateral 6-OHDA (20 μg into the right striatum). Three or 14 days after lesion, rats were dosed with XPro®1595 (10 mg/kg in saline, subcutaneous) every third day for 35 days. Forelimb asymmetry was used to assess motor deficits after the lesion; brains were harvested 35 days after the lesion for analysis of XPro®1595 levels, glial activation, and nigral DA neuron number. RESULTS Peripheral subcutaneous dosing of XPro®1595 achieved plasma levels of 1–8 μg/mL and CSF levels of 1–6 ng/mL depending on the time the rats were killed after final XPro®1595 injection. Irrespective of start date, XPro®1595 significantly reduced microglia and astrocyte number in SNpc whereas loss of nigral DA neurons was attenuated when drug was started 3, but not 14 days after the 6-OHDA lesion. CONCLUSIONS Our data suggest that systemically administered XPro®1595 may have disease-modifying potential in PD patients where inflammation is part of their pathology. PMID:25061061

  15. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats.

    PubMed

    Barnum, Christopher J; Bhide, Nirmal; Lindenbach, David; Surrena, Margaret A; Goldenberg, Adam A; Tignor, Stefanie; Klioueva, Anna; Walters, Hannah; Bishop, Christopher

    2012-01-01

    While L-3,4-dihydroxyphenylalanine (L-DOPA) remains the standard treatment for Parkinson's disease (PD), long-term efficacy is often compromised by L-DOPA-induced dyskinesia (LID). Recent research suggests that targeting the noradrenergic (NE) system may provide relief from both PD and LID, however, most PD patients exhibit NE loss which may modify response to such strategies. Therefore this investigation aimed to characterize the development and expression of LID and the anti-dyskinetic potential of the α2- and β-adrenergic receptor antagonists idazoxan and propranolol, respectively, in rats receiving 6-OHDA lesions with (DA lesion) or without desipramaine protection (DA+NE lesion). Male Sprague-Dawley rats (N=110) received unilateral 6-hydroxydopamine lesions. Fifty-three rats received desipramine to protect NE neurons (DA lesion) and 57 received no desipramine reducing striatal and hippocampal NE content 64% and 86% respectively. In experiment 1, the development and expression of L-DOPA-induced abnormal involuntary movements (AIMs) and rotations were examined. L-DOPA efficacy using the forepaw adjusting steps (FAS) test was also assessed in DA- and DA+NE-lesioned rats. In experiment 2, DA- and DA+NE-lesioned rats received pre-treatments of idazoxan or propranolol followed by L-DOPA after which the effects of these adrenergic compounds were observed. Results demonstrated that moderate NE loss reduced the development and expression of AIMs and rotations but not L-DOPA efficacy while anti-dyskinetic efficacy of α2- and β-adrenergic receptor blockade was maintained. These findings suggest that the NE system modulates LID and support the continued investigation of adrenergic compounds for the improved treatment of PD.

  16. Protective effect of methanolic extract of Garcinia indica fruits in 6-OHDA rat model of Parkinson's disease

    PubMed Central

    Antala, Bhaveshkumar V.; Patel, Manishkumar S.; Bhuva, Satish V.; Gupta, Shiv; Rabadiya, Samir; Lahkar, Mangala

    2012-01-01

    Context: Several studies have reported that antioxidants play an important role in Parkinson's disease (PD). Garcinia indica extract is a natural antioxidant, the present study was undertaken to evaluate the neuroprotective effect of methanolic extract of Garcinia indica (GIM) against 6-hydroxydopamine (6-OHDA) neurotoxicity for striatal dopaminergic neurons in the rat. Materials and Methods: Thirty adult Wistar rats were randomly divided into five groups namely control, 6-OHDA model, and GIM (100, 200, and 400 mg/kg body weight suspended in one ml of 0.1% carboxymethyl cellulose). The treatment was started three days before surgery and continued for next 14 days. The surgery was done on third day in all groups for administration of 6-OHDA into the right striatum and right substantia nigra, whereas control group injected with 6-OHDA vehicle. Various behavior and biochemical tests (Apomorphine-induced rotational behavior, Stepping test, Initiation time, Postural balance test, and Disengage time) were used to evaluate the neuroprotective effect of GIM. One-way analysis of variance (ANOVA) followed by Dunnett's test was used to compare inter-group differences. P<0.05 was considered as statistically significant. Results: GIM had significant (P<0.05, P<0.01) preventive effect in biochemical tests, i.e., dopamine and its metabolites measurement and in various behavior tests, i.e., apomorphine-induced rotational behavior, stepping test, initiation time, postural balance test, and disengage time as compared to 6-OHDA-treated rats. Conclusions: Our results demonstrated that GIM acted as an effective neuroprotective agent for striatal dopaminergic neurons in 6-OHDA lesioned rat model of PD. PMID:23248394

  17. High correlation between in vivo [123I]β-CIT SPECT/CT imaging and post-mortem immunohistochemical findings in the evaluation of lesions induced by 6-OHDA in rats

    PubMed Central

    2013-01-01

    Background 6-Hydroxydopamine (6-OHDA) is widely used in pre-clinical animal studies to induce degeneration of midbrain dopamine neurons to create animal models of Parkinson's disease. The aim of our study was to evaluate the potential of combined single-photon emission computed tomography/computed tomography (SPECT/CT) for the detection of differences in 6-OHDA-induced partial lesions in a dose- and time-dependent manner using the dopamine transporter (DAT) ligand 2β-carbomethoxy-3β-(4-[123I]iodophenyl)tropane ([123I]β-CIT). Methods Rats were unilaterally lesioned with intrastriatal injections of 8 or 2 × 10 μg 6-OHDA. At 2 or 4 weeks post-lesion, 40 to 50 MBq [123I]β-CIT was administered intravenously and rats were imaged with small-animal SPECT/CT under isoflurane anesthesia. The striatum was delineated and mean striatal activity in the lesioned side was compared to the intact side. After the [123I]β-CIT SPECT/CT scan, the rats were tested for amphetamine-induced rotation asymmetry, and their brains were immunohistochemically stained for DAT and tyrosine hydroxylase (TH). The fiber density of DAT- and TH-stained striata was estimated, and TH-immunoreactive cells in the rat substantia nigra pars compacta (SNpc) were stereologically counted. Results The striatal uptake of [123I]β-CIT differed significantly between the lesion groups and the results were highly correlated to both striatal DAT- and TH-immunoreactive fiber densities and to TH-immunoreactive cell numbers in the rat SNpc. No clear progression of the lesion could be seen. Conclusions [123I]β-CIT SPECT/CT is a valuable tool in predicting the condition of the rat midbrain dopaminergic pathway in the unilateral partial 6-OHDA lesion model of Parkinson's disease and it offers many advantages, allowing repeated non-invasive analysis of living animals. PMID:23758882

  18. Manganese Superoxide Dismutase Protects against 6-Hydroxydopamine Injury in Mouse Brains*

    PubMed Central

    Callio, Jason; Oury, Tim D.; Chu, Charleen T.

    2007-01-01

    Dopaminergic neurons of the substantia nigra are susceptible to toxin-based insults. Intrastriatal injection of 6-hydroxydopamine results in selective toxicity to these neurons. A mechanistic role for reactive oxygen species is supported by observations that antioxidants confer protection from 6-hydroxydopamine. Although cell culture studies have suggested extracellular or nonmitochondrial mechanisms in 6-hydroxydopamine toxicity, the compartmentalization of oxidative injury mechanisms is incompletely defined in vivo. Transgenic mice overexpressing mitochondrial manganese superoxide dismutase or extracellular superoxide dismutase received unilateral intrastriatal injections of 6-hydroxydopamine. Mice that overexpress manganese superoxide dismutase showed significantly smaller striatal lesions than littermate controls. There were no differences in nonspecific striatal injury associated with contralateral vehicle injection. Manganese superoxide dismutase overexpression also protected against loss of neuronal cell bodies in the substantia nigra. In contrast, mice overexpressing extracellular superoxide dismutase showed no protection from 6-hydroxydopamine toxicity in either brain region. Protection of the nigrostriatal system by overexpression of manganese super-oxide dismutase supports a role for mitochondrially derived superoxide in 6-hydroxydopamine toxicity. Mitochondrial oxidative stress appears to be a common mechanism among diverse models of Parkinson disease, whether involving toxins, mutated genes, or cybrid cells containing patient mitochondria. Antioxidant therapies that target this subcellular compartment may prove promising. PMID:15755737

  19. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats

    PubMed Central

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A.; Ulrich-Lai, Yvonne M.; Herman, James P.

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. Here, we tested the hypothesis that NTS noradrenergic A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n= 5; HPA study, n= 5], or vehicle [cardiovascular study, n= 6; HPA study, n= 4]. Rats were exposed to acute restraint stress followed by 14 days of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low frequency to high frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress. PMID:25765732

  20. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    PubMed

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  1. Intrastriatal injection of sonic hedgehog reduces behavioral impairment in a rat model of Parkinson's disease.

    PubMed

    Tsuboi, Kyoko; Shults, Clifford W

    2002-01-01

    Sonic hedgehog (Shh), a member of hedgehog (hh) family of signaling molecules, is necessary for normal axial patterning and cellular differentiation in the developing central nervous system. Shh also promotes the survival of fetal dopaminergic neurons and protects cultures of fetal midbrain dopaminergic neurons from the toxic effects of N-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that selectively injures nigral dopaminergic neurons. The mRNA expression of Shh and its putative receptor in the adult brain indicates an important role of Shh in the mature nervous system in addition to its roles during embryogenesis. In this study we examined the behavioral and anatomical effects of intrastriatal injection of singly myristoylated wild-type human Sonic hedgehog N-terminal fragment (Shh-M) in a rat model of Parkinson's disease (PD). Five groups of rats received a series of four intrastriatal injections of Shh-M (180 ng, 540 ng, or 4.275 microg per injection), glial cell line-derived neurotrophic factor (GDNF) (1 microg/injection), or vehicle on days 1, 3, 5, and 8. On day 4, the animals received an intrastriatal injection of 15 microg 6-hydroxydopamine (6-OHDA) free base. Intrastriatal administration of Shh (180 ng/injection) twice before and after a single intrastriatal injection of 6-OHDA reduced apomorphine- and amphetamine-induced rotation and forelimb akinesia and partially preserved dopaminergic axons in the striatum. This is the first demonstration in vivo that Shh reduces behavioral deficits induced by intrastriatal 6-OHDA lesion and suggests that Shh may be useful in the treatment of disorders that affect the nigrostriatal system, such as PD.

  2. Increasing extracellular potassium results in subthalamic neuron activity resembling that seen in a 6-hydroxydopamine lesion.

    PubMed

    Strauss, Ulf; Zhou, Fu-Wen; Henning, Jeannette; Battefeld, Arne; Wree, Andreas; Köhling, Rüdiger; Haas, Stefan Jean-Pierre; Benecke, Reiner; Rolfs, Arndt; Gimsa, Ulrike

    2008-06-01

    Abnormal neuronal activity in the subthalamic nucleus (STN) plays a crucial role in the pathophysiology of Parkinson's disease (PD). Although altered extracellular potassium concentration ([K+]o) and sensitivity to [K+]o modulates neuronal activity, little is known about the potassium balance in the healthy and diseased STN. In vivo measurements of [K+]o using ion-selective electrodes demonstrated a twofold increase in the decay time constant of lesion-induced [K+]o transients in the STN of adult Wistar rats with a unilateral 6-hydroxydopamine (6-OHDA) median forebrain bundle lesion, employed as a model of PD, compared with nonlesioned rats. Various [K+]o concentrations (1.5-12.5 mM) were applied to in vitro slice preparations of three experimental groups of STN slices from nonlesioned control rats, ipsilateral hemispheres, and contralateral hemispheres of lesioned rats. The majority of STN neurons of nonlesioned rats and in slices contralateral to the lesion fired spontaneously, predominantly in a regular pattern, whereas those in slices ipsilateral to the lesion fired more irregularly or even in bursts. Experimentally increased [K+]o led to an increase in the number of spontaneously firing neurons and action potential firing rates in all groups. This was accompanied by a decrease in the amplitude of post spike afterhyperpolarization (AHP) and the amplitude and duration of the posttrain AHP. Lesion effects in ipsilateral neurons at physiological [K+]o resembled the effects of elevated [K+]o in nonlesioned rats. Our data suggest that changed potassium sensitivity due to conductivity alterations and delayed clearance may be critical for shaping STN activity in parkinsonian states.

  3. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study.

    PubMed

    Shobana, Chandrasekar; Kumar, Radhakrishnan Ramesh; Sumathi, Thangarajan

    2012-10-01

    Parkinson's disease is one of the commonest neurodegenerative diseases, and oxidative stress has been evidenced to play a vital role in its causation. In this study, we evaluated whether alcoholic extract of Bacopa monniera (AEBM), an antioxidant and memory enhancer can slow the neuronal injury in a 6-OHDA-rat model of Parkinson's. Rats were treated with 20 and 40 mg/kg bodyweight of AEBM for 3 weeks. On Day 21, 2 μl of 6-OHDA (12 μg in 0.01 % in ascorbic acid-saline) was infused into the right striatum, while the control group received 2 μl of vehicle. Three weeks after the 6-OHDA injection, the rats were tested for neurobehavioral activity (rotarod, locomotor activity, grip test, forced swim test, radial arm maze) and were killed after 6 weeks for the estimation of lipid peroxidation, reduced glutathione (GSH) content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase (SOD), and catalase (CAT). The deficits in behavioral activity due to 6-OHDA lesioning were significantly and dose dependently restored by AEBM. Lesioning was followed by an increased lipid peroxidation and significant depletion of reduced GSH content in the substantia nigra, which was prevented with AEBM pretreatment. The activities of GSH-dependent enzymes, CAT and SOD in striatum were reduced significantly by lesioning, which were restored significantly and dose dependently by AEBM. This study indicates that the extract of B. monniera might be helpful in attenuating 6-OHDA-induced lesioning in rats.

  4. L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies.

    PubMed

    Pinna, Annalisa; Bonaventura, Jordi; Farré, Daniel; Sánchez, Marta; Simola, Nicola; Mallol, Josefa; Lluís, Carme; Costa, Giulia; Baqi, Younis; Müller, Christa E; Cortés, Antoni; McCormick, Peter; Canela, Enric I; Martínez-Pinilla, Eva; Lanciego, José L; Casadó, Vicent; Armentero, Marie-Therese; Franco, Rafael

    2014-03-01

    Long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA), still the most effective treatment in Parkinson's disease (PD), is associated with severe motor complications such as dyskinesia. Experimental and clinical data have indicated that adenosine A2A receptor antagonists can provide symptomatic improvement by potentiating L-DOPA efficacy and minimizing its side effects. It is known that the G-protein-coupled adenosine A2A, cannabinoid CB1 and dopamine D2 receptors may interact and form functional A2A-CB1-D2 receptor heteromers in co-transfected cells as well as in rat striatum. These data suggest that treatment with a combination of drugs or a single compound selectively acting on A2A-CB1-D2 heteromers may represent an alternative therapeutic treatment of PD. We investigated the expression of A2A-CB1-D2 receptor heteromers in the striatum of both naïve and hemiparkinsonian rats (HPD-rats) bearing a unilateral 6-hydroxydopamine (6-OHDA) lesion, and assessed how receptor heteromer expression and biochemical properties were affected by L-DOPA treatment. Radioligand binding data showed that A2A-CB1-D2 receptor heteromers are present in the striatum of both naïve and HPD-rats. However, behavioral results indicated that the combined administration of A2A (MSX-3 or SCH58261) and CB1 (rimonabant) receptor antagonists, in the presence of L-DOPA does not produce a response different from administration of the A2A receptor antagonist alone. These behavioral results prompted identification of heteromers in L-DOPA-treated animals. Interestingly, the radioligand binding results in samples from lesioned animals suggest that the heteromer is lost following acute or chronic treatment with L-DOPA.

  5. Complexities in the neurotoxic actions of 6-hydroxydopamine in relation to the cytoprotective properties of taurine.

    PubMed

    Hayes, J; Tipton, K F; Bianchi, L; Corte, L D

    2001-05-15

    The neurotoxin 6-hydroxydopamine was shown to cause an imbalance between the direct and indirect pathways of the striato-nigral system as evidenced by a decreased release of gamma-aminobutyric acid and taurine in the substantia nigra but not in the globus pallidus following neostriatal stimulation with kainate (100 microM). The neurotoxicity of 6-hydroxydopamine is generally believed to result from reactive-oxygen radical formation, although it is also known to inhibit mitochondrial NADH dehydrogenase. The release of Fe(II) from the unactivated form [3Fe(III)-4S] of cytoplasmic aconitase (EC(50) < 8 microM) was shown to be followed by the slower oxidation of thiol groups in the protein. Complete loss of -SH groups, and enzyme activity, was seen after incubation of glyceraldenyde-3-phosphate dehydrogenase with 200 microM 6-hydroxydopamine for 75 min at 37 degrees C (IC(50) = 70.8 +/- 0.3 microM). Thus the cellular effects of 6-hydroxydopamine are complex, involving impairment of mitochondrial function, iron- release, sulphydryl-group oxidation, and enzyme inhibition in addition to direct generation of reactive oxygen radicals. Taurine, which is known to be neuroprotective in some other systems, only affords protection against some of these effects, thereby explaining its reported ineffectiveness against 6-hydroxydopamine toxicity.

  6. Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson's Disease.

    PubMed

    Bortolanza, Mariza; Bariotto-Dos-Santos, Keila D; Dos-Santos-Pereira, Maurício; da-Silva, Célia Aparecida; Del-Bel, Elaine

    2016-07-01

    Amantadine is the noncompetitive antagonist of N-methyl-D-aspartate, receptor activated by the excitatory neurotransmitter glutamate. It is the only effective medication used to alleviate dyskinesia induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease patients. Unfortunately, adverse effects as abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia limit its clinical utility. Combined effective symptomatic treatment modalities may lessen the liability to undesirable events. Likewise drugs known to interfere with nitrergic system reduce AIMs in animal models of Parkinson's disease. We aimed to analyze an interaction between amantadine, neuronal nitric oxide synthase inhibitor (7-nitroindazole, 7NI), and nitric oxide donor (sodium nitroprusside, SNP) in 6-hydroxydopamine-(6-OHDA)-lesioned rats (microinjection in the medial forebrain bundle) presenting L-DOPA-induced dyskinesia (20 mg/kg, gavage, during 21 days). We confirm that 7NI-30 mg/kg, SNP-2/4 mg/kg and amantadine-40 mg/kg, individually reduced AIMs. Our results revealed that co-administration of sub-effective dose of amantadine (10 mg/kg) plus sub-effective dose of 7NI (20 mg/kg) potentiates the effect of reducing AIMs scores when compared to the effect of the drugs individually. No superior benefit on L-DOPA-induced AIMs was observed with the combination of amantadine and SNP. The results revealed that combination of ineffective doses of amantadine and 7NI represents a new strategy to increase antidyskinetic effect in L-DOPA-induced AIMs. It may provide additional therapeutic benefits to Parkinson's disease patients from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone. To close, we discuss the paradox of both nitric oxide synthase inhibitor and/or donor produced AIMs reduction by targeting nitric oxide synthase.

  7. Evidence for an Additive Neurorestorative Effect of Simultaneously Administered CDNF and GDNF in Hemiparkinsonian Rats: Implications for Different Mechanism of Action

    PubMed Central

    De Lorenzo, Francesca; Stepanova, Polina; Bäck, Susanne; Yu, Li-Ying; Pörsti, Eeva; Männistö, Pekka T.; Tuominen, Raimo K.

    2017-01-01

    Abstract Parkinson’s disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing α-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 µg). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5µg) and GDNF (1µg) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2α subunit (eIF2α). PMID:28303260

  8. Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions

    NASA Astrophysics Data System (ADS)

    Yadav, Amol P.; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M.; Nicolelis, Miguel A. L.

    2014-01-01

    Although L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.

  9. Perinatal manganese exposure and hydroxyl radical formation in rat brain.

    PubMed

    Bałasz, Michał; Szkilnik, Ryszard; Brus, Ryszard; Malinowska-Borowska, Jolanta; Kasperczyk, Sławomir; Nowak, Damian; Kostrzewa, Richard M; Nowak, Przemysław

    2015-01-01

    The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO(•)) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of three doses (15, 30, or 67 µg, intraventricular on each side), or saline vehicle. We found that Mn content in the brain, kidney, liver, and bone was significantly elevated in dams exposed to Mn during pregnancy. In neonates, the major organs that accumulated Mn were the femoral bone and liver. However, Mn was not elevated in tissues in adulthood. To determine the possible effect on generation of the reactive species, HO(•) in Mn-induced neurotoxicity, we analyzed the contents of 2.3- and 2.5-dihydroxybenzoic acid (spin trap products of salicylate; HO(•) being an index of in vivo HO(•) generation), as well as antioxidant enzyme activities of superoxide dismutase (SOD) isoenzymes and glutathione S-transferase (GST). 6-OHDA-depletion of DA produced enhanced HO(•) formation in the brain tissue of newborn and adulthood rats that had been exposed to Mn, and the latter effect did not depend on the extent of DA denervation. Additionally, the extraneuronal, microdialysate, content of HO(•) in neostriatum was likewise elevated in 6-OHDA-lesioned rats. Interestingly, there was no difference in extraneuronal HO(•) formation in the neostriatum of Mn-exposed versus control rats. In summary, findings in this study indicate that Mn crosses the placenta but in contrast to other heavy metals, Mn is not deposited long term in tissues. Also, damage to the dopaminergic system acts as a "trigger mechanism," initiating a cascade of adverse events leading to a protracted increase in

  10. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells.

    PubMed

    Tian, Lin-Lin; Wang, Xue-Jun; Sun, Yu-Ning; Li, Chun-Rong; Xing, Ya-Ling; Zhao, Hai-Bao; Duan, Ming; Zhou, Zhe; Wang, Sheng-Qi

    2008-01-01

    Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.

  11. Forskolin promotes the development of ethanol tolerance in 6-hydroxydopamine-treated mice

    SciTech Connect

    Szabo, G.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    Partial depletion of brain norepinephrine by 6-hydroxydopamine prevents the development of functional tolerance to ethanol in mice. This blockade of tolerance development was overcome by daily intracerebroventricular injections of forskolin. These results suggest that interaction of norepinephrine with post-synaptic ..beta..-adrenergic receptors, and activation of adenylate cyclase, is important for the development of ethanol tolerance. Interaction of norepinephrine with ..cap alpha../sub 1/-adrenergic receptors may be less crucial, since treatment with a phorbol ester activator of protein kinase C did not restore the development of tolerance in mice treated with 6-hydroxydopamine. The importance of the ..beta..-adrenergic receptor-coupled adenylate cyclase system for development of ethanol tolerance, in addition to its previously-reported role in long-term potentiation, suggests that this system may influence neuroadaptive processes in general. 26 references, 2 figures.

  12. Circadian distribution of motor-activity in unilaterally 6-hydroxy-dopamine lesioned rats.

    PubMed

    Baier, Paul Christian; Branisa, Pablo; Koch, Reinhard; Schindehütte, Jan; Paulus, Walter; Trenkwalder, Claudia

    2006-02-01

    Sleep abnormalities in idiopathic Parkinson's disease (PD) frequently consist in a reduction of total sleep time and efficacy and subsequent excessive daytime sleepiness. As it remains unclear whether these phenomena are part of the disease itself or result from pharmacological treatment, animal models for investigating the pathophysiology of sleep alterations in PD may add knowledge to this research area. In the present study, we investigate whether changes in circadian motor activity occur in 6-OHDA-lesioning model for PD, and allow a screening for disturbed sleep-waking behaviour. Activity measurements of six male Wistar rats with 6-OHDA-lesions in the medial forebrain bundle and six controls were carried out in two consecutive 12:12 h light-dark (LD) cycles. A computer-based video-analysis system, recording the animals' movement tracks was used. Distance travelled and number of transitions between movement periods and resting periods were determined. Although 6-OHDA-lesioned animals show a reduced locomotor activity compared to non-lesioned rats, the circadian distribution basically remained intact. However, some lesioning effects were more pronounced in the resting phase than in the activity phase, possibly paralleling nocturnal akinesia in PD. In order to further elucidate the described phenomena, it will be necessary to perform studies combining sleep recordings with locomotor activity measurements.

  13. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  14. Botanical Drug Puerarin Attenuates 6-Hydroxydopamine (6-OHDA)-Induced Neurotoxicity via Upregulating Mitochondrial Enzyme Arginase-2.

    PubMed

    Zhao, Jia; Cheng, Yuanyuan; Yang, Chuanbin; Lau, Sam; Lao, Lixing; Shuai, Bo; Cai, Jing; Rong, Jianhui

    2016-05-01

    Inhibition of nitric oxide synthases (NOSs) shows promise to halt the progression of neurodegenerative diseases. The present study was designed to explore whether botanical isoflavone puerarin could attenuate nitric oxide (NO)-mediated neurotoxicity via modulating the enzymes in the L-arginine-NO pathway. Neurotoxin 6-hydroxydopamine (6-OHDA) is well known to induce neurodegeneration via a NO-dependent mechanism. We first validated that puerarin protected rat dopamingeric PC12 cells against 6-OHDA-induced neurotoxicity in a concentration-dependent manner. We subsequently profiled the cellular responses to puerarin by a proteomic response fingerprinting approach. A total of 16 protein spots with >1.5-fold change of intensity were selected and identified by mass spectrometry. As one of puerarin-upregulated proteins, mitochondrial arginase-2 hydrolyzes L-arginine to L-ornithine, thereby competing with neuronal NOS for substrate L-arginine in mitochondria. Thus, we hypothesize that puerain may attenuate nitric oxide (NO)-mediated mitochondrial injury via increasing arginase-2 expression. Western blot and reverse transcription polymerase chain reaction (RT-PCR) analyses confirmed that puerarin increased arginase-2 expression in a concentration- and time-dependent manner. Accordingly, puerarin suppressed 6-OHDA-induced NO production and neurotoxicity in PC12 cells and primary rat midbrain neurons. Arginase inhibitor BEC diminished the effect of puerarin on 6-OHDA-induced NO production and neurotoxicity. The activation of arginase-2 by puerarin represents an endogenous mechanism for specific control of NO-mediated mitochondrial damage. Thus, puerarin is a useful lead for suppressing NO-mediated neurotoxicity in neurodegenerative diseases. Graphical Abstract Arginase-2 dependent mechanism underlying the neuroprotective activity of puerarin.

  15. Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine

    SciTech Connect

    Kavanagh, Edel T.; Loughlin, John P.; Herbert, Kate Reed; Dockery, Peter; Samali, Afshin; Doyle, Karen M.; Gorman, Adrienne M. . E-mail: adrienne.gorman@nuigalway.ie

    2006-12-29

    6-Hydroxydopamine (6-OHDA) is often used in models of Parkinson's disease since it can selectively target and kill dopaminergic cells of the substantia nigra. In this study, pre-treatment of PC12 cells with nerve growth factor (NGF) inhibited apoptosis and necrosis by 6-OHDA, including caspase activity and lactate dehydrogenase release. Notably, cells exposed to 6-OHDA in the presence of NGF were subsequently capable of proliferation (when replated without NGF), or neurite outgrowth (with continued presence of NGF). Following 7 days growth in the presence of NGF, expression of {beta}III tubulin and tyrosine hydroxylase and increased intracellular catecholamines was detectable in PC12 cells, features characteristic of functional dopaminergic neurons. NGF-pre-treated PC12 cells retained expression of {beta}III-tubulin and tyrosine hydroxylase, but not catecholamine content following 6-OHDA exposure. These data indicate that NGF-protected cells maintained some aspects of functionality and were subsequently capable of proliferation or differentiation.

  16. Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal ganglia in the rat model of Parkinson's disease.

    PubMed

    Quintana, Adrien; Sgambato-Faure, Véronique; Savasta, Marc

    2012-12-01

    Dyskinesia is a major side effect of chronic levodopa (L-DOPA) administration, the reference treatment for Parkinson's disease (PD). High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing L-DOPA requirement. However, inadequate stimulation can also trigger dyskinetic movements in PD patients and animal models. Here, we investigated the possible association between L-DOPA- and STN-HFS-induced dyskinesia and regulation of the NR2B subunit of NMDA receptors in the rodent model of PD. We subjected 6-OHDA-lesioned rats to HFS for 1h, at an intensity triggering forelimb dyskinesia. Other 6-OHDA-lesioned rats were treated with chronic high doses of L-DOPA for ten days, to induce abnormal involuntary movements. The 6-OHDA lesion regulated NR2B only in the SNr, where the activation of NR2B was observed (as assessed by phosphorylation of the Tyr1472 residue). Both STN-HFS and L-DOPA dyskinesiogenic treatments induced NR2B activation in the STN and EP, but only L-DOPA triggered NR2B hyperphosphorylation in the striatum. Finally, the use of CP-101,606 exacerbated L-DOPA-induced motor behavior and associated NR2B hyperphosphorylation in the striatum, STN and EP. Thus, NR2B activation in basal ganglia structures is correlated with dyskinesia.

  17. Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson’s Disease

    PubMed Central

    Seiler, Stefanie; Di Santo, Stefano; Widmer, Hans Rudolf

    2016-01-01

    Transplantation of fetal human ventral mesencephalic (VM) dopaminergic neurons into the striatum is a promising strategy to compensate for the characteristic dopamine deficit observed in Parkinson’s disease (PD). This therapeutic approach, however, is currently limited by the high number of fetuses needed for transplantation and the poor survival and functional integration of grafted dopaminergic neurons into the host brain. Accumulating evidence indicates that contrasting inhibitory signals endowed in the central nervous system (CNS) might support neuronal regeneration. Hence, in the present study we aimed at improving survival and integration of grafted cells in the host brain by neutralizing Nogo-A, one of the most potent neurite growth inhibitors in the CNS. For that purpose, VM tissue cultures were transplanted into rats with a partial 6-hydroxydopamine (6-OHDA) lesion causing a hemi-PD model and concomitantly treated for 2 weeks with intra-ventricular infusion of neutralizing anti-Nogo-A antibodies. Motor behavior using the cylinder test was assessed prior to and after transplantation as functional outcome. At the end of the experimental period the number of dopaminergic fibers growing into the host brain, the number of surviving dopaminergic neurons in the grafts as well as graft size was examined. We found that anti-Nogo-A antibody infusion significantly improved the asymmetrical forelimb use observed after lesions as compared to controls. Importantly, a significantly three-fold higher dopaminergic fiber outgrowth from the transplants was detected in the Nogo-A antibody treated group as compared to controls. Furthermore, Nogo-A neutralization showed a tendency for increased survival of dopaminergic neurons (by two-fold) in the grafts. No significant differences were observed for graft volume and the number of dopaminergic neurons co-expressing G-protein-coupled inward rectifier potassium channel subunit two between groups. In sum, our findings support the

  18. Treatment with 6-hydroxydopamine in planaria (Dugesia gonocephala s.l.): morphological and behavioral study.

    PubMed

    Caronti, B; Margotta, V; Merante, A; Pontieri, F E; Palladini, G

    1999-07-01

    Morpho-functional and behavioral effects of exposure to 6-hydroxydopamine (OHDA)-HCI (24 microg/ml per day for 24 h and 7 days) were studied in planarias (Dugesia gonocephala s.l.). Exposure to 6-OHDA-HC1 for 24 h produced hypokinesia of the specimens. These behavioral changes were more pronounced, leading to complete immobility, after 7 days of exposure to the neurotoxin. Moreover, specimens exposed to 6-OHDA-HCI for 24 h and 7 days failed to show any behavioral response to nomifensine, thus furnishing evidence of the damage of presynaptic dopamine terminals. Exposure to 6-OHDA-HCl for 24 h significantly reduced cathecolamine content in neuropil region, as demonstrated by histochemistry, and electron-dense presynaptic vesicles, as observed on electron microscopy examination. All these alterations were significantly more pronounced and were accompanied by swelling and strong increase of electron-density in cytoplasm of numerous neurons after exposure to the neurotoxin for 7 days. This appears to be the first demonstration of the neurotoxic effects of 6-OHDA-HCI in flatworms.

  19. The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Noelker, Carmen; Bacher, Michael; Gocke, Petra; Wei, Xing; Klockgether, Thomas; Du, Yansheng; Dodel, Richard

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta. 6-Hydroxydopamine (6-OHDA) is specific to dopaminergic neurons in intrastriatal rodent models. It induces neuronal death either via uncoupling mitochondrial oxidative phosphorylation resulting in energy deprivation or alternatively, is associated with its ability to produce hydrogen peroxide, hydroxyl and superoxide radicals. Caffeic acid phenethyl ester (CAPE), an antioxidant flavanoid, has antiviral, anti-inflammatory, antioxidant, and immunomodulatory properties. Recent studies have shown that CAPE has also a neuroprotective effects in ischemia and low potassium-induced neuronal apoptotic models. In cerebellar granule neurons CAPE significantly blocks 6-OHDA mediated cell death (70 microM) in a dose-dependent manner. Furthermore, CAPE was able to modulate the Ca(2+)-induced release of cyctochrome c in isolated liver mitochondria. Caspase-3 activation following 6-OHDA treatment was markedly inhibited in the presence of CAPE. Although the molecular mechanisms associated with CAPE's neuroprotective effects remain to be elucidated in more detail, our results clearly demonstrate a considerable neuroprotective effect of CAPE. Since a mitochondrial insult is a major cause for the degeneration of nigral neurons in PD, we hypothesize that propolis derivatives, in particular CAPE, may have a neuroprotective effect on those cells and may be a promising drug candidate to be taken into in vivo models of PD.

  20. Protective effect of planarian DJ-1 against 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Tsushima, Jun; Nishimura, Kaneyasu; Tashiro, Natsuka; Takata, Kazuyuki; Ashihara, Eishi; Yoshimoto, Kanji; Ariga, Hiroyoshi; Agata, Kiyokazu; Kitamura, Yoshihisa

    2012-12-01

    DJ-1/PARK7 has multiple functions as an antioxidant, an oncogene, and a molecular chaperone in vertebrates, and loss-of-function mutations in DJ-1 cause early onset of Parkinson's disease. However, the function of invertebrate DJ-1 remains unknown. In order to investigate the function of planarian DJ-1, we isolated the planarian DJ-1 gene Dugesia japonica DJ-1 (DjDJ-1) and analyzed its expression and function. In situ hybridization analysis revealed that DjDJ-1 mRNA was expressed throughout the body, including the central nervous system, cells surrounding the pharynx, and stem cells. Planarian DjDJ-1 protein exhibited antioxidant function, similar to human DJ-1, as evidenced by the fact that recombinant DjDJ-1 protein reduced reactive oxygen species and protected human neuroblastoma SH-SY5Y cells from cell death. In addition, dopaminergic neurons in DjDJ-1(RNAi) planarians became susceptible to 6-hydroxydopamine, a dopaminergic neurotoxin. These results suggest that planarians have a DJ-1 ortholog, which has conserved antioxidant and neuroprotective functions.

  1. Neuroprotective effect of trans-cinnamaldehyde on the 6-hydroxydopamine-induced dopaminergic injury.

    PubMed

    Pyo, Ji-Hi; Jeong, You-Kyung; Yeo, Sujung; Lee, Je-Hyun; Jeong, Mi-Young; Kim, Sung-Hoon; Choi, Yeong-Gon; Lim, Sabina

    2013-01-01

    The anti-inflammatory and neuroprotective effects of trans-cinnamaldehyde (TCA) were investigated on the inflammatory cells and the dopaminergic degeneration in mice. TCA inhibited the up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-induced inflammatory BV2 microglial cells. To investigate the TCA efficacy on the 6-hydroxydopamine (6-OHDA)-induced dopaminergic degeneration in mice, an intracerebroventricular injection of 6-OHDA was given to the mice, and TCA (30 mg/kg) was intraperitoneally administered. At 7 d after the 6-OHDA injection, 6-OHDA led to a severe loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the striatum and substantia nigra (SN). On the other hand, TCA dramatically maintained the number of TH-positive dopaminergic neurons in the striatum and SN regions of the 6-OHDA-treated mice, which indicates that TCA is able to inhibit the 6-OHDA-induced reduction of TH expression in the dopaminergic neurons in the striatum and SN regions. TCA also inhibited the induction of iNOS and COX-2 in the 6-OHDA model, similarly as shown in the LPS-induced inflammatory BV2 microglial cells. These results indicate that TCA has a neuroprotective effect on dopaminergic neurons and that this effect may be associated with the inhibition of inflammatory responses. These findings suggest that TCA may be a therapeutic candidate for the prevention of inflammation-mediated neurodegenerative diseases.

  2. Gender-specific role of mitochondria in the vulnerability of 6-hydroxydopamine-treated mesencephalic neurons.

    PubMed

    Misiak, Magdalena; Beyer, Cordian; Arnold, Susanne

    2010-01-01

    Many neurodegenerative diseases, such as Morbus Parkinson, exhibit a gender-dependency showing a higher incidence in men than women. Most of the neurodegenerative disorders involve either causally or consequently a dysfunction of mitochondria. Therefore, neuronal mitochondria may demonstrate a gender-specificity with respect to structural and functional characteristics of these organelles during toxic and degenerative processes. The application of 6-OHDA (6-hydroxydopamine) in vitro and in vivo represents a well-accepted experimental model of Parkinson's disease causing Parkinsonian symptoms. Besides the known effects of 6-OHDA on mitochondria and neuronal survivability, we aimed to demonstrate that the mitochondrial neurotoxin affects the morphology and survival of primary dopaminergic and non-dopaminergic neurons in the mesencephalon in a gender-specific manner by influencing the transcription of mitochondrial genes, ATP and reactive oxygen species production. Our data suggest that cell death in response to 6-OHDA is primarily caused due to increased oxidative stress which is more pronounced in male than in female mesencephalic neurons.

  3. Salidroside Protects Against 6-Hydroxydopamine-Induced Cytotoxicity by Attenuating ER Stress.

    PubMed

    Tao, Kai; Wang, Bao; Feng, Dayun; Zhang, Wei; Lu, Fangfang; Lai, Juan; Huang, Lu; Nie, Tiejian; Yang, Qian

    2016-02-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic strategies that halt the neurodegenerative processes are lacking, reinforcing the need to better understand the molecular drivers of this disease. Importantly, increasing evidence suggests that the endoplasmic reticulum (ER) stress-induced unfolded protein response is likely involved in DA neuronal death. Salidroside, a major compound isolated from Rhodiola rosea L., possesses potent anti-oxidative stress properties and protects against DA neuronal death. However, the underlying mechanisms are not well understood. In the present study, we demonstrate that salidroside prevents 6-hydroxydopamine (6-OHDA)-induced cytotoxicity by attenuating ER stress. Furthermore, treatment of a DA neuronal cell line (SN4741) and primary cortical neurons with salidroside significantly reduced neurotoxin-induced increases in cytoplasmic reactive oxygen species and calcium, both of which cause ER stress, and cleaved caspase-12, which is responsible for ER stress-induced cell death. Together, these results suggest that salidroside protects SN4741 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by attenuating ER stress. This provides a rationale for the investigation of salidroside as a potential therapeutic agent in animal models of PD.

  4. Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons.

    PubMed

    Hwang, Cheol Kyu; Chun, Hong Sung

    2012-01-01

    Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 µM) significantly attenuated 6-OHDA (50 µM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.

  5. 6-Hydroxydopamine injections into the nigrostriatal pathway attenuate striatal malonate and 3-nitropropionic acid lesions.

    PubMed

    Maragos, W F; Jakel, R J; Pang, Z; Geddes, J W

    1998-12-01

    The mitochondrial inhibitors malonate and 3-nitropropionic (3NP) acid are potent neurotoxins in vivo. Administration of these compounds results in neuronal loss similar to that seen in Huntington's disease. Although the mechanism of cell death produced by these compounds likely involves activation of N-methyl-D-aspartate receptors, it remains unclear why the striatum demonstrates regional susceptibility to the toxicity of these and other mitochondrial poisons. We hypothesized that dopamine, a weak neurotoxin that occurs in high concentrations in the striatum, may contribute to the neuronal damage caused by mitochondrial inhibition. We investigated whether depletion of striatal dopamine using the catecholaminergic toxin 6-hydroxydopamine would attenuate lesions induced by mitochondrial inhibition. We found that dopamine depletion reduced significantly the extent of histological damage in the striatum elicited by both intraparenchymal injections of 0.8 micromol malonate and 20 mg/kg systemic administration of 3NP. These data suggest that dopamine or one of its metabolites may contribute to mitochondrial toxin-induced cell death.

  6. Astragalus Polysaccharide Suppresses 6-Hydroxydopamine-Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Li, Haifeng; Ding, Fei; Wang, Hongyu; Han, Wenjing; Ma, Fangli; Hu, Minghua; Ma, Chung Wah

    2016-01-01

    Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson's disease (PD). However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus, against the neurotoxicity of 6-hydroxydopamine (6-OHDA), a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans. Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration. PMID:27885333

  7. 6-Hydroxydopamine and radiofrequency lesions of the lateral entorhinal cortex facilitate an operant appetitive conditioning task in mice.

    PubMed

    Gauthier, M; Soumireu-Mourat, B

    1981-07-02

    The entorhinal cortex seems heterogeneous as dopaminergic terminals are present only in the anterior part of the lateral entorhinal cortex. In order to clarify the interaction of this cortex with the hippocampus in memory processes, the effects of either 6-hydroxydopamine or radiofrequency bilateral lesions were compared. Both lesions enhance the retention of a Skinner task with continuous reinforcement schedule. Involvement of dopamine in memory processes is discussed.

  8. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-03

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.

  9. Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice

    PubMed Central

    Willard, Amanda M.; Bouchard, Rachel S.; Gittis, Aryn H.

    2015-01-01

    Parkinson’s disease (PD) is a movement disorder whose cardinal motor symptoms arise due to the progressive loss of dopamine. Although this dopamine loss typically progresses slowly over time, currently there are very few animal models that enable incremental dopamine depletion over time within the same animal. This type of gradual dopamine depletion model would be useful in studies aimed at the prodromal phase of PD, when dopamine levels are pathologically low but motor symptoms have not yet presented. Utilizing the highly characterized neurotoxin 6-hydroxydopamine (6-OHDA), we have developed a paradigm to gradually deplete dopamine levels in the striatum over a user-defined time course – spanning weeks to months – in C57BL/6 mice. Dopamine depletions were achieved by administration of five low dose injections (0.75 µg) of 6-OHDA through an implanted intracranial bilateral cannula targeting the medial forebrain bundle. Levels of dopamine within the striatum declined linearly with successive injections, quantified using tyrosine hydroxylase immunostaining and high-performance liquid chromatography. Behavioral testing was carried out at each time point to study the onset and progression of motor impairments as a function of dopamine loss over time. We found that spontaneous locomotion, measured in an open field, was robust to loss of dopamine until ~70% of striatal dopamine was lost. Beyond this point, additional dopamine loss caused a sharp decline in motor performance, reaching a final level comparable to that of acutely depleted mice. Similarly, although rearing behavior was more sensitive to dopamine loss and declined linearly as a function of dopamine levels, it eventually declined to levels similar to that seen in acutely depleted mice. In contrast, motor coordination, measured on a vertical pole task, was only moderately impaired in gradually depleted mice, despite severe impairments observed in acutely depleted mice. These results demonstrate the

  10. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease: involvement of antioxidative enzymes induction.

    PubMed

    Wu, Chi-Rei; Tsai, Chia-Wen; Chang, Shu-Wei; Lin, Chia-Yuan; Huang, Li-Chun; Tsai, Chia-Wen

    2015-01-05

    The neuroprotective effects of carnosic acid (CA), a phenolic diterpene isolated from rosemary (Rosmarinus officinalis), have been widely investigated in recent years, however, its protection in in vivo still unclear. In this study, we investigated the behavioral activity and neuroprotective effects of CA in a rat model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA). Rats were treated with 20mg/kg body weight of CA for 3 weeks before 6-OHDA exposure. Results indicated that CA improved the locomotor activity and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Significant protection against lipid peroxidation and GSH reduction was observed in the 6-OHDA rats pretreated with CA. Pretreatment with CA increased the protein expression of γ-glutamate-cysteine ligase catalytic subunit, γ-glutamate-cysteine ligase modifier subunit, superoxide dismutase, and glutathione reductase compared with 6-OHDA-stimulated rats and SH-SY5Y cells. Immunoblots showed that the reduction of the Bcl-2/Bax ratio, the induction of caspase 3 cleavage, and the induction of poly(ADP-ribose) polymerase (PARP) cleavage by 6-OHDA was reversed in the presence of SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) in SH-SY5Y cells. Rats treated with CA reversed the 6-OHDA-mediated the activation of c-Jun NH2-terminal kinase and p38, the down-regulation of the Bcl-2/Bax ratio, the up-regulation of cleaved caspase 3/caspase 3 and cleaved PARP/PARP ratio, and the down-regulation of tyrosine hydroxylase protein. However, BAM7, an activator of Bax, attenuated the effect of CA on apoptosis in SH-SY5Y cells. These results suggest that CA protected against 6-OHDA-induced neurotoxicity is attributable to its anti-apoptotic and anti-oxidative action. The present findings may help to clarify the possible mechanisms of rosemary in the neuroprotection of PD.

  11. Fibroblast growth factor 1attenuates 6-hydroxydopamine-induced neurotoxicity: an in vitro and in vivo investigation in experimental models of parkinson’s disease

    PubMed Central

    Wei, Xiaojie; He, Songbin; Wang, Zhouguang; Wu, Jiamin; Zhang, Jinjing; Cheng, Yi; Yang, Jie; Xu, Xinlong; Chen, Zaifeng; Ye, Junmin; Chen, Li; Lin, Li; Xiao, Jian

    2014-01-01

    Parkinson’s disease (PD) is a degenerative disorder of the central nervous system and is characterized by motor system disorders resulting in loss of dopamine producing brain cells. Acidic fibroblast growth factor, also called FGF1, promotes the survival of neurons. The aims of the present study were to confirm FGF1 could protect neurons cultures from 6-hydroxydopamine (6-OHDA) toxicity in vitro and in vivo. Our results demonstrated FGF1 administration improved the motor function recovery, increased the TH-positive neurons survival and up-regulated the levels of neurotransmitters in PD rats. Meanwhile, FGF1 prevents the death of DA neuron at least in part by reducing the levels of α-synuclein and ER stress. The administration of FGF1 activated downstream signals PI3K/Akt and ERK1/2. In conclusion, FGF1 diminished α-synuclein neurotoxicity by down regulating ER stress mediators and the level of apoptosis, and these effects may underlying the activation of the PI3K/Akt and ERK1/2 signal pathway. PMID:25628778

  12. Activation of GSK-3β and Caspase-3 Occurs in Nigral Dopamine Neurons during the Development of Apoptosis Activated by a Striatal Injection of 6-Hydroxydopamine

    PubMed Central

    Hernandez-Baltazar, Daniel; Mendoza-Garrido, Maria E.; Martinez-Fong, Daniel

    2013-01-01

    The 6-Hydroxydopamine (6-OHDA) rat model of Parkinson's disease is essential for a better understanding of the pathological processes underlying the human disease and for the evaluation of promising therapeutic interventions. This work evaluated whether a single striatal injection of 6-OHDA causes progressive apoptosis of dopamine (DA) neurons and activation of glycogen synthase kinase 3β (GSK-3β) and caspase-3 in the substantia nigra compacta (SNc). The loss of DA neurons was shown by three neuron markers; tyrosine hydroxylase (TH), NeuN, and β-III tubulin. Apoptosis activation was determined using Apostain and immunostaining against cleaved caspase-3 and GSK-3β pY216. We also explored the possibility that cleaved caspase-3 is produced by microglia and astrocytes. Our results showed that the 6-OHDA caused loss of nigral TH(+) cells, progressing mainly in rostrocaudal and lateromedial directions. In the neostriatum, a severe loss of TH(+) terminals occurred from day 3 after lesion. The disappearance of TH(+) cells was associated with a decrease in NeuN and β-III tubulin immunoreactivity and an increase in Apostain, cleaved caspase-3, and GSK-3β pY216 in the SNc. Apostain immunoreactivity was observed from days 3 to 21 postlesion. Increased levels of caspase-3 immunoreactivity in TH(+) cells were detected from days 1 to 15, and the levels then decreased to day 30 postlesion. The cleaved caspase-3 also collocated with microglia and astrocytes indicating its participation in glial activation. Our results suggest that caspase-3 and GSK-3β pY216 activation might participate in the DA cell death and that the active caspase-3 might also participate in the neuroinflammation caused by the striatal 6-OHDA injection. PMID:23940672

  13. Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein.

    PubMed

    Pasban-Aliabadi, Hamzeh; Esmaeili-Mahani, Saeed; Sheibani, Vahid; Abbasnejad, Mehdi; Mehdizadeh, Anahita; Yaghoobi, Mohammad Mehdi

    2013-04-01

    Parkinson disease (PD) is the most common progressive neurodegenerative disorder characterized by progressive death of midbrain dopaminergic neurons. Most neurodegenerative disease treatments are, at present, palliative. However, some natural herbal products have been shown to rescue neurons from death and apoptosis in some of neurodegenerative diseases. Not only Olea europaea L. olive oil, but also the leaves of this plant have been used for medical purposes. Olive leaf extract (OLE) is being used by people as a drink across the world and as an integral ingredient in their desire to maintain and improve their health. Here, we investigated the effects of OLE and its main phenolic component oleuropein on 6-hydroxydopamine (6-OHDA)-induced toxicity in rat adrenal pheochromocytoma (PC12) cells as an in vitro model of PD. Cell damage was induced by 150 μM 6-OHDA. The cell survival rate was examined by MTT assay. Generation of intra-cellular reactive oxygen species (ROS) was studied using fluorescence spectrophotometry. Immunoblotting and DNA analysis were also employed to determine the levels of biochemical markers of apoptosis in the cells. The data showed that 6-OHDA could decrease the viability of the cells. In addition, intra-cellular ROS, activated caspase 3, Bax/Bcl-2 ratio, as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Incubation of cells with OLE (400 and 600 μg/mL) and oleuropein (20 and 25 μg/mL) could decrease cell damage and reduce biochemical markers of cell death. The results suggest that OLE and oleuropein have anti-oxidant protective effects against 6-OHDA-induced PC12 cell damage. The protective effects of OLE and oleuropein are correlative with their anti-oxidative and anti-apoptotic properties and suggest their therapeutic potential in the treatment of PD.

  14. The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning.

    PubMed

    Lex, Bjoern; Hauber, Wolfgang

    2010-02-01

    Considerable evidence suggests that dopamine in the core subregion of the nucleus accumbens is not only involved in Pavlovian conditioning but also supports instrumental performance. However, it is largely unknown whether NAc dopamine is required for outcome encoding which plays an important role both in Pavlovian stimulus-outcome learning and instrumental action-outcome learning. Therefore, we tested rats with 6-hydroxydopamine (6-OHDA) induced dopamine depletion of the NAc core for their sensitivity to outcome devaluation in a Pavlovian and an instrumental task. Results indicate that 6-OHDA-lesioned animals were sensitive to outcome devaluation in an instrumental task. This finding provides support to the notion that NAc core dopamine may not be crucial in encoding action-outcome associations. However, during instrumental conditioning lever pressing rates in 6-OHDA-lesioned animals were markedly lower which could reflect an impaired behavioral activation. By contrast, after outcome-specific devaluation in a Pavlovian task, performance in 6-OHDA-lesioned animals was impaired, i.e. their magazine-directed responding was non-selectively reduced. One possibility to explain non-selective responding is that NAc core DA depletion impaired the ability of conditioned stimuli to activate the memory of the current value of the reinforcer.

  15. [COMPARISON OF CYTOPROTECTIVE EFFECTS OF HEMANTANE AND AMANTADINE UNDER CONDITIONS OF 6-HYDROXYDOPAMINE NEUROTOXIN ACTION ON CULTURED HUMAN NEUROBLASTOMA CELLS].

    PubMed

    Logvinov, I O; Antipova, T A; Nepoklonov, A V; Valdman, E A

    2016-01-01

    Potential neuroprotective activity of the novel antiparkinsonian drug hemantane (hydrochloride N-2-(adamantyl)-hexamethylenimine) in comparison to amantadine has been studied in various regimes of administration on human neuroblastoma SH-SY5Y cell line injury induced by 6-hydroxydopamine (6-OHDA), which is used as in vitro model of dopaminergic neurons for Parkinson's disease. Two regimes of hemantane and amantadine administration in a range of final concentrations 10⁻⁶-10⁻⁸ M were used either prior to or immediately after 6-OHDA introduction. MTT colorimetric assay was used to assess the viability of test cells. Significant decrease in viability of SH-SY5Y cells treated with 6-OHDA was observed. The addition of hemantane to cell medium produced cytoprotective effects in both regimes of administration--before and after 6-OHDA--at concentrations 10⁻⁷ M and 10⁻⁶-10⁻⁸ M, respectively. Amantadine in con- centrations 10⁻⁷-10⁻⁸ M was effective to increase cell survival only when administered after 6-OHDA. These results show that hemantane has a greater neu-roprotective potential in comparison to amantadine.

  16. Echinacoside Protects against 6-Hydroxydopamine-Induced Mitochondrial Dysfunction and Inflammatory Responses in PC12 Cells via Reducing ROS Production

    PubMed Central

    Wang, Yue-Hua; Xuan, Zhao-Hong; Tian, Shuo; Du, Guan-Hua

    2015-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons at the substantia nigra. Mitochondrial dysfunction and inflammatory responses are involved in the mechanism of cell damage in PD. 6-Hydroxydopamine (6-OHDA), a dopamine analog, specifically damages dopaminergic neurons. Echinacoside (ECH) is a phenylethanoid glycoside isolated from the stems of Cistanche salsa, showing a variety of neuroprotective effects in previous studies. The present study was to investigate its effect against 6-OHDA-induced neurotoxicity and possible mechanisms in PC12 cells. The results showed that 6-OHDA reduced cell viability, decreased oxidation-reduction activity, decreased mitochondrial membrane potential, and induced mitochondria-mediated apoptosis compared with untreated PC12 cells. However, echinacoside treatment significantly attenuated these changes induced by 6-OHDA. In addition, echinacoside also could significantly alleviate the inflammatory responses induced by 6-OHDA. Further research showed that echinacoside could reduce 6-OHDA-induced ROS production in PC12 cells. These results suggest that the underlying mechanism of echinacoside against 6-OHDA-induced neurotoxicity may be involve in attenuating mitochondrial dysfunction and inflammatory responses by reducing ROS production. PMID:25788961

  17. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Haas, Stefan Jean-Pierre; Zhou, Xiaolai; Machado, Venissa; Wree, Andreas; Krieglstein, Kerstin; Spittau, Björn

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor β1 (Tgfβ1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfβ1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO). PMID:26869879

  18. Inhibition of Mitochondrial Clearance and Cu/Zn-SOD Activity Enhance 6-Hydroxydopamine-Induced Neuronal Apoptosis.

    PubMed

    In, Sua; Hong, Chang-Won; Choi, Boyoung; Jang, Bong-Geum; Kim, Min-Ju

    2016-01-01

    Parkinson's disease (PD) is a common movement disorder among neurodegenerative diseases, involving neuronal cell death in the substantia nigra of the midbrain. Although mechanisms of cell death in PD have been studied, the exact molecular pathogenesis is still unclear. Here, we explore the relationship between two types of cell death, autophagy and apoptosis, which have been studied separately in parkinsonian mimetic model of 6-hydroxydopamine (6-OHDA). 6-OHDA induced autophagy firstly and then later inhibition of autophagy flux occurred with apoptosis. The apoptosis was prevented by treatment of pan-caspase inhibitor, zVAD-fmk (benzyloxycarbonyl-VAD-fluoromethylketone (zVAD)), or early phase inhibitor of autophagy, 3-methyladenine (3-MA), indicating that autophagic induction was followed by the apoptosis. Interestingly, late step inhibitor of autophagy, bafilomycin A1 (BafA), aggravated 6-OHDA-induced apoptosis. This was associated with mitochondrial abnormality such as the inhibition of damaged mitochondrial clearance and aberrant increase of extracellular oxygen consumption. Furthermore, treatment of BafA did not inhibit 6-OHDA-mediated superoxide formation but strongly reduced the hydrogen peroxide production to below basal levels, indicating failure from superoxide to hydrogen peroxide. These results were accompanied by a lowered expression and activity of copper/zinc superoxide dismutase (Cu/Zn-SOD) but not of manganese SOD (MnSOD) and catalase. Thus, the present study suggests that crosstalk among apoptosis, autophagy, and oxidative stress is a causative factor of 6-OHDA-induced neuronal death and provides a mechanistic understanding of PD pathogenesis.

  19. Moderate traumatic brain injury increases the vulnerability to neurotoxicity induced by systemic administration of 6-hydroxydopamine in mice.

    PubMed

    de Oliveira, Paulo Alexandre; Ben, Juliana; Matheus, Filipe Carvalho; Schwarzbold, Marcelo Liborio; Moreira, Eduardo Luiz Gasnhar; Rial, Daniel; Walz, Roger; Prediger, Rui Daniel

    2017-03-10

    Moderate traumatic brain injury (TBI) might increase the vulnerability to neuronal neurodegeneration, but the basis of such selective neuronal susceptibility has remained elusive. In keeping with the disruption of the blood-brain barrier (BBB) caused by TBI, changes in BBB permeability following brain injury could facilitate the access of xenobiotics into the brain. To test this hypothesis, here we evaluated whether TBI would increase the susceptibility of nigrostriatal dopaminergic fibers to the systemic administration of 6-hydroxydopamine (6-OHDA), a classic neurotoxin used to trigger a PD-like phenotype in mice, but that in normal conditions is unable to cross the BBB. Adult Swiss mice were submitted to a moderate TBI using a free weight-drop device and, 5 h later, they were injected intraperitoneally with a single dose of 6-OHDA (100 mg/kg). Afterwards, during a period of 4 weeks, the mice were submitted to a battery of behavioral tests, including the neurological severity score (NSS), the open field and the rotarod. Animals from the TBI plus 6-OHDA group displayed significant motor and neurological impairments that were improved by acute L-DOPA administration (25 mg/kg, i.p.). Moreover, the observation of the motor deficits correlates with (i) a significant decrease in the tyrosine hydroxylase levels mainly in the rostral striatum and (ii) a significant increase in the levels of striatal glial fibrillary acidic protein (GFAP) levels. On the whole, the present findings demonstrate that a previous moderate TBI event increases the susceptibility to motor, neurological and neurochemical alterations induced by systemic administration of the dopaminergic neurotoxin 6-OHDA in mice.

  20. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    PubMed

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation.

  1. Effects of the neuroprotectant lubeluzole on the cytotoxic actions of veratridine, barium, ouabain and 6-hydroxydopamine in chromaffin cells

    PubMed Central

    Cano-Abad, María F; López, Manuela G; Hernández-Guijo, Jesús M; Zapater, Pedro; Gandía, Luis; Sánchez-García, Pedro; García, Antonio G

    1998-01-01

    Incubation of bovine adrenal chromaffin cells with veratridine (10–100 μM) during 24 h, caused a concentration-dependent release of the cytosolic lactate dehydrogenase (LDH) into the bathing medium, an indicator of cell death. Lubeluzole or its R(−) enantiomer, R91154, did not enhance LDH release. Both lubeluzole and R91154 (0.3–10 μM) decreased the veratridine-induced LDH release. Penfluridol did not increase LDH release at concentrations 0.003–1 μM; 3–10 μM increased LDH release to 50–60%, after 24 h exposure. Penfluridol (0.03–0.3 μM) did not protect against the cytotoxic effects of veratridine; at 1 μM, 15% protection was produced. Higher concentrations (3–10 μM) enhanced the cytotoxic effects of veratridine. Ba2+ ions caused a concentration-dependent increase of LDH release. This cytotoxic effect was partially prevented by 3 μM lubeluzole and fully counteracted by 1 μM penfluridol. R91154 was less potent than lubeluzole and only protected against the lesion induced by 0.5 mM Ba2+. Ouabain (10 μM during 24 h) increased LDH release to about 30%. Both lubeluzole (0.3–10 μM) and the lower concentrations of penfluridol (0.003–0.3 μM) prevented the ouabain cytotoxic effects. At higher concentrations (3 μM), penfluridol increased drastically the ouabain cytotoxic effects. 6-Hydroxydopamine (6-OHDA) caused significant cytotoxic effects at 30 and 100 μM. Lubeluzole (3–10 μM) or penfluridol (0.03–0.3 μM) had no cytoprotective effects against 6-OHDA. Lubeluzole (3 μM), R91154 (3 μM) and penfluridol (1 μM) blocked the current through Na+ channels in voltage-clamped chromaffin cells (INa) by around 20–30%. Ca2+ current through Ca2+ channels (ICa) was inhibited 57% by lubeluzole and R91154 and 50% by penfluridol. The effects of penfluridol were not washed out, but those of lubeluzole and R91154 were readily reversible. Lubeluzole (3 μM) induced reversible blockade of the

  2. Effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABA(A) receptor subunit gene expression in the rodent basal ganglia and thalamus.

    PubMed

    Chadha, A; Dawson, L G; Jenner, P G; Duty, S

    2000-01-01

    In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABA(A) receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABA(A) receptor subunits (alpha(1-4), beta(1-3), gamma(1-3) and delta) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of alpha1 and beta2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11 +/- 4% and 17 +/- 1%, respectively), and significantly reduced in the globus pallidus (18 +/- 3% and 16 +/- 3%, respectively) and parafascicular nucleus (19 +/- 3% and 16 +/- 5%, respectively). Smaller changes in the messenger RNA levels encoding the alpha1 subunit in the lateral amygdala (8 +/- 1% decrease) and the alpha4 and gamma2 subunits in the striatum (10 +/- 2% and 6 +/- 1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABA(A) receptor subunit gene expression occurs following a nigrostriatal tract lesion. The changes in expression of the alpha1 and beta2 subunit genes probably contribute to the documented changes in GABA(A) receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.

  3. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression

    PubMed Central

    Gao, J; Kang, X-y; Sun, S; Li, L; Zhang, B-l; Li, Y-q; Gao, D-s

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  4. Involvement of Mu Opioid Receptor Signaling in the Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

    PubMed Central

    Eftekhar-Vaghefi, Shahrzad; Esmaeili-Mahani, Saeed; Elyasi, Leila; Abbasnejad, Mehdi

    2015-01-01

    Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamine-induced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular calcium, reactive oxygen species and mitochondrial membrane potential were assessed by fluorescence spectrophotometry method. Immunoblot technique was used to evaluate cytochrome-c and activated caspase-3 as biochemical markers of apoptosis induction. Results: The data showed that 6-OHDA caused significant cell damage, loss of mitochondrial membrane potential and increase in intracellular reactive oxygen species and calcium levels as well as activated caspase-3 and cytochrome-c release. Incubation of SH-SY5Y cells with μ-opioid agonists, morphine and DAMGO, but not with δ-opioid agonist, DADLE, elicited protective effect and reduced biochemical markers of cell damage and death. Discussion: The results suggest that μ-opioid receptors signaling participate in the opioid neuroprotective effects against 6-OHDA-induced neurotoxicity. PMID:26904174

  5. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease.

    PubMed

    Quesada, Arnulfo; Lee, Becky Y; Micevych, Paul E

    2008-04-01

    Recently, using the medial forebrain bundle (MFB) 6-hydroxydopmaine (6-OHDA) lesion rat model of Parkinson's disease (PD), we have demonstrated that blockade of central IGF-1 receptors (IGF-1R) attenuated estrogen neuroprotection of substantia nigra pars compacta (SNpc) DA neurons, but exacerbated 6-OHDA lesions in IGF-1 only treated rats (Quesada and Micevych [2004]: J Neurosci Res 75:107-116). This suggested that the IGF-1 system is a central mechanism through which estrogen acts to protect the nigrostriatal DA system. Moreover, these results also suggest that IGF-1R-induced intracellular signaling pathways are involved in the estrogen mechanism that promotes neuronal survival. In vitro, two convergent intracellular signaling pathways used by estrogen and IGF-1, the mitogen-activated protein kinase (MAPK/ERK), and phosphatidyl-inositol-3-kinase/Akt (PI3K/Akt), have been demonstrated to be neuroprotective. Continuous central infusions of MAPK/ERK and PI3K/Akt inhibitors were used to test the hypothesis that one or both of these signal transduction pathways mediates estrogen and/or IGF-1 neuroprotection of SNpc DA neurons after a unilateral administration of 6-OHDA into the MFB of rats. Motor behavior tests and tyrosine hydroxylase immunoreactivity revealed that the inhibitor of the PI3K/Akt pathway (LY294002) blocked the survival effects of both estrogen and IGF-1, while an inhibitor of the MAPK/ERK signaling (PD98059) was ineffective. Western blot analyses showed that estrogen and IGF-1 treatments increased PI3K/Akt activation in the SN; however, MAPK/ERK activation was decreased in the SN. Indeed, continuous infusions of inhibitors blocked phosphorylation of PI3K/Akt and MAPK/ERK. These findings indicate that estrogen and IGF-1-mediated SNpc DA neuronal protection is dependent on PI3K/Akt signaling, but not on the MAPK/ERK pathway.

  6. Pharmacognostical Analysis and Protective Effect of Standardized Extract and Rizonic Acid from Erythrina velutina against 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Silva, Aline H.; Fonseca, Francisco Noé; Pimenta, Antônia T. A.; Lima, MaryAnne S.; Silveira, Edilberto Rocha; Viana, Glauce S. B.; Vasconcelos, Silvânia M. M.; Leal, Luzia Kalyne A. M.

    2016-01-01

    Background: Erythrina velutina is a tree common in the northeast of Brazil extensively used by traditional medicine for the treatment of central nervous system disorders. Objective: To develop a standardized ethanol extract of E. velutina (EEEV) and to investigate the neuroprotective potential of the extract and rizonic acid (RA) from E. velutina on neuronal cells. Materials and methods: The plant drug of E. velutina previously characterized was used for the production of EEEV. Three methods were evaluated in order to obtain an extract with higher content of phenols. The neuroprotective effect of standardized EEEV (HPLC-PDA) and RA was investigated on SH-SY5Y cell exposure to the neurotoxin 6-hydroxydopamine (6-OHDA). Results: The powder of the plant drug was classified as moderately coarse and several quality control parameters were determined. EEEV produced by percolation gave the highest phenol content when related to others extractive methods, and its HPLC-PDA analysis allowed to identify four flavonoids and RA, some reported for the first time for the species. EEEV and RA reduced significantly the neurotoxicity induced by 6-OHDA in SH-SY5Y cells determined by the MTT assay and the nitrite concentration. EEEV also showed a free radical scavenging activity. Conclusion: This is the first pharmacological study about E. velutina which used a controlled standardized extract since the preparation of the herbal drug. This extract and RA, acting as an antioxidant, presents a neuroprotective effect suggesting that they have potential for future development as a therapeutic agent in neurodegenerative disease as Parkinson. SUMMARY The powder of Erythrina velutina was classified as moderately coarse and several quality-control parameters were determined.Ethanolic extract from E. velutina (EEEV) produced by percolation gave the highest phenol content when related to others extractive methods and its HPLC–PDA analysis of EEEV allowed to identify four flavonoids and rizonic

  7. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways.

    PubMed

    Pasban-Aliabadi, Hamzeh; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi

    2017-04-01

    Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.

  8. Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms.

    PubMed

    Kumar, Anil; Sharma, Neha; Gupta, Amit; Kalonia, Harikesh; Mishra, Jitendriya

    2012-08-30

    Neuro-inflammation and oxidative stress plays a key role in the pathophysiology of Parkinson's disease (PD). Studies demonstrated that neuro-inflammation and associated infiltration of inflammatory cells into central nervous system are inhibited by 3-hydroxy-3-methyl glutaryl co-enzyme A (HMG-CoA) reductase inhibitors. Based on these experimental evidences, the present study has been designed to evaluate the neuroprotective effect of HMG-CoA reductase inhibitors (atorvastatin and simvastatin) against 6-hydroxydopamine (6-OHDA) induced unilateral lesion model of PD. In the present study, the animals were divided into nine groups (n=15 per group). Group I: Naive (without treatment); Group II: Sham (surgery performed, vehicle administered); Group III: Atorvastatin (20mg/kg); Group IV: Simvastatin (30 mg/kg); Group V: Control [Intrastriatal 6-OHDA (20 μg; single unilateral injection)]; Groups VI and VII: 6-OHDA (20 μg)+atorvastatin (10mg/kg and 20mg/kg) respectively; Groups VIII and IX: 6-OHDA (20 μg)+simvastatin (15 mg/kg and 30 mg/kg) respectively. Intrastriatal administration of 6-OHDA (20 μg; 4 μl of 5 μg/μl) significantly caused impairment in body weight, locomotor activity, rota-rod performance, oxidative defense and mitochondrial enzyme complex activity, and increase in the inflammatory cytokine levels (TNF-α and IL-6) as compared to naive animals. Atorvastatin (20mg/kg) and simvastatin (30 mg/kg) drug treatment significantly improved these behavioral and biochemical alterations restored mitochondrial enzyme complex activities and attenuated neuroinflammatory markers in 6-OHDA (20 μg) treated animals as compared to control group. The findings of the present study demonstrate the neuroprotective potential of statins in experimental model of 6-OHDA induced Parkinson like symptoms.

  9. Lever pressing responses under a fixed-ratio schedule of mice with 6-hydroxydopamine-induced dopamine depletion in the nucleus accumbens.

    PubMed

    Tsutsui, Yuji; Nishizawa, Kayo; Kai, Nobuyuki; Kobayashi, Kazuto

    2011-02-02

    In order to investigate the relationship between dopamine transmission in the nucleus accumbens and operant behavior in mice, mice with 6-hydroxydopamine (6-OHDA)-induced dopamine depletion in the nucleus accumbens were tested for their performance in lever pressing tasks under FR schedules with 8 ratios from FR5 to FR120. The mice were given one 20-mg food pellet per completed FR schedule in FR5, FR10, and FR20; they were given 2 pellets in FR40, and one more cumulatively in the rest of the schedules. Before the 6-OHDA injection surgery, all mice were trained to press a lever under all FR schedules. Then, 6-OHDA or ascorbate was injected into the nucleus accumbens. Postoperatively, the mice were tested under each FR schedule, with 3 sessions per schedule. 6-OHDA-treated mice exhibited an increase in lever pressing latency, i.e., the time interval between the last presentation of the reward and the next lever press, and a decrease in inter-response intervals, i.e., the time interval between 2 lever presses excluding lever pressing latency, irrespective of the FR ratios. Furthermore, in these 6-OHDA-treated mice, the number of lever presses during the first 300s of the session decreased under FR schedules with low ratios (5, 10, and 20). Open field activity, food motivation, and the amount of food consumed were not affected by dopamine depletion in the nucleus accumbens. These results suggest that the dopamine system in the nucleus accumbens had an important role in the control of lever pressing latency and inter-response intervals under FR reinforcement schedules.

  10. Protective effect of metabotropic glutamate mGluR5 receptor elimination in a 6-hydroxydopamine model of Parkinson’s disease

    PubMed Central

    Black, Yolanda D.; Xiao, Danqing; Pellegrino, Daniela; Kachroo, Anil; Brownell, Anna-Liisa; Schwarzschild, Michael A.

    2010-01-01

    Pharmacologic or genetic blockade of metabotropic glutamate mGlu5 receptors (mGluR5) has been shown to attenuate parkinsonian motor deficits and protect nigrostriatal neurons from damage in the acute MPTP model of Parkinson’s disease (PD), suggesting that therapeutically targeting the mGluR5 receptor may offer a novel approach to improving motor symptoms and/or slowing neurodegeneration in PD. This study further explored the neuroprotective potential of targeting mGluR5 receptors. We examined the behavioral and neurochemical effects of receptor elimination on toxicity induced by intra-striatal application of 6-hydroxydopamine (6-OHDA), thought to represent a comparatively progressive model of PD. mGluR5 knockout (KO) mice and wild-type (WT) littermates received unilateral 6-OHDA infusions. Reflecting the imbalance expected following unilateral infusion, WT but not KO mice demonstrated predominantly ipsilateral forepaw use and robust ipsilateral amphetamine-induced rotation. Further, performance on the vertical pole descent task was profoundly impaired in WT mice, while KO mice completed the task significantly faster. Consistent with the behavioral observations, neurochemical analyses of striatal dopamine depletion showed significantly diminished severity in KO mice with only 64% of striatal dopamine lost, compared to 92% in WT mice. The absence of brain mGluR5 receptors in living KO mice was verified using positron emission tomography (PET). Our findings substantiate the key role of mGluR5 receptors in animal models of PD, strengthening the rationale for the development of mGluR5 antagonists for their neuroprotective, as well as symptomatic, benefit. PMID:20854878

  11. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease.

    PubMed

    Im, Hyung-Jun; Hwang, Do Won; Lee, Han Kyu; Jang, Jaeho; Lee, Song; Youn, Hyewon; Jin, Yeona; Kim, Seung U; Kim, E Edmund; Kim, Yong Sik; Lee, Dong Soo

    2013-06-01

    Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.

  12. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP⁺-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity.

    PubMed

    Garcia-Garcia, Aracely; Anandhan, Annandurai; Burns, Michaela; Chen, Han; Zhou, You; Franco, Rodrigo

    2013-11-01

    Controversial reports on the role of autophagy as a survival or cell death mechanism in dopaminergic cell death induced by parkinsonian toxins exist. We investigated the alterations in autophagic flux and the role of autophagy protein 5 (Atg5)-dependent autophagy in dopaminergic cell death induced by parkinsonian toxins. Dopaminergic cell death induced by the mitochondrial complex I inhibitors 1-methyl-4-phenylpyridinium (MPP⁺) and rotenone, the pesticide paraquat, and the dopamine analog 6-hydroxydopamine (6-OHDA) was paralleled by increased autophagosome accumulation. However, when compared with basal autophagy levels using chloroquine, autophagosome accumulation was a result of impaired autophagic flux. Only 6-OHDA induced an increase in autophagosome formation. Overexpression of a dominant negative form of Atg5 increased paraquat- and MPP⁺-induced cell death. Stimulation of mammalian target of rapamycin (mTOR)-dependent signaling protected against cell death induced by paraquat, whereas MPP⁺-induced toxicity was enhanced by wortmannin, a phosphoinositide 3-kinase class III inhibitor, rapamycin, and trehalose, an mTOR-independent autophagy activator. Modulation of autophagy by either pharmacological or genetic approaches had no effect on rotenone or 6-OHDA toxicity. Cell death induced by parkinsonian neurotoxins was inhibited by the pan caspase inhibitor (Z-VAD), but only caspase-3 inhibition was able to decrease MPP⁺-induced cell death. Finally, inhibition of the lysosomal hydrolases, cathepsins, increased the toxicity by paraquat and MPP⁺, supporting a protective role of Atg5-dependent autophagy and lysosomes degradation pathways on dopaminegic cell death. These results demonstrate that in dopaminergic cells, Atg5-dependent autophagy acts as a protective mechanism during apoptotic cell death induced by paraquat and MPP⁺ but not during rotenone or 6-OHDA toxicity.

  13. Lesioning noradrenergic neurons of the locus coeruleus in C57Bl/6 mice with unilateral 6-hydroxydopamine injection, to assess molecular, electrophysiological and biochemical changes in noradrenergic signaling

    PubMed Central

    Szot, P.; Knight, L.; Franklin, A.; Sikkema, C.; Foster, S.; Wilkinson, C.W.; White, S.S.; Raskind, M.A.

    2012-01-01

    The locus coeruleus (LC) is the major loci of noradrenergic innervation to the forebrain. Due to the extensive central nervous system innervation of the LC noradrenergic system, a reduction in the number of LC neurons could result in significant changes in noradrenergic function in many forebrain regions. LC noradrenergic neurons were lesioned in adult male C57Bl/6 mice with the unilateral administration of 6-hydroxydopamine (6OHDA) (vehicle on the alternate side). Noradrenergic markers were measured 3 weeks later to determine the consequence of LC loss in the forebrain. Direct administration of 6OHDA into the LC results in the specific reduction of noradrenergic neurons in the LC (as measured by electrophysiology, immunoreactivity and in situ hybridization), the lateral tegmental neurons and dopaminergic neurons in the substantia nigra (SN) and ventral tegmental region were unaffected. The loss of LC noradrenergic neurons did not result in compensatory changes in the expression of mRNA for norepinephrine (NE) synthesizing enzymes. The loss of LC noradrenergic neurons is associated with reduced NE tissue concentration and NE transporter (NET) binding sites in the frontal cortex and hippocampus, as well as other forebrain regions such as the amygdala and SN. Adrenoreceptor (AR) binding sites (α1- and α2-AR) were not significantly affected on the 6OHDA-treated side compared to the vehicle-treated side, although there is a reduction of AR binding sites on both the vehicle- and 6OHDA-treated side in specific forebrain regions. These studies indicate that unilateral stereotaxic injection of 6OHDA into mice reduces noradrenergic LC neurons and reduces noradrenergic innervation to many forebrain regions, including the contralateral side. PMID:22542679

  14. Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities.

    PubMed

    Gharib, Ehsan; Gardaneh, Mossa; Shojaei, Sahar

    2013-06-01

    We examined the impact of strong co-presence and function of glutathione peroxidase-1 (GPX-1) and glial cell line-derived neurotrophic factor (GDNF) on protecting the rat dopaminergic pheochromocytoma cell line PC12 against 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H₂O₂) toxicities. Primarily, GPX-1 over-expression by PC12 cells infected with pLV-GPX1 lentivirus vectors significantly increased cell survival against 6-OHDA toxicity (p<0.01). Addition of conditioned medium collected from growing wild-type astrocytes (Control astro-CM) increased survival rate of pLV-GPX1 infectants by 10% compared to their un-treated counterparts (p<0.05) and 20% compared to their treated empty vector control (p<0.01). Treatment of pLV-GPX1 cells with astro-CM of GDNF-over-secreting astrocytes (Test astro-CM) significantly induced GPX-1 expression, peroxidase enzymatic activity, and intra-cellular glutathione (GSH) levels. These changes paralleled with protection of 90% of GDNF⁺/GPX1⁺ PC12 cells against toxicity, a rate that was 37% up from their un-infected un-treated (GDNF⁻/GPX1⁻) controls (p<0.001), and 12% up from pLV-GPX1 cells that received only Control astro-CM (GPX⁺/GDNF⁻) (p<0.01). GPX-1 over-expression per se suppressed intra-cellular H₂O₂ elevation upon 6-OHDA exposure, and addition of GDNF medium significantly accelerated this suppression (p<0.01). Substitution of 6-OHDA with H₂O₂ induced similar intra-cellular changes and comparable protection levels. In all cell groups, increased cell survival against either compound was further confirmed by increased live cell counts measured by double staining. Following depletion of intra-cellular GSH, only 46% of pLV-GPX1 cells survived 6-OHDA toxicity, whereas over 70% of them were saved upon GDNF treatment (p<0.001). Moreover, capase-3 activation was reduced in pLV-GPX1 cells and maximized by addition of GDNF. Comparison analyses established correlations between GPX-1-GDNF co-presence and both

  15. Dopaminergic Lesions of the Dorsolateral Striatum in Rats Increase Delay Discounting in an Impulsive Choice Task

    PubMed Central

    Tedford, Stephanie E.; Persons, Amanda L.; Napier, T. Celeste

    2015-01-01

    Dysregulated dopamine transmission in striatal circuitry is associated with impulsivity. The current study evaluated the influence of dopaminergic inputs to the dorsolateral striatum on impulsive choice, one aspect of impulsive behavior. We implemented an operant task that measures impulsive choice in rats via delay discounting wherein intracranial self-stimulation (ICSS) was used as the positive reinforcer. To do so, rats were anesthetized to allow implanting of a stimulating electrode within the lateral hypothalamus of one hemisphere and bilateral dorsal striatal injections of the dopaminergic toxin, 6-OHDA (lesioned) or its vehicle (sham). Following recovery, rats were trained in a delay discounting task wherein they selected between a small ICSS current presented immediately after lever pressing, and a large ICSS current presented following a 0 to 15s delay upon pressing the alternate lever. Task acquisition and reinforcer discrimination were similar for lesioned and sham rats. All rats exhibited an initial preference for the large reinforcer, and as the delay was increased, preference for the large reinforcer was decreased indicating that the subjective value of the large reinforcer was discounted as a function of delay time. However, this discounting effect was significantly enhanced in lesioned rats for the longer delays. These data reveal a contribution of dopaminergic inputs to the dorsolateral striatum on impulsive choice behavior, and provide new insights into neural substrates underlying discounting behaviors. PMID:25927685

  16. Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson's disease.

    PubMed

    Lapchak, P A; Araujo, D M; Hilt, D C; Sheng, J; Jiao, S

    1997-11-28

    A recombinant adenoviral vector encoding the human glial cell line-derived neurotrophic factor (GDNF) gene (Ad-GDNF) was used to express the neurotrophic factor GDNF in the unilaterally 6-hydroxydopamine (6-OHDA) denervated substantia nigra (SN) of adult rats ten weeks following the 6-OHDA injection. 6-OHDA lesions significantly increased apomorphine-induced (contralateral) rotations and reduced striatal and nigral dopamine (DA) levels by 99% and 70%, respectively. Ad-GDNF significantly (P < 0.01) decreased (by 30-40%) apomorphine-induced rotations in lesioned rats for up to two weeks following a single injection. Locomotor activity, assessed 7 days following the Ad-GDNF injection, was also significantly (P < 0.05) increased (by 300-400%). Two weeks after the Ad-GDNF injection, locomotor activity was still significantly increased compared to the Ad-beta-gal-injected 6-OHDA lesioned (control) group. Additionally, in Ad-GDNF-injected rats, there was a significant decrease (10-13%) in weight gain which persisted for approximately two weeks following the injection. Consistent with the behavioral changes, levels of DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were elevated (by 98% and 65%, respectively) in the SN, but not the striatum of Ad-GDNF-injected rats. Overall, a single Ad-GDNF injection had significant effects for 2-3 weeks following administration. These results suggest that virally delivered GDNF promotes the recovery of nigral dopaminergic tone (i.e.: increased DA and DOPAC levels) and improves behavioral performance (i.e.: decreased rotations, increased locomotion) in rodents with extensive nigrostriatal dopaminergic denervation. Moreover, our results suggest that viral delivery of trophic factors may be used eventually to treat neurodegenerative diseases such as Parkinson's disease.

  17. 5-Hydroxy-tryptophan for the treatment of L-DOPA-induced dyskinesia in the rat Parkinson's disease model.

    PubMed

    Tronci, Elisabetta; Lisci, Carlo; Stancampiano, Roberto; Fidalgo, Camino; Collu, Maria; Devoto, Paola; Carta, Manolo

    2013-12-01

    The serotonin system has recently emerged as an important player in the appearance of L-DOPA-induced dyskinesia (LID) in experimental models of Parkinson's disease, as it provides an unregulated source of L-DOPA-derived dopamine release in the dopamine-depleted striatum. Accordingly, toxin lesion or pharmacological silencing of serotonin neurons suppressed LID in the rat and monkey models of Parkinson's disease. However, 5-HT1 receptor agonists were also found to partially reduce the therapeutic effect of L-DOPA. In this study, we evaluated whether enhancement of the serotonin tone induced by the administration of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) could affect induction and expression of LID, as well as the therapeutic effect of L-DOPA, in 6-OHDA-lesioned rats. Drug naïve and L-DOPA-primed 6-OHDA-lesioned rats were chronically treated with a daily injection of L-DOPA (6 mg/kg plus benserazide, s.c.) alone, or in combination with 5-HTP (24-48 mg/kg, i.p.). The abnormal involuntary movements (AIMs) test, as well as the stepping and the motor activity tests, were performed during the chronic treatments. Results showed that 5-HTP reduced the appearance of LID of about 50% at both tested doses. A partial reduction of the therapeutic effect of L-DOPA was seen with the higher but not with the lower dose of 5-HTP. 5-HTP 24 mg/kg was also able to reduce the expression of dyskinesia in L-DOPA-primed dyskinetic rats, to a similar extent than in L-DOPA-primed rats. Importantly, the antidyskinetic effect of 5-HTP 24 mg/kg does not appear to be due to a competition with L-DOPA for crossing the blood-brain barrier; in fact, similar L-DOPA striatal levels were found in L-DOPA only and L-DOPA plus 5-HTP 24 mg/kg treated animals. These data further confirm the involvement of the serotonin system in the appearance of LID, and suggest that 5-HTP may be useful to counteract the appearance of dyskinesia in Parkinson's disease patients.

  18. Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson's disease

    PubMed Central

    Austin, PJ; Betts, MJ; Broadstock, M; O'Neill, MJ; Mitchell, SN; Duty, S

    2010-01-01

    Background and purpose: Increased glutamatergic innervation of the substantia nigra pars reticulata (SNpr) and pars compacta (SNpc) may contribute to the motor deficits and neurodegeneration, respectively, in Parkinson's disease (PD). This study aimed to establish whether activation of pre-synaptic group III metabotropic glutamate (mGlu) receptors reduced glutamate release in the SN, and provided symptomatic or neuroprotective relief in animal models of PD. Experimental approach: Broad-spectrum group III mGlu receptor agonists, O-phospho-l-serine (l-SOP) and l-2-amino-4-phosphonobutyrate (l-AP4), were assessed for their ability to inhibit KCl-evoked [3H]-d-aspartate release in rat nigral prisms or inhibit KCl-evoked endogenous glutamate release in the SNpr in vivo using microdialysis. Reversal of akinesia in reserpine-treated rats was assessed following intranigral injection of l-SOP and l-AP4. Finally, the neuroprotective effect of 7 days' supra-nigral treatment with l-AP4 was examined in 6-hydroxydopamine (6-OHDA)-lesioned rats. Key results: l-SOP and l-AP4 inhibited [3H]-d-aspartate release by 33 and 44% respectively. These effects were blocked by the selective group III mGlu antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG). l-SOP also reduced glutamate release in the SNpr in vivo by 48%. Injection of l-SOP and l-AP4 into the SNpr reversed reserpine-induced akinesia. Following administration above the SNpc, l-AP4 provided neurochemical, histological and functional protection against 6-OHDA lesion of the nigrostriatal tract. Pretreatment with CPPG inhibited these effects. Conclusions and implications: These findings highlight group III mGlu receptors in the SN as potential targets for providing both symptomatic and neuroprotective relief in PD, and indicate that inhibition of glutamate release in the SN may underlie these effects. PMID:20649576

  19. Relationship between dopamine deficit and the expression of depressive behavior resulted from alteration of serotonin system.

    PubMed

    Lee, Minkyung; Ryu, Young Hoon; Cho, Won Gil; Kang, Yeo Wool; Lee, Soo Jin; Jeon, Tae Joo; Lyoo, Chul Hyoung; Kim, Chul Hoon; Kim, Dong Goo; Lee, Kyochul; Choi, Tae Hyun; Choi, Jae Yong

    2015-09-01

    Depression frequently accompanies in Parkinson's disease (PD). Previous research suggested that dopamine (DA) and serotonin systems are closely linked with depression in PD. However, comprehensive studies about the relationship between these two neurotransmitter systems are limited. Therefore, the purpose of this study is to evaluate the effect of dopaminergic destruction on the serotonin system. The interconnection between motor and depression was also examined. Two PET scans were performed in the 6-hydroxydopamine (6-OHDA) lesioned and sham operated rats: [(18) F]FP-CIT for DA transporters and [(18) F]Mefway for serotonin 1A (5-HT(1A)) receptors. Here, 6-OHDA is a neurotoxin for dopaminergic neurons. Behavioral tests were used to evaluate the severity of symptoms: rotational number for motor impairment and immobility time, acquired from the forced swim test for depression. Region-of-interests were drawn in the striatum and cerebellum for the DA system and hippocampus and cerebellum for the 5-HT system. The cerebellum was chosen as a reference region. Nondisplaceable binding potential in the striatum and hippocampus were compared between 6-OHDA and sham groups. As a result, the degree of DA depletion was negatively correlated with rotational behavior (R(2)  = 0.79, P = 0.003). In 6-OHDA lesioned rats, binding values for 5-HT(1A) receptors was 22% lower than the sham operated group. This decrement of 5-HT(1A) receptor binding was also correlated with the severity of depression (R(2)  = 0.81, P = 0.006). Taken together, this research demonstrated that the destruction of dopaminergic system causes the reduction of the serotonergic system resulting in the expression of depressive behavior. The degree of dopaminergic dysfunction was positively correlated with the impairment of the serotonin system. Severity of motor symptoms was also closely related to depressive behavior.

  20. A new ethyladenine antagonist of adenosine A(2A) receptors: behavioral and biochemical characterization as an antiparkinsonian drug.

    PubMed

    Pinna, Annalisa; Tronci, Elisabetta; Schintu, Nicoletta; Simola, Nicola; Volpini, Rosaria; Pontis, Silvia; Cristalli, Gloria; Morelli, Micaela

    2010-03-01

    Adenosine A(2A) receptor antagonists have emerged as an attractive non-dopaminergic target in clinical trials aimed at evaluating improvement in motor deficits in Parkinson's disease (PD). Moreover, preclinical studies suggest that A(2A) receptor antagonists may slow the course of the underlying neurodegeneration of dopaminergic neurons. In this study, we evaluated the efficacy of the new adenosine A(2A) receptor antagonist 8-ethoxy-9-ethyladenine (ANR 94) in parkinsonian models of akinesia and tremor. In addition, induction of the immediate early gene zif-268, and neuroprotective and anti-inflammatory effects of ANR 94 were evaluated. ANR 94 was effective in reversing parkinsonian tremor induced by the administration of tacrine. ANR 94 also counteracted akinesia (stepping test) and sensorimotor deficits (vibrissae-elicited forelimb-placing test), as well as potentiating l-dopa-induced contralateral turning behavior in 6-hydroxydopamine (6-OHDA) lesion model of PD. Potentiation of motor behavior in 6-OHDA-lesioned rats was not associated with increased induction of the immediate early gene zif-268 in the striatum, suggesting that ANR 94 does not induce long-term plastic changes in this structure. Finally, in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, ANR 94 protected nigrostriatal dopaminergic neurons from degeneration and counteracted neuroinflammatory processes by contrasting astroglial (glial fibrillary acidic protein, GFAP) and microglial (CD11b) activation. A(2A) receptor antagonism represents a uniquely realistic opportunity for improving PD treatment, since A(2A) receptor antagonists offer substantial symptomatic benefits and possibly disease-modifying activity. The characterization of ANR 94 may represent a further therapeutic opportunity for the treatment of PD with this new class of drugs.

  1. Effect of different doses of estrogen on the nigrostriatal dopaminergic system in two 6-hydroxydopamine-induced lesion models of Parkinson's disease.

    PubMed

    Cordellini, Marcela Ferreira; Piazzetta, Giovana; Pinto, Karin Cristine; Delattre, Ana Márcia; Matheussi, Francesca; Carolino, Ruither O G; Szawka, Raphael Escorsim; Anselmo-Franci, Janete A; Ferraz, Anete Curte

    2011-06-01

    Parkinson's disease results from a degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc) and it is more prevalent in men than in women. Estrogen has neuroprotective action of the nigrostriatal dopaminergic (NSDA) neurons. It was investigated whether differences in plasma 17β-estradiol (E2) levels alter the degree of neuroprotection in NSDA neurons. Ovariectomized rats, implanted with subcutaneous capsules containing 400, 800 or 1,600 μg of E2 or corn oil, were injected with 1 μg of 6-OHDA in the SNpc or the medial forebrain bundle (MFB). Striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and plasma E2 levels were measured. Only at 400 μg, E2 protected striatal DA against lesion of the MFB. In the SNpc, E2 failed to prevent DA depletion, but increased DOPAC/DA ratio in the striatum. In an NSDA moderate lesion, E2 has a neuroprotective action. In a severe lesion, E2 could stimulate DA activity in remaining neurons.

  2. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells

    SciTech Connect

    Hwang, Yong Pil; Jeong, Hye Gwang

    2010-01-01

    Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a popular traditional herbal medicine. Ginsenoside Rb1 (Rb1), an active component commonly found in ginseng root, is a phytoestrogen that exerts estrogen-like activity. In this study, we demonstrate that the phytoestrogen Rb1 inhibits 6-hydroxydopamine (6-OHDA)-induced oxidative injury via an ER-dependent Gbeta1/PI3K/Akt and heme oxygenase-1 (HO-1) pathway. Pretreatment of SH-SY5Y cells with Rb1 significantly reduced 6-OHDA-induced caspase-3 activation and subsequent cell death. Rb1 also up-regulated HO-1 expression, which conferred cytoprotection against 6-OHDA-induced oxidative injury. Moreover, Rb1 induced both Nrf2 nuclear translocation, which is upstream of HO-1 expression and PI3K activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and cytoprotection. Also, Rb1-mediated increases in PI3K activation and HO-1 induction were reversed by co-treatment with ICI 182,780 and pertussis toxin. Taken together, these results suggest that Rb1 augments the cellular antioxidant defenses through ER-dependent HO-1 induction via the Gbeta1/PI3K/Akt-Nrf2 signaling pathway, thereby protecting cells from oxidative stress. Thus our study indicates that Rb1 has a partial cytoprotective role in dopaminergic cell culture systems.

  3. Dimerumic Acid and Deferricoprogen Activate Ak Mouse Strain Thymoma/Heme Oxygenase-1 Pathways and Prevent Apoptotic Cell Death in 6-Hydroxydopamine-Induced SH-SY5Y Cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-03

    Parkinson's disease (PD) is a neurodegenerative disorder, which can be modeled using the neurotoxin 6-hydroxydopamine (6-OHDA) to generate oxidative stress. Here, we studied the effects of the antioxidants deferricoprogen (DFC) and dimerumic acid (DMA), produced by rice fermented with Monascus purpureus NTU 568, on 6-OHDA-induced apoptosis in SH-SY5Y cells and their potential protective mechanisms. DMA and DFC inhibited 6-OHDA-induced apoptosis and cellular reactive oxygen species (ROS) in SH-SY5Y human neuroblastoma cells. Molecular analysis demonstrated associated upregulation of the Ak mouse strain thymoma (Akt), heme oxygenase-1 (HO-1), and signal-regulated kinase (ERK) pathways along with inhibited phosphorylation of c-Jun N-terminal kinase (JNK) and p38 pathways and altered homodimeric glycoprotein, N-methyl-d-aspartate (NMDA) receptor, and immunoglobulin Fc receptor gene expression. These results suggested that the neuroprotection elicited by DMA and DFC against 6-OHDA-induced neurotoxicity was associated with the Akt, MAPK, and HO-1 pathways via regulating the gene expression of NMDA receptor, homodimeric glycoprotein, and immunoglobulin Fc receptor.

  4. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-09-15

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.

  5. Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis.

    PubMed

    Esmaeilzadeh, Emran; Gardaneh, Mossa; Gharib, Ehsan; Sabouni, Farzaneh

    2013-08-01

    We have investigated the mechanism of shikonin function on protection of dopaminergic neurons against 6-OHDA-induced neurotoxicity. Treatment of rat pheochromocytoma cell line PC12 by serial dilutions of shikonin determined 10 μM of the compound as its optimum concentration for protection saving nearly 70 % of the cells against toxicity. Reverse transcription-PCR analysis of shikonin-treated cells showed threefold increase in mRNA levels of glutathione peroxidase-1 (GPX-1) as a representative component of the intracellular anti-oxidant defense system. To elucidate shikonin-GPX1 relationships and maximize protection, we transduced PC12 cells using recombinant lentivirus vectors that harbored GPX-1 coding sequence. This change upregulated GPX-1 expression, increased peroxidase activity and made neuronal cells resistant to 6-OHDA-mediated toxicity. More importantly, addition of shikonin to GPX1-overexpressing PC12 cells augmented GPX-1 protein content by eightfold leading to fivefold increase of enzymatic activity, 91 % cell survival against neurotoxicity and concomitant increases in intracellular glutathione (GSH) levels. Depletion of intracellular GSH rendered all cell groups highly susceptible to toxicity; however, shikonin was capable of partially saving them. Subsequently, GSH-independent superoxide dismutase mRNA was found upregulated by shikonin. As signs of apoptosis inhibition, the compound upregulated Bcl-2, downregulated Bax, and prevented cell nuclei from undergoing morphological changes typical of apoptosis. Also, a co-staining method demonstrated GPX-1 overexpression significantly increases the percent of live cells that is maximized by shikonin treatment. Our data indicate that shikonin as an antioxidant compound protects dopaminergic neurons against 6-OHDA toxicity and enhances their survival via both glutathione-dependent and direct anti-apoptotic pathways.

  6. Microglial Cells Are Involved in the Susceptibility of NADPH Oxidase Knockout Mice to 6-Hydroxy-Dopamine-Induced Neurodegeneration

    PubMed Central

    Hernandes, Marina S.; Santos, Graziella D. R.; Café-Mendes, Cecília C.; Lima, Larissa S.; Scavone, Cristoforo; Munhoz, Carolina D.; Britto, Luiz R. G.

    2013-01-01

    We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease (PD) model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN) of wild-type (wt) mice after PD induction. Gp91phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA) neurons in the SN of wt mice. In gp91phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction. PMID:24086556

  7. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research.

  8. Effects of zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] and eugenol [2-methoxy-4-(2-propenyl)phenol] on the pathological progress in the 6-hydroxydopamine-induced Parkinson's disease mouse model.

    PubMed

    Kabuto, Hideaki; Yamanushi, Tomoko T

    2011-12-01

    Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the nigrostriatal system and dopamine (DA) depletion in the striatum. The most popular therapeutic medicine for treating PD, 3-(3,4-Dihydroxyphenyl)-L-alanine (L-DOPA), has adverse effects, such as dyskinesia and disease acceleration. As superoxide (·O(2)(-)) and hydroxyl radical (·OH) have been implicated in the pathogenesis of PD, free radical scavenging and antioxidants have attracted attention as agents to prevent disease progression. Rodents injected with 6-hydroxydopamine (6-OHDA) intracerebroventricularly are considered to be a good animal model of PD. Zingerone and eugenol, essential oils extracted from ginger and cloves, are known to have free radical scavenging and antioxidant effects. Therefore, we examined the effects of zingerone and eugenol on the behavioral problems in mouse model and on the DA concentration and antioxidant activities in the striatum after 6-OHDA administration and L-DOPA treatment. Daily oral administration of eugenol/zingerone and injection of L-DOPA intraperitoneally for 4 weeks following a single 6-OHDA injection did not improve abnormal behaviors induced by L-DOPA treatment. 6-OHDA reduced the DA level in the striatum; surprisingly, zingerone and eugenol enhanced the reduction of striatal DA and its metabolites. Zingerone decreased catalase activity, and increased glutathione peroxidase activity and the oxidized L-ascorbate level in the striatum. We previously reported that pre-treatment with zingerone or eugenol prevents 6-OHDA-induced DA depression by preventing lipid peroxidation. However, the present study shows that post-treatment with these substances enhanced the DA decrease. These substances had adverse effects dependent on the time of administration relative to model PD onset. These results suggest that we should be wary of ingesting these spice elements after the onset of PD symptoms.

  9. Functional Dopaminergic Neurons in Substantia Nigra are Required for Transcranial Magnetic Stimulation-Induced Motor Plasticity.

    PubMed

    Hsieh, Tsung-Hsun; Huang, Ying-Zu; Rotenberg, Alexander; Pascual-Leone, Alvaro; Chiang, Yung-Hsiao; Wang, Jia-Yi; Chen, Jia-Jin J

    2015-07-01

    Repetitive magnetic stimulation (rTMS), including theta burst stimulation (TBS), is capable of modulating motor cortical excitability through plasticity-like mechanisms and might have therapeutic potential for Parkinson's disease (PD). An animal model would be helpful for elucidating the mechanism of rTMS that remain unclear and controversial. Here, we have established a TMS model in rat and applied this model to study the impact of substantia nigra dopamine neuron on TBS-induced motor plasticity in PD rats. In parallel with human results, continuous TBS (cTBS) successfully suppressed motor evoked potentials (MEPs), while MEPs increased after intermittent TBS (iTBS) in healthy rats. We then tested the effect of iTBS in early and advanced 6-hydroxydopamine (6-OHDA)-lesioned PD. Moreover, dopaminergic neurons in substantia nigra and rotation behavior were assessed to correlate with the amount of iTBS-induced plasticity. In results, iTBS-induced potentiation was reduced in early PD rats and was absent in advanced PD rats. Such reduction in plasticity strongly correlated with the dopaminergic cell loss and the count of rotation in PD rats. In conclusion, we have established a TMS PD rat model. With the help of this model, we confirmed the loss of domaninergic neurons in substantia nigra resulting in reduced rTMS-induced motor plasticity in PD.

  10. Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: a model for early Parkinson's disease.

    PubMed

    Eagle, Andrew L; Olumolade, Oluyemi O; Otani, Hajime

    2015-03-01

    Parkinson's disease (PD) produces progressive nigrostriatal dopamine (DA) denervation resulting in cognitive and motor impairment. However, it is unknown whether cognitive impairments, such as instrumental learning deficits, are associated with the early stage PD-induced mild DA denervation. The current study sought to model early PD-induced instrumental learning impairments by assessing the effects of low dose (5.5μg), bilateral 6OHDA-induced striatal DA denervation on acquisition of instrumental stimulus discrimination in rats. 6OHDA (n=20) or sham (n=10) lesioned rats were tested for stimulus discrimination acquisition either 1 or 2 weeks post surgical lesion. Stimulus discrimination acquisition across 10 daily sessions was used to assess discriminative accuracy, or a probability measure of the shift toward reinforced responding under one stimulus condition (Sd) away from extinction, when reinforcement was withheld, under another (S(d) phase). Striatal DA denervation was assayed by tyrosine hydroxylase (TH) staining intensity. Results indicated that 6OHDA lesions produced significant loss of dorsal striatal TH staining intensity and marked impairment in discrimination acquisition, without inducing akinetic motor deficits. Rather 6OHDA-induced impairment was associated with perseveration during extinction (S(Δ) phase). These findings suggest that partial, bilateral striatal DA denervation produces instrumental learning deficits, prior to the onset of gross motor impairment, and suggest that the current model is useful for investigating mild nigrostriatal DA denervation associated with early stage clinical PD.

  11. 7-(3-(4-(2,3-dimethylphenyl)piperazinyl)propoxy)-2 (1H)-quinolinone (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist

    SciTech Connect

    Yasuda, Y.; Kikuchi, T.; Suzuki, S.; Tsutsui, M.; Yamada, K.; Hiyama, T.

    1988-01-01

    The assertion that OPC-4392 acts as an agonist at presynaptic dopamine autoreceptors is supported by the following behavioral and biochemical observations: OPC-4392, 3-PPP and apomorphine inhibited the reserpine-induced increase in DOPA accumulation in the forebrain of mice and in the frontal cortex, limbic forebrain and striatum of rats. In addition, the gamma-butyrolactone (GBL)-induced increase in DOPA accumulation in the mouse forebrain was also inhibited by OPC-4392, 3-PPP and apomorphine. The inhibitory effect of OPC-4392 on GBL-induced DOPA accumulation lasted for at least 8 hours after oral administration to mice, while that of 3-PPP and apomorphine disappeared in 4 hours after subcutaneous injection. OPC-4392 failed to increase spontaneous motor activity in reserpinized mice, enhance spontaneous ipsilateral rotation in rats with unilateral striatal kainic acid (KA) lesions, induce contralateral rotation in rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesions and inhibit /sup 14/C-acetylcholine (Ach) release stimulated by 20 mM KCl in rat striatal slices.

  12. Inhibition of Glycogen Synthase Kinase-3β (GSK-3β) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats

    PubMed Central

    Xie, Cheng-long; Lin, Jing-Ya; Wang, Mei-Hua; Zhang, Yu; Zhang, Su-fang; Wang, Xi-Jin; Liu, Zhen-Guo

    2016-01-01

    Levodopa (L-dopa) is the dominating therapy drug for exogenous dopaminergic substitution and can alleviate most of the manifestations of Parkinson’s disease (PD), but long-term therapy is associated with the emergence of L-dopa-induced dyskinesia (LID). Evidence points towards an involvement of Glycogen Synthase Kinase-3β (GSK-3β) in development of LID. In the present study, we found that animals rendered dyskinetic by L-dopa treatment, administration of TDZD8 (2mg/kg) obviously prevented the severity of AIM score, as well as improvement in motor function (P < 0.05). Moreover, the TDZD8-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates of LID. TDZD8 reduced the phosphorylation levels of tau, DARPP32, ERK and PKA protein, which represent molecular markers of LID, as well as reduced L-dopa-induced FosB mRNA and PPEB mRNA levels in the lesioned striatum. In addition, we found that TDZD8 antidyskinetic properties were overcome by D1 receptor, as pretreatment with SKF38393 (5 mg/kg, 10 mg/kg, reapectively), a D1 receptor agonist, blocked TDZD8 antidyskinetic actions. This study supported the hypothesis that GSK-3β played an important role in the development and expression of LID. Inhibition of GSK-3β with TDZD8 reduced the development of ALO AIM score and associated molecular changes in 6-OHDA-lesioned rats. PMID:26997328

  13. Depressive-like behavior observed with a minimal loss of locus coeruleus (LC) neurons following administration of 6-hydroxydopamine is associated with electrophysiological changes and reversed with precursors of norepinephrine

    PubMed Central

    Szot, Patricia; Franklin, Allyn; Miguelez, Cristina; Wang, Yangqing; Vidaurrazaga, Igor; Ugedo, Luisa; Sikkema, Carl; Wilkinson, Charles W.; Raskind, Murray A.

    2016-01-01

    Depression is a common co-morbid condition most often observed in subjects with mild cognitive impairment (MCI) and during the early stages of Alzheimer’s disease (AD). Dysfunction of the central noradrenergic nervous system is an important component in depression. In AD, locus coeruleus (LC) noradrenergic neurons are significantly reduced pathologically and the reduction of LC neurons is hypothesized to begin very early in the progression of the disorder; however, it is not known if dysfunction of the noradrenergic system due to early LC neuronal loss is involved in mediating depression in early AD. Therefore, the purpose of this study was to determine in an animal model if a loss of noradrenergic LC neurons results in depressive-like behavior. The LC noradrenergic neuronal population was reduced by the bilateral administration of the neurotoxin 6-hydroxydopamine (6-OHDA) directly into the LC. Forced swim test (FST) was performed three weeks after the administration of 6-OHDA (5, 10 and 14 μg/μl), animals administered the 5 μg/μl of 6-OHDA demonstrated a significant increase in immobility, indicating depressive-like behavior. This increase in immobility at the 5 μg/μl dose was observed with a minimal loss of LC noradrenergic neurons as compared to LC neuronal loss observed at 10 and 14 μg/μl dose. A significant positive correlation between the number of surviving LC neurons after 6-OHDA and FST immobile time was observed, suggesting that in animals with a minimal loss of LC neurons (or a greater number of surviving LC neurons) following 6-OHDA demonstrated depressive-like behavior. As the 6-OHDA-induced loss of LC neurons is increased, the time spent immobile is reduced. Depressive-like behavior was also observed with the 5 μg/μl dose of 6-OHDA with a second behavior test, sucrose consumption. FTS increased immobility following 6-OHDA (5 μg/μl) was reversed by the administration of a single dose of L-1-3-4-dihydroxyphenylalanine (DOPA) or L-threo-3

  14. Lentivirus-mediated Persephin over-expression in Parkinson's disease rats

    PubMed Central

    Yin, Xiao-feng; Xu, Hua-min; Jiang, Yun-xia; Zhi, Yun-lai; Liu, Yu-xiu; Xiang, Heng-wei; Liu, Kai; Ding, Xiao-dong; Sun, Peng

    2015-01-01

    Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic effect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the substantia nigra of rats were transfected with the Persephin gene. One week later 6-hydroxydopamine was injected into the anterior medial bundle to establish a Parkinson's disease model in the rats. Results found that the number of dopaminergic neurons in the substantia nigra increased, tyrosine hydroxylase expression was upregulated and concentrations of dopamine and its metabolites in corpus striatum were increased after pretreatment with Persephin gene. In addition, the rotating effect of the induced Parkinson's disease rats was much less in the group pretreated with the Persephin gene. Persephin has a neuroprotective effect on the 6-hydroxydopamine-induced Parkinson's disease through protecting dopaminergic neurons. PMID:26807117

  15. Implication of dorsostriatal D3 receptors in motivational processes: a potential target for neuropsychiatric symptoms in Parkinson’s disease

    PubMed Central

    Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Vachez, Yvan; Boulet, Sabrina; Savasta, Marc; Carnicella, Sebastien

    2017-01-01

    Beyond classical motor symptoms, motivational and affective deficits are frequently observed in Parkinson’s disease (PD), dramatically impairing the quality of life of patients. Using bilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats, we have been able to reproduce these neuropsychiatric/non-motor impairments. The present study describes how bilateral 6-OHDA SNc lesions affect the function of the main striatal dopaminergic (DA) receptor subtypes. Autoradiography was used to measure the levels of striatal DA receptors, and operant sucrose self-administration and neuropharmacological approaches were combined to investigate the causal implication of specific DA receptors subtypes in the motivational deficits induced by a dorsostriatal DA denervation. We found that D3 receptors (D3R) exclusively are down-regulated within the dorsal striatum of lesioned rats. We next showed that infusion of a D3R antagonist (SB-277011A) in non-lesioned animals specifically disrupts preparatory, but not consummatory behaviors. Our findings reveal an unexpected involvement of dorsostriatal D3R in motivational processes. They strongly suggest an implication of dorsostriatal D3R in the neuropsychiatric symptoms observed in PD, highlighting this receptor as a potential target for pharmacological treatment. PMID:28134302

  16. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation.

    PubMed

    Li, S; Arbuthnott, G W; Jutras, M J; Goldberg, J A; Jaeger, D

    2007-12-01

    Deep brain stimulation (DBS) is an effective treatment of Parkinson's disease (PD) for many patients. The most effective stimulation consists of high-frequency biphasic stimulation pulses around 130 Hz delivered between two active sites of an implanted depth electrode to the subthalamic nucleus (STN-DBS). Multiple studies have shown that a key effect of STN-DBS that correlates well with clinical outcome is the reduction of synchronous and oscillatory activity in cortical and basal ganglia networks. We hypothesized that antidromic cortical activation may provide an underlying mechanism responsible for this effect, because stimulation is usually performed in proximity to cortical efferent pathways. We show with intracellular cortical recordings in rats that STN-DBS did in fact lead to antidromic spiking of deep layer cortical neurons. Furthermore, antidromic spikes triggered a dampened oscillation of local field potentials in cortex with a resonant frequency around 120 Hz. The amplitude of antidromic activation was significantly correlated with an observed suppression of slow wave and beta band activity during STN-DBS. These findings were seen in ketamine-xylazine or isoflurane anesthesia in both normal and 6-hydroxydopamine (6-OHDA)-lesioned rats. Thus antidromic resonant activation of cortical microcircuits may make an important contribution toward counteracting the overly synchronous and oscillatory activity characteristic of cortical activity in PD.

  17. Dopamine D(2)-class receptor supersensitivity as reflected in Ca2+ current modulation in neostriatal neurons.

    PubMed

    Prieto, G A; Perez-Burgos, A; Fiordelisio, T; Salgado, H; Galarraga, E; Drucker-Colin, R; Bargas, J

    2009-12-01

    The loss of dopaminergic neurons followed by dopamine (DA) depletion in the neostriatum is a hallmark of Parkinson's disease. Among other changes, DA D(2)-receptor class (D(2)R-class) supersensitivity is a result of striatal DA depletion. Pharmacological, biochemical and behavioral data have documented this phenomenon, but clear electrophysiological-functional correlates are still lacking. This work describes an electrophysiological correlate of D(2)R-class supersensitivity in DA-depleted striata after unilateral 6-hydroxydopamine (6-OHDA) lesions in the rat substantia nigra compacta (SNc). Ca2+ current modulation mediated by D(2)R-class activation reflected an altered sensitivity. Thus, while the concentration-response relationship (C-R plot) from control striata was better fit with a two sites model, the C-R plot obtained from DA-depleted striata was better fit by a three sites model, exhibited a considerable leftward shift, and presented an increased maximal response. Because Ca2+ current modulation by D(2)R-class activation is involved in the control of spiny neurons excitability and their synaptic GABA release, the present findings may help to explain several functional changes found in the striatal circuitry after dopaminergic denervation.

  18. l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via β-adrenergic receptors.

    PubMed

    Pendolino, Valentina; Bagetta, Vincenza; Ghiglieri, Veronica; Sgobio, Carmelo; Morelli, Emanuela; Poggini, Silvia; Branchi, Igor; Latagliata, Emanuele C; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Calabresi, Paolo; Picconi, Barbara

    2014-11-01

    Parkinson's disease (PD) patients exhibit motor and non-motor symptoms that severely affect quality of life. Cognitive alterations in PD subjects have been related to both structural and functional hippocampal changes. Here we investigated the effects of the 6-hydroxydopamine (6-OHDA) lesion in the Medial Forebrain Bundle (MFB) on the hippocampus focusing on the Dentate Gyrus (DG). In vivo microdialysis measurements revealed that the 6-OHDA injection disrupts both dopaminergic and noradrenergic transmission in rat DG. In vitro electrophysiological recordings showed that these neurochemical alterations were accompanied by impairment of long-term depression (LTD) at medial perforant path/DG synapses. Furthermore, this alteration was reversed by l-DOPA treatment. Notably, the therapeutic effect of l-DOPA on LTD was blocked by the antagonism of β-noradrenergic receptors, but not by dopamine D1 or D2 receptor antagonists. Thus, while the dopaminergic transmission does not seem to be implicated in this therapeutic effect of l-DOPA, the noradrenergic system plays a central role in the synaptic dysfunction of the DG in experimental PD. Our work provides new evidence on the role of catecholamines in DG synaptic plasticity and sheds light on the possible synaptic mechanisms underlying cognitive deficits in PD. Furthermore, our results indicate that l-DOPA exerts a therapeutic effect on the parkinsonian brain through different, coexistent, mechanisms.

  19. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Ryu, Junghwa; Zhang, Rui; Hong, Bo-Hyun; Yang, Eun-Jung; Kang, Kyoung Ah; Choi, Moonseok; Kim, Ki Cheon; Noh, Su-Jin; Kim, Hee Soo; Lee, Nam-Ho; Hyun, Jin Won; Kim, Hye-Sun

    2013-01-01

    In this study, we investigated whether phloroglucinol (1,3,5-trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD.

  20. Phloroglucinol Attenuates Motor Functional Deficits in an Animal Model of Parkinson's Disease by Enhancing Nrf2 Activity

    PubMed Central

    Hong, Bo-Hyun; Yang, Eun-Jung; Kang, Kyoung Ah; Choi, Moonseok; Kim, Ki Cheon; Noh, Su-Jin; Kim, Hee Soo; Lee, Nam-Ho; Hyun, Jin Won; Kim, Hye-Sun

    2013-01-01

    In this study, we investigated whether phloroglucinol (1, 3, 5 - trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD. PMID:23976995

  1. Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease.

    PubMed

    Yue, X; Hariri, D J; Caballero, B; Zhang, S; Bartlett, M J; Kaut, O; Mount, D W; Wüllner, U; Sherman, S J; Falk, T

    2014-01-31

    Vascular endothelial growth factor B (VEGF-B) has recently been shown to be a promising novel neuroprotective agent for several neurodegenerative conditions. In the current study we extended previous work on neuroprotective potential for Parkinson's disease (PD) by testing an expanded dose range of VEGF-B (1 and 10 μg) and directly comparing both neuroprotective and neurorestorative effects of VEGF-B in progressive unilateral 6-hydroxydopamine (6-OHDA) PD models to a single dose of glial cell line-derived neurotrophic factor (GDNF, 10 μg), that has been established by several groups as a standard in both preclinical PD models. In the amphetamine-induced rotational tests the treatment with 1 and 10 μg VEGF-B resulted in significantly improved motor function of 6-OHDA-lesioned rats compared to vehicle-treated 6-OHDA-lesioned rats in the neuroprotection paradigm. Both doses of VEGF-B caused an increase in tyrosine hydroxylase (TH)-positive cell and fiber count in the substantia nigra (SN) and striatum in the neuroprotective experiment. The effect size was comparable to the effects seen with GDNF. In the neurorestoration paradigm, VEGF-B injection had no significant effect in either the behavioral or the immunohistochemical analyses, whereas GDNF injection significantly improved the amphetamine-induced rotational behavior and reduced TH-positive neuronal cell loss in the SN. We also present a strong positive correlation (p=1.9e-50) of the expression of VEGF-B with nuclear-encoded mitochondrial genes involved in fatty acid metabolism in rat midbrain, pointing to the mitochondria as a site of action of VEGF-B. GDNF showed a positive correlation with nuclear-encoded mitochondrial genes that was not nearly as strong (p=0.018). VEGF-B counteracted rotenone-induced reduction of (a) fatty acid transport protein 1 and 4 levels and (b) both Akt protein and phosphorylation levels in SH-SY5Y cells. We further verified VEGF-B expression in the human SN pars compacta of healthy

  2. Chronic L-DOPA treatment attenuates behavioral and biochemical deficits induced by unilateral lactacystin administration into the rat substantia nigra.

    PubMed

    Konieczny, Jolanta; Czarnecka, Anna; Lenda, Tomasz; Kamińska, Kinga; Lorenc-Koci, Elżbieta

    2014-03-15

    The aim of the study was to determine whether the dopamine (DA) precursor l-DOPA attenuates parkinsonian-like symptoms produced by the ubiquitin-proteasome system inhibitor lactacystin. Wistar rats were injected unilaterally with lactacystin (2.5 μg/2 μl) or 6-OHDA (8 μg/2 μl) into the substantia nigra (SN) pars compacta. Four weeks after the lesion, the animals were treated chronically with l-DOPA (25 or 50 mg/kg) for two weeks. During l-DOPA treatment, the lactacystin-treated rats were tested for catalepsy and forelimb asymmetry. Rotational behavior was evaluated after apomorphine (0.25 mg/kg) and l-DOPA in both PD models. After completion of experiments, the animals were killed and the levels of DA and its metabolites in the striatum and SN were assayed. We found that acute l-DOPA administration effectively decreased catalepsy and increased the use of the compromised forelimb in the cylinder test. However, the lactacystin group did not respond to apomorphine or acute l-DOPA administration in the rotational test. Repeated l-DOPA treatment produced contralateral rotations in both PD models, but the number of rotations was much greater in the 6-OHDA-lesioned rats. Both toxins markedly (>90%) reduced the levels of DA and its metabolites in the striatum and SN, while l-DOPA diminished these decreases, especially in the SN. By demonstrating the efficacy of l-DOPA in several behavioral tests, our study confirms the usefulness of the lactacystin lesion as a model of PD. However, marked differences in the rotational response to apomorphine and l-DOPA suggest different mechanisms of neurodegeneration evoked by lactacystin and 6-OHDA.

  3. Intrastriatal injection of botulinum neurotoxin-A is not cytotoxic in rat brain - A histological and stereological analysis.

    PubMed

    Mehlan, Juliane; Brosig, Hans; Schmitt, Oliver; Mix, Eilhard; Wree, Andreas; Hawlitschka, Alexander

    2016-01-01

    Parkinson's disease (PD) is caused by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in a deficiency of dopamine in the striatum and an increased release of acetylcholine by tonically active interneurons. Botulinum neurotoxin-A (BoNT-A) is well known for blocking transmitter release by cholinergic presynaptic terminals. Treating striatal hypercholinism by local application of BoNT-A could be a possible new local therapy option of PD. In previous studies of our group, we analyzed the effect of BoNT-A injection into the CPu of 6-OHDA lesioned hemiparkinsonian rats. Our studies showed that BoNT-A application in hemiparkinson rat model is capable of abolishing apomorphine induced rotations for approximately 3 months. Regularly occurring axonal swellings in the BoNT-A infiltrated striata were also discovered, which we named BoNT-A induced varicosities (BiVs). Résumé: Here we investigated the long-term effect of the injection of 1ng BoNT-A into the right CPu of naive Wistar rats on the number of ChAT-ir interneurons as well as on the numeric density and the volumetric size of the BiVs in the CPu. Significant differences in the number of ChAT-ir neurons between the right BoNT-A treated CPu and the left untreated CPu were not detected up to 12 month post BoNT-A injection. The numeric density of BiVs in the treated CPu reached a maximum 3 months after BoNT-A treatment and decreased afterwards, whereas the volume of single BiVs increased steadily throughout the whole time course of the experiment.

  4. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats

    PubMed Central

    2011-01-01

    Background Pleiotrophin is known to promote the survival and differentiation of dopaminergic neurons in vitro and is up-regulated in the substantia nigra of Parkinson's disease patients. To establish whether pleiotrophin has a trophic effect on nigrostriatal dopaminergic neurons in vivo, we injected a recombinant adenovirus expressing pleiotrophin in the substantia nigra of 6-hydroxydopamine lesioned rats. Results The viral vector induced pleiotrophin over-expression by astrocytes in the substantia nigra pars compacta, without modifying endogenous neuronal expression. The percentage of tyrosine hydroxylase-immunoreactive cells as well as the area of their projections in the lesioned striatum was higher in pleiotrophin-treated animals than in controls. Conclusions These results indicate that pleiotrophin over-expression partially rescues tyrosine hydroxylase-immunoreactive cell bodies and terminals of dopaminergic neurons undergoing 6-hydroxydopamine-induced degeneration. PMID:21649894

  5. Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats

    PubMed Central

    Chen, Guiqin; Nie, Shuke; Han, Chao; Ma, Kai; Xu, Yan; Zhang, Zhentao; Papa, Stella M.; Cao, Xuebing

    2017-01-01

    L-DOPA-induced dyskinesia (LID) represents one of the major problems of the long-term therapy of patients with Parkinson's disease (PD). Although, the pathophysiologic mechanisms underlying LID are not completely understood, activation of the extracellular signal regulated kinase (ERK) is recognized to play a key role. ERK is phosphorylated by mitogen-activated protein kinase kinase (MEK), and thus MEK inhibitor can prevent ERK activation. Here the effect of the MEK inhibitor PD98059 on LID and the associated molecular changes were examined. Rats with unilateral 6-OHDA lesions of the nigrostriatal pathway received daily L-DOPA treatment for 3 weeks, and abnormal involuntary movements (AIMs) were assessed every other day. PD98059 was injected in the lateral ventricle daily for 12 days starting from day 10 of L-DOPA treatment. Striatal molecular markers of LID were analyzed together with gene regulation using microarray. The administration of PD98059 significantly reduced AIMs. In addition, ERK activation and other associated molecular changes including ΔFosB were reversed in rats treated with the MEK inhibitor. PD98059 induced significant up-regulation of 418 transcripts and down-regulation of 378 transcripts in the striatum. Tyrosine hydroxylase (Th) and aryl hydrocarbon receptor nuclear translocator (Arnt) genes were down-regulated in lesioned animals and up-regulated in L-DOPA-treated animals. Analysis of protein levels showed that PD98059 reduced the striatal TH. These results support the association of p-ERK1/2, ΔFosB, p-H3 to the regulation of TH and ARNT in the mechanisms of LID, and pinpoint other gene regulatory changes, thus providing clues for identifying new targets for LID therapy. PMID:28337120

  6. High-Frequency Stimulation of the Subthalamic Nucleus Restores Neural and Behavioral Functions During Reaction Time Task in a Rat Model of Parkinson’s Disease

    PubMed Central

    Li, Xiang-Hong; Wang, Jin-Yan; Gao, Ge; Chang, Jing-Yu; Woodward, Donald J.; Luo, Fei

    2015-01-01

    Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson’s disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating corticobasal ganglia circuits. PMID:20025062

  7. L-DOPA-induced dyregulation of extrastriatal dopamine and serotonin and affective symptoms in a bilateral rat model of Parkinson’s disease

    PubMed Central

    Jaunarajs, Karen L. Eskow; George, Jessica A.; Bishop, Christopher

    2012-01-01

    Convergent evidence indicates that raphestriatal serotonin (5-HT) neurons can convert and release dopamine (DA) derived from exogenous administration of the pharmacotherapeutic L-3,4-dihydroxyphenyl-L-alanine(L-DOPA) as a treatment for Parkinson’s disease (PD). While aspects of such neuroplasticity may be beneficial, chronic L-DOPA may also modify native 5-HT function, precipitating the appearance prevalent non-motor PD symptoms such as anxiety and depression. To examine this, male Sprague-Dawley rats were rendered parkinsonian with bilateral medial forebrain bundle 6-OHDA infusions and treated for at least 28 days with vehicle or L-DOPA. In the first experiment, striatal, hippocampal, amygdalar, and prefrontal cortex DA and 5-HT levels were examined at various post-treatment time-points. In experiment 2, L-DOPA’s effects on DA and 5-HT cell bodies in the substantia nigra pars compacta and dorsal raphe, respectively, were examined. Finally, the effects of L-DOPA on affective behaviors were assessed in locomotor chambers, social interaction, forced swim, and elevated plus maze behavioral tests. Bilateral 6-OHDA lesion induced approximately 80% DA and 30% 5-HT depletion in the striatum compared to sham-lesioned controls, while monoamine levels remained largely unchanged in extrastriatal regions. Tissue levels of DA were increased at the expense of 5-HT levels in parkinsonian rats subjected to chronic L-DOPA injections in all regions sampled, though DA or 5-HT cell bodies were unaffected. Behaviorally, rats could only be tested 24 hours after their last L-DOPA injection due to severe dyskinesia. Despite this, prior exposure to chronic L-DOPA treatment exerted a pronounced anxiogenic phenotype. Collectively, these results suggest that chronic L-DOPA treatment may interfere with the balance of DA and 5-HT function in affect-related brain regions and could induce and/or exacerbate non-motor symptoms in PD. PMID:22659568

  8. Pharmacological modulation of amphetamine-induced dyskinesia in transplanted hemi-parkinsonian rats.

    PubMed

    Smith, Gaynor A; Breger, Ludivine S; Lane, Emma L; Dunnett, Stephen B

    2012-10-01

    Foetal cell transplantation in patients with Parkinson's disease can induce motor complications independent of L-DOPA administration, known as graft-induced dyskinesia. In the 6-OHDA lesioned rat model of Parkinson's disease, post-transplantation abnormal movements can develop in response to an amphetamine challenge, a behaviour which is used to model graft-induced dyskinesia. Although L-DOPA-induced dyskinesia has been well characterised pharmacologically, we lack knowledge on the modulation of post-transplantation amphetamine-induced dyskinesia which may shed light on the mechanisms underlying graft-induced dyskinesia. We assessed a series of drugs effective at reducing L-DOPA-induced dyskinesia against post-transplantation amphetamine-induced dyskinesia. Agents include: dopaminergic antagonists (D₁: CP94253; D₂: SCH-22390; D₃: nafadotride), serotonergic agonists (5-HT(1A): 8-OH-DPAT; 5-HT(1B): CP94253), opioid antagonist (μ: naloxone), cannabinoid agonist (CB₁: WIN55, 212-2), adrenergic antagonist (α₁ and α₂: yohimbine) and glutamatergic antagonists (NMDA: amantadine and MK-801; mGluR5: MTEP; AMPA: IEM1460). Abnormal involuntary movements in response to amphetamine were decreased by SCH-22390, raclopride, CP94253 and 8-OH-DPAT, yet were unaltered by naloxone, WIN55, 212-2, yohimbine, amantadine, MTEP and IEM1460. Unusually, MK-801 increased the appearance of amphetamine-induced dyskinesia. The results suggest that dopaminergic, serotoninergic and glutamatergic systems are likely to have a fundamental role in the development of graft-induced dyskinesias, which are mechanistically distinct from L-DOPA-induced behvaviours. Importantly, the expression of D₁ and D₂ receptors was unrelated to the severity of AIMs.

  9. High-frequency stimulation of the subthalamic nucleus counteracts cortical expression of major histocompatibility complex genes in a rat model of Parkinson's disease.

    PubMed

    Grieb, Benjamin; Engler, Gerhard; Sharott, Andrew; von Nicolai, Constantin; Streichert, Thomas; Papageorgiou, Ismini; Schulte, Alexander; Westphal, Manfred; Lamszus, Katrin; Engel, Andreas K; Moll, Christian K E; Hamel, Wolfgang

    2014-01-01

    High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson's disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidromic activation of corticofugal fibers. However, STN-HFS-induced changes of the sensorimotor cortex are hitherto unexplored. To address this question at a genomic level, we performed mRNA expression analyses using Affymetrix microarray gene chips and real-time RT-PCR in sensorimotor cortex of parkinsonian and control rats following STN-HFS. Experimental parkinsonism was induced in Brown Norway rats by bilateral nigral injections of 6-hydroxydopamine and was assessed histologically, behaviorally, and electrophysiologically. We applied prolonged (23h) unilateral STN-HFS in awake and freely moving animals, with the non-stimulated hemisphere serving as an internal control for gene expression analyses. Gene enrichment analysis revealed strongest regulation in major histocompatibility complex (MHC) related genes. STN-HFS led to a cortical downregulation of several MHC class II (RT1-Da, Db1, Ba, and Cd74) and MHC class I (RT1CE) encoding genes. The same set of genes showed increased expression levels in a comparison addressing the effect of 6-hydroxydopamine lesioning. Hence, our data suggest the possible association of altered microglial activity and synaptic transmission by STN-HFS within the sensorimotor cortex of 6-hydroxydopamine treated rats.

  10. [Disruption of latent inhibition in adult rats after prepubertal dopamine terminals lesions in the ventral hippocampus].

    PubMed

    Loskutova, L V; Kostiunina, N V; Red'kina, A V

    2010-05-01

    Wistar rats were submitted to bilateral ventral hippocampal injection of 6-hydroxydopamine on 32nd day after birth. Latent inhibition was measured in passive or active avoidance tasks when the rats received 20 and 100 pre-exposures of conditioned stimulus. Prepubertal and adult lesioned rats showed a deficit in the latent inhibition but not in the capacity to avoidance learning in presence of the conditioned stimulus novelty. Possible mechanism of the involvement of hippocampal dopaminergic terminals in attention inhibition to irrelevant information is considered.

  11. Effect of selective and non-selective serotonin receptor activation on L-DOPA-induced therapeutic efficacy and dyskinesia in parkinsonian rats.

    PubMed

    Tronci, E; Fidalgo, C; Stancampiano, R; Carta, M

    2015-10-01

    Selective activation of 5-HT1 receptors has been shown to produce near to full suppression of L-DOPA-induced dyskinesia (LID) in animal models of Parkinson's disease; however, a reduction of the therapeutic effect of L-DOPA has been reported in several studies. Conversely, we recently found that increasing the serotonergic tone with chronic administration of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) can reduce LID in 6-OHDA-lesioned rats, without affecting L-DOPA efficacy. To directly compare the effects of selective versus non-selective serotonin receptor activation, here we first tested different acute doses of the 5-HT1A/1B receptor agonist eltoprazine and 5-HTP on LID in order to identify doses of the individual compounds showing similar anti-dyskinetic efficacy in L-DOPA-primed dyskinetic rats. About 50% reduction of LID was observed with 0.1 mg/kg and 24 mg/kg of eltoprazine and 5-HTP, respectively; we then compared the effect of the two drugs, individually and in combination, on L-DOPA-induced stepping test in L-DOPA-naïve parkinsonian animals and LID over three weeks of L-DOPA treatment. Results showed that eltoprazine induced significant worsening of L-DOPA-mediated performance in the stepping test, while 5-HTP did not. Interestingly, combination of 5-HTP with eltoprazine prevented the reduction in the forelimb use induced by eltoprazine. Moreover, 5-HTP and eltoprazine given individually showed similar efficacy also upon chronic treatment, and had additive effect in dampening the appearance of LID when given in combination. Finally, chronic administration of eltoprazine and/or 5-HTP did not affect striatal serotonin innervation, compared to l-DOPA alone, as measured by serotonin transporter expression.

  12. Cortical regulation of striatal projection neurons and interneurons in a Parkinson's disease rat model

    PubMed Central

    Wu, Jia-jia; Chen, Si; Ouyang, Li-si; Jia, Yu; Liu, Bing-bing; Mu, Shu-hua; Ma, Yu-xin; Wang, Wei-ping; Wei, Jia-you; Li, You-lan; Chen, Zhi; Lei, Wan-long

    2016-01-01

    Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease. PMID:28197194

  13. Dopamine actions in vitro on enzyme and electrolyte secretion from normal and sympathectomized rat parotid glands.

    PubMed Central

    Danielsson, A; Henriksson, R; Sundström, S; Wester, P

    1988-01-01

    1. Adult rats were denervated unilaterally by removal of the left superior cervical ganglion or chemically denervated with 6-hydroxydopamine or reserpine. Two weeks later the parotid glands were used for in vitro secretory studies and their catecholamines and major metabolites were measured. 2. Noradrenaline concentrations were reduced 2 weeks after surgical sympathectomy and reserpine pre-treatment 18 h previously, whereas 6-hydroxydopamine pre-treatment for 3 days reduced both noradrenaline and dopamine concentrations. 3. Dopamine caused a prominent amylase release from incubated control glands. However, a subsensitivity for dopamine-induced amylase release was recorded on the denervated side. 4. Dopamine caused a prominent potassium efflux measured as 86Rb+ efflux from control glands, but was without effect in denervated glands. This is in contrast to noradrenaline-induced 86Rb+ efflux which was equally effective in both denervated and control glands. 5. Dopamine caused [3H]noradrenaline efflux in control glands, but was without effect in surgically denervated glands and in glands pre-treated with reserpine or 6-hydroxydopamine. 6. It is concluded that dopamine-induced potassium release is caused by a presynaptic action on noradrenergic nerves, whereas dopamine-induced amylase release has a presynaptic and a postsynaptic component. The results suggest a specific action of dopamine in salivary glands, with different effects on enzyme release and ionic fluxes. PMID:2473198

  14. Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease.

    PubMed

    Breger, Ludivine S; Kienle, Korbinian; Smith, Gaynor A; Dunnett, Stephen B; Lane, Emma L

    2017-03-01

    Although intrastriatal transplantation of fetal cells for the treatment of Parkinson's disease had shown encouraging results in initial open-label clinical trials, subsequent double-blind studies reported more debatable outcomes. These studies highlighted the need for greater preclinical analysis of the parameters that may influence the success of cell therapy. While much of this has focused on the cells and location of the transplants, few have attempted to replicate potentially critical patient centered factors. Of particular relevance is that patients will be under continued L-DOPA treatment prior to and following transplantation, and that typically the grafts will not be immunologically compatible with the host. The aim of this study was therefore to determine the effect of chronic L-DOPA administered during different phases of the transplantation process on the survival and function of grafts with differing degrees of immunological compatibility. To that end, unilaterally 6-OHDA lesioned rats received sham surgery, allogeneic or xenogeneic transplants, while being treated with L-DOPA before and/or after transplantation. Irrespective of the L-DOPA treatment, dopaminergic grafts improved function and reduced the onset of L-DOPA induced dyskinesia. Importantly, although L-DOPA administered post transplantation was found to have no detrimental effect on graft survival, it did significantly promote the immune response around xenogeneic transplants, despite the administration of immunosuppressive treatment (cyclosporine). This study is the first to systematically examine the effect of L-DOPA on graft tolerance, which is dependent on the donor-host compatibility. These findings emphasize the importance of using animal models that adequately represent the patient paradigm.

  15. Morphological Changes in a Severe Model of Parkinson's Disease and Its Suitability to Test the Therapeutic Effects of Microencapsulated Neurotrophic Factors.

    PubMed

    Requejo, C; Ruiz-Ortega, J A; Bengoetxea, H; García-Blanco, A; Herrán, E; Aristieta, A; Igartua, M; Pedraz, J L; Ugedo, L; Hernández, R M; Lafuente, J V

    2016-11-14

    The unilateral 6-hydroxydopamine (6-OHDA) lesion of medial forebrain bundle (MFB) in rats affords us to study the advanced stages of Parkinson's disease (PD). Numerous evidences suggest synergic effects when various neurotrophic factors are administered in experimental models of PD. The aim of the present work was to assess the morphological changes along the rostro-caudal axis of caudo-putamen complex and substantia nigra (SN) in the referred model in order to test the suitability of a severe model to evaluate new neurorestorative therapies. Administration of 6-OHDA into MFB in addition to a remarkable depletion of dopamine in the nigrostriatal system induced an increase of glial fibrillary acidic protein (GFAP)-positive cells in SN and an intense immunoreactivity for OX-42, vascular endothelial growth factor (VEGF), and Lycopersycum esculentum agglutinin (LEA) in striatum and SN. Tyrosine hydroxylase (TH) immunostaining revealed a significant decrease of the TH-immunopositive striatal volume in 6-OHDA group from rostral to caudal one. The loss of TH-immunoreactive (TH-ir) neurons and axodendritic network (ADN) was higher in caudal sections. Morphological recovery after the implantation of microspheres loaded with VEGF and glial cell line-derived neurotrophic factor (GDNF) in parkinsonized rats was related to the preservation of the TH-ir cell number and ADN in the caudal region of the SN. In addition, these findings support the neurorestorative role of VEGF+GDNF in the dopaminergic system and the synergistic effect between both factors. On the other hand, a topological distribution of the dopaminergic system was noticeable in the severe model, showing a selective vulnerability to 6-OHDA and recovering after treatment.

  16. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson's disease in vivo, but not enough to restore the lesioned dopaminergic system.

    PubMed

    Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2016-02-01

    We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD.

  17. Norepinephrine transporter inhibition with desipramine exacerbates L-DOPA-induced dyskinesia: role for synaptic dopamine regulation in denervated nigrostriatal terminals.

    PubMed

    Chotibut, Tanya; Fields, Victoria; Salvatore, Michael F

    2014-12-01

    Pharmacological dopamine (DA) replacement with Levodopa [L-dihydroxyphenylalanine (L-DOPA)] is the gold standard treatment of Parkinson's disease (PD). However, long-term L-DOPA treatment is complicated by eventual debilitating abnormal involuntary movements termed L-DOPA-induced dyskinesia (LID), a clinically significant obstacle for the majority of patients who rely on L-DOPA to alleviate PD-related motor symptoms. The manifestation of LID may in part be driven by excessive extracellular DA derived from L-DOPA, but potential involvement of DA reuptake in LID severity or expression is unknown. We recently reported that in 6-hydroxydopamine (6-OHDA)-lesioned striatum, norepinephrine transporter (NET) expression increases and may play a significant role in DA transport. Furthermore, L-DOPA preferentially inhibits DA uptake in lesioned striatum. Therefore, we hypothesized that desipramine (DMI), a NET antagonist, could affect the severity of LID in an established LID model. Whereas DMI alone elicited no dyskinetic effects in lesioned rats, DMI + L-DOPA-treated rats gradually expressed more severe dyskinesia compared with L-DOPA alone over time. At the conclusion of the study, we observed reduced NET expression and norepinephrine-mediated inhibition of DA uptake in the DMI + L-DOPA group compared with L-DOPA-alone group in lesioned striatum. LID severity positively correlated with striatal extracellular signal-regulated protein kinase phosphorylation among the three treatment groups, with increased ppERK1/2 in DMI + L-DOPA group compared with the L-DOPA- and DMI-alone groups. Taken together, these results indicate that the combination of chronic L-DOPA and NET-mediated DA reuptake in lesioned nigrostriatal terminals may have a role in LID severity in experimental Parkinsonism.

  18. The effects of nigrostriatal dopamine depletion on the thalamic parafascicular nucleus.

    PubMed

    Kusnoor, Sheila V; Bubser, Michael; Deutch, Ariel Y

    2012-03-29

    Neuronal loss in Parkinson's disease (PD) is seen in a number of brain regions in addition to the substantia nigra (SN). Among these is the thalamic parafascicular nucleus (PF), which sends glutamatergic projections to the striatum and receives GABAergic inputs from the SN. Recent data suggest that lesions of nigrostriatal dopamine axons cause a loss of PF neurons, which has been interpreted to suggest that the PF cell loss seen in PD is secondary to dopamine denervation. However, the extent of a PF dopamine innervation in the rat is unclear, and it is possible that PF cell loss in parkinsonism is independent of nigrostriatal dopamine degeneration. We characterized the dopamine innervation of the PF in the rat and determined if 6-hydroxydopamine SN lesions cause PF neuron degeneration. Dual-label immunohistochemistry revealed that almost all tyrosine hydroxylase-immunoreactive (TH-ir) axons in the PF also expressed dopamine-beta-hydroxylase and were therefore noradrenergic or adrenergic. Moreover, an antibody directed against dopamine revealed only very rare PF dopaminergic axons. Retrograde-tract tracing-immunohistochemistry did not uncover an innervation of the PF from midbrain dopamine neurons. Nigrostriatal dopamine neuron lesions did not elicit degeneration of PF cells, as reflected by a lack of FluoroJade C staining. Similarly, neither unilateral 6-OHDA lesions of nigrostriatal axons nor the dorsal noradrenergic bundle decreased the number of PF neurons or the number of PF neurons retrogradely-labeled from the striatum. These data suggest that the loss of thalamostriatal PF neurons in Parkinson's Disease is a primary event rather than secondary to nigrostriatal dopamine degeneration.

  19. Localization and characterization of (/sup 3/H)desmethylimipramine binding sites in rat brain by quantitative autoradiography

    SciTech Connect

    Biegon, A.; Rainbow, T.C.

    1983-05-01

    The high affinity binding sites for the antidepressant desmethlyimipramine (DMI) have been localized in rat brain by quantitative autoradiography. There are high concentrations of binding sites in the locus ceruleus, the anterior ventral thalamus, the ventral portion of the bed nucleus of the stria terminalis, the paraventricular and the dorsomedial nuclei of the hypothalamus. The distribution of DMI binding sites is in striking accord with the distribution of norepinephrine terminals. Pretreatment of rats with the neurotoxin 6-hydroxydopamine, which causes a selective degeneration of catecholamine terminals, results in 60 to 90% decrease in DMI binding. These data support the idea that high affinity binding sites for DMI are located on presynaptic noradrenergic terminals.

  20. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease.

    PubMed

    Jones, Carrie K; Bubser, Michael; Thompson, Analisa D; Dickerson, Jonathan W; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L; Bridges, Thomas M; Morrison, Ryan D; Jadhav, Satyawan; Engers, Darren W; Italiano, Kimberly; Bode, Jacob; Daniels, J Scott; Lindsley, Craig W; Hopkins, Corey R; Conn, P Jeffrey; Niswender, Colleen M

    2012-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu₄), including N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu₄ PAMsexhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu₄ in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu₄ PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with L-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of L-DOPA, suggesting that mGlu₄ PAMs may provide L-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu₄ PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either L-DOPA or A2A antagonists.

  1. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    SciTech Connect

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  2. The Metabotropic Glutamate Receptor 4-Positive Allosteric Modulator VU0364770 Produces Efficacy Alone and in Combination with l-DOPA or an Adenosine 2A Antagonist in Preclinical Rodent Models of Parkinson's Disease

    PubMed Central

    Jones, Carrie K.; Bubser, Michael; Thompson, Analisa D.; Dickerson, Jonathan W.; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L.; Bridges, Thomas M.; Morrison, Ryan D.; Jadhav, Satyawan; Engers, Darren W.; Italiano, Kimberly; Bode, Jacob; Daniels, J. Scott; Lindsley, Craig W.; Hopkins, Corey R.; Conn, P. Jeffrey

    2012-01-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu4), including N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu4 PAMs exhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu4 in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu4 PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with l-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of l-DOPA, suggesting that mGlu4 PAMs may provide l-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu4 PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either l-DOPA or A2A antagonists. PMID:22088953

  3. [Comparative study of amantadine and hemantane effects on development of levodopa-induced dyskinesia in rat model of parkinsonian syndrome].

    PubMed

    Kapitsa, I G; Ivanova, E A; Nepoklonov, A V; Kokshenev, I I; Voronina, T A; Val'dman, E A

    2011-01-01

    Chronic administration of levodopa and benserazide (10 and 15 mg/kg, respectively) cause the development of dyskinesia in rats with model parkinsonian syndrome induced by injection of 6-hydroxydopamine in left substantia nigra. The chronic administration of these drugs together with amantadine (20 mg/kg) accelerates the onset of latency and increases the magnitude of dyskinesia. Chronic administration of levodopa and benserazide together with hemantane (10 mg/kg) slows down the development and decreases the magnitude of levodopa-induced abnormal involuntary movements as measured for limb, orolingual and rotatory movements.

  4. Effects of lesioning noradrenergic neurones in the locus coeruleus on conditioned and unconditioned aversive behaviour in the rat.

    PubMed

    Neophytou, S I; Aspley, S; Butler, S; Beckett, S; Marsden, C A

    2001-08-01

    1. The brain noradrenergic system may have a role in anxiety disorder. This study has examined the effect of bilateral 6-hydroxydopamine lesions of the noradrenergic neurones in the locus coeruleus (LC) of male Lister hooded rats on behaviour produced by unconditioned and conditioned aversive stimuli. 2. The 6-hydroxydopamine (4 microg) lesions markedly reduced the noradrenaline content of the locus coeruleus hypothalamus, frontal cortex and the periaqueductal grey area without altering the levels of either dopamine or 5-hydroxytryptamine measured 14 days after administration. 3. Exposure to ultrasound (20 kHz at 98 dB for 60 sec), an unconditioned aversive stimulus, induced a defence response in the rats characterised by an increase in activity (running and jumping) followed by a period of inactivity (freezing). 4. Lesioning of the LC significantly attenuated the duration of freezing but was without effect on the active phase of the response. A similar reduction in freezing behaviour was seen with LC lesions when rats were exposed (3 hours after the acquisition) to the contextual cue of the conditioned emotion response paradigm. 5. These findings confirm that the locus coeruleus is involved in the regulation of fear-related behaviour in the rat both in an unconditioned and a conditioned model. Furthermore the results indicate that noradrenaline modifies defence behaviour rather than being the principle activating mechanism.

  5. The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat.

    PubMed

    Dupre, Kristin B; Eskow, Karen L; Negron, Giselle; Bishop, Christopher

    2007-07-16

    Serotonin 1A receptor (5-HT(1A)R) agonists have emerged as valuable supplements to l-DOPA therapy, demonstrating that they can decrease side effects and enhance motor function in animal models of Parkinson's disease (PD) and human PD patients. The precise mechanism by which these receptors act remains unknown and there is limited information on how 5-HT(1A)R stimulation impacts striatal dopamine (DA) D1 receptor (D1R) and D2 receptor (D2R) function. The current study examined the effects of 5-HT(1A)R stimulation on DA receptor-mediated behaviors. Male Sprague-Dawley rats were rendered hemiparkinsonian by unilateral 6-OHDA lesions and primed with the D1R agonist SKF81297 (0.8 mg/kg, i.p.) in order to sensitize DA receptors. Using a randomized within subjects design, rats received a first injection of: Vehicle (dH(2)O) or the 5-HT(1A)R agonist +/-8-OH-DPAT (0.1 or 1.0 mg/kg, i.p.), followed by a second injection of: Vehicle (dimethyl sulfoxide), the D1R agonist SKF81297 (0.8 mg/kg, i.p.), the D2R agonist quinpirole (0.2 mg/kg, i.p.), or l-DOPA (12 mg/kg+benserazide, 15 mg/kg, i.p.). On test days, rats were monitored over a 2-h period immediately following the second injection for abnormal involuntary movements (AIMs), analogous to dyskinesia observed in PD patients, and contralateral rotations. The present findings indicate that 5-HT(1A)R stimulation reduces AIMs induced by D1R, D2R and l-DOPA administration while its effects on DA agonist-induced rotations were receptor-dependent, suggesting that direct 5-HT(1A)R and DA receptor interactions may contribute to the unique profile of 5-HT(1A)R agonists for the improvement of PD treatment.

  6. Central alpha 1- and alpha 2-adrenoceptors and brain cholinergic stimulation in sinoaortic denervated rats.

    PubMed

    Taira, C A; Enero, M A

    1994-12-12

    The central alpha-adrenoceptor role in cardiovascular responses to intracerebroventricular (i.c.v.) injection of neostigmine, a tertiary anticholinesterase, was studied in conscious sham-operated and sinoaortic-denervated rats. Neostigmine (0.1-1 micrograms i.c.v.) showed dose-dependent pressor and bradycardiac effects in vehicle-pretreated sham-operated rats but only an increased pressor effect in sinoaortic-denervated animals. The pretreatment with the catecholaminergic neurotoxin, 6-hydroxydopamine (250 micrograms i.c.v.), given 72 h previous to the corresponding operation, blunted the cardiovascular effects of neostigmine in both groups of rats. Prazosin (10 and 30 micrograms i.c.v.), an alpha 1-adrenoceptor antagonist, prevented the pressor response to neostigmine (0.3 micrograms i.c.v.) in sham-operated and sinoaortic-denervated rats. Yohimbine, a alpha 2-adrenoceptor antagonist (10 and 30 micrograms i.c.v.), only prevented the bradycardia induced by neostigmine (0.3 micrograms i.c.v.) in the sham-operated rats. 6-Hydroxydopamine pretreatment lowered the norepinephrine content in hypothalamus, midbrain, medulla oblongata and spinal cord, but did not modify it in the pons, in sham-operated rats and sinoaortic-denervated animals. The present results suggested that brain alpha 1-adrenoceptors would mediate the pressor response to neostigmine (i.c.v.) in sham-operated and sinoaortic-denervated rats and central alpha 2-adrenoceptors mediate the bradycardia in sham-operated rats. This work lends support to the view that cardiovascular responses to brain cholinergic stimulation in sham-operated and sinoaortic-denervated rats could be mediated by a central catecholaminergic activation.

  7. The effects of neurochemical lesioning of dopaminergic terminals in early ontogenesis on behavior in adult rats.

    PubMed

    Shabanov, P D; Lebedev, A A; Meshcherov, Sh K; Strel'tsov, V F

    2005-06-01

    6-Hydroxydopamine, which induces selective degeneration of the dopaminergic system of the brain, was given intraamniotically to rats on days 13 and 17 of intrauterine development at a dose of 75 microg/fetus. Similar experiments were performed with 6-hydroxydopamine on days 4 and 10 of neonatal life. Rats were subsequently reared and motor and emotional (dopamine-dependent) types of behavior were studied in adulthood, addressing behavior in the open field test, rotatory behavior, anxiety in an elevated cross maze, a place-preference conditioned response, acquisition of the ability to differentiate new and old arms in a Y maze, aggressivity in the "foreigner-resident" test, and self-stimulation in a Skinner box. Prenatal exposure, to a lesser extent than postnatal exposure, initiated rotatory and stereotypical behavior, decreased the level of anxiety (fear) in the elevated maze, and reinforced the effects of phenamine in the conditioned place-preference test, impaired the differentiation of old and new Y-maze arms, impaired aggressivity in the "foreigner-resident" test, and impaired self-stimulation of the lateral hypothalamus. It is concluded that the early postnatal period of development is more sensitive to the action of this neurotoxin than the prenatal period. This is associated with the critical periods of the formation of the dopaminergic system during ontogenesis, which depend on synaptogenesis.

  8. In vivo study on the monoamine neurotransmitters and their metabolites change in the striatum of Parkinsonian rats by liquid chromatography with an acetylene black nanoparticles modified electrode.

    PubMed

    Lin, Li; Yang, Jie; Lin, Ruipo; Yu, Li; Gao, Hongchang; Yang, Shulin; Li, Xiaokun

    2013-01-01

    The variation in the concentration of monoamine neurotransmitters and their metabolites in an experimental Parkinsonian animal model established by unilateral 6-hydroxydopamine administration was studied. For the purpose of detecting monoamine neurotransmitters and their metabolites more sensitively, an acetylene black nanoparticles modified electrode was fabricated and used as the working electrode for an electrochemical detector in HPLC. The results indicated that the modified electrode exhibited efficiently electrocatalytic oxidation for monoamine neurotransmitters and their metabolites with relatively high sensitivity, long life, and stability. The linear ranges spanned four orders of magnitude (r>0.998) and the detectability was on the level of 0.1 nmolL(-1). The percent relative standard deviation (%RSD) for each compound at all concentration levels was lower than 2.57% and 1.94% for intra-day and inter-day precision, respectively. The mean recovery values were between 98.75% and 105.25%, and the %RSD was found to be less than 1.02%. Coupled with in vivo microdialysis sampling, the validated method was successfully applied to measure monoamine neurotransmitters and their metabolites in both sides of the striatum of conscious and freely moving Parkinsonian rats, and the extracellular monoamine neurotransmitters and their metabolites in the lesioned-side striatum of unilateral 6-hydroxydopamine-lesioned rats were lower than that in the intact side striatum or in the striatum of control rats.

  9. Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not influence cancer progression.

    PubMed

    Horvathova, Lubica; Tillinger, Andrej; Sivakova, Ivana; Mikova, Lucia; Mravec, Boris; Bucova, Maria

    2015-01-15

    The sympathetic nervous system regulates many immune functions and modulates the anti-tumor immune defense response, too. Therefore, we studied the effect of 6-hydroxydopamine induced sympathectomy on selected hematological parameters and inflammatory markers in rats with Yoshida AH130 ascites hepatoma. We found that chemically sympathectomized tumor-bearing rats had significantly increased neutrophil-to-lymphocyte ratio, leukocyte-to-lymphocyte ratio, and plasma levels of tumor necrosis factor alpha. Although our findings showed that sympathetic denervation in tumor-bearing rats led to increased neutrophil-to-lymphocyte ratio, that is an indicator of the disease progression, we found no significant changes in tumor growth and survival of sympathectomized tumor-bearing rats.

  10. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease

    SciTech Connect

    Wolff, J.A.; Fisher, L.J.; Xu, L.; Jinnah, H.A.; Rosenberg, M.B.; Shimohama, S.; Gage, F.H. ); Langlais, P.J. School of Medicine and Veterans Administration Medical Center, La Jolla San Diego State Univ., CA ); Iuvone, P.M. ); O'Malley, K.L. )

    1989-11-01

    Rat fibroblasts were infected with a retroviral vector containing the cDNA for rat tyrosine hydroxylase. A TH-positive clone was identified by biochemical assay and immunohistochemical staining. When supplemented in vitro with pterin cofactors required for TH activity, these cells produced L-dopa and released it into the cell cultured medium. Uninfected control cells and fibroblasts infected with the TH vector were grafted separately to the caudate of rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway. Only grafts containing TH-expressing fibroblasts were found to reduce rotational asymmetry. These results have general implications for the application of gene therapy to human neurological disease and specific implications for Parkinson disease.

  11. Reduction of GABAergic transmission and alterations in behavior after 6-OHDA treatment of rats.

    PubMed

    Podkletnova, I; Raevsky, V; Alho, H

    1996-07-20

    We studied the effects of neonatal administration of 6-hydroxydopamine (6-OHDA) upon gamma-aminobutyric acid (GABA) and noradrenergic neurotransmission in the developing rat brain. After 6-OHDA administration tyrosine hydroxylase (TH) immunolabelling revealed more than 70% loss of catecholaminergic terminals in cortex. Glutamic acid decarboxylase (GAD) immunolabelling showed that the intensity of staining and the density of labelled terminals were decreased by approximately 50% in the prefrontal cortex of 6-OHDA treated animals, but in visual and somatosensory zones there was no difference between lesioned and control cortex. The open field test revealed an altered development of the searching activity after neonatal 6-OHDA injections. A significant difference was found between 6-OHDA treated and control rats in searching, orienting and skills performance. Our results indicate that the behavioral changes observed in young rats after 6-OHDA treatment may be reflections not only of reduced catecholaminergic transmission but also of GABAergic disturbance, occurring in the frontal cortex.

  12. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties.

    PubMed

    García-Arencibia, Moisés; González, Sara; de Lago, Eva; Ramos, José A; Mechoulam, Raphael; Fernández-Ruiz, Javier

    2007-02-23

    We have recently demonstrated that two plant-derived cannabinoids, Delta9-tetrahydrocannabinol and cannabidiol (CBD), are neuroprotective in an animal model of Parkinson's disease (PD), presumably because of their antioxidant properties. To further explore this issue, we examined the neuroprotective effects of a series of cannabinoid-based compounds, with more selectivity for different elements of the cannabinoid signalling system, in rats with unilateral lesions of nigrostriatal dopaminergic neurons caused by local application of 6-hydroxydopamine. We used the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA), the CB2 receptor agonist HU-308, the non-selective agonist WIN55,212-2, and the inhibitors of the endocannabinoid inactivation AM404 and UCM707, all of them administered i.p. Daily administration of ACEA or WIN55,212-2 did not reverse 6-hydroxydopamine-induced dopamine (DA) depletion in the lesioned side, whereas HU-308 produced a small recovery that supports a possible involvement of CB2 but not CB1 receptors. AM404 produced a marked recovery of 6-hydroxydopamine-induced DA depletion and tyrosine hydroxylase deficit in the lesioned side. Possibly, this is caused by the antioxidant properties of AM404, which are derived from the presence of a phenolic group in its structure, rather than by the capability of AM404 to block the endocannabinoid transporter, because UCM707, another transporter inhibitor devoid of antioxidant properties, did not produce the same effect. None of these effects were observed in non-lesioned contralateral structures. We also examined the timing for the effect of CBD to provide neuroprotection in this rat model of PD. We found that CBD, as expected, was able to recover 6-hydroxydopamine-induced DA depletion when it was administered immediately after the lesion, but it failed to do that when the treatment started 1 week later. In addition, the effect of CBD implied an upregulation of mRNA levels for Cu,Zn-superoxide dismutase

  13. Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson’s Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects

    PubMed Central

    Cerri, Silvia; Greco, Rosaria; Levandis, Giovanna; Ghezzi, Cristina; Mangione, Antonina Stefania; Fuzzati-Armentero, Marie-Therese; Bonizzi, Arianna; Avanzini, Maria Antonietta; Maccario, Rita

    2015-01-01

    Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for Parkinson’s disease (PD) and systemic administration of these cells has been tested in preclinical and clinical studies. However, no information on survival and actual capacity of MSCs to reach the brain has been provided. In this study, we evaluated homing of intraarterially infused rat MSCs (rMSCs) in the brain of rats bearing a 6-hydroxydopamine (6-OHDA)-induced lesion of the nigrostriatal tract, to establish whether the toxin-induced damage is sufficient to grant MSC passage across the blood-brain barrier (BBB) or if a transient BBB disruption is necessary. The rMSC distribution in peripheral organs and the effects of cell infusion on neurodegenerative process and motor deficits were also investigated. rMSCs were infused 14 days after 6-OHDA injection. A hyperosmolar solution of mannitol was used to transiently permeabilize the BBB. Behavioral impairment was assessed by adjusting step test and response to apomorphine. Animals were sacrificed 7 and 28 days after cell infusion. Our work shows that appreciable delivery of rMSCs to the brain of 6-OHDA-lesioned animals can be obtained only after mannitol pretreatment. A notable percentage of infused cells accumulated in peripheral organs. Infusion of rMSCs did not modify the progression of 6-OHDA-induced damage or the motor impairment at the stepping test, but induced progressive normalization of the pathological response (contralateral turning) to apomorphine administration. These findings suggest that many aspects should be further investigated before considering any translation of MSC systemic administration into the clinical setting for PD treatment. Significance This study demonstrates that mesenchymal stem cells infused through the carotid artery do not efficiently cross the blood-brain barrier in rats with a Parkinson’s disease-like degeneration of nigrostriatal neurons, unless a permeabilizing agent (e.g., mannitol) is

  14. Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson's Disease

    PubMed Central

    Bitu Pinto, Natália; da Silva Alexandre, Bruno; Neves, Kelly Rose Tavares; Silva, Aline Holanda; Leal, Luzia Kalyne A. M.; Viana, Glauce S. B.

    2015-01-01

    Camellia sinensis (green tea) is largely consumed, mainly in Asia. It possesses several biological effects such as antioxidant and anti-inflammatory properties. The objectives were to investigate the neuroprotective actions of the standardized extract (CS), epicatechin (EC) and epigallocatechin gallate (EGCG), on a model of Parkinson's disease. Male Wistar rats were divided into SO (sham-operated controls), untreated 6-OHDA-lesioned and 6-OHDA-lesioned treated for 2 weeks with CS (25, 50, or 100 mg/kg), EC (10 mg/kg), or EGCG (10 mg/kg) groups. One hour after the last administration, animals were submitted to behavioral tests and euthanized and their striata and hippocampi were dissected for neurochemical (DA, DOPAC, and HVA) and antioxidant activity determinations, as well as immunohistochemistry evaluations (TH, COX-2, and iNOS). The results showed that CS and catechins reverted behavioral changes, indicating neuroprotection manifested as decreased rotational behavior, increased locomotor activity, antidepressive effects, and improvement of cognitive dysfunction, as compared to the untreated 6-OHDA-lesioned group. Besides, CS, EP, and EGCG reversed the striatal oxidative stress and immunohistochemistry alterations. These results show that the neuroprotective effects of CS and its catechins are probably and in great part due to its powerful antioxidant and anti-inflammatory properties, pointing out their potential for the prevention and treatment of PD. PMID:26167188

  15. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias

    PubMed Central

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson’s disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the anti-parkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2 receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA. PMID:26639458

  16. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Di Paolo, Thérèse

    2016-01-01

    Patients with Parkinson's disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the antiparkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA.

  17. The Role of Primary Motor Cortex (M1) Glutamate and GABA Signaling in l-DOPA-Induced Dyskinesia in Parkinsonian Rats

    PubMed Central

    Conti, Melissa M.; Ostock, Corinne Y.; George, Jessica A.; Goldenberg, Adam A.; Melikhov-Sosin, Mitchell; Nuss, Emily E.

    2016-01-01

    Long-term treatment of Parkinson's disease with l-DOPA almost always leads to the development of involuntary movements termed l-DOPA-induced dyskinesia. Whereas hyperdopaminergic signaling in the basal ganglia is thought to cause dyskinesia, alterations in primary motor cortex (M1) activity are also prominent during dyskinesia, suggesting that the cortex may represent a therapeutic target. The present study used the rat unilateral 6-hydroxydopamine lesion model of Parkinson's disease to characterize in vivo changes in GABA and glutamate neurotransmission within M1 and determine their contribution to behavioral output. 6-Hydroxydopamine lesion led to parkinsonian motor impairment that was partially reversed by l-DOPA. Among sham-lesioned rats, l-DOPA did not change glutamate or GABA efflux. Likewise, 6-hydroxydopamine lesion did not impact GABA or glutamate among rats chronically treated with saline. However, we observed an interaction of lesion and treatment whereby, among lesioned rats, l-DOPA given acutely (1 d) or chronically (14–16 d) reduced glutamate efflux and enhanced GABA efflux. Site-specific microinjections into M1 demonstrated that l-DOPA-induced dyskinesia was reduced by M1 infusion of a D1 antagonist, an AMPA antagonist, or a GABAA agonist. Overall, the present study demonstrates that l-DOPA-induced dyskinesia is associated with increased M1 inhibition and that exogenously enhancing M1 inhibition may attenuate dyskinesia, findings that are in agreement with functional imaging and transcranial magnetic stimulation studies in human Parkinson's disease patients. Together, our study suggests that increasing M1 inhibitory tone is an endogenous compensatory response designed to limit dyskinesia severity and that potentiating this response is a viable therapeutic strategy. SIGNIFICANCE STATEMENT Most Parkinson's disease patients will receive l-DOPA and eventually develop hyperkinetic involuntary movements termed dyskinesia. Such symptoms can be as

  18. Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson's Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties

    PubMed Central

    Ximenes, José Christian Machado; Neves, Kelly Rose Tavares; Leal, Luzia Kalyne A. M.; do Carmo, Marta Regina Santos; Brito, Gerly Anne de Castro; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Ésper Abrão; Viana, Glauce Socorro de Barros

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder where the main hallmark is the dopaminergic neuronal loss. Besides motor symptoms, PD also causes cognitive decline. Although current therapies focus on the restoration of dopamine levels in the striatum, prevention or disease-modifying therapies are urgently needed. Valproic acid (VA) is a wide spectrum antiepileptic drug, exerting many biochemical and physiological effects. It has been shown to inhibit histone deacetylase which seems to be associated with the drug neuroprotective action. The objectives were to study the neuroprotective properties of VA in a model of Parkinson's disease, consisting in the unilateral striatal injection of the neurotoxin 6-OHDA. For that, male Wistar rats (250 g) were divided into the groups: sham-operated (SO), untreated 6-OHDA-lesioned, and 6-OHDA-lesioned treated with VA (25 or 50 mg/kg). Oral treatments started 24 h after the stereotaxic surgery and continued daily for 2 weeks, when the animals were subjected to behavioral evaluations (apomorphine-induced rotations and open-field tests). Then, they were sacrificed and had their mesencephalon, striatum, and hippocampus dissected for neurochemical (DA and DOPAC determinations), histological (Fluoro-Jade staining), and immunohistochemistry evaluations (TH, OX-42, GFAP, TNF-alpha, and HDAC). The results showed that VA partly reversed behavioral and neurochemical alterations observed in the untreated 6-OHDA-lesioned rats. Besides, VA also decreased neuron degeneration in the striatum and reversed the TH depletion observed in the mesencephalon of the untreated 6-OHDA groups. This neurotoxin increased the OX-42 and GFAP immunoreactivities in the mesencephalon, indicating increased microglia and astrocyte reactivities, respectively, which were reversed by VA. In addition, the immunostainings for TNF-alpha and HDAC demonstrated in the untreated 6-OHDA-lesioned rats were also decreased after VA treatments. These results were

  19. Sympathetic neural control of indoleamine metabolism in the rat pineal gland

    NASA Technical Reports Server (NTRS)

    Lynch, H. J.; Hsuan, M.; Wurtman, R. J.

    1975-01-01

    The mechanisms responsible for the acceleration in rat pineal biosynthetic activity in response to prolonged exposure to darkness or to immobilization were investigated in animals whose pineals were surgically denervated. Some animals were adrenalectomized to remove one potential source of circulating catecholamines, and some were subjected to a partial chemical sympathectomy accomplished by a series of intravenous injections of 6-hydroxydopamine. Results suggest that N-acetyltransferase (NAT) activity can be enhanced either by release of norepinephrine from sympathetic terminals within the pineal or from sympathetic nerve terminals elsewhere. The stress of immobilization stimulates the pineal by increasing circulating catecholamines. Photic control of pineal function requires intact pineal sympathetic innervation, since the onset of darkness apparently does not cause a sufficient rise in circulating catecholamines to stimulate the pineal. The present studies suggest that nonspecific stress triggers increased biosynthesis and secretion of melatonin; it is possible that this hormone may participate in mechanisms of adaptation.

  20. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  1. Mitochondrial Dynamics and Mitophagy in the 6-Hydroxydopamine Preclinical Model of Parkinson's Disease

    PubMed Central

    Galindo, Maria F.; Solesio, Maria E.; Atienzar-Aroca, Sandra; Zamora, Maria J.; Jordán Bueso, Joaquín

    2012-01-01

    We discuss the participation of mitochondrial dynamics and autophagy in the 6-hydroxidopamine-induced Parkinson's disease model. The regulation of dynamic mitochondrial processes such as fusion, fission, and mitophagy has been shown to be an important mechanism controlling cellular fate. An imbalance in mitochondrial dynamics may contribute to both familial and sporadic neurodegenerative diseases including Parkinson's disease. With special attention we address the role of second messengers as the role of reactive oxygen species and the mitochondria as the headquarters of cell death. The role of molecular signaling pathways, for instance, the participation of Dynamin-related protein 1(Drp1), will also be addressed. Furthermore evidence demonstrates the therapeutic potential of small-molecule inhibitors of mitochondrial division in Parkinson's disease. For instance, pharmacological inhibition of Drp1, through treatment with the mitochondrial division inhibitor-1, results in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. Deciphering the signaling cascades that underlie mitophagy triggered by 6-OHDA, as well as the mechanisms that determine the selectivity of this response, will help to better understand this process and may have impact on human treatment strategies of Parkinson's disease. PMID:22966477

  2. Mitochondrial dynamics and mitophagy in the 6-hydroxydopamine preclinical model of Parkinson's disease.

    PubMed

    Galindo, Maria F; Solesio, Maria E; Atienzar-Aroca, Sandra; Zamora, Maria J; Jordán Bueso, Joaquín

    2012-01-01

    We discuss the participation of mitochondrial dynamics and autophagy in the 6-hydroxidopamine-induced Parkinson's disease model. The regulation of dynamic mitochondrial processes such as fusion, fission, and mitophagy has been shown to be an important mechanism controlling cellular fate. An imbalance in mitochondrial dynamics may contribute to both familial and sporadic neurodegenerative diseases including Parkinson's disease. With special attention we address the role of second messengers as the role of reactive oxygen species and the mitochondria as the headquarters of cell death. The role of molecular signaling pathways, for instance, the participation of Dynamin-related protein 1(Drp1), will also be addressed. Furthermore evidence demonstrates the therapeutic potential of small-molecule inhibitors of mitochondrial division in Parkinson's disease. For instance, pharmacological inhibition of Drp1, through treatment with the mitochondrial division inhibitor-1, results in the abrogation of mitochondrial fission and in a decrease of the number of autophagic cells. Deciphering the signaling cascades that underlie mitophagy triggered by 6-OHDA, as well as the mechanisms that determine the selectivity of this response, will help to better understand this process and may have impact on human treatment strategies of Parkinson's disease.

  3. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465

  4. A Novel Immunosuppressor, (5R)-5-Hydroxytriptolide, Alleviates Movement Disorder and Neuroinflammation in a 6-OHDA Hemiparkinsonian Rat Model

    PubMed Central

    Su, Ruijun; Sun, Min; Wang, Wei; Zhang, Jianliang; Zhang, Li; Zhen, Junli; Qian, Yanjing; Zheng, Yan; Wang, Xiaomin

    2017-01-01

    Parkinson’s disease (PD) is one of the most common age-related neurodegenerative diseases. Promising therapies for PD still need to be explored. Immune dysfunction has been found to be involved in PD pathogenesis. Here, a novel immunosuppressor, (5R)-5-hydroxytriptolide (LLDT8), was used to treat 6-hydroxydopamine (6-OHDA)-induced hemiparkinson rats. We found that oral administration of LLDT8 significantly alleviated apomorphine-induced rotations at a dose of 125 µg/kg, and improved performance in cylinder and rotarod tests at a lower dose of 31.25 µg/kg, in 6-OHDA hemiparkinsonian rats. Moreover, loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the 6-OHDA rat was attenuated in response to LLDT8 treatment in a dose-dependent manner. In addition, inflammatory factors IL-1β, IL-6 and TNF-α, were significantly inhibited in LLDT8-treated hemiparkisonian rats, compared with vehicle. Notably, the level of dopamine (DA) in the striatum of PD rats was restored by LLDT8 treatment. Furthermore, we also detected that the disequilibrium of peripheral lymphocytes was reversed by LLDT8 administration. Taken together, the results imply that the immunosuppressor, LLDT8, can rescue dopaminergic neurodegeneration in 6-OHDA hemiparkinsonian rats, thus providing a potential therapeutic strategy for PD. PMID:28203480

  5. A Novel Immunosuppressor, (5R)-5-Hydroxytriptolide, Alleviates Movement Disorder and Neuroinflammation in a 6-OHDA Hemiparkinsonian Rat Model.

    PubMed

    Su, Ruijun; Sun, Min; Wang, Wei; Zhang, Jianliang; Zhang, Li; Zhen, Junli; Qian, Yanjing; Zheng, Yan; Wang, Xiaomin

    2017-02-01

    Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases. Promising therapies for PD still need to be explored. Immune dysfunction has been found to be involved in PD pathogenesis. Here, a novel immunosuppressor, (5R)-5-hydroxytriptolide (LLDT8), was used to treat 6-hydroxydopamine (6-OHDA)-induced hemiparkinson rats. We found that oral administration of LLDT8 significantly alleviated apomorphine-induced rotations at a dose of 125 µg/kg, and improved performance in cylinder and rotarod tests at a lower dose of 31.25 µg/kg, in 6-OHDA hemiparkinsonian rats. Moreover, loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the 6-OHDA rat was attenuated in response to LLDT8 treatment in a dose-dependent manner. In addition, inflammatory factors IL-1β, IL-6 and TNF-α, were significantly inhibited in LLDT8-treated hemiparkisonian rats, compared with vehicle. Notably, the level of dopamine (DA) in the striatum of PD rats was restored by LLDT8 treatment. Furthermore, we also detected that the disequilibrium of peripheral lymphocytes was reversed by LLDT8 administration. Taken together, the results imply that the immunosuppressor, LLDT8, can rescue dopaminergic neurodegeneration in 6-OHDA hemiparkinsonian rats, thus providing a potential therapeutic strategy for PD.

  6. Direct and indirect cardiovascular actions of cathinone and MDMA in the anaesthetized rat.

    PubMed

    Alsufyani, Hadeel A; Docherty, James R

    2015-07-05

    The stimulants cathinone (from Khat leaves) and methylenedioxymeth-amphetamine (MDMA) produce adrenoceptor mediated tachycardia and vasopressor actions that may be the result of direct receptor stimulation, actions on the noradrenaline transporter, and/or displacement of noradrenaline from nerve terminals. Effects of cathinone or MDMA were compared with those of the indirect sympathomimetic tyramine. Male Wistar rats were anaesthetized with pentobarbitone for blood pressure and heart rate recording. Some rats were sympathectomised by treatment with 6-hydroxydopamine. In the anaesthetised rat, cathinone, MDMA and tyramine (all 0.001-1 mg/kg) produced marked tachycardia, tyramine produced marked pressor responses and MDMA produced small pressor responses. The tachycardia to cathinone and MDMA was almost abolished by propranolol (1mg/kg). Pretreatment with cocaine (1mg/kg) did not significantly affect the tachycardia to cathinone or MDMA, but reduced the response to tyramine. However, in sympathectomised rats, the tachycardia to cathinone or MDMA was markedly attenuated, but the tachycardia to tyramine was only partially reduced. Blood pressure effects of tyramine and MDMA were also markedly attenuated by sympathectomy. The results demonstrate firstly that cocaine may not be the most suitable agent for assessing direct versus indirect agonism in cardiovascular studies. Secondly, the use of chemical sympathectomy achieved the desired goal of demonstrating that cardiac β-adrenoceptor mediated actions of cathinone and MDMA are probably largely indirect.

  7. Exercise alters resting-state functional connectivity of motor circuits in parkinsonian rats.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I; Holschneider, Daniel P

    2015-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson's disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (1) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (2) emergence of the ventrolateral striatum as a new broadly connected network hub; and (3) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the parkinsonian rats, which could underlie recovery in motor functions observed in these animals.

  8. Arachidonic acid incorporation and turnover is decreased in sympathetically denervated rat heart.

    PubMed

    Patrick, Casey B; McHowat, Jane; Rosenberger, Thad A; Rapoport, Stanley I; Murphy, Eric J

    2005-06-01

    Heart sympathetic denervation can accompany Parkinson's disease, but the effect of this denervation on cardiac lipid-mediated signaling is unknown. To address this issue, rats were sympathetically denervated with 6-hydroxydopamine (6-OHDA, 50 mg/kg ip) and infused with 170 muCi/kg of either [1-(14)C]palmitic acid ([1-(14)C]16:0) or [1-(14)C]arachidonic acid ([1-(14)C]20:4 n-6), and kinetic parameters were assessed using a steady-state radiotracer model. Heart norepinephrine and epinephrine levels were decreased 82 and 85%, respectively, in denervated rats, and this correlated with a 34% reduction in weight gain in treated rats. Fatty acid tracer uptake was not significantly different between groups for either tracer, although the dilution coefficient lambda was increased in [1-(14)C]20:4 n-6-infused rats, which indicates that less 20:4 n-6 was recycled in denervated rats. In [1-(14)C]16:0-infused rats, incorporation rate and turnover values of 16:0 in stable lipid compartments were unchanged, which is indicative of preservation of beta-oxidation. In [1-(14)C]20:4 n-6-infused rats, there were dramatic reductions in incorporation rate (60-84%) and turnover value (56-85%) in denervated rats that were dependent upon the lipid compartment. In addition, phospholipase A(2) activity was reduced 40% in treated rats, which is consistent with the reduction observed in 20:4 n-6 turnover. These results demonstrate marked reductions in 20:4 n-6 incorporation rate and turnover in sympathetic denervated rats and thereby suggest an effect on lipid-mediated signal transduction mediated by a reduction in phospholipase A(2) activity.

  9. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    PubMed Central

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  10. Assessment of recovery in the hemiparkinson rat: drug-induced rotation is inadequate.

    PubMed

    Castañeda, Eddie; Fleming, Sheila; Paquette, Melanie A; Boat, Kim; Moffett, John; Stachowiak, Ewa K; Bloom, David C; Stachowiak, Michal K

    2005-03-31

    Recovery from apomorphine-induced rotational behavior was compared to sensorimotor and motor function in hemiparkinsonian rats receiving intrastriatal grafts of astrocytes expressing recombinant tyrosine hydroxylase (TH) or control beta-galactosidase (beta-gal). Rats received unilateral intranigral infusions of 6-hydroxydopamine (6-OHDA). Animals with large lesions, as determined by apomorphine-induced rotation, received grafts of astrocytes into the denervated striatum. Behavioral recovery was assessed on days 14-16 post-transplantation using apomorphine-induced rotation, somatosensory neglect, and reaching for pellets using the Montoya staircase method. Rats that received transplants of TH-transfected astrocytes showed a 34% decrease in rotational behavior, but no consistent recovery of somatosensory neglect or skilled reaching. Post-mortem histological analyses revealed survival of grafted astrocytes in host striatum and expression of TH at 17 days post-transplantation. We suggest that TH-expressing astrocytes may reverse post-synaptic dopamine (DA) receptor supersensitivity; however, sensorimotor and motor abilities are not restored due to a failure by TH-expressing astrocytes to reestablish dopaminergic circuitry. The present results demonstrate the need to utilize a variety of sensory and motor behavioral tests that cohesively provide greater interpretability than a single behavioral measure used in isolation, such as drug-induced rotational behavior, to assess the efficacy of experimental gene therapies.

  11. Changes in activity and structure of jaw muscles in Parkinson's disease model rats.

    PubMed

    Nakamura, S; Kawai, N; Ohnuki, Y; Saeki, Y; Korfage, J A M; Langenbach, G E J; Kitayama, T; Watanabe, M; Sano, R; Tanne, K; Tanaka, E

    2013-03-01

    Parkinson's disease (PD), a major neurological disease, is characterised by a marked loss of dopaminergic neurons in the substantia nigra. Patients with PD frequently show chewing and swallowing dysfunctions, but little is known about the characteristics of their stomatognathic functions. The purpose of this study was to evaluate the influence of PD on jaw muscle fibre and functions. PD model rats were made by means of the injection of 6-hydroxydopamine (6-OHDA) into the striatum of 8-week-old Sprague-Dawley male rats. Five weeks after the injection, a radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter and anterior belly of digastric muscles. Muscle activity was recorded for 3 days and was evaluated by the total duration of muscle activity per day (duty time). After recording the muscle activities, jaw muscles were isolated for immunohistochemical and PCR analyses. In PD model rats, the following findings of the digastrics muscles verify that compared to the control group: (i) the higher duty time exceeding 5% of the peak activity level, (ii) the higher expression of the mRNA of myosin heavy chain type I, and (iii) the tendency for fast to slow fibre-type transition. With respect to the masseter muscle, there were no significant differences in all analyses. In conclusion, PD leads to the changes in the jaw behaviours, resulting in a PD-specific chewing and swallowing dysfunctions.

  12. Using Gelatin Nanoparticle Mediated Intranasal Delivery of Neuropeptide Substance P to Enhance Neuro-Recovery in Hemiparkinsonian Rats

    PubMed Central

    Xiang, Qi; Yu, Wen-Ze; Lin, Qian; Tian, Fu-Rong; Mao, Kai-Li; Lv, Chuan-Zhu; Wáng, Yi-Xiáng J.; Lu, Cui-Tao

    2016-01-01

    Purpose Intranasal administration of phospholipid-based gelatin nanoparticles (GNP) was prepared to investigate the neuro-recovery effects of neuropeptide Substance P (SP) on hemiparkinsonian rats. Methods The SP-loaded gelatin nanoparticles (SP-GNP) were prepared by a water-in-water emulsion method and possessed high stability, encapsulating efficiency and loading capacity. PC-12 cells were used to examine the growth enhancement of SP-GNP in vitro by MTT assays and flow cytometry (FCM). The therapeutic effects of SP-GNP on 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats were assessed by quantifying rotational behavior and the levels of tyrosine hydroxylase (TH), phosphorylated c-Jun protein (p-c-Jun) and Caspase-3 (Cas-3) expressed in substantia nigra (SN) region of hemiparkinsonian rats. Results PC-12 cells under SP-GNP treatment showed better cell viability and lower degree of apoptosis than those under SP solution treatment. Hemiparkinsonian rats under intranasal SP-GNP administration demonstrated better behavioral improvement, higher level of TH in SN along with much lower extent of p-c-Jun and Cas-3 than those under intranasal SP solution administration and intravenous SP-GNP administration. Conclusions With the advantages of GNP and nose-to-brain pathway, SP can be effectively delivered into the damaged SN region and exhibit its neuro-recovery function through the inhibition on JNK pathway and dopaminergic neuron apoptosis. PMID:26894626

  13. Deep brain stimulation exacerbates hypokinetic dysarthria in a rat model of Parkinson's disease.

    PubMed

    King, Nathaniel O; Anderson, Collin J; Dorval, Alan D

    2016-02-01

    Motor symptoms of Parkinson's disease (PD) follow the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Deep brain stimulation (DBS) treats some parkinsonian symptoms, such as tremor, rigidity, and bradykinesia, but may worsen certain medial motor symptoms, including hypokinetic dysarthria. The mechanisms by which DBS exacerbates dysarthria while improving other symptoms are unclear and difficult to study in human patients. This study proposes an animal model of DBS-exacerbated dysarthria. We use the unilateral, 6-hydroxydopamine (6-OHDA) rat model of PD to test the hypothesis that DBS exacerbates quantifiable aspects of vocalization. Mating calls were recorded from sexually experienced male rats under healthy and parkinsonian conditions and during DBS of the subthalamic nucleus. Relative to healthy rats, parkinsonian animals made fewer calls with shorter and less complex vocalizations. In the parkinsonian rats, putatively therapeutic DBS further reduced call frequency, duration, and complexity. The individual utterances of parkinsonian rats spanned a greater bandwidth than those of healthy rats, potentially reducing the effectiveness of the vocal signal. This utterance bandwidth was further increased by DBS. We propose that the parkinsonism-associated changes in call frequency, duration, complexity, and dynamic range combine to constitute a rat analog of parkinsonian dysarthria. Because DBS exacerbates the parkinsonism-associated changes in each of these metrics, the subthalamic stimulated 6-OHDA rat is a good model of DBS-induced hypokinetic dysarthria in PD. This model will help researchers examine how DBS alleviates many motor symptoms of PD while exacerbating parkinsonian speech deficits that can greatly diminish patient quality of life.

  14. Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels.

    PubMed

    Bido, Simone; Marti, Matteo; Morari, Michele

    2011-09-01

    Amantadine is the only drug marketed for treating levodopa-induced dyskinesia. However, its impact on basal ganglia circuitry in the dyskinetic brain, particularly on the activity of striatofugal pathways, has not been evaluated. We therefore used dual probe microdialysis to investigate the effect of amantadine on behavioral and neurochemical changes in the globus pallidus and substantia nigra reticulata of 6-hydroxydopamine hemi-lesioned dyskinetic mice and rats. Levodopa evoked abnormal involuntary movements (AIMs) in dyskinetic mice, and simultaneously elevated GABA release in substantia nigra reticulata (∼3-fold) but not globus pallidus. Glutamate levels were unaffected in both areas. Amantadine (40 mg/kg, i.p.), ineffective alone, attenuated (∼50%) AIMs expression and prevented the GABA rise. Moreover, it unraveled a facilitatory effect of levodopa on pallidal glutamate levels. Levodopa also evoked AIMs expression and a GABA surge (∼2-fold) selectively in the substantia nigra of dyskinetic rats. However, different from mice, glutamate levels rose simultaneously. Amantadine, ineffective alone, attenuated (∼50%) AIMs expression preventing amino acid increase and leaving unaffected pallidal glutamate. Overall, the data provide neurochemical evidence that levodopa-induced dyskinesia is accompanied by activation of the striato-nigral pathway in both mice and rats, and that the anti-dyskinetic effect of amantadine partly relies on the modulation of this pathway.

  15. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.

    PubMed

    Müller, Janine; Ossig, Christiana; Greiner, Johannes F W; Hauser, Stefan; Fauser, Mareike; Widera, Darius; Kaltschmidt, Christian; Storch, Alexander; Kaltschmidt, Barbara

    2015-01-01

    Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.

  16. Chemical sympathectomy restores baroreceptor-heart rate reflex and heart rate variability in rats with chronic nitric oxide deficiency.

    PubMed

    Chaswal, M; Das, S; Prasad, J; Katyal, A; Fahim, M

    2015-01-01

    Nitric oxide (NO) plays a crucial role not only in regulation of blood pressure but also in maintenance of cardiac autonomic tone and its deficiency induced hypertension is accompanied by cardiac autonomic dysfunction. However, underlying mechanisms are not clearly defined. We hypothesized that sympathetic activation mediates hemodynamic and cardiac autonomic changes consequent to deficient NO synthesis. We used chemical sympathectomy by 6-hydroxydopamine to examine the influence of sympathetic innervation on baroreflex sensitivity (BRS) and heart rate variability (HRV) of chronic N(G)-nitro-L-arginine methyl ester (L-NAME) treated adult Wistar rats. BRS was determined from heart rate responses to changes in systolic arterial pressure achieved by intravenous administration of phenylephrine and sodium nitroprusside. Time and frequency domain measures of HRV were calculated from 5-min electrocardiogram recordings. Chronic L-NAME administration (50 mg/kg per day for 7 days orally through gavage) in control rats produced significant elevation of blood pressure, tachycardia, attenuation of BRS for bradycardia and tachycardia reflex and fall in time as well as frequency domain parameters of HRV. Sympathectomy completely abolished the pressor as well as tachycardic effect of chronic L-NAME. In addition, BRS and HRV improved after removal of sympathetic influence in chronic L-NAME treated rats. These results support the concept that an exaggerated sympathetic activity is the principal mechanism of chronic L-NAME hypertension and associated autonomic dysfunction.

  17. Role of the sympatho-adrenal system in the reflex tachycardia produced by hydralazine in the anesthetized rat.

    PubMed

    Vidrio, H; García-Márquez, F

    1986-09-01

    The role of the sympatho-adrenal system in the production of tachycardia accompanying the hypotensive response to hydralazine was studied in urethane-anesthetized rats subjected to previous bilateral adrenal demedullation or to pretreatment with 6-hydroxydopamine and compared with intact control animals. The prolonged hypotension induced by the vasodilator was not affected by these maneuvers, but the slowly developing tachycardia was reversed to bradycardia, which in the demedullated group was followed after 60 min by a moderate increase in heart rate. In the chemically sympathectomized rats, the cardiac depressant response was completely blocked by pretreatment with atropine. In additional experiments, previous administration of methylatropine enhanced hydralazine tachycardia, but atropine partially inhibited this response and changed its time course to mirror that of the hypotension. These results indicate that in urethane-anesthetized rats, hydralazine tachycardia is mediated by sympatho-adrenal activation and that it is accompanied by a simultaneous heart rate-lowering parasympathetic discharge normally masked by the predominant tachycardia. They further suggest that the tachycardia is facilitated by a muscarinic mechanism which modulates central sympathetic influences on cardiovascular function.

  18. Role of putative neurotransmitters in the central gastric antisecretory effect of prostaglandin E2 in rats.

    PubMed Central

    Puurunen, J.

    1985-01-01

    The role of putative neurotransmitters of the central nervous system in the central gastric antisecretory effect of prostaglandin E2 (PGE2) was investigated in pylorus-ligated rats. Pretreatment of the rats with an intracerebroventricular (i.c.v.) injection of 6-hydroxydopamine (6-OHDA) prevented the antisecretory effect of the i.c.v. administration of PGE2, whereas pretreatment with 5,6-dihydroxytryptamine (5,6-DHT) plus p-chlorophenylalanine (PCPA) had no effect. I.c.v.-administered phentolamine and idazoxan antagonized the inhibition of gastric secretion induced by i.c.v. PGE2, whereas prazosin, propranolol and sulpiride injected via the same route were ineffective. Diphenhydramine, cimetidine, naloxone and theophylline, all administered i.c.v., did not modify the antisecretory effect of i.c.v. PGE2. The results suggest that an activation of alpha 2-adrenoceptors in the brain is involved in the central gastric antisecretory effect of PGE2, whereas neither central 5-hydroxytryptamine receptors, alpha 1- or beta-adrenoceptors, D2-dopamine receptors, histamine or opioid receptors nor adenosine seem to play any role here. PMID:2862940

  19. Effects of dorsal hippocampus catecholamine depletion on paired-associates learning and place learning in rats.

    PubMed

    Roschlau, Corinna; Hauber, Wolfgang

    2017-04-14

    Growing evidence suggests that the catecholamine (CA) neurotransmitters dopamine and noradrenaline support hippocampus-mediated learning and memory. However, little is known to date about which forms of hippocampus-mediated spatial learning are modulated by CA signaling in the hippocampus. Therefore, in the current study we examined the effects of 6-hydroxydopamine-induced CA depletion in the dorsal hippocampus on two prominent forms of hippocampus-based spatial learning, that is learning of object-location associations (paired-associates learning) as well as learning and choosing actions based on a representation of the context (place learning). Results show that rats with CA depletion of the dorsal hippocampus were able to learn object-location associations in an automated touch screen paired-associates learning (PAL) task. One possibility to explain this negative result is that object-location learning as tested in the touchscreen PAL task seems to require relatively little hippocampal processing. Results further show that in rats with CA depletion of the dorsal hippocampus the use of a response strategy was facilitated in a T-maze spatial learning task. We suspect that impaired hippocampus CA signaling may attenuate hippocampus-based place learning and favor dorsolateral striatum-based response learning.

  20. Cytoarchitectural impairments in the medium spiny neurons of the Nucleus Accumbens core of hyperactive juvenile rats.

    PubMed

    González-Burgos, I; García-Martínez, S; Velázquez-Zamora, D A; Ponce-Rolón, R

    2010-10-01

    Dopaminergic activity in the Nucleus Accumbens has been strongly implicated in the motor hyperactivity associated with Attention deficit hyperactivity disorder. Dopaminergic and glutamatergic terminals converge on the dendritic spines of medium spiny neurons of the nucleus accumbens core, which modulate the excitatory glutamatergic activity. In this work, a Golgi study was carried out to investigate the effects of dopamine depletion on the cytoarchitecture of dendritic spines of nucleus accumbens core medium spiny neurons. The dopaminergic system of newborn male rats was lesioned intracisternally by using 6-hydroxydopamine, and subsequently, the motor activity, spine density, and the proportion of thin, stubby, mushroom, wide, branched, and double spines was compared to those in control and intact animals. Motor activity was significantly increased in the dopamine-depleted animals and while the spine density was reduced, there was no change in the proportion of the specific types of spines. Larger thin spines were observed in the dopamine-depleted animals. Indeed, dopamine depletion may lead to spine retraction due to the disregulation of spine development, and/or an increase in glutamatergic activity. The enlargement of thin spines may suggest a compensatory mechanism to increase the efficiency of synaptic inputs in response to a decrease in spines number. Together, the present findings suggest an alteration to the excitatory/inhibitory balance on dendritic spines of medium spiny neurons of the nucleus accumbens core in hyperactive juvenile rats following early dopamine depletion.

  1. The atypical dopamine D1 receptor agonist SKF 83959 induces striatal Fos expression in rats.

    PubMed

    Wirtshafter, David; Osborn, Catherine V

    2005-12-28

    The effects of dopamine D1 receptor agonists are often presumed to result from an activation of adenylyl cyclase, but dopamine D1 receptors may also be linked to other signal transduction cascades and the relative importance of these various pathways is currently unclear. SKF 83959 is an agonist at dopamine D1 receptors linked to phospholipase C, but has been reported to be an antagonist at receptors linked to adenylyl cyclase. The current report demonstrates that SKF 83959 induces pronounced, nonpatchy, expression of the immediate-early gene product Fos in the striatum of intact rats which can be converted to a patchy pattern by pretreatment with the dopamine D2-like receptor agonist quinpirole. In rats with unilateral 6-hydroxydopamine lesions SKF 83959 induces strong behavioral rotation and a greatly potentiated Fos response. All of the responses to SKF 83959, in both intact and dopamine-depleted animals, can be blocked by pretreatment with the dopamine D1 receptor antagonist SCH-23390. In intact subjects, SKF 83959 induced Fos expression less potently than the standard dopamine D1 receptor agonist SKF 82958, but the two drugs were approximately equipotent in deinnervated animals. These results demonstrate for the first time that possession of full efficacy at dopamine D1 receptors linked to adenylyl cyclase is not a necessary requirement for the induction of striatal Fos expression in intact animals and suggest that alternative signal transduction pathways may play a role in dopamine agonist induced Fos expression, especially in dopamine-depleted subjects.

  2. The restorative effect of intramuscular injection of tetanus toxin C-fragment in hemiparkinsonian rats.

    PubMed

    Sánchez-González, Alejandra; Mendieta, Liliana; Palafox, Victoria; Candalija, Anna; Luna, Félix; Aguilera, José; Limón, Ilhuicamina Daniel

    2014-07-01

    The C-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) is a peptide that has a neuroprotective action against dopaminergic damage by MPP(+), both in vitro and in vivo. The trophic effects of Hc-TeTx have been related to its ability to activate the pathways of the tropomyosin receptor kinase, which are crucial for survival process. Our group had previously shown neuroprotective effect of intramuscular Hc-TeTx treatment on animals with a dopaminergic lesion; however, there is no evidence indicating its restorative effects on advanced dopaminergic neurodegeneration. The aim of our study was to examine the restorative effects of an intramuscular injection of the Hc-TeTx fragment on the nigrostriatal system of hemiparkinsonian rats. The animals were administered with a vehicle or Hc-TeTx (20μg/kg) in the gastrocnemius muscle for three consecutive days post-dopaminergic lesion, which was made using 6-hydroxydopamine. Post-Hc-TeTx treatment, the hemiparkinsonian rats showed constant motor asymmetry. Moreover, the ipsilateral striatum of the post-Hc-TeTx group had a lower number of argyrophilic structures and a major immunorreactivity to Tyrosine Hydroxylase in the striatum and the substantia nigra pars compacta compared to the 6-OHDA group. Our results show the restorative effect of the Hc-TeTx fragment during the dopaminergic neurodegeneration caused by 6-OHDA.

  3. Adrenergically mediated intrapancreatic control of the glucagon response to glucopenia in the isolated rat pancreas.

    PubMed Central

    Hisatomi, A; Maruyama, H; Orci, L; Vasko, M; Unger, R H

    1985-01-01

    Alpha adrenergic blockade with phentolamine (10 microM) reduces the glucagon response to severe glucopenia (from 150 to 25 mg/dl) to 22% of the control values in the isolated perfused rat pancreas. Propranolol (10 microM) had no significant effect. Neither alpha nor beta adrenergic blockade reduced the magnitude of glucopenic suppression of insulin secretion, but phentolamine increased insulin levels before and during glucopenia. The pattern of somatostatin secretion in these experiments resembled that of insulin. Depletion of norepinephrine from sympathetic nerve endings by pretreatment with 6-hydroxydopamine lowered the pancreatic norepinephrine content to less than 20% of control values and reduced the glucagon response to glucopenia to 69% of the controls. Combined alpha and beta adrenergic blockade during less severe glucopenia (from 120 to 60 mg/dl) reduced the glucagon response to 21% of controls. However, slight glucopenia (from 100 to 80 mg/dl), which elicited only 11% increase in glucagon in the control experiments, was not altered significantly by combined alpha and beta adrenergic blockade. Morphologic studies of adrenergic nerve terminals labeled with [3H]norepinephrine revealed associations with alpha cells. It is concluded that in the isolated rat pancreas adrenergic mediation accounts for most of the glucagon but not insulin response to glucopenia. It is controlled within the pancreas itself, possibly through a direct enhancement by glucopenia of norepinephrine release from nerve endings. Images PMID:2857731

  4. Cardiovascular effects of (-)-11-OH-delta 8-tetrahydrocannabinol-dimethylheptyl in rats.

    PubMed

    Vidrio, H; Sánchez-Salvatori, M A; Medina, M

    1996-08-01

    The effects of the stereochemically pure psychoactive cannabinoid (-)-11-OH-delta 8-tetrahydrocannabinol-dimethylheptyl (HU-210) on blood pressure (BP) and heart rate (HR) were determined in rats. In pentobarbital-anesthetized animals, the compound produced dose-related, long-lasting hypotension and bradycardia at doses between 10 and 1,000 micrograms/kg. BP began to decrease immediately after drug administration, and in no case was an initial pressor response observed. Previous vagotomy (VX) or pretreatment with 6-hydroxydopamine (6-OHDA) did not affect hypotension. Bradycardia was inhibited by VX, but only 60 min after administration of HU-210; it was enhanced by 6-OHDA. The cannabinoid blocked reflex bradycardia induced by phenylephrine (PE). HU-210 also decreased BP and HR in conscious rats. Hypotension lasted 2 h, whereas bradycardia was still present 8 h after drug administration. HU-210 thus shares with delta 9-tetrahydrocannabinol (THC) the ability to decrease BP and HR, but is 5-10 times more potent than the natural compound. Its lack of an initial pressor effect, such as that described for THC, could be related to its specificity for the type-1 cannabinoid (CB1) receptor. Hypotension and bradycardia after HU-210 administration are not due to sympathetic withdrawal. Enhanced parasympathetic tone is involved in bradycardia only at a late stage of the response.

  5. Effects of Zhichan powder on signal transduction and apoptosis-associated gene expression in the substantia nigra of Parkinson's disease rats

    PubMed Central

    Chen, Jiajun; Ma, Jinshu; Qiu, Yafei; Yi, Shihong; Liu, Yongmao; Zhou, Qingwei; Zhang, Pengguo; Wan, Quan; Kuang, Ye

    2012-01-01

    Previous studies have shown that Zhichan powder elevated immunity and suppressed oxidation in mice. Rat models of Parkinson’s disease were induced by stereotaxically injecting 6-hydroxydopamine into the substantia nigra. The rat models were intragastrically treated with Zhichan powder, which is composed of milkvetch root, ginseng, bunge swallowwort root, himalayan teasel root, Magnolia officinalis, Ligustrum lucidum Ait. and szechwan lovage rhizome. Immunohistochemistry and reverse transcription-PCR results demonstrated that mRNA and protein expression of tumor necrosis factor receptor 1, Fas, caspase-8, cytochrome C, Bax, caspase-3, and p53 significantly increased, but Bcl-2 expression significantly decreased in the substantia nigra of rats with Parkinson’s disease. Following Zhichan powder administration, mRNA and protein expression of tumor necrosis factor receptor 1, Fas, caspase-8, cytochrome C, Bax, caspase-3, and p53 diminished, but Bcl-2 expression increased in the rat substantia nigra. These results indicate that Zhichan powder regulates signal transduction protein expression, inhibits apoptosis, and exerts therapeutic effects on Parkinson’s disease. PMID:25558224

  6. Posterior hypothalamic nucleus deep brain stimulation restores locomotion in rats with haloperidol-induced akinesia but not skilled forelimb use in pellet reaching and lever pressing.

    PubMed

    Young, C K; Whishaw, I Q; Bland, B H

    2011-09-29

    Recent studies have shown that electrical stimulation of the posterior hypothalamic nucleus (PH) facilitates locomotion in control rats, and rats were made akinetic by dopaminergic blockade via haloperidol or dopamine depletion by the neurotoxin 6-hydroxydopamine. These findings suggest that PH stimulation might be a promising treatment for akinesia associated with dopamine loss in Parkinson's disease. The present study further examined the positive effects of PH stimulation on behavior by characterizing its potential facilitatory effects on tasks that require skilled movements. Rats were trained to reach for food pellets with a forelimb (skilled reaching) or press a bar in an operant conditioning task for food. PH stimulation in undrugged rats not only facilitated locomotion in each of the tasks, but also impaired performance of the skilled movement components of the tasks. Haloperidol reduced locomotion and skilled movement, and PH stimulation only restored locomotion. The results are discussed in relation to the idea that PH stimulation selectively facilitates locomotor behavior and may have limited use in restoring impairments in skilled movements and consummatory behavior that results from dopaminergic depletion.

  7. Differential expression of Fos and Zif268 in the nigrostriatal system after methamphetamine administration in a rat model of Parkinson's disease.

    PubMed

    Ishida, Yasushi; Kawai, Keiichi; Magata, Yasuhiro; Ebihara, Kosuke; Takeda, Ryuichiro; Abe, Hiroshi; Yoshimoto, Mitsuyoshi; Hashiguchi, Hiroyuki; Odagiri, Kei; Matsuo, Hisae; Nishimori, Toshikazu

    2008-12-01

    The goal of this study was to examine the topological specificity of methamphetamine-induced activation of the immediate-early gene proteins, Fos and Zif268, in the nigrostriatal system in a unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease with or without intrastriatal grafts of fetal ventral mesencephalon. Methamphetamine (3 mg/kg, i.p.) induced Fos-like immunoreactivity (FLI) dominantly in the striatum and the globus pallidus (GP) on the intact side as well as in the substantia nigra pars reticulata (SNr) on the lesioned side in the 6-OHDA rats. Lower levels of methamphetamine-induced FLI in the striatum and GP on the lesioned side were restored by intrastriatal grafts which could completely suppress the methamphetamine-induced rotation. In the striatum, a similar tendency could be observed between Fos and Zif268 immunoreactivity following methamphetamine. However, sparse immunoreactivity of Zif268 could be detected in the GP and SNr on both sides in the 6-OHDA rats. Intrastriatal grafts had little influence on Zif268 expression in these two regions. The differential expression of Fos and Zif268 was observed among the three regions of the nigrostriatal system following methamphetamine in the 6-OHDA rats. This may suggest that Fos and Zif268 therefore possess gene-specific and region-specific functions in the basal ganglia nuclei.

  8. Anodal transcranial direct current stimulation relieves the unilateral bias of a rat model of Parkinson's disease.

    PubMed

    Li, Yiyan; Tian, Xulong; Qian, Long; Yu, Xuehong; Jiang, Weiwei

    2011-01-01

    The unilaterally lesioned rat model of Parkinson's disease which fails to orient to the food stimuli presented on the contralateral side of its preferential side of body could be induced by the injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB). We employed transcranial direct current stimulation (tDCS, current intensity: 80 μA, and 40 μA; anodal electrode area: 3.14 mm(2); stimulation time: 30 minutes) over the M1 area to relieve the ipsilateral bias in the rat model. A corridor test was set to count the ipsilateral bias of the rats. In this experiment, 30 Sprague-Dawley rats (80 μA: n = 8, 40 μA: n = 8, sham: n = 7, healthy control: n = 7) were chosen for the corridor test and the tDCS session. The lesioned rats exhibited increased ipsilateral bias 4 weeks after the lesion surgery (P < 0.01), and the anodal tDCS with the active electrode on the lesioned side relieved the ipsilateral bias significantly (P < 0.01) immediately after the surgery and the improvement lasted for nearly 1 day. The rats in the group of 80 μA exhibited more significant changes than the 40 μA group after one day. After all the experiments, the histological process showed no neurotrauma led by the tDCS. In conclusion, the modulatory function of the cortical excitability of the tDCS may awaken the compensatory mechanisms and the response mechanisms which modulate the loss of the brain function. Further studies should be done to provide more evidence about the assumption.

  9. Norepinephrine uptake by rat jejunum: Modulation by angiotensin II

    SciTech Connect

    Suvannapura, A.; Levens, N.R. )

    1988-02-01

    Angiotensin II (ANG II) is believed to stimulate sodium and water absorption from the small intestine by enhancing sympathetic nerve transmission. This study is designed to determine whether ANG II can enhance sympathetic neurotransmission within the small intestine by inhibition norepinephrine (NE) uptake. Intracellular NE accumulation by rat jejunum was concentration dependent and resolved into high- and low-affinity components. The high-affinity component (uptake 1) exhibited a Michaelis constant (K{sub m}) of 1.72 {mu}M and a maximum velocity (V{sub max}) of 1.19 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. The low-affinity component (uptake 2) exhibited a K{sub m} of 111.1 {mu}M and a V{sub max} of 37.1 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. Cocaine, an inhibitor of neuronal uptake, inhibited the intracellular accumulation of label by 80%. Treatment of animals with 6-hydroxydopamine, which depletes norepinephrine from sympathetic terminals, also attenuated NE uptake by 60%. Thus accumulation within sympathetic nerves constitutes the major form of ({sup 3}H)NE uptake into rat jejunum. ANG II inhibited intracellular ({sup 3}H)NE uptake in a concentration-dependent manner. At a dose of 1 mM, ANG II inhibited intracellular ({sup 3}H)NE accumulation by 60%. Cocaine failed to potentiate the inhibition of ({sup 3}H)NE uptake produced by ANG II. Thus ANG II appears to prevent ({sup 3}H)NE accumulation within rat jejunum by inhibiting neuronal uptake.

  10. A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra.

    PubMed

    Wilby, M J; Sinclair, S R; Muir, E M; Zietlow, R; Adcock, K H; Horellou, P; Rogers, J H; Dunnett, S B; Fawcett, J W

    1999-03-15

    We have developed a novel Schwann cell line, SCTM41, derived from postnatal sciatic nerve cultures and have stably transfected a clone with a rat glial cell line-derived neurotrophic factor (GDNF) construct. Coculture with this GDNF-secreting clone enhances in vitro survival and fiber growth of embryonic dopaminergic neurons. In the rat unilateral 6-OHDA lesion model of Parkinson's disease, we have therefore made cografts of these cells with embryonic day 14 ventral mesencephalic grafts and assayed for effects on dopaminergic cell survival and process outgrowth. We show that cografts of GDNF-secreting Schwann cell lines improve the survival of intrastriatal embryonic dopaminergic neuronal grafts and improve neurite outgrowth into the host neuropil but have no additional effect on amphetamine-induced rotation. We next looked to see whether bridge grafts of GDNF-secreting SCTM41 cells would promote the growth of axons to their striatal targets from dopaminergic neurons implanted orthotopically into the 6-OHDA-lesioned substantia nigra. We show that such bridge grafts increase the survival of implanted embryonic dopaminergic neurons and promote the growth of axons through the grafts to the striatum.

  11. Adrenal Medullary Grafts Restore Olfactory Deficits and Catecholamine Levels of 6-OHDA Amygdala Lesioned Animals

    PubMed Central

    Fernández-Ruiz, Juan; Guzmán, Rubén; Martínez, María Dolores; Miranda, María Isabel; Bermúdez-Rattoni, Federico; Drucker-Colín, René

    1993-01-01

    Aside from motor and cognitive deficits, Parkinson patients also manifest a little-studied olfactory deficit. Since in Parkinson's disease there is a dopamine depletion of the amygdala due to mesocorticolimbic system degeneration, we decided to test olfactory and taste performance of 6-OHDA amygdala lesioned rats, as well as the possible restoration of either function with adrenal medullary transplants. Two 6-OHDA lesioned groups and one control group were tested in the potentiation of odor by taste aversion paradigm. On taste aversion none of the groups showed any impairment. In contrast, the 6-OHDA lesioned rats showed a marked impairment in olfactory aversion. At this point, one of the lesioned groups received a bilateral adrenal medullary graft within the lesioned area. After two months, all groups were submitted again to the behavioral paradigm. Taste remained unaffected, but the lesioned only group did not recover either olfactory aversion or normal catecholamine levels. The grafted group, on the other hand, restored olfactory aversion and catecholamine levels. It can be concluded from this study that catecholamine depletion of the amygdala is sufficient to produce a selective olfactory deficit, not accompanied by taste impairments, and that such a deficit can be reversed by adrenal medullary transplants, which in turn restore catecholamine levels. PMID:7948179

  12. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease

    PubMed Central

    Duty, Susan; Jenner, Peter

    2011-01-01

    Animal models of Parkinson's disease (PD) have proved highly effective in the discovery of novel treatments for motor symptoms of PD and in the search for clues to the underlying cause of the illness. Models based on specific pathogenic mechanisms may subsequently lead to the development of neuroprotective agents for PD that stop or slow disease progression. The array of available rodent models is large and ranges from acute pharmacological models, such as the reserpine- or haloperidol-treated rats that display one or more parkinsonian signs, to models exhibiting destruction of the dopaminergic nigro-striatal pathway, such as the classical 6-hydroxydopamine (6-OHDA) rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models. All of these have provided test beds in which new molecules for treating the motor symptoms of PD can be assessed. In addition, the emergence of abnormal involuntary movements (AIMs) with repeated treatment of 6-OHDA-lesioned rats with L-DOPA has allowed for examination of the mechanisms responsible for treatment-related dyskinesia in PD, and the detection of molecules able to prevent or reverse their appearance. Other toxin-based models of nigro-striatal tract degeneration include the systemic administration of the pesticides rotenone and paraquat, but whilst providing clues to disease pathogenesis, these are not so commonly used for drug development. The MPTP-treated primate model of PD, which closely mimics the clinical features of PD and in which all currently used anti-parkinsonian medications have been shown to be effective, is undoubtedly the most clinically-relevant of all available models. The MPTP-treated primate develops clear dyskinesia when repeatedly exposed to L-DOPA, and these parkinsonian animals have shown responses to novel dopaminergic agents that are highly predictive of their effect in man. Whether non-dopaminergic drugs show the same degree of predictability of response is a matter of debate. As our

  13. [High-frequency electro-acupuncture stimulation modulates intracerebral γ-aminobutyric acid content in rat model of Parkinson's disease].

    PubMed

    Du, Jing; Sun, Zuo-Li; Jia, Jun; Wang, Xuan; Wang, Xiao-Min

    2011-08-25

    The purpose of the present study is to observe the effect of electro-acupuncture (EA) stimulation on intracerebral neurotransmitters in a rat model of Parkinson's disease (PD), and explore the possible mechanism. We used 6-hydroxydopamine (6-OHDA) injection in medial forebrain bundle (MFB) in the right brain of Sprague Dawley (SD) rat to establish the parkinsonian rat model, and randomly divided the PD rats into model and 100 Hz EA stimulation groups (n =10 in each group). EA stimulation group received 4 courses of EA stimulation on Baihui (GV-20) and Dazhui (GV-14) acupuncture points. Moreover, ten rats were randomly selected as sham operation group, only receiving normal saline (NS) injection in MFB. Then apomorphine (APO)-induced rotational behavior in different groups was recorded, and the contents of γ-aminobutyric acid (GABA) in the brain were analyzed with high pressure/performance liquid chromatography-electrochemical detection (HPLC-ECD). The results showed that model group exhibited abnormal rotational behavior with APO treatment, suggesting the successful establishment of PD model. Compared with sham operation group, model group showed increased GABA contents in cortex and striatum, as well as decreased GABA content in ventral midbrain, on the lesioned side. EA stimulation could effectively ameliorate the abnormal rotational behavior of PD rat. Compared with the model group, EA stimulation decreased the ratio of GABA content on the lesioned side to that on unlesioned side in the cortex, while increased the ratios in the striatum and cerebellum. However, there was no difference of the ratio in the ventral midbrain among three groups. These results suggest high-frequency EA stimulation significantly improves the abnormal behavior of PD rats, which may exert through enhancing the inhibitory effect of cerebellum-basal ganglia-cortical loop on motor center.

  14. Comparison of the SERT-selective [18F]FPBM and VMAT2-selective [18F]AV-133 radiotracers in a rat model of Parkinson’s Disease

    PubMed Central

    Wang, Julie L.; Oya, Shunichi; Parhi, Ajit K.; Lieberman, Brian P.; Ploessl, Karl; Hou, Catherine; Kung, Hank F.

    2010-01-01

    Introduction The utility of [18F]FPBM (2-(2′-((dimethylamino)methyl)-4′-(3-[18F]-fluoropropoxy)phenylthio)benzenamine), a selective serotonin transporter (SERT) tracer, and [18F]AV-133 ((+)-2-Hydroxy-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-1,2,3,4,6,7-hexahydro-11bH-benzo[a]quinolizine), a selective vesicular monoamine transporter 2 (VMAT2) tracer, were tested in the 6-hydroxydopamine (6-OHDA) unilateral lesioned rat model. Methods PET imaging of three 6-OHDA unilateral lesioned male Sprague Dawley rats (rats #1-3) were performed with [18F]FPBM and [18F]AV-133 to examine whether changes in SERT and VMAT2 binding, respectively, could be detected in the brain. The brains of the three rats were then removed and examined by in vitro autoradiography with [18F]FPBM and the dopamine transporter ligand, [125I]IPT, for confirmation. Results PET image analysis showed varying levels of SERT binding reduction (rat #1 = −11%, rat #2 = −4%, rat #3 = −43%; n = 2) and a clear and definitive loss of VMAT2 binding (rat #1 = −87%, rat #2 = −72%, and rat #3 = −91%; n = 1) in the left striatum when compared to the right (non-lesioned side) striatum. The results from PET imaging were corroborated with quantitative in vitro autoradiography. Rats treated with a selective serotonin toxin (PCA, p-chloroamphetamine) showed a significant reduction of uptake in the cortex and hypothalamus regions of the brain. Conclusion The preliminary data suggest that [18F]FPBM and [18F]AV-133 may be useful for the examination of serotonergic and dopaminergic neuron integrity, respectively, in the living brain. PMID:20447560

  15. Chemical sympathectomy attenuates inflammation, glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy.

    PubMed

    Xu, Lin; Yu, Wen-Kui; Lin, Zhi-Liang; Tan, Shan-Jun; Bai, Xiao-Wu; Ding, Kai; Li, Ning

    2015-03-01

    Acute traumatic coagulopathy (ATC) may trigger sympathoadrenal activation associated with endothelial damage and coagulation disturbances. Overexcitation of sympathetic nerve in this state would disrupt sympathetic-vagal balance, leading to autonomic nervous system dysfunction. The aim of this study was to evaluate the autonomic function in ATC and its influence on inflammation, endothelial and coagulation activation. Male Sprague-Dawley rats were randomly assigned to sham, ATC control (ATCC) and ATC with sympathectomy by 6-hydroxydopamine (ATCS) group. Sham animals underwent the same procedure without trauma and bleeding. Following trauma and hemorrhage, rats underwent heart rate variability (HRV) test, which predicts autonomic dysfunction through the analysis of variation in individual R-R intervals. Then, rats were euthanized at baseline, and at 0, 1 and 2 h after shock and blood gas, conventional coagulation test and markers of inflammation, coagulation, fibrinolysis, endothelial damage and catecholamine were measured. HRV showed an attenuation of total power and high frequency, along with a rise of low frequency and low frequency : high frequency ratio in the ATC rats, which both were reversed by sympathectomy in the ATCS group. Additionally, sympathetic denervation significantly suppressed the increase of proinflammatory cytokines, tumor necrosis factor-α and the fibrinolysis markers including tissue-type plasminogen activator and plasmin-antiplasmin complex. Serum catecholamine, soluble thrombomodulin and syndecan-1 were also effectively inhibited by sympathectomy. These data indicated that autonomic dysfunction in ATC involves both sympathetic activation and parasympathetic inhibition. Moreover, sympathectomy yielded anti-inflammatory, antifibrinolysis and endothelial protective effects in rats with ATC. The role of autonomic neuropathy in ATC should be explored further.

  16. CART modulates the effects of levodopa in rat model of Parkinson's disease.

    PubMed

    Upadhya, Manoj A; Shelkar, Gajanan P; Subhedar, Nishikant K; Kokare, Dadasaheb M

    2016-03-15

    Parkinson's disease (PD) is an age-related disorder characterized by a progressive degeneration of dopaminergic neurons of substantia nigra (SN). The neuropeptide cocaine- and amphetamine-regulated transcript (CART) is known to closely interact with the dopamine system and regulate psychomotor activity. We screened the effectiveness of CART in reversing the symptoms of PD in a rat model. PD like condition was induced by administering 6-hydroxydopamine (6-OHDA) directly in the SN of the right side. Fifteen days later, intraperitoneal (IP) treatment with apomorphine hydrochloride to these rats, resulted in contralateral rotations in the rotation test chamber suggesting induction of PD-like symptoms. This action of apomorphine was significantly attenuated by intracerebroventricular (ICV) treatment with CART and potentiated by CART antibody. IP treatment with levodopa also produced contralateral rotation in PD induced rats, and showed anti-Parkinson-like action. Prior treatment with CART via ICV route potentiated the anti-Parkinsonian effects of levodopa, while CART antibody produced opposite effects. CART treatment per se, to PD induced rats produced ipsilateral rotations, suggesting that the peptide may promote the endogenous release of dopamine from intact neurons. While CART-immunoreactivity in arcuate nucleus, paraventricular nucleus, striatum, substantia nigra, ventral tegmental area and locus coeruleus was reduced in the PD induced rats, levodopa treatment restored the expression of CART-immunoreactivity in these nuclei. These results suggest that endogenous CART might closely interact with the dopamine containing SN-striatal pathway which is known to profoundly influence the motor system. The study underscores the importance of CART as a potential therapeutic agent in the treatment of PD.

  17. Involvement of supraspinal imidazoline receptors and descending monoaminergic pathways in tizanidine-induced inhibition of rat spinal reflexes.

    PubMed

    Kino, Yurika; Tanabe, Mitsuo; Honda, Motoko; Ono, Hideki

    2005-09-01

    The neuronal pathways involved in the muscle relaxant effect of tizanidine were examined by measurement of spinal reflexes in rats. Tizanidine (i.v. and intra-4th ventricular injection) decreased the mono- and disynaptic (the fastest polysynaptic) reflexes (MSR and DSR, respectively) in non-spinalized rats. Depletion of central noradrenaline by 6-hydroxydopamine abolished the depressant effect of tizanidine on the MSR almost completely and attenuated the effect on the DSR. Co-depletion of serotonin by 5,6-dihydroxytryptamine and noradrenaline resulted in more prominent attenuation of tizanidine-induced inhibition of the DSR. Supraspinal receptors were then studied using yohimbine- and some imidazoline-receptor ligands containing an imidazoline moiety. Idazoxan (I1, I2, I3, and alpha2), efaroxan (I1, I3, and alpha2), and RX821002 (I3 and alpha2), but not yohimbine, an alpha2-adrenergic receptor antagonist with no affinity for I receptors, antagonized the inhibitory effects of tizanidine. Thus, supraspinal I receptors (most likely I3) and descending monoaminergic influences are necessary for tizanidine-induced inhibition of spinal segmental reflexes.

  18. Determination of Endogenous Norepinephrine Levels in Different Chambers of the Rat Heart by Capillary Electrophoresis Coupled with Amperometric Detection

    PubMed Central

    Novotny, Martin; Quaiserova-Mocko, Veronika; Wehrwein, Erica A.; Kreulen, David L.; Swain, Greg M.

    2009-01-01

    Capillary electrophoresis with end-column amperometric detection (CE-EC) was used to determine the regional distribution of norepinephrine (NE) in the hearts of sympathetically innervated (control) and chemically sympathectomized rats. Key features of the method are (i) the sample preparation and clean-up step that involved the application of off-line solid phase extraction (SPE) with a 95% NE recovery and (ii) the use of a diamond microelectrode for detection. NE was quantified in the left and right ventricle, the ventricular septum, and the left and right atrium. The NE concentration in the atria was 3–5 times higher than in the ventricles and ventricular septum of control rats. Basal NE levels in the left and right ventricle and the ventricular septum were reduced to below the detection limit (0.034 μg/g tissue) in tissues treated with the neurotoxin, 6-hydroxydopamine (6-OHDA), while only a moderate reduction was observed in the left and right atrium. Importantly, the diamond microelectrode provided low and stable background current and low peak-to-peak noise ≤ 0.65 pA at a detection potential of +0.86 V vs Ag/AgCl. A reproducible electrode response was observed for multiple injections of tissue homogenates with minimal response attenuation due to electrode fouling. PMID:17383009

  19. Neurotensin polyplex as an efficient carrier for delivering the human GDNF gene into nigral dopamine neurons of hemiparkinsonian rats.

    PubMed

    Gonzalez-Barrios, Juan A; Lindahl, Maria; Bannon, Michael J; Anaya-Martínez, Veronica; Flores, Gonzalo; Navarro-Quiroga, Ivan; Trudeau, Louis E; Aceves, Jorge; Martinez-Arguelles, Daniel B; Garcia-Villegas, Refugio; Jiménez, Ismael; Segovia, Jose; Martinez-Fong, Daniel

    2006-12-01

    Recently we showed that the neurotensin polyplex is a nanoparticle carrier system that targets reporter genes in nigral dopamine neurons in vivo. Herein, we report its first practical application in experimental parkinsonism, which consisted of transfecting dopamine neurons with the gene coding for human glial cell line-derived neurotrophic factor (hGDNF). Hemiparkinsonism was induced in rats by a single dose of 6-hydroxydopamine (30 microg) into the ventrolateral part of the striatum. We showed that transfection of the hGDNF gene into the substantia nigra of rats 1 week after the neurotoxin injection produced biochemical, anatomical, and functional recovery from hemiparkinsonism. RT-PCR analysis showed mRNA expression of exogenous hGDNF in the transfected substantia nigra. Western blot analysis verified transgene expression by recognizing the flag epitope added at the C-terminus of the hGDNF polypeptide, which was found mainly in dopamine neurons by double immunofluorescence techniques. These data indicate that the neurotensin polyplex holds great promise for the neuroprotective therapy of Parkinson disease.

  20. Rotation and immediate-early gene expression in rats treated with the atypical D1 dopamine agonist SKF 83822.

    PubMed

    Wirtshafter, David

    2007-03-01

    Classical agonists of the dopamine D1 receptor activate both adenylyl cyclase and phospholipase C (PLC) signaling pathways. As a result, the extent to which these two pathways are essentially involved in various effects produced by D1 receptor agonists is currently uncertain. In the present report we examined the effects of SKF 83822, a dopamine D1 agonist which has been reported to activate adenylyl cyclase, but not PLC, on behavior and immediate early gene (IEG) expression in rats with unilateral 6-hydroxydopamine lesions. SKF 83822 (25-100 microg/kg) induced dose dependent contralateral rotation in these subjects, and, additionally, stimulated strong expression of the IEG products c-Fos, Fra2, Zif/268 and Arc in the deinnervated striatum. All of these effects could be antagonized by pretreatment with the selective D1 dopamine antagonist SCH 23390 (0.5 mg/kg). Although PLC may be involved in many effects mediated through dopamine D1 receptors, these results suggest that direct activation of PLC is not necessary for the induction of either rotation or IEG expression in dopamine depleted rats.

  1. Impact of grafted serotonin and dopamine neurons on development of L-DOPA-induced dyskinesias in parkinsonian rats is determined by the extent of dopamine neuron degeneration.

    PubMed

    Carlsson, Thomas; Carta, Manolo; Muñoz, Ana; Mattsson, Bengt; Winkler, Christian; Kirik, Deniz; Björklund, Anders

    2009-02-01

    Previous studies have shown that serotonin neurons play an important role in the induction and maintenance of L-DOPA-induced dyskinesia in animals with lesion of the nigrostriatal dopamine system. Patients with Parkinson's disease that receive transplants of foetal ventral mesencephalic tissue, the graft cell preparation is likely to contain, in addition to dopamine neurons, serotonin neurons that will vary in number depending on the landmarks used for dissection. Here, we have studied the impact of grafted serotonin neurons--alone or mixed with dopamine neurons--on the development of L-DOPA-induced dyskinesia in rats with a partial 6-hydroxydopamine lesion of the host nigrostriatal projection. In these rats, which showed only low-level dyskinesia at the time of transplantation, serotonin grafts induced a worsening in the severity of dyskinesia that developed during continued L-DOPA treatment, while the dopamine-rich graft had the opposite, dampening effect. The detrimental effect seen in animals with serotonin neuron grafts was dramatically increased when the residual dopamine innervation in the striatum was removed by a second 6-hydroxydopamine lesion. Interestingly, rats with grafts that contained a mixture of dopamine and serotonin neurons (in approximately 2:1) showed a marked reduction in L-DOPA-induced dyskinesia over time, and the appearance of severe dyskinesia induced by the removal of the residual dopamine innervation, seen in the animals with transplants of serotonin neurons alone, was blocked. FosB expression in the striatal projection neurons, which is associated with dyskinesias, was also normalized by the dopamine-rich grafts, but not by the serotonin neuron grafts. These data indicate that as long as a sufficient portion, some 10-20%, of the dopamine innervation still remains, the increased host serotonin innervation generated by the grafted serotonin neurons will have limited effect on the development or severity of L-DOPA-induced dyskinesias. At

  2. L-DOPA Reverses the Increased Free Amino Acids Tissue Levels Induced by Dopamine Depletion and Rises GABA and Tyrosine in the Striatum.

    PubMed

    Solís, Oscar; García-Sanz, Patricia; Herranz, Antonio S; Asensio, María-José; Moratalla, Rosario

    2016-07-01

    Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia.

  3. FTY720 Attenuates 6-OHDA-Associated Dopaminergic Degeneration in Cellular and Mouse Parkinsonian Models.

    PubMed

    Ren, Manru; Han, Minxing; Wei, Xinbing; Guo, Ying; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G; Lou, Haiyan

    2017-02-01

    FTY720 (fingolimod) is the first oral drug approved for treating relapsing-remitting forms of multiple sclerosis. It is also protective in other neurological models including ischemia, Alzheimer's disease, Huntington disease and Rett syndrome. However, whether it might protect in a 6-hydroxydopamine (6-OHDA) mouse model associated with the dopaminergic pathology of Parkinson's disease (PD), has not been explored. Therefore, in the present study, we investigated the effects of FTY720 on 6-OHDA-induced neurotoxicity in cell cultures and mice. Here we show that FTY720 protected against 6-OHDA cytotoxicity and apoptosis in SH-SY5Y cells. We also show that prior administration of FTY720 to 6-OHDA lesioned mice ameliorated both motor deficits and nigral dopaminergic neurotoxicity, while also reducing 6-OHDA-associated inflammation. The protective effects of FTY720 were associated with activation of AKT and ERK1/2 pro-survival pathways and an increase in brain derived neurotrophic factor (BDNF) expression in vitro and in vivo. These findings suggest that FTY720 holds promise as a PD therapeutic acting, at least in part, through AKT/ERK1/2/P-CREB-associated BDNF expression.

  4. Reduced dopamine function within the medial shell of the nucleus accumbens enhances latent inhibition.

    PubMed

    Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J

    2011-03-01

    Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI.

  5. Therapeutic Potential of Induced Neural Stem Cells for Parkinson’s Disease

    PubMed Central

    Choi, Dong-Hee; Kim, Ji-Hye; Kim, Sung Min; Kang, Kyuree; Han, Dong Wook; Lee, Jongmin

    2017-01-01

    Parkinson’s disease (PD) is a chronic, neurodegenerative disorder that results from the loss of cells in the substantia nigra (SN) which is located in the midbrain. However, no cure is available for PD. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) via the forced expression of specific transcription factors. Therapeutic potential of iNSC in PD has not been investigated yet. Here, we show that iNSCs directly converted from mouse fibroblasts enhanced functional recovery in an animal model of PD. The rotational behavior test was performed to assess recovery. Our results indicate that iNSC transplantation into the striatum of 6-hydroxydopamine (6-OHDA)-injected mice can significantly reduce apomorphine-induced rotational asymmetry. The engrafted iNSCs were able to survive in the striatum and migrated around the medial forebrain bundle and the SN pars compacta. Moreover, iNSCs differentiated into all neuronal lineages. In particular, the transplanted iNSCs that committed to the glial lineage were significantly increased in the striatum of 6-OHDA-injected mice. Engrafted iNSCs differentiated to dopaminergic (DA) neurons and migrated into the SN in the 6-OHDA lesion mice. Therefore, iNSC transplantation serves as a valuable tool to enhance the functional recovery in PD. PMID:28117752

  6. Tetramethylpyrazine Analogue CXC195 Protects Against Dopaminergic Neuronal Apoptosis via Activation of PI3K/Akt/GSK3β Signaling Pathway in 6-OHDA-Induced Parkinson's Disease Mice.

    PubMed

    Chen, Lin; Cheng, Li; Wei, Xinbing; Yuan, Zheng; Wu, Yanmei; Wang, Shuaishuai; Ren, Zhiping; Liu, Xinyong; Liu, Huiqing

    2016-12-22

    Parkinson's disease (PD) is a progressive neurodegenerative disorder and characterized by motor system disorders resulting in loss of dopaminergic (DA) neurons. CXC195, a novel tetramethylpyrazine derivative, has been shown strongest neuroprotective effects due to its anti-apoptotic activity. However, whether CXC195 protects against DA neuronal damage in PD and the mechanisms underlying its beneficial effects are unknown. The purpose of our study was to investigate the potential neuroprotective role of CXC195 and to elucidate its mechanism of action against 6-hydroxydopamine (6-OHDA)-induced mouse model of PD. CXC195 administration improved DA neurodegeneration in PD mice induced by 6-OHDA. Our further findings confirmed treatment of CXC195 at the dose of 10 mg/kg significantly inhibited the apoptosis by decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in 6-OHDA-lesioned mice. Meanwhile, 6-OHDA also decreased the amount of phosphorylated Akt while increased GSK-3β activity (the amount of phosphorylated GSK-3β at Ser9 was decreased) which was prevented by CXC195. Wortmannin, a specific PI3K inhibitor, dramatically abolished the changes induced by CXC195. Our study firstly demonstrated that CXC195 protected against DA neurodegeneration in 6-OHDA-induced PD model by its anti-apoptotic properties and PI3K/Akt/GSK3β signaling pathway was involved in it.

  7. Sexual behavior in male rats after radiofrequency or dopamine-depleting lesions in nucleus accumbens.

    PubMed

    Liu, Y C; Sachs, B D; Salamone, J D

    1998-06-01

    Considerable neurochemical evidence links dopamine (DA) in nucleus accumbens (NAcc) to male sexual behavior. The present experiments were conducted to extend this information to the male's sexual response to remote stimuli from estrous female (noncontact erection; NCE). Male rats were tested for copulation and NCE after either 6-hydroxydopamine (6-OHDA) or radiofrequency (RF) lesions in NAcc). Males with an average 78% depletion of DA in NAcc had a lower incidence of NCE, longer latency to display NCE, and fewer erections. DA-depleted males also had less locomotor activity after injections of d-amphetamine, and reductions in apomorphine-induced yawning, but a normal incidence of penile erection. Males with RF lesions of the NAcc had longer NCE latencies. All males copulated to ejaculation after either 6-OHDA or RF lesions with little or no deficit, although the 6-OHDA-treated males had longer intromission latencies. The NCE deficit supports the hypothesized role of NAcc DA in arousal processes in responding to remote cues from estrous females. The minimal effect of lesions on copulation suggests that the presence of additional proximal stimulation during copulation may overcome the deficits induced by DA depletions or lesions in NAcc.

  8. Reduction of dopamine synaptic activity: degradation of 50-kHz ultrasonic vocalization in rats.

    PubMed

    Ciucci, Michelle R; Ahrens, Allison M; Ma, Sean T; Kane, Jacqueline R; Windham, E Blake; Woodlee, Martin T; Schallert, Timothy

    2009-04-01

    Vocal deficits are prevalent and debilitating in Parkinson's disease. These deficits may be related to the initial pathology of the nigrostriatal dopamine neurons and resulting dopamine depletion, which contributes to dysfunction of fine motor control in multiple functions. Although vocalization in animals and humans may differ in many respects, we evaluated complex (50-kHz) ultrasonic mate calls in 2 rat models of Parkinson's disease, including unilateral infusions of 6-hydroxydopamine to the medial forebrain bundle and peripheral administration of a nonakinesia dose of the dopamine antagonist haloperidol. We examined the effects of these treatments on multiple aspects of the acoustic signal. The number of trill-like (frequency modulated) 50-kHz calls was significantly reduced, and appeared to be replaced by simpler (flat) calls. The bandwidth and maximum intensity of simple and frequency-modulated calls were significantly decreased, but call duration was not. Our findings suggest that the nigrostriatal dopamine pathway is involved to some extent in fine sensorimotor function that includes USV production and complexity.

  9. Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra

    SciTech Connect

    Hargraves, R.; Freed, W.J.

    1987-03-09

    This study examined the effects of continuously supplied dopamine delivered directly into the dopamine-deficient striatum. Rats received unilateral lesions of the substantia nigra by stereotaxic administration of 6-hydroxydopamine and were tested for apomorphine-induced rotational behavior and general activity. Osmotic mini-pumps were filled with dopamine in various concentrations, implanted subcutaneously and connected to a cannula implanted directly into the striatum. The system delivered solution at a rate of .5 ..mu..l/hr for two weeks. Dopamine in a dosage of 0.5 ..mu..g/per hour reduced apomorphine-induced rotational behavior by a mean of 52 +/- 5.8% (mean +/- SEM n=20) with a maximal individual decrease of 99%. There was no change in general activity or increase in stereotype behavior. Infusions of vehicle solutions did not decrease rotational behavior. Spread of the infused dopamine and its metabolites was estimated by adding /sup 3/H-dopamine to the pumps in tracer quantities. Radioactivity was highly concentrated at the infusion site and decreased rapidly within a few mm from the infusion site. Continuous infusion methods may eventually prove to be effective in the treatment of nigro-striatal degenerative disease. 12 references, 4 figures.

  10. (-)-1-(Benzofuran-2-yl)-2-propylaminopentane enhances locomotor activity in rats due to its ability to induce dopamine release.

    PubMed

    Shimazu, S; Takahata, K; Katsuki, H; Tsunekawa, H; Tanigawa, A; Yoneda, F; Knoll, J; Akaike, A

    2001-06-15

    "Catecholaminergic and serotoninergic activity enhancer" effects are newly found mechanisms of action of a class of compound that enhance impulse propagation-mediated release of catecholamines and serotonin in the brain. In the present study, (-)-1-(benzofuran-2-yl)-2-propylaminopentane hydrochloride [(-)-BPAP HCl], a compound with selective and potent "catecholaminergic and serotoninergic activity enhancer" effects, was tested for its efficacy to potentiate locomotor activity in normal rats and to attenuate hypolocomotion in reserpine-treated rats. (-)-BPAP HCl potentiated locomotor activity in non-habituated rats during a 2-h observation period dose-dependently (0.3-10 mg/kg). (-)-BPAP HCl (1-3 mg/kg) was also effective to reverse reserpine-induced hypolocomotion. The effects of (-)-BPAP HCl in normal and reserpine-treated rats were attenuated by the dopamine D1 receptor antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390), suggesting that the effects of (-)-BPAP HCl were mediated by activation of the dopaminergic system. In addition, the administration of (-)-BPAP HCl increased ipsilateral turning in unilaterally 6-hydroxydopamine-lesioned rats, implying presynaptic activation of nigrostriatal dopaminergic terminals by (-)-BPAP HCl. Furthermore, although antiparkinsonian agents, such as apomorphine and amantadine, failed to improve reserpine-induced ptosis, (-)-BPAP HCl significantly improved ptosis. These findings suggested that a "catecholaminergic and serotoninergic activity enhancer" compound, (-)-BPAP, stimulates motor function in rats and improves motor deficits in animal models of Parkinson's disease due to its ability to induce dopamine release.

  11. Functional reorganization of motor and limbic circuits after exercise training in a rat model of bilateral parkinsonism.

    PubMed

    Wang, Zhuo; Myers, Kalisa G; Guo, Yumei; Ocampo, Marco A; Pang, Raina D; Jakowec, Michael W; Holschneider, Daniel P

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson's disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [(14)C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases

  12. Partial lesion of dopamine neurons of rat substantia nigra impairs conditioned place aversion but spares conditioned place preference.

    PubMed

    Lima, Bernardo F C; Ramos, Daniele C; Barbiero, Janaína K; Pulido, Laura; Redgrave, Peter; Robinson, Donita L; Gómez-A, Alexander; Da Cunha, Claudio

    2017-05-04

    Midbrain dopamine neurons play critical roles in reward- and aversion-driven associative learning. However, it is not clear whether they do this by a common mechanism or by separate mechanisms that can be dissociated. In the present study we addressed this question by testing whether a partial lesion of the dopamine neurons of the rat SNc has comparable effects on conditioned place preference (CPP) learning and conditioned place aversion (CPA) learning. Partial lesions of dopamine neurons in the rat substantia nigra pars compacta (SNc) induced by bilateral intranigral infusion of 6-hydroxydopamine (6-OHDA, 3μg/side) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 200μg/side) impaired learning of conditioned place aversion (CPA) without affecting conditioned place preference (CPP) learning. Control experiments demonstrated that these lesions did not impair motor performance and did not alter the hedonic value of the sucrose and quinine. The number of dopamine neurons in the caudal part of the SNc positively correlated with the CPP scores of the 6-OHDA rats and negatively correlated with CPA scores of the SHAM rats. In addition, the CPA scores of the 6-OHDA rats positively correlated with the tissue content of striatal dopamine. Insomuch as reward-driven learning depends on an increase in dopamine release by nigral neurons, these findings show that this mechanism is functional even in rats with a partial lesion of the SNc. On the other hand, if aversion-driven learning depends on a reduction of extracellular dopamine in the striatum, the present study suggests that this mechanism is no longer functional after the partial SNc lesion.

  13. [Pharmacological characterization of alpha 2-adrenoceptor regulated 5-HT release in the rat hippocampus].

    PubMed

    Numazawa, R

    1994-07-01

    The purpose of the present study is to confirm the functional regulation of alpha 2-adrenoceptor on the release of serotonin (5-HT) from the rat hippocampus in vivo. Under several pharmacological conditions, extracellular levels of 5-HT were estimated by assaying its concentrations in the perfusion fluid through the use of high-performance liquid chromatography with electrochemical detection. Extracellular 5-HT in the hippocampus was reduced by tetrodotoxin, 10 microM co-perfusion and was increased by perfusion with a selective 5-HT reuptake inhibitor, fluoxetine, 10 microM. Addition of potassium (K+; 120 mM) to the perfusion fluid evoked an approximately 3-fold increase in 5-HT release, and a calcium free medium completely prevented this K(+)-evoked 5-HT release. Potassium-evoked 5-HT release from the hippocampus of freely moving rats was significantly and concentration-dependently inhibited when alpha 2-adrenoceptor agonist, UK14,304, 0.1 microM to 10 microM was added to the perfusion solution, while the output of a 5-HT major metabolite, 5-hydroxyindoleacetic acid (5-HIAA), remained unchanged. This action of UK14,304 was prevented by pretreatment with idazoxan, 5 mg/kg, i. p., an alpha 2-adrenoceptor antagonist. In rats that were catecholaminergically denervated with 6-hydroxydopamine, UK14,304, 10 microM also inhibited the potassium-evoked 5-HT release, but had no effect on the 5-HIAA output. The UK14,304-induced inhibition of 5-HT release was prevented by pretreatment with pertussis toxin (PTX). These findings suggest that 5-HT release is functionally modulated via alpha 2-adrenoceptors located on the serotonergic nerve terminals in the rat hippocampus. They also indicate the possibility that the inhibition of 5-HT release via alpha 2-adrenoceptors is linked to G-proteins which are substrates of PTX.

  14. Reduced ability of calcitriol to promote augmented dopamine release in the lesioned striatum of aged rats.

    PubMed

    Cass, Wayne A; Peters, Laura E

    2017-04-05

    Parkinson's disease (PD) is a progressive and debilitating neurodegenerative disorder that affects over one million people in the United States. Previous studies, carried out in young adult rats, have shown that calcitriol, the active metabolite of vitamin D, can be neuroprotective in 6-hydroxydopamine (6-OHDA) models of PD. However, as PD usually affects older individuals, the ability of calcitriol to promote dopaminergic recovery was examined in lesioned young adult (4 month old), middle-aged (14 month old) and aged (22 month old) rats. Animals were given a single injection of 12 μg 6-OHDA into the right striatum. Four weeks later they were administered vehicle or calcitriol (1.0 μg/kg, s.c.) once a day for eight consecutive days. In vivo microdialysis experiments were carried out three weeks after the calcitriol or vehicle treatments to measure potassium and amphetamine evoked overflow of DA from both the left and right striata. In control animals treated with 6-OHDA and vehicle there were significant reductions in evoked overflow of DA on the lesioned side of the brain compared to the contralateral side. The calcitriol treatments significantly increased evoked overflow of DA from the lesioned striatum in both the young adult and middle-aged rats. However, the calcitriol treatments did not significantly augment DA overflow in the aged rats. Postmortem tissue levels of striatal DA were also increased in the young and middle-aged animals, but not in the aged animals. In the substantia nigra, the calcitriol treatments led to increased levels of DA in all three age groups. Thus, the effects of calcitriol were similar in the young adult and middle-aged animals, but in the aged animals the effects of calcitriol were diminished. These results suggest that calcitriol may help promote recovery of dopaminergic functioning in injured nigrostriatal neurons; however, the effectiveness of calcitriol may be reduced in aging.

  15. The NLRP3 Inflammasome is Involved in the Pathogenesis of Parkinson's Disease in Rats.

    PubMed

    Mao, Zhijuan; Liu, Chanchan; Ji, Suqiong; Yang, Qingmei; Ye, Hongxiang; Han, Haiyan; Xue, Zheng

    2017-02-28

    The etiology and pathogenesis of Parkinson's disease (PD) are complicated and have not been fully elucidated, but an important association has been identified between inflammation and PD. In this study, we investigated the role of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain-containing (NLRP) 3 inflammasome, consisting of NLRP3, caspase-1 and cytokines of the IL-1 family, in lipopolysaccharide (LPS)-induced and 6-hydroxydopamine (6-OHDA)-induced PD rats. Microinjection of different doses of caspase-1 inhibitor (Ac-YVAD-CMK, 300 or 1200 ng/rat) was performed for seven consecutive days. Then, rotational behavior, the number of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), and the mRNA and protein expression levels of NLRP3 inflammasome components were measured 14 days after the microinjection setup was established. Results showed that high mRNA and protein expression levels of NLRP3 inflammasome components were observed in the injected side of the LPS- and 6-OHDA-induced PD rats; Ac-YVAD-CMK inhibited the mRNA and protein expression of NLRP3 inflammasome components in both LPS- and 6-OHDA-induced PD rats. Moreover, the number of rotations was significantly decreased, and the number of DA neurons in the SNc improved. Our data indicate that the NLRP3 inflammasome participates in the pathogenesis of PD and that inhibiting the downstream pathway of the NLRP3/caspase-1/IL-1β axis can alleviate the occurrence of PD symptoms, providing a new basis for the prevention and treatment of PD.

  16. Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson’s disease

    PubMed Central

    Jadidi, Majid; Biat, Saeed Moghadas; Sameni, Hamid Reza; Safari, Manouchehr; Vafaei, Abbas Ali; Ghahari, Laya

    2016-01-01

    Objective(s): The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. Materials and Methods: An EMF with a frequency of 50 Hz and two intensities of 40 and 400 µT 1hr/day was generated around the cells for a week. Afterwards, these cells were injected into the left ventricle of Parkinsonian rats. The rats survived for 2 weeks, and then sampling was performed. Results: The injected cells differentiated into DA neurons and sporadically settled in the substantia nigra pars compacta (SNpc). Transplanted rats exhibited significant partial correction apomorphine-induced rotational behavior compared to Parkinsonian rats (5.0±0.1 vs 7.57±0.08). Results demonstrated that endogenous serum and brain derived neurotrophic factor (BDNF) were altered in all experimental groups. The greatest increase was in group of 400 µT EMF in comparison with Parkinsonian rats (398±15 vs. 312±11.79 pg ⁄ mg). Current study have shown that 6-Hydroxydopamine can cause severe loss of dopaminergic neurons (68±6.58), but injected MSCs that exposed to 40 and 400 µT EMF increased dopaminergic neurons in SNpc (108±2.33 & 126±3.89) (P<0.001). Conclusion: Electromagnetic fields with particular frequencies stimulate MSCs. So, these cells had anti-Parkinsonian properties in our studies. PMID:27635198

  17. Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson's disease: role of NMDA vs. 5-HT1A receptors.

    PubMed

    Paquette, Melanie A; Martinez, Alex A; Macheda, Teresa; Meshul, Charles K; Johnson, Steven W; Berger, S Paul; Giuffrida, Andrea

    2012-11-01

    Amantadine and dextromethorphan suppress levodopa (L-DOPA)-induced dyskinesia (LID) in patients with Parkinson's disease (PD) and abnormal involuntary movements (AIMs) in the unilateral 6-hydroxydopamine (6-OHDA) rat model. These effects have been attributed to N-methyl-d-aspartate (NMDA) antagonism. However, amantadine and dextromethorphan are also thought to block serotonin (5-HT) uptake and cause 5-HT overflow, leading to stimulation of 5-HT(1A) receptors, which has been shown to reduce LID. We undertook a study in 6-OHDA rats to determine whether the anti-dyskinetic effects of these two compounds are mediated by NMDA antagonism and/or 5-HT(1A) agonism. In addition, we assessed the sensorimotor effects of these drugs using the Vibrissae-Stimulated Forelimb Placement and Cylinder tests. Our data show that the AIM-suppressing effect of amantadine was not affected by the 5-HT(1A) antagonist WAY-100635, but was partially reversed by the NMDA agonist d-cycloserine. Conversely, the AIM-suppressing effect of dextromethorphan was prevented by WAY-100635 but not by d-cycloserine. Neither amantadine nor dextromethorphan affected the therapeutic effects of L-DOPA in sensorimotor tests. We conclude that the anti-dyskinetic effect of amantadine is partially dependent on NMDA antagonism, while dextromethorphan suppresses AIMs via indirect 5-HT(1A) agonism. Combined with previous work from our group, our results support the investigation of 5-HT(1A) agonists as pharmacotherapies for LID in PD patients.

  18. Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat.

    PubMed

    Tait, David S; Phillips, Janice M; Blackwell, Andrew D; Brown, Verity J

    2017-03-14

    Patients with Parkinson's disease (PD) show cognitive impairments, including difficulty in shifting attention between perceptual dimensions of complex stimuli. Inactivation of the subthalamic nucleus (STN) has been shown to be effective in ameliorating the motor abnormalities associated with striatal dopamine (DA) depletion, but it is possible that STN inactivation might result in additional, perhaps attentional, deficits. This study examined the effects of: DA depletion from the dorsomedial striatum (DMS); lesions of the STN area; and the effects of the two lesions together, on the ability to shift attentional set in the rat. In a single session, rats performed the intradimensional/extradimensional (ID/ED) test of attentional set-shifting. This comprises a series of seven, two-choice discriminations, including acquisitions of novel discriminations in which the relevant stimulus is either in the currently attended dimension (ID) or the currently unattended dimension (ED shift) and reversals (REVs) following each acquisition stage. Bilateral lesions were made by injection of 6-hydroxydopamine (6-OHDA) into the DMS, resulting in a selective impairment in reversal learning. Large bilateral ibotenic acid lesions centered on the STN resulted in an increase in trials to criterion in the initial stages, but learning rate improved within the session. There was no evidence of a 'cost' of set-shifting - the ED stage was completed in fewer trials than the ID stage - and neither was there a cost of reversal learning. Strikingly, combined lesions of both regions did not resemble the effects of either lesion alone and resulted in no apparent deficits.

  19. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons.

    PubMed

    Proschel, Christoph; Stripay, Jennifer L; Shih, Chung-Hsuan; Munger, Joshua C; Noble, Mark D

    2014-04-01

    In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically-relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAs(BMP), that are generated in vitro by directed differentiation of glial precursors. GDAs(BMP) produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAs(BMP) also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDA(BMP) transplantation into the 6-hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDA(BMP) transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin(+) GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin-1 and 2 by GDAs(BMP), increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAs(BMP) offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation.

  20. Inhibitory action of gamma-aminobutyric acid on the excitatory but not inhibitory innervation of the rat anococcygeus muscle.

    PubMed

    Hughes, P R; Morgan, P F; Stone, T W

    1982-12-01

    1 The effects of gamma-aminobutyric acid (GABA), ethylenediamine, 3-aminopropane sulphonic acid and (+/-)-baclofen have been examined on the responses to stimulation of the adrenergic excitatory and non-adrenergic non-cholinergic inhibitory innervation of the rat anococcygeus muscle in vitro. 2 GABA produced a dose-related depression of the contractile responses to field stimulation. Ethylenediamine and baclofen also depressed the contractile responses, though they were less potent than GABA. 3-Aminopropane sulphonic acid was almost inactive. The inhibitory action of GABA was not modified by phentolamine, propranolol or bicuculline methylbromide. 3 GABA did not affect the contractile responses of the anococcygeus muscle to noradrenaline, phenylephrine or carbachol in untreated muscles or those treated with 6-hydroxydopamine in vitro. 4 In preparations in which tone was raised by continuous perfusion with carbachol in the presence of phentolamine, field stimulation relaxed the muscle. GABA had no effect on this inhibitory response, and did not itself produce any relaxation. 5 It is concluded that GABA exerts a presynaptic inhibitory action on the excitatory adrenergic but not on the inhibitory innervation of the anococcygeus muscle, and that the GABA receptor involved exhibits properties of the previously described GABAB site.

  1. Anti-apoptotic effect of Shudipingchan granule in the substantia nigra of rat models of Parkinson's disease.

    PubMed

    Ye, Qing; Yuan, Xiao-Lei; He, Jing; Zhou, Jie; Yuan, Can-Xing; Yang, Xu-Ming

    2016-10-01

    Levodopa is the gold-standard treatment for Parkinson's disease. However, although it alleviates the clinical symptoms, it cannot delay the progressive apoptosis of dopaminergic neurons or prevent motor complications in the long term. In the present study, we investigated the effect of Shudipingchan granule on neuronal apoptosis in a rat model of Parkinson's disease, established by injecting 6-hydroxydopamine into the substantia nigra pars compacta and ventral tegmental area. We then administered levodopa (20 mg/kg intraperitoneally, twice daily) with or without Shudipingchan granule (7.5 mL/kg intragastrically, twice daily), for 4 weeks. The long-term use of levodopa accelerated apoptosis of nigral cells and worsened behavioral symptoms by activating the extracellular signal-regulated kinase pathway and downstream apoptotic factors. However, administration of Shudipingchan granule with levodopa reduced expression of phosphorylated extracellular signal-regulated kinase 1/2 and Bax, increased tyrosine hydroxylase and Bcl-2, reduced apoptosis in the substantia nigra, and markedly improved dyskinesia. These findings suggest that Shudipingchan granule suppresses neuronal apoptosis by inhibiting the hyperphosphorylation of extracellular signal-regulated kinase and downregulating expression of anti-apoptotic genes. Shudipingchan granule, used in combination with levodopa, can effectively reduce the symptoms of Parkinson's disease.

  2. Protective effect of central thyrotropin-releasing hormone analog on cerulein-induced acute pancreatitis in rats.

    PubMed

    Yoneda, Masashi; Goto, Manabu; Nakamura, Kimihide; Shimada, Tadahito; Hiraishi, Hideyuki; Terano, Akira; Haneda, Masakazu

    2005-02-15

    Central neuropeptides play a role in many physiological functions through the autonomic nervous system. We have recently demonstrated that central injection of a thyrotropin-releasing hormone (TRH) analog increases pancreatic blood flow through vagal and nitric oxide-dependent pathways. In this study, the central effect of a TRH analog on experimental acute pancreatitis was investigated in rats. Acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 microg/kg) at 1-h interval. Either stable TRH analog, RX 77368 (5-100 ng), or saline was injected intracisternally 15 min before the first cerulein injection under ether anesthesia. Serum amylase level was measured before and 5 h after the first cerulein injection. Pancreatic wet/dry weight ratio and histological changes were also evaluated. Intracisternal TRH analog inhibited cerulean-induced elevation of serum amylase level, increase in pancreatic wet/dry weight ratio and pancreatic histological changes, such as interstitial edema, inflammation and vacuolization. The pancreatic cytoprotection induced by central TRH analog was abolished by subdiaphragmatic vagotomy and N(G)-nitro-L-arginine-methyl ester (L-NAME), but not by 6-hydroxydopamine (6-OHDA). Intravenous administration of the TRH analog did not influence cerulein-induced acute pancreatitis. These results indicate that the TRH analog acts in the central nervous system to protect against acute pancreatitis through vagal and nitric oxide-dependent pathways.

  3. Anti-apoptotic effect of Shudipingchan granule in the substantia nigra of rat models of Parkinson's disease

    PubMed Central

    Ye, Qing; Yuan, Xiao-lei; He, Jing; Zhou, Jie; Yuan, Can-xing; Yang, Xu-ming

    2016-01-01

    Levodopa is the gold-standard treatment for Parkinson's disease. However, although it alleviates the clinical symptoms, it cannot delay the progressive apoptosis of dopaminergic neurons or prevent motor complications in the long term. In the present study, we investigated the effect of Shudipingchan granule on neuronal apoptosis in a rat model of Parkinson's disease, established by injecting 6-hydroxydopamine into the substantia nigra pars compacta and ventral tegmental area. We then administered levodopa (20 mg/kg intraperitoneally, twice daily) with or without Shudipingchan granule (7.5 mL/kg intragastrically, twice daily), for 4 weeks. The long-term use of levodopa accelerated apoptosis of nigral cells and worsened behavioral symptoms by activating the extracellular signal-regulated kinase pathway and downstream apoptotic factors. However, administration of Shudipingchan granule with levodopa reduced expression of phosphorylated extracellular signal-regulated kinase 1/2 and Bax, increased tyrosine hydroxylase and Bcl-2, reduced apoptosis in the substantia nigra, and markedly improved dyskinesia. These findings suggest that Shudipingchan granule suppresses neuronal apoptosis by inhibiting the hyperphosphorylation of extracellular signal-regulated kinase and downregulating expression of anti-apoptotic genes. Shudipingchan granule, used in combination with levodopa, can effectively reduce the symptoms of Parkinson's disease. PMID:27904494

  4. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons

    PubMed Central

    Proschel, Christoph; Stripay, Jennifer L; Shih, Chung-Hsuan; Munger, Joshua C; Noble, Mark D

    2014-01-01

    In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically-relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAsBMP, that are generated in vitro by directed differentiation of glial precursors. GDAsBMP produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAsBMP also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDABMP transplantation into the 6-hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDABMP transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin+ GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin-1 and 2 by GDAsBMP, increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAsBMP offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation. PMID:24477866

  5. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model.

    PubMed

    Kong, Min; Ba, Maowen; Liu, Chuanyu; Zhang, Yanxiang; Zhang, Hongli; Qiu, Haiyan

    2015-04-01

    The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID.

  6. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.

  7. Monoamine transporter contributions to l-DOPA effects in hemi-parkinsonian rats.

    PubMed

    Conti, Melissa M; Meadows, Samantha M; Melikhov-Sosin, Mitchell; Lindenbach, David; Hallmark, Joy; Werner, David F; Bishop, Christopher

    2016-11-01

    l-DOPA is the standard treatment for Parkinson's disease (PD), but chronic treatment typically leads to abnormal involuntary movement or dyskinesia (LID) development. Although poorly understood, dyskinetic mechanisms involve a complex interaction between the remaining dopamine system and the semi-homologous serotonin and norepinephrine systems. Serotonin and norepinephrine transporters (SERT and NET, respectively) have affinity for dopamine uptake especially when dopamine transporters (DAT) are scant. Monoamine reuptake inhibitors have been reported to modulate l-DOPA's anti-parkinsonian effects, but DAT, SERT, and NET's contribution to dyskinesia has not been well delineated. The current investigation sought to uncover the differential expression and function of DAT, SERT, and NET in the l-DOPA-treated hemi-parkinsonian rat. Protein analysis of striatal monoamine transporters in unilateral sham or 6-hydroxydopamine-lesioned rats treated with l-DOPA (0 or 6 mg/kg) showed lesion-induced DAT loss and l-DOPA-induced gain in SERT:DAT and NET:DAT ratios in lesioned rats which positively correlated with dyskinesia expression, suggesting functional shifts among monoamine transporters in the dyskinetic state. SERT blockade with citalopram (3, 5 mg/kg) reduced LID while DAT and NET blockade with GBR-12909 (5, 10 mg/kg) and nisoxetine (5, 10 mg/kg), respectively, mildly exacerbated dyskinesia expression. Transporter inhibition did not significantly alter l-DOPA's ability to reverse motor deficit. Overall, DA and DAT loss with l-DOPA treatment appear to precipitate gain in SERT and NET function. Strong correlations with LID and direct behavioral comparisons of selective transporter blockade reveal novel implications for SERT, DAT, and NET as potential biomarkers and therapeutic targets in the hemi-parkinsonian model and dyskinetic PD patients.

  8. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  9. Pharmacological characterization of alpha 2-adrenoceptor regulated serotonin release in the rat hippocampus.

    PubMed

    Numazawa, R; Yoshioka, M; Matsumoto, M; Togashi, H; Kemmotsu, O; Saito, H

    1995-06-16

    The purpose of the present study was to confirm the functional regulation by alpha 2-adrenoceptors of the release of serotonin (5-HT) from the rat hippocampus in vivo. Under several pharmacological conditions, extracellular levels of 5-HT were estimated by assaying its concentrations in the perfusate by high performance liquid chromatography with electrochemical detection. Extracellular 5-HT in the hippocampus was reduced by tetrodotoxin (10 microM) co-perfusion, but increased by perfusion of a selective 5-HT re-uptake inhibitor, fluoxetine (10 microM). Addition of potassium (K+, 120 mM) to the perfusion fluid evoked an approximately 3-fold increase in 5-HT release. When the alpha 2-adrenoceptor agonist UK14,304 (0.1-10 microM) was added to the perfusion solution, the K(+)-evoked 5-HT release was significantly inhibited in a concentration-dependent manner. This inhibitory action of UK14,304 was reversed by pretreatment with an alpha 2-adrenoceptor antagonist, idazoxan (5 mg/kg, i.p.). In rats which were catecholaminergically denervated with 6-hydroxydopamine, UK14,304 (10 microM) still inhibited the K(+)-evoked 5-HT release. Treatment with pertussis toxin (PTX) did not alter the K(+)-evoked release of 5-HT but abolished the inhibitory effect of UK14,304. These findings suggest that 5-HT release is functionally modulated via alpha 2-adrenoceptors located on the serotonergic nerve terminals in the rat hippocampus and furthermore, the possibility that the inhibitory of alpha 2-adrenoceptors is linked to G-proteins which are substrates of PTX.

  10. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function.

  11. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat.

    PubMed

    Schreihofer, A M; Stornetta, R L; Guyenet, P G

    2000-11-15

    1. In this study we examined whether the rostral ventrolateral medulla (RVLM) maintains resting sympathetic vasomotor tone and activates sympathetic nerve activity (SNA) after the depletion of bulbospinal C1 adrenergic neurones. 2. Bulbospinal C1 cells were destroyed ( approximately 84% loss) by bilateral microinjections (spinal segments T2-T3) of an anti-dopamine-beta-hydroxylase antibody conjugated to the ribosomal toxin saporin (anti-DH-SAP). 3. Extracellular recording and juxtacellular labelling of bulbospinal barosensitive neurones in the RVLM revealed that treatment with anti-DH-SAP spared the lightly myelinated neurones with no tyrosine hydroxylase immunoreactivity. 4. In rats treated with anti-DH-SAP, inhibition of RVLM neurones by bilateral microinjection of muscimol eliminated splanchnic SNA and produced the same degree of hypotension as in control rats. 5. Following treatment with anti-DH-SAP the sympathoexcitatory (splanchnic nerve) and pressor responses to electrical stimulation of the RVLM were reduced. 6. Treatment with anti-DH-SAP also eliminated the majority of A5 noradrenergic neurones. However, rats with selective lesion of A5 cells by microinjection of 6-hydroxydopamine into the pons showed no deficits to stimulation of the RVLM. 7. In summary, the loss of 84% of bulbospinal adrenergic neurones does not alter the ability of RVLM to maintain SNA and arterial pressure at rest in anaesthetized rats, but this loss reduces the sympathoexcitatory and pressor responses evoked by RVLM stimulation. The data suggest sympathoexcitatory roles for both the C1 cells and non-C1 cells of the RVLM and further suggest the C1 cells are critical for the full expression of sympathoexcitatory responses generated by the RVLM.

  12. Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model

    PubMed Central

    Guan, Lina; Yi, Maoli; Zhang, Hongli

    2016-01-01

    Fluctuations of dopamine levels and upregulations of NR2B tyrosine phosphorylation in the striatum have been connected with levodopa (L-dopa)-induced dyskinesia (LID) in Parkinson's disease (PD). Repetitive transcranial magnetic stimulation (rTMS) is one of the noninvasive and potential method treating dyskinesia. Yet, the effect of rTMS on the above key pathological events remains unclear. In this study, we gave L-dopa treatment intraperitoneally for 22 days to 6-hydroxydopamine-lesioned PD rats to prepare LID rats model, and subsequently applied rTMS daily for 3 weeks to LID rats model. The effect of rTMS on abnormal involuntary movements (AIMs) was assessed. After ending the experiments, we further determined tyrosine hydroxylase (TH)-positive dopaminergic neurons number by immunohistochemistry, dopamine levels by HPLC, glial cell line-derived neurotrophic factor (GDNF) levels by ELISA, NR2B tyrosine phosphorylation and interactions of NR2B with Fyn by immunoblotting and immunoprecipitation. The results demonstrated that rTMS obviously attenuated AIMs scores, reduced the loss of nigral dopaminergic neurons and the fluctuations of striatal dopamine levels. Meanwhile, rTMS significantly increased the expression of GDNFwhich couldrestore the damage of dopaminergic neurons. Additionally, rTMS also reduced the levels of the NR2B tyrosine phosphorylation andits interactions with Fyn in the lesioned striatum of LID rats model. Thus, these data indicate that rTMS can provide benefit for the therapy of LID by improving the key biochemical deficits related to dyskinesia. PMID:27613848

  13. Repetitive transcranial magnetic stimulation (rTMS) improves behavioral and biochemical deficits in levodopa-induced dyskinetic rats model.

    PubMed

    Ba, Maowen; Kong, Min; Guan, Lina; Yi, Maoli; Zhang, Hongli

    2016-09-13

    Fluctuations of dopamine levels and upregulations of NR2B tyrosine phosphorylation in the striatum have been connected with levodopa (L-dopa)-induced dyskinesia (LID) in Parkinson's disease (PD). Repetitive transcranial magnetic stimulation (rTMS) is one of the noninvasive and potential method treating dyskinesia. Yet, the effect of rTMS on the above key pathological events remains unclear. In this study, we gave L-dopa treatment intraperitoneally for 22 days to 6-hydroxydopamine-lesioned PD rats to prepare LID rats model, and subsequently applied rTMS daily for 3 weeks to LID rats model. The effect of rTMS on abnormal involuntary movements (AIMs) was assessed. After ending the experiments, we further determined tyrosine hydroxylase (TH)-positive dopaminergic neurons number by immunohistochemistry, dopamine levels by HPLC, glial cell line-derived neurotrophic factor (GDNF) levels by ELISA, NR2B tyrosine phosphorylation and interactions of NR2B with Fyn by immunoblotting and immunoprecipitation. The results demonstrated that rTMS obviously attenuated AIMs scores, reduced the loss of nigral dopaminergic neurons and the fluctuations of striatal dopamine levels. Meanwhile, rTMS significantly increased the expression of GDNF, which couldrestore the damage of dopaminergic neurons. Additionally, rTMS also reduced the levels of the NR2B tyrosine phosphorylation andits interactions with Fyn in the lesioned striatum of LID rats model. Thus, these data indicate that rTMS can provide benefit for the therapy of LID by improving the key biochemical deficits related to dyskinesia.

  14. Environmental enrichment brings a beneficial effect on beam walking and enhances the migration of doublecortin-positive cells following striatal lesions in rats.

    PubMed

    Urakawa, S; Hida, H; Masuda, T; Misumi, S; Kim, T-S; Nishino, H

    2007-02-09

    Rats raised in an enriched environment (enriched rats) have been reported to show less motor dysfunction following brain lesions, but the neuronal correlates of this improvement have not been well clarified. The present study aimed to elucidate the effect of chemical brain lesions and environmental enrichment on motor function and lesion-induced neurogenesis. Three week-old, recently weaned rats were divided into two groups: one group was raised in an enriched environment and the other group was raised in a standard cage for 5 weeks. Striatal damage was induced at an age of 8 weeks by injection of the neuro-toxins 6-hydroxydopamine (6-OHDA) or quinolinic acid (QA) into the striatum, or by injection of 6-OHDA into the substantia nigra (SN), which depleted nigrostriatal dopaminergic innervation. Enriched rats showed better performance on beam walking compared with those raised in standard conditions, but both groups showed similar forelimb use asymmetry in a cylinder test. The number of bromodeoxyuridine-labeled proliferating cells in the subventricular zone was increased by a severe striatal lesion induced by QA injection 1 week after the lesion, but decreased by injection of 6-OHDA into the SN. Following induction of lesions by striatal injection of 6-OHDA or QA, the number of cells positive for doublecortin (DCX) was strongly increased in the striatum; however, there was no change in the number of DCX-positive cells following 6-OHDA injection into the SN. Environmental enrichment enhanced the increase of DCX-positive cells with migrating morphology in the dorsal striatum. In enriched rats, DCX-positive cells traversed the striatal parenchyma far from the corpus callosum and lateral ventricle. DCX-positive cells co-expressed an immature neuronal marker, polysialylated neural cell adhesion molecule, but were negative for a glial marker. These data suggest that environmental enrichment improves motor performance on beam walking and enhances neuronal migration toward

  15. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats.

    PubMed

    El Arfani, Anissa; Bentea, Eduard; Aourz, Najat; Ampe, Ben; De Deurwaerdère, Philippe; Van Eeckhaut, Ann; Massie, Ann; Sarre, Sophie; Smolders, Ilse; Michotte, Yvette

    2014-10-01

    Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.

  16. L-DOPA-induced dyskinesia in a rat model of Parkinson's disease is associated with the fluctuational release of norepinephrine in the sensorimotor striatum.

    PubMed

    Wang, Yong; Wang, Hui Sheng; Wang, Tao; Huang, Chen; Liu, Jian

    2014-12-01

    L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is the most common complication of standard L-DOPA therapy for Parkinson's disease experienced by most parkinsonian patients. LID is associated with disruption of dopaminergic homeostasis in basal ganglia following L-DOPA administration. Norepinephrine (NE) is another important catecholaminergic neurotransmitter that is also believed to be involved in the pathogenesis of LID. This study compared NE release in the ipsilateral sensorimotor striatum of dyskinetic and nondyskinetic 6-hydroxydopamine-lesioned hemiparkinsonian rats treated chronically with L-DOPA. After L-DOPA injection, the time-course curves of NE levels in the sensorimotor striatum were significantly different between dyskinetic and nondyskinetic rats. Several metabolic kinetic parameters of NE levels were also differentially expressed between the two groups. In comparison with nondyskinetic rats, the ΔCmax of NE was significantly higher in dyskinetic rats, whereas Tmax and t1/2 of NE were significantly shorter. Intrastriatal perfusion of NE into the lesioned sensorimotor striatum revealed a moderate dyskinesia in dyskinetic rats, which was similar to the dyskinetic behavior after L-DOPA administration. The L-DOPA-related dyskinetic behavior was inhibited significantly by a further pretreatment of noradrenergic neurotoxin N-​(2-​chloroethyl)​-​N-​ethyl-​2-​bromobenzylamine or intrastriatal administration of the α2 -adrenoceptor antagonist idazoxan, accompanied by significant changes in metabolic kinetic parameters of NE in the sensorimotor striatum. The results provide evidence to support the correlation between abnormal NE neurotransmission and the induction of LID and suggest that the aberrant change of the quantitative and temporal releasing of NE in the sensorimotor striatum might play an important role in the pathogenesis of LID.

  17. Magnetic resonance imaging as a tool to image neuroinflammation in a rat model of Parkinson's disease--phagocyte influx to the brain is promoted by bilberry-enriched diet.

    PubMed

    Virel, Ana; Rehnmark, Anna; Orädd, Greger; Olmedo-Díaz, Sonia; Faergemann, Erik; Strömberg, Ingrid

    2015-11-01

    Neuroinflammation is a chronic event in neurodegenerative disorders. In the rat model of Parkinson's disease, including a striatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA), antioxidant treatment affects the inflammatory process. Despite a heavy accumulation of microglia early after the injury, dopamine nerve fibre regeneration occurs. It remains unclear why this heavy accumulation of microglia is found early after the lesion in antioxidant-treated animals, or even more, what is the origin of these microglia. In this study magnetic resonance imaging (MRI) was used to elucidate whether the inflammatory response was generated from the blood or from activated brain microglia. Superparamagnetic iron oxide (SPIO) nanoparticles were injected intravenously prior to a striatal 6-OHDA injection to tag phagocytes in the blood. Rats were fed either with bilberry-enriched or control diet. T2*-weighted MRI scans were performed 1 week after the lesion, and hypointense areas were calculated from T2*-weighted images, to monitor the presence of SPIO particles. The results revealed that feeding the animals with bilberries significantly promoted accumulation of blood-derived immune cells. Gadolinium-enhanced MRI demonstrated no difference in leakage of the blood-brain barrier independent of diets. To conclude, bilberry-enriched diet promotes an influx of periphery-derived immune cells to the brain early after injury.

  18. GABAA-receptor activation in the subthalamic nucleus compensates behavioral asymmetries in the hemiparkinsonian rat.

    PubMed

    Petri, David; Pum, Martin; Vesper, Jan; Huston, Joseph P; Schnitzler, Alfons

    2013-09-01

    The subthalamic nucleus (STN) has a pivotal role in the pathophysiology of Parkinson's disease (PD). Modulation of STN activity (by lesions, pharmacological or electrical stimulation) has been shown to improve motor parameters in PD patients and in animal models of PD. In an attempt to characterize the neurochemical bases for such antiparkinsonian action, we address specific neurotransmitter systems via local pharmacological manipulation of the STN in hemiparkinsonian rats. Here, we have focused on the GABAergic and glutamatergic receptors in the STN. In animals with unilateral 6-hydroxydopamine lesions of the nigro-striatal tract, we administered either the selective GABAA-agonist muscimol (0.5 μg and 1.0 μg), the non-competitive N-methyl-d-aspartate (NMDA)-antagonist MK-801 (dizocilpine; 2.5 μg), or vehicle (0.25 μl) into the STN. The effects of GABAergic and glutamatergic modulation of the STN on motor parameters were assessed by gauging rotational behavior and locomotion. Application of muscimol ipsilateral to the side of dopamine-depletion influenced turning behavior in a dose-dependent fashion, with the low dose re-adjusting turning behavior to a non-biased distribution, and the high dose evoking contraversive turning. The administration of MK-801 did not have such effects. These findings give evidence for the involvement of GABAergic activation in the STN in the compensation of motor asymmetries in the hemiparkinsonian rat, whereas N-methyl-d-aspartate (NMDA)-antagonism was ineffective in this model of PD.

  19. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury.

    PubMed

    Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J

    2016-11-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)(+) neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)(-) and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH(+) neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH(+) neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH(+) cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH(+) neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI.

  20. Behavioral and Neurochemical Effects of Alpha-Lipoic Acid in the Model of Parkinson's Disease Induced by Unilateral Stereotaxic Injection of 6-Ohda in Rat

    PubMed Central

    de Araújo, Dayane Pessoa; De Sousa, Caren Nádia Soares; Araújo, Paulo Victor Pontes; Menezes, Carlos Eduardo de Souza; Sousa Rodrigues, Francisca Taciana; Escudeiro, Sarah Souza; Lima, Nicole Brito Cortez; Patrocínio, Manoel Claúdio Azevedo; Aguiar, Lissiana Magna Vasconcelos; Viana, Glauce Socorro de Barros; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This study aimed to investigate behavioral and neurochemical effects of α-lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinson's disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α-Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α-lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α-lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α-lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment. PMID:24023579

  1. Time course of changes in striatal dopamine transporters and D2 receptors with specific iodinated markers in a rat model of Parkinson's disease.

    PubMed

    Chalon, S; Emond, P; Bodard, S; Vilar, M P; Thiercelin, C; Besnard, J C; Guilloteau, D

    1999-02-01

    The time course of the loss in presynaptic dopamine transporters (DAT) and of the increase in postsynaptic dopamine D2 receptors (D2R) was studied in a rat model of Parkinson's disease. For this, in vitro autoradiographic experiments were performed in the striatum using (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy-3beta-(4'-methy lphenyl) nortropane (PE2I), a new single photon emission tomography (SPET) ligand for DAT, and iodobenzamide (IBZM), a SPET ligand for D2R. A significant decrease in [125I]PE2I binding was observed as early as 24 h after 6-hydroxydopamine lesion, whereas no change occurred in [125I]IBZM binding. At 48 h postlesion, PE2I binding was 50% decreased, while IBZM binding was 30% increased. Between 3 and 14 days postlesion, PE2I binding had almost totally disappeared and IBZM binding remained increased by around 40-50%. From these animal experiments, it can be assumed that PE2I would be very efficient for the detection of a reduction in the number of DAT reflecting neuronal loss, thus allowing early diagnosis of Parkinson's disease. The exploration of both DAT and D2R would improve follow-up of this disease.

  2. Dysfunction of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism.

    PubMed

    Oueslati, Abid; Breysse, Nathalie; Amalric, Marianne; Kerkerian-Le Goff, Lydia; Salin, Pascal

    2005-12-01

    This study examined the cellular correlates of the akinetic deficits produced in Wistar rats by discrete bilateral 6-hydroxydopamine (6-OHDA) striatal infusions in the dorsolateral striatum, mimicking the preferential denervation of the motor striatal territory in early symptomatic stage of Parkinson's disease (PD). Intraneuronal gene expression of cytochrome oxidase subunit I (COI), a metabolic index of neuronal activity, was increased in the subthalamic nucleus, substantia nigra pars reticulata and decreased in frontal cortical areas, but paradoxically unchanged in the striatum, globus pallidus, entopeduncular nucleus and ventrolateral thalamic nucleus. Neither preproenkephalin A nor preprotachykinin mRNA expression, markers of striatal projection neurons, were modified in the denervated striatal area despite 90% loss of dopamine (DA) terminals. Preproenkephalin A mRNA expression was however, decreased in the nondepleted striatal region, suggesting compensatory increase of dopamine tone from those spared areas. A chronic treatment with the metabotropic glutamate receptor 5 (mGluR5) antagonist 2-methyl-6-(phenylethylnyl)-pyridine (MPEP), which alleviated the akinetic disorders produced by the lesion, reversed the lesion-induced variations of COI gene expression, moderately increased this marker in the structures unaffected by the lesion and did not modify the striatal neuropeptides gene expression. These data suggest that the expression of akinetic deficits in early parkinsonism is associated with focused metabolic changes in the cortico-basal ganglia-cortical loop downstream of the striatum and pallidal complex.

  3. Effect of Central Catecholamine Depletion on the Osmotic and Nonosmotic Stimulation of Vasopressin (Antidiuretic Hormone) in the Rat

    PubMed Central

    Miller, Thomas R.; Handelman, William A.; Arnold, Patricia E.; McDonald, Keith M.; Molinoff, Perry B.; Schrier, Robert W.

    1979-01-01

    The central nervous system (CNS) mechanism(s) for the release of antidiuretic hormone (ADH) by various stimuli is unknown. In this study, the role of CNS catecholamines in effecting ADH release was examined in conscious rats 10-14 d after the cerebroventricular injection of 6-hydroxydopamine (6-OHDA). This dose of 6-OHDA caused a 67% depletion of brain tissue norepinephrine and only 3% depletion of heart norepinephrine, as compared with controls, which were injected with the vehicle buffer alone. Either intravenous 3% saline (osmotic stimulus) or intraperitoneal hyperoncotic dextran (nonosmotic stimulus) was administered to water-diuresing rats through indwelling catheters. Neither of these maneuvers changed arterial pressure, pulse, or inulin clearance in control or 6-OHDA rats. The 3% saline caused similar increases in plasma osmolality (15 mosmol/kg H2O) in control and 6-OHDA rats. The control rats, however, increased urinary osmolality (Uosm) to 586 mosmol/kg H2O, whereas 6-OHDA rats increased Uosm only to 335 mosmol/kg H2O (P < 0.005). These changes in Uosm were accompanied by an increase in plasma ADH to 7.6 μIU/ml in control animals vs. 2.9 μIU/ml in 6-OHDA rats (P < 0.005). All waterdiuresing animals had undetectable plasma ADH levels. Dextran-induced hypovolemia caused similar decrements (− 10%) in blood volume in both control and 6-OHDA animals, neither of which had significant changes in plasma osmolality. This nonosmotic hypovolemic stimulus caused an increase in Uosm to 753 mosmol/kg H2O in control rats, whereas Uosm in 6-OHDA rats increased to only 358 mosmol/kg H2O (P < 0.001). At the same time, ADH levels also were significantly greater in Cont rats (2.4 μIU/ml) than in the 6-OHDA animals (0.69 μIU/ml; P < 0.05). These results therefore suggest that CNS catecholamines may play an important role in mediating ADH release in response to both osmotic and nonosmotic (hypovolemic) stimuli. PMID:500827

  4. Overexpression of GRK6 rescues L-DOPA-induced signaling abnormalities in the dopamine-depleted striatum of hemiparkinsonian rats.

    PubMed

    Ahmed, M Rafiuddin; Bychkov, Evgeny; Kook, Seunghyi; Zurkovsky, Lilia; Dalby, Kevin N; Gurevich, Eugenia V

    2015-04-01

    l-DOPA therapy in Parkinson's disease often results in side effects such as l-DOPA-induced dyskinesia (LID). Our previous studies demonstrated that defective desensitization of dopamine receptors caused by decreased expression of G protein-coupled receptor kinases (GRKs) plays a role. Overexpression of GRK6, the isoform regulating dopamine receptors, in parkinsonian rats and monkeys alleviated LID and reduced LID-associated changes in gene expression. Here we show that 2-fold lentivirus-mediated overexpression of GRK6 in the dopamine-depleted striatum in rats unilaterally lesioned with 6-hydroxydopamine ameliorated supersensitive ERK response to l-DOPA challenge caused by loss of dopamine. A somewhat stronger effect of GRK6 was observed in drug-naïve than in chronically l-DOPA-treated animals. GRK6 reduced the responsiveness of p38 MAP kinase to l-DOPA challenge rendered supersensitive by dopamine depletion. The JNK MAP kinase was unaffected by loss of dopamine, chronic or acute l-DOPA, or GRK6. Overexpressed GRK6 suppressed enhanced activity of Akt in the lesioned striatum by reducing elevated phosphorylation at its major activating residue Thr(308). Finally, GRK6 reduced accumulation of ΔFosB in the lesioned striatum, the effect that paralleled a decrease in locomotor sensitization to l-DOPA in GRK6-expressing rats. The results suggest that elevated GRK6 facilitate desensitization of DA receptors, thereby normalizing of the activity of multiple signaling pathways implicated in LID. Thus, improving the regulation of dopamine receptor function via the desensitization mechanism could be an effective way of managing LID.

  5. Effect of tricyclic antidepressants on L-DOPA-induced dyskinesia and motor improvement in hemi-parkinsonian rats.

    PubMed

    Conti, Melissa M; Goldenberg, Adam A A; Kuberka, Alexandra; Mohamed, Mohamed; Eissa, Satie; Lindenbach, David; Bishop, Christopher

    2016-03-01

    Although dopamine replacement therapy with L-DOPA in Parkinson's disease initially reduces motor symptoms, its chronic use often leads to the development of abnormal involuntary movements known as L-DOPA-induced dyskinesia. Increasingly, research has indicated that non-dopaminergic neurons gain function in the parkinsonian brain, taking up and converting L-DOPA to dopamine and releasing it as a "false neurotransmitter". Although less explored, promiscuity between monoamine transporters may also modulate these processes. Therefore, in order to examine the differential roles of monoamine transporters in L-DOPA's behavioral effects, three tricyclic antidepressants (TCA) with graded affinity for serotonin (SERT) vs. norepinephrine (NET) transporters were tested in hemi-parkinsonian rats: clomipramine (SERT>NET), amitriptyline (SERT=NET), and desipramine (SERTRats received 6-hydroxydopamine lesions and were primed with L-DOPA (12mg/kg, s.c.) to develop stable dyskinesia (N=19 of 26). In a series of studies, rats were administered TCAs (0, 7.5, 15 or 30mg/kg, i.p.) followed by L-DOPA (6mg/kg, s.c.) and were measured for dyskinesia using the abnormal involuntary movements scale as well as motor performance and activity using the forepaw adjusting steps test and locomotor chambers, respectively. Clomipramine, the compound with the highest affinity for SERT was most effective in attenuating L-DOPA-induced dyskinesia without altering L-DOPA's stimulatory effects. In contrast, desipramine, the TCA with the highest NET affinity deferred L-DOPA's effects to later time points in testing. The current results indicate divergent roles for non-dopaminergic neuronal transporters in L-DOPA's mechanisms of action and point to novel targets for improving Parkinson's disease treatment.

  6. Alpha-adrenoceptor antagonists and chemical sympathectomy exacerbate anaphylaxis-induced hypotension, but not portal hypertension, in anesthetized rats.

    PubMed

    Wang, Mofei; Tanida, Mamoru; Shibamoto, Toshishige; Kurata, Yasutaka

    2013-10-15

    Anaphylactic shock is sometimes life-threatening, and it is accompanied by hepatic venoconstriction in animals, which, in part, accounts for anaphylactic hypotension. Roles of norepinephrine and α-adrenoceptor in anaphylaxis-induced hypotension and portal hypertension were investigated in anesthetized ovalbumin-sensitized Sprague-Dawley rats. The sensitized rats were randomly allocated to the following pretreatment groups (n = 6/group): 1) control (nonpretreatment), 2) α1-adrenoceptor antagonist prazosin, 3) nonselective α-adrenoceptor antagonist phentolamine, 4) 6-hydroxydopamine-induced chemical sympathectomy, and 5) surgical hepatic sympathectomy. Anaphylactic shock was induced by an intravenous injection of the antigen. The systemic arterial pressure (SAP), central venous pressure (CVP), portal venous pressure (PVP), and portal venous blood flow (PBF) were measured, and splanchnic [Rspl: (SAP-PVP)/PBF] and portal venous [Rpv: (PVP-CVP)/PBF] resistances were determined. Separately, we measured efferent hepatic sympathetic nerve activity during anaphylaxis. In the control group, SAP markedly decreased, followed by a gradual recovery toward baseline. PVP and Rpv increased 3.2- and 23.3-fold, respectively, after antigen. Rspl decreased immediately, but only transiently, after antigen, and then increased 1.5-fold later than 10 min. The α-adrenoceptor antagonist pretreatment or chemical sympathectomy inhibited the late increase in Rspl and the SAP recovery. Pretreatment with α-adrenoceptor antagonists, or either chemical or surgical hepatic sympathectomy, did not affect the antigen-induced increase in Rpv. Hepatic sympathetic nerve activity did not significantly change after antigen. In conclusion, α-adrenoceptor antagonists and chemical sympathectomy exacerbate anaphylaxis-induced hypotension, but not portal hypertension, in anesthetized rats. Hepatic sympathetic nerves are not involved in anaphylactic portal hypertension.

  7. Effects of 5-HT1A receptor stimulation on striatal and cortical M1 pERK induction by L-DOPA and a D1 receptor agonist in a rat model of Parkinson's disease.

    PubMed

    Lindenbach, David; Dupre, Kristin B; Eskow Jaunarajs, Karen L; Ostock, Corinne Y; Goldenberg, Adam A; Bishop, Christopher

    2013-11-06

    Motor symptoms of Parkinson's disease are commonly treated using l-DOPA although long-term treatment usually causes debilitating motor side effects including dyskinesias. A putative source of dyskinesia is abnormally high levels of phosphorylated extracellular-regulated kinase (pERK) within the striatum. In animal models, the serotonin 1A receptor agonist ±8-OH-DPAT reduces dyskinesia, suggesting it may exhibit efficacy through the pERK pathway. The present study investigated the effects of ±8-OH-DPAT on pERK density in rats treated with l-DOPA or the D1 receptor agonist SKF81297. Rats were given a unilateral dopamine lesion with 6-hydroxydopamine and primed with a chronic regimen of l-DOPA, SKF81297 or their vehicles. On the final test day, rats were given two injections: first with ±8-OH-DPAT, the D1 receptor antagonist SCH23390 or their vehicles, and second with l-DOPA, SKF81297 or their vehicles. Rats were then transcardially perfused for immunohistological analysis of pERK expression in the striatum and primary motor cortex. Rats showed greater dyskinesia in response to l-DOPA and SKF81297 after repeated injections. Although striatal pERK induction was similar between acute and chronic l-DOPA, SKF81297 caused the largest increase in striatal pERK after the first exposure. Neither compound alone affected motor cortex pERK. Surprisingly, in the ventromedial striatum, ±8-OH-DPAT potentiated l-DOPA-induced pERK; in the motor cortex, ±8-OH-DPAT potentiated pERK with l-DOPA or SKF81297. Our results support previous work that the striatal pERK pathway is dysregulated after dopamine depletion, but call into question the utility of pERK as a biomarker of dyskinesia expression.

  8. Cholinergic and GABAergic regulation of dopamine beta-hydroxylase activity in the adrenal gland of the rat.

    PubMed

    Lima, L; Sourkes, T L

    1986-04-01

    The administration of oxotremorine together with methylatropine to rats produces a dose-dependent increase of adrenal dopamine-beta-hydroxylase (DBH) activity. This effect is abolished by denervation of the gland and by cycloheximide. The Km for tyramine is not affected by the trans-synaptic induction of DBH by oxotremorine. The induction is selective, because similar treatment does not affect adrenal dopa decarboxylase or lactate dehydrogenase in the adrenal gland. The combination of 6-hydroxydopamine i.c.v. or propranolol i.p. does not alter the effect of oxotremorine on adrenal DBH. However, propranolol reduces the tremorigenic action of the muscarinic agonist. The systemic administration of p-chlorophenylalanine or the i.c.v. injection of 5,7-dihydroxytryptamine before oxotremorine treatment does not affect the increase of adrenal DBH. Progabide, gamma-aminobutyric acid, a (GABA)A and GABAB receptor agonist that effectively crosses the blood-brain barrier, reduces the effect of oxotremorine in a dose-dependent manner. Muscimol given by either of two routes, i.c.v. at a constant rate (Alzet minipump) or i.p., produces significant decreases of adrenal DBH activity and attenuates the action of oxotremorine. Denervation of the gland abolishes the effect of muscimol i.p. in decreasing adrenal DBH activity. Baclofen, a GABAB receptor agonist, has no effect by itself or does it affect the action of oxotremorine. None of these GABA agonists has any in vitro effect on adrenal DBH activity. Bicuculline, GABAA receptor antagonist, reverses the action of progabide in oxotremorine-treated rats with respect to adrenal DBH activity, partially blocks the effect of muscimol and enhances the increase obtained with oxotremorine.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease.

    PubMed

    Bortolanza, Mariza; Cavalcanti-Kiwiatkoski, Roberta; Padovan-Neto, Fernando E; da-Silva, Célia Aparecida; Mitkovski, Miso; Raisman-Vozari, Rita; Del-Bel, Elaine

    2015-01-01

    l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.

  10. Sudden Death Following Selective Neuronal Lesions in the Rat Nucleus Tractus Solitarii

    PubMed Central

    Talman, William T.; Lin, Li-Hsien

    2013-01-01

    In efforts to assess baroreflex and cardiovascular responses in rats in which substance P (SP) or catecholamine transmission had been eliminated we studied animals after bilateral injections into the nucleus tractus solitarii (NTS) of SP or stabilized SP (SSP) conjugated to saporin (SP-SAP or SSP-SAP respectively) or SAP conjugated to an antibody to dopamine-β-hydroxylase (anti-DBH-SAP). We found that SP- and SSP-SAP eliminated NTS neurons that expressed the SP neurokinin-1 receptor (NK1R) while anti-DBH-SAP eliminated NTS neurons expressing tyrosine hydroxylase (TH) and DBH. The toxins were selective. Thus SP-or SSP-SAP did not eliminate TH/DBH neurons and anti-DBH-SAP did not eliminate NK1R neurons in the NTS. Each toxin, however, led to chronic lability of arterial blood pressure, diminished baroreflex function, cardiac ventricular irritability, coagulation necrosis of cardiac myocytes and, in some animals, sudden death associated with asystole. However, when TH/DBH neurons were targeted and eliminated by injection of 6-hydroxydopamine (6-OHDA), none of the cardiovascular or cardiac changes occurred. The studies reviewed here reveal that selective lesions of the NTS lead to altered baroreflex control and to cardiac changes that may lead to sudden death. Though the findings could support a role for SP or catecholamines in baroreflex transmission neither is proven in that NK1R colocalizes with glutamate receptors. Thus neurons with both are lost when treated with SP- or SSP-SAP. In addition, loss of catecholamine neurons after treatment with 6-OHDA does not affect cardiovascular control. Thus, the effect of the toxins may depend on an action of SAP independent of the effects of the SAP conjugates on targeted neuronal types. PMID:23245583

  11. Effect of simvastatin on L-DOPA-induced abnormal involuntary movements of hemiparkinsonian rats.

    PubMed

    Wang, Tan; Cao, Xuebin; Zhang, Tian; Shi, Qingqing; Chen, Zhibin; Tang, Beisha

    2015-08-01

    Chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease (PD) often results in debilitating involuntary movements known as L-DOPA-induced dyskinesia (LID), which is the main obstacle in PD. The abnormal involuntary movements (AIMs) are consistently involved with the activation of the Ras-extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway. Previous research has also shown that blockade of ERK phosphorylation could reduce the induction of LID. Consequently, inhibitors of MAPK signaling cascade that block the aberrant supersensitive response of direct pathway striatal neurons could provide a novel therapeutic adjunct to L-DOPA in the treatment of PD. Statins, a specific inhibitor of the rate-limiting enzyme in cholesterol biosynthesis, can also inhibit Ras isoprenylation and activity, and the subsequent phosphorylation of ERK1/2 (pERK1/2). Simvastatin, a representative of statins, could reduce L-DOPA-induced AIM incidence and severity in the 6-hydroxydopamine (6-OHDA) rat model of PD by preventing the L-DOPA/benserazide-induced increase in pERK1/2 levels in our study. The simvastatin-L-DOPA/benserazide-treated 6-OHDA animals displayed less severe rotational behavior and a dramatic reduction in AIM severity than the L-DOPA/benserazide-treated ones. This lower AIM severity was related to a decrease in L-DOPA-induced increase in the following: (1) striatal pERK1/2 and (2) FosB levels. These results suggest that simvastatin could represent a treatment option for managing LID in PD.

  12. EXOGENOUS CORTICOSTERONE REDUCES L-DOPA-INDUCED DYSKINESIA IN THE HEMI-PARKINSONIAN RAT: ROLE FOR INTERLEUKIN-1β

    PubMed Central

    Barnum, Christopher J.; Eskow, Karen L.; Dupre, Kristen; Blandino, Peter; Deak, Terrence; Bishop, Christopher

    2008-01-01

    While the etiology of Parkinson’s disease (PD) remains unknown, there is overwhelming evidence that neuroinflammation plays a critical role in the progressive loss of dopamine (DA) neurons. Because nearly all persons suffering from PD receive l-DOPA, it is surprising that inflammation has not been examined as a potential contributor to the abnormal involuntary movements (AIMs) that occur as a consequence of chronic l-DOPA treatment. As an initial test of this hypothesis, we examined the effects of exogenously administered corticosterone (CORT), an endogenous anti-inflammatory agent, on the expression and development of l-DOPA-induced dyskinesia (LID) in unilateral DA-depleted rats. To do this, male Sprague-Dawley rats received unilateral medial forebrain bundle 6-hydroxydopamine lesions. Three weeks later, l-DOPA primed rats received acute injections of CORT (0–3.75 mg/kg) prior to l-DOPA to assess the expression of LID. A second group of rats was used to examine the development of LID in l-DOPA naïve rats co-treated with CORT and l-DOPA for 2 weeks. AIMs and rotations were recorded. Exogenous CORT dose-dependently attenuated both the expression and development of AIMs without affecting rotations. Real-time RT-PCR of striatal tissue implicated a role for IL-1β in these effects as its expression was increased on the lesioned side in rats treated with l-DOPA (within the DA-depleted striatum) and attenuated with CORT. In the final experiment, IL-1 receptor antagonist (IL-1ra) was microinjected into the striatum of l-DOPA-primed rats to assess the impact of IL-1 signaling on LID. Intrastriatal IL-1ra reduced the expression of LID without affecting rotations. These findings indicate a novel role for neuroinflammation in the expression of LID, and may implicate the use of anti-inflammatory agents as a potential adjunctive therapy for the treatment of LID. PMID:18687386

  13. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    PubMed

    Razgado-Hernandez, Luis F; Espadas-Alvarez, Armando J; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  14. Dopamine mediates striatal malonate toxicity via dopamine transporter-dependent generation of reactive oxygen species and D2 but not D1 receptor activation.

    PubMed

    Xia, X G; Schmidt, N; Teismann, P; Ferger, B; Schulz, J B

    2001-10-01

    Intrastriatal injection of the reversible succinate dehydrogenase inhibitor malonate results in both chemically induced hypoxia and striatal lesions that are similar to those seen in Huntington's disease and cerebral ischaemia. The mechanisms leading to neuronal death involve secondary excitotoxicity, the release of dopamine from nigrostriatal fibres and the generation of reactive oxygen species (ROS) including nitric oxide (NO) and hydroxyl radicals. Here, we further investigated the contribution and mechanism of dopamine on malonate-induced striatal lesions. Prior lesions of the nigrostriatal pathway with 6-OHDA or the depletion of striatal dopamine stores by pretreatment with reserpine, an inhibitor or the vesicular monoamine transporter type-2 (VMAT2), in combination with alpha-methyl-p-tyrosine resulted in a significant reduction of malonate-induced striatal lesion volumes. This was paralleled by block or reduction of the malonate-induced generation of ROS, as measured by the conversions of salicylate to 2,3-dihydroxybenzoic acid (2,3-DHBA) using microdialysis. Systemic or intrastriatal application of L-DOPA or dopamine, respectively, reconstituted malonate toxicity and the generation of ROS in 6-OHDA-lesioned rats. Block of the dopamine transporter by GBR12909 did not result in a reduction of malonate-induced dopamine release, but significantly reduced the generation of hydroxyl radicals. The D2 receptor agonist lisuride and the mixed D1 and D2 receptor agonist apomorphine, but not the D1 receptor agonist SKF38393, partially restored malonate toxicity in 6-OHDA-lesioned rats without increasing the generation of ROS. In line with these results sulpiride, an inhibitor of D2 receptors, reduced the malonate-induced lesion volume, whereas SCH23390, an inhbitor of D1 receptors, was ineffective. Our data suggest that malonate-induced dopamine toxicity to energetically impaired neurons is mediated by two independent pathways: (i) dopamine transporter uptake

  15. The Effects of Crocin on 6-OHDA-Induced Oxidative/Nitrosative Damage and Motor Behaviour in Hemiparkinsonian Rats

    PubMed Central

    Hosseini, Maryam; Rajaei, Ziba; Alaei, Hojjatallah; Tajadini, Mohamadhasan

    2016-01-01

    Background Crocin is considered to prevent oxidative stress-related diseases, such as ischemia and Alzheimer’s. The aim of the present investigation was to evaluate the effects of crocin on motor behaviour and 6-OHDA-induced oxidative/nitrosative damage to the striatum in an experimental model of Parkinson’s disease. Methods Left medial forebrain bundle was lesioned by microinjection of 6-OHDA (16μg in 0.2% ascorbate-saline). Crocin (30 and 60 mg/kg) was injected intraperitoneally three days before surgery until six weeks. Rotational behaviour and biochemical analysis were used to evaluate the effect of crocin in a unilateral 6-OHDA-induced model of Parkinson’s disease. Results The contralateral rotations induced by apomorphine in 6-OHDA lesioned group were highly significant (P < 0.001) as compared to the sham group. Moreover, chronic administration of crocin at doses of 30 and 60 mg/kg over six weeks did not change the rotations. The TBARS and nitrite levels in the striatum were also significantly (P < 0.05) increased in lesioned group. Treatment with crocin at a dose of 60 mg/kg significantly decreased the nitrite levels (P < 0.05) in the striatum. Conclusion Crocin at a dose of 60 mg/kg could be effective in preventing the nitrosative damage in the striatum. Further investigations using higher doses of crocin is suggested to get the full neuroprotective effects of crocin in Parkinson’s disease. PMID:28090177

  16. TRK-820, a selective kappa opioid receptor agonist, could effectively ameliorate L-DOPA-induced dyskinesia symptoms in a rat model of Parkinson's disease.

    PubMed

    Ikeda, Ken; Yoshikawa, Satoru; Kurokawa, Takahiro; Yuzawa, Natsumi; Nakao, Kaoru; Mochizuki, Hidenori

    2009-10-12

    Long-term therapy with L-3,4-dihydroxyphenylalanine (L-DOPA) in parkinsonian patients is known to lead to dyskinesia within a few years, and repeated administration of L-DOPA is also likely to alter the expression of kappa opioid receptors in the basal ganglia, especially the striatum and substantia nigra pars reticulata, suggesting that kappa opioid receptors might be deeply involved in motor functions. Therefore, effects of TRK-820 ((E)-N-[17-(cyclopropylmethyl)-4,5alpha-epoxy-3,14-dihydroxymorphinan-6beta-yl]-3-(furan-3-yl)-N-methylprop-2-enamide monohydrochloride), a selective kappa opioid receptor agonist, were investigated on rotational behavior in unilateral 6-hydroxydopamine (6-OHDA)-treated rats (hemi-parkinsonian rats) and on L-DOPA-induced dyskinesia produced by administering L-DOPA to hemi-parkinsonian rats for 3 weeks (dyskinesia rats). A single administration of subcutaneous TRK-820 significantly increased spontaneous ipsilateral rotational behavior of hemi-parkinsonian rats at 30 microg/kg though the efficacy was moderate and also significantly inhibited L-DOPA-induced dyskinesia at 10 and 30 microg/kg; this inhibition was reversed in the presence of nor-binaltorphimine, a kappa opioid receptor antagonist. In vivo microdialysis study, TRK-820 (30 microg/kg, s.c.) significantly inhibited L-DOPA-derived extracellular dopamine content in the 6-OHDA-treated striatum in dyskinesia rats, but not in hemi-parkinsonian rats. Moreover, the development of L-DOPA-induced dyskinesia was suppressed by the 3-week co-administration of TRK-820 (3 and 10 microg/kg, s.c.) with L-DOPA. These results have suggested that TRK-820 ameliorates L-DOPA-induced dyskinesia with a moderate anti-parkinsonian effect by inhibiting L-DOPA-induced excessive dopamine release through kappa opioid receptors only in dyskinesia rats; therefore, TRK-820 is expected to become a useful agent for the treatment of L-DOPA-induced dyskinesia.

  17. Preventive effect of rikkunshito on gastric motor function inhibited by L-dopa in rats.

    PubMed

    Wang, Lixin; Mogami, Sachiko; Karasawa, Hiroshi; Yamada, Chihiro; Yakabi, Seiichi; Yakabi, Koji; Hattori, Tomohisa; Taché, Yvette

    2014-05-01

    We previously reported that ghrelin prevented l-dopa (LD)-induced inhibition of gastric emptying (GE) of a non-nutrient solution in rats. Parkinson's disease treatment involves the combined administration of l-dopa with the enzyme l-amino acid decarboxylase inhibitor, carbidopa (CD) to reduce peripheral formation of dopamine. We investigated the effect LD/CD given orogastrically (og) on GE of a non-nutrient or nutrient meal and whether og pretreatment with rikkunshito, a kampo medicine clinically used to treat gastroparesis, influenced LD/CD effect on GE and postprandial antral and duodenal motility in conscious rats. LD/CD (20/2 mgkg(-1)) decreased significantly GE to 26.3 ± 6.0% compared to 61.2 ± 3.2% in og vehicle monitored 20-min after a non-nutrient meal and to 41.9 ± 5.8% compared to 72.9 ± 5.2% in og vehicle monitored 60 min after a nutrient meal. Rikkunshito (0.5 or 1.0 g kg(-1)) reduced the LD/CD (20/2 mg kg(-1)) inhibition of GE of non-nutrient meal (36.9 ± 7.4% and 46.6 ± 4.8% respectively vs. 12.1 ± 7.4% in og vehicle plus LD/CD) while having no effect alone (56.6 ± 8.5%). The ghrelin antagonist, [d-Lys(3)]-GHRP-6 (1 mg kg(-1)) injected intraperitoneally partially reversed rikkunshito preventive effect on LD/CD-inhibited GE. Rikkunshito (1.0 g kg(-1)) blocked LD/CD (20/2 mg kg(-1))-induced delayed GE of a nutrient meal and the reduction of postprandial antral motility. In 6-hydroxydopamine-induced Parkinson's disease rat model, rikkunshito (1.0 g kg(-1), og) also prevented LD/CD-inhibited gastric emptying of a nutrient meal and enhanced fasting plasma levels of acylated ghrelin. These data indicate that oral rikkunshito alleviates the delayed GE induced by LD/CD in naïve and PD rat model in part through ghrelin-related mechanisms.

  18. CX3CR1 Disruption Differentially Influences Dopaminergic Neuron Degeneration in Parkinsonian Mice Depending on the Neurotoxin and Route of Administration.

    PubMed

    Tristão, Fabrine Sales Massafera; Lazzarini, Márcio; Martin, Sabine; Amar, Majid; Stühmer, Walter; Kirchhoff, Frank; Gomes, Lucas Araújo Caldi; Lanfumey, Laurance; Prediger, Rui D; Sepulveda, Julia E; Del-Bel, Elaine A; Raisman-Vozari, Rita

    2016-04-01

    Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons accompanied by an inflammatory reaction. The neuron-derived chemokine fractalkine (CX3CL1) is an exclusive ligand for the receptor CX3CR1 expressed on microglia. The CX3CL1/CX3CR1 signaling is important for sustaining microglial activity. Using a recently developed PD model, in which the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin is delivered intranasally, we hypothesized that CX3CR1 could play a role in neurotoxicity and glial activation. For this, we used CX3CR1 knock-in mice and compared results with those obtained using the classical PD models through intraperitonal MPTP or intrastriatal 6-hydroxydopamine (6-OHDA). The striatum from all genotypes (CX3CR1(+/+), CX3CR1(+/GFP) and CX3CR1-deficient mice) showed a significant dopaminergic depletion after intranasal MPTP inoculation. In contrast to that, we could not see differences in the number of dopaminergic neurons in the substantia nigra of CX3CR1-deficient animals. Similarly, after 6-OHDA infusion, the CX3CR1 deletion decreased the amphetamine-induced turning behavior observed in CX3CR1(+/GFP) mice. After the 6-OHDA inoculation, a minor dopaminergic neuronal loss was observed in the substantia nigra from CX3CR1-deficient mice. Distinctly, a more extensive neuronal cell loss was observed in the substantia nigra after the intraperitoneal MPTP injection in CX3CR1 disrupted animals, corroborating previous results. Intranasal and intraperitoneal MPTP inoculation induced a similar microgliosis in CX3CR1-deficient mice but a dissimilar change in the astrocyte proliferation in the substantia nigra. Nigral astrocyte proliferation was observed only after intraperitoneal MPTP inoculation. In conclusion, intranasal MPTP and 6-OHDA lesion in CX3CR1-deficient mice yield no nigral dopaminergic neuron loss, linked to the absence of astroglial proliferation.

  19. Catecholaminergic depletion within the prelimbic medial prefrontal cortex enhances latent inhibition.

    PubMed

    Nelson, A J D; Thur, K E; Marsden, C A; Cassaday, H J

    2010-09-29

    Latent inhibition (LI) refers to the reduction in conditioning to a stimulus that has received repeated non-reinforced pre-exposure. Investigations into the neural substrates of LI have focused on the nucleus accumbens (NAc) and its inputs from the hippocampal formation and adjacent cortical areas. Previous work has suggested that lesions to the medial prefrontal cortex (mPFC), another major source of input to the NAc, do not disrupt LI. However, a failure to observe disrupted LI does not preclude the possibility that a particular brain region is involved in the expression of LI. Moreover, the mPFC is a heterogeneous structure and there has been no investigation of a possible role of different regions within the mPFC in regulating LI under conditions that prevent LI in controls. Here, we tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of dopamine (DA) terminals within the prelimbic (PL) and infralimbic (IL) mPFC would lead to the emergence of LI under conditions that do produce LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures to a noise conditioned stimulus (CS) and two conditioning trials. Sham-operated and IL-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the PL, however, produced potentiation of LI. These results provide the first demonstration that the PL mPFC is a component of the neural circuitry underpinning LI.

  20. Catecholaminergic depletion within the prelimbic medial prefrontal cortex enhances latent inhibition

    PubMed Central

    Nelson, A.J.D.; Thur, K.E.; Marsden, C.A.; Cassaday, H.J.

    2010-01-01

    Latent inhibition (LI) refers to the reduction in conditioning to a stimulus that has received repeated non-reinforced pre-exposure. Investigations into the neural substrates of LI have focused on the nucleus accumbens (NAc) and its inputs from the hippocampal formation and adjacent cortical areas. Previous work has suggested that lesions to the medial prefrontal cortex (mPFC), another major source of input to the NAc, do not disrupt LI. However, a failure to observe disrupted LI does not preclude the possibility that a particular brain region is involved in the expression of LI. Moreover, the mPFC is a heterogeneous structure and there has been no investigation of a possible role of different regions within the mPFC in regulating LI under conditions that prevent LI in controls. Here, we tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of dopamine (DA) terminals within the prelimbic (PL) and infralimbic (IL) mPFC would lead to the emergence of LI under conditions that do produce LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures to a noise conditioned stimulus (CS) and two conditioning trials. Sham-operated and IL-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the PL, however, produced potentiation of LI. These results provide the first demonstration that the PL mPFC is a component of the neural circuitry underpinning LI. PMID:20619321

  1. MK-801 (Dizocilpine) Regulates Multiple Steps of Adult Hippocampal Neurogenesis and Alters Psychological Symptoms via Wnt/β-Catenin Signaling in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Shubha

    2017-03-15

    Adult hippocampal neurogenesis is directly involved in regulation of stress, anxiety, and depression that are commonly observed nonmotor symptoms in Parkinson's disease (PD). These symptoms do not respond to pharmacological dopamine replacement therapy. Excitotoxic damage to neuronal cells by N-methyl-d-aspartate (NMDA) receptor activation is also a major contributing factor in PD development, but whether it regulates hippocampal neurogenesis and nonmotor symptoms in PD is yet unexplored. Herein, for the first time, we studied the effect of MK-801, an NMDA receptor antagonist, on adult hippocampal neurogenesis and behavioral functions in 6-OHDA (6-hydroxydopamine) induced rat model of PD. MK-801 treatment (0.2 mg/kg, ip) increased neural stem cell (NSC) proliferation, self-renewal capacity, long-term survival, and neuronal differentiation in the hippocampus of rat model of PD. MK-801 potentially enhanced long-term survival, improved dendritic arborization of immature neurons, and reduced 6-OHDA induced neurodegeneration via maintaining the NSC pool in hippocampus, leading to decreased anxiety and depression-like phenotypes in the PD model. MK-801 inhibited glycogen synthase kinase-3β (GSK-3β) through up-regulation of Wnt-3a, which resulted in the activation of Wnt/β-catenin signaling leading to enhanced hippocampal neurogenesis in PD model. Additionally, MK-801 treatment protected the dopaminergic (DAergic) neurons in the nigrostriatal pathway and improved motor functions by increasing the expression of Nurr-1 and Pitx-3 in the PD model. Therefore, MK-801 treatment serves as a valuable tool to enhance hippocampal neurogenesis in PD, but further studies are needed to revisit the role of MK-801 in the neurodegenerative disorder before proposing a potential therapeutic candidate.

  2. The impact of ventral noradrenergic bundle lesions on increased IL-1 in the PVN and hormonal responses to stress in male sprague dawley rats.

    PubMed

    Blandino, Peter; Hueston, Cara M; Barnum, Christopher J; Bishop, Christopher; Deak, Terrence

    2013-07-01

    The impact of acute stress on inflammatory signaling within the central nervous system is of interest because these factors influence neuroendocrine function both directly and indirectly. Exposure to certain stressors increases expression of the proinflammatory cytokine, Il-1β in the hypothalamus. Increased IL-1 is reciprocally regulated by norepinephrine (stimulatory) and corticosterone (inhibitory), yet neural pathways underlying increased IL-1 have not been clarified. These experiments explored the impact of bilateral lesions of the ventral noradrenergic bundle (VNAB) on IL-1 expression in the paraventricular nucleus of the hypothalamus (PVN) after foot shock. Adult male Sprague Dawley rats received bilateral 6-hydroxydopamine lesions of the VNAB (VNABx) and were exposed to intermittent foot shock. VNABx depleted approximately 64% of norepinephrine in the PVN and attenuated the IL-1 response produced by foot shock. However, characterization of the hypothalamic-pituitary-adrenal response, a crucial prerequisite for interpreting the effect of VNABx on IL-1 expression, revealed a profound dissociation between ACTH and corticosterone. Specifically, VNABx blocked the intronic CRH response in the PVN and the increase in plasma ACTH, whereas corticosterone was unaffected at all time points examined. Additionally, foot shock led to a rapid and profound increase in cyclooxygenase-2 and IL-1 expression within the adrenal glands, whereas more subtle effects were observed in the pituitary gland. Together the findings were the 1) demonstration that exposure to acute stress increased expression of inflammatory factors more broadly throughout the hypothalamic-pituitary-adrenal axis; 2) implication of a modest role for norepinephrine-containing fibers of the VNAB as an upstream regulator of PVN IL-1; and 3) suggestion of an ACTH-independent mechanism controlling the release of corticosterone in VNABx rats.

  3. Side effect profile of 5-HT treatments for Parkinson's disease and L-DOPA-induced dyskinesia in rats

    PubMed Central

    Lindenbach, D; Palumbo, N; Ostock, C Y; Vilceus, N; Conti, M M; Bishop, C

    2015-01-01

    BACKGROUND AND PURPOSE Treatment of Parkinson's disease (PD) with L-DOPA eventually causes abnormal involuntary movements known as dyskinesias in most patients. Dyskinesia can be reduced using compounds that act as direct or indirect agonists of the 5-HT1A receptor, but these drugs have been reported to worsen PD features and are known to produce ‘5-HT syndrome’, symptoms of which include tremor, myoclonus, rigidity and hyper-reflexia. EXPERIMENTAL APPROACH Sprague-Dawley rats were given unilateral nigrostriatal dopamine lesions with 6-hydroxydopamine. Each of the following three purportedly anti-dyskinetic 5-HT compounds were administered 15 min before L-DOPA: the full 5-HT1A agonist ±-8-hydroxy-2-dipropylaminotetralin (±8-OH-DPAT), the partial 5-HT1A agonist buspirone or the 5-HT transporter inhibitor citalopram. After these injections, animals were monitored for dyskinesia, 5-HT syndrome, motor activity and PD akinesia. KEY RESULTS Each 5-HT drug dose-dependently reduced dyskinesia by relatively equal amounts (±8-OH-DPAT ≥ citalopram ≥ buspirone), but 5-HT syndrome was higher with ±8-OH-DPAT, lower with buspirone and not present with citalopram. Importantly, with or without L-DOPA, all three compounds provided an additional improvement of PD akinesia. All drugs tempered the locomotor response to L-DOPA suggesting dyskinesia reduction, but vertical rearing was reduced with 5-HT drugs, potentially reflecting features of 5-HT syndrome. CONCLUSIONS AND IMPLICATIONS The results suggest that compounds that indirectly facilitate 5-HT1A receptor activation, such as citalopram, may be more effective therapeutics than direct 5-HT1A receptor agonists because they exhibit similar anti-dyskinesia efficacy, while possessing a reduced side effect profile. PMID:25175895

  4. Differential pattern of motor impairments in neurotoxic, environmental and inflammation-driven rat models of Parkinson's disease.

    PubMed

    Naughton, Carol; Moriarty, Niamh; Feehan, Jennifer; O'Toole, Daniel; Dowd, Eilís

    2016-01-01

    One of the reasons proposed for the paucity of drug discovery for Parkinson's disease is the lack of relevant animal models of the condition. Parkinson's disease has been modelled extensively using the selective neurotoxin, 6-hydroxydopamine (6-OHDA). However, as this model bears little etiological resemblance to the human condition, there has been a drive to develop models with improved etiological validity. Two such models are those induced by the pesticide, rotenone, and the inflammagen, lipopolysaccharide (LPS). However, to date, these models have been poorly characterised in terms of their motor profiles and have never been directly compared to the more established models. Thus, the aim of this study was to characterise the behavioural profile of the rotenone and LPS models, and to compare them with the 6-OHDA model. Animals underwent baseline testing on the Stepping, Whisker, Corridor and Cylinder Tests of motor function. They were then grouped for unilateral intra-striatal infusion of 6-OHDA, rotenone or LPS. Motor testing continued for ten weeks after which the rats were processed for immunohistochemical analysis of nigrostriatal integrity. We found that, although all neurotoxins induced a similar level of nigrostriatal neurodegeneration, neither the rotenone nor LPS models were associated with amphetamine-induced rotation, and they were associated with significantly less pronounced and stable impairments in the spontaneous tasks than the 6-OHDA model. In conclusion, this study demonstrates key differences in the pattern of motor dysfunction induced by Parkinsonian neurotoxins which should be taken into consideration when selecting the most appropriate model for Parkinson's disease preclinical studies.

  5. Striatal mRNA expression patterns underlying peak dose L-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat.

    PubMed

    Smith, L M; Parr-Brownlie, L C; Duncan, E J; Black, M A; Gemmell, N J; Dearden, P K; Reynolds, J N J

    2016-06-02

    L-DOPA is the primary pharmacological treatment for relief of the motor symptoms of Parkinson's disease (PD). With prolonged treatment (⩾5 years) the majority of patients will develop abnormal involuntary movements as a result of L-DOPA treatment, known as L-DOPA-induced dyskinesia. Understanding the underlying mechanisms of dyskinesia is a crucial step toward developing treatments for this debilitating side effect. We used the 6-hydroxydopamine (6-OHDA) rat model of PD treated with a three-week dosing regimen of L-DOPA plus the dopa decarboxylase inhibitor benserazide (4 mg/kg and 7.5 mg/kgs.c., respectively) to induce dyskinesia in 50% of individuals. We then used RNA-seq to investigate the differences in mRNA expression in the striatum of dyskinetic animals, non-dyskinetic animals, and untreated parkinsonian controls at the peak of dyskinesia expression, 60 min after L-DOPA administration. Overall, 255 genes were differentially expressed; with significant differences in mRNA expression observed between all three groups. In dyskinetic animals 129 genes were more highly expressed and 14 less highly expressed when compared with non-dyskinetic and untreated parkinsonian controls. In L-DOPA treated animals 42 genes were more highly expressed and 95 less highly expressed when compared with untreated parkinsonian controls. Gene set cluster analysis revealed an increase in expression of genes associated with the cytoskeleton and phosphoproteins in dyskinetic animals compared with non-dyskinetic animals, which is consistent with recent studies documenting an increase in synapses in dyskinetic animals. These genes may be potential targets for drugs to ameliorate L-DOPA-induced dyskinesia or as an adjunct treatment to prevent their occurrence.

  6. Neuronal markers expression of NGF-primed bone marrow cells (BMCs) transplanted in the brain of 6-hydroxydopamine and ibotenic acid lesioned littermate mice.

    PubMed

    Triaca, Viviana; Aloe, Luigi

    In the present study, we aim to show that non-adherent bone marrow cells (BMCs) express TrkA, the nerve growth factor (NGF) receptor, and that addition of NGF promotes the survival and neuronal commitment of BMC transplanted into the experimentally injured brain of littermates mice. Immunohistochemical analysis revealed that transplanted BMCs express tyrosine hydroxylase (TH) in proximity of the damaged dopaminergic tissues and choline acetyltransferase (ChAT) in the lesioned cholinergic regions. These results suggest that NGF supports the survival and differentiation of uncommitted BMCs and concurs with other local environmental signals to promote the expression of neuronal markers in these cells. The possible functional significance of these observations will be discussed.

  7. Early increase in dopamine release in the ipsilateral striatum after unilateral intranigral administration of lactacystin produces spontaneous contralateral rotations in rats.

    PubMed

    Konieczny, J; Lenda, T; Czarnecka, A

    2016-06-02

    Since the discovery of the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of Parkinson's disease, UPS inhibitors, such as lactacystin have been used to investigate the relationship between UPS impairment and degeneration of dopamine (DA) neurons. However, mostly long-term neurotoxic effects of lactacystin have been studied in animal models. Therefore, the aim of our study was to investigate behavioral and biochemical changes related to the DA system during the first week following unilateral intranigral injection of lactacystin to rats. We found that lactacystin produced early spontaneous contralateral rotations which were inhibited by combined administration of DA D1 and D2 receptor antagonists. Simultaneously, an increase in the extracellular level of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was found in the ipsilateral striatum. In contrast, one week after lesion, when turning behavior was no longer visible, a decrease in the extracellular level of DA, DOPAC and HVA was demonstrated. It was accompanied by a substantial reduction in the tissue levels of DA and its metabolites in the lesioned substantia nigra and striatum. We concluded that unilateral intranigral administration of lactacystin produces an early increase in DA neurotransmission which precedes a decrease in the striatal and nigral tissue DA content. It is manifested by the appearance of spontaneous contralateral rotations and an elevation of the extracellular DA level in the ipsilateral striatum. Since similar behavior was previously observed after intranigral administration of rotenone and MPP(+) but not 6-hydroxydopamine (6-OHDA), it may indicate a common mechanism of action shared by these neurotoxins.

  8. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    SciTech Connect

    Gundlach, A.L.; Largent, B.L.; Snyder, S.H.

    1986-06-01

    (+)3H-3-PPP ((+)3H-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine) binds with high affinity to brain membranes with a pharmacological profile consistent with that of sigma receptors. The distribution of (+)3H-3-PPP binding sites in brain and spinal cord of both guinea pig and rat has been determined by in vitro autoradiography with binding densities quantitated by computer-assisted densitometry. (+)3H-3-PPP binding to slide-mounted brain sections is saturable and displays high affinity and a pharmacological specificity very similar to sites labeled in homogenates. (+)3H-3-PPP binding sites are heterogeneously distributed. Highest concentrations of binding sites occur in spinal cord, particularly the ventral horn and dorsal root ganglia; the pons-medulla, associated with the cranial nerve and pontine nuclei and throughout the brain stem reticular formation; the cerebellum, over the Purkinje cell layer; the midbrain, particularly the central gray and red nucleus; and hippocampus, over the pyramidal cell layer. Lowest levels are seen in the basal ganglia and parts of the thalamus, while all other areas, including hypothalamus and cerebral cortex, exhibit moderate grain densities. Quinolinic acid-induced lesions of the hippocampus indicate that (+)3H-3-PPP labels hippocampal pyramidal cells and granule cells in the dentate gyrus. Intrastriatal injection of ibotenic acid dramatically reduces (+)3H-3-PPP binding in this area, while injection of 6-hydroxydopamine produces a relatively slight decrease. The distribution of (+)3H-3-PPP binding sites does not correlate with the receptor distribution of any recognized neurotransmitter or neuropeptide, including dopamine. However, there is a notable similarity between the distribution of (+)3H-3-PPP sites and high-affinity binding sites for psychotomimetic opioids, such as the benzomorphan (+)SKF 10,047.

  9. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-08-01

    It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage

  10. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.

    PubMed

    Campbell, B M; Kreipke, C W; Walker, P D

    2006-01-01

    N-methyl-D-aspartate receptor antagonism exerts suppressive influences over dopamine D1 receptor-mediated striatal gene expression and locomotor behavior in the intact rat. The present study examined the effects of the N-methyl-D-aspartate receptor antagonist MK-801 on locomotor activity and striatal preprotachykinin mRNA expression stimulated by the D1 agonist (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide in rats with bilateral dopamine lesions. Two months after neonatal dopamine lesions with 6-hydroxydopamine, rats were challenged with (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) 15 min after administration of the N-methyl-D-aspartate receptor antagonist MK-801 (0.1 mg/kg). In the intact rat, MK-801 prevented the induction of striatal preprotachykinin mRNA by D1 agonism. Similarly, direct infusion of (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (3.0 microg) into the intact striatum produced an increase in locomotor activity that was suppressed by MK-801 (1.0 microg) co-infusion. In the dopamine-depleted rat, MK-801 (0.1 mg/kg) administered prior to (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) increased, rather than suppressed, striatal preprotachykinin mRNA levels. Intrastriatal infusion of MK-801 (1.0 microg) failed to inhibit D1-mediated induction of motor activity in dopamine-depleted animals. Together, these data provide further support that N-methyl-D-aspartate receptor antagonists lose their ability to block D1-mediated behavioral activation following dopamine depletion. The activation, rather than suppression, of tachykinin neurons of the direct striatonigral pathway may play a facilitatory role in this mechanism.

  11. Sex-related differences in descending norepinephrine and serotonin controls of spinal withdrawal reflex during intramuscular saline induced muscle nociception in rats.

    PubMed

    Lei, Jing; Jin, Lin; Zhao, Ye; Sui, Mei-Yu; Huang, Li; Tan, Yong-Xiang; Chen, Yan-Ke; You, Hao-Jun

    2011-04-01

    Sex-associated differences in the perception and modulation of pain have widely been reported in humans as well as animals. The aim of the present study performed in conscious rats of both sexes was to systematically investigate the role of sex in endogenous descending controls of nociceptive paw withdrawal reflex during experimental muscle pain elicited by intramuscular (i.m.) injection with different doses (0.1-0.4 ml of 0.9-5.8%) of saline. Ipsilateral i.m. injection of 0.2-0.4 ml, but not 0.1 ml, isotonic (0.9%, IT) saline elicited long lasting (about 7d), secondary and contralateral mechanical hyperalgesia in female rats, whereas male rats exhibited a bilateral, short-term (less than 1d) mechanical hyperalgesia only during the exposure to 0.4 ml IT saline injection (P < 0.05). A bolus of 0.4 ml, but not 0.1-0.2 ml, IT saline significantly induced a one-week, secondary and contralateral heat hypoalgesia in both male and female rats (P < 0.05). In contrast to the IT saline injection, 0.1 ml hypertonic (5.8%, HT) saline started to evoke bilateral mechanical hyperalgesia in male and female rats. During the HT saline induced muscle nociception, mechanical hyperalgesia in female rats was greater in magnitude and longer in duration than that of in male rats (P < 0.05). Heat hypoalgesia was bilaterally found in male rats receiving either 0.2 ml or 0.4 ml HT saline injection, whereas female rats showed heat hypoalgesia, subjected only to the 0.4 ml HT saline injection (P < 0.05 and P < 0.001). Intrathecal (i.th.) administration of either 6-hydroxydopamine hydrobromide (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT) significantly attenuated the HT saline induced heat hypoalgesia, not mechanical hyperalgesia, in male rats. By contrast, in female rats i.th. 6-OHDA markedly blocked heat hypoalgesia, and mechanical hyperalgesia was prevented by 5,7-DHT treatment. It is suggested that i.m. injection of saline dose-dependently elicits ipsilateral secondary and contralateral

  12. The theta-related firing activity of parvalbumin-positive neurons in the medial septum-diagonal band of Broca complex and their response to 5-HT1A receptor stimulation in a rat model of Parkinson's disease.

    PubMed

    Li, Li-Bo; Han, Ling-Na; Zhang, Qiao-Jun; Sun, Yi-Na; Wang, Yong; Feng, Jie; Zhang, Li; Wang, Tao; Chen, Li; Liu, Jian

    2014-03-01

    The parvalbumin (PV)-positive neurons in the medial septum-diagonal band of Broca complex (MS-DB) play an important role in the generation of hippocampal theta rhythm involved in cognitive functions. These neurons in this region express a high density of 5-HT1A receptors which regulate the neuronal activity and consequently affect the theta rhythm. In this study, we examined changes in the theta-related firing activity of PV-positive neurons in the MS-DB, their response to 5-HT1A receptor stimulation and the corresponding hippocampal theta rhythm, and the density of PV-positive neurons and their co-localization with 5-HT1A receptors in rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The lesion of the SNc decreased the rhythmically bursting activity of PV-positive neurons and the peak frequency of hippocampal theta rhythm. Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT (0.5-128 µg/kg, i.v.) inhibited the firing rate of PV-positive neurons and disrupted rhythmically bursting activity of the neurons and the theta rhythm in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition and disruption in the lesioned rats were higher than that of sham-operated rats. Furthermore, local application of 8-OH-DPAT (0.005 μg) in the MS-DB also inhibited the firing rate of PV-positive neurons and disrupted their rhythmically bursting activity in sham-operated rats, while having no effect on PV-positive neurons in the lesioned rats. The lesion of the SNc decreased the density of PV-positive neurons in the MS-DB, and percentage of PV-positive neurons expressing 5-HT1A receptors. These results indicate that the lesion of the SNc leads to suppression of PV-positive neurons in the MS-DB and hippocampal theta rhythm. Furthermore, the lesion decreases the response of these neurons to 5-HT1A receptor stimulation, which attributes to dysfunction and/or down-regulation of 5-HT1A receptor expression on these

  13. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson's disease.

    PubMed

    Jouve, Loréline; Salin, Pascal; Melon, Christophe; Kerkerian-Le Goff, Lydia

    2010-07-21

    The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pf in rodents, is proposed as an interesting target for the neurosurgical treatment of movement disorders, including Parkinson's disease. In this study, we examined the functional impact of subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had significant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the cellular level, Pf-HFS partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and preprodynorphin). Pf-HFS totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of Pf-HFS evidenced here demonstrate that CM/Pf is an important node for modulating the pathophysiological functioning of basal ganglia and related disorders.

  14. Comparative pharmacological study of ropinirole (SKF-101468) and its metabolites in rats.

    PubMed

    Reavill, C; Boyfield, I; Coldwell, M; Nelson, P

    2000-09-01

    The dopamine receptor agonist ropinirole (SKF-101468) is used to treat Parkinson's disease. Ropinirole is metabolized by two routes to a series of different metabolites although the predominant pathway is species-dependent. It is unknown whether any of the metabolites contribute to its antiparkinsonian activity and whether D3 or D2 receptor agonist activity plays a preferential role. Therefore ropinirole and its primary metabolites, SKF-104557, SKF-97930 and SKF-96990, and the rat metabolite, SKF-89124 were tested in the 6-hydroxydopamine lesion model of Parkinson's disease. SKF-89124 and SKF-96990 were also assayed in radioligand binding and microphysiometer functional assays at cloned human dopamine D2 and D3. Ropinirole and SKF-89124 were equipotent in-vivo, and produced dose-related increases in circling at 0.05-0.8 mg kg(-1), s.c. (ropinirole) and 0.05-0.75 mg kg(-1), s.c. (SKF-89124). Neither SKF-96990 or SKF-97930, at doses up to 15 mg kg(-1), increased the circling rate. Some circling was observed with 15 mg kg(-1) SKF-104557 but the response was less than half that produced by ropinirole (0.8 mgkg(-1)). SKF-104557 was 150-fold less potent than ropinirole. SKF-89124 possessed-30-fold higher affinity for D3 over D2 receptors in radioligand binding studies, but was not selective in the functional microphysiometer assay. SKF-96990 was 10-fold selective for D3 over D2 receptors in the radioligand binding assay. Ropinirole and SKF-104557 are 20-fold selective for D3 over D2 receptors in radioligand binding assays whereas in microphysiometry, selectivity is 10-fold. SKF-97930 is inactive in radioligand binding and microphysiometer assays. Primary metabolites of ropinirole did not contribute significantly to its activity in this model of Parkinson's disease. The lack of dopamine D3/D2 receptor selectivity for ropinirole rules out the possibility of attributing the degree of either D2 or D3 receptor activity to the behavioural efficacy of ropinirole.

  15. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    PubMed Central

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  16. Studies of the biogenic amine transporters. VI. Characterization of a novel cocaine binding site, identified with [125I]RTI-55, in membranes prepared from whole rat brain minus caudate.

    PubMed

    Rothman, R B; Silverthorn, M L; Baumann, M H; Goodman, C B; Cadet, J L; Matecka, D; Rice, K C; Carroll, F I; Wang, J B; Uhl, G R

    1995-07-01

    Previous studies showed that the cocaine analog [125I]RTI-55 labels dopamine and serotonergic (5-HT) biogenic amine transporters (BATs) with high affinity. Here we characterized [125I]RTI-55 binding to membranes prepared from whole rat brain minus the caudate nuclei. Paroxetine (50 nM) was used to block [125I]RTI-55 binding to 5-HT transporter sites. Initial experiments identified drugs that displaced [125I]RTI-55 binding with moderately low slope factors. Binding surface analysis of the interaction of 3 beta-(4-chlorophenyl)tropan-2 beta-carboxylic acid phenyl ester hydrochloride (RTI-113) and 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid phenyl ester hydrochloride (RTI-122) with [125I]RTI-55 binding sites readily resolved two binding sites for [125I]RTI-55 with Kd values of 0.44 nM and 17 nM and Bmax values of 31 and 245 fmol/mg protein. Potent 5-HT and noradrenergic uptake inhibitors had low affinity for both sites. Whereas cocaine, CFT and WIN35,065-2 were 6.0-, 25- and 14-fold selective for the first site, benztropine, PCP and the novel pyrrole, (+-)-(2RS,3aSR,8bRS)-1,2,3,3a,4,8b-hexahydro- 2-benzyl-1-methylindeno-[1,2-b]pyrrole resorcylate [(+-)-HBMP, formerly called (+-)-RTI-4793-14], were moderately selective for the second site. A single binding site with the characteristics of site 1 was resolved using COS cells transiently expressing the cloned rat dopamine transporter. Lesion studies with 6-hydroxydopamine and 5,7-dihydroxytryptamine were conducted to test the hypothesis that site 1 and site 2 are physically distinct. The data showed that these neurotoxins differentially decreased [125I]RTI-55 binding to sites 1 and 2. The differential distribution of sites 1 and 2 in rat brain provides further support for this hypothesis. Viewed collectively, these data show that [125I]RTI-55 labels a novel binding site in rat brain membranes, termed DATsite2, which is not associated with the classic dopamine, serotonin or norepinephrine transporters.

  17. A Translational Approach to Vocalization Deficits and Neural Recovery after Behavioral Treatment in Parkinson Disease

    ERIC Educational Resources Information Center

    Ciucci, Michelle R.; Vinney, Lisa; Wahoske, Emerald J.; Connor, Nadine P.

    2010-01-01

    Parkinson disease is characterized by a complex neuropathological profile that primarily affects dopaminergic neural pathways in the basal ganglia, including pathways that modulate cranial sensorimotor functions such as swallowing, voice and speech. Prior work from our lab has shown that the rat model of unilateral 6-hydroxydopamine infusion to…

  18. Construction and Evaluation of Quantitative Small-Animal PET Probabilistic Atlases for [18F]FDG and [18F]FECT Functional Mapping of the Mouse Brain

    PubMed Central

    Casteels, Cindy; Vunckx, Kathleen; Aelvoet, Sarah-Ann; Baekelandt, Veerle; Bormans, Guy; Van Laere, Koen; Koole, Michel

    2013-01-01

    Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([18F]FDG) and dopamine transporter ([18F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM) was explored for [18F]FDG and [18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA) mice. Methods Twenty-three adult C57BL6 mice were scanned with [18F]FDG and [18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [18F]FDG data were quantified using (1) an image-derived-input function obtained from the liver (cMRglc), using (2) standardized uptake values (SUVglc) corrected for blood glucose levels and by (3) normalizing counts to the whole-brain uptake. Parametric [18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. Results Registration accuracy was between 0.21–1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45–60 min time frame (spearman r = 0.71). Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an unilateral striatal decrease in DAT

  19. Studies of the biogenic amine transporters. V. Demonstration of two binding sites for the cocaine analog [125I]RTI-55 associated with the 5-HT transporter in rat brain membranes.

    PubMed

    Silverthorn,