Science.gov

Sample records for 6-meter mesh reflector

  1. Diffraction analysis of mesh deployable reflector antennas

    NASA Astrophysics Data System (ADS)

    Rahmat-Samii, Y.

    1985-04-01

    A formulation and many representative numerical results for mesh reflector antennas are presented. The reflection coefficient matrix for the prescribed mesh configuration was determined and the local coordinate system of the mesh cells at each point on the curved reflector surface was accentuated. A novel strip aperture model was used to formulate the transmission coefficient matrix for a variety of mesh cell configurations. Numerical data are tailored to the dimensions of a conceptually designed land mobile satellite system (LMSS) which employs a large mesh deployable offset parabolic antenna. Results are shown for an offset parabolic reflector with mesh surfaces similar to the mesh surface of tracking and data relay satellite system (TDRSS).

  2. Diffraction Analysis of Mesh Deployable Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1985-01-01

    A formulation and many representative numerical results for mesh reflector antennas are presented. The reflection coefficient matrix for the prescribed mesh configuration was determined and the local coordinate system of the mesh cells at each point on the curved reflector surface was accentuated. A novel strip aperture model was used to formulate the transmission coefficient matrix for a variety of mesh cell configurations. Numerical data are tailored to the dimensions of a conceptually designed land mobile satellite system (LMSS) which employs a large mesh deployable offset parabolic antenna. Results are shown for an offset parabolic reflector with mesh surfaces similar to the mesh surface of tracking and data relay satellite system (TDRSS).

  3. Passive intermodulation generation in wire mesh deployable reflector antennas

    NASA Technical Reports Server (NTRS)

    Turner, Gregory M.

    1993-01-01

    Deployable reflector antennas represent a proven technology with obvious benefits for mobile satellite applications. Harris Corporation has provided deployable reflector antennas for NASA's Tracking and Data Relay Satellite System (TDRSS). These antennas utilize a rigid, radial rib unfurlable reflector with a wire mesh surface. This type of mesh has been identified as a potential design risk for multichannel communications applications based on the potential for generation of Passive Intermodulation (PIM). These concerns are based on the existence of numerous, nonpermanent metal to metal contacts that are inherent to the mesh design. To address this issue, Harris has an ongoing IR&D program to characterize mesh PIM performance. This paper presents the results of the investigation into mesh PIM performance to date and provides background information on the design and performance of the Harris radial rib deployable reflector.

  4. Passive intermodulation generation in wire mesh deployable reflector antennas

    NASA Astrophysics Data System (ADS)

    Turner, Gregory M.

    Deployable reflector antennas represent a proven technology with obvious benefits for mobile satellite applications. Harris Corporation has provided deployable reflector antennas for NASA's Tracking and Data Relay Satellite System (TDRSS). These antennas utilize a rigid, radial rib unfurlable reflector with a wire mesh surface. This type of mesh has been identified as a potential design risk for multichannel communications applications based on the potential for generation of Passive Intermodulation (PIM). These concerns are based on the existence of numerous, nonpermanent metal to metal contacts that are inherent to the mesh design. To address this issue, Harris has an ongoing IR&D program to characterize mesh PIM performance. This paper presents the results of the investigation into mesh PIM performance to date and provides background information on the design and performance of the Harris radial rib deployable reflector.

  5. Electrical performance of wire mesh for spacecraft deployable reflector antennas

    NASA Technical Reports Server (NTRS)

    Turner, Greg

    1993-01-01

    Mobile satellite communications systems require large, high gain antennas at the spacecraft to minimize the antenna gain and power requirements for mobile user elements. The use of a deployable reflector antenna for these applications provides a lightweight system that can be compactly stowed prior to deployment on orbit. The mesh surface material is a critical component in the deployable reflector antenna design. The mesh is required to provide the desired electrical performance as well as the mechanical properties that are necessary to deploy and maintain the reflector surface on orbit. Of particular interest in multi-channel communications applications is the generation of Passive InterModulation (PIM) products at the reflector surface that can result in interference in the receive band. Wire mesh was specifically identified by some as having a high potential for PIM generation based solely on the existence of nonpermanent metal to metal contacts at the junctions that are inherent in the mesh design. There are a number of other factors, however, that reduce the likelihood of PIM occurring at the mesh reflector surface. Experimental data presented demonstrate that mesh PIM generation is not significant for typical applications. PIM and reflectivity performance of wire mesh composed of gold plated molybdenum wire in a tricot knit are described. This type of mesh was successfully used for the deployable Single Access Antennas of the Tracking and Data Relay Satellite System.

  6. Electrical performance of wire mesh for spacecraft deployable reflector antennas

    NASA Astrophysics Data System (ADS)

    Turner, Greg

    Mobile satellite communications systems require large, high gain antennas at the spacecraft to minimize the antenna gain and power requirements for mobile user elements. The use of a deployable reflector antenna for these applications provides a lightweight system that can be compactly stowed prior to deployment on orbit. The mesh surface material is a critical component in the deployable reflector antenna design. The mesh is required to provide the desired electrical performance as well as the mechanical properties that are necessary to deploy and maintain the reflector surface on orbit. Of particular interest in multi-channel communications applications is the generation of Passive InterModulation (PIM) products at the reflector surface that can result in interference in the receive band. Wire mesh was specifically identified by some as having a high potential for PIM generation based solely on the existence of nonpermanent metal to metal contacts at the junctions that are inherent in the mesh design. There are a number of other factors, however, that reduce the likelihood of PIM occurring at the mesh reflector surface. Experimental data presented demonstrate that mesh PIM generation is not significant for typical applications. PIM and reflectivity performance of wire mesh composed of gold plated molybdenum wire in a tricot knit are described. This type of mesh was successfully used for the deployable Single Access Antennas of the Tracking and Data Relay Satellite System.

  7. Vector diffraction analysis of reflector antennas with mesh surfaces

    NASA Astrophysics Data System (ADS)

    Rahmat-Samii, Y.; Lee, S.-W.

    1985-01-01

    Reflector antennas with mesh surfaces are used extensively in many satellite and ground antenna systems. A strip-aperture modeling of commonly used mesh surfaces is presented which provides considerable versatility in characterizing the mesh cells. The mesh transmission coefficients are constructed using a Floquet-modal expansion in conjuction with two dominant aperture modes. To account for the mesh local coordinates, the Eulerian angle transformation is invoked to obtain the total induced current on the curved reflector surface. General formulas are presented to show how the solid surface induced current is modified due to the transmission through the mesh. The effects of a variety of mesh configurations on both the co-polar and cross-polar patterns of reflector antennas are studied by numerically evaluating the vector diffraction integral using the Jacobi-Bessel expansion. For some special cases, a comparison is made with the results of the commonly used wire-grid formulation. Many of the numerical data are tailored to the dimensions of a conceptually designed mesh deployable offset reflector of the land mobile satellite system (LMSS).

  8. Electrical properties analysis of wire mesh for mesh reflectors

    NASA Astrophysics Data System (ADS)

    Li, Tuanjie; Su, Jinguo

    2011-07-01

    The knitted wire mesh is often used as a reflecting surface of large deployable antennas. Different weaves have different electrical properties and it is very important and necessary to research the method of analyzing the electrical properties of wire mesh. This paper has developed an effective method to address the problem. First, a periodic unit of wire model in actual complex mesh structure is converted into an equivalent strip model according to the correlation between strip width and wire diameter. The equivalent regular wire-grid unit of the strip model is derived from the equivalences between the wire-grid unit and the strip model in near and far fields. Then the regular wire-grid units are arranged to form an equivalent mesh surface with the corresponding weave pattern, so the electrical properties of the mesh surface are equivalent to those of the actual mesh structure. Through analyzing electrical properties of the mesh surface including amplitude difference, phase difference and reflecting loss, we can find out the electrical properties of the actual knitted wire mesh. The single satin mesh and a two-bar tricot mesh are used as examples to illustrate the method of electrical properties analysis of wire mesh.

  9. Dynamic deployment analysis of a mesh antenna reflector

    NASA Astrophysics Data System (ADS)

    Groeger, B.

    1991-10-01

    Dynamic deployment analyses were performed on a reflector unfurlable mesh antenna using the multibody dynamic program DADS under three conditions: 0 g condition, 1 g condition with gravity compensation, and damage case under 0 g condition. Special restart techniques are applied to prevent excessive long computation times.

  10. Coupled Elastic-Thermal Dynamics of Deployable Mesh Reflectors

    NASA Technical Reports Server (NTRS)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a coupled elastic-thermal dynamic model and a quasi-static strategy on the analysis of the reflector dynamics in the space mission. The linearized model, its natural frequencies and mode shapes are then derived upon the nonlinear static equilibrium of the structure. The numerical example is provided to fully adapt the strategy and investigate the dynamic behaviors of the structure. Finally the proposed method is applied on the sample of the deployable mesh reflector and the simulation results are presented. The research work delivered in the paper will be used to design the feedback surface in future.

  11. Ku band electric models for large deployable mesh reflector antenna

    NASA Astrophysics Data System (ADS)

    Sato, S.; Iso, A.; Orikasa, T.; Sugimoto, T.

    1990-12-01

    Two scaled electric models of mesh reflectors have been constructed to evaluate the electrical performance of a 30 m aperture diameter large deployable antenna. Radiation characteristics have been measured, particularly the cross-polarization level in the case of circular polarization. The similarities between the measured and calculated results are very close. The cross-polarization level is low, and it is very likely that frequency reuse using dual polarization is possible.

  12. Key technologies for high-accuracy large mesh antenna reflectors

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  13. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

    NASA Technical Reports Server (NTRS)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

  14. Tradeoff and scale models of large deployable mesh reflectors for mobile communications satellite

    NASA Astrophysics Data System (ADS)

    Sugimoto, Toshio; Iso, Akio; Sato, Shin-Ichi; Orikasa, Teruaki

    1991-10-01

    The key technologies of a large deployable mesh reflector, and the tradeoff of mechanical performances are described. A scaled mesh reflector (1/10 model) is constructed for design of a 30 m diameter deployable reflector. Mechanical performances are measured. A mass conversion method is proposed for finding the most effective technology of large deployable reflectors. The tradeoffs of large deployable mesh reflectors are analytically investigated. It is shown that the hexagonal prism reflector is the best regarding surface accuracy. The hybrid truss type reflector proposed is the best regarding rigidity. This reflector has a compound module of a triangular prism and a hexagonal prism. Two scale models were constructed, and the test results are shown.

  15. Characteristics of large deployable mesh reflector antennas for future mobile communications satellites

    NASA Astrophysics Data System (ADS)

    Ebisui, Takashi; Iso, Akio; Orikasa, Teruaki; Sugimoto, Toshio; Sato, Shin-Ichi

    1992-03-01

    A large deployable antenna is essential for effective mobile communication satellites. This paper describes the key technologies needed for such an antenna, the development plan, and the characteristics of various scale models. The electrical scale models of the mesh reflector antenna and the mechanical models of the deployable reflector have been constructed to aid in antenna design. The ultimate goal is a deployable mesh reflector antenna with 30-m diameter. The measured performance of the scale models corresponds closely to the calculated performance. These results will be extremely useful for designing large deployable mesh reflector antennas for mobile communication satellites.

  16. Measurement of losses of mesh membrane material for reflector applications with an S-band radiometer

    NASA Astrophysics Data System (ADS)

    Blume, H. J. C.

    1982-03-01

    The spatial resolution, the frequency of revisits, and the accuracy requirements for the detection of Earth surface parameters from space force the satellite designers to consider large space structures for microwaves. Some Earth surface parameters are only detectable with radiometers. Because the large reflectors should be much lighter than solid and deployable reflectors, mesh membrane material is considered to be used as the reflector. It is essential to determine the emissivity of the reflecting material even when close to zero to estimate the accuracy of the radiometer measurement. An existing S-band radiometer was used to determine the loss of a 1 sq m pretensioned mesh first in a field experiment and later in a well shielded laboratory set-up. The models for retrieving the emissivity of the mesh are described in detail and the equivalent losses for different mesh positions were calculated.

  17. The suitability of mesh membrane material for radiometer reflector applications

    NASA Astrophysics Data System (ADS)

    Croswell, W. F.

    1982-03-01

    The standard measurement system used for evaluating the transmission properties of mesh used in deployable antennas is shown schematically. The system allows the rapid measurement of the transmissivity of mesh samples at a given incidence angle. The analysis has the advantage in that the effects of conductivity loss, junction impedance, and cross polarization can be treated.

  18. Development of improved analytical models for mesh reflector surfaces

    NASA Technical Reports Server (NTRS)

    Brand, J. C.; Kauffman, J. F.

    1983-01-01

    Several methods for computing the reflection coefficients from mesh surfaces are discussed. Some methods mentioned have severe limitations, and the spectral approach appears to be the most attractive alternative. In spite of some inherent problems, the solutions obtained with this method will offer not only the reflection coefficients but also the currents carried on the mesh. This would allow separation of the power lost to resistive terms from that due to transmission loss. Overall, good results and rapid convergence should be obtained from this method when proper care is applied.

  19. A surface distortion analysis applied to the hoop/column deployable mesh reflector antenna

    NASA Astrophysics Data System (ADS)

    Lee, Teh-Hong; Rudduck, Roger C.; Bailey, Marion C.

    1989-04-01

    A practical approach is demonstrated for the deterministic analysis of surface distortions in reflector antennas, based on a first-order approximation to the aperture field phase. Measured pattern results from a 15-m-diameter hoop/column deployable mesh reflector antenna are used to demonstrate the accuracy which can be obtained with this surface distortion analysis. The only practical limitation of the first-order approximation is determined by the slope derivations of the distorted surface from the best-fit paraboloid.

  20. A surface distortion analysis applied to the hoop/column deployable mesh reflector antenna

    NASA Technical Reports Server (NTRS)

    Lee, Teh-Hong; Rudduck, Roger C.; Bailey, Marion C.

    1989-01-01

    A practical approach is demonstrated for the deterministic analysis of surface distortions in reflector antennas, based on a first-order approximation to the aperture field phase. Measured pattern results from a 15-m-diameter hoop/column deployable mesh reflector antenna are used to demonstrate the accuracy which can be obtained with this surface distortion analysis. The only practical limitation of the first-order approximation is determined by the slope derivations of the distorted surface from the best-fit paraboloid.

  1. Surface accuracy measurement of a deployable mesh reflector by planar near-field scanning

    NASA Astrophysics Data System (ADS)

    Chujo, Wataru; Ito, Takeo; Hori, Yoshiaki; Teshirogi, Tasuku

    1988-06-01

    Using a near-field antenna measurement facility, it is possible to simultaneously evaluate the surface accuracy of a reflector antenna as well as the far-field pattern of the antenna for a short time. The surface errors of a 2-m deployable mesh reflector for satellite use were measured by a planar near-field system. As a result, the influence of periodic structures, due to the antenna ribs, has been clearly observed. Also, the surface accuracy obtained with the near-field scanning technique has coincided well with that obtained by an optical measurement technique.

  2. Characteristics of scale models of large deployable mesh reflector antennas and study on space verification test plan

    NASA Astrophysics Data System (ADS)

    Ebisui, Takashi; Iso, Akio; Orikasa, Teruaki; Sugimoto, Toshio; Okamoto, Teruki; Ueno, Miyoshi

    A large deployable antenna is essential for effective mobile communication satellites. This paper describes the characteristics of various scale models of the large deployable mesh reflector antennas and a study on space verification test plan using the scale models. Two electrical scale models of the mesh reflectors have been constructed to evaluate the electrical performance of a mesh reflector antenna. One of the models is the Hexa-Link Truss structure, and the other model is the TETRUS structure. Diameter of these models are 3 m. The experimental measurements and calculations of these electrical and mechanical models are also described.

  3. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh

  4. Feedback shape control for deployable mesh reflectors using gain scheduling method

    NASA Astrophysics Data System (ADS)

    Xie, Yangmin; Shi, Hang; Alleyne, Andrew; Yang, Bingen

    2016-04-01

    This paper presents a theoretical study on the dynamic shape control problem of deployable mesh reflectors (DMRs) via feedback approaches. The reflector structure is simplified from a nonlinear model to be quasi-static with respect to temperature variations but dynamic with respect to mechanical vibrations. The orbital cycle is segmented into multiple temperature zones, and an H∞ robust state feedback controller is designed for each zone to guarantee the local stability of the system under the model uncertainty caused by thermal effects and to reject external force disturbances. At the same time, gain scheduling control method is adopted to compensate thermal distortions and to ensure smooth transition response when switching among the local robust controllers. A DMR model is considered in the case study to show the effectiveness of the control approach. The structural vibrations caused by external force disturbances can be sufficiently suppressed in a much shorter time. The closed loop response of the DMR structure shows that much higher surface accuracy is obtained during the orbiting mission compared to the open-loop configuration, and transient focal length and transient de-focus of the reflector are well controlled within the satisfactory bounds, demonstrating the numerical feasibility of the proposed method to solve the dynamic shape control problem of DMRs.

  5. Numerical form-finding of geotensoid tension truss for mesh reflector

    NASA Astrophysics Data System (ADS)

    Morterolle, Sébastien; Maurin, Bernard; Quirant, Jérôme; Dupuy, Christian

    2012-07-01

    The parabolic surface of most large deployable reflectors is formed by a reflective mesh attached to a cable net. This paper presents a new approach to calculate a geodesic tension truss that ensures both appropriate node positioning and uniform tension. It is based on a force density strategy coupled with geometrical constraints. Uniform tension is achieved by iterations on coefficients of force density. Nodes of net are located on the paraboloid by controlling additional forces. Several applications illustrate the method on various types of net patterns and parabolic surfaces. The accuracy of obtained net is then evaluated by calculation of the systematic surface error due to faceting. Attachment of the net to a rim structure with additional cables is also discussed.

  6. The integration of a mesh reflector to a 15-foot box truss structure. Task 3: Box truss analysis and technology development

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Thiemet, W. F.; Morosow, G.

    1987-01-01

    To demonstrate the design and integration of a reflective mesh surface to a deployable truss structure, a mesh reflector was installed on a 15 foot box truss cube. The specific features demonstrated include: (1) sewing seams in reflective mesh; (2) mesh stretching to desired preload; (3) installation of surface tie cords; (4) installation of reflective surface on truss; (5) setting of reflective surface; (6) verification of surface shape/accuracy; (7) storage and deployment; (8) repeatability of reflector surface; and (9) comparison of surface with predicted shape using analytical methods developed under a previous task.

  7. Characteristics of scale models of large deployable mesh reflector antenna for mobile communications satellites

    NASA Astrophysics Data System (ADS)

    Akaishi, Akira; Orikasa, Teruaki; Kashiki, Kanshiro; Okamoto, Teruki; Otsu, Yuichi; Satoh, Hideo

    1993-10-01

    In the land mobile satellite system (LMSS) using a geostationary platform (GPF), a 30 m diameter satellite antenna is desirable for small portable terminal communications. SCR has adopted two deployment types of antenna structure, the Hexa-Link Truss reflector and the Tetra-Triagonal Prism Truss (TETRUS) reflector, and has developed scale models of them. Both of them represent important aspects of large satellite antenna technology. This paper describes the SCR outline of a land mobile satellite communications system and the experimental results of the scale models. This research establishes the basic technical information necessary for the development of a 30 m diameter antenna and a conceptual GPF design.

  8. Characteristics of scale models of large deployable mesh reflector antennas for mobile communications satellites

    NASA Astrophysics Data System (ADS)

    Akaishi, Akira; Orikasa, Teruaki; Kashiki, Kanshiro; Okamoto, Teruki; Otsu, Yuichi; Satoh, Hideo

    In the land mobile satellite system (LMSS) using a geostationary platform (GPF), a 30 m diameter satellite antenna is desirable for small portable terminal communications. SCR has adopted two deployment types of antenna structure, the Hexa-Link Truss reflector and the Tetra-Triagonal Prism Truss (TETRUS) reflector, and has developed scale models of them. Both of them represent important aspects of large satellite antenna technology. This paper describes the SCR outline of a land mobile satellite communications system and the experimental results of the scale models. This research establishes the basic technical information necessary for the development of a 30 m diameter antenna and a conceptual GPF design.

  9. On the reflectivity of complex mesh surfaces. [of space-deployable reflector antennas

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Galindo-Israel, Victor; Rahmat-Samii, Yahya

    1991-01-01

    Poorer than expected surface reflectivity was observed in an early Tracking and Data Relay Satellite System antenna utilizing a tricot mesh weave. This poor reflectivity was determined to be caused by inadequate electrical contact at wire crossover points. A proper mathematical and numerical approach to assess the impact of wire junctions on reflectivity performance is developed. A mathematical method is presented for computing the surface reflectivity of complex mesh configurations like those on unfurlable-type spacecraft antennas. The method is based on the Floquet mode expansion to establish an integral equation for mesh wire currents. The equation is solved using the method of moments with triangular basis functions. It is observed that it is necessary to give special attention to the junction treatment among different branches of the mesh configurations. A vector junction current approach that resulted in satisfactory solutions for the current is described. The results of numerical simulations are compared against measured data and excellent agreement is observed.

  10. Development of the Large Aperture Reflector/Boom Assembly for the SMAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Mobrem, Mehran; Keay, Edward; Marks, Geoff; Slimko, Eric

    2012-01-01

    The Jet Propulsion Laboratory's (JPL) Soil Moisture Active/Passive (SMAP) mission is to measure and monitor global soil moisture dynamics and freeze/thaw states. The rotating Reflector and Boom Assembly (RBA) on SMAP presents significant design and development challenges. The payload configuration utilizes a common Radiometer and Radar feedhorn and a 6-meter deployable mesh reflector all spinning at 14.6 rpm. The evolution of the RBA system solution, development of the mass properties management approach and RBA dynamics are discussed.

  11. Effective conductivity of wire mesh reflectors for space deployable antenna systems

    NASA Technical Reports Server (NTRS)

    Davis, William A.

    1994-01-01

    This report summarizes efforts to characterize the measurement of conductive mesh and smooth surfaces using proximity measurements for a dielectric resonator. The resonator operates in the HEM11 mode and is shown to have an evanescent field behavior in the vicinity of the sample surface, raising some question to the validity of measurements requiring near normal incidence on the material. In addition, the slow radial field decay outside of the dielectric resonator validates the sensitivity to the planar supporting structure and potential radiation effects. Though these concerns become apparent along with the sensitivity to the gap between the dielectric and the material surface, the basic concept of the material measurement using dielectric resonators has been verified for useful comparison of material surface properties. The properties, particularly loss, may be obtained by monitoring the resonant frequency along with the resonator quality factor (Q), 3 dB bandwidth, or the midband transmission amplitude. Comparison must be made to known materials to extract the desired data.

  12. Effective conductivity of wire mesh reflectors for space deployable antenna systems

    NASA Astrophysics Data System (ADS)

    Davis, William A.

    1994-03-01

    This report summarizes efforts to characterize the measurement of conductive mesh and smooth surfaces using proximity measurements for a dielectric resonator. The resonator operates in the HEM11 mode and is shown to have an evanescent field behavior in the vicinity of the sample surface, raising some question to the validity of measurements requiring near normal incidence on the material. In addition, the slow radial field decay outside of the dielectric resonator validates the sensitivity to the planar supporting structure and potential radiation effects. Though these concerns become apparent along with the sensitivity to the gap between the dielectric and the material surface, the basic concept of the material measurement using dielectric resonators has been verified for useful comparison of material surface properties. The properties, particularly loss, may be obtained by monitoring the resonant frequency along with the resonator quality factor (Q), 3 dB bandwidth, or the midband transmission amplitude. Comparison must be made to known materials to extract the desired data.

  13. Dynamic of large reflectors

    NASA Astrophysics Data System (ADS)

    Picard, P.; Dauviau, C.; Lefebvre, J. D.; Garnier, C.; Truchi, C.

    1991-10-01

    Work in the field of the unfurlable mesh reflectors as part of the dynamic of large reflectors project is presented. These studies use the unfurlable reflector design developed since 1983: gilded molybdenum reflective mesh supported by a deployable truss. From this strong background two specific critical points are studied: the deployment phase, where, for a deployment test, the test measurements are correlated with dynamic software predictions and the deployment bench chosen uses a 0 g compensation device by helium balloons; the antenna deployed configuration, where the interaction between a large structure and the attitude and orbit control subsystem is analyzed.

  14. Photogrammetry measurement of the AMiBA 6-meter platform

    NASA Astrophysics Data System (ADS)

    Huang, Yau De; Raffin, Philippe; Chen, Ming-Tang; Altamirano, Pablo; Oshiro, Peter

    2008-07-01

    This paper describes the photogrammetry method as a mean to measure the deformation of the 6-meter carbon fiber reinforced plastic (CFRP) Platform of the AMiBA interferometric array telescope installed at the Mauna Loa Observatory, Hawaii. The Platform was surveyed at a series of elevation, azimuth and polarization angles. Photogrammetry demonstrates that the deformation of the Platform is not only gravity-induced but also due to the Hexapod mount actuator. The measurement results verify the predictions of the Finite Element Analysis (FEA).

  15. Design concepts for large reflector antenna structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Adams, L. R.

    1983-01-01

    Practical approaches for establishing large, precise antenna reflectors in space are described. Reflector surfaces consisting of either solid panels or knitted mesh are considered. The approach using a deep articulated truss structure to support a mesh reflector is selected for detailed investigations. A new sequential deployment concept for the tetrahedral truss is explained. Good joint design is discussed, and examples are described both analytically and by means of demonstration models. The influence of curvature on the design and its vibration characteristics are investigated.

  16. Measurements of an Antenna Surface for a Millimeter-Wave Space Radio Telescope. II. Metal Mesh Surface for Large Deployable Reflector

    NASA Astrophysics Data System (ADS)

    Kamegai, Kazuhisa; Tsuboi, Masato

    2013-02-01

    Large deployable antennas with a mesh surface woven by fine metal wires are an important technology for communications satellites and space radio telescopes. However, it is difficult to make metal mesh surfaces with sufficient radio-frequency (RF) performance for frequencies higher than millimeter waves. In this paper, we present the RF performance of metal mesh surfaces at 43 GHz. For this purpose, we developed an apparatus to measure the reflection coefficient, transmission coefficient, and radiative coefficient of the mesh surface. The reflection coefficient increases as a function of the metal mesh surface tension, whereas the radiative coefficient decreases. The anisotropic aspects of the reflection coefficient and the radiative coefficient are also clearly seen. They depend on the front and back sides of the metal mesh surface and the rotation angle. The transmission coefficient was measured to be almost constant. The measured radiative coefficients and transmission coefficients would cause significant degradation of the system noise temperature. In addition, we carried out an astronomical observation of a well-known SiO maser source, R Cas, by using a metal mesh mirror on the NRO 45-m radio telescope Coudé system. The metal mesh mirror considerably increases the system noise temperature, and slightly decreases the peak antenna temperature. These results are consistent with laboratory measurements.

  17. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  18. Design concepts for large antenna reflectors

    NASA Astrophysics Data System (ADS)

    Hedgepeth, J. M.

    1981-02-01

    A type of antenna reflector was studied in which a stiff structure is constructed to hold a membrane like reflector mesh in the correct position. An important basic restriction is that the mesh be controlled only by the structure and that no additional local shaping be employed. Furthermore, attention is confined to structures in which no adjustments would be made on assembly. Primary attention is given to the tetrahedral truss configuration because of its outstanding stiffness and dimensional stability.

  19. Radiation analysis of unfurlable reflector antennas

    NASA Astrophysics Data System (ADS)

    Dumont, P.; Mathieu, B.; Combes, P. F.

    1985-08-01

    Theoretical and experimental studies of the radiation characteristics of unfurlable reflector antennas for communication satellites are described. A lack of correlation between the mesh reflection properties and surface distortions is noted. In addition, the significant influence of mesh parameters and mesh assembly on cross-polarization characteristics is examined. Finally, the effects of various surface-distortion geometries on the cross polarization are compared, providing useful information for antenna design.

  20. Actuator Grouping Optimization on Flexible Space Reflectors

    NASA Technical Reports Server (NTRS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-01-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required surface accuracy, precision surface control is needed on these lightweight reflectors. For this study, an analytical model is shown which combines a flexible Kapton reflector with Polyvinylidene fluoride (PVDF) actuators for surface control. Surface errors are introduced that are similar to real world scenarios, and a least squares control algorithm is developed for surface control. Experimental results on a 2.4 meter reflector show that while the analytical reflector model is generally correct, due to idiosyncrasies in the reflector it cannot be used for online control. A new method called the En Mass Elimination algorithm is used to determine the optimal grouping of actuators when the number of actuators in the system exceeds the number of power supplies available.

  1. Design and use of a 6 meter neutron small-angle scattering spectrometer at KUR

    NASA Astrophysics Data System (ADS)

    Komura, S.; Takeda, T.; Fujii, H.; Osamura, K.; Mochiki, K.; Hasegawa, K.

    1983-05-01

    A 6 meter neutron small-angle scattering spectrometer has been constructed at the Kyoto University Reactor (KUR) and has been used successfully in various fields of application. The design principles and the characteristics of the spectrometer are described briefly. Some examples of the scattering measurements are presented.

  2. Dynamics of large reflectors - Aerospatiale concepts

    NASA Astrophysics Data System (ADS)

    Flechais, A.; Picard, P.; Dauviau, C.; Truchi, C.

    1992-08-01

    An overview is presented of studies performed under an ESTEC contract and aimed at the identification of critical development areas of unfurlable reflectors and at the analysis of the dynamic interactions between reflectors and hosting spacecraft, in particular with respect to the design of the AOCS and antenna pointing mechanism (APM). Research and development performed by Aerospatiale since 1983 in the field of unfurlable mesh reflectors and supported by CNES are summarized. An analysis covering both the deployment phase and the deployed configuration is presented. The capabilities of classical AOCS and APM control laws for large reflectors are evaluated via simulations. It is shown that the baseline reflector under consideration is compatible with the PSDE mission and classical AOCS and APM control law designs.

  3. Unfurlable, continuous-surface reflector concept

    NASA Astrophysics Data System (ADS)

    Stumm, J. E.; Kulick, S.

    1989-07-01

    Various concepts for large, deployable reflectors were developed and some have flown. In each case the surface material was either a continuous mesh of some sort or an assembly of rigid, continuous-surface facets or petals. Performance issues arise in each case. For mesh, reflectance diminishes with increasing frequency. For rigid sections, seams and relative positioning of the segments have to be dealt with. These two issues prompted the evolution of the concept of an unfurlable, continuous-surface reflector. The concept is described and what is learnt is presented, what is suspected will be learned, and also questions raised yet to be addressed.

  4. A 6-Meter Neutron Small-Angle Scattering Spectrometer at KUR

    NASA Astrophysics Data System (ADS)

    Komura, Shigehiro; Takeda, Takayoshi; Fujii, Hironobu; Toyoshima, Yoshinori; Osamura, Kozo; Mochiki, Koichi; Hasegawa, Ken'ichi

    1983-02-01

    A 6-meter neutron small-angle scattering spectrometer has been constructed at Kyoto University Reactor (KUR) and has been used successfully for various fields of application in these three years. This paper describes overall design principles and the characteristics of the various parts of the spectrometers which can be assembled and disassembled easily at KUR. Some examples of scattering measurements are presented to show the performance of the spectrometer.

  5. Automatic Mesh Coarsening for Discrete Ordinates Codes

    SciTech Connect

    Turner, Scott A.

    1999-03-11

    This paper describes the use of a ''mesh potential'' function for automatic coarsening of meshes in discrete ordinates neutral particle transport codes. For many transport calculations, a user may find it helpful to have the code determine a ''good'' neutronics mesh. The complexity of a problem involving millions of mesh cells, dozens of materials, and many energy groups makes it difficult to determine an adequate level of mesh refinement with a minimum number of cells. A method has been implemented in PARTISN (Parallel Time-dependent SN) to calculate a ''mesh potential'' in each original cell of a problem, and use this information to determine the maximum coarseness allowed in the mesh while maintaining accuracy in the solution. Results are presented for a simple x-y-z fuel/control/reflector problem.

  6. Actuator grouping optimization on flexible space reflectors

    NASA Astrophysics Data System (ADS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-03-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required accuracy, precision surface control is needed on these lightweight reflectors. While studies have shown that domain control of space reflectors via Polyvinylidene Fluoride (PVDF) actuators is promising, the challenge is to realistically control a large number of distributed actuators with limited number of power supplies. In this research, a new En Mass Elimination method is synthesized to determine the optimal grouping of actuators when the actuator number exceeds the number of power supplies available. An analytical model is developed and the methodology is demonstrated numerically through system simulation on the derived model.

  7. Advanced deployable reflectors for communications satellites

    NASA Astrophysics Data System (ADS)

    Lowe, Elvin; Josephs, Michael; Hedgepeth, John

    1993-02-01

    This paper discusses a concept for a deployable mesh reflector for large spacecraft antennas and the processes used in design, fabrication and testing. A set of overall reflector requirements such as stowed volume, deployed diameter and RF loss derived from system specifications are presented. The development of design and analysis tools to allow parametric studies such as facet size, number of ribs and number of rib segments is discussed. CATIA (a commercially available three-dimensional design and analysis tool) is used to perform kinematic analyses as well as to establish the database to be used by the several groups participating in the development is examined. Results of trade studies performed to reduce cost with minimum risk to product delivery are included. A thirty foot reflector has been built and tested.

  8. Analyses of a new simplified large deployable reflector structure

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Chen, Mei; He, Jie

    New large deployable mesh reflectors are frequently used recently. Here we propose a new simplified large deployable reflector structure, with lower surface density and better package ratio both in radial direction and in height direction. Its surface modeling manner is fairly simple. Conceptual design of such a new simplified large deployable reflector structure is described. Deploying ability analyses of the structure with 30m diameter show that the structure can be deployed successfully. Surface precision analyses of the deployed structure show that it has potential to reach surface precision demand. A deploying test of a small deployable model with 3m diameter shows the deploying ability of the backbone. Such a new simplified large deployable reflector structure has potential to be used in future large deployable reflectors in space applications.

  9. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  10. Segmented Trough Reflector

    NASA Technical Reports Server (NTRS)

    Szmyd, W. R.

    1985-01-01

    Segmented troughlike reflector for solar cells approach concentration effectiveness of true parabolic reflector yet simpler and less expensive. Walls of segmented reflector composed of reflective aluminized membrane. Lengthwise guide wire applies tension to each wall, thereby dividing each into two separate planes. Planes tend to focus Sunlight on solar cells at center of trough between walls. Segmented walls provide higher Sunlight concentration ratios than do simple walls.

  11. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  12. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  13. Tailored reflectors for illumination.

    PubMed

    Jenkins, D; Winston, R

    1996-04-01

    We report on tailored reflector design methods that allow the placement of general illumination patterns onto a target plane. The use of a new integral design method based on the edge-ray principle of nonimaging optics gives much more compact reflector shapes by eliminating the need for a gap between the source and the reflector profile. In addition, the reflectivity of the reflector is incorporated as a design parameter. We show the performance of design for constant irradiance on a distant plane, and we show how a leading-edge-ray method may be used to achieve general illumination patterns on nearby targets. PMID:21085288

  14. Development of low PIM, zero CTE mesh for deployable communications antennas

    NASA Astrophysics Data System (ADS)

    Wade, William D.

    The requirements that led to the development of the radio-frequency reflective fabric (RF 2) for use on wrap-rib mesh-type reflectors are discussed. The advantages of this mesh include low passive intermodulation (PIM) and a near-zero coefficient of thermal expansion (CTE). The composite mesh is composed of Kevlar and beryllium copper and accommodates all mesh requirements. Measured data for the mesh are presented.

  15. Beam-Steerable Flat-Panel Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.

    2005-01-01

    Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.

  16. Solar Thermal Vacuum Test of Deployable Astromesh Reflector

    NASA Technical Reports Server (NTRS)

    Stegman, Matthew D.

    2009-01-01

    On September 10, 2008, a 36-hour Solar Thermal Vacuum Test of a 5m deployable mesh reflector was completed in JPL's 25' Space Simulator by the Advanced Deployable Structures Group at JPL. The testing was performed under NASA's Innovative Partnership Program (IPP) as a risk reduction effort for two JPL Decadal Survey Missions: DESDynI and SMAP. The 5.0 m aperture Astromesh reflector was provided by Northrop Grumman Aerospace Systems (NGAS) Astro Aerospace, our IPP industry partner. The testing utilized a state-of-the-art photogrammetry system to measure deformation of the reflector under LN2 cold soak, 0.25 Earth sun, 0.5 sun and 1.0 sun. An intricate network of thermocouples (approximately 200 in total) was used to determine the localized temperature across the mesh as well as on the perimeter truss of the reflector. Half of the reflector was in a fixed shadow to maximize thermal gradients. A mobility system was built for remotely actuating the cryo-vacuum capable photogrammetry camera around the circumference of the Solar Simulator. Photogrammetric resolution of 0.025 mm RMS (0.001") was achieved over the entire 5 meter aperture for each test case. The data will be used for thermo-elastic model correlation and validation, which will benefit the planned Earth Science Missions.

  17. Deployable Reflector for Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1982-01-01

    Unfoldable-membrane-reflector concept leads to mobile photovoltaic generators. Hinged containers swing open for deployment, and counterbalance beam swings into position. Folded reflector membranes are unfolded as deployment mast is extended, until stretched out flat.

  18. Development of modular cable mesh deployable antenna

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Mitsugi, Jin; Andou, Kazuhide

    1993-03-01

    This report describes a concept and key technologies for the modular mesh deployable antenna. The antenna reflector composed of independently manufactured and tested modules is presented. Each module consists of a mesh surface, a cable network, and a deployable truss structure. The cable network comprises three kinds of cables, surface, tie, and back cables. Adjustment of tie cable lengths improves the surface accuracy. Synchronous deployment truss structures are considered as a supporting structure. Their design method, BBM's (Bread Board Model) and deployment analysis are also explained.

  19. Corrosion protection for silver reflectors

    DOEpatents

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  20. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  1. The Corner Reflector.

    ERIC Educational Resources Information Center

    Harris, Whitney S., Jr.

    1983-01-01

    The nature of the corner reflector array left on the moon by the July 1969 Apollo astronauts is described. The array was used to reflect earth-originating laser beams back to earth, and yielded a more accurate determination (to within six inches) of distance from the earth to the moon. (MP)

  2. Development of a large deployable space reflector structure

    NASA Astrophysics Data System (ADS)

    Russell, A. G.

    An account is given of the configuration design selection and development of a 5-m diameter reflector structure encompassing an RF-reflective surface of Au-plated Mo knitted wire mesh, supported from the nodes of a tatrahedral truss. The structure's six deployable tetrahedrons are symmetrically disposed around a central node. The critical structural components are a light and simple self-latching hinge and long, stiff, inexpensive carbon fiber tubes produced by pultrusion.

  3. MeshKit

    SciTech Connect

    2010-10-05

    MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact with iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.

  4. MeshKit

    2010-10-05

    MeshKit is an open-source library of mesh generation functionality. MeshKit has general mesh manipulation and generation functions such as Copoy, Move, Rotate and Extrude mesh. In addition, new quad mesh and embedded boundary Cartesian mesh algorithm (EB Mesh) are included. Interfaces to several public domain meshing algorithms (TetGen, netgen, triangle, Gmsh, camal) are also offered. This library interacts with mesh data mostly through iMesh including accessing the mesh in parallel. It also can interact withmore » iGeom interface to provide geometry functionality such as importing solid model based geometries. iGeom and IMesh are implemented in the CGM and MOAB packages, respectively. For some non-existing function in iMesh such as tree-construction and ray-tracing, MeshKit also interacts with MOAB functions directly.« less

  5. Conical-reflector antennas.

    NASA Technical Reports Server (NTRS)

    Ludwig, A. C.

    1972-01-01

    The mechanical advantages of a singly curved conical reflector are demonstrated by the experimental test of a furlable 1.83 m conical-Gregorian antenna at 16.33 GHz. The measured gain of 47.5 dB corresponds to a net efficiency of over 57%. A ray-optics analysis of conical-reflector antennas is presented, and data useful in the design of conical antennas are given. The conical-Gregorian antenna, in which a subreflector is used in conjunction with a conventional horn feed, is considered in detail. A physical-optics analysis of the conical-Gregorian antenna is used to investigate diffraction and other effects, and to analytically confirm the high performance of the antenna.

  6. Fan rib type deployable mesh antenna for satellite use

    NASA Astrophysics Data System (ADS)

    Itanami, T.; Minomo, M.; Ohtomo, I.

    This paper presents a design for satellite-borne 3.5 m deployable mesh reflector for the Japanese maritime satellite communication system. The features of this antenna are compactness, lightness and high deployment reliability. The measured characteristics for the engineering model are also given.

  7. Cassegrain dual reflector antenna design

    NASA Astrophysics Data System (ADS)

    1982-02-01

    A folded optics reflector system could mitigate problems associated with the pointability and controllability of the large UHF antenna for MSAT. Such a system is comprised of a parabolic main reflector and a hyperboloidal subreflector (Cassegrain arrangement) or an ellipsoidal subreflector (Gregorian arrangement), either of which brings the feed closer to the main reflector. By shaping the subreflector and the main reflector, an improved scan capability might be achieved and the size of the required feed aperture-per-beam could be reduced. In such a shaped dual reflector system, the need for overlapping cluster feed arrangement and its concomitant beam forming network could be removed. In this system, a relatively low gain feed element together with the shaped subreflector would be sufficient to produce the required high illumination taper that at the main reflector.

  8. Module composition and deployment method on deployable modular-mesh antenna structures

    NASA Astrophysics Data System (ADS)

    Watanabe, Mitsunobu; Meguro, Akira; Mitsugi, Jin; Tsunoda, Hiroaki

    1996-10-01

    A deployable modular-mesh antenna is the concept behind a large space antenna. To ensure reliable deployment, a synchronously deployable truss structure forming a curved reflector surface has been developed. The proposed antenna's main reflector formed by two types of modules using mesh and cable network maintains a sufficient level of rigidity at deployment and deploys with high reliability. Importance has also been placed on the numerical analyses of cables, the mesh, and the truss structures. The truss structure analysis is based on a non-linear finite element method, rather than on multi-body dynamics, so that elastic motions of all truss members during the deployment can easily be handled.

  9. Spherical geodesic mesh generation

    SciTech Connect

    Fung, Jimmy; Kenamond, Mark Andrew; Burton, Donald E.; Shashkov, Mikhail Jurievich

    2015-02-27

    In ALE simulations with moving meshes, mesh topology has a direct influence on feature representation and code robustness. In three-dimensional simulations, modeling spherical volumes and features is particularly challenging for a hydrodynamics code. Calculations on traditional spherical meshes (such as spin meshes) often lead to errors and symmetry breaking. Although the underlying differencing scheme may be modified to rectify this, the differencing scheme may not be accessible. This work documents the use of spherical geodesic meshes to mitigate solution-mesh coupling. These meshes are generated notionally by connecting geodesic surface meshes to produce triangular-prismatic volume meshes. This mesh topology is fundamentally different from traditional mesh topologies and displays superior qualities such as topological symmetry. This work describes the geodesic mesh topology as well as motivating demonstrations with the FLAG hydrocode.

  10. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  11. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  12. Environmental Degradation of Solar Reflectors

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1985-01-01

    Report presents results of study of atmospheric degradation of large solar reflectors for power generators. Three general types of reflective surfaces investigated. Report also describes computer buildup and removal (by rain and dew) of contamination from reflectors. Data used to determine effects of soil buildup and best method and frequency of washing at various geographic locations.

  13. Arc Reflector For Welding Ducts

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1990-01-01

    Arc-light reflector for through-the-torch welding vision system designed expressly for use in welding ducts of small diameter. Cylindrical reflector positioned to reflect light diffusely from welding arc onto nearby surface of workpiece for most advantageous viewing along axis of welding torch.

  14. Freeform reflectors for architectural lighting.

    PubMed

    Zhu, Ruidong; Hong, Qi; Zhang, Hongxia; Wu, Shin-Tson

    2015-12-14

    We propose an improved method to design freeform reflectors for architectural lighting: one for accent lighting and another for large area wall washing. The designed freeform reflectors effectively distribute light fluxes over the target surfaces, and generate appropriate illumination patterns for comfortable visual environments, which provides greater flexibility for lighting designs, allows many challenging designs, and improves energy-efficiency simultaneously.

  15. Making Curved Frequency-Selective Microwave Reflectors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Wu, Te-Kao

    1995-01-01

    Prototype curved lightweight dichroic microwave reflectors designed to be highly reflective in X and K(suba) frequency bands and highly transmissive in K(subu) and S bands. Conductive grid elements formed photolithographically on curved reflector surfaces. Intended for use as subreflectors of main paraboloidal antenna reflector to enable simultaneous operation in both prime-focus configuration in K(subu) and S bands and Cassegrain configuration in X and K(suba) bands. Basic concepts of reflectors described in "Frequency-Selective Microwave Reflectors" (NPO-18701). "Double Square-Loop Dichroic Microwave Reflector" (NPO-18676), "Triband Circular-Loop Dichroic Microwave Reflector" (NPO-18714), and "Improved Dichroic Microwave Reflector" (NPO-18664).

  16. Mesh deployable antenna mechanics testing method

    NASA Astrophysics Data System (ADS)

    Jiang, Li

    Rapid development in spatial technologies and continuous expansion of astronautics applications require stricter and stricter standards in spatial structure. Deployable space structure as a newly invented structural form is being extensively adopted because of its characteristic (i.e. deployability). Deployable mesh reflector antenna is a kind of common deployable antennas. Its reflector consists in a kind of metal mesh. Its electrical properties are highly dependent on its mechanics parameters (including surface accuracy, angle, and position). Therefore, these mechanics parameters have to be calibrated. This paper presents a mesh antenna mechanics testing method that employs both an electronic theodolite and a laser tracker. The laser tracker is firstly used to measure the shape of radial rib deployable antenna. The measurement data are then fitted to a paraboloid by means of error compensation. Accordingly, the focus and the focal axis of the paraboloid are obtained. The following step is to synchronize the coordinate systems of the electronic theodolite and the measured antenna. Finally, in a microwave anechoic chamber environment, the electromechanical axis is calibrated. Testing results verify the effectiveness of the presented method.

  17. Reflector Surface Error Compensation in Dual-Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Imbriale, William

    2010-01-01

    By probing the field on a small subreflector at a minimal number of points, the main reflector surface errors can be obtained and subsequently used to design a phase-correction subreflector that can compensate for main reflector errors. The compensating phase-error profile across the subreflector can be achieved either by a surface deformation or by the use of an array of elements such as patch antennas that can cause a phase shift between the incoming and outgoing fields. The second option is of primary interest here, but the methodology can be applied to either case. The patch array is most easily implemented on a planar surface. Therefore, the example of a flat subreflector and a parabolic main reflector (a Newtonian dual reflector system) is considered in this work. The subreflector is assumed to be a reflector array covered with patch elements. The phase variation on a subreflector can be detected by a small number of receiving patch elements (probes). By probing the phase change at these few selected positions on the subreflector, the phase error over the entire surface can be recovered and used to change the phase of all the patch elements covering the subreflector plane to compensate for main reflector errors. This is accomplished by using a version of sampling theorem on the circular aperture. The sampling is performed on the phase-error function on the circular aperture of the main reflector by a method developed using Zernike polynomials. This method is based upon and extended from a theory previously proposed and applied to reflector aperture integration. This sampling method provides for an exact retrieval of the coefficients of up to certain orders in the expansion of the phase function, from values on a specifically calculated set of points in radial and azimuthal directions in the polar coordinate system, on the circular reflector aperture. The corresponding points on the subreflector are then obtained and, by probing the fields at these points, a

  18. Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Alff, W. H.

    1980-01-01

    The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.

  19. Mesh Quality Improvement Toolkit

    2002-11-15

    MESQUITE is a linkable software library to be used by simulation and mesh generation tools to improve the quality of meshes. Mesh quality is improved by node movement and/or local topological modifications. Various aspects of mesh quality such as smoothness, element shape, size, and orientation are controlled by choosing the appropriate mesh qualtiy metric, and objective function tempate, and a numerical optimization solver to optimize the quality of meshes, MESQUITE uses the TSTT mesh interfacemore » specification to provide an interoperable toolkit that can be used by applications which adopt the standard. A flexible code design makes it easy for meshing researchers to add additional mesh quality metrics, templates, and solvers to develop new quality improvement algorithms by making use of the MESQUITE infrastructure.« less

  20. Hexahedral Mesh Untangling

    SciTech Connect

    KNUPP,PATRICK

    2000-12-13

    We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.

  1. Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Tsujihata, Akio; Hamamoto, Naokazu; Homma, Masanori

    2000-07-01

    Large deployable antenna reflectors for Engineering Test Satellite VIII (ETS-VIII) are now stated in the critical design phase. The Fourteen 4.8m modules, which construct a 19.2 m × 16.7 m (13m aperture) antenna reflector, have been fabricated as Engineering Models. Ground testing for the fourteen modules will be performed until next spring. This paper describes results of critical design for the antenna reflectors and their validation plans. Each module consists of a gold-plated molybdenum mesh surface, spacially determined cable network, and a deployable truss structure as a supporting structure. Stowed size is 1 m (diameter) × 4 m (height). In stowed configuration, the lowest eigen frequencies of the antenna reflector are 47 Hz (longitudinal) and 69 Hz (lateral) respectively. The lowest eigen frequency is 0.14 Hz. Solar ray transparency of the reflector structure is designed to be more than 85% to avoid excessive solar pressure torque. Weight of each reflector is expected to be less than 100 kg. In addition, we will perform a piggyback deployment experiment in transfer orbit using the second stage of the first flight H-II A vehicle in 2000. Half scale seven modules antenna reflector will be used to validate its deployment reliability. Design, analysis and test results of LDR-P are also introduced in this paper.

  2. Pyramidal-Reflector Solar Heater

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Motor-driven reflector compensates for seasonal changes in Sun's altitude. System has flat-plate absorbers mounted on north side of attic interior. Skylight window on south-facing roof admits Sunlight into attic, lined with mirrors that reflect light to absorbers. Reflectors are inner surfaces of a pyramid lying on its side with window at its base and absorber plates in a cross-sectional plane near its apex.

  3. Reflectors for SAR performance testing.

    SciTech Connect

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  4. Compact Mesh Generator

    2007-02-02

    The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmore » tags.« less

  5. Meshes: The next generation

    SciTech Connect

    Christon, M.; Hardin, D.; Compton, J.; Zosel, M.

    1994-08-29

    Building complex meshes for large-scale numerical simulations presents immense difficulties in exploiting high-performance computers. Industry and research leaders will describe the current state of the art for generating meshes for such large scientific problems. This will be followed by a panel and general audience discussion of the algorithmic and architectural issues surrounding the generation of meshes with10{sup 7} to 10{sup 9} grid points. (Note: The terms ``mesh`` and ``grid`` are used interchangeably in the literature.)

  6. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    2001-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  7. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    1998-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  8. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, M.J.; Page, E.; Gould, C.T.

    1998-09-08

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.

  9. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    SciTech Connect

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  10. Creep and recovery behavior analysis of space mesh structures

    NASA Astrophysics Data System (ADS)

    Tang, Yaqiong; Li, Tuanjie; Ma, Xiaofei

    2016-11-01

    The Schapery's nonlinear viscoelastic theory and nonlinear force-density method have been investigated to analyze the creep and recovery behaviors of space deployable mesh reflectors in this paper. Based on Schapery's nonlinear viscoelastic theory, we establish the creep and recovery constitutive model for cables whose pretensions were applied stepwise in time. This constitutive model has been further used for adjustment of cables' elongation rigidity. In addition, the time-dependent tangent stiffness matrix is calculated by the partial differentiation of the corresponding load vector with respect to the nodal coordinate vector obtained by the nonlinear force-density method. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the time-dependent nonlinear statics equations. Finally, a hoop truss reflector antenna is presented as a numerical example to illustrate the efficiency of the proposed method for the creep and recovery behavior analysis of space deployable mesh structures.

  11. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  12. Lamp bulb with integral reflector

    DOEpatents

    Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.

    2001-01-01

    An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.

  13. Adjusting the Contour of Reflector Panels

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Giebler, M. M.

    1984-01-01

    Postfabrication adjustment of contour of panels for reflector, such as parabolic reflector for radio antennas, possible with simple mechanism consisting of threaded stud, two nuts, and flexure. Contours adjusted manually.

  14. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  15. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  16. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  17. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  18. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  19. phdMesh

    2008-01-01

    Parallel Heterogeneous Dynamic unstructured Mesh (phdMesh) data structure library and integration testing code that performs dynamic load balancing of the data structure and parallel geometric proximity search on a contrived test problem. The phdMesh library is intended to be module within a finite element or finite volume library or code. The integration testing code is intended to provide a compact and highly portable performance evaluation code for parallel computing systems.

  20. Development of corotational formulated FEM for application to 30m class large deployable reflector

    NASA Astrophysics Data System (ADS)

    Ozawa, Satoru; Fujiwara, Yuuichi; Tsujihata, Akio

    2010-06-01

    JAXA, Japan Aerospace Exploration Agency, is now developing a corotational formulated finite element analysis method and its software "Origami/ETS" for the development of 30m class large deployable reflectors. For the reason that the deployable reflector is composed of beams, cables and mesh, this analysis method is generalized for finite elements with multiple nodes, which are commonly used in linear finite element analyses. The large displacement and rotation are taken into account by the corotational formulation. The tangent stiffness matrix for finite elements with multiple nodes is obtained as follows; the geometric stiffness matrix of two node elements is derived by taking variation of the element's corotational matrix from the virtual work of finite elements with large displacement; similarly the geometric stiffness matrix for three node elements is derived; as the extension of two and three node element theories, the geometric stiffness matrix for multiple node elements is derived; with the geometric stiffness matrix for multiple node elements, the tangent stiffness matrix is obtained. The analysis method is applied for the deployment analysis and static structural analysis of the 30m class large deployable reflector. In the deployment analysis, it is confirmed that this method stably analyzes the deployment motion from the deployment configuration to the stowed configuration of the reflector. In the static analysis, it is confirmed that the mesh structure is analyzed successfully. The 30m class large deployable reflector is now still being developed and is about to undergo several tests with its prototypes. This analysis method will be used in the tests and verifications of the reflector.

  1. Modified laparoscopic ventral mesh rectopexy.

    PubMed

    Sileri, P; Capuano, I; Franceschilli, L; Giorgi, F; Gaspari, A L

    2014-06-01

    We present a modified laparoscopic ventral mesh rectopexy procedure using biological mesh and bilateral anterior mesh fixation. The rectopexy is anterior with a minimal posterior mobilization. The rectum is symmetrically suspended to the sacral promontory through a mesorectal window.

  2. Pattern nulling by reflector shaping

    NASA Astrophysics Data System (ADS)

    Havens, D. A.

    1983-12-01

    The applicability of adaptive array concepts to continuous aperture antennas was studied and appropriate aperture field distributions for pattern nulling were found from them. The adaptive array weights were found to be useful as discrete points in a continuous distribution. This distribution could then be used in an aperture integration scheme to produce a nulled pattern. Also studied was the use of geometrical optics to calculate the aperture field distribution of an arbitrarily shaped reflector. Under some restrictions, geometrical optics can provide a useful approximation. Constructing the aperture field of a reflector defined by a discrete grid of points using a numerical ray tracing scheme was also investigated. Certain numerical problems were identified. Finally, an attempt was made to implement the nulled pattern by a well known beam shaping method based on geometrical optics principles. This technique was found to be inadequate. More promising techniques for implementing the aperture distributions were suggested but not pursued in this work.

  3. Mesh implants: An overview of crucial mesh parameters

    PubMed Central

    Zhu, Lei-Ming; Schuster, Philipp; Klinge, Uwe

    2015-01-01

    Hernia repair is one of the most frequently performed surgical interventions that use mesh implants. This article evaluates crucial mesh parameters to facilitate selection of the most appropriate mesh implant, considering raw materials, mesh composition, structure parameters and mechanical parameters. A literature review was performed using the PubMed database. The most important mesh parameters in the selection of a mesh implant are the raw material, structural parameters and mechanical parameters, which should match the physiological conditions. The structural parameters, especially the porosity, are the most important predictors of the biocompatibility performance of synthetic meshes. Meshes with large pores exhibit less inflammatory infiltrate, connective tissue and scar bridging, which allows increased soft tissue ingrowth. The raw material and combination of raw materials of the used mesh, including potential coatings and textile design, strongly impact the inflammatory reaction to the mesh. Synthetic meshes made from innovative polymers combined with surface coating have been demonstrated to exhibit advantageous behavior in specialized fields. Monofilament, large-pore synthetic meshes exhibit advantages. The value of mesh classification based on mesh weight seems to be overestimated. Mechanical properties of meshes, such as anisotropy/isotropy, elasticity and tensile strength, are crucial parameters for predicting mesh performance after implantation. PMID:26523210

  4. Development and Testing of Solar Reflectors

    SciTech Connect

    Kennedy, C.; Terwilliger, K.; Milbourne, M.

    2005-01-01

    To make concentrating solar power technologies more cost competitive, it is necessary to develop advanced reflector materials that are low in cost and maintain high reflectance for extended lifetimes under severe outdoor environments. The Advanced Materials Team performs durability testing of candidate solar reflectors at outdoor test sites and in accelerated weathering chambers. Several materials being developed by industry have been submitted for evaluation. These include silvered glass mirrors, aluminized reflectors, and front-surface mirrors. In addition to industry-supplied materials, NREL is funding the development of new, innovative reflectors, including a new commercial laminate reflector and an advanced solar reflective mirror (ASRM). To help commercialize the ASRM, a cost analysis was performed; it shows the total production cost could meet the goal. The development, performance, and durability of these candidate solar reflectors and cost analysis results will be described.

  5. Urogynecologic Surgical Mesh Implants

    MedlinePlus

    ... Boston Scientific's urogynecologic surgical mesh may contain counterfeit raw material. We are examining these allegations to determine any ... are currently not aware that the alleged counterfeit raw material contributes to adverse events associated with these products. ...

  6. Advanced Reflector and Absorber Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of advanced reflector and absorber materials: evaluating performance, determining degradation rates and lifetime, and developing new coatings.

  7. Study of Membrane Reflector Technology

    NASA Technical Reports Server (NTRS)

    Knapp, K.; Hedgepeth, J.

    1979-01-01

    Very large reflective surfaces are required by future spacecraft for such purposes as solar energy collection, antenna surfaces, thermal control, attitude and orbit control with solar pressure, and solar sailing. The performance benefits in large membrane reflector systems, which may be derived from an advancement of this film and related structures technology, are identified and qualified. The results of the study are reported and summarized. Detailed technical discussions of various aspects of the study are included in several separate technical notes which are referenced.

  8. Cherenkov radiation oscillator without reflectors

    SciTech Connect

    Li, D.; Wang, Y.; Wei, Y.; Yang, Z.; Hangyo, M.; Miyamoto, S.

    2014-05-12

    This Letter presents a Cherenkov radiation oscillator with an electron beam travelling over a finitely thick plate made of negative-index materials. In such a scheme, the external reflectors required in the traditional Cherenkov oscillators are not necessary, since the electromagnetic energy flows backward in the negative-index materials, leading to inherent feedback. We theoretically analyzed the interaction between the electron beam and the electromagnetic wave, and worked out the growth rate and start current through numerical calculations. With the help of particle-in-cell simulation, the theoretical predictions are well demonstrated.

  9. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  10. Conformal Membrane Reflectors for Deployable Optics

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.

  11. Precision segmented reflector figure control system architecture.

    NASA Astrophysics Data System (ADS)

    Mettler, E.; Eldred, D.; Briggs, C.; Kiceniuk, T.; Agronin, M.

    1989-09-01

    This paper describes an advanced technology figure control system for a generic class of large space based segmented reflector telescopes. Major technology and design motivations for selection of sensing, actuation, and mechanism approaches result from the high precision and very low mass and power goals for the reflector system.

  12. Nanolaminate Membranes as Cylindrical Telescope Reflectors

    NASA Technical Reports Server (NTRS)

    Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih

    2010-01-01

    A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.

  13. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    SciTech Connect

    Jain, Rajeev; Mahadevan, Vijay

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  14. Cosmology on a Mesh

    NASA Astrophysics Data System (ADS)

    Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.

    2003-04-01

    An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.

  15. Hybrid Deployable Foam Antennas and Reflectors

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne

    2006-01-01

    Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very

  16. Curved mesh generation and mesh refinement using Lagrangian solid mechanics

    SciTech Connect

    Persson, P.-O.; Peraire, J.

    2008-12-31

    We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.

  17. Integrated reflector antenna design and analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.

    1993-01-01

    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.

  18. Fabrication of Spherical Reflectors in Outer Space

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Dooley, Jennifer; Dragovan, Mark; Serivens, Wally

    2005-01-01

    A process is proposed for fabrication of lightweight spherical reflectors in outer space for telescopes, radio antennas, and light collectors that would be operated there. The process would obviate the relatively massive substrates and frames needed to support such reflectors in normal Earth gravitation. According to the proposal, fabrication of a reflector would begin with blowing of a bubble to the specified reflector radius. Taking advantage of the outer-space vacuum as a suitable environment for evaporative deposition of metal, a metal-evaporation source would be turned on and moved around the bubble to deposit a reflective metal film over the specified reflector area to a thickness of several microns. Then the source would be moved and aimed to deposit more metal around the edge of the reflector area, increasing the thickness there to approximately equal to 100 micron to form a frame. Then the bubble would be deflated and peeled off the metal, leaving a thin-film spherical mirror having an integral frame. The mirror would then be mounted for use. The feasibility of this technology has been proved by fabricating a prototype at JPL. As shown in the figure, a 2-in. (.5-cm) diameter hemispherical prototype reflector was made from a polymer bubble coated with silver, forming a very smooth surface.

  19. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  20. Biological polarized light reflectors in stomatopod crustaceans

    NASA Astrophysics Data System (ADS)

    Chiou, Tsyr-Huei; Cronin, Thomas W.; Caldwell, Roy L.; Marshall, Justin

    2005-08-01

    Body parts that can reflect highly polarized light have been found in several species of stomatopod crustaceans (mantis shrimps). These polarized light reflectors can be grossly divided into two major types. The first type, usually red or pink in color to the human visual system, is located within an animal's cuticle. Reflectors of the second type, showing iridescent blue, are located beneath the exoskeleton and thus are unaffected by the molt cycle. We used reflection spectropolarimetry and transmission electron microscopy (TEM) to study the reflective properties and the structures that reflect highly polarized light in stomatopods. For the first type of reflector, the degree of polarization usually changes dramatically, from less than 20% to over 70%, with a change in viewing angle. TEM examination indicates that the polarization reflection is generated by multilayer thin-film interference. The second type of reflector, the blue colored ones, reflects highly polarized light to all viewing angles. However, these reflectors show a slight chromatic change with different viewing angles. TEM sections have revealed that streams of oval-shaped vesicles might be responsible for the production of the polarized light reflection. In all the reflectors we have examined so far, the reflected light is always maximally polarized at around 500 nm, which is close to the wavelength best transmitted by sea water. This suggests that the polarized light reflectors found in stomatopods are well adapted to the underwater environment. We also found that most reflectors produce polarized light with a horizontal e-vector. How these polarized light reflectors are used in stomatopod signaling remains unknown.

  1. Application of Quaternions for Mesh

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2002-01-01

    A new three dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.

  2. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  3. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... vehicle headlamps. The use of reflector combinations off the center plane of the bicycle (defined in...) Front reflector. The reflector or mount shall not contact the ground plane when the bicycle is resting on that plane in any orientation. The optical axis of the reflector shall be directed forward...

  4. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  5. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  6. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  7. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  8. 49 CFR 393.26 - Requirements for reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reflectors. (a) Mounting. Reflex reflectors shall be mounted at the locations required by § 393.11. In the... mounting height range. All permanent reflex reflectors shall be securely mounted on a rigid part of the... required to be permanently mounted to a part of the vehicle. Temporary reflex reflectors on...

  9. Mesh fistulation into the rectum after laparoscopic ventral mesh rectopexy☆

    PubMed Central

    Adeyemo, Dayo

    2013-01-01

    INTRODUCTION Laparoscopic ventral mesh rectopexy (LVMR) is an effective method of management of functional disorders of the rectum including symptomatic rectal intussusception, and obstructed defaecation. Despite the technical demands of the procedure and common use of foreign body (mesh), the incidence of mesh related severe complications of the rectum is very low. PRESENTATION OF CASE A 63 year old woman presented with recurrent pelvic sepsis following a mesh rectopexy. Investigations revealed fistulation of the mesh into the rectum. She was treated with an anterior resection. DISCUSSION The intraoperative findings and management of the complication are described. Risk factors for mesh attrition and fistulation are also discussed. CONCLUSION Chronic sepsis may lead to ‘late’ fistulation after mesh rectopexy. PMID:24566425

  10. An offset-fed reflector antenna with an axially symmetric main reflector

    NASA Astrophysics Data System (ADS)

    Chang, D.-C.; Rusch, W. V. T.

    1984-11-01

    A design method for an offset-fed, dual reflector antenna (Cassegrain type or Gregorian type) system with an axisymmetric main reflector is presented. Geometrical optics (GO) and the geometrical theory of diffraction (GTD) are used to find the surface-current density on the main reflector. A modified Jacobi-Bessel series (JBS) method is used to find the far-field pattern for the physical optics (PO) integral. In the defocused mode of operation, a new technique is developed to find the reflection point on the subreflector corresponding to the defocused feed and a general field point on the main reflector. Two sample systems are designed.

  11. Evaluating computed distortions of parabolic reflectors

    NASA Technical Reports Server (NTRS)

    Katow, M. S.

    1977-01-01

    Distortion outputs from structural analysis of a 64-m paraboloidal reflector are analyzed by two computer programs for their radio-frequency performance characteristics. The computed and field measured values are compared.

  12. Focal region fields of distorted reflectors

    NASA Technical Reports Server (NTRS)

    Buris, N. E.; Kauffman, J. F.

    1988-01-01

    The problem of the focal region fields scattered by an arbitrary surface reflector under uniform plane wave illumination is solved. The physical optics (PO) approximation is used to calculate the current induced on the reflector. The surface of the reflector is described by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional Gaussian quadrature is employed to numerically evaluate the integral expressions of the scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation of the focal fields problem to surface compensation techniques and other applications are mentioned. Several examples of distorted parabolic reflectors are presented. The computer code developed is included, together with instructions on its usage.

  13. Uniform sunlight concentration reflectors for photovoltaic cells.

    PubMed

    Rabady, Rabi Ibrahim

    2014-03-20

    Sunlight concentration is essential to reach high temperatures of a working fluid in solar-thermal applications and to reduce the cost of photovoltaic (PV) electricity generation systems. Commonly, sunlight concentration is realized by parabolic or cylindrical reflectors, which do not provide uniform concentration on the receiver finite surface. Uniform concentration of sunlight is favored especially for the PV conversion applications since it not only enhances the conversion efficiency of sunlight but also reduces the thermal variations along the receiving PV cell, which can be a performance and life-span limiting factor. In this paper a reflector profile that uniformly infiltrates the concentrated sunlight into the receiving unit is attempted. The new design accounts for all factors that contribute to the nonuniform concentration, like the reflector curvature, which spatially reflects the sunlight nonuniformly, and the angular dependency of both the reflector reflectivity and the sunlight transmission through the PV cell.

  14. Pactruss support structure for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.

    1989-01-01

    The application of the Pactruss deployable structure to the support of large paraboloidal reflectors of very high precision was studied. The Pactruss concept, originally conceived for the Space Station truss, is shown to be suitable for use in a triangular arrangement to support a reflector surface composed of hexagonal reflector panels. A hybrid of Pactruss structural and deployable single-fold beams is shown to accommodate a center body. A minor alteration in the geometry is in order to avoid lockup during deployment. To assess the capability of the hybrid Pactruss structure, an example truss supporting a full-scale (20 meter diameter) infrared telescope was analyzed for static and dynamic performance. A truss structure weighing 800 kilograms gave adequate support to a reflector surface weighing 3,000 kilograms.

  15. SUPERIMPOSED MESH PLOTTING IN MCNP

    SciTech Connect

    J. HENDRICKS

    2001-02-01

    The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

  16. Metal-Mesh Lithography

    PubMed Central

    Tang, Zhao; Wei, Qingshan; Wei, Alexander

    2011-01-01

    Metal-mesh lithography (MML) is a practical hybrid of microcontact printing and capillary force lithography that can be applied over millimeter-sized areas with a high level of uniformity. MML can be achieved by blotting various inks onto substrates through thin copper grids, relying on preferential wetting and capillary interactions between template and substrate for pattern replication. The resulting mesh patterns, which are inverted relative to those produced by stenciling or serigraphy, can be reproduced with low micrometer resolution. MML can be combined with other surface chemistry and lift-off methods to create functional microarrays for diverse applications, such as periodic islands of gold nanorods and patterned corrals for fibroblast cell cultures. PMID:22103322

  17. Metal-mesh lithography.

    PubMed

    Tang, Zhao; Wei, Qingshan; Wei, Alexander

    2011-12-01

    Metal-mesh lithography (MML) is a practical hybrid of microcontact printing and capillary force lithography that can be applied over millimeter-sized areas with a high level of uniformity. MML can be achieved by blotting various inks onto substrates through thin copper grids, relying on preferential wetting and capillary interactions between template and substrate for pattern replication. The resulting mesh patterns, which are inverted relative to those produced by stenciling or serigraphy, can be reproduced with low micrometer resolution. MML can be combined with other surface chemistry and lift-off methods to create functional microarrays for diverse applications, such as periodic islands of gold nanorods and patterned corrals for fibroblast cell cultures.

  18. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  19. Aberrations of ellipsoidal reflectors for unit magnification.

    PubMed

    Mielenz, K D

    1974-12-01

    Ellipsoidal reflectors are useful for the 1:1 imaging of small objects without spherical and chromatic aberration. The magnitude of the off-axis aberrations of such reflectors is computed by application of Fermat's principle to the Hamiltonian point characteristic. The limiting form of the mirror aperture for which these aberrations do not exceed a set tolerance is an ellipse whose semiaxes depend on object size and angle of incidence. PMID:20134811

  20. Parallel Adaptive Mesh Refinement

    SciTech Connect

    Diachin, L; Hornung, R; Plassmann, P; WIssink, A

    2005-03-04

    As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the

  1. Semirelativistic Lagrange mesh calculations

    NASA Astrophysics Data System (ADS)

    Semay, C.; Baye, D.; Hesse, M.; Silvestre-Brac, B.

    2001-07-01

    The Lagrange mesh method is a very powerful procedure to compute eigenvalues and eigenfunctions of nonrelativistic Hamiltonians. The trial eigenstates are developed in a basis of well-chosen functions and the computation of Hamiltonian matrix elements requires only the evaluation of the potential at grid points. It is shown that this method can be used to solve semirelativistic two-body eigenvalue equations. As in the nonrelativistic case, it is very accurate, fast, and very simple to implement.

  2. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  3. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  4. Solar central receiver heliostat reflector assembly

    DOEpatents

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  5. On Optimal Bilinear Quadrilateral Meshes

    SciTech Connect

    D'Azevedo, E.

    1998-10-26

    The novelty of this work is in presenting interesting error properties of two types of asymptotically optimal quadrilateral meshes for bilinear approximation. The first type of mesh has an error equidistributing property where the maximum interpolation error is asymptotically the same over all elements. The second type has faster than expected super-convergence property for certain saddle-shaped data functions. The super-convergent mesh may be an order of magnitude more accurate than the error equidistributing mesh. Both types of mesh are generated by a coordinate transformation of a regular mesh of squares. The coordinate transformation is derived by interpreting the Hessian matrix of a data function as a metric tensor. The insights in this work may have application in mesh design near known corner or point singularities.

  6. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE PAGES

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  7. Mesh Oriented datABase

    2004-04-01

    MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individualmore » entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a t’anslator between mesh formats, using readers and writers included with MOAB.« less

  8. Mesh Oriented datABase

    SciTech Connect

    Tautges, Timothy J.

    2004-04-01

    MOAB is a component for representing and evaluating mesh data. MOAB can store stuctured and unstructured mesh, consisting of elements in the finite element "zoo". The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms isa powerful yet simple interface for representing metadata or application-specific data. For example, sets and tags can be used together to describe geometric topology, boundary condition, and inter-processor interface groupings in a mesh. MOAB is used in several ways in various applications. MOAB serves as the underlying mesh data representation in the VERDE mesh verification code. MOAB can also be used as a mesh input mechanism, using mesh readers induded with MOAB, or as a t’anslator between mesh formats, using readers and writers included with MOAB.

  9. Surface accuracy and radiation pattern characteristics of mesh deployable refector antennas

    NASA Astrophysics Data System (ADS)

    Ueno, Miyoshi; Ebisui, Takashi; Okamato, Teruki; Orikasa, Teruaki; Sugimoto, Toshio; Iso, Akio

    To facilitate the growth of mobile satellite communications, both an increase in the Equivalent Isotropically Radiated Power (EIRP) of satellites and improved frequency reuse are required to achiveve compact size, low cost terminal usage, and high channel capacity. High gain and low sidelobe antenna technology are very important for high EIRP and frequency reuse, respectively. These requirements are expected to be met by using a large deployable mesh reflector antenna, which is the key technology for future multibeam moble communications systems. In this paper, surface accruracy and related electrical characteristics are studied using a TETRUS-(Tetra Trigonal Prism Truss) type deployable mesh reflector antenna. Surface accuracy and related electrical characteristics of reflector antennas becaue any distortion of the ideal paraboloidal configuration causes antenna patterns to deteriorate, thereby reducing reflector aperture efficiency and increasing sidelobe and grating lobe levels. The sidelobe and grating lobe characteristics are especially important in frequency reuse. First, we show the problem with the radiation pattern characteristics of TETUS antenna. We then propose a new antenna configuration called the 'HYBRID TETRUS' that improves these characteristics. The mechanical performances of two partial deployable models are also described. Mechanical testing results reveal agreement between the calculated and measured values and high rigidities.

  10. Cubit Adaptive Meshing Algorithm Library

    2004-09-01

    CAMAL (Cubit adaptive meshing algorithm library) is a software component library for mesh generation. CAMAL 2.0 includes components for triangle, quad and tetrahedral meshing. A simple Application Programmers Interface (API) takes a discrete boundary definition and CAMAL computes a quality interior unstructured grid. The triangle and quad algorithms may also import a geometric definition of a surface on which to define the grid. CAMAL’s triangle meshing uses a 3D space advancing front method, the quadmore » meshing algorithm is based upon Sandia’s patented paving algorithm and the tetrahedral meshing algorithm employs the GHS3D-Tetmesh component developed by INRIA, France.« less

  11. toolkit computational mesh conceptual model.

    SciTech Connect

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-03-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  12. System dynamic simulation of precision segmented reflector

    NASA Technical Reports Server (NTRS)

    Shih, Choon-Foo; Lou, Michael C.

    1991-01-01

    A joint effort was undertaken on a Precision Segmented Reflector (PSR) Project. The missions in which the PSR is to be used will use large (up to 20 m in diameter) telescopes. The essential requirement for the telescopes is that the reflector surface of the primary mirror must be made extremely precise to allow no more than a few microns of errors and, additionally, this high surface precision must be maintained when the telescope is subjected to on-orbital mechanical and thermal disturbances. Based on the mass, size, and stability considerations, reflector surface formed by segmented, probably actively or passively controlled, composite panels are regarded as most suitable for future space based astronomical telescope applications. In addition to the design and fabrication of composite panels with a surface error of less than 3 microns RMS, PSR also develops related reflector structures, materials, control, and sensing technologies. As part of the planning effort for PSR Technology Demonstration, a system model which couples the reflector, consisting of panels, support truss and actuators, and the optical bench was assembled for dynamic simulations. Random vibration analyses using seismic data obtained from actual measurements at the test site designated for PSR Technology Demonstration are described.

  13. Freeform reflector design for LED street lighting

    NASA Astrophysics Data System (ADS)

    Li, Chen; Schreiber, Peter; Walkling, Andreas; Schierz, Christoph; Schwede, Maik; Gühne, Volker

    2011-10-01

    Faceted freeform reflectors were designed for intelligent street lighting with LED cluster arrays for main traffic roads. Special attention was paid to achieve highly efficient illumination on both wet and dry road surfaces. CIE reflection tables W4 and C2 were applied in the simulation for these two conditions, respectively. The reflector design started with plane facets, then - to avoid artifacts from the images of the individual LEDs - plane facets were replaced with cylindrical facets. To get even more flexibility for the design and optimization, freeform facets were employed, modeled by extruding two different conic curves together. Besides of achieving well-proportioned road luminance distribution, the basic shapes of the reflectors were formed to control stray light caused by multiple reflections within the reflector and by reflection of light from neighbor clusters within the cluster array. The merit functions include useful transmission of light to the road as well as overall and lengthwise uniformity according to road illumination standards. Due to the large amount of variables, the optimization was carried out sequentially facet by facet. The design loops included compromising with manufacturing limitations for plastics molding and thorough analysis of conformity with DIN EN 13201 standards for ME road lighting classes. The calculated reflector profiles are realized by plastic injection molding.

  14. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  15. Test progress on the electrostatic membrane reflector

    NASA Technical Reports Server (NTRS)

    Mihora, D. J.

    1981-01-01

    An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.

  16. Advanced reflector materials for solar concentrators

    SciTech Connect

    Jorgensen, G; Williams, T; Wendelin, T

    1994-10-01

    This paper describes the research and development program at the U.S. National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  17. The ESA/MBB unfurlable mesh antenna development for mobile services

    NASA Astrophysics Data System (ADS)

    Kellermeier, H.; Vorbrugg, H.; Pontoppidan, K.; Eaton, D. C. G.

    Mobile services via satellite in the 800-900 MHz frequency range have recently been studied by SPAR Aerospace Ltd in the M-SAT phase B using various unfurlable offset reflector concepts between 9 and 5 m aperture diameters for 6-, 4- and 2-beam coverage. For a 2-beam coverage of Canada and U.S.A. two offset antennas each of 5 m aperture diameter are required. The MBB offset unfurlable mesh antenna (UMA) developed since 1983 under an ESA contract is one of the attractive candidates: The design concept chosen uses foldable radial ribs of carbon fibre which deploy a gold plated molybdenum mesh on adjustable stand-offs. This concept is applicable for offset aperture diameters up to 12 m since the carbon fibre ribs are double folded and provide for a high package density when stowed at the spacecraft during launch. The electrical analysis performed by TICRA/Copenhagen was assisted by electrical measurements on mesh samples, verifying that main charactertics as ohmic resistance, transmission loss and passive intermodulation products (PIMP) lie within the required tolerances if the mesh is pretensioned to a certain configuration. For on-orbit testing and retrieval by the Shuttle the reflector shows a unique design feature of retractability by the reversable deployment sequence.

  18. Nuclear Transmutations in HFIR's Beryllium Reflector and Their Impact on Reactor Operation and Reflector Disposal

    SciTech Connect

    Chandler, David; Maldonado, G Ivan; Primm, Trent; Proctor, Larry Duane

    2012-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory utilizes a large cylindrical beryllium reflector that is subdivided into three concentric regions and encompasses the compact reactor core. Nuclear transmutations caused by neutron activation occur in the beryllium reflector regions, which leads to unwanted neutron absorbing and radiation emitting isotopes. During the past year, two topics related to the HFIR beryllium reflector were reviewed. The first topic included studying the neutron poison (helium-3 and lithium-6) buildup in the reflector regions and its affect on beginning-of-cycle reactivity. A new methodology was developed to predict the reactivity impact and estimated symmetrical critical control element positions as a function of outage time between cycles due to helium-3 buildup and was shown to be in better agreement with actual symmetrical critical control element position data than the current methodology. The second topic included studying the composition of the beryllium reflector regions at discharge as well as during decay to assess the viability of transporting, storing, and ultimately disposing the reflector regions currently stored in the spent fuel pool. The post-irradiation curie inventories were used to determine whether the reflector regions are discharged as transuranic waste or become transuranic waste during the decay period for disposal purposes and to determine the nuclear hazard category, which may affect the controls invoked for transportation and temporary storage. Two of the reflector regions were determined to be transuranic waste at discharge and the other region was determined to become transuranic waste in less than 2 years after being discharged due to the initial uranium content (0.0044 weight percent uranium). It was also concluded that all three of the reflector regions could be classified as nuclear hazard category 3 (potential for localized consequences only).

  19. Enhanced quality factors in aperiodic reflector resonators

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan; Krupka, Jerzy; Alford, Neil McN

    2007-10-01

    Cavity resonators that employ the high reflectivity of periodic arrays of dielectric layers exhibit enhanced quality factors compared with dielectric resonators. Their quality factor is limited by the exponential decay of the electric field penetrating the structure. We show that an aperiodic reflector array with dielectric layers thinner than a quarter-wave near the defect site and asymptotically approaching quarter-wave thickness distant from the site can exhibit very high quality factors. A spherical aperiodic reflector resonator consisting of nested alumina shells is simulated and shown to exhibit quality factors greater than 107 at 10GHz and room temperature.

  20. In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Shintate, Kyoji; Usui, Motofumi; Tsujihata, Akio

    2009-11-01

    This paper describes design, ground testing, an in-orbit experiment, and a novel in-orbit operation for large deployable antenna reflectors (LDRs). Two LDRs (TX-LDR for transmitting and RX-LDR for receiving) are installed on Engineering Test Satellite VIII (ETS-VIII). The reflector design features that the antenna reflector whose aperture is 13 m in diameter (the mechanical dimension is 19m×17m) consists of 14 basic modules, and each basic module consists of a gold-plated molybdenum mesh, a system of cables, and a deployable frame structures. Several ground tests had been performed using a modular nature to advantage. Prior to the launch of ETS-VIII, we performed an in-orbit deployment experiment using LDREX-2 which consists of seven half-scale modules of LDR, to confirm evaluation accuracy. The LDREX-2 was launched by ARIANE 5 launch vehicle as a piggy-back payload. Deployment characteristics were measured to evaluate the accuracy of analytical prediction obtained by ground deployment testing. ETS-VIII was launched by H-IIA launch vehicle on 18 December 2006. After the successful injection into Geo Synchronous Orbit, the RX-LDR and the TX-LDR were successfully deployed on December 25th and 26th, respectively. We confirmed adequacy of the proposed design and ground verification methodology.

  1. Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.

    2012-07-01

    This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.

  2. Risk Factors for Mesh Exposure after Transvaginal Mesh Surgery

    PubMed Central

    Niu, Ke; Lu, Yong-Xian; Shen, Wen-Jie; Zhang, Ying-Hui; Wang, Wen-Ying

    2016-01-01

    Background: Mesh exposure after surgery continues to be a clinical challenge for urogynecological surgeons. The purpose of this study was to explore the risk factors for polypropylene (PP) mesh exposure after transvaginal mesh (TVM) surgery. Methods: This study included 195 patients with advanced pelvic organ prolapse (POP), who underwent TVM from January 2004 to December 2012 at the First Affiliated Hospital of Chinese PLA General Hospital. Clinical data were evaluated including patient's demography, TVM type, concomitant procedures, operation time, blood loss, postoperative morbidity, and mesh exposure. Mesh exposure was identified through postoperative vaginal examination. Statistical analysis was performed to identify risk factors for mesh exposure. Results: Two-hundred and nine transvaginal PP meshes were placed, including 194 in the anterior wall and 15 in the posterior wall. Concomitant tension-free vaginal tape was performed in 61 cases. The mean follow-up time was 35.1 ± 23.6 months. PP mesh exposure was identified in 32 cases (16.4%), with 31 in the anterior wall and 1 in the posterior wall. Significant difference was found in operating time and concomitant procedures between exposed and nonexposed groups (F = 7.443, P = 0.007; F = 4.307, P = 0.039, respectively). Binary logistic regression revealed that the number of concomitant procedures and operation time were risk factors for mesh exposure (P = 0.001, P = 0.043). Conclusion: Concomitant procedures and increased operating time increase the risk for postoperative mesh exposure in patients undergoing TVM surgery for POP. PMID:27453227

  3. Computer prediction of dual reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1981-01-01

    A program for calculating radiation patterns for reflector antennas with either smooth analytic surfaces or with surfaces composed of a number of panels. Techniques based on the geometrical optics (GO) approach were used in tracing rays over the following regions: from a feed antenna to the first reflector surface (subreflector); from this reflector to a larger reflector surface (main reflector); and from the main reflector to a mathematical plane (aperture plane) in front of the main reflector. The equations of GO were also used to calculate the reflected field components for each ray making use of the feed radiation pattern and the parameters defining the surfaces of the two reflectors. These resulting fields form an aperture distribution which is integrated numerically to compute the radiation pattern for a specified set of angles.

  4. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  5. Colposacropexy with Prolene mesh.

    PubMed

    Baker, K R; Beresford, J M; Campbell, C

    1990-07-01

    A retrospective analysis of 59 patients who underwent colposacropexy (CSP) using Prolene (polypropylene) mesh is presented. Fifty-eight of the patients had undergone previous surgical treatment, including either vaginal or abdominal hysterectomy. Twenty-two patients underwent CSP alone, 24 had CSP and retropubic urethropexy (RPU), eight had CSP with anterior or posterior repair, or both, and five had CSP and RPU with anterior and posterior repair. The operations were associated with a minimum of intraoperative complications and acceptable postoperative problems. A postoperative questionnaire was sent to the patients with an 89 per cent response rate. None of the patients complained of protrusion from the vagina. It is concluded that, in the hands of experienced surgeons, CSP is a safe, efficacious operative procedure that should remain the procedure of choice for vaginal vault prolapse since it restores the normal vaginal axis, maintains existing vaginal length and provides permanent care. PMID:2193414

  6. Invisible metallic mesh.

    PubMed

    Ye, Dexin; Lu, Ling; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin

    2016-03-01

    A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208

  7. Invisible metallic mesh

    PubMed Central

    Ye, Dexin; Lu, Ling; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin

    2016-01-01

    A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208

  8. Quadrilateral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  9. Laparoscopic paracolostomy hernia mesh repair.

    PubMed

    Virzí, Giuseppe; Giuseppe, Virzí; Scaravilli, Francesco; Francesco, Scaravilli; Ragazzi, Salvatore; Salvatore, Ragazzi; Piazza, Diego; Diego, Piazza

    2007-12-01

    Paracolostomy hernia is a common occurrence, representing a late complication of stoma surgery. Different surgical techniques have been proposed to repair the wall defect, but the lowest recurrence rates are associated with the use of mesh. We present the case report of a patient in which laparoscopic paracolostomy hernia mesh repair has been successfully performed. PMID:18097321

  10. Adaptive and Unstructured Mesh Cleaving

    PubMed Central

    Bronson, Jonathan R.; Sastry, Shankar P.; Levine, Joshua A.; Whitaker, Ross T.

    2015-01-01

    We propose a new strategy for boundary conforming meshing that decouples the problem of building tetrahedra of proper size and shape from the problem of conforming to complex, non-manifold boundaries. This approach is motivated by the observation that while several methods exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The proposed strategy avoids this conflict by extracting the boundary conforming constraint into a secondary step. We first build a background mesh having a desired set of tetrahedral properties, and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing this new framework, we make several technical contributions including a new method for building graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving algorithms to unstructured background meshes. PMID:26137171

  11. Which mesh for hernia repair?

    PubMed Central

    Brown, CN; Finch, JG

    2010-01-01

    INTRODUCTION The concept of using a mesh to repair hernias was introduced over 50 years ago. Mesh repair is now standard in most countries and widely accepted as superior to primary suture repair. As a result, there has been a rapid growth in the variety of meshes available and choosing the appropriate one can be difficult. This article outlines the general properties of meshes and factors to be considered when selecting one. MATERIALS AND METHODS We performed a search of the medical literature from 1950 to 1 May 2009, as indexed by Medline, using the PubMed search engine (). To capture all potentially relevant articles with the highest degree of sensitivity, the search terms were intentionally broad. We used the following terms: ‘mesh, pore size, strength, recurrence, complications, lightweight, properties’. We also hand-searched the bibliographies of relevant articles and product literature to identify additional pertinent reports. RESULTS AND CONCLUSIONS The most important properties of meshes were found to be the type of filament, tensile strength and porosity. These determine the weight of the mesh and its biocompatibility. The tensile strength required is much less than originally presumed and light-weight meshes are thought to be superior due to their increased flexibility and reduction in discomfort. Large pores are also associated with a reduced risk of infection and shrinkage. For meshes placed in the peritoneal cavity, consideration should also be given to the risk of adhesion formation. A variety of composite meshes have been promoted to address this, but none appears superior to the others. Finally, biomaterials such as acellular dermis have a place for use in infected fields but have yet to prove their worth in routine hernia repair. PMID:20501011

  12. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  13. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  14. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  15. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  16. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures,...

  17. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... on that plane in any orientation. The optical axis of the reflector shall be directed forward within..., preferred assembly method that shall insure that the reflector meets the optical requirements of this... seat post. The optical axis of the reflector shall be directed rearward within 5° of the...

  18. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.16 Requirements for reflectors. Bicycles shall be... vehicle headlamps. The use of reflector combinations off the center plane of the bicycle (defined in...° horizontally. Sidewalk bicycles are not required to have reflectors. (a) Front, rear, and pedal...

  19. Heat dissipation in water-cooled reflectors

    NASA Technical Reports Server (NTRS)

    Kozai, Toyoki

    1994-01-01

    The energy balance of a lamp varies with the thermal and optical characteristics of the reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by photosynthetically active radiation (PAR, 400-700 nm) emitted from the lamp ranges between 0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non-PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the lamp, reflector, and ballast, and simply for increasing the cooling load. Furthermore, some portion of the PAR is uselessly absorbed by the inner walls, shelves, vessels, etc. and some portion of the PAR received by the plantlets is converted into sensible and latent heat. More than 98% of the energy input is probably converted into heat, with only less than 2% of the energy input being converted into chemical energy as carbohydrates by photosynthesis. Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce the cooling load. Through use of a water-cooled reflector, the generation of convective and conductive heat and longwave radiation from the reflector can be reduced, without reduction of PAR.

  20. Advanced sunflower antenna concept development. [stowable reflectors

    NASA Technical Reports Server (NTRS)

    Archer, J. S.

    1980-01-01

    The feasibility of stowing large solid antenna reflectors in the shuttle was demonstrated for applications with 40 foot apertures at frequencies of 100 GHz. Concepts allowing extension of the basic concept to 80-foot apertures operable at 60 GHz were identified.

  1. Don't Forget the Reflector.

    ERIC Educational Resources Information Center

    Morton, N.

    1991-01-01

    Various modes of reflection are classified and practical examples of devices, such as cat's eyes, are discussed. Typical light rays are traced through several systems, providing exercises with varying degrees of difficulty. Corner-cube retroreflectors, glass spheres, reflecting luminaries, light concentrators, parabolic reflectors, and off-set and…

  2. Perception for a large deployable reflector telescope

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. M.; Swanson, P. N.; Meinel, A. B.; Meinel, M. P.

    1984-01-01

    Optical science and technology concepts for a large deployable reflector for far-infrared and submillimeter astronomy from above the earth's atmosphere are discussed. Requirements given at the Asilomar Conference are reviewed. The technical challenges of this large-aperture (about 20-meter) telescope, which will be diffraction limited in the infrared, are highlighted in a brief discussion of one particular configuration.

  3. Enhancement of Solar Water Pasteurization with Reflectors

    PubMed Central

    Safapour, Negar; Metcalf, Robert H.

    1999-01-01

    A simple and reliable method that could be used in developing countries to pasteurize milk and water with solar energy is described. A cardboard reflector directs sunshine onto a black jar, heating water to pasteurizing temperatures in several hours. A reusable water pasteurization indicator verifies that pasteurization temperatures have been reached. PMID:9925631

  4. Welding torch with arc light reflector

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1986-01-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  5. Lasing dynamics of photonic crystal reflector laser

    NASA Astrophysics Data System (ADS)

    Bakoz, Andrei P.; Liles, A. A.; Viktorov, E. A.; O'Faolain, L.; Habruseva, T.; Huyet, G.; Hegarty, S. P.

    2016-04-01

    We describe the lasing characteristics of a compact tunable laser source formed by the butt-coupling of a reflective indium phosphide optical amplifier to an SU8 waveguide coupled to few-mode photonic crystal reflector. The short cavity length ensured that only a single longitudinal mode of the device could overlap with each photonic crystal reflection peak.

  6. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  7. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  8. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  9. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  10. 21 CFR 878.3300 - Surgical mesh.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3300 Surgical mesh. (a) Identification... acetabular and cement restrictor mesh used during orthopedic surgery. (b) Classification. Class II....

  11. Streaming Compression of Hexahedral Meshes

    SciTech Connect

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  12. Passive fathometer reflector identification with phase shift modeling.

    PubMed

    Michalopoulou, Zoi-Heleni; Gerstoft, Peter

    2016-07-01

    In passive fathometer processing, the presence of wavelets in the estimate of the medium's Green's function corresponds to the location of reflectors in the seabed; amplitudes are related to seabed properties. Bayesian methods have been successful in identifying reflectors that define layer interfaces. Further work, however, revealed that phase shifts are occasionally present in the wavelets and hinder accurate layer identification for some reflectors. With a Gibbs sampler that computes probability densities of reflector depths, strengths of the reflections, and wavelet phase shifts, the significance of phase shift modeling in successful estimation of reflectors and their strengths is demonstrated. PMID:27475201

  13. Configurations of the reflector for optical-electronic autocollimator

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor A.; Moiseeva, Anastasia A.; Moiseev, Evgenii A.

    2016-04-01

    The problem of increasing working distance opto-electronic autocollimator in determining the angular position of the object was considered. It is proposed to use a reflector in the form of a quadrangular pyramid. We determined the measurement algorithm using the proposed reflector. Several types of retroreflectors with different reflective qualities were considered. The comparative analysis of these mirror systems and basic quadrangular pyramidal reflector are presented. The autocollimation system with pyramidal reflector is simulated and analyzed. Radiation passing through the autocollimation system with a pyramidal reflector is simulated.

  14. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  15. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  16. Image-driven mesh optimization

    SciTech Connect

    Lindstrom, P; Turk, G

    2001-01-05

    We describe a method of improving the appearance of a low vertex count mesh in a manner that is guided by rendered images of the original, detailed mesh. This approach is motivated by the fact that greedy simplification methods often yield meshes that are poorer than what can be represented with a given number of vertices. Our approach relies on edge swaps and vertex teleports to alter the mesh connectivity, and uses the downhill simplex method to simultaneously improve vertex positions and surface attributes. Note that this is not a simplification method--the vertex count remains the same throughout the optimization. At all stages of the optimization the changes are guided by a metric that measures the differences between rendered versions of the original model and the low vertex count mesh. This method creates meshes that are geometrically faithful to the original model. Moreover, the method takes into account more subtle aspects of a model such as surface shading or whether cracks are visible between two interpenetrating parts of the model.

  17. Contact cleaning of polymer film solar reflectors

    NASA Astrophysics Data System (ADS)

    Sansom, Christopher; Fernández-García, Aránzazu; Sutter, Florian; Almond, Heather; King, Peter

    2016-05-01

    This paper describes the accelerated ageing of polymer film reflecting surfaces under the conditions to be found during contact cleaning of Concentrating Solar Power (CSP) collectors in the presence of dust and sand particles. In these situations, contact cleaning using brushes and water is required to clean the reflecting surfaces. Whilst suitable for glass reflectors, this paper discusses the effects of existing cleaning processes on the optical and visual properties of polymer film surfaces, and then describes the development of a more benign but effective contact cleaning process for cleaning polymer reflectors. The effects of a range of cleaning brushes are discussed, with and without the presence of water, in the presence of sand and dust particles from selected representative locations. Reflectance measurements and visual inspection shows that a soft cleaning brush with a small amount of water can clean polymer film reflecting surfaces without inflicting surface damage or reducing specular reflectance.

  18. Deployable reflector configurations. [for space telescope

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  19. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  20. Method and system for mesh network embedded devices

    NASA Technical Reports Server (NTRS)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  1. Isogrid Membranes for Precise, Singly Curved Reflectors

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Lou, Michael

    2005-01-01

    A new type of composite material has been proposed for membranes that would constitute the reflective surfaces of planned lightweight, single-curvature (e.g., parabolic cylindrical) reflectors for some radar and radio-communication systems. The proposed composite materials would consist of polyimide membranes containing embedded grids of highstrength (e.g., carbon) fibers. The purpose of the fiber reinforcements, as explained in more detail below, is to prevent wrinkling or rippling of the membrane.

  2. Large Deployable Reflector (LDR) thermal characteristics

    NASA Technical Reports Server (NTRS)

    Miyake, R. N.; Wu, Y. C.

    1988-01-01

    The thermal support group, which is part of the lightweight composite reflector panel program, developed thermal test and analysis evaluation tools necessary to support the integrated interdisciplinary analysis (IIDA) capability. A detailed thermal mathematical model and a simplified spacecraft thermal math model were written. These models determine the orbital temperature level and variation, and the thermally induced gradients through and across a panel, for inclusion in the IIDA.

  3. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  4. Vacuum deposited polymer/silver reflector material

    SciTech Connect

    Affinito, J.; Martin, P.; Gross, M.; Bennett, W.

    1994-07-01

    Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less than 50 cents per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 {mu}m to .8 {mu}m. It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process - for Polymer Multi-Layer.

  5. Simulation of parabolic reflectors for ultraviolet phototherapy

    NASA Astrophysics Data System (ADS)

    Grimes, David Robert

    2016-08-01

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  6. Simulation of parabolic reflectors for ultraviolet phototherapy.

    PubMed

    Robert Grimes, David

    2016-08-21

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity.

  7. Simulation of parabolic reflectors for ultraviolet phototherapy.

    PubMed

    Robert Grimes, David

    2016-08-21

    Ultraviolet (UVR) phototherapy is widely used to treat an array of skin conditions, including psoriasis, eczema and vitiligo. For such interventions, a quantified dose is vital if the treatment is to be both biologically effective and to avoid the detrimental effects of over-dosing. As dose is absorbed at surface level, the orientation of patient site with respect to the UVR lamps modulates effective dose. Previous investigations have modelled this behaviour, and examined the impact of shaped anodized aluminium reflectors typically placed around lamps in phototherapy cabins. These mirrors are effective but tend to yield complex patterns of reflection around the cabin which can result in substantial dose inhomogeneity. There has been some speculation over whether using the reflective property of parabolic mirrors might improve dose delivery or homogeneity through the treatment cabin. In this work, the effects of parabolic mirrors are simulated and compared with standard shaped mirrors. Simulation results strongly suggest that parabolic reflectors reduce total irradiance relative to standard shaped reflectors, and have a negligible impact on dose homogeneity. PMID:27445095

  8. User Manual for the PROTEUS Mesh Tools

    SciTech Connect

    Smith, Micheal A.; Shemon, Emily R.

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  9. Single port laparoscopic mesh rectopexy

    PubMed Central

    2016-01-01

    Introduction Traditionally, laparoscopic mesh rectopexy is performed with four ports, in an attempt to improve cosmetic results. Following laparoscopic mesh rectopexy there is a new operative technique called single-port laparoscopic mesh rectopexy. Aim To evaluate the single-port laparoscopic mesh rectopexy technique in control of rectal prolapse and the cosmesis and body image issues of this technique. Material and methods The study was conducted in El Fayoum University Hospital between July 2013 and November 2014 in elective surgery for symptomatic rectal prolapse with single-port laparoscopic mesh rectopexy on 10 patients. Results The study included 10 patients: 3 (30%) males and 7 (70%) females. Their ages ranged between 19 years and 60 years (mean: 40.3 ±6 years), and they all underwent laparoscopic mesh rectopexy. There were no conversions to open technique, nor injuries to the rectum or bowel, and there were no mortalities. Mean operative time was 120 min (range: 90–150 min), and mean hospital stay was 2 days (range: 1–3 days). Preoperatively, incontinence was seen in 5 (50%) patients and constipation in 4 (40%). Postoperatively, improvement in these symptoms was seen in 3 (60%) patients for incontinence and in 3 (75%) for constipation. Follow-up was done for 6 months and no recurrence was found with better cosmetic appearance for all patients. Conclusions Single-port laparoscopic mesh rectopexy is a safe procedure with good results as regards operative time, improvement in bowel function, morbidity, cost, and recurrence, and with better cosmetic appearance. PMID:27350840

  10. Cache-oblivious mesh layouts

    SciTech Connect

    Yoon, Sung-Eui; Lindstrom, Peter; Pascucci, Valerio; Manocha, Dinesh

    2005-07-01

    We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications.

  11. Self-Organizing Mesh Generation

    1991-11-01

    A set of five programs which make up a self organizing mesh generation package. QMESH generates meshes having quadrilateral elements on arbitrarily shaped two-dimensional (planar or axisymmetric) bodies. It is designed for use with two-dimensional finite element analysis applications. A flexible hierarchal input scheme is used to describe bodies to QMESH as collections of regions. A mesh for each region is developed independently, with the final assembly and bandwidth minimization performed by the independent program,more » RENUM or RENUM8. RENUM is applied when four-node elements are desired. Eight node elements (with mid side nodes) may be obtained with RENUM8. QPLOT and QPLOT8 are plot programs for meshes generated by the QMESH/RENUM and QMESH/RENUM8 program pairs respectively. QPLOT and QPLOT8 automatically section the mesh into appropriately-sized sections for legible display of node and element numbers, An overall plot showing the position of the selected plot areas is produced.« less

  12. A new approach for shaping of dual-reflector antennas

    NASA Astrophysics Data System (ADS)

    Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.

    1987-12-01

    The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.

  13. System concept for a moderate cost Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.

    1986-01-01

    A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.

  14. Cassegrain dual reflector antenna design. [MSAT UHF antenna

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A folded optics reflector system could mitigate problems associated with the pointability and controllability of the large UHF antenna for MSAT. Such a system is comprised of a parabolic main reflector and a hyperboloidal subreflector (Cassegrain arrangement) or an ellipsoidal subreflector (Gregorian arrangement), either of which brings the feed closer to the main reflector. By shaping the subreflector and the main reflector, an improved scan capability might be achieved and the size of the required feed aperture-per-beam could be reduced. In such a shaped dual reflector system, the need for overlapping cluster feed arrangement and its concomitant beam forming network could be removed. In this system, a relatively low gain feed element together with the shaped subreflector would be sufficient to produce the required high illumination taper that at the main reflector.

  15. A new approach for shaping of dual-reflector antennas

    NASA Technical Reports Server (NTRS)

    Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.

    1987-01-01

    The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.

  16. Wide-angle scannable reflector design using conformal transformation optics.

    PubMed

    Liang, Liang; Hum, Sean V

    2013-01-28

    A flat reflector capable of scanning over wide angles is designed using a transformation optics approach. This reflector is derived from its virtual parabolic counterpart using a conformal coordinate transformation that determines the permittivity profile of the flat reflector. By changing the permittivity profile, the flat reflector is then capable of scanning up to 47° away from broadside while maintaining good beam characteristics across a wide frequency range. Moreover, its directivity is comparable to that of the virtual parabolic reflector, even at high scan angles. We use the Schwarz-Christoffel transformation as a versatile tool to produce perfect conformal mapping of coordinates between the virtual and flat reflectors, thereby avoiding the need to monitor the anisotropy of the material that results when employing quasi-conformal methods. PMID:23389194

  17. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  18. Inflatable Reflector For Solar Power And Radio Communication

    NASA Technical Reports Server (NTRS)

    Sercel, Joel; Gilchriest, Carl; Ewell, Rich; Herman, Martin; Rascoe, Daniel L.; Nesmith, Bill J.

    1995-01-01

    Report proposes installation of lightweight inflatable reflector structure aboard spacecraft required to both derive power from sunlight and communicate with Earth by radio when apparent position of Earth is at manageably small angle from line of sight to Sun. Structure contains large-aperture paraboloidal reflector aimed toward Sun and concentrates sunlight onto photovoltaic power converter and acts as main reflector of spacecraft radio-communication system.

  19. Thermal distortion analysis of a deployable parabolic reflector

    NASA Technical Reports Server (NTRS)

    Bruck, L. R.; Honeycutt, G. H.

    1973-01-01

    A thermal distortion analysis of the ATS-6 Satellite parabolic reflector was performed using NASTRAN level 15.1. The same NASTRAN finite element method was used to conduct a one g static load analysis and a dynamic analysis of the reflector. In addition, a parametric study was made to determine which parameters had the greatest effect on the thermal distortions. The method used to model the construction of the reflector is described and the results of the analyses are presented.

  20. Testing the figure of parabolic reflectors for solar concentrators.

    PubMed

    Bodenheimer, J S; Eisenberg, N P; Gur, J

    1982-12-15

    A novel method for testing the optical quality of large parabolic solar concentrators is presented, based on autocollimation. An optical system continuously scans the reflector along a fixed reference axis. At each position along the axis, the spread function is obtained. Analysis of the location, width, and intensity changes of this function gives quantitative information about the reflector's defects. A figure of merit describing the performance of parabolic trough reflectors is proposed.

  1. Magnetron sputtering in rigid optical solar reflectors production

    NASA Astrophysics Data System (ADS)

    Asainov, O. Kh; Bainov, D. D.; Krivobokov, V. P.; Sidelev, D. V.

    2016-07-01

    Magnetron sputtering was applied to meet the growing need for glass optical solar reflectors. This plasma method provided more uniform deposition of the silver based coating on glass substrates resulted in decrease of defective reflectors fraction down to 5%. For instance, such parameter of resistive evaporation was of 30%. Silver film adhesion to glass substrate was enhanced with indium tin oxide sublayer. Sunlight absorption coefficient of these rigid reflectors was 0.081-0.083.

  2. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    NASA Astrophysics Data System (ADS)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  3. On Linear Spaces of Polyhedral Meshes.

    PubMed

    Poranne, Roi; Chen, Renjie; Gotsman, Craig

    2015-05-01

    Polyhedral meshes (PM)-meshes having planar faces-have enjoyed a rise in popularity in recent years due to their importance in architectural and industrial design. However, they are also notoriously difficult to generate and manipulate. Previous methods start with a smooth surface and then apply elaborate meshing schemes to create polyhedral meshes approximating the surface. In this paper, we describe a reverse approach: given the topology of a mesh, we explore the space of possible planar meshes having that topology. Our approach is based on a complete characterization of the maximal linear spaces of polyhedral meshes contained in the curved manifold of polyhedral meshes with a given topology. We show that these linear spaces can be described as nullspaces of differential operators, much like harmonic functions are nullspaces of the Laplacian operator. An analysis of this operator provides tools for global and local design of a polyhedral mesh, which fully expose the geometric possibilities and limitations of the given topology.

  4. A comparison of dual reflector antennas for small earth stations

    NASA Astrophysics Data System (ADS)

    Clarricoats, P. J. B.; Brown, R. C.; Ramanujam, P.

    The performance characteristics of dual reflector antennas for small earth stations are compared. Three different designs of offset dual reflectors are discussed, emphasizing the achievement of compliant sidelobe envelopes in one of the principal planes which can be aligned along the geostationary orbit. The spherical offset reflector antenna emerges as a very good candidate for small earth stations, when the dimensions and available facilities permit the use of spinning as a means of fabricating the main reflector. The sector-shaped paraboloidal antenna offers improved performance and may not be significantly more expensive in large-scale production.

  5. POMESH - DIFFRACTION ANALYSIS OF REFLECTOR ANTENNAS

    NASA Technical Reports Server (NTRS)

    Hodges, R. E.

    1994-01-01

    POMESH is a computer program capable of predicting the performance of reflector antennas. Both far field pattern and gain calculations are performed using the Physical Optics (PO) approximation of the equivalent surface currents. POMESH is primarily intended for relatively small reflectors. It is useful in situations where the surface is described by irregular data that must be interpolated and for cases where the surface derivatives are not known. This method is flexible and robust and also supports near field calculations. Because of the near field computation ability, this computational engine is quite useful for subreflector computations. The program is constructed in a highly modular form so that it may be readily adapted to perform tasks other than the one that is explicitly described here. Since the computationally intensive portions of the algorithm are simple loops, the program can be easily adapted to take advantage of vector processor and parallel architectures. In POMESH the reflector is represented as a piecewise planar surface comprised of triangular regions known as facets. A uniform physical optics (PO) current is assumed to exist on each triangular facet. Then, the PO integral on a facet is approximated by the product of the PO current value at the center and the area of the triangle. In this way, the PO integral over the reflector surface is reduced to a summation of the contribution from each triangular facet. The source horn, or feed, that illuminates the subreflector is approximated by a linear combination of plane patterns. POMESH contains three polarization pattern definitions for the feed; a linear x-polarized element, linear y-polarized element, and a circular polarized element. If a more general feed pattern is required, it is a simple matter to replace the subroutine that implements the pattern definitions. POMESH obtains information necessary to specify the coordinate systems, location of other data files, and parameters of the desired

  6. Issues in adaptive mesh refinement

    SciTech Connect

    Dai, William Wenlong

    2009-01-01

    In this paper, we present an approach for a patch-based adaptive mesh refinement (AMR) for multi-physics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, and management of patches. Among the special features of this patch-based AMR are symmetry preserving, efficiency of refinement, special implementation offlux correction, and patch management in parallel computing environments. Here, higher efficiency of refinement means less unnecessarily refined cells for a given set of cells to be refined. To demonstrate the capability of the AMR framework, hydrodynamics simulations with many levels of refinement are shown in both two- and three-dimensions.

  7. Solar Tracking Error Analysis of Fresnel Reflector

    PubMed Central

    Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie

    2014-01-01

    Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664

  8. Large Deployable Reflector (LDR) feasibility study update

    NASA Technical Reports Server (NTRS)

    Alff, W. H.; Banderman, L. W.

    1983-01-01

    In 1982 a workshop was held to refine the science rationale for large deployable reflectors (LDR) and develop technology requirements that support the science rationale. At the end of the workshop, a set of LDR consensus systems requirements was established. The subject study was undertaken to update the initial LDR study using the new systems requirements. The study included mirror materials selection and configuration, thermal analysis, structural concept definition and analysis, dynamic control analysis and recommendations for further study. The primary emphasis was on the dynamic controls requirements and the sophistication of the controls system needed to meet LDR performance goals.

  9. Successful repair of a 6 meter battery

    SciTech Connect

    Nay, K.; Gratson, M.; Wash, S.; Sundholm, J.L.; Hippe, W.; Ramani, R.V.

    1996-12-31

    Following a two-year construction period, LTV Steel Company commissioned a new six-meter coke oven battery and ancillary facilities in December 1981 at the S. Chicago Works. The battery is a 60-oven Didier grouped flue underjet design capable of firing coke oven gas and blast furnace gas. In late 1990, coke side refractory damage in the form of severe spalls and holes in the walls were observed. Numerous repair techniques--welding, guniting, panel patching, end flue repairs using zero expansion brick--were employed as interim measures until a comprehensive repair plan could be implemented. A repair plan (primarily for coke side flues) was developed which envisioned end flue repairs on six walls per year beginning in late 1991, early 1992 depending on refractory delivery. However, in late 1992 it became apparent that the coke side deterioration was occurring faster than expected and that extensive pusher side deterioration was also occurring. Because of these developments, another battery inspection was performed. On the basis of this inspection, it was determined that a major rehabilitation would be required to assure long-term, environmentally acceptable operation of the battery.

  10. Hybrid Mesh for Nasal Airflow Studies

    PubMed Central

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  11. Hybrid mesh for nasal airflow studies.

    PubMed

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  12. 78 FR 14357 - Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... COMMISSION Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof... importation of certain compact fluorescent reflector lamps, products containing same and components thereof by... importation of certain compact fluorescent reflector lamps, products containing same and components thereof...

  13. Multigrid for refined triangle meshes

    SciTech Connect

    Shapira, Yair

    1997-02-01

    A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.

  14. Mesh Size Control of Friction

    NASA Astrophysics Data System (ADS)

    Pitenis, Angela; Uruena, Juan Manuel; Schulze, Kyle D.; Cooper, Andrew C.; Angelini, Thomas E.; Sawyer, W. Gregory

    Soft, permeable sliding interfaces in aqueous environments are ubiquitous in nature but their ability to maintain high lubricity in a poor lubricant (water) has not been well understood. Hydrogels are excellent materials for fundamental soft matter and biotribology studies due to their high water content. While mesh size controls the material and transport properties of a hydrogel, its effects on friction were only recently explored. Polyacrylamide hydrogels slid in a Gemini (self-mated) interface produced low friction under low speeds, low pressures, macroscopic contact areas, and room temperature aqueous environments. The friction coefficients at these interfaces are lowest at low speeds and are speed-independent. This behavior is due to thermal fluctuations at the interface separating the surfaces, with water shearing in this region being the main source of dissipation. We found that mesh size had an inverse correlation with friction. We further investigated a transition from this behavior at higher speeds, and found that the transition speed correlated with the mesh size and relaxation time of the polymer network. Very soft and correspondingly large mesh size Gemini hydrogels show superlubricity under specific conditions with friction being less than 0.005.

  15. Application of Quaternions for Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2002-01-01

    A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.

  16. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Requirements for reflectors. 1512.16 Section 1512.16 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.16 Requirements for reflectors. Bicycles shall...

  17. 16 CFR 1512.16 - Requirements for reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Requirements for reflectors. 1512.16 Section 1512.16 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Regulations § 1512.16 Requirements for reflectors. Bicycles shall...

  18. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  19. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  20. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  1. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  2. 46 CFR 28.235 - Anchors and radar reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Anchors and radar reflectors. 28.235 Section 28.235....235 Anchors and radar reflectors. (a) Each vessel must be fitted with an anchor(s) and chain(s), cable... rigged with gear that provides a radar signature from a distance of 6 miles, each nonmetallic hull...

  3. Special test equipment and fixturing for MSAT reflector assembly alignment

    NASA Technical Reports Server (NTRS)

    Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.

    1994-01-01

    The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.

  4. Detail of 25' highband reflector screen pole showing the horizontal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of 25' high-band reflector screen pole showing the horizontal wood beams and vertical wires hung from ceramic insulators, note the dipole antenna element and 94' low-band reflector screen poles in background, view facing north - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  5. Detail of 25' highband reflector screen poles with monopole antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of 25' high-band reflector screen poles with monopole antenna elements behind, note the metal sleeve bases of the reflector screen poles and the guy wire anchors from the dipole antenna elements (left foreground), view facing north northwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  6. X-ray resonator with pear-shaped reflectors

    SciTech Connect

    Churikov, V A

    2003-11-30

    An X-ray resonator design is proposed in which peculiar pear-shaped reflectors, which are grazing-incidence X-ray mirrors, serve as optical elements. Special features of this resonator are relatively high reflector efficiencies and the axial symmetry of the output radiation. (resonators)

  7. Shaped reflector beam waveguide and high gain antenna systems

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, V.; Mittra, R.

    1983-01-01

    In this paper the problem of synthesizing dual reflector antennas for both amplitude and phase control of the final aperture distribution is discussed. An approximate procedure for the offset synthesis problem is presented and applications of the procedure to the shaping of beam waveguides and reflectors for high-gain antenna systems are illustrated.

  8. 6th International Meshing Roundtable '97

    SciTech Connect

    White, D.

    1997-09-01

    The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

  9. Self-clamping arc light reflector for welding torch

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1987-01-01

    This invention is directed to a coaxial extending metal mirror reflector attached to the electrode housing or gas cup on a welding torch. An electric welding torch with an internal viewing system for robotic welding is provded with an annular arc light reflector to reflect light from the arc back onto the workpiece. The reflector has a vertical split or gap in its surrounding wall to permit the adjacent wall ends forming the split to be sprung open slightly to permit the reflector to be removed or slipped onto the torch housing or gas cup. The upper opening of the reflector is slightly smaller than the torch housing or gas cup and therefore, when placed on the torch housing or gas cup has that springiness to cause it to clamp tightly on the housing or gas cup. The split or gap also serves to permit the feed of weld wire through to the weld area,

  10. Secondary pattern computation of an offset reflector antenna

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.

    1985-01-01

    Reflector antennas are widely used in communications satellite systems because they provide high gain at low cost. In analyzing reflector antennas the computation of the secondary pattern is the main concern. A computer program for calculating the secondary pattern of an offset reflector has been developed and implemented at the NASA Lewis Research Center. The theoretical foundation for this program is based on the use of geometrical optics to describe the fields from the feed to the reflector surface and to the aperture plane. The resulting aperture field distribution is then transformed to the far-field zone by the fast Fourier transform algorithm. Comparing this technique with other well-known techniques (the geometrical theory of diffraction, physical optics (Jacobi-Bessel), etc.) shows good agreement for large (diameter of 100 lambda or greater) reflector antennas.

  11. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  12. Deployment simulation of a deployable reflector for earth science application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  13. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  14. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  15. Confined helium on Lagrange meshes.

    PubMed

    Baye, D; Dohet-Eraly, J

    2015-12-21

    The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than 10(-10). For larger radii up to 10, they progressively decrease to 10(-3), still improving the best literature results.

  16. The moving mesh code SHADOWFAX

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, B.; De Rijcke, S.

    2016-07-01

    We introduce the moving mesh code SHADOWFAX, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public Licence. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare SHADOWFAX with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.

  17. Implicit solvers for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, Dimitri J.

    1991-01-01

    Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.

  18. Implicit solvers for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, Dimitri J.

    1991-01-01

    Implicit methods for unstructured mesh computations are developed and tested. The approximate system which arises from the Newton-linearization of the nonlinear evolution operator is solved by using the preconditioned generalized minimum residual technique. These different preconditioners are investigated: the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over-relaxation (SSOR). The preconditioners have been optimized to have good vectorization properties. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also investigated. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.

  19. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266

  20. Multiple seismic reflectors in Earth's lowermost mantle.

    PubMed

    Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert

    2014-02-18

    The modern view of Earth's lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core-mantle boundary and an interface some 150-300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth's deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth's mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto.

  1. Imaging the D″ reflector with noise correlations

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Thomas, Christine; Campillo, Michel; Pedersen, Helle A.

    2015-01-01

    lowermost mantle of the Earth is characterized by seismic structures that range from a few tens to thousands of kilometers. At present, it is difficult to test hypotheses put forward to explain seismic observations due to poor seismic coverage, as particular earthquake-station geometries are needed. We demonstrate here that seismic noise correlations can be used to robustly image deep-mantle reflections with larger stacked amplitudes of reflected waves compared with earthquake data. In a comparison between noise and earthquake data, we find that the arrival times and the slowness of reflected waves, both sampling a region beneath Siberia, agree with those for a reflector at 2530 km depth, and the small amplitude reflections are sufficiently clear in the noise correlations to compare them reliably with synthetic data. Our data open exciting prospects for illuminating new target zones in the deep mantle to further constrain the dynamics and mineralogy of the deep Earth.

  2. Method of making reflecting film reflector

    DOEpatents

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  3. Imaging with Spherically Bent Crystals or Reflectors

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Ince-Cushman, A; Reinke, M; Podpaly, Y; Rice, J E; Beiersdorfer, P

    2010-06-01

    This paper consists of two parts: Part I describes the working principle of a recently developed x-ray imaging crystal spectrometer, where the astigmatism of spherically bent crystals is being used with advantage to record spatially resolved spectra of highly charged ions for Doppler measurements of the ion-temperature and toroidal plasmarotation- velocity profiles in tokamak plasmas. This type of spectrometer was thoroughly tested on NSTX and Alcator C-Mod, and its concept was recently adopted for the design of the ITER crystal spectrometers. Part II describes imaging schemes, where the astigmatism has been eliminated by the use of matched pairs of spherically bent crystals or reflectors. These imaging schemes are applicable over a wide range of the electromagnetic radiation, which includes microwaves, visible light, EUV radiation, and x-rays. Potential applications with EUV radiation and x-rays are the diagnosis of laserproduced plasmas, imaging of biological samples with synchrotron radiation, and lithography.

  4. Adaptive null steering by reflector antennas

    NASA Astrophysics Data System (ADS)

    Cofer, J. W.; Martin, G. P.; Ralph, S. E.

    The feasibility of peforming adaptive null steering by reflector antennas is investigated, and the results are reported. The implementation consists of an array of feed elements located in the focal region. The outputs of all the feeds are weighted in phase and amplitude and summed coherently. After deduction by a receiver, the signal passes to a digital algorithm computer where a decision is made as to how the weights should be adjusted, and interactive perturbational process continues until the system has arrived at an optimal weight combination. The configuration allows for multiple jammers and/or desired signals. Nulls on the order of 35 dB can be achieved with the basic limitation being amplitude and phase balance of the RF weights versus frequency. The system offers simpler, lighter weight more economically than full-phased arrays, much broader bandwidth than sidelobe cancellers, well-understood analysis procedures, and allows cancellation high up on the main beam.

  5. Meshing, Visualization, and Computational Environments

    NASA Technical Reports Server (NTRS)

    Chawner, John R.

    2004-01-01

    There was probably no higher profile application of meshing, visualization, and computational software this past year than that performed in support of the space shuttle's Return to Flight activities. After heavy use of simulation during the accident investigation, these same tools are now helping address safety and operational issues. In turn, these applications are raising the bar for computational tools in terms of simulation fidelity and turnaround time.

  6. Adaptive Mesh Refinement in CTH

    SciTech Connect

    Crawford, David

    1999-05-04

    This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems.

  7. Inline microring reflector for photonic applications

    NASA Astrophysics Data System (ADS)

    Kang, Young Mo

    The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation

  8. Parallelization of irregularly coupled regular meshes

    NASA Technical Reports Server (NTRS)

    Chase, Craig; Crowley, Kay; Saltz, Joel; Reeves, Anthony

    1992-01-01

    Regular meshes are frequently used for modeling physical phenomena on both serial and parallel computers. One advantage of regular meshes is that efficient discretization schemes can be implemented in a straight forward manner. However, geometrically-complex objects, such as aircraft, cannot be easily described using a single regular mesh. Multiple interacting regular meshes are frequently used to describe complex geometries. Each mesh models a subregion of the physical domain. The meshes, or subdomains, can be processed in parallel, with periodic updates carried out to move information between the coupled meshes. In many cases, there are a relatively small number (one to a few dozen) subdomains, so that each subdomain may also be partitioned among several processors. We outline a composite run-time/compile-time approach for supporting these problems efficiently on distributed-memory machines. These methods are described in the context of a multiblock fluid dynamics problem developed at LaRC.

  9. Dynamic mesh for TCAD modeling with ECORCE

    NASA Astrophysics Data System (ADS)

    Michez, A.; Boch, J.; Touboul, A.; Saigné, F.

    2016-08-01

    Mesh generation for TCAD modeling is challenging. Because densities of carriers can change by several orders of magnitude in thin areas, a significant change of the solution can be observed for two very similar meshes. The mesh must be defined at best to minimize this change. To address this issue, a criterion based on polynomial interpolation on adjacent nodes is proposed that adjusts accurately the mesh to the gradients of Degrees of Freedom. Furthermore, a dynamic mesh that follows changes of DF in DC and transient mode is a powerful tool for TCAD users. But, in transient modeling, adding nodes to a mesh induces oscillations in the solution that appears as spikes at the current collected at the contacts. This paper proposes two schemes that solve this problem. Examples show that using these techniques, the dynamic mesh generator of the TCAD tool ECORCE handle semiconductors devices in DC and transient mode.

  10. Local, Optimization-based Simplicial Mesh Smoothing

    1999-12-09

    OPT-MS is a C software package for the improvement and untangling of simplicial meshes (triangles in 2D, tetrahedra in 3D). Overall mesh quality is improved by iterating over the mesh vertices and adjusting their position to optimize some measure of mesh quality, such as element angle or aspect ratio. Several solution techniques (including Laplacian smoothing, "Smart" Laplacian smoothing, optimization-based smoothing and several combinations thereof) and objective functions (for example, element angle, sin (angle), and aspectmore » ratio) are available to the user for both two and three-dimensional meshes. If the mesh contains invalid elements (those with negative area) a different optimization algorithm for mesh untangling is provided.« less

  11. SHARP/PRONGHORN Interoperability: Mesh Generation

    SciTech Connect

    Avery Bingham; Javier Ortensi

    2012-09-01

    Progress toward collaboration between the SHARP and MOOSE computational frameworks has been demonstrated through sharing of mesh generation and ensuring mesh compatibility of both tools with MeshKit. MeshKit was used to build a three-dimensional, full-core very high temperature reactor (VHTR) reactor geometry with 120-degree symmetry, which was used to solve a neutron diffusion critical eigenvalue problem in PRONGHORN. PRONGHORN is an application of MOOSE that is capable of solving coupled neutron diffusion, heat conduction, and homogenized flow problems. The results were compared to a solution found on a 120-degree, reflected, three-dimensional VHTR mesh geometry generated by PRONGHORN. The ability to exchange compatible mesh geometries between the two codes is instrumental for future collaboration and interoperability. The results were found to be in good agreement between the two meshes, thus demonstrating the compatibility of the SHARP and MOOSE frameworks. This outcome makes future collaboration possible.

  12. Convergence studies of deterministic methods for LWR explicit reflector methodology

    SciTech Connect

    Canepa, S.; Hursin, M.; Ferroukhi, H.; Pautz, A.

    2013-07-01

    The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on very different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)

  13. Deployable reflector design for Ku-band operation

    NASA Technical Reports Server (NTRS)

    Tankersley, B. C.

    1974-01-01

    A project was conducted to extend the deployable antenna technology state-of-the art through the design, analysis, construction, and testing of a lightweight, high surface tolerance, 12.5 foot diameter reflector for Ku-band operation. The applicability of the reflector design to the Tracking and Data Relay Satellite (TDRS) program was one requirement to be met. A documentary of the total program is presented. The performance requirements used to guide and constrain the design are discussed. The radio frequency, structural/dynamic, and thermal performance results are reported. Appendices are used to provide test data and detailed fabrication drawings of the reflector.

  14. Pressure surge reflector for pipe type cable system

    SciTech Connect

    Chu, H.; El Badaly, H.A.; Ghafurian, R. ); Aabo, T.; Ringlee, R.R.; Williams, J.A. ); Melcher, J. )

    1990-04-01

    This paper describes work performed on the development and testing of a pressure surge reflector, designed to reduce the pressure seen at potheads during an electrical failure in a pipe type cable system. The reflector is designed to protect the potheads from failing due to the pressure surge that may be large enough to fracture the porcelain, particularly when the electrical failure is physically close to the pothead. Test results show that the prototype reflector will lower the pressure significantly, bringing the pressure surge below the factory pressure test level for standard potheads.

  15. New Reflector CFLs that Can Take the Heat

    SciTech Connect

    Vogt, Susan

    2005-03-01

    Reflector compact fluorescent bulbs (R-CFLs) are a wise choice for the energy savvy because they offer energy savings of up to 66 percent compared to incandescent reflectors. But some R-CFLs have suffered performance problems (including premature failure) when used in high-temperature environments, such as recessed downlight fixtures located in insulated ceilings with airtight housings. To help address this issue, the U.S. Dept. of Energy (DOE) is working with lamp manufacturers to improve the quality and performance of screw-based reflector CFLs in high-heat applications.

  16. Monthly optimum inclination of glass cover and external reflector of a basin type solar still with internal and external reflector

    SciTech Connect

    Tanaka, Hiroshi

    2010-11-15

    In this report, we present a theoretical analysis of a basin type solar still with internal and external reflectors. The external reflector is a flat plate that extends from the back wall of the still, and can presumably be inclined forwards or backwards according to the month. We have theoretically predicted the daily amount of distillate produced by the still throughout the year, which varies according to the inclination angle of both the glass cover and the external reflector, at 30 N latitude. We found the optimum external reflector inclination for each month for a still with a glass cover inclination of 10-50 deg. The increase in the average daily amount of distillate throughout the year of a still with inclined external reflector with optimum inclination in addition to an internal reflector, compared to a conventional basin type still was predicted to be 29%, 43% or 67% when the glass cover inclination is 10 deg, 30 deg or 50 deg and the length of external reflector is half the still's length. (author)

  17. Mesh for prolapse surgery: Why the fuss?

    PubMed

    Rajshekhar, Smita; Mukhopadhyay, Sambit; Klinge, Uwe

    2015-06-01

    Pelvic organ prolapse is a common gynaecological problem. Surgical techniques to repair prolapse have been constantly evolving to reduce the recurrence of prolapse and need for reoperation. Grafts made of synthetic and biological materials became popular in the last decade as they were intended to provide extra support to native tissue repairs. However, serious complications related to use of synthetic meshes have been reported and there is increasing medico-legal concern about mesh use in prolapse surgery. Some mesh products already have been withdrawn from the market and the FDA has introduced stricter surveillance of new and existing products. Large randomized studies comparing mesh with non-mesh procedures are lacking which creates uncertainty for the surgeon and their patients.The small cohorts of the RCTs available with short follow-up periods just allow the conclusion that the mesh repair can be helpful in the short to medium term but unfortunately are not able to prove safety for all patients. In particular, current clinical reports cannot define for which indication what material may be superior compared to non-mesh repair.Quality control through long-term individual and national mesh registries is needed to keep a record of all surgeons using mesh and all devices being used, monitoring their effectiveness and safety data. Meshes with better biocompatibility designed specifically for use in vaginal surgery may provide superior clinical results, where the reduction of complications may allow a wider range of indications. PMID:25952907

  18. Mesh for prolapse surgery: Why the fuss?

    PubMed

    Rajshekhar, Smita; Mukhopadhyay, Sambit; Klinge, Uwe

    2015-06-01

    Pelvic organ prolapse is a common gynaecological problem. Surgical techniques to repair prolapse have been constantly evolving to reduce the recurrence of prolapse and need for reoperation. Grafts made of synthetic and biological materials became popular in the last decade as they were intended to provide extra support to native tissue repairs. However, serious complications related to use of synthetic meshes have been reported and there is increasing medico-legal concern about mesh use in prolapse surgery. Some mesh products already have been withdrawn from the market and the FDA has introduced stricter surveillance of new and existing products. Large randomized studies comparing mesh with non-mesh procedures are lacking which creates uncertainty for the surgeon and their patients.The small cohorts of the RCTs available with short follow-up periods just allow the conclusion that the mesh repair can be helpful in the short to medium term but unfortunately are not able to prove safety for all patients. In particular, current clinical reports cannot define for which indication what material may be superior compared to non-mesh repair.Quality control through long-term individual and national mesh registries is needed to keep a record of all surgeons using mesh and all devices being used, monitoring their effectiveness and safety data. Meshes with better biocompatibility designed specifically for use in vaginal surgery may provide superior clinical results, where the reduction of complications may allow a wider range of indications.

  19. Mesh-based enhancement schemes in diffuse optical tomography.

    PubMed

    Gu, Xuejun; Xu, Yong; Jiang, Huabei

    2003-05-01

    Two mesh-based methods including dual meshing and adaptive meshing are developed to improve the finite element-based reconstruction of both absorption and scattering images of heterogeneous turbid media. The idea of dual meshing scheme is to use a fine mesh for the solution of photon propagation and a coarse mesh for the inversion of optical property distributions. The adaptive meshing method is accomplished by the automatic mesh refinement in the region of heterogeneity during reconstruction. These schemes are validated using tissue-like phantom measurements. Our results demonstrate the capabilities of the dual meshing and adaptive meshing in both qualitative and quantitative improvement of optical image reconstruction.

  20. Space Reflector Materials for Prometheus Application

    SciTech Connect

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  1. A bionic approach to mathematical modeling the fold geometry of deployable reflector antennas on satellites

    NASA Astrophysics Data System (ADS)

    Feng, C. M.; Liu, T. S.

    2014-10-01

    Inspired from biology, this study presents a method for designing the fold geometry of deployable reflectors. Since the space available inside rockets for transporting satellites with reflector antennas is typically cylindrical in shape, and its cross-sectional area is considerably smaller than the reflector antenna after deployment, the cross-sectional area of the folded reflector must be smaller than the available rocket interior space. Membrane reflectors in aerospace are a type of lightweight structure that can be packaged compactly. To design membrane reflectors from the perspective of deployment processes, bionic applications from morphological changes of plants are investigated. Creating biologically inspired reflectors, this paper deals with fold geometry of reflectors, which imitate flower buds. This study uses mathematical formulation to describe geometric profiles of flower buds. Based on the formulation, new designs for deployable membrane reflectors derived from bionics are proposed. Adjusting parameters in the formulation of these designs leads to decreases in reflector area before deployment.

  2. Elevation of a portion of the reflector screen and antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of a portion of the reflector screen and antenna circles from the interior, view facing southeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  3. Diffraction profile synthesis applied to offset dual reflector antennas

    NASA Astrophysics Data System (ADS)

    Henderson, R. I.

    1985-05-01

    During the last 15 years, in work carried out at a research center, the physical optics method has been applied directly to the synthesis process itself. It is pointed out that the results of this method, known as Diffraction Profile Synthesis (DPS), are Cassegrain antennas with efficiencies superior to those of any ray optics design. Thus, the reflectors generated by this process realize the theoretical maximum efficiency for any given size of antenna. Attention is given to the diffraction profile synthesis, the extension of DPS, spherical wave expansions, the application to offset reflectors, the main reflector focussed field, the near-field feed pattern, reflector perturbations, profile smoothing, high efficiency offset Gregorian, the offset Gregorian with Hansen distribution, and the low sidelobe elliptical antenna.

  4. Acoustic levitation with self-adaptive flexible reflectors.

    PubMed

    Hong, Z Y; Xie, W J; Wei, B

    2011-07-01

    Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm(-3)) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam. PMID:21806218

  5. Preliminary design approach for large high precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.

    1990-01-01

    A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.

  6. STEP flight experiments Large Deployable Reflector (LDR) telescope

    NASA Technical Reports Server (NTRS)

    Runge, F. C.

    1984-01-01

    Flight testing plans for a large deployable infrared reflector telescope to be tested on a space platform are discussed. Subsystem parts, subassemblies, and whole assemblies are discussed. Assurance of operational deployability, rigidization, alignment, and serviceability will be sought.

  7. A figure control sensor for the Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Bartman, R.; Dubovitsky, S.

    1988-01-01

    A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.

  8. 6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND FOR MONITORING MOVEMENT OF DAM AND EARTH. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  9. The localized surface plasmon resonances based on a Bragg reflector

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Liu, Yumin; Yu, Zhongyuan; Ye, Chunwei; Lv, Hongbo; Shu, Changgan

    2014-09-01

    In this paper, we present the theoretical analysis on how the wavelength of the localized surface plasmon resonances of gold nanoparticle can lead shift for the resonance wavelength. In our results, we calculate the scattering cross-section, the absorption cross-section and the field enhancement due to the nanoparticle. Numerical simulation were done using the finite element method (FEM). The work that we do here is different from the previous work because we use the Bragg reflector as a substrate. The Bragg reflector has a property of high reflectivity in some certain frequency bandwidth because of its periodic structure. The coherence interference of the Bragg reflector contributes to the plasmon resonances and results in some special character for a wide variety application, from sensing to photovoltaic. The periodic number of the Bragg reflector substrate and shapes of the nanoparticles are also discussed that result in a shift of the resonance wavelength.

  10. Planar omnidirectional reflectors in chalcogenide glass and polymer.

    PubMed

    Decorby, R; Nguyen, H; Dwivedi, P; Clement, T

    2005-08-01

    We have fabricated and tested planar reflectors exhibiting an omnidirectional stop band centered near 1750 nm wavelength. The reflectors are comprised of multiple layers of Ge33As12Se55 chalcogenide glass and polyamide-imide polymer. Glass layers were deposited by thermal evaporation and polymer layers were deposited by spin-casting. Thin film stacks of up to 13 layers showed good planarity and adhesion, which we attribute to the well-matched thermo-mechanical properties of the materials. The optical properties of the reflectors were tested in both transmission and reflection, and the results are in good agreement with theoretical predictions. Relatively low-temperature processing steps were employed, making these reflectors of interest for integrated optics.

  11. Distributed Bragg reflector laser for frequency modulated communication systems

    SciTech Connect

    Chraplyvy, A.R.; Koch, T.L.; Tkach, R.W.

    1990-02-27

    This patent describes a lightwave transmitter. It includes a distributed Bragg reflector laser and means for frequency modulating said laser. The laser comprises first and second semiconductor heterostructure regions.

  12. Pre-Launch phase 2 rehearsal of the calibration and validation of soil moisture active passive (SMAP) geophysical data products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in early November 2014. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer measurements sharing a rotating 6-meter mesh reflector antenna...

  13. High Performance Woven Mesh Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Wirtz, Richard A.; Li, Chen; Park, Ji-Wook; Xu, Jun

    2002-07-01

    Simple-to-fabricate woven mesh structures, consisting of bonded laminates of two-dimensional plain-weave conductive screens, or three-dimensional orthogonal weaves are described. Geometric equations show that these porous matrices can be fabricated to have a wide range of porosity and a highly anisotropic thermal conductivity vector. A mathematical model of the thermal performance of such a mesh, deployed as a heat exchange surface, is developed. Measurements of pressure drop and overall heat transfer rate are reported and used with the performance model to develop correlation equations of mesh friction factor and Colburn j-factor as a function of coolant properties, mesh characteristics and flow rate through the mesh. A heat exchanger performance analysis delineates conditions where the two mesh technologies offer superior performance.

  14. Reflectors for SAR performance testing-second edition

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  15. Determining The Slope Error Of A Parabolic Reflector

    NASA Technical Reports Server (NTRS)

    Christ, G. R.

    1985-01-01

    Approximate slope error determined with minimal test equipment. Test Setup for Determining Slope Error for Point-Focusing Dish includes pinhole camera at center of curvature and color-coded target mounted around pinhole. Floodlights illuminate target to minimize exposure time. New procedure provides good approximation of reflector slope error and is excellent tool for comparative analysis of reflectors used as solar collectors for microwave receivers.

  16. Ray tracing method for doubly curved reflector surfaces

    NASA Astrophysics Data System (ADS)

    Sletten, C. J.

    1981-06-01

    A regular grid of discrete points is often used to define shaped reflector surfaces for microwave antennas. In the present paper, a ray tracing procedure useful for computing aperture and power distributions produced by an arbitrarily shaped reflector surface is described. It is found that this formulation provides an accurate ray tracing tool for shaped surfaces approximating conic sections and with d values small enough for templates used for precise construction of these surfaces.

  17. Solar cell comprising a plasmonic back reflector and method therefor

    DOEpatents

    Ding, I-Kang; Zhu, Jia; Cui, Yi; McGehee, Michael David

    2014-11-25

    A method for forming a solar cell having a plasmonic back reflector is disclosed. The method includes the formation of a nanoimprinted surface on which a metal electrode is conformally disposed. The surface structure of the nanoimprinted surface gives rise to a two-dimensional pattern of nanometer-scale features in the metal electrode enabling these features to collectively form the plasmonic back reflector.

  18. A simplified approach to axisymmetric dual-reflector antenna design

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.

    1988-01-01

    A procedure is described for designing dual reflector antennas. The analysis is developed by taking each reflector to be the envelope of its tangent planes. Rather than specifying the phase distribution in the emitted beam, the slopes of the emitted rays were specified. Thus, both the output wave shape and angular distribution of intensity can be specified. Computed examples include variations from both Cassegrain and Gregorian systems, permitting deviation from uniform source distributions and from parallel beam property of conventional systems.

  19. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    SciTech Connect

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  20. Delaunay triangulation and computational fluid dynamics meshes

    NASA Technical Reports Server (NTRS)

    Posenau, Mary-Anne K.; Mount, David M.

    1992-01-01

    In aerospace computational fluid dynamics (CFD) calculations, the Delaunay triangulation of suitable quadrilateral meshes can lead to unsuitable triangulated meshes. Here, we present case studies which illustrate the limitations of using structured grid generation methods which produce points in a curvilinear coordinate system for subsequent triangulations for CFD applications. We discuss conditions under which meshes of quadrilateral elements may not produce a Delaunay triangulation suitable for CFD calculations, particularly with regard to high aspect ratio, skewed quadrilateral elements.

  1. Auto-adaptive finite element meshes

    NASA Technical Reports Server (NTRS)

    Richter, Roland; Leyland, Penelope

    1995-01-01

    Accurate capturing of discontinuities within compressible flow computations is achieved by coupling a suitable solver with an automatic adaptive mesh algorithm for unstructured triangular meshes. The mesh adaptation procedures developed rely on non-hierarchical dynamical local refinement/derefinement techniques, which hence enable structural optimization as well as geometrical optimization. The methods described are applied for a number of the ICASE test cases are particularly interesting for unsteady flow simulations.

  2. Oversized reflectors - A method to reduce diffraction losses in reflector antennas

    NASA Astrophysics Data System (ADS)

    Kildal, P.-S.

    Simple formulas for the aperture efficiency and spillover of classical Cassegrain and Gregorian antennas which include losses due to diffraction from the subreflector edge are presented. These formulas were used to study oversizing of the main reflector or subreflector. It is found by Newtonian optimization that the efficiency can be increased up to 0.5 dB if the subreflector is oversized and, in effect, the antenna noise temperature will increase. In low noise receive systems, the present equations should be used to maximize the G/T ratio instead of the aperture efficiency.

  3. Diffraction from Embedded Reflectors in Li-Baker HFGW Detector

    NASA Astrophysics Data System (ADS)

    Woods, R. C.

    Recent experimentation and speculation about the design of a sensitive detector for high-frequency gravitational waves (HFGW) has centered around a number of principles. Those detectors that have been built so far have not yet realized sensitivity sufficient to investigate the cosmic high-frequency relic gravitational wave background, analogous to the cosmic microwave background. A proposal for a more sensitive HFGW detector due to Baker and based upon a principle first enunciated by Li and co-workers has become known as the Li-Baker detector. Its possible design details are currently the subject of scientific debate. One significant aspect concerns the design of the reflector(s) needed to direct the photons produced by the incident HFGW towards a set of microwave receivers. If the reflector(s) is(are) placed within a Gaussian microwave beam, then they become sources of diffraction that can potentially overpower the required signal because the diffracted power will not be distinguishable from photons produced by interaction with the HFGW. This means that diffraction is potentially a source of shot noise at the microwave receivers and, if extreme, may also swamp the receivers. In this paper some estimates of this diffraction are obtained and the design of the reflector(s) is discussed. The Li-Baker detector must be designed in such a way that the diffraction reaching the microwave receivers is reduced as far as possible by employing a suitable geometry and highly absorbent walls for the interaction volume.

  4. Differential correction method applied to measurement of the FAST reflector

    NASA Astrophysics Data System (ADS)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%-80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  5. Disordered animal multilayer reflectors and the localization of light

    PubMed Central

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2014-01-01

    Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688

  6. Differential correction method applied to measurement of the FAST reflector

    NASA Astrophysics Data System (ADS)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%–80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  7. Design method for four-reflector type beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Betsudan, S.; Katagi, T.; Urasaki, S.

    1986-01-01

    Discussed is a method for the design of four reflector type beam waveguide feed systems, comprised of a conical horn and 4 focused reflectors, which are used widely as the primary reflector systems for communications satellite Earth station antennas. The design parameters for these systems are clarified, the relations between each parameter are brought out based on the beam mode development, and the independent design parameters are specified. The characteristics of these systems, namely spillover loss, crosspolarization components, and frequency characteristics, and their relation to the design parameters, are also shown. It is also indicated that design parameters which decide the dimensions of the conical horn or the shape of the focused reflectors can be unerringly established once the design standard for the system has been selected as either: (1) minimizing the crosspolarization component by keeping the spillover loss to within acceptable limits, or (2) minimizing the spillover loss by maintaining the crossover components below an acceptable level and the independent design parameters, such as the respective sizes of the focused reflectors and the distances between the focussed reflectors, etc., have been established according to mechanical restrictions. A sample design is also shown. In addition to being able to clarify the effects of each of the design parameters on the system and improving insight into these systems, the efficiency of these systems will also be increased with this design method.

  8. A Cassegrain reflector system for compact range applications

    NASA Technical Reports Server (NTRS)

    Rader, Mark D.; Burnside, Walter D.

    1986-01-01

    An integral part of a compact range is the means of providing a uniform plane wave. A Cassegrain reflector system is one alternative for achieving this goal. Theoretically, this system offers better performance than a simple reflector system. The longer pathlengths in the Cassegrain system lead to a more uniform field in the plane of interest. The addition of the subreflector creates several problems, though. System complexity is increased both in terms of construction and performance analysis. The subreflector also leads to aperture blockage and the orientation of the feed now results in spillover illuminating the target areas as well as the rest of the range. Finally, the addition of the subreflector leads to interaction between the two reflectors resulting in undesired field variations in the plane of interest. These difficulties are addressed and through the concept of blending the surfaces, a Cassegrain reflector system is developed that will provide a uniform plane wave that offers superior performance over large target areas for a given size reflector system. Design and analysis is implemented by considering the main reflector and subreflector separately. Then the system may be put together and the final design and system analysis completed.

  9. Large deployable reflectors for telecom and earth observation applications

    NASA Astrophysics Data System (ADS)

    Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; 't Klooster, K.; Santiago Prowald, J.

    2013-12-01

    Large deployable antennas are one of the key components for advanced missions in the fields of telecom and earth observation. In the recent past, missions have taken on board large deployable reflector (LDR) up to 22 m of diameter and several missions have already planned embarking large reflectors, such as the 12 m of INMARSAT XL or BIOMASS. At the moment, no European LDR providers are available and the market is dominated by Northrop-Grumman and Harris. Consequently, the development of European large reflector technology is considered a key step to maintain commercial and strategic competitiveness (ESA Large Reflector Antenna Working Group Final Report, TEC-EEA/2010.595/CM, 2010). In this scenario, the ESA General Study Project RESTEO (REflector Synergy between Telecom and Earth Observation), starting from the identification of future missions needs, has identified the most promising reflector concepts based on European heritage/technology, able to cover the largest range of potential future missions for both telecom and earth observation. This paper summarizes the activities and findings of the RESTEO Study.

  10. Dynamic analysis of the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Calleson, Robert E.; Scott, A. Don

    1987-01-01

    The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.

  11. Coaxial prime focus feeds for paraboloidal reflectors

    NASA Technical Reports Server (NTRS)

    Collin, R. E.; Schilling, H.; Hebert, L.

    1982-01-01

    A TE11 - TM11 dual mode coaxial feed for use in prime focus paraboloidal antenna systems is investigated. The scattering matrix parameters of the internal bifurcation junction was determined by the residue calculus technique. The scattering parameters and radiation fields of the aperture were found from the Weinstein solution. The optimum modeing ratio for minimum cross-polarization was determined along with the corresponding optimum feed dimensions. A peak cross-polarization level of -58 dB is predicted. The frequency characteristics were also investigated and a bandwidth of 5% is predicted over which the cross-polarization remains below -30 dB, the input VSWR is below 1.15, and the phase error is less than 10 deg. Theoretical radiation patterns and efficiency curves for a paraboloidal reflector illuminated by this feed were computed. The predicted sidelobe level is below -30 dB and aperture efficiencies greater than 70% are possible. Experimental results are also presented that substantiates the theoretical results. In addition, experimental results for a 'short-cup' coaxial feed are given. The report includes extensive design data for the dual-mode feed along with performance curves showing cross-polarization as a function of feed parameters. The feed is useful for low-cost ground based receiving antennas for use in direct television satellite broadcasting service.

  12. Improved Monoblock laser brightness using external reflector.

    PubMed

    Hays, A D; Nettleton, John; Barr, Nick; Hough, Nathaniel; Goldberg, Lew

    2014-03-01

    The Monoblock laser has become the laser of choice in long-range, eye-safe laser range finders. It is eye-safe with emission at 1570 nm, high pulse energy, simple construction, and high efficiency when pumped by a laser-diode stack. Although the output beam divergence of a typical Monoblock with a 3  mm×3  mm cross section is relatively large (10-12 mrad), it can be reduced to <1  mrad using a telescope with large magnification. In this paper we present a simple and compact technique for achieving significant reduction in the Monoblock beam divergence using a partial reflector that is placed a short distance from the optical parametric oscillator (OPO). Using a 38 mm long Monoblock with a 10 mm long potassium titanyl phosphate OPO, we achieved a beam divergence of <4  mrad, corresponding to a >2.5× reduction from the unmodified laser. Performance using this technique with various feedback and etalon spacings is presented.

  13. Conformal refinement of unstructured quadrilateral meshes

    SciTech Connect

    Garmella, Rao

    2009-01-01

    We present a multilevel adaptive refinement technique for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. We demonstrate that by careful design of the refinement and coarsening strategy, we can maintain high quality elements in the refined mesh. We demonstrate the method on a number of examples with dynamically changing refinement regions.

  14. Adaptive Hybrid Mesh Refinement for Multiphysics Applications

    SciTech Connect

    Khamayseh, Ahmed K; de Almeida, Valmor F

    2007-01-01

    The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to maximize the equidistribution of a weighted geometric and/or solution function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate forecasting. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation.

  15. Mesh infrastructure for coupled multiprocess geophysical simulations

    SciTech Connect

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.

  16. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE PAGES

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  17. Method of generating a surface mesh

    DOEpatents

    Shepherd, Jason F.; Benzley, Steven; Grover, Benjamin T.

    2008-03-04

    A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.

  18. Design of electrospinning mesh devices

    NASA Astrophysics Data System (ADS)

    Russo, Giuseppina; Peters, Gerrit W. M.; Solberg, Ramon H. M.; Vittoria, Vittoria

    2012-07-01

    This paper describes the features of new membranes that can act as local biomedical devices owing to their peculiar shape in the form of mesh structure. These materials are designed to provide significant effects to reduce local inflammations and improve the tissue regeneration. Lamellar Hydrotalcite loaded with Diclofenac Sodium (HTLc-DIK) was homogenously dispersed inside a polymeric matrix of Poly-caprolactone (PCL) to manufacture membranes by electrospinning technique. The experimental procedure and the criteria employed have shown to be extremely effective at increasing potentiality and related applications. The employed technique has proved to be very useful to manufacture polymeric fibers with diameters in the range of nano-micro scale. In this work a dedicated collector based on a proprietary technology of IME Technologies and Eindhoven University of Technology (TU/e) was used. It allowed to obtain devices with a macro shape of a 3D-mesh. Atomic Force Microscopy (AFM) highlights a very interesting texture of the electrospun fibers. They show a lamellar morphology that is only slightly modified by the inclusion of the interclay embedded in the devices to control the drug release phenomena.

  19. A novel tunable semiconductor laser based on a sampled grating reflector and an interleaved sampled grating reflector

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhao, Jialin; Yu, Yonglin

    2011-12-01

    A widely tunable distributed Bragg reflector (DBR) laser with gratings of simpler structure compare to other types of widely tunable (around 100 nm) lasers is proposed for achieving wide wavelength tuning range (> 100 nm), which consists a front reflector based on a normal sampled grating (SG) with a small duty ratio (the ratio of the grating pitch length to the sampling period), and a rear reflector based on a properly designed interleaved sampled grating (ISG). The interleaved sampled grating (ISG) has an advantage over other complex structures, it is easy for fabrication and reflection spectrum of the grating is stable while tuning. Simulation results demonstrated that characteristics of the reflection spectrums of the both reflectors is good for wide wavelength tuning, and the wavelength tuning range of a DBR laser based on this design can be over 100nm.

  20. Optimum Reflector Configurations for Minimizing Fission Power Peaking in a Lithium-Cooled, Liquid-Metal Reactor with Sliding Reflectors

    SciTech Connect

    Fensin, Michael L.; Poston, David I.

    2005-02-06

    Many design constraints limit the development of a space fission power system optimized for fuel performance, system reliability, and mission cost. These design constraints include fuel mass provisions to meet cycle-length requirements, fuel centerline and clad temperatures, and clad creep from fission gas generation. Decreasing the fission power peaking of the reactor system enhances all of the mentioned parameters. This design study identifies the cause, determines the reflector configurations for reactor criticality, and generates worth curves for minimized fission-power-peaking configuration in a lithium-cooled liquid-metal reactor that uses sliding reflectors. Because of the characteristics of the core axial power distribution and axial power distortions inherent to the sliding reflector design, minimizing the power peaking of the reactor involves placing the reflectors in a position that least distorts the axial power distribution. The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.

  1. MOAB : a mesh-oriented database.

    SciTech Connect

    Tautges, Timothy James; Ernst, Corey; Stimpson, Clint; Meyers, Ray J.; Merkley, Karl

    2004-04-01

    A finite element mesh is used to decompose a continuous domain into a discretized representation. The finite element method solves PDEs on this mesh by modeling complex functions as a set of simple basis functions with coefficients at mesh vertices and prescribed continuity between elements. The mesh is one of the fundamental types of data linking the various tools in the FEA process (mesh generation, analysis, visualization, etc.). Thus, the representation of mesh data and operations on those data play a very important role in FEA-based simulations. MOAB is a component for representing and evaluating mesh data. MOAB can store structured and unstructured mesh, consisting of elements in the finite element 'zoo'. The functional interface to MOAB is simple yet powerful, allowing the representation of many types of metadata commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on access to mesh in chunks rather than through individual entities, while also versatile enough to support individual entity access. The MOAB data model consists of a mesh interface instance, mesh entities (vertices and elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the underlying representation of an entity to change without changing the handle to that entity. Sets are arbitrary groupings of mesh entities and other sets. Sets also support parent/child relationships as a relation distinct from sets containing other sets. The directed-graph provided by set parent/child relationships is useful for modeling topological relations from a geometric model or other metadata. Tags are named data which can be assigned to the mesh as a whole, individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets are a mechanism for describing relations between entities; the combination of these two mechanisms is a powerful yet simple interface for representing metadata or application

  2. Performance of High Strength Rock Fall Meshes: Effect of Block Size and Mesh Geometry

    NASA Astrophysics Data System (ADS)

    Buzzi, Olivier; Leonarduzzi, E.; Krummenacher, B.; Volkwein, A.; Giacomini, A.

    2015-05-01

    In rockfall science, the bullet effect refers to the perforation of a rockfall mesh by a small block traveling at high speed. To date, there is still no comprehensive experimental data set investigating the underlying mechanisms of such effect. The bullet effect illustrates the fact that the capacity of a rockfall mesh depends on the size and speed of the impacting block. This paper presents the results of an experimental study on the effect of block size and mesh geometry (aperture and wire diameter) on the mesh performance. The results clearly show that the amount of energy required to perforate the mesh drops as the blocks get smaller. They also suggest that the mesh performance reaches a maximum and reduces to zero when the mesh cannot sustain the static load imposed by very large blocks. The outcome of the first series validates an analytical model for mesh perforation, making it the first simple model capturing the bullet effect. A second series of tests focused on the effect of mesh geometry and it was found that decreasing the mesh aperture by 19 % improves the performance by 50 % while only an extra 30 % could be gained by increasing the wire diameter by 33 %. The outcomes of the second series were used to discuss and redefine a dimensionless geometrical parameter G* and to validate a simple power type equation relating the mesh characteristics and the mesh performance.

  3. Choosing corners of rectangles for mapped meshing

    SciTech Connect

    Mitchell, S.A.

    1996-12-16

    Consider mapping a regular i x j quadrilateral mesh of a rectangle onto a surface. The quality of the mapped mesh of the surface depends heavily on which vertices of the surface correspond to corners of the rectangle. The authors problem is, given an n-sided surface, chose as corners four vertices such that the surface resembles a rectangle with corners at those vertices. Note that n could be quite large, and the length and width of the rectangle, i and j, are not prespecified. In general, there is either a goal number or a prescribed number of mesh edges for each bounding curve of the surface. The goals affect the quality of the mesh, and the prescribed edges may make finding a feasible set of corners difficult. The algorithm need only work for surfaces that are roughly rectangular, particular those without large reflex angles, as otherwise an unstructured meshing algorithm is used instead. The authors report on the theory and implementation of algorithms for this problem. They also given an overview of a solution to a related problem called interval assignment: given a complex of surfaces sharing curves, globally assign the number of mesh edges or intervals for each curve such that it is possible to mesh each surface according to its prescribed quadrilateral meshing algorithm, and assigned and user-prescribed boundary mesh edges and corners. They also note a practical, constructive technique that relies on interval assignment that can generate a quadrilateral mesh of a complex of surfaces such that a compatible hexahedral mesh of the enclosed volume exists.

  4. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  5. Adaptive mesh refinement in titanium

    SciTech Connect

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  6. Parallel mesh management using interoperable tools.

    SciTech Connect

    Tautges, Timothy James; Devine, Karen Dragon

    2010-10-01

    This presentation included a discussion of challenges arising in parallel mesh management, as well as demonstrated solutions. They also described the broad range of software for mesh management and modification developed by the Interoperable Technologies for Advanced Petascale Simulations (ITAPS) team, and highlighted applications successfully using the ITAPS tool suite.

  7. Scalable L-infinite coding of meshes.

    PubMed

    Munteanu, Adrian; Cernea, Dan C; Alecu, Alin; Cornelis, Jan; Schelkens, Peter

    2010-01-01

    The paper investigates the novel concept of local-error control in mesh geometry encoding. In contrast to traditional mesh-coding systems that use the mean-square error as target distortion metric, this paper proposes a new L-infinite mesh-coding approach, for which the target distortion metric is the L-infinite distortion. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum error between the vertex positions in the original and decoded meshes is lower than a given upper bound. Furthermore, the proposed system achieves scalability in L-infinite sense, that is, any decoding of the input stream will correspond to a perfectly predictable L-infinite distortion upper bound. An instantiation of the proposed L-infinite-coding approach is demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this context, the advantages of scalable L-infinite coding over L-2-oriented coding are experimentally demonstrated. One concludes that the proposed L-infinite mesh-coding approach guarantees an upper bound on the local error in the decoded mesh, it enables a fast real-time implementation of the rate allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec. PMID:20224144

  8. 7th International Meshing Roundtable '98

    SciTech Connect

    Eldred, T.J.

    1998-10-01

    The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

  9. Mesh Sutured Repairs of Abdominal Wall Defects

    PubMed Central

    Lanier, Steven T.; Jordan, Sumanas W.; Miller, Kyle R.; Ali, Nada A.; Stock, Stuart R.

    2016-01-01

    Background: A new closure technique is introduced, which uses strips of macroporous polypropylene mesh as a suture for closure of abdominal wall defects due to failures of standard sutures and difficulties with planar meshes. Methods: Strips of macroporous polypropylene mesh of 2 cm width were passed through the abdominal wall and tied as simple interrupted sutures. The surgical technique and surgical outcomes are presented. Results: One hundred and seven patients underwent a mesh sutured abdominal wall closure. Seventy-six patients had preoperative hernias, and the mean hernia width by CT scan for those with scans was 9.1 cm. Forty-nine surgical fields were clean-contaminated, contaminated, or dirty. Five patients had infections within the first 30 days. Only one knot was removed as an office procedure. Mean follow-up at 234 days revealed 4 recurrent hernias. Conclusions: Mesh sutured repairs reliably appose tissue under tension using concepts of force distribution and resistance to suture pull-through. The technique reduces the amount of foreign material required in comparison to sheet meshes, and avoids the shortcomings of monofilament sutures. Mesh sutured closures seem to be tolerant of bacterial contamination with low hernia recurrence rates and have replaced our routine use of mesh sheets and bioprosthetic grafts. PMID:27757361

  10. [Management of mesh-related infections].

    PubMed

    Dietz, U A; Spor, L; Germer, C-T

    2011-03-01

    Infections of an implanted hernia mesh are a major challenge. The incidence of mesh infections after incisional hernia repair is about 1% for endoscopic techniques and can be more than 15% in open techniques. Intraoperative mesh contamination is considered to be the primary cause. All woven or knitted hernia meshes have recesses where bacteria may adhere and establish colonies. The bacterial spectrum for mesh infection includes skin pathogens, such as Staphylococcus aureus (including MRSA), Streptococcus spp., as well as E. coli, Enterococcus and Mycobacteria. The therapy approach needs to be tailored to the morphological findings and the treatment for uncomplicated phlegmon is broad spectrum antibiotic therapy. If there is encapsulated fluid accumulation, CT-controlled drainage and daily infusion of antiseptics via the drain is a good option. For dermal necrosis, mesh fistula, exposed mesh or enterocutaneous fistula, a precise CT evaluation is necessary to tailor the operation. Vacuum systems are gaining increased acceptance in conditioning the local findings. For most patients the therapeutic concept will be based on individual decisions. If parts of a formerly infected mesh remain in the patient, a lifelong follow-up is necessary.

  11. Feature recognition applications in mesh generation

    SciTech Connect

    Tautges, T.J.; Liu, S.S.; Lu, Y.; Kraftcheck, J.; Gadh, R.

    1997-06-01

    The use of feature recognition as part of an overall decomposition-based hexahedral meshing approach is described in this paper. The meshing approach consists of feature recognition, using a c-loop or hybrid c-loop method, and the use of cutting surfaces to decompose the solid model. These steps are part of an iterative process, which proceeds either until no more features can be recognized or until the model has been completely decomposed into meshable sub-volumes. This method can greatly reduce the time required to generate an all-hexahedral mesh, either through the use of more efficient meshing algorithms on more of the geometry or by reducing the amount of manual decomposition required to mesh a volume.

  12. Modified mesh-connected parallel computers

    SciTech Connect

    Carlson, D.A. )

    1988-10-01

    The mesh-connected parallel computer is an important parallel processing organization that has been used in the past for the design of supercomputing systems. In this paper, the authors explore modifications of a mesh-connected parallel computer for the purpose of increasing the efficiency of executing important application programs. These modifications are made by adding one or more global mesh structures to the processing array. They show how our modifications allow asymptotic improvements in the efficiency of executing computations having low to medium interprocessor communication requirements (e.g., tree computations, prefix computations, finding the connected components of a graph). For computations with high interprocessor communication requirements such as sorting, they show that they offer no speedup. They also compare the modified mesh-connected parallel computer to other similar organizations including the pyramid, the X-tree, and the mesh-of-trees.

  13. Update on Development of Mesh Generation Algorithms in MeshKit

    SciTech Connect

    Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay

    2015-09-30

    MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.

  14. A computer program to calculate radiation properties of reflector antennas

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.

    1978-01-01

    A computer program to calculate the radiation properties of the reflector antennas is presented. It can be used for paraboloidal, spherical, or ellipsoidal reflector surfaces and is easily modified to handle any surface that can be expressed analytically. The program is general enough to allow any arbitrary location and pointing angle for the feed antenna. The effect of blockage due to the feed horn is also included in the computations. The computer program is based upon the technique of tracing the rays from the feed antenna to the reflector to an aperture plane. The far field radiation properties are then calculated by performing a double integration over the field points in the aperture plane. To facilitate the computation of double intergral, the field points are first aligned along the equispaced straight lines in the aperture plane. The computation time is relatively insensitive to the absolute size of the aperture and even though no limits on the largest reflector size have been determined, the program was used for reflector diameters of 1000 wavelenghts.

  15. Computer prediction of large reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Botula, A.

    1980-01-01

    A FORTRAN program for calculating reflector antenna radiation patterns was rewritten and extended to include reflectors composed of a number of panels. These individual panels must be analytic surfaces. The theoretical foundation for the program is as follows: Geometrical optics techniques are used to trace rays from a feed antenna to the reflector surface and back to a mathematical plane just in front of the reflector. The resulting tangential electric field distribution, assumed to be the only source of forward radiation, is integrated numerically to calculate the radiation pattern for a desired set of angles. When the reflector is composed of more than one panel, each panel is treated as a separated antenna, the ray-tracing procedure and integration being repeated for each panel. The results of the individual aperture plane integrations are stored and summed to yield the relative electric field strength over the angles of interest. An example and several test cases are included to demonstrate the use of the program and verify the new method of computation.

  16. Size, gain and bandwidth trade-offs for wideband diamond dipole with AMC reflector

    NASA Astrophysics Data System (ADS)

    Joshi, Chetan; Lepage, Anne Claire; Sarrazin, Julien; Begaud, Xavier

    2016-03-01

    Compact and directive ultra-wideband antennas are required in variety of applications. Directional wideband antennas can be designed by using a reflector to redirect the energy back in half space and increase the gain. Use of artificial magnetic conductors (AMC) as reflectors for antennas allows reduction in the thickness of an antenna using traditional perfect electrical conductors (PEC) reflectors. The lateral size of the reflector also has an important effect on the antenna performance. In this paper, we study the trade-offs involved in the design of an AMC used as a reflector for broadband diamond dipole antenna by simulating various sizes of the reflector.

  17. Automatic Mesh Generation of Hybrid Mesh on Valves in Multiple Positions in Feedline Systems

    NASA Technical Reports Server (NTRS)

    Ross, Douglass H.; Ito, Yasushi; Dorothy, Fredric W.; Shih, Alan M.; Peugeot, John

    2010-01-01

    Fluid flow simulations through a valve often require evaluation of the valve in multiple opening positions. A mesh has to be generated for the valve for each position and compounding. The problem is the fact that the valve is typically part of a larger feedline system. In this paper, we propose to develop a system to create meshes for feedline systems with parametrically controlled valve openings. Herein we outline two approaches to generate the meshes for a valve in a feedline system at multiple positions. There are two issues that must be addressed. The first is the creation of the mesh on the valve for multiple positions. The second is the generation of the mesh for the total feedline system including the valve. For generation of the mesh on the valve, we will describe the use of topology matching and mesh generation parameter transfer. For generation of the total feedline system, we will describe two solutions that we have implemented. In both cases the valve is treated as a component in the feedline system. In the first method the geometry of the valve in the feedline system is replaced with a valve at a different opening position. Geometry is created to connect the valve to the feedline system. Then topology for the valve is created and the portion of the topology for the valve is topology matched to the standard valve in a different position. The mesh generation parameters are transferred and then the volume mesh for the whole feedline system is generated. The second method enables the user to generate the volume mesh on the valve in multiple open positions external to the feedline system, to insert it into the volume mesh of the feedline system, and to reduce the amount of computer time required for mesh generation because only two small volume meshes connecting the valve to the feedline mesh need to be updated.

  18. Computation of induced surface current of the main reflector of a shaped dual-reflector antenna

    NASA Astrophysics Data System (ADS)

    Ko, W. L.; Mittra, R.

    1984-10-01

    In this paper, a numerical procedure is described which combines the features of beam launching, organized search for reflection points by a scanning scheme, and the classical ray tracing. This numerical procedure is further augmented by the inclusion of the edge diffraction effect which is computed by a new formula. The diffraction fields computed with this formula are compared with those derived from other uniform theories. The present method for edge calculation not only has certain advantages over the other uniform methods, but also is well-suited for current computations on the main reflector when the subreflector is specified only numerically, i.e., both the surface and the rim of the subreflector are specified by coordinates and surface normals at discrete points.

  19. Metrics and visualization tools for surface mesh comparison

    NASA Astrophysics Data System (ADS)

    Zhou, Laixin; Pang, Alex

    2001-05-01

    This paper describes a system for comparing surface meshes using different distance metrics and mapping the results to different visual presentations. Hierarchical and multi- resolution (HMR) methods produce meshes with different levels of details. Different HMR methods produce meshes with varying quality. The surface mesh comparison system presented here allows the user to qualitatively compare and investigate the merits of the meshes produced by different HMR algorithms as well as how different resolution meshes degrade as they are simplified.

  20. Method of modifying a volume mesh using sheet extraction

    DOEpatents

    Borden, Michael J.; Shepherd, Jason F.

    2007-02-20

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

  1. Optical communication with micromachined corner cube reflectors

    NASA Astrophysics Data System (ADS)

    Chu, Patrick Breckow

    Micromachined corner cube reflectors (CCRs) were demonstrated to transmit digital data optically across 150 meters indoors. These micro CCRs, made of gold-coated hinged polysilicon plates with dimensions of about 300/mu m, had two fixed mirrors and one electrostatically actuated mirrors so that the CCRs could modulate incident light. Actuation voltages ranged from 15V to 37V, with bandwidth ranging from 500Hz to 3kHz and angular motions of up to 3 degrees. Largest (best) mirror radius of curvature was about 20mrad. Excellent mirror alignments was achieved using novel designs including tie-downs, tenon, and mortise. Divergence of reflected beams from typical CCRs was about 20mrad. These micro CCRs were fabricated by a commercial foundry using a polysilicon surface micromachining process. All the working devices were manually assembled. Self- assembled CCRs using scratch-drive actuators were also investigated and demonstrated to be viable option for batch assembly of CCRs. By reflecting incident light from a 4.2mW interrogating laser, CCRs devices successfully demonstrated data transmission across 150 meters at 4bps, consuming 16nW for mirror actuation. Low data rate was limited by our commercial off-the-shelf hardware. The experimental results not only support our CCR communication analysis but also strongly suggest that low-power long-range communication (greater than 1km) is achievable with suitable improvement of the CCRs' performance and the receiver system. Communication with multiple CCRs was also demonstrated, which suggests that CCRs can be used in applications requiring multiple communication channels. Small hand-held CCR-based communication units were also demonstrated. Fabrication of micro CCRs using a commercial standard CMOS process was also investigated. A novel etching process using xenon difluoride (XeF2) was developed to create hinged mirrors made of oxide, aluminum, and polysilicon by selectively etching away the supporting bulk silicon. Static

  2. Offset dual reflector antenna for 20/30 GHz

    NASA Astrophysics Data System (ADS)

    Henderson, R. I.

    The design and testing results of the TDS-6 high performance dual reflector antenna, intended for communications experiments with the ESA Olympus satellite in the 20/30 GHz band, are discussed. The offset Gregorian antenna has an aperture of 2.47 m, and it exhibits high gain while maintaining 90 percent of the sidelobes below 29-25 log theta dBi. The reflector shapes are optimized using the method of diffraction profile synthesis. A wide-band corrugated horn feed with a ring-loaded throat section has been incorporated in the antenna. The results show the achievement of an accuracy of 140-145 microns rms for the main reflectors.

  3. Illumination from space with orbiting solar-reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Canady, J. E., Jr.; Allen, J. L., Jr.

    1982-01-01

    The feasibility of using orbiting mirrors to reflect sunlight to Earth for several illumination applications is studied. A constellation of sixteen 1 km solar reflector spacecraft in geosynchronous orbit can illuminate a region 333 km in diameter to 8 lux, which is brighter than most existing expressway lighting systems. This constellation can serve one region all night long or can provide illumination during mornings and evenings to five regions across the United States. Preliminary cost estimates indicate such an endeavor is economically feasible. The studies also explain how two solar reflectors can illuminate the in-orbit nighttime operations of Space Shuttle. An unfurlable, 1 km diameter solar reflector spacecraft design concept was derived. This spacecraft can be packaged in the Space, Shuttle, transported to low Earth orbit, unfurled, and solar sailed to operational orbits up to geosynchronous. The necessary technical studies and improvements in technology are described, and potential environmental concerns are discussed.

  4. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    SciTech Connect

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; Kravchencko, Ivan I.; Briggs, Dayrl P.; Krishnamurthy, S.; Valentine, Jason

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances can be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.

  5. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    DOE PAGES

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; Kravchencko, Ivan I.; Briggs, Dayrl P.; Krishnamurthy, S.; Valentine, Jason

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less

  6. A powerful reflector in relativistic backward wave oscillator

    SciTech Connect

    Cao, Yibing Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua

    2014-09-15

    An improved TM{sub 021} resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM{sub 021} resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25 ns to over 27 ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.

  7. Integrated structure electromagnetic optimization of large space antenna reflectors

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Adelman, Howard M.; Bailey, M. C.

    1987-01-01

    The requirements for extremely precise and powerful large space antenna reflectors have motivated the development of a procedure for shape control of the reflector surface. A mathematical optimization procedure has been developed which improves antenna performance while minimizing necessary shape correction effort. In contrast to previous work which proposed controlling the rms distortion error of the surface thereby indirectly improving antenna performance, the current work includes electromagnetic (EM) performance calculations as an integral of the control procedure. The application of the procedure to a radiometer design with a tetrahedral truss backup structure demonstrates the potential for significant improvement. The results indicate the benefit of including EM performance calculations in procedures for shape control of large space antenna reflectors.

  8. A powerful reflector in relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Cao, Yibing; Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua

    2014-09-01

    An improved TM021 resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM021 resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25 ns to over 27 ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.

  9. A silicon-based wideband multisubpart profile grating reflector

    NASA Astrophysics Data System (ADS)

    Huang, L.; Liang, D.; Zeng, J.; Xiao, Y.; Wu, H.; Xiao, W.

    2016-04-01

    In this paper, a multilayer configuration high-performance reflector utilizing a multisubpart profile grating structure is presented. Rigorous coupled-wave analysis (RCWA) for multilayered grating is adopted to design and optimize the structure. And experimental verification of theoretical design is accomplished. It is shown that, for transverse magnetic (TM) polarization, over a broadband spectrum from 1.65 to 1.72 μm, the reflector experimentally demonstrates combined merits of high reflectivity (>97%) and good angular insensitivity of about 24.6°. Moreover, it is found by RCWA that the reflector proposed here has a reasonably good tolerance of fabrication error, which provides a favorable advantage in the fabrication process.

  10. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    NASA Technical Reports Server (NTRS)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  11. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m -2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m -3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m -2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes.

  12. Magnetic current loop array in a reflector antenna

    NASA Astrophysics Data System (ADS)

    Yung, Edward K. N.; Lee, Wilson W. S.

    1994-04-01

    A magnetic current loop antenna array is designed, implemented, and measured. Radiation pattern, input impedance, and efficiency of the array are presented. The array is intended as a feed in a reflector antenna. Using a 360 mm solid dish, the overall gain of the reflector antenna is 24.6 dB at 9 GHz. The tolerance in placing the feed at the focal point of the dish is high. The present feed is low cost, self-supportive, robust, and easy to manufacture. It is an ideal substitute for the horn in a TVRO (television receive only) or VSAT (very small aperature terminal) antenna.

  13. Large deployable reflector thermal characteristics in low earth orbits

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Miyake, R. N.

    1988-01-01

    Preliminary results are presented from the development of a thermal analytical tool capable of analyzing the orbital thermal characteristics of a Large Deployable Reflector (LDR) spaceborne astronomical instrument for observations in the 30-micron to 1-mm range. This LDR thermal analytical tool is a 9X6-node reflector thermal model to be used in conjunction with the thermal analyzer program SINDA, as well as the orbital heat flux program TRASYS for the computation of solar and IR radiation and orbit-related input data.

  14. Large deployable reflector: An infrared and submillimeter orbiting observatory

    NASA Technical Reports Server (NTRS)

    Swanson, P. N.; Kiya, M. K.

    1983-01-01

    The Large Deployable Reflector (LDR) is to be a dedicated astronomical observatory in space. It will operate in the 1 mm to 30 micron wavelength region where the Earth's atmospheric opacity makes ground-based observations nearly impossible. The primary mirror will be 20 m in diameter, made up of 37 individual segments. The reflector will be actively controlled to provide an overall surface accuracy of less than or approximately 2 microns. The LDR will be placed in orbit by the Space Shuttle and revisited at approximately 2 year intervals during its 10 year lifetime.

  15. Examples Of Synthesis Of Dual-Shaped Reflectors

    NASA Technical Reports Server (NTRS)

    Galindo, Victor; Imbriale, William A.; Mittra, Raj

    1992-01-01

    Report presents examples to demonstrate validity and utility of method of synthesis of offset dual-shape reflectors. Method of synthesis described by the authors in previous journal article. Current report reviews derivation of partial differential equations and iterative method of numerical solution. Discusses significance of starting point of numerical integration on each reflector surface; this point could be at center, on outer rim, or at interior point. Emphasizes that one of notable attributes of partial differential equations is speed with which they can be solved.

  16. A corner-reflector mixer mount for far infrared wavelengths.

    PubMed

    Zmuidzinas, J; Betz, A L; Boreiko, R T

    1989-01-01

    A new type of corner-reflector mixer mount, which has the advantages of ease of fabrication and assembly as well as frequency versatility, has been designed and constructed. The mixer works with arbitrary antenna lengths > or = 4 lambda with the reflector to antenna spacing adjusted to give a strong and symmetric central lobe. The predicted response patterns have been experimentally verified for various antenna lengths and operating frequencies between 800 and 2000 GHz. An important design feature is the incorporation of a microstrip matching network which eliminates IF impedance mismatch and provides mechanical isolation of the whisker antenna. PMID:11539754

  17. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  18. Algebraic surface design and finite element meshes

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.

    1992-01-01

    Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.

  19. H(curl) Auxiliary Mesh Preconditioning

    SciTech Connect

    Kolev, T V; Pasciak, J E; Vassilevski, P S

    2006-08-31

    This paper analyzes a two-level preconditioning scheme for H(curl) bilinear forms. The scheme utilizes an auxiliary problem on a related mesh that is more amenable for constructing optimal order multigrid methods. More specifically, we analyze the case when the auxiliary mesh only approximately covers the original domain. The latter assumption is important since it allows for easy construction of nested multilevel spaces on regular auxiliary meshes. Numerical experiments in both two and three space dimensions illustrate the optimal performance of the method.

  20. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    NASA Astrophysics Data System (ADS)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Zhao, Deyin; Mi, Hongyi; Yin, Xin; Kim, Munho; Wang, Xudong; Zhou, Weidong; Ma, Zhenqiang

    2015-05-01

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO2 and thus a Si/SiO2 pair with uniform and precisely controlled thicknesses. The Si/SiO2 layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  1. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    SciTech Connect

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Mi, Hongyi; Kim, Munho; Ma, Zhenqiang; Zhao, Deyin; Zhou, Weidong; Yin, Xin; Wang, Xudong

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  2. Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system

    DOEpatents

    Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.

    1994-03-29

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.

  3. Numerical simulation of H2/air detonation using unstructured mesh

    NASA Astrophysics Data System (ADS)

    Togashi, Fumiya; Löhner, Rainald; Tsuboi, Nobuyuki

    2009-06-01

    To explore the capability of unstructured mesh to simulate detonation wave propagation phenomena, numerical simulation of H2/air detonation using unstructured mesh was conducted. The unstructured mesh has several adv- antages such as easy mesh adaptation and flexibility to the complicated configurations. To examine the resolution dependency of the unstructured mesh, several simulations varying the mesh size were conducted and compared with a computed result using a structured mesh. The results show that the unstructured mesh solution captures the detailed structure of detonation wave, as well as the structured mesh solution. To capture the detailed detonation cell structure, the unstructured mesh simulations required at least twice, ideally 5times the resolution of structured mesh solution.

  4. Intra-oceanic crustal seismic reflecting zone below the dipping reflectors on Lofoten margin

    SciTech Connect

    Sellevoll, M.A.; Mokhtari, M.

    1988-07-01

    Multichannel seismic reflection measurements off Lofoten, Northern Norway, show an uneven, discontinuous reflector within the crystalline oceanic crust at a depth of 7-8 s (two-way travel time). This intra-oceanic crustal reflector is observed seaward as well as beneath sub-basement dipping reflectors, which are of disputed (oceanic or continental) origin. These observations indicate that the dipping reflectors are an integrated part of the oceanic crust.

  5. LR: Compact connectivity representation for triangle meshes

    SciTech Connect

    Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J

    2011-01-28

    We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.

  6. Optimal fully adaptive wormhole routing for meshes

    SciTech Connect

    Schwiebert, L.; Jayasimha, D.N.

    1993-12-31

    A deadlock-free fully adaptive routing algorithm for 2D meshes which is optimal in the number of virtual channels required and in the number of restrictions placed on the use of these virtual channels is presented. The routing algorithm imposes less than half as many routing restrictions as any previous fully adaptive routing algorithm. It is also proved that, ignoring symmetry, this routing algorithm is the only fully adaptive routing algorithm that achieves both of these goals. The implementation of the routing algorithm requires relatively simple router control logic. The new algorithm is extended, in a straightforward manner to arbitrary dimension meshes. It needs only 4n-2 virtual channels, the minimum number for an n-dimensional mesh. All previous algorithms require an exponential number of virtual channels in the dimension of the mesh.

  7. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  8. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  9. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  10. A mesh gradient technique for numerical optimization

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1973-01-01

    A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.

  11. Surface Generation and Cartesian Mesh Support

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    2004-01-01

    This document serves as the final report for the grant titled Surface Generation and Cartesian Mesh Support . This completed work was in algorithmic research into automatically generating surface triangulations from CAD geometries. NASA's OVERFLOW and Cart3D simulation packages use surface triangulations as an underlying geometry description and the ability to automatically generate these from CAD files (without translation) substantially reduces both the wall-clock time and expertise required to get geometry out of CAD and into mesh generation. This surface meshing was exercised greatly during the Shuttle investigation during the last year with success. The secondary efforts performed in this grant involve work on a visualization system cut-cell handling for Cartesian Meshes with embedded boundaries.

  12. Efficiently Sorting Zoo-Mesh Data Sets

    SciTech Connect

    Cook, R; Max, N; Silva, C; Williams, P

    2001-03-26

    The authors describe the SXMPVO algorithm for performing a visibility ordering zoo-meshed polyhedra. The algorithm runs in practice in linear time and the visibility ordering which it produces is exact.

  13. Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching.

    PubMed

    Park, Jae-Hyeung; Yeom, Han-Ju; Kim, Hee-Jae; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo

    2015-03-23

    Mesh-based computer generated hologram enables realistic and efficient representation of three-dimensional scene. However, the dark line artifacts on the boundary between neighboring meshes are frequently observed, degrading the quality of the reconstruction. In this paper, we propose a simple technique to remove the dark line artifacts by matching the phase on the boundary of neighboring meshes. The feasibility of the proposed method is confirmed by the numerical and optical reconstruction of the generated hologram.

  14. MHD simulations on an unstructured mesh

    SciTech Connect

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  15. Adaptive Mesh Refinement for Microelectronic Device Design

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Lou, John; Norton, Charles

    1999-01-01

    Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of

  16. Airplane Mesh Development with Grid Density Studies

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Thomas, Scott D.; Lawrence, Scott L.; Rimlinger, Mark J.

    1999-01-01

    Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum

  17. Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement

    SciTech Connect

    Koniges, A.; Eder, D.; Masters, N.; Fisher, A.; Anderson, R.; Gunney, B.; Wang, P.; Benson, D.; Dixit, P.

    2009-09-29

    This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being applied to slurry flow (landslides).

  18. Quadrilateral/hexahedral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

    2012-10-16

    A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

  19. 49 CFR 393.22 - Combination of lighting devices and reflectors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Combination of lighting devices and reflectors... Wiring § 393.22 Combination of lighting devices and reflectors. (a) Permitted combinations. Except as provided in paragraph (b) of this section, two or more lighting devices and reflectors (whether or...

  20. 49 CFR 393.22 - Combination of lighting devices and reflectors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Combination of lighting devices and reflectors... Wiring § 393.22 Combination of lighting devices and reflectors. (a) Permitted combinations. Except as provided in paragraph (b) of this section, two or more lighting devices and reflectors (whether or...

  1. 49 CFR 393.22 - Combination of lighting devices and reflectors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Combination of lighting devices and reflectors... Wiring § 393.22 Combination of lighting devices and reflectors. (a) Permitted combinations. Except as provided in paragraph (b) of this section, two or more lighting devices and reflectors (whether or...

  2. 10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered...

  3. 10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered...

  4. 10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered...

  5. Aperture taper determination for the half-scale accurate antenna reflector

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.

    1990-01-01

    A simulation is described of a proposed microwave reflectance measurement in which the half scale reflector is used in a compact range type of application. The simulation is used to determine an acceptable aperture taper for the reflector which will allow for accurate measurements. Information on the taper is used in the design of a feed for the reflector.

  6. A transform-pair relationship between incident and scattered fields from an arbitrary reflector

    NASA Technical Reports Server (NTRS)

    Ludwig, A. C.; Brunstein, S. A.

    1978-01-01

    It is shown that a transform-pair relationship exists between incident and scattered fields from an infinite, perfectly conducting reflector of arbitrary shape, when the physical optics approximation is applied. As an example of potential applications, this relationship is used to synthesize a reflector feed pattern required to produce a desired far-field pattern from a given paraboloidal reflector.

  7. 78 FR 7450 - Certain Fluorescent Reflector Lamps and Products and Components Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... COMMISSION Certain Fluorescent Reflector Lamps and Products and Components Containing Same; Notice of Receipt... Commission has received a complaint entitled Certain Compact Fluorescent Reflector Lamps and Products and... importation of certain fluorescent reflector lamps and products and components containing same. The...

  8. Mesh geometry impact on Micromegas performance with an Exchangeable Mesh prototype

    NASA Astrophysics Data System (ADS)

    Kuger, F.; Bianco, M.; Iengo, P.; Sekhniaidze, G.; Veenhof, R.; Wotschack, J.

    2016-07-01

    The reconstruction precision of gaseous detectors is limited by losses of primary electrons during signal formation. In addition to common gas related losses, like attachment, Micromegas suffer from electron absorption during its transition through the micro mesh. This study aims for a deepened understanding of electron losses and their dependency on the mesh geometry. It combines experimental results obtained with a novel designed Exchangeable Mesh Micromegas (ExMe) and advanced microscopic-tracking simulations (ANSYS and Garfield++) of electron drift and mesh transition.

  9. TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; van Wachem, Berend G. M.

    2015-10-01

    Total variation diminishing (TVD) schemes are a widely applied group of monotonicity-preserving advection differencing schemes for partial differential equations in numerical heat transfer and computational fluid dynamics. These schemes are typically designed for one-dimensional problems or multidimensional problems on structured equidistant quadrilateral meshes. Practical applications, however, often involve complex geometries that cannot be represented by Cartesian meshes and, therefore, necessitate the application of unstructured meshes, which require a more sophisticated discretisation to account for their additional topological complexity. In principle, TVD schemes are applicable to unstructured meshes, however, not all the data required for TVD differencing is readily available on unstructured meshes, and the solution suffers from considerable numerical diffusion as a result of mesh skewness. In this article we analyse TVD differencing on unstructured three-dimensional meshes, focusing on the non-linearity of TVD differencing and the extrapolation of the virtual upwind node. Furthermore, we propose a novel monotonicity-preserving correction method for TVD schemes that significantly reduces numerical diffusion caused by mesh skewness. The presented numerical experiments demonstrate the importance of accounting for the non-linearity introduced by TVD differencing and of imposing carefully chosen limits on the extrapolated virtual upwind node, as well as the efficacy of the proposed method to correct mesh skewness.

  10. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1997-01-01

    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.

  11. Robust moving mesh algorithms for hybrid stretched meshes: Application to moving boundaries problems

    NASA Astrophysics Data System (ADS)

    Landry, Jonathan; Soulaïmani, Azzeddine; Luke, Edward; Ben Haj Ali, Amine

    2016-12-01

    A robust Mesh-Mover Algorithm (MMA) approach is designed to adapt meshes of moving boundaries problems. A new methodology is developed from the best combination of well-known algorithms in order to preserve the quality of initial meshes. In most situations, MMAs distribute mesh deformation while preserving a good mesh quality. However, invalid meshes are generated when the motion is complex and/or involves multiple bodies. After studying a few MMA limitations, we propose the following approach: use the Inverse Distance Weighting (IDW) function to produce the displacement field, then apply the Geometric Element Transformation Method (GETMe) smoothing algorithms to improve the resulting mesh quality, and use an untangler to revert negative elements. The proposed approach has been proven efficient to adapt meshes for various realistic aerodynamic motions: a symmetric wing that has suffered large tip bending and twisting and the high-lift components of a swept wing that has moved to different flight stages. Finally, the fluid flow problem has been solved on meshes that have moved and they have produced results close to experimental ones. However, for situations where moving boundaries are too close to each other, more improvements need to be made or other approaches should be taken, such as an overset grid method.

  12. How to model wireless mesh networks topology

    NASA Astrophysics Data System (ADS)

    Sanni, M. L.; Hashim, A. A.; Anwar, F.; Ahmed, G. S. M.; Ali, S.

    2013-12-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches.

  13. Hybrid Surface Mesh Adaptation for Climate Modeling

    SciTech Connect

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-10-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called “mesh motion” (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  14. Hybrid Surface Mesh Adaptation for Climate Modeling

    SciTech Connect

    Khamayseh, Ahmed K; de Almeida, Valmor F; Hansen, Glen

    2008-01-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  15. Discrete differential geometry: the nonplanar quadrilateral mesh.

    PubMed

    Twining, Carole J; Marsland, Stephen

    2012-06-01

    We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids.

  16. Beam spoiling a reflector antenna with conducting shim.

    SciTech Connect

    Doerry, Armin Walter

    2012-12-01

    A horn-fed dish reflector antenna has characteristics including beam pattern that are a function of its mechanical form. The beam pattern can be altered by changing the mechanical configuration of the antenna. One way to do this is with a reflecting insert or shim added to the face of the original dish.

  17. Geometry adaptive control of a composite reflector using PZT actuator

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang

    2015-04-01

    Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.

  18. Project Echo: Horn-Reflector Antenna for Space Communication

    NASA Technical Reports Server (NTRS)

    Crawford, A. B.; Hogg, D. C.; Hunt, L. E.

    1961-01-01

    This paper describes the mechanical features of the horn- reflector antenna used for receiving signals reflected from the Project Echo balloon satellite, and presents in some detail the electrical characteristics (radiation patterns and gain) measured at a frequency of 2390 Mc. Theoretically derived characteristics which agree very well with the measurements are also presented; details of the calculations are given in the appendices.

  19. Long-Life Self-Renewing Solar Reflector Stack

    DOEpatents

    Butler, Barry Lynn

    1997-07-08

    A long-life solar reflector includes a solar collector substrate and a base layer bonded to a solar collector substrate. The first layer includes a first reflective layer and a first acrylic or transparent polymer layer covering the first reflective layer to prevent exposure of the first reflective layer. The reflector also includes at least one upper layer removably bonded to the first acrylic or transparent polymer layer of the base layer. The upper layer includes a second reflective layer and a second acrylic or transparent polymer layer covering the second reflective layer to prevent exposure of the second reflective layer. The upper layer may be removed from the base reflective layer to expose the base layer, thereby lengthening the useful life of the solar reflector. A method of manufacturing a solar reflector includes the steps of bonding a base layer to a solar collector substrate, wherein the base reflective layer includes a first reflective layer and a first transparent polymer or acrylic layer covering the first reflective layer; and removably bonding a first upper layer to the first transparent polymer or acrylic layer of the base layer. The first upper layer includes a second reflective layer and a second transparent polymer or acrylic layer covering the second reflective layer to prevent exposure of the second reflective layer.

  20. Process sequence produces strong, lightweight reflectors of excellent quality

    NASA Technical Reports Server (NTRS)

    Reader, A. F.; Russell, W. E.; Werner, E. A.

    1967-01-01

    Large compound curved surfaces for collecting and concentrating radiation are fabricated by the use of several common machining and forming processes. Lightweight sectors are assembled into large reflectors. With this concept of fabrication, integrally stiffened reflective sectors up to 25 square feet in area have been produced.

  1. Detail of dipole antenna element (right) and 94' lowband reflector ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of dipole antenna element (right) and 94' low-band reflector screen poles (left), note the guy wires from the antenna element, view facing north northeast - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  2. Application of contoured beam shaped reflector antennas to mission requirements

    NASA Astrophysics Data System (ADS)

    Pearson, R. A.; Kalatidazeh, Y.; Driscoll, B. G.; Philippou, G. Y.; Claydon, B.; Brain, D. J.

    Contoured beam antennas are now widely used on-board communications and broadcast satellites to provide the optimum coverage of irregular shaped regions on earth and to minimize the interference outside the coverage boundaries. Unshaped array-fed reflector systems have been successfully implemented, for example in the EUTELSAT 2 series, however these systems suffer from the need for relatively large feed arrays. A number of international satellite organizations, including INTELSAT, EUTELSAT, and European Space Agency (ESA) are interested in the use of shaped reflector antennas for single and multiple coverage scenarios. This technology offers the potential to reduce or completely remove the beamforming network and its associated losses and weight. In recent years, ERA has carried out a number of studies involving the design of shaped reflector antennas for particular mission requirements. This paper reviews a number of these case studies and highlights the coverage specifications and the advantages of adopting shaped reflectors, as well as the factors which limit their use. A description of a number of contoured beam scenarios is provided, and a summary of these is given.

  3. Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint

    SciTech Connect

    Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

    2011-09-01

    To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

  4. Application of parabolic reflector on Raman analysis of gas samples

    NASA Astrophysics Data System (ADS)

    Yu, Anlan; Zuo, Duluo; Gao, Jun; Li, Bin; Wang, Xingbing

    2016-05-01

    Studies on the application of a parabolic reflector in spontaneous Raman scattering for low background Raman analysis of gas samples are reported. As an effective signal enhancing sample cell, photonic bandgap fiber (HC-PBF) or metallined capillary normally result in a strong continuous background in spectra caused by the strong Raman/fluorescence signal from the silica wall and the polymer protective film. In order to obtain enhanced signal with low background, a specially designed sample cell with double-pass and large collecting solid angle constructed by a parabolic reflector and a planar reflector was applied, of which the optical surfaces had been processed by diamond turning and coated by silver film and protective film of high-purity alumina. The influences of optical structure, polarization characteristic, collecting solid-angle and collecting efficiency of the sample cell on light propagation and signal enhancement were studied. A Raman spectrum of ambient air with signal to background ratio of 94 was acquired with an exposure time of 1 sec by an imaging spectrograph. Besides, the 3σ limits of detection (LOD) of 7 ppm for H2, 8 ppm for CO2 and 12 ppm for CO were also obtained. The sample cell mainly based on parabolic reflector will be helpful for compact and high-sensitive Raman system.

  5. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    NASA Technical Reports Server (NTRS)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  6. Unstable-Resonator Distributed-Bragg-Reflector Laser

    NASA Technical Reports Server (NTRS)

    Lang, Robert J.

    1990-01-01

    Proposed distributed-Bragg-reflector (DBR) semiconductor laser has wide curved gratings favoring single-mode operation, even with relatively wide laser stripe, enabling use of higher power. Consists of semiconductor double heterostructure laser bounded at each end by region of passive waveguide.

  7. High-gain antenna with singly-curved reflector

    NASA Technical Reports Server (NTRS)

    Ludwig, A. C.

    1973-01-01

    Reflector collects energy over large region of space and focuses it toward small region where antenna feed is located. When incident energy is in form of plane wave, logical choice for shape of reflecting surface is paraboloid which converts plane wave into spherical wave that converges at a point.

  8. Prelaunch testing of the GEOS-3 laser reflector array

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Fitzmaurice, M. W.; Abshire, J. B.; Rowe, H. E.

    1978-01-01

    The prelaunch testing performed on the Geos-3 laser reflector array before launch was used to determine the lidar cross section of the array and the distance of the center of gravity of the satellite from the center of gravity of reflected laser pulses as a function of incidence angle. Experimental data are compared to computed results.

  9. Smooth-Surfaced Carbon/Carbon Reflector Panels

    NASA Technical Reports Server (NTRS)

    Schmitigal, Wesley P.; Jacoy, Paul J.; Porter, Christopher C.; Hickey, Gregory S.

    1992-01-01

    Surface-densification technique integral to fabrication of reflective, lightweight, low-outgassing radio-antenna-reflector panels including carbon/carbon surface laminates supported by carbon/carbon core structures. Densification prevents "print-through" of carbon fibers on surface. When properly densified, surface polished to smooth finish.

  10. The design and application of upwind schemes on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Jespersen, Dennis C.

    1989-01-01

    Solution and mesh generation algorithms for solving the Euler equations on unstructured meshes consisting of triangle and quadrilateral control volumes are presented. Cell-centered and mesh-vertex upwind finite-volume schemes are developed which utilize multi-dimensional monotone linear reconstruction procedures. These algorithms differ from existing algorithms (even on structured meshes). Numerical results in two dimensions are presented.

  11. Method of modifying a volume mesh using sheet insertion

    DOEpatents

    Borden, Michael J.; Shepherd, Jason F.

    2006-08-29

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.

  12. Automated subject-specific, hexahedral mesh generation via image registration

    PubMed Central

    Ji, Songbai; Ford, James C.; Greenwald, Richard M.; Beckwith, Jonathan G.; Paulsen, Keith D.; Flashman, Laura A.; McAllister, Thomas W.

    2011-01-01

    Generating subject-specific, all-hexahedral meshes for finite element analysis continues to be of significant interest in biomechanical research communities. To date, most automated methods “morph” an existing atlas mesh to match with a subject anatomy, which usually result in degradation in mesh quality because of mesh distortion. We present an automated meshing technique that produces satisfactory mesh quality and accuracy without mesh repair. An atlas mesh is first developed using a script. A subject-specific mesh is generated with the same script after transforming the geometry into the atlas space following rigid image registration, and is transformed back into the subject space. By meshing the brain in 11 subjects, we demonstrate that the technique’s performance is satisfactory in terms of both mesh quality (99.5% of elements had a scaled Jacobian >0.6 while <0.01% were between 0 and 0.2) and accuracy (average distance between mesh boundary and geometrical surface was 0.07 mm while <1% greater than 0.5mm). The combined computational cost for image registration and meshing was <4 min. Our results suggest that the technique is effective for generating subject-specific, all-hexahedral meshes and that it may be useful for meshing a variety of anatomical structures across different biomechanical research fields. PMID:21731153

  13. A nanobursa mesh: a graded electrospun nanofiber mesh with metal nanoparticles on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senturk-Ozer, Semra; Chen, Tao; Degirmenbasi, Nebahat; Gevgilili, Halil; Podkolzin, Simon G.; Kalyon, Dilhan M.

    2014-07-01

    A new type of material, a ``nanobursa'' mesh (from ``bursa'' meaning ``sac or pouch''), is introduced. This material consists of sequential layers of porous polymeric nanofibers encapsulating carbon nanotubes, which are functionalized with different metal nanoparticles in each layer. The nanobursa mesh is fabricated via a novel combination of twin-screw extrusion and electrospinning. Use of this hybrid process at industrially-relevant rates is demonstrated by producing a nanobursa mesh with graded layers of Pd, Co, Ag, and Pt nanoparticles. The potential use of the fabricated nanobursa mesh is illustrated by modeling of catalytic hydrocarbon oxidation.A new type of material, a ``nanobursa'' mesh (from ``bursa'' meaning ``sac or pouch''), is introduced. This material consists of sequential layers of porous polymeric nanofibers encapsulating carbon nanotubes, which are functionalized with different metal nanoparticles in each layer. The nanobursa mesh is fabricated via a novel combination of twin-screw extrusion and electrospinning. Use of this hybrid process at industrially-relevant rates is demonstrated by producing a nanobursa mesh with graded layers of Pd, Co, Ag, and Pt nanoparticles. The potential use of the fabricated nanobursa mesh is illustrated by modeling of catalytic hydrocarbon oxidation. Electronic supplementary information (ESI) available: Experimental methods and computational details. See DOI: 10.1039/c4nr01145g

  14. Single and dual-Gregorian reflector antenna shaped beam far-field synthesis

    NASA Astrophysics Data System (ADS)

    Mehler, M. J.

    The direct far-field G.O. synthesis of shaped beam reflector antennas has recently been treated by Mehler, Tun and Adatia (1986). These authors use a synthesis technique which exploits complex coordinates and which is based on a method originally considered by Norris and Westcott (1976). They describe the synthesis of single reflector antennas which radiate both elliptical beams and European coverage patterns. Here this technique is extended to consider a class of dual reflector antennas which possess shaped main reflectors and conic subreflectors. An example is given of a Gregorian duel reflector antenna which radiates a cross-polar field significantly smaller than that radiated by single shaped reflector antennas. In addition, the behavior of the radiation pattern as a function of the reflector diameter is investigated.

  15. Concepts and analysis for precision segmented reflector and feed support structures

    NASA Technical Reports Server (NTRS)

    Miller, Richard K.; Thomson, Mark W.; Hedgepeth, John M.

    1990-01-01

    Several issues surrounding the design of a large (20-meter diameter) Precision Segmented Reflector are investigated. The concerns include development of a reflector support truss geometry that will permit deployment into the required doubly-curved shape without significant member strains. For deployable and erectable reflector support trusses, the reduction of structural redundancy was analyzed to achieve reduced weight and complexity for the designs. The stiffness and accuracy of such reduced member trusses, however, were found to be affected to a degree that is unexpected. The Precision Segmented Reflector designs were developed with performance requirements that represent the Reflector application. A novel deployable sunshade concept was developed, and a detailed parametric study of various feed support structural concepts was performed. The results of the detailed study reveal what may be the most desirable feed support structure geometry for Precision Segmented Reflector/Large Deployable Reflector applications.

  16. Some important geometrical features of conic-section-generated offset reflector antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad-Dailami, V.; Rahmat-Samii, Y.

    1980-01-01

    Geometrical characteristics of conic-section-generated offset reflectors are studied in a unified fashion. Some unique geometrical features of the reflector rim constructed from the intersection of the reflector surface and a cone or cylinder are explored in detail. It is found that the intersection curve (rim) of the rotationally generated conic-section reflector surface and a circular cone with its tip at the focal point is always a planar curve and has a circular projection on the focal plane only for the offset parabolic reflector. Furthermore, in this case, the line going through the center of the circle, parallel to the focal axis, and the central axis of the cone do not intersect the reflector surface at the same point. Numerical results are presented to demonstrate some unique features of offset parabolic reflectors.

  17. Compact range reflector analysis using the plane wave spectrum approach with an adjustable sampling rate

    NASA Astrophysics Data System (ADS)

    McKay, James P.; Rahmat-Samii, Yahya

    1991-06-01

    An improved method for determining the test zone field of compact range reflectors is presented. The plane wave spectrum (PWS) approach is used to obtain the test zone field from knowledge of the reflector aperture field distribution. The method is particularly well suited to the analysis of reflectors with a linearly serrated rim for reduced edge diffraction. Computation of the PWS of the reflector aperture field is facilitated by a closed-form expression for the Fourier transform of a polygonal window function. Inverse transformation in the test zone region is accomplished using a fast Fourier transform (FFT) algorithm with a properly adjusted sampling rate (which is a function of both the reflector size and the distance from the reflector). The method is validated by comparison with results obtained using surface current and aperture field integration techniques. The performance of several serrated reflectors is evaluated in order to observe the effects of edge diffraction on the test zone fields.

  18. Anisotropic mesh adaptation on Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Miron, Philippe; Vétel, Jérôme; Garon, André; Delfour, Michel; Hassan, Mouhammad El

    2012-08-01

    The finite-time Lyapunov exponent (FTLE) is extensively used as a criterion to reveal fluid flow structures, including unsteady separation/attachment surfaces and vortices, in laminar and turbulent flows. However, for large and complex problems, flow structure identification demands computational methodologies that are more accurate and effective. With this objective in mind, we propose a new set of ordinary differential equations to compute the flow map, along with its first (gradient) and second order (Hessian) spatial derivatives. We show empirically that the gradient of the flow map computed in this way improves the pointwise accuracy of the FTLE field. Furthermore, the Hessian allows for simple interpolation error estimation of the flow map, and the construction of a continuous optimal and multiscale Lp metric. The Lagrangian particles, or nodes, are then iteratively adapted on the flow structures revealed by this metric. Typically, the L1 norm provides meshes best suited to capturing small scale structures, while the L∞ norm provides meshes optimized to capture large scale structures. This means that the mesh density near large scale structures will be greater with the L∞ norm than with the L1 norm for the same mesh complexity, which is why we chose this technique for this paper. We use it to optimize the mesh in the vicinity of LCS. It is found that Lagrangian Coherent Structures are best revealed with the minimum number of vertices with the L∞ metric.

  19. Variational Mesh Adaptation: Isotropy and Equidistribution

    NASA Astrophysics Data System (ADS)

    Huang, Weizhang

    2001-12-01

    We present a new approach for developing more robust and error-oriented mesh adaptation methods. Specifically, assuming that a regular (in cell shape) and uniform (in cell size) computational mesh is used (as is commonly done in computation), we develop a criterion for mesh adaptation based on an error function whose definition is motivated by the analysis of function variation and local error behavior for linear interpolation. The criterion is then decomposed into two aspects, the isotropy (or conformity) and uniformity (or equidistribution) requirements, each of which can be easier to deal with. The functionals that satisfy these conditions approximately are constructed using discrete and continuous inequalities. A new functional is finally formulated by combining the functionals corresponding to the isotropy and uniformity requirements. The features of the functional are analyzed and demonstrated by numerical results. In particular, unlike the existing mesh adaptation functionals, the new functional has clear geometric meanings of minimization. A mesh that has the desired properties of isotropy and equidistribution can be obtained by properly choosing the values of two parameters. The analysis presented in this article also provides a better understanding of the increasingly popular method of harmonic mapping in two dimensions.

  20. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  1. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Astrophysics Data System (ADS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.

    1992-04-01

    The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.

  2. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.

    1992-01-01

    The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.

  3. NASA Lewis Meshed VSAT Workshop meeting summary

    NASA Technical Reports Server (NTRS)

    Ivancic, William

    1993-01-01

    NASA Lewis Research Center's Space Electronics Division (SED) hosted a workshop to address specific topics related to future meshed very small-aperture terminal (VSAT) satellite communications networks. The ideas generated by this workshop will help to identify potential markets and focus technology development within the commercial satellite communications industry and NASA. The workshop resulted in recommendations concerning these principal points of interest: the window of opportunity for a meshed VSAT system; system availability; ground terminal antenna sizes; recommended multifrequency for time division multiple access (TDMA) uplink; a packet switch design concept for narrowband; and fault tolerance design concepts. This report presents a summary of group presentations and discussion associated with the technological, economic, and operational issues of meshed VSAT architectures that utilize processing satellites.

  4. NASA Lewis Meshed VSAT Workshop meeting summary

    NASA Astrophysics Data System (ADS)

    Ivancic, William

    1993-11-01

    NASA Lewis Research Center's Space Electronics Division (SED) hosted a workshop to address specific topics related to future meshed very small-aperture terminal (VSAT) satellite communications networks. The ideas generated by this workshop will help to identify potential markets and focus technology development within the commercial satellite communications industry and NASA. The workshop resulted in recommendations concerning these principal points of interest: the window of opportunity for a meshed VSAT system; system availability; ground terminal antenna sizes; recommended multifrequency for time division multiple access (TDMA) uplink; a packet switch design concept for narrowband; and fault tolerance design concepts. This report presents a summary of group presentations and discussion associated with the technological, economic, and operational issues of meshed VSAT architectures that utilize processing satellites.

  5. GRChombo: Numerical relativity with adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Clough, Katy; Figueras, Pau; Finkel, Hal; Kunesch, Markus; Lim, Eugene A.; Tunyasuvunakool, Saran

    2015-12-01

    In this work, we introduce {\\mathtt{GRChombo}}: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial ‘many-boxes-in-many-boxes’ mesh hierarchies and massive parallelism through the message passing interface. {\\mathtt{GRChombo}} evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. We show that {\\mathtt{GRChombo}} can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.

  6. Mesh convergence differences based on failure mechanisms

    SciTech Connect

    Pilat, K.R.; Revelli, V.D.

    1994-04-01

    Material properties affect the deformation and failure modes in structural parts. When performing finite element analyses to compare response for different materials, different levels of mesh discretization may be necessary for each analyses because the failure mode changes, even through the part geometry and loading remain the same. Take, for example, strain localization, a material dependent phenomenon. When localization occurs, the mesh needs to be much finer to capture the steep strain gradients in the region of localization than in a case where localization does not occur. Although this requirement is almost intuitive once stated, it is often not used in practice because the effects are less pronounced when failure is not present, and also because failure modes are difficult to anticipate. The lack of availability of constitutive models for failure prediction is also a contributing factor. This paper describes a recent study regarding the effect of mesh refinement on failure prediction in a part modeled with two different materials.

  7. Performance of a streaming mesh refinement algorithm.

    SciTech Connect

    Thompson, David C.; Pebay, Philippe Pierre

    2004-08-01

    In SAND report 2004-1617, we outline a method for edge-based tetrahedral subdivision that does not rely on saving state or communication to produce compatible tetrahedralizations. This report analyzes the performance of the technique by characterizing (a) mesh quality, (b) execution time, and (c) traits of the algorithm that could affect quality or execution time differently for different meshes. It also details the method used to debug the several hundred subdivision templates that the algorithm relies upon. Mesh quality is on par with other similar refinement schemes and throughput on modern hardware can exceed 600,000 output tetrahedra per second. But if you want to understand the traits of the algorithm, you have to read the report!

  8. Reflector sidelobe degradation due to random surface errors

    NASA Technical Reports Server (NTRS)

    Ling, H.; Lo, Y. T.; Rahmat-Samii, Y.

    1986-01-01

    It is well known that the sidelobe structure of a reflector antenna is highly susceptible to random surface errors, and that in most applications it is not adequate to investigate only the average behavior of the antenna. In this study, an attempt is made to determine the probability distribution of the sidelobe level of a reflector antenna subject to some random surface errors. Specifically, the random pattern function is considered and its sidelobe level studied using the level-upcrossing theory. Both the degradation of the maximum sidelobe and the degradation of the sidelobe region with respect to an International Radio Consultative Committee (CCIR) sidelobe envelope are obtained. The theoretical results are found in excellent agreement with those obtained by Monte Carlo simulations. Finally, some useful tolerance charts are presented.

  9. Equatorial pacific seismic reflectors as indicators of global oceanographic events.

    PubMed

    Mayer, L A; Shipley, T H; Winterer, E L

    1986-08-15

    The origin of a series of regionally correlatable seismic horizons in the Neogene sediments of the central equatorial Pacific is examined through seismic modeling and the detailed analyses of stratigraphic and physical property relationships in Deep Sea Drilling Project cores. These regionally traceable reflectors are synchronous; the younger reflectors are the direct result of carbonate dissolution events, the older ones of stratigraphically selective diagenetic processes. The changes in ocean chemistry associated with these events appear to be linked to global reorganizations of surface and bottom-water circulation patterns, the most dramatic of which are associated with reorganizations of North Atlantic bottom waters. These deepwater seismic horizons appear to correlate with the major events on the "relative sea-level" curve of Vail et al. for the Neogene.

  10. A microstrip array feed for land mobile satellite reflector antennas

    NASA Technical Reports Server (NTRS)

    Huang, John; Jamnejad, Vahraz

    1989-01-01

    A circularly polarized feed array for a spacecraft reflector antenna is described that was constructed by using linearly polarized microstrip elements. The array has seven subarrays which form a single cluster as part of a large overlapping cluster reflector feed array. Each of the seven subarrays consists of four linearly polarized microstrip elements. The array achieved a better than 0.8-dB axial ratio at the array pattern peak and better than 3 dB antenna gain to 20 degrees from the peak, across a 7.5 percent frequency bandwidth. A teardrop-shaped feed probe was used to achieve wideband input impedance matching for the relatively thick microstrip substrate. The low impedance and axial ratio bandwidths were achieved using a relatively thick honeycomb substrate with the impedance-matching feed probes.

  11. Diffraction losses for symmetrically perturbed curved reflectors in open resonators.

    PubMed

    Remo, J L

    1981-09-01

    The diffraction power losses for slightly tilted (perturbed) open resonator reflectors with both circular and rectangular apertures are computed for several tilt angles and reflector radii of curvature. Computational results indicate that the power losses increase monotonically with increasing tilt angle for stable systems, while for unstable systems the power losses are hardly affected by the tilt angle. At a given tilt angle, the perturbation generated power losses are negligible for the confocal case but become significant as the geometry of the system approaches that of the concentric or plane-parallel resonator and fluctuate about the unperturbed values for an unstable geometry. This last result may have applications for unstable laser design. PMID:20333087

  12. Complex ray and evanescent wave analysis of parabolic reflector antennas

    NASA Astrophysics Data System (ADS)

    Hasselmann, F. J. V.; Felsen, L. B.

    The Complex-Source-Point (CSP) method is applied to the analysis of the vector field reflected from a parabolic reflector antenna offset-fed by a Gaussian beam centered at the reflector focus. The asymptotic CSP solutions from both the general and paraxially approximated analysis have been implemented on a computer using numerical data from the literature. The results from the general procedure are compared at 28.5 GHz with those deduced by semi-heuristic superposition of ideal beam mode fields with even and odd vector symmetry, and with corresponding experimental data. The total field results show coincidence between the two analytical procedures for points down to -50 dB, and the agreement holds for cross-polarization patterns as well. The validity of a simplified paraxial analysis for the total field and the cross-polarization peaks is important for tractable applications to satellite communication systems since the relevant phenomena occur in the paraxial region.

  13. Gratings and Random Reflectors for Near-Infrared PIN Diodes

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Liu, John; Ting, David

    2007-01-01

    Crossed diffraction gratings and random reflectors have been proposed as means to increase the quantum efficiencies of InGaAs/InP positive/intrinsic/ negative (PIN) diodes designed to operate as near-infrared photodetectors. The proposal is meant especially to apply to focal-plane imaging arrays of such photodetectors to be used for near-infrared imaging. A further increase in quantum efficiency near the short-wavelength limit of the near-infrared spectrum of such a photodetector array could be effected by removing the InP substrate of the array. The use of crossed diffraction gratings and random reflectors as optical devices for increasing the quantum efficiencies of quantum-well infrared photodetectors (QWIPs) was discussed in several prior NASA Tech Briefs articles. While the optical effects of crossed gratings and random reflectors as applied to PIN photodiodes would be similar to those of crossed gratings and random reflectors as applied to QWIPs, the physical mechanisms by which these optical effects would enhance efficiency differ between the PIN-photodiode and QWIP cases: In a QWIP, the multiple-quantum-well layers are typically oriented parallel to the focal plane and therefore perpendicular or nearly perpendicular to the direction of incidence of infrared light. By virtue of the applicable quantum selection rules, light polarized parallel to the focal plane (as normally incident light is) cannot excite charge carriers and, hence, cannot be detected. A pair of crossed gratings or a random reflector scatters normally or nearly normally incident light so that a significant portion of it attains a component of polarization normal to the focal plane and, hence, can excite charge carriers. A pair of crossed gratings or a random reflector on a PIN photodiode would also scatter light into directions away from the perpendicular to the focal plane. However, in this case, the reason for redirecting light away from the perpendicular is to increase the length of the

  14. Focal surfaces of offset dual-reflector antennas

    NASA Technical Reports Server (NTRS)

    Sletten, C. J.; Shore, R. A.

    1982-01-01

    An analytical technique is described for finding the best focal surfaces for offset-fed dual-reflector antennas. A ray tracing procedure traces the loci of rays incident on the main reflector onto a plane or 'screen' situated perpendicular to a central ray of the antenna system. Given, then, by computer graphics, the best feed locations for azimuth and elevation plane patterns, an aperture diffraction method is used which can compute the sidelobe levels and beamwidths resulting from aperture phase errors on scanned or multibeam patterns. High-magnification Cassegrain or Gregorian antennas, with tilt angles optimised according to Japanese criteria, produce excellent radiation diagrams many beamwidths from the central, unaberrated pattern direction.

  15. Encapsulated subwavelength grating as a quasi-monolithic resonant reflector.

    PubMed

    Brückner, Frank; Friedrich, Daniel; Britzger, Michael; Clausnitzer, Tina; Burmeister, Oliver; Kley, Ernst-Bernhard; Danzmann, Karsten; Tünnermann, Andreas; Schnabel, Roman

    2009-12-21

    For a variety of laser interferometric experiments, the thermal noise of high-reflectivity multilayer dielectric coatings limits the measurement sensitivity. Recently, monolithic high-reflection waveguide mirrors with nanostructured surfaces have been proposed to reduce the thermal noise in interferometric measurements. Drawbacks of this approach are a highly complicated fabrication process and the high susceptibility of the nanostructured surfaces to damage and pollution. Here, we propose and demonstrate a novel quasi-monolithic resonant surface reflector that also avoids the thick dielectric stack of conventional mirrors but has a flat and robust surface. Our reflector is an encapsulated subwavelength grating that is based on silicon. We measured a high reflectivity of 93% for a wavelength of lambda = 1.55 microm under normal incidence. Perfect reflectivities are possible in theory.

  16. Conceptual Design of the Aluminum Reflector Antenna for DATE5

    NASA Astrophysics Data System (ADS)

    Qian, Yuan; Kan, Frank W.; Sarawit, Andrew T.; Lou, Zheng; Cheng, Jing-Quan; Wang, Hai-Ren; Zuo, Ying-Xi; Yang, Ji

    2016-08-01

    DATE5, a 5 m telescope for terahertz exploration, was proposed for acquiring observations at Dome A, Antarctica. In order to observe the terahertz spectrum, it is necessary to maintain high surface accuracy in the the antenna when it is exposed to Antarctic weather conditions. Structural analysis shows that both machined aluminum and carbon fiber reinforced plastic (CFRP) panels can meet surface accuracy requirements. In this paper, one design concept based on aluminum panels is introduced. This includes panel layout, details on panel support, design of a CFRP backup structure, and detailed finite element analysis. Modal, gravity and thermal analysis are all performed and surface deformations of the main reflector are evaluated for all load cases. At the end of the paper, the manufacture of a prototype panel is also described. Based on these results, we found that using smaller aluminum reflector panels has the potential to meet the surface requirements in the harsh Dome A environment.

  17. Aquarius Reflector Surface Temperature Monitoring Test and Analysis

    NASA Technical Reports Server (NTRS)

    Abbott, Jamie; Lee, Siu-Chun; Becker, Ray

    2008-01-01

    The presentation addresses how to infer the front side temperatures for the Aquarius L-band reflector based upon backside measurement sites. Slides discussing the mission objectives and design details are at the same level found on typical project outreach websites and in conference papers respectively. The test discussion provides modest detail of an ordinary thermal balance test using mockup hardware. The photographs show an off-Lab vacuum chamber facility with no compromising details.

  18. Simplified Velocity Interferometer System for Any Reflector (VISAR) system

    SciTech Connect

    Sweatt, W.C.; Stanton, P.L.; Crump, O.B. Jr.

    1990-01-01

    A simplified, rugged VISAR (Velocity Interferometer System for Any Reflector) system has been developed using a non-removable delay element and an essentially non-adjustable interferometer cavity. In this system, the critical interference adjustments are performed during fabrication of the cavity, freeing the user from this task. Prototype systems are easy to use and give extremely high quality results. 6 refs., 7 figs.

  19. Cube-corner reflectors with interference dielectric coating

    SciTech Connect

    Sokolov, A L; Murashkin, V V; Akent'ev, A S; Karaseva, E A

    2013-09-30

    The cube-corner reflectors (CCRs) with a special interference dielectric coating intended for ring retroreflector systems of space vehicles with uniaxial orientation are considered. The diffraction patterns of radiation reflected from the CCRs with different face coatings are studied. It is shown that the choice of the angle between the faces, the size and the coating of CCR faces allow essential variation in the diffraction pattern, thereby providing its optimisation for solving different navigation problems. (nanogradient dielectric coatings and metamaterials)

  20. Surface Accuracy Measurement Sensor for Deployable Reflector Antennas (SAMS DRA)

    NASA Technical Reports Server (NTRS)

    Neiswander, R. S.

    1980-01-01

    Specifications, system configurations, and concept tests for surface measurement sensors for deployable reflector antennas are presented. Two approaches toward the optical measurement of remote target displacements are discussed: optical ranging, in which the basic measurement is target-to-sensor range; and in particular, optical angular sensing, in which the principle measurements are of target angular displacements lateral to the line of sight. Four representative space antennas are examined.

  1. A note on specular point determination for collimating reflector antennas

    NASA Astrophysics Data System (ADS)

    Pokuls, Ralph; Pavlasek, T. J. F.

    1990-09-01

    A series solution to the specular point determination problem is presented for concave three-dimensional surfaces. The coefficients of the series can be found in closed form. The polynominal nature of the solution allows for rapid evaluation of points. The series solution is derived for application to the aperture plane integration method of reflector antenna analysis and synthesis. Examples of utilizing the solution in these problems are given.

  2. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect

    Adam Schaut Philip Smith

    2011-12-30

    deemed the most important attribute to successfully validate Alcoa's advanced trough architecture. To validate the performance of the Wing Box trough, a 6 meter aperture by 14 meter long prototype trough was built. For ease of shipping to and assembly at NREL's test facility, the prototype was fabricated in two half modules and joined along the centerline to create the Wing Box trough. The trough components were designed to achieve high precision of the reflective surface while leveraging high volume manufacturing and assembly techniques.

  3. Spatial watermarking of 3D triangle meshes

    NASA Astrophysics Data System (ADS)

    Cayre, Francois; Macq, Benoit M. M.

    2001-12-01

    Although it is obvious that watermarking has become of great interest in protecting audio, videos, and still pictures, few work has been done considering 3D meshes. We propose a new method for watermarking 3D triangle meshes. This method embeds the watermark as triangles deformations. The list of watermarked triangles is obtained through a similar way to the one used in the TSPS (Triangle Strip Peeling Sequence) method. Unlike TSPS, our method is automatic and more secure. We also show that it is reversible.

  4. Adaptive mesh refinement for storm surge

    NASA Astrophysics Data System (ADS)

    Mandli, Kyle T.; Dawson, Clint N.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GEOCLAW framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run.

  5. Laparoscopic rectocele repair using polyglactin mesh.

    PubMed

    Lyons, T L; Winer, W K

    1997-05-01

    We assessed the efficacy of laparoscopic treatment of rectocele defect using a polyglactin mesh graft. From May 1, 1995, through September 30, 1995, we prospectively evaluated 20 women (age 38-74 yrs) undergoing pelvic floor reconstruction for symptomatic pelvic floor prolapse, with or without hysterectomy. Morbidity of the procedure was extremely low compared with standard transvaginal and transrectal approaches. Patients were followed at 3-month intervals for 1 year. Sixteen had resolution of symptoms. Laparoscopic application of polyglactin mesh for the repair of the rectocele defect is a viable option, although long-term follow-up is necessary. PMID:9154790

  6. Arbitrary Lagrangian Eulerian Adaptive Mesh Refinement

    2009-09-29

    This is a simulation code involving an ALE (arbitrary Lagrangian-Eulerian) hydrocode with AMR (adaptive mesh refinement) and pluggable physics packages for material strength, heat conduction, radiation diffusion, and laser ray tracing developed a LLNL, UCSD, and Berkeley Lab. The code is an extension of the open source SAMRAI (Structured Adaptive Mesh Refinement Application Interface) code/library. The code can be used in laser facilities such as the National Ignition Facility. The code is alsi being appliedmore » to slurry flow (landslides).« less

  7. Multigrid solution strategies for adaptive meshing problems

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1995-01-01

    This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.

  8. Shape control of slack space reflectors using modulated solar pressure

    PubMed Central

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.

    2015-01-01

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes. PMID:26345083

  9. Reflector cells in the skin of Octopus dofleini.

    PubMed

    Brocco, S L; Cloney, R A

    1980-01-01

    The cells that form the reflecting layer beneath the chromatophore organs of the octopus are conspicuous elements of its dermal chromatic system. Each flattened, ellipsoidal reflector cell in this layer bears thousands of peripherally radiating, discoidal, reflecting lamellae. Each lamella consists of a proteinaceous reflecting platelet enveloped by the plasmalemma. The lamellae average 90 nm in thickness and have variable diameters with a maximum of about 1.7 micrometer. Sets of reflecting lamellae are organized into functional units called reflectosomes. The lamellae in each reflectosome form a parallel array - similar to a stack of coins. The average number of lamellae in a reflectosome is 11. Adjacent lamellae are uniformly separated by an extracellular gap of about 60 nm in embedded specimens. The reflectosomes are randomly disposed over the surface of the reflector cell. The observed organization of the reflectosomes is compatible with its role as a quarter-wave thin-film interference device. The alternating reflecting lamellae and intelamellar spaces constitute layers of high and low refractive indices. Using measurements of the thicknesses and refractive indices of the platelets and interlamellar spaces, we have calculated that the color of reflected light should be blue - green, as seen in vivo. The sequence of events leading to the definitive arrangement of the reflectosomes is uncertain. The reflector cells of O. dofleini are compared and contrasted with the iridophores of squid.

  10. Reflector cells in the skin of Octopus dofleini.

    PubMed

    Brocco, S L; Cloney, R A

    1980-01-01

    The cells that form the reflecting layer beneath the chromatophore organs of the octopus are conspicuous elements of its dermal chromatic system. Each flattened, ellipsoidal reflector cell in this layer bears thousands of peripherally radiating, discoidal, reflecting lamellae. Each lamella consists of a proteinaceous reflecting platelet enveloped by the plasmalemma. The lamellae average 90 nm in thickness and have variable diameters with a maximum of about 1.7 micrometer. Sets of reflecting lamellae are organized into functional units called reflectosomes. The lamellae in each reflectosome form a parallel array - similar to a stack of coins. The average number of lamellae in a reflectosome is 11. Adjacent lamellae are uniformly separated by an extracellular gap of about 60 nm in embedded specimens. The reflectosomes are randomly disposed over the surface of the reflector cell. The observed organization of the reflectosomes is compatible with its role as a quarter-wave thin-film interference device. The alternating reflecting lamellae and intelamellar spaces constitute layers of high and low refractive indices. Using measurements of the thicknesses and refractive indices of the platelets and interlamellar spaces, we have calculated that the color of reflected light should be blue - green, as seen in vivo. The sequence of events leading to the definitive arrangement of the reflectosomes is uncertain. The reflector cells of O. dofleini are compared and contrasted with the iridophores of squid. PMID:6244094

  11. Silicon solar cell using optimized intermediate reflector layer

    NASA Astrophysics Data System (ADS)

    Khalifa, Ahmed E.; Swillam, Mohamed A.

    2016-03-01

    Thin film silicon based photovoltaic cells have the advantages of using low cost nontoxic abundant constituents and low thermal manufacturing budget. However, better long-term efficiencies need to be achieved overcoming its inherent bad electrical properties of amorphous and/or microcrystalline Silicon. For the goal of achieving best results, multijunction cells of amorphous and microcrystalline silicon thin layers are industrially and lab utilized in addition to using one or more light management techniques such as textured layers, periodic and plasmonic back reflectors, flattened reflective substrates and intermediate reflector layer (IRL) between multijunction cells. The latter, IRL, which is the focus of this paper, serves as spectrally selective layer between different cells of the multijunction silicon thin film solar cell. IRL, reflects to the top cell short wavelength while permitting and scattering longer ones to achieve the best possible short circuit current. In this study, a new optimized periodic design of Intermediate reflector layer in micromorph (two multijunction cells of Microcrystalline and Amorphous Silicon) thin film solar cells is proposed. The optically simulated short circuit current reaches record values for same thickness designs when using all-ZnO design and even better results is anticipated if Lacquer material is used in combination with ZnO. The design methodology used in the paper can be easily applied to different types of IRL materials and also extended to triple and the relatively newly proposed quadruple thin films solar cells.

  12. A SAW resonator with two-dimensional reflectors.

    PubMed

    Solal, Marc; Gratier, Julien; Kook, Taeho

    2010-01-01

    It is known that a part of the loss of leaky SAW resonators is due to radiation of acoustic energy in the bus-bars. Many researchers are working on so-called phononic crystals. A 2-D grating of very strong reflectors allows these devices to fully reflect, for a given frequency band, any incoming wave. A new device based on the superposition of a regular SAW resonator and a 2-D periodic grating of reflectors is proposed. Several arrangements and geometries of the reflectors were studied and compared experimentally on 48 degrees rotated Y-cut lithium tantalate. In particular, a very narrow aperture (7.5 lambda) resonator was manufactured in the 900 MHz range. Because of its small size, this resonator has a resonance Q of only 575 when using the standard technology, whereas a resonance Q of 1100 was obtained for the new device without degradation of the other characteristics. Because of the narrow aperture, the admittance of the standard resonator showed a very strong parasitic above the resonance frequency, whereas this effect is drastically reduced for the new device. These results demonstrate the feasibility of the new approach.

  13. Multiple reflectors based autocollimator for three-dimensional angle measurement

    NASA Astrophysics Data System (ADS)

    Su, Ang; Liu, Haibo; Yu, Qifeng

    2015-03-01

    This paper designs a multiple reflectors based autocollimator, and proposes a direct linear solution for three-dimensional (3D) angle measurement with the observation vectors of the reflected lights from the reflectors. In the measuring apparatus, the multiple reflectors is fixed with the object to be measured and the reflected lights are received by a CCD camera, then the light spots in the image are extracted to obtain the vectors of the reflected lights in space. Any rotation of the object will induce a change in the observation vectors of the reflected lights, which is used to solve the rotation matrix of the object by finding a linear solution of Wahba problem with the quaternion method, and then the 3D angle is obtained by decomposing the rotation matrix. This measuring apparatus can be implemented easily as the light path is simple, and the computation of 3D angle with observation vectors is efficient as there is no need to iterate. The proposed 3D angle measurement method is verified by a set of simulation experiments.

  14. Beam scanning offset Cassegrain reflector antennas by subreflector movement

    NASA Technical Reports Server (NTRS)

    Lapean, James W., Jr.; Stutzman, Warren L.

    1994-01-01

    In 1987 a NASA panel recommended the creation of the Mission to Planet Earth. This mission was intended to apply to remote sensing experience of the space community to earth remote sensing to enhance the understanding of the climatological processes of our planet and to determine if, and to what extent, the hydrological cycle of Earth is being affected by human activity. One of the systems required for the mission was a wide scanning, high gain reflector antenna system for use in radiometric remote sensing from geostationary orbit. This work describes research conducted at Virginia Tech into techniques for beam scanning offset Cassegrain reflector antennas by subreflector translation and rotation. Background material relevant to beam scanning antenna systems and offset Cassegrain reflector antenna system is presented. A test case is developed based on the background material. The test case is beam scanned using two geometrical optics methods of determining the optimum subreflector position for the desired scanned beam direction. Physical optics far-field results are given for the beam scanned systems. The test case system is found to be capable of beam scanning over a range of 35 half-power beamwidths while maintaining a 90 percent beam efficiency or 50 half-power beamwidths while maintaining less than l dB of gain loss during scanning.

  15. Diffractive surfaces for cat-eye array retro-reflectors

    NASA Astrophysics Data System (ADS)

    Glaser, I.

    2008-09-01

    Cat-eye-array retro-reflectors, combining a lenslet array with a reflective surface at the common focal plane of the lenslets, are widely used due to their simple structure and low cost. While for many applications the performance (brightness, acceptance angle range and directionality) is acceptable, others could benefit from better performance. Improving these retroreflectors is difficult because their simplicity results in too few degrees of freedom. Here, we show how the use of one or two diffractive surfaces can significantly increase the brightness of the reflected beam and/or the acceptance angle while still allowing inexpensive manufacturing by molding or replication. Specifically, we focus here on one potential application of cat-eye-array retro-reflectors: semipassive optical communication units. Semi-passive communication units combine a retroreflector with a light modulator. The directional auto-aligned retro-reflected signal enhances security and power efficiency. Furthermore, many modulators use very low power: far lower than light emitter. Modulated retro-reflectors have already been demonstrated for space and military communication. Here we focus on a different application: optical smart cards. These devices described elsewhere, can be used, for example, for access control identification or as non-contact secure teller machine ID. Such devices must have an optical modulator in the optical path, so the effect of the modulator must also be accounted for in the design. As a consumer product, low cost manufacturability is another requirement. Design examples are presented.

  16. Evacuated tubular solar collector with internal reflector and heatpipe

    SciTech Connect

    Imani, K.; Ikeda, N.; Sumida, I.

    1983-12-01

    An evacuated tubular solar collector, was developed to provide 130/sup 0/C water for an industrial system. The collector consisted of 6 glass-tubes (100 mm O.D.), the internal silver ion-plated reflector, and copper heatpipes coated by the chrome-black selective absorber. The absorptance and the emittance of the absorber was measured to be 95% and 12%, respectively. The cross-section of reflector was composed of involute curve, straight line and envelope curve. The straight line was used to widen the aperture of reflector, and the envelope curve was designed to focus the 30/sup 0/ incident light on the heatpipe surface. The acceptance angle, concentration ratio and reflectivity was 60/sup 0/, 1.3, and 93%, respectively. The tip of heatpipe, which east side was horizontally 0.7/sup 0/ declined, was bent upwards to accommodate the freezing space to working fluid of 100 cm/sup 3/ water. The west side of heatpipe (22.22 mm O.D.) was connected to the coaxial heat exchanger with the internal fins. The effective colletor area was 1.43 m/sup 2/, while the total installation area was 1.92 m/sup 2/ (2.86m X 0.67m).

  17. Terrace retro-reflector array for poloidal polarimeter on ITER.

    PubMed

    Imazawa, R; Kawano, Y; Ono, T; Kusama, Y

    2011-02-01

    A new concept of a terrace retro-reflector array (TERRA) as part of the poloidal polarimeter for ITER is proposed in this paper. TERRA reflects a laser light even from a high incident angle in the direction of the incident-light path, while a conventional retro-reflector array cannot. Besides, TERRA can be installed in a smaller space than a corner-cube retro-reflector. In an optical sense, TERRA is equivalent to a Littrow grating, the blaze angle of which varies, depending on the incident angle. The reflected light generates a bright and dark fringe, and the bright fringe is required to travel along the incident-light path to achieve the objects of laser-aided diagnostics. In order to investigate the propagation properties of laser light reflected by TERRA, we have developed a new diffraction formula. Conditions for the propagation of the bright fringe in the direction of the incident light have been obtained using the Littrow grating model and have been confirmed in a simulation applying the new diffraction formula. Finally, we have designed laser transmission optics using TERRA for the ITER poloidal polarimeter and have calculated the light propagation of the system. The optical design obtains a high transmission efficiency, with 88.6% of the incident power returned. These results demonstrate the feasibility of applying TERRA to the ITER poloidal polarimeter.

  18. Modulating Retro-Reflectors: Technology, Link Budgets and Applications

    NASA Technical Reports Server (NTRS)

    Salas, Alberto Guillen; Stupl, Jan; Mason, James

    2012-01-01

    Satellite communications systems today -- usually radio frequency (RF) -- tend to have low data rates and use a lot of on-board power. For CubeSats, communications often dominate the power budget. We investigate the use of modulating retro-reflectors (MRRs), previously demonstrated on the ground, for high data-rate communication downlinks from small satellites. A laser ground station would illuminate a retro-reflector on-board the satellite while an element in the retro-reflector modulates the intensity of the reflected signal, thereby encoding a data stream on the returning beam. A detector on the ground receives the data, keeping the complex systems and the vast majority of power consumption on the ground. Reducing the power consumption while increasing data rates would relax constraints on power budgets for small satellites, leaving more power available for payloads. In the future, this could enable the use of constellations of nano-satellites for a variety of missions, possibly leading to a paradigm shift in small satellite applications.

  19. A new fabrication method for precision antenna reflectors for space flight and ground test

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.

    1991-01-01

    Communications satellites are using increasingly higher frequencies that require increasingly precise antenna reflectors for use in space. Traditional industry fabrication methods for space antenna reflectors employ successive modeling techniques using high- and low-temperature molds for reflector face sheets and then a final fit-up of the completed honeycomb sandwich panel antenna reflector to a master pattern. However, as new missions are planned at much higher frequencies, greater accuracies will be necessary than are achievable using these present methods. A new approach for the fabrication of ground-test solid-surface antenna reflectors is to build a rigid support structure with an easy-to-machine surface. This surface is subsequently machined to the desired reflector contour and coated with a radio-frequency-reflective surface. This method was used to fabricate a 2.7-m-diameter ground-test antenna reflector to an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar reflector for use on spacecraft would be constructed in a similar manner but with space-qualified materials. The design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground tests and the extension of this technology to precision, space-based antenna reflectors are described.

  20. The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Sun, Z. X.; Chen, L.; Wang, J. Q.

    2016-01-01

    In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.

  1. Diffraction analysis of a proposed dual-reflector feed for the spherical reflector antenna of the Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Kildal, Per-Simon; Skyttemyr, Svein Andreas

    1989-10-01

    A proposed dual-reflector feed for the spherical reflector antenna in Arecibo is presented. This is analyzed over a large frequency range: at the lower frequencies by physical optics (PO) integration, and at the higher ones by a geometrical optic (GO) ray tracing technique described in another work. The latter calculations are extended with the transition region theory (TRT) to include edge diffraction. The results clearly demonstrate the usefulness of the time efficient TRT method. However, they also show that PO integration is important, as this has detected an under illumination of the central region of the aperture. This effect is related to a similar problem with the line feeds, but can in the present case be reduced by moving the subreflectors away from the paraxial focus.

  2. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    PubMed Central

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  3. Optimizing triangular mesh generation from range images

    NASA Astrophysics Data System (ADS)

    Lu, Tianyu; Yun, David Y.

    2000-03-01

    An algorithm for the automatic reconstruction of triangular mesh surface model form range images is presented. The optimal piecewise linear surface approximation problem is defined as: given a set S of points uniformly sampled from a vibrate function f(x,y) on a rectangular grid of dimension W X H, find a minimum triangular mesh approximating the surface with vertices anchored at a subset S' of S, such that the deviation at any sample point is within a given bound of (epsilon) > 0. The algorithm deploys a multi- agent resource planning approach to achieve adaptive, accurate and concise piecewise linear approximation using the L-(infinity) norm. The resulting manifold triangular mesh can be directly used as 3D rendering model for visualization with controllable and guaranteed quality. Due to this dual optimality, the algorithm achieves both storage efficiency and visual quality. The error control scheme further facilitates the construction of models in multiple levels of details, which is desirable in animation and virtual reality moving scenes. Experiments with various benchmark range images form smooth functional surfaces to satellite terrain images yield succinct, accurate and visually pleasant triangular meshes. Furthermore, the independence and multiplicity of agents suggest a natural parallelism for triangulation computation, which provides a promising solution for the real-time exploration of large data sets.

  4. Prophylactic Antibiotics for Mesh Inguinal Hernioplasty

    PubMed Central

    Sanabria, Alvaro; Domínguez, Luis Carlos; Valdivieso, Eduardo; Gómez, Gabriel

    2007-01-01

    Objective: To assess the effectiveness of antibiotic prophylaxis in mesh hernioplasty. Background: Antibiotic prophylaxis use in mesh inguinal hernioplasty is controversial. Available evidence is nonconclusive because of the low number of clinical trials assessing its effectiveness. Some trials have a small sample size that could overestimate or underestimate the real effectiveness of this intervention. Meta-analysis is a good method to improve these methodological flaws. Methods: Meta-analysis intended to measure the benefits of antibiotic prophylaxis on surgical site infection rate in adult patients scheduled for mesh inguinal hernioplasty. Six randomized clinical trials were found. Quality was assessed using Cochrane Collaboration criteria. Results: A total of 2507 patients were analyzed. Surgical site infection frequency was 1.38% in the antibiotic group versus 2.89% in the control group (odds ratio = 0.48; 95% confidence interval, 0.27–0.85). There was no statistical heterogeneity. Sensitivity analysis by quality did not show differences in overall results. Conclusion: Antibiotic prophylaxis use in patients submitted to mesh inguinal hernioplasty decreased the rate of surgical site infection by almost 50%. PMID:17435546

  5. Functionalized Nanofiber Meshes Enhance Immunosorbent Assays.

    PubMed

    Hersey, Joseph S; Meller, Amit; Grinstaff, Mark W

    2015-12-01

    Three-dimensional substrates with high surface-to-volume ratios and subsequently large protein binding capacities are of interest for advanced immunosorbent assays utilizing integrated microfluidics and nanosensing elements. A library of bioactive and antifouling electrospun nanofiber substrates, which are composed of high-molecular-weight poly(oxanorbornene) derivatives, is described. Specifically, a set of copolymers are synthesized from three 7-oxanorbornene monomers to create a set of water insoluble copolymers with both biotin (bioactive) and triethylene glycol (TEG) (antifouling) functionality. Porous three-dimensional nanofiber meshes are electrospun from these copolymers with the ability to specifically bind streptavidin while minimizing the nonspecific binding of other proteins. Fluorescently labeled streptavidin is used to quantify the streptavidin binding capacity of each mesh type through confocal microscopy. A simplified enzyme-linked immunosorbent assay (ELISA) is presented to assess the protein binding capabilities and detection limits of these nanofiber meshes under both static conditions (26 h) and flow conditions (1 h) for a model target protein (i.e., mouse IgG) using a horseradish peroxidase (HRP) colorimetric assay. Bioactive and antifouling nanofiber meshes outperform traditional streptavidin-coated polystyrene plates under flow, validating their use in future advanced immunosorbent assays and their compatibility with microfluidic-based biosensors.

  6. Details of tetrahedral anisotropic mesh adaptation

    NASA Astrophysics Data System (ADS)

    Jensen, Kristian Ejlebjerg; Gorman, Gerard

    2016-04-01

    We have implemented tetrahedral anisotropic mesh adaptation using the local operations of coarsening, swapping, refinement and smoothing in MATLAB without the use of any for- N loops, i.e. the script is fully vectorised. In the process of doing so, we have made three observations related to details of the implementation: 1. restricting refinement to a single edge split per element not only simplifies the code, it also improves mesh quality, 2. face to edge swapping is unnecessary, and 3. optimising for the Vassilevski functional tends to give a little higher value for the mean condition number functional than optimising for the condition number functional directly. These observations have been made for a uniform and a radial shock metric field, both starting from a structured mesh in a cube. Finally, we compare two coarsening techniques and demonstrate the importance of applying smoothing in the mesh adaptation loop. The results pertain to a unit cube geometry, but we also show the effect of corners and edges by applying the implementation in a spherical geometry.

  7. Broadcasting on linear arrays and meshes

    SciTech Connect

    Seidel, S.R. . Dept. of Computer Science)

    1993-03-01

    The well known spanning binomial tree broadcast algorithm is generalized to obtain several new broadcast algorithms for linear arrays and meshes. These generalizations take advantage of bidirectional communication, the connectivity of two-dimensional meshes, and the difference between node-to-network and network-to-network bandwidth. It is shown how these algorithms can be further generalized so that any node can be the source of the broadcast message. A partitioning scheme is given that allows these algorithms to be used on linear arrays and meshes of any size. One of these algorithms, the bidirectional spanning tree broadcast, always has lower cost than the recursive halving broadcast for linear arrays. All of these algorithms offer significant performance improvements over the basic spanning tree broadcast. These algorithms do not rely on a knowledge of machine dependent constants for network bandwidth and latency, so their performance is not as sensitive to changes in machine characteristics as that of hybrid and pipelined algorithms. Performance measurements are given for some of these broadcast algorithms on the Intel Delta mesh.

  8. CUBIT mesh generation environment. Volume 1: Users manual

    SciTech Connect

    Blacker, T.D.; Bohnhoff, W.J.; Edwards, T.L.

    1994-05-01

    The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.

  9. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    PubMed Central

    Dällenbach, Patrick

    2015-01-01

    Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324

  10. Mesh erosion after laparoscopic posterior rectopexy: A rare complication.

    PubMed

    Mathew, Mittu J; Parmar, Amit K; Reddy, Prasanna K

    2014-01-01

    Laparoscopic posterior mesh rectopexy (LPMR) is now an accepted surgical treatment for complete rectal prolapse. It is associated with complications such as partial mucosal prolapse, fecal impaction, constipation, and rarely recurrence. Erosion of the mesh into the rectum after LPMR is very rare. We report herein the case of 40-year-old man who presented with mesh erosion into the rectum and managed successfully by the laparoscopic excision of mesh. This is probably the first such case managed by the laparoscopic approach.

  11. Cassegrainian/Gregorian-type null correctors for surface measurements of radio telescope reflectors.

    PubMed

    Greve, A

    1997-08-01

    The (sub)millimeter wavelength radio observatory of the next generation will probably be an interferometer array of some 50 telescopes with parabolic reflectors 10-15 m in diameter. At this scale of mass production it is convenient to have at hand for workshop assembly a reflector surface measurement technique that is precise and easy to operate. We discuss the possibility of reflector measurements based on 10.6-microm CO2 laser interferometry using Cassegrainian/Gregorian-type null correctors.

  12. Exact synthesis of offset multi-reflector antennas using dynamic and kinematic ray tracing

    NASA Astrophysics Data System (ADS)

    Kildal, P.-S.

    The equations and stepwise procedure of a new synthesis-by-ray tracing method is presented. The usefulness of the technique is demonstrated by synthesizing an offset dual-reflector antenna with low cross-polarization and an offset Gregorian dual-reflector feed for the spherical reflector antenna of the radio telescope in Arecibo. The synthesis method can be extended to synthesize contoured beams.

  13. Radar Cross-Section Measurements of V22 Blade Tip with and without LLNL Tipcap Reflector

    SciTech Connect

    Poland, D; Simpson, R

    2000-07-01

    It is desired to quantify the effect, in terms of radar cross-section (RCS), of the addition of a small aluminum reflector to the end of the V22 blades. This reflector was designed and manufactured in order to facilitate blade lag measurements by the 95 GHz Lawrence Livermore National Laboratory (LLNL) Radar Blade Tracker (RBT) system. The reflector used in these measurements was designed and fabricated at LLNL and is pictured in Figure 1.

  14. Cubit Mesh Generation Toolkit V11.1

    2009-03-25

    CUBIT prepares models to be used in computer-based simulation of real-world events. CUBIT is a full-featured software toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking assemblies.

  15. The 3-D unstructured mesh generation using local transformations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1993-01-01

    The topics are presented in viewgraph form and include the following: 3D combinatorial edge swapping; 3D incremental triangulation via local transformations; a new approach to multigrid for unstructured meshes; surface mesh generation using local transforms; volume triangulations; viscous mesh generation; and future directions.

  16. Kull ALE: II. Grid Motion on Unstructured Arbitrary Polyhedral Meshes

    SciTech Connect

    Anninos, P

    2002-02-11

    Several classes of mesh motion algorithms are presented for the remap phase of unstructured mesh ALE codes. The methods range from local shape optimization procedures to more complex variational minimization methods applied to arbitrary unstructured polyhedral meshes necessary for the Kull code.

  17. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  18. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  19. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  20. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    NASA Astrophysics Data System (ADS)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  1. Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams

    DOE PAGES

    Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; Mocko, Michal; Baxter, David V.; Hügle, Thomas; Gallmeier, Franz X.; Klinkby, Esben

    2016-06-14

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less

  2. Surface measuring technique. [using a laser to scan the surface of a reflector

    NASA Technical Reports Server (NTRS)

    Spiers, R. B., Jr.

    1980-01-01

    Measurement of the surface contour of a large electrostatically formed concave reflector using a modified Foucault or knife edge test is described. The curve of the actual electrostatically formed reflector surface is compared to a curve representing a reference sphere. Measurements of surface slope and deviation are calculated every 15 cm along the reflector's horizontal and vertical diameters. Characterization of surface roughness on a small scale compared to the laser spot size at the reflector are obtained from the increased laser spot size at a distant projection screen.

  3. Prosthetic Mesh Repair for Incarcerated Inguinal Hernia

    PubMed Central

    Tatar, Cihad; Tüzün, İshak Sefa; Karşıdağ, Tamer; Kızılkaya, Mehmet Celal; Yılmaz, Erdem

    2016-01-01

    Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of non-complicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3), and the other consisting of patients not undergoing bowel resection (Group 4). Results: In Group 1, it was observed that eight (7.14%) of the patients had wound infections, while two (1.78%) had hematomas, four (3.57%) had seromas, and one (0.89%) had relapse. In Group 2, one (2.56%) of the patients had a wound infection, while three (7.69%) had hematomas, one (2.56%) had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection, seroma

  4. Prosthetic Mesh Repair for Incarcerated Inguinal Hernia

    PubMed Central

    Tatar, Cihad; Tüzün, İshak Sefa; Karşıdağ, Tamer; Kızılkaya, Mehmet Celal; Yılmaz, Erdem

    2016-01-01

    Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of non-complicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3), and the other consisting of patients not undergoing bowel resection (Group 4). Results: In Group 1, it was observed that eight (7.14%) of the patients had wound infections, while two (1.78%) had hematomas, four (3.57%) had seromas, and one (0.89%) had relapse. In Group 2, one (2.56%) of the patients had a wound infection, while three (7.69%) had hematomas, one (2.56%) had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection, seroma

  5. Parametric x-ray FEL operating with external Bragg reflectors

    SciTech Connect

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-12-31

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10{sup 2}-10{sup 4} times up to 10{sup 9}. One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times.

  6. Is the D" reflector a phase transition? (Invited)

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Fieseler, T.; Wookey, J.; Hansen, U.

    2009-12-01

    The recent discovery of the post-perovskite phase transition in the lowermost mantle has great importance for understanding the processes and structures in the deep Earth. Using recordings of seismic events that sample the deep mantle, we can test different hypotheses of mantle processes and the state of minerals, such as subducted lithosphere, anisotropy, and the post-perovskite phase transition. In this study, earthquakes which sample different regions of the Earth are used to verify whether the observed D” reflections, i.e., reflections off features in the lowest 200-300km of the Earth’s mantle, are due to the post-perovskite phase transition and also to what lateral extent the post-perovskite phase occurs. In some fast-velocity regions, more than one discontinuity is observed, consistent with a model in which perovskite changes to post-perovskite and back to perovskite at a deeper level. But polarities of reflections in tomographically fast regions differ and can therefore help to further discriminate the cause for the observed reflections. These different polarities could be due to anisotropy in the lowermost mantle. The frequency dependency of the D" reflection in fast regions can provide additional constraints on the velocity gradient and therefore the mineralogy in the lowermost mantle. It is also necessary to investigate regions of low seismic velocities, since here the observations of D” structures are still very diverse. Detections of reflectors in those regions provide a good way to determine the possible sources of lowermost mantle reflections. An area beneath the Aleutians shows strong topography but very small amplitudes of the D" reflector in low velocity regions. This observed strong topography of the D" reflector is consistent with dynamic models in a convective system and several possibilities of causes for the reflection will be discussed.

  7. Requirements for mesh resolution in 3D computational hemodynamics.

    PubMed

    Prakash, S; Ethier, C R

    2001-04-01

    Computational techniques are widely used for studying large artery hemodynamics. Current trends favor analyzing flow in more anatomically realistic arteries. A significant obstacle to such analyses is generation of computational meshes that accurately resolve both the complex geometry and the physiologically relevant flow features. Here we examine, for a single arterial geometry, how velocity and wall shear stress patterns depend on mesh characteristics. A well-validated Navier-Stokes solver was used to simulate flow in an anatomically realistic human right coronary artery (RCA) using unstructured high-order tetrahedral finite element meshes. Velocities, wall shear stresses (WSS), and wall shear stress gradients were computed on a conventional "high-resolution" mesh series (60,000 to 160,000 velocity nodes) generated with a commercial meshing package. Similar calculations were then performed in a series of meshes generated through an adaptive mesh refinement (AMR) methodology. Mesh-independent velocity fields were not very difficult to obtain for both the conventional and adaptive mesh series. However, wall shear stress fields, and, in particular, wall shear stress gradient fields, were much more difficult to accurately resolve. The conventional (nonadaptive) mesh series did not show a consistent trend towards mesh-independence of WSS results. For the adaptive series, it required approximately 190,000 velocity nodes to reach an r.m.s. error in normalized WSS of less than 10 percent. Achieving mesh-independence in computed WSS fields requires a surprisingly large number of nodes, and is best approached through a systematic solution-adaptive mesh refinement technique. Calculations of WSS, and particularly WSS gradients, show appreciable errors even on meshes that appear to produce mesh-independent velocity fields.

  8. Color uniformity in spotlights optimized with reflectors and TIR lenses.

    PubMed

    Teupner, Anne; Bergenek, Krister; Wirth, Ralph; Benítez, Pablo; Miñano, Juan Carlos

    2015-02-01

    We analyze the color uniformity in the far field of spotlight systems to estimate visual perception with a merit function derived from human factor experiments. A multi-colored light-emitting diode (LED) light engine with different light mixing levels is combined with several reflectors and total internal reflection (TIR) lenses. The optimized systems are analyzed at several color uniformity levels with regard to the efficiency, peak luminous intensity and dimensions. It is shown that these properties cannot all be optimized at the same time. Furthermore, excellent color uniformity can be reached by a light mixing layer in the light engine or by adding mixing elements to the secondary optics. PMID:25836237

  9. Optical device with low electrical and thermal resistance Bragg reflectors

    DOEpatents

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  10. Optical device with low electrical and thermal resistance bragg reflectors

    DOEpatents

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  11. Technical-economic feasibility of orbiting sunlight reflectors

    NASA Astrophysics Data System (ADS)

    Alferov, Z.; Minin, V.

    1986-02-01

    The use of deflectors in orbit as a means of providing artificial illumination is examined. Considerations of technical and economic feasibility are addressed. Three main areas of application are distinguished: reflecting sunlight onto the surface of the Earth; concentration of the flow of solar energy on an orbiting receiver; and retransmission of optical radiation. The advantages of the artificial Earth illumination application of the orbiting reflector scheme in terms of energy savings in lighting cities, and additional daylight time for critical periods of farming operations are discussed.

  12. The Large Deployable Reflector - A technology development challenge

    NASA Technical Reports Server (NTRS)

    Pittman, R. B.; Gualdoni, R.

    1984-01-01

    The proposed Large Deployable Reflector (LDR) telescope is an astrophysical orbiting platform whose aperture is of the order of 20 m, and is dedicated to observations in the IR and sub-mm wavelengths. NASA is currently planning a 5-year technology development program that will allow the requisite hardware and software to reach the state required for economical and reliable implementation. A computer model simulation is envisioned toward this end that will encompass and integrate structural, thermal, control, optics, and systems program elements. Possession of the enabling technology is foreseen for the early 1990s.

  13. Reflector and Shield Material Properties for Project Prometheus

    SciTech Connect

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  14. Structural dynamic analysis of the Large Deployable Reflector

    NASA Technical Reports Server (NTRS)

    Andersen, G. C.; Scott, A. D.

    1986-01-01

    The dynamic performance of the primary mirror of the Large Deployable Reflector (LDR) is analyzed under conditions of typical external disturbances that would be encountered during normal space operation. The performance assessment is based upon the difference between the figure distortion errors of the incoming image and the mission figure tolerance requirements (rms surface accuracy error and jitter). The need for additional figure control of the incoming image is assessed, and other alternatives for figure control are presented, such as increased structural damping effects due to the uncertainty in the real damping characteristics.

  15. Structural design of the Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Satter, Celeste M.; Lou, Michael C.

    1991-01-01

    An integrated Large Deployable Reflector (LDR) analysis model was developed to enable studies of system responses to the mechanical and thermal disturbances anticipated during on-orbit operations. Functional requirements of the major subsystems of the LDR are investigated, design trades are conducted, and design options are proposed. System mass and inertia properties are computed in order to estimate environmental disturbances, and in the sizing of control system hardware. Scaled system characteristics are derived for use in evaluating launch capabilities and achievable orbits. It is concluded that a completely passive 20-m primary appears feasible for the LDR from the standpoint of both mechanical vibration and thermal distortions.

  16. Short History of Fixed-Reflector Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Strom, R. G.

    2016-02-01

    From the 66 m parabolic reflector built in 1947 at Jodrell Bank to the 305 m Arecibo dish completed nearly two decades later, radio astronomers in the early days experimented with fixed reflecting mirrors to achieve large collecting areas. In this brief history I will consider the over half-dozen such instruments (of which I am aware) built by 1970, and their main achievements. I will discuss the likely reasons for the success of some of these telescopes, as well as their short-comings, and the lessons for future instruments like FAST.

  17. Computation of radiation from reflector antennas - An optimal strategy

    NASA Astrophysics Data System (ADS)

    Bucci, O. M.; Delia, G.; Franceschetti, G.

    1980-12-01

    An optimal strategy is presented for computing the far-field scattered by a reflector antenna with minimized computer time. The key point is the use of a sampling procedure which reconstructs the radiation diagram from the knowledge of a limited number of points. These points, in turn, are computed using numerical techniques or asymptotic methods, whichever is the most appropriate. The strategy is implemented for a two dimensional configuration, namely a parabolic cylinder with off-focus illumination. Conclusions valid for the general tridimensional case are then drawn.

  18. Color uniformity in spotlights optimized with reflectors and TIR lenses.

    PubMed

    Teupner, Anne; Bergenek, Krister; Wirth, Ralph; Benítez, Pablo; Miñano, Juan Carlos

    2015-02-01

    We analyze the color uniformity in the far field of spotlight systems to estimate visual perception with a merit function derived from human factor experiments. A multi-colored light-emitting diode (LED) light engine with different light mixing levels is combined with several reflectors and total internal reflection (TIR) lenses. The optimized systems are analyzed at several color uniformity levels with regard to the efficiency, peak luminous intensity and dimensions. It is shown that these properties cannot all be optimized at the same time. Furthermore, excellent color uniformity can be reached by a light mixing layer in the light engine or by adding mixing elements to the secondary optics.

  19. Large spacecraft antennas: Conical ring-membrane reflectors

    NASA Technical Reports Server (NTRS)

    Oliver, R. E.; Trubert, M. R.; Wilson, A. H.

    1972-01-01

    A 1.83-m diameter furlable conical Gregorian antenna based on a novel spoke-supported ring-membrane concept has been successfully demonstrated. Mechanical measurements of the conical reflecting surface, as well as BE gain measurements at Ku-band, show an rms surface deviation from the proper conical surface of 0.3 mm and a repeatability after multiple furling-unfurling cycles of + or - 0.05 mm. Design features and performance characteristics of this antenna indicate that the spoke-supported ring-membrane concept is a promising approach for producing large, furlable, lightweight, conical reflectors for spacecraft high-gain antennas.

  20. A microstrip array feed for MSAT spacecraft reflector antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    1988-01-01

    An L-band circularly polarized microstrip array antenna with relatively wide bandwidth has been developed. The array has seven subarrays which form a single cluster as part of a large overlapping cluster reflector feed array. Each of the seven subarrays consists of four uniquely arranged linearly polarized microstrip elements. A 7.5 percent impedance (VSWR less than 1.5) as well as axial ratio (less than 1 dB) bandwidths have been achieved by employing a relatively thick honeycomb substrate with special impedance matching feed probes.