Science.gov

Sample records for 6-methylsulfinylhexyl isothiocyanate 6-mitc

  1. Interstellar isothiocyanic acid

    NASA Technical Reports Server (NTRS)

    Frerking, M. A.; Linke, R. A.; Thaddeus, P.

    1979-01-01

    Isothiocyanic acid (HNCS) has been identified in Sgr B2 from millimeter-wave spectral line observations. We have definitely detected three rotational lines, and have probably detected two others. The rotational temperature of HNCS in Sgr B2 is 14 plus or minus 5 K, its column density is 2.5 plus or minus 1.0 x 10 to the 13th per sq cm, and its abundance relative to HNCO is consistent with the cosmic S/O ratio, 1/42.

  2. Effect of some isothiocyanates on the hydrogenation of canola oil

    SciTech Connect

    Abraham, V.; de Man, J.M.

    1987-06-01

    Sulfur compounds were added to refined and bleached canola oil before hydrogenation in the form of allyl, heptyl and 2-phenethyl isothiocyanates, and the effects on hydrogenation rate, solid fat content and percentage trans fatty acids were determined. The poisoning effect was most pronounced with allyl isothiocyanate and least phenethyl isothiocyanate. As the amount of added sulfur increased, the hydrogenation rate decreased. Of the three isothiocyanates used, allyl isothiocyanate caused formation of larger amounts of trans isomers. An increased sulfur level in the oil resulted in increased solid fat content and trans isomer level. Allyl isothiocyanate also caused formation of larger amounts of solid fat than other isothiocyanates at all levels of sulfur addition. (Refs. 24).

  3. Manual gas-phase isothiocyanate degradation.

    PubMed

    Brandt, W F; Frank, G

    1988-02-01

    We describe a manual gas-phase isothiocyanate degradation procedure for the primary structure determination of proteins and peptides. The proteins and peptides are applied to a polybrene-coated glass fiber filter wedged into a small glass column. The phenylisothiocyanate is directly pipetted onto the filter disk. The coupling and cleavage reactions are performed in small desiccators containing trimethylamine and trifluoroacetic acid vapors, respectively. The wash and extraction steps are performed by allowing the suitable solvents to percolate through the filter disk. The extracted anilinothiazolinone is then converted to the phenylthiohydantoin and identified by any one of a number of described methods. Our results show that this method is very sensitive and that the reactions proceed faster than those of the published automated procedure. No expensive equipment is required and the manual degradation can be performed by a laboratory assistant. A large number of samples can be simultaneously subjected to the degradation under identical conditions, making this an ideal method for physicochemical investigations into the isothiocyanate degradation. We also use this method to screen HPLC fractions after enzymatic protein fragmentation. Manually sequenced glass filters can be transferred to the automated instrument for more extended degradations.

  4. SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria

    PubMed Central

    Rosengarten, Jamila F.; de Graaf, Rob M.; Jetten, Mike S. M.

    2016-01-01

    Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates. PMID:26873319

  5. SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria.

    PubMed

    Welte, Cornelia U; Rosengarten, Jamila F; de Graaf, Rob M; Jetten, Mike S M

    2016-04-01

    Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates. PMID:26873319

  6. The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins.

    PubMed

    Pedras, M Soledade C; Zheng, Qing-An; Gadagi, Ravi S

    2007-01-28

    The discovery of the first naturally occurring aromatic isothiocyanates, indole-3-isothiocyanates, their first synthesis, antimicrobial activity and proposed biogenetic origin in canola plants are reported.

  7. Peptide Reactivity of Isothiocyanates – Implications for Skin Allergy

    PubMed Central

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-01-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins. PMID:26883070

  8. Isothiocyanates of Phosphorus Acids, N-Phosphorylated Thiocarbamates and Thioureas

    NASA Astrophysics Data System (ADS)

    Kamalov, R. M.; Zimin, M. G.; Pudovik, A. N.

    1985-12-01

    Current data on the synthesis, structures, the activities, and practical applications of the isothiocyanates of tricoordinate, tetracoordinate, pentacoordinate, and hexacoordinate phosphorus acids and N-phosphorylated and N-thiophosphorylated thiocarbamates, dithiocarbamates, and thioureas are examined and surveyed. The bibliography includes 223 references.

  9. Water and methyl isothiocyanate distribution in soil after drip fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl isothiocyanate (MITC) generators, such as metam sodium (Met-Na), are used for soil fumigation of agricultural land. The ban on the fumigant methyl bromide (MBr) has resulted in greater use of MITC generators. In order to understand the efficacy of MITC, it is necessary to assess its generat...

  10. Novel Route to Transition Metal Isothiocyanate Complexes Using Metal Powders and Thiourea

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Eckles, William E.; Hepp, Aloysius F.; Duraj, Stan A.; Hehemann, David G.; Fanwick, Phillip E.; Richardson, John

    2003-01-01

    A new synthetic route to isothiocyanate-containing materials is presented. Eight isothiocyanate- 4-methylpyridine (y-picoline) compounds were prepared by refluxing metal powders (Mn, Fe, Co, Ni, and Cu) with thiourea in y-picoline. With the exception of compound 5,prepared with Co, the isothiocyanate ligand was generated in situ by the isomerization of thiourea to NH4+SCN- at reflux temperatures. The complexes were characterized by x-ray crystallography. Compounds 1,2, and 8 are the first isothiocyanate- 4-methylpyridine anionic compounds ever prepared and structurally characterized. Compounds 1 and 2 are isostructural with four equatorially bound isothiocyanate ligands and two axially bound y-picoline molecules. Compound 8 is a five-coordinate copper(II) molecule with a distorted square-pyramidal geometry. Coordinated picoline and two isothiocyanates form the basal plane and the remaining isothiocyanate is bound at the apex. Structural data are presented for all compounds.

  11. [Isothiocyanate and vinyl thio-oxazolidone contents of rape seeds and rape seed oil].

    PubMed

    Franzke, C; Göbel, R; Noack, G; Seiffert, I

    1975-01-01

    Comparative studies on the isothiocyanate content of rape-seeds and rape-seed oil show that, apart from nearly 300 mg/100 g of vinyl thio-oxazolidone, rape-seeds contain almost 200--300 mg/100 g of isothiocyanates of which 3-butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are the main components as evidenced thin-layer and gaschromatographically. Only about 1 mg/100 g of isothiocyanates are found in pressed rape-seed oil; and but circa 10 mg/100 g, in extracted rape-seed oil. 3-Butenyl isothiocyanate and 4-pentenyl isothiocyanate (ratio of 4:1) are once more the main components. Thioglycerides are not detected in the oil. Vinyl thio-oxazolidone is found only in extracted rape-seed oil (about 2 mg/100 g). PMID:1152977

  12. Synthesis and herbicidal activity of substituted pyrazole isothiocyanates.

    PubMed

    Wu, Hua; Feng, Jun-Tao; Lin, Kai-Chun; Zhang, Xing

    2012-01-01

    Isothiocyanates and substituted pyrazoles were combined to form a series of novel isothiocyanates with highly effective herbicidal activity. The target compounds were analyzed by elemental analysis, 1H-NMR, EI-MS and IR spectroscopy. The synthesized compounds, particularly compounds 3-1 and 3-7, exhibited good herbicidal activities against four weeds. The EC(50) values of compound 3-1 against Echinochloa crusgalli L., Cyperus iria L., Dactylis glomerata L., and Trifolium repens L. were 64.32, 65.83, 62.42, and 67.72 µg/mL, respectively. The EC(50) values of compound 3-7 against E. crusgalli L., C. iria L., D. glomerata L., T. repens L. were 65.33, 64.90, 59.41 and 67.41 µg/mL, respectively. Compounds 3-1 and 3-7 may be further optimized as lead compounds for new herbicides. PMID:23075815

  13. Anticancer activity of glucomoringin isothiocyanate in human malignant astrocytoma cells.

    PubMed

    Rajan, Thangavelu Soundara; De Nicola, Gina Rosalinda; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2016-04-01

    Isothiocyanates (ITCs) released from their glucosinolate precursors have been shown to inhibit tumorigenesis and they have received significant attention as potential chemotherapeutic agents against cancer. Astrocytoma grade IV is the most frequent and most malignant primary brain tumor in adults without any curative treatment. New therapeutic drugs are therefore urgently required. In the present study, we investigated the in vitro antitumor activity of the glycosylated isothiocyanate moringin [4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate] produced from quantitative myrosinase-induced hydrolysis of glucomoringin (GMG) under neutral pH value. We have evaluated the potency of moringin on apoptosis induction and cell death in human astrocytoma grade IV CCF-STTG1 cells. Moringin showed to be effective in inducing apoptosis through p53 and Bax activation and Bcl-2 inhibition. In addition, oxidative stress related Nrf2 transcription factor and its upstream regulator CK2 alpha expressions were modulated at higher doses, which indicated the involvement of oxidative stress-mediated apoptosis induced by moringin. Moreover, significant reduction in 5S rRNA was noticed with moringin treatment. Our in vitro results demonstrated the antitumor efficacy of moringin derived from myrosinase-hydrolysis of GMG in human malignant astrocytoma cells. PMID:26882972

  14. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.

    PubMed

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E

    2016-02-18

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  15. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    PubMed Central

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  16. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants.

  17. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina.

    PubMed

    Ayyari, Mahdi; Salehi, Peyman; Ebrahimi, Samad Nejad; Zimmermann, Stefanie; Portmann, Lena; Krauth-Siegel, R Luise; Kaiser, Marcel; Brun, Reto; Rezadoost, Hassan; Rezazadeh, Shamsali; Hamburger, Matthias

    2014-01-01

    O-Methyl (1), O-ethyl (2), and O-butyl (3) 4-[(α-L-rhamnosyloxy) benzyl] thiocarbamate (E), along with 4-(α-L-rhamnosyloxy) benzyl isothiocyanate (4) have been isolated from the aerial parts of Moringa peregrina. The compounds were tested for in vitro activity against Trypanosoma brucei rhodesiense and cytotoxicity in rat skeletal myoblasts (L6 cells). The most potent compound was 4 with an IC50 of 0.10 µM against T.b. rhodesiense and a selectivity index of 73, while the thiocarbamate glycosides 1, 2, and 3 showed only moderate activity. Intraperitoneal administration of 50 mg/kg body weight/day of 4 in the T.b. rhodesiense STIB 900 acute mouse model revealed significant in vivo toxicity. Administration of 10 mg/kg body weight/day resulted in a 95% reduction of parasitemia on day 7 postinfection, but did not cure the animals. Because of its high in vitro activity and its ability to irreversibly inhibit trypanothione reductase, an attractive parasite-specific target enzyme, 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate (4), can be considered as a lead structure for the development and characterization of novel antitrypanosomal drugs.

  18. Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms

    PubMed Central

    Gupta, Parul; Wright, Stephen E.; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent. PMID:25152445

  19. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates, as a defense against bacteria, fungi, insects and herbivores including man. Low levels of isothiocyanates trigger a host defense system in mammals that protects them against chronic diseases. Becaus...

  20. Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk1234

    PubMed Central

    Gao, Yu-Tang; Shu, Xiao-Ou; Cai, Qiuyin; Li, Guo-Liang; Li, Hong-Lan; Ji, Bu-Tian; Rothman, Nathaniel; Dyba, Marcin; Xiang, Yong-Bing; Chung, Fung-Lung; Chow, Wong-Ho; Zheng, Wei

    2010-01-01

    Background: Isothiocyanates, compounds found primarily in cruciferous vegetables, have been shown in laboratory studies to possess anticarcinogenic activity. Glutathione S-transferases (GSTs) are involved in the metabolism and elimination of isothiocyanates; thus, genetic variations in these enzymes may affect in vivo bioavailability and the activity of isothiocyanates. Objective: The objective was to prospectively evaluate the association between urinary isothiocyanate concentrations and colorectal cancer risk as well as the potential modifying effect of GST genotypes on the association. Design: A nested case-control study of 322 cases and 1251 controls identified from the Shanghai Women's Health Study was conducted. Results: Urinary isothiocyanate concentrations were inversely associated with colorectal cancer risk; the inverse association was statistically significant or nearly significant in the GSTM1-null (P for trend = 0.04) and the GSTT1-null (P for trend = 0.07) genotype groups. The strongest inverse association was found among individuals with both the GSTM1-null and the GSTT1-null genotypes, with an adjusted odds ratio of 0.51 (95% CI: 0.27, 0.95), in a comparison of the highest with the lowest tertile of urinary isothiocyanates. No apparent associations between isothiocyanate concentration and colorectal cancer risk were found among individuals who carried either the GSTM1 or GSTT1 gene (P for interaction < 0.05). Conclusion: This study suggests that isothiocyanate exposure may reduce the risk of colorectal cancer, and this protective effect may be modified by the GSTM1 and GSTT1 genes. PMID:20042523

  1. Antimicrobial activities of phenethyl isothiocyanate isolated from horseradish.

    PubMed

    Chen, Hongxia; Wang, Chengzhang; Ye, Jianzhong; Zhou, Hao; Chen, Xijuan

    2012-01-01

    Phenethyl isothiocyanate (PEITC) was obtained from horseradish. The preparation procedure was as follows: the horseradish powder was hydrolysed in the water first, and then, after filtration, the residue was extracted by petroleum ether; finally, PEITC was isolated by silica gel column. The structure of PEITC was identified by IR, MS, ¹H-NMR and ¹³C-NMR chromatography methods. The inhibitory activities of PEITC against Gibberella zeae, Xanthomonas axonopodis pv . citri, Cytospora sp . and Phytophthora capsisi showed that PEITC had good inhibition effects. The EC₅₀ values of G. zeae, X. axonopodis pv . citri, Cytospora sp . and P. capsisi were 13.92, 1.20, 0.73 and 3.69 µg mL⁻¹, respectively. PMID:21815843

  2. Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer

    PubMed Central

    Veeranki, Omkara L.; Bhattacharya, Arup; Tang, Li; Marshall, James R.; Zhang, Yuesheng

    2015-01-01

    Approximately 80% of human bladder cancers (BC) are non-muscle invasive when first diagnosed and are usually treated by transurethral tumor resection. But 50–80% of patients experience cancer recurrence. Agents for prevention of primary BC have yet to be identified. Existing prophylactics against BC recurrence, e.g., Bacillus Calmette-Guerin (BCG), have limited efficacy and utility; they engender significant side effects and require urethral catheterization. Many cruciferous vegetables, rich sources of isothiocyanates (ITCs), are commonly consumed by humans. Many ITCs possess promising chemopreventive activities against BC and its recurrence. Moreover, orally ingested ITCs are selectively delivered to bladder via urinary excretion. This review is focused on urinary delivery of ITCs to the bladder, their cellular uptake, their chemopreventive activities in preclinical and epidemiological studies that are particularly relevant to prevention of BC recurrence and progression, and their chemopreventive mechanisms in BC cells and tissues. PMID:26273545

  3. Genetic Incorporation of a Reactive Isothiocyanate Group into Proteins.

    PubMed

    Xuan, Weimin; Li, Jack; Luo, Xiaozhou; Schultz, Peter G

    2016-08-16

    Methods for the site-specific modification of proteins are useful for introducing biological probes into proteins and engineering proteins with novel activities. Herein, we genetically encode a novel noncanonical amino acid (ncAA) that contains an aryl isothiocyanate group which can form stable thiourea crosslinks with amines under mild conditions. We show that this ncAA (pNCSF) allows the selective conjugation of proteins to amine-containing molecular probes through formation of a thiourea bridge. pNCSF was also used to replace a native salt bridge in myoglobin with an intramolecular crosslink to a proximal Lys residue, leading to increased thermal stability. Finally, we show that pNCSF can form stable intermolecular crosslinks between two interacting proteins. PMID:27418387

  4. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  5. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.

    PubMed

    Waterman, Carrie; Cheng, Diana M; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Lila, Mary Ann; Raskin, Ilya

    2014-07-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as both a food and medicine throughout the tropics. A moringa concentrate (MC), made by extracting fresh leaves with water, utilized naturally occurring myrosinase to convert four moringa glucosinolates into moringa isothiocyanates. Optimum conditions maximizing MC yield, 4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate, and 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate exhibited 80% stability at 37°C for 30 days. MC, and both of the isothiocyanates described above significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, both attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFα at 1 and 5 μM. These results suggest a potential for stable and concentrated moringa isothiocyanates, delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases.

  6. Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.

    PubMed

    Glaser, Rainer; Hillebrand, Roman; Wycoff, Wei; Camasta, Cory; Gates, Kent S

    2015-05-01

    (1)H and (13)C NMR spectra of allyl isothiocyanate (AITC) were measured, and the exchange dynamics were studied to explain the near-silence of the ITC carbon in (13)C NMR spectra. The dihedral angles α = ∠(C1-C2-C3-N4) and β = ∠(C2-C3-N4-C5) describe the conformational dynamics (conformation change), and the bond angles γ = ∠(C3-N4-C5) and ε = ∠(N4-C5-S6) dominate the molecular dynamics (conformer flexibility). The conformation space of AITC contains three minima, Cs-M1 and enantiomers M2 and M2'; the exchange between conformers is very fast, and conformational effects on (13)C chemical shifts are small (νM1 - νM2 < 3 ppm). Isotropic chemical shifts, ICS(γ), were determined for sp, sp(x), and sp(2) N-hybridization, and the γ dependencies of δ(N4) and δ(C5) are very large (10-33 ppm). Atom-centered density matrix propagation trajectories show that every conformer can access a large region of the potential energy surface AITC(γ,ε,...) with 120° < γ < 180° and 155° < ε < 180°. Because the extreme broadening of the (13)C NMR signal of the ITC carbon is caused by the structural flexibility of every conformer of AITC, the analysis provides a general explanation for the near-silence of the ITC carbon in (13)C NMR spectra of organic isothiocyanates.

  7. Effect of Allyl Isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica) plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also re...

  8. Emission, Distribution And Leaching Of Methyl Isothiocyanate And Chloropicrin Under Different Surface Containments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental fate of fumigants methyl isothiocyanate (MITC) and chloropicrin (CP) is of great concern for potential air and groundwater contamination while retaining sufficient concentrations for pest control efficacy. The emission, gas phase distribution, leaching, and persistence of MITC and ...

  9. Proteins as binding targets of isothiocyanates in cancer prevention

    PubMed Central

    Mi, Lixin; Di Pasqua, Anthony J.

    2011-01-01

    Isothiocyanates are versatile cancer-preventive compounds. Evidence from animal studies indicates that the anticarcinogenic activities of ITCs involve all the major stages of tumor growth: initiation, promotion and progression. Epidemiological studies have also shown that dietary intake of ITCs is associated with reduced risk of certain human cancers. A number of mechanisms have been proposed for the chemopreventive activities of ITCs. To identify the molecular targets of ITCs is a first step to understand the molecular mechanisms of ITCs. Studies in recent years have shown that the covalent binding to certain protein targets by ITCs seems to play an important role in ITC-induced apoptosis and cell growth inhibition and other cellular effects. The knowledge gained from these studies may be used to guide future design and screen of better and more efficacious compounds. In this review, we intend to cover all potential protein targets of ITCs so far studied and summarize what are known about their binding sites and the potential biological consequences. In the end, we also offer discussions to shed light onto the relationship between protein binding and reactive oxygen species generation by ITCs. PMID:21665889

  10. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  11. Molecular Targets of Isothiocyanates in Cancer: Recent Advances

    PubMed Central

    Gupta, Parul; Kim, Bonglee; Kim, Sung-Hoon; Srivastava, Sanjay K.

    2014-01-01

    Cancer is a multistep process resulting in uncontrolled cell division. It results from aberrant signaling pathways that lead to uninhibited cell division and growth. Various recent epidemiological studies have indicated that consumption of cruciferous vegetables such as garden cress, broccoli, etc., reduces the risk of cancer. Isothiocyanates (ITC) have been identified as major active constituents of cruciferous vegetables. ITCs occur in plants as glucosinolate and can readily be derived by hydrolysis. Numerous mechanistic studies have demonstrated the anti-cancer effects of ITCs in various cancer types. ITCs suppress tumor growth by generating reactive oxygen species or by inducing cycle arrest leading to apoptosis. Based on the exciting outcomes of pre-clinical studies, few ITCs have advanced to the clinical phase. Available data from pre-clinical as well as available clinical studies suggests ITCs to be one of the promising anti-cancer agents available from natural sources. This is an up-to-date exhaustive review on the preventive and therapeutic effects of ITCs in cancer. PMID:24510468

  12. 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate: conformers, vibration structure and multiplet Fermi resonance.

    PubMed

    Yenagi, Jayashree; Nandurkar, Anita R; Tonannavar, J

    2012-06-01

    IR and Raman spectral measurements in the region 3500-400/50 cm(-1) have been made for the liquid samples of 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate. A complete assignment of the measured bands has been proposed as aided by conformational and vibration analyses at B3LYP/6-311++G** level of calculations. Three conformers for 2-Methoxyphenyl isocyanate and two for 2-Methoxyphenyl isothiocyanate have been determined. The tilt of the isocyanate (NCO) and isothiocyanate (NCS) moieties with respect to phenyl ring are in broad agreement with their parents. Stretching mode frequencies of methyl group (-OCH(3)) in 2-Methoxyphenyl isocyanate have been lowered in the 2900-2800 cm(-1); deformation asymmetric modes are IR strong and symmetric one Raman strong. In 2-Methoxyphenyl isothiocyanate, a similar pattern is true for stretching modes but deformation asymmetric modes are IR strong and symmetric mode has not been observed. Multiplet absorption band system near 2200 cm(-1) in 2-Methoxyphenyl isocyanate has been interpreted to be caused by Fermi resonance. A similar pattern in absorption near 2100 cm(-1) in 2-Methoxyphenyl isothiocyanate but more complex Raman band pattern has also been explained through Fermi resonance from heuristic stand-point. Many Raman modes in 1300-1100 cm(-1) are intensified apparently owing to isothiocyanate than isocyanate moiety. Phenyl ring breathing mode is shifted to 1040 cm(-1) as strong Raman; the symmetric stretching mode of O-CH(3) near 1023 cm(-1) as strong absorption.

  13. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro

    PubMed Central

    Waterman, Carrie; Cheng, Diana M.; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Ann Lila, Mary; Raskin, Ilya

    2014-01-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as food and medicine throughout the tropics. A moringa concentrate (MC) made by extracting fresh leaves with water utilized naturally occurring myrosinase to convert four moringa glucosinolates (1–4) into moringa isothiocyanates (5–8). Optimum conditions maximizing MC yield, compound 5 (4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate), and compound 8 (4-[(4’-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate) content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. Compound 8 exhibited 80% stability at 37 °C for 30 days. MC, 5, and 8 significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, 5 and 8 attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFβ at 1 and 5 µM. Our results suggest a potential for stable and concentrated moringa isothiocyanates (5–8), delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases. PMID:24731259

  14. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    PubMed Central

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  15. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates.

    PubMed

    Fahey, Jed W; Stephenson, Katherine K; Wade, Kristina L; Talalay, Paul

    2013-05-24

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 260-320 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  16. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  17. Isocyanates and isothiocyanates as versatile platforms for accessing (thio)amide-type compounds.

    PubMed

    Pace, Vittorio; Monticelli, Serena; de la Vega-Hernández, Karen; Castoldi, Laura

    2016-08-16

    The addition of carbon (Grignard and organolithium reagents) and hydride nucleophiles (Schwartz reagent) to isocyanates and isothiocyanates constitutes a versatile, direct and high yielding approach to the synthesis of functionalized (thio)amide derivatives including haloamides and formamides. The chemoselective delivery of a nucleophilic (eventually configurationally stable) organometallic species to a given iso(thio)cyanate is the crucial parameter for the success of the strategy. Thus, the influence of the factors governing classical methodologies (e.g. dehydrative condensation) such as steric hindrance and electronic properties of the reactants become practically negligible. PMID:27461156

  18. Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop

    SciTech Connect

    Trott, Donna M.; LePage, Jane; Hebert, Vincent

    2012-01-01

    A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

  19. Evaluating surface seals in soil columns to mitigate methy isothiocyanate volatilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The banning of methyl bromide (MeBr) as a pre-plant soil fumigant due to its implication as an ozone depleting substance, has led to increased interest in finding alternative soil fumigants to replace MeBr. One of the promising alternatives for certain crops is methyl isothiocyanate (MITC) generati...

  20. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzyl isothiocyanate (BITC) applied at micromolar doses decreased Heterodera glycines J2 movement, H. glycines hatching, and reproduction of H. glycines on soybean, Glycine max. Direct exposure of J2 to 30 microM BITC caused an immediate decrease (17%; P < 0.05) in J2 movement relative to 1% methan...

  1. A Quick and Simple Conversion of Carboxylic Acids into Their Anilides of Heating with Phenyl Isothiocyanate.

    ERIC Educational Resources Information Center

    Ram, Ram N.; And Others

    1983-01-01

    Converting carboxylic acids into their anilides, which usually involves preparation of acid chloride or mixed anhydride followed by treatment with aniline, is tedious and/or time-consuming. A quick and easier procedure, using phenyl isothiocyanate, is provided. Reactions involved and a summary table of results are included. (JN)

  2. Isothiocyanates as effective agents against enterohemorrhagic Escherichia coli: insight to the mode of action

    PubMed Central

    Nowicki, Dariusz; Rodzik, Olga; Herman-Antosiewicz, Anna; Szalewska-Pałasz, Agnieszka

    2016-01-01

    Production of Shiga toxins by enterohemorrhagic Escherichia coli (EHEC) which is responsible for the pathogenicity of these strains, is strictly correlated with induction of lambdoid bacteriophages present in the host’s genome, replication of phage DNA and expression of stx genes. Antibiotic treatment of EHEC infection may lead to induction of prophage into a lytic development, thus increasing the risk of severe complications. This, together with the spread of multi-drug resistance, increases the need for novel antimicrobial agents. We report here that isothiocyanates (ITC), plant secondary metabolites, such as sulforaphane (SFN), allyl isothiocyanate (AITC), benzyl isothiocynanate (BITC), phenyl isothiocyanate (PITC) and isopropyl isothiocyanate (IPRITC), inhibit bacterial growth and lytic development of stx-harboring prophages. The mechanism underlying the antimicrobial effect of ITCs involves the induction of global bacterial stress regulatory system, the stringent response. Its alarmone, guanosine penta/tetraphosphate ((p)ppGpp) affects major cellular processes, including nucleic acids synthesis, which leads to the efficient inhibition of both, prophage induction and toxin synthesis, abolishing in this way EHEC virulence for human and simian cells. Thus, ITCs could be considered as potential therapeutic agents in EHEC infections. PMID:26922906

  3. Effects of allyl isothiocyanate from horseradish on several experimental gastric lesions in rats.

    PubMed

    Matsuda, Hisashi; Ochi, Momotaro; Nagatomo, Akifumi; Yoshikawa, Masayuki

    2007-04-30

    Allyl isothiocyanate is well known to be a principal pungent constituent of horseradish and an agonist for transient receptor potential (TRP) A1. Ally isothiocyanate markedly inhibited the formation of gastric lesions induced by ethanol (1.5 ml/rat, p.o.), 0.6 M HCl (1.5 ml/rat, p.o.), 1% ammonia (1.5 ml/rat, p.o.), and aspirin (150 mg/kg, p.o.) (ED(50)=1.6, 2.2, 1.7, ca. 6.5 mg/kg, p.o.). It also significantly inhibited the formation of gastric lesions induced by indomethacin (20 mg/kg, p.o.), though the inhibition was ca. 60% at a high dose (40 mg/kg, p.o.). Furthermore, several synthetic isothiocyanate compounds also significantly inhibited ethanol and indomethacin-induced gastric lesions. Whereas, TRPV1 agonists, capsaicin and piperine, inhibited gastric lesions induced by ethanol, 1% ammonia, and aspirin, but had less of an effect on 0.6 M HCl-induced gastric lesions. With regard to mode of action, the protective effects of ally isothiocyanate on ethanol-induced gastric lesions were attenuated by pretreatment with indomethacin, but not with N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME), or ruthenium red. Pretreatment with indomethacin reduced the protective effects of piperine, and L-NAME reduced the effects of capsaicin and omeprazole. Furthermore, ruthenium red reduced the effects of capsaicin, piperine, and omeprazole. These findings suggest that endogenous prostaglandins play an important role in the protective effect of allyl isothiocyanate in ethanol-induced gastric lesions different from capsaicin, piperine, and omeprazole.

  4. Chiral isothiocyanates - An approach to determination of the absolute configuration using circular dichroism measurement

    NASA Astrophysics Data System (ADS)

    Michalski, Oskar; Cież, Dariusz

    2013-04-01

    Chiral alkyl 2-isothiocyanates have been obtained from enantiopure, aliphatic amines. ECD measurements allowed us to correlate an absolute configuration at C-2 with a sign of the Cotton effect (CE) observed for n-π* transition at the longer-wavelength range of the spectrum. Chirooptical data calculated for all enantiomers were consistent with the measured CE values and indicated that the weak absorption band at 240 nm could give an important information concerning the stereochemistry of simple, chiral isothiocyanates. Optically active esters of 2-isothiocyanatocarboxylic acids, prepared from α-amino acids, showed two absorption bands located over 195 nm. The more intensive band near 200 nm and the weak absorption located at 250 nm were related to n-π* transitions in NCS group. TD DFT calculations carried out for methyl esters of 2-isothiocyanatocarboxylic acids showed the correlation between signs of CE determined for both absorption bands, and the absolute configuration on C-2.

  5. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  6. Reaction of /alpha/,/beta/-unsaturated acyl isothiocyanates with salts of dithiocarbamic acids

    SciTech Connect

    Krus, K.; Masias, A.; Beletskaya, I.P.

    1989-01-10

    The reaction of unsaturated isothiocyanates with the sodium and calcium salts of N-alkyl- and N,N-dialkyldithiocarbamic acids was studied. Depending on the structure of the dithiocarbamate, the reaction products are thiazines or acyl dithiocarbamates. For the salts of methyldithiocarbamic acid the effect of the concentration and the nature of the metal on the relative yields of 6-phenyl-3-methylpropiorhodanine and 6-phenylpropiorhodanine was studied. A method is proposed for the synthesis of 3-substituted propiorhodanines.

  7. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    PubMed

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects. PMID:25605589

  8. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    PubMed

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects.

  9. Direct and Indirect Antioxidant Activity of Polyphenol- and Isothiocyanate-Enriched Fractions from Moringa oleifera

    PubMed Central

    Boyunegmez Tumer, Tugba; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2016-01-01

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate and 4-[(4′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects. PMID:25605589

  10. Hydrogen sulfide releasing capacity of natural isothiocyanates: is it a reliable explanation for the multiple biological effects of Brassicaceae?

    PubMed

    Citi, Valentina; Martelli, Alma; Testai, Lara; Marino, Alice; Breschi, Maria C; Calderone, Vincenzo

    2014-06-01

    Hydrogen sulfide is an endogenous pleiotropic gasotransmitter, which mediates important physiological effects in the human body. Accordingly, an impaired production of endogenous hydrogen sulfide contributes to the pathogenesis of important disorders. To date, exogenous compounds, acting as hydrogen sulfide-releasing agents, are viewed as promising pharmacotherapeutic agents. In a recent report, the hydrogen sulfide-releasing properties of some synthetic aryl isothiocyanate derivatives have been reported, indicating that the isothiocyanate function can be viewed as a suitable slow hydrogen sulfide-releasing moiety, endowed with the pharmacological potential typical of this gasotransmitter. Many isothiocyanate derivatives (deriving from a myrosinase-mediated transformation of glucosinolates) are well-known secondary metabolites of plants belonging to the family Brassicaceae, a large botanical family comprising many edible species. The phytotherapeutic and nutraceutic usefulness of Brassicaceae in the prevention of important human diseases, such as cancer, neurodegenerative processes and cardiovascular diseases has been widely discussed in the scientific literature. Although these effects have been largely attributed to isothiocyanates, the exact mechanism of action is still unknown. In this experimental work, we aimed to investigate the possible hydrogen sulfide-releasing capacity of some important natural isothiocyanates, studying it in vitro by amperometric detection. Some of the tested natural isothiocyanates exhibited significant hydrogen sulfide release, leading us to hypothesize that hydrogen sulfide may be, at least in part, a relevant player accounting for several biological effects of Brassicaceae.

  11. Structure-Activity Relationship Study on Isothiocyanates: Comparison of TRPA1-Activating Ability between Allyl Isothiocyanate and Specific Flavor Components of Wasabi, Horseradish, and White Mustard.

    PubMed

    Terada, Yuko; Masuda, Hideki; Watanabe, Tatsuo

    2015-08-28

    Allyl isothiocyanate (ITC) (4) is the main pungent component in wasabi, and it generates an acrid sensation by activating TRPA1. The flavor and pungency of ITCs vary depending on the compound. However, the differences in activity to activate TRPA1 between ITCs are not known except for a few compounds. To investigate the effect of carbon chain length and substituents of ITCs, the TRPA1-activiting ability of 16 ITCs was measured. Since most of the ITCs showed nearly equal TRPA1-activiting potency, the ITC moiety is likely the predominant contributor to their TRPA1-activating abilities, and contributions of other functional groups to their activities to activate TRPA1 are comparatively small.

  12. Metal-mediated reaction modeled on nature: the activation of isothiocyanates initiated by zinc thiolate complexes.

    PubMed

    Eger, Wilhelm A; Presselt, Martin; Jahn, Burkhard O; Schmitt, Michael; Popp, Jürgen; Anders, Ernst

    2011-04-18

    On the basis of detailed theoretical studies of the mode of action of carbonic anhydrase (CA) and models resembling only its reactive core, a complete computational pathway analysis of the reaction between several isothiocyanates and methyl mercaptan activated by a thiolate-bearing model complex [Zn(NH(3))(3)SMe](+) was performed at a high level of density functional theory (DFT). Furthermore, model reactions have been studied in the experiment using relatively stable zinc complexes and have been investigated by gas chromatography/mass spectrometry and Raman spectroscopy. The model complexes used in the experiment are based upon the well-known azamacrocyclic ligand family ([12]aneN(4), [14]aneN(4), i-[14]aneN(4), and [15]aneN(4)) and are commonly formulated as ([Zn([X]aneN(4))(SBn)]ClO(4). As predicted by our DFT calculations, all of these complexes are capable of insertion into the heterocumulene system. Raman spectroscopic investigations indicate that aryl-substituted isothiocyanates predominantly add to the C═N bond and that the size of the ring-shaped ligands of the zinc complex also has a very significant influence on the selectivity and on the reactivity as well. Unfortunately, the activated isothiocyanate is not able to add to the thiolate-corresponding mercaptan to invoke a CA analogous catalytic cycle. However, more reactive compounds such as methyl iodide can be incorporated. This work gives new insight into the mode of action and reaction path variants derived from the CA principles. Further, aspects of the reliability of DFT calculations concerning the prediction of the selectivity and reactivity are discussed. In addition, the presented synthetic pathways can offer a completely new access to a variety of dithiocarbamates. PMID:21405064

  13. [Inhibition of aflatoxin production and fungal growth on stored corn by allyl isothiocyanate vapor].

    PubMed

    Okano, Kiyoshi; Ose, Ayaka; Takai, Mitsuhiro; Kaneko, Misao; Nishioka, Chikako; Ohzu, Yuji; Odano, Masayoshi; Sekiyama, Yasushi; Mizukami, Yuichi; Nakamura, Nobuya; Ichinoe, Masakatsu

    2015-01-01

    Studies were conducted to determine the effectiveness of allyl isothiocyanate (AIT) vapor treatment with a commercial mustard seed extract (Wasaouro(®)) in controlling aflatoxin-producing fungi on stored corn. The concentration of AIT in the closed container peaked at 54.6 ng/mL on the 14th day and remained at 21.8 ng/mL on the 42nd day. AIT inhibited visible growth of aflatoxigenic molds in unsterilized corn and in sterilized corn inoculated with various aflatoxigenic fungi. However, fungi such as Aspergillus glaucus group, A. penicillioides and A. restrictus were detected by means of culture methods. PMID:25748979

  14. Synthesis of Cyclic Azomethine Imines by Cycloaddition Reactions of N-Isocyanates and N-Isothiocyanates.

    PubMed

    Bongers, Amanda; Ranasinghe, Indee; Lemire, Philippe; Perozzo, Alyssa; Vincent-Rocan, Jean-François; Beauchemin, André M

    2016-08-01

    Various nitrogen-substituted iso(thio)cyanates engage in [3 + 2]-cycloaddition reactions to form azomethine imines containing triazolone, triazole-thione, and pyrazole-thione cores. First, iminoisothiocyanates are shown to undergo aminothiocarbonylation reactions with strained alkenes, and a comparison with recently reported reactions of iminoisocyanates highlights their reduced reactivity. In contrast, amino(thio)carbonylation reactions of imines with iminoisocyanates and iminoisothiocyanates proved more efficient, providing access to triazolone and triazole-thione cores. The dipole products can be converted to valuable heterocyclic cores through simple derivatization reactions. PMID:27458786

  15. Studies on the interaction of fluorescein isothiocyanate and its sugar analogues with cetyltrimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujit Kumar; Ali, Mohammed; Chatterjee, Hirak

    2013-03-01

    The interaction of fluorescein isothiocyanate (FITC) and its two sugar analogues (viz., FITC-Dextran 40S and FITC-Dextran 2000S) with cetyltrimethylammonium bromide has been elucidated by absorption, fluorescence, Fourier transform infrared spectroscopy and fluorescence microscopic studies. It is seen that the emission of the probe molecules is uniquely sensitive to the changes in surfactant concentrations at a particular regime due to the formation of dye-surfactant supramolecular assembly. The formation of supramolecular assembly becomes effective at a lower surfactant concentration with increasing dextran size as a consequence of definite dye-surfactant interaction and could pave a facile strategy for designing hierarchical superstructures.

  16. Synergistic effect of allyl isothiocyanate (AITC) on cisplatin efficacy in vitro and in vivo

    PubMed Central

    Ling, Xiang; Westover, David; Cao, Felicia; Cao, Shousong; He, Xiang; Kim, Hak-Ryul; Zhang, Yuesheng; Chan, Daniel CF; Li, Fengzhi

    2015-01-01

    Although in vitro studies have shown that isothiocyanates (ITCs) can synergistically sensitize cancer cells to cisplatin treatment, the underlying mechanisms have not been well defined, and there are no in vivo demonstrations of this synergy. Here, we report the in vitro and in vivo data for the combination of allyl isothiocyanate (AITC), one of the most common naturally occurring ITCs, with cisplatin. Our study revealed that cisplatin and AITC combination synergistically inhibits cancer cell growth and colony formation, and enhances apoptosis in association with the downregulation of antiapoptotic proteins Bcl-2 and survivin. Importantly, the in vivo combination treatment suppresses human tumor growth in animal models without observable increases in toxicity (body weight loss) in comparison with single agent treatment. Furthermore, our data revealed that addition of AITC to cisplatin treatment changes the profile of G2/M arrest (e.g. increase in M phase cell number) and significantly extends the duration of G2/M arrest in comparison with cisplatin treatment alone. To explore the underlying mechanism, we found that AITC treatment rapidly depletes b-tubulin. Combination of AITC and cisplatin inhibits the expression of G2/M checkpoint-relevant proteins including CDC2, cyclin B1 and CDC25. Together, our findings reveal a novel mechanism for AITC enhancing cisplatin efficacy and provides the first in vivo evidence to support ITCs as potential candidates for developing new regimens to overcome platinum resistance. PMID:26396928

  17. Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles, and epithionitriles.

    PubMed

    Pope, Tom W; Kissen, Ralph; Grant, Murray; Pickett, John A; Rossiter, John T; Powell, Glen

    2008-10-01

    Cruciferous plants (Brassicaceae) are characterized by the accumulation of a group of secondary metabolites known as glucosinolates that, following attack by pathogens or herbivores, may be hydrolyzed to one of a number of products including isothiocyanates and nitriles. Despite the range of hydrolysis products that may be produced, the toxicity of glucosinolates to pathogens and herbivores may be explained largely by the production of isothiocyanates. Isothiocyanates are also known to provide an indirect defense by acting as host finding cues for parasitoids of insect herbivores that attack crucifers. It has been speculated that nitriles may provide a similar indirect defense. Here, we investigate the olfactory perception and orientation behavior of the aphid parasitoid Diaeretiella rapae, to a range of alkenylglucosinolate hydrolysis products, including isothiocyanates, nitriles, and epithionitriles. Electroantennogram responses indicated peripheral odor perception in D. rapae females to all 3-butenylglucosinolate hydrolysis products tested. By contrast, of the 2-propenylglucosinolate hydrolysis products tested, only the isothiocyanate elicited significant responses. Despite showing peripheral olfactory detection of a range of 3-butenylglucosinolate hydrolysis products, naïve females oriented only to the isothiocyanate. Similarly, parasitoids oriented to 3-isothiocyanatoprop-1-ene, but not to the corresponding nitrile or epithionitrile. However, by rearing D. rapae either on Brassica nigra, characterized by the accumulation of 2-propenylglucosinolate, or Brassica rapa var rapifera, characterized by the accumulation of 3-butenylglucosinolate, altered the innate response of parasitoids to 3-isothiocyanatoprop-1-ene and 4-isothiocyanatobut-1-ene. These results are discussed in relation to the defensive roles of glucosinolate hydrolysis products and the influence of the host plant on aphid parasitoid behavior.

  18. Comparative study between extraction techniques and column separation for the quantification of sinigrin and total isothiocyanates in mustard seed.

    PubMed

    Cools, Katherine; Terry, Leon A

    2012-07-15

    Glucosinolates are β-thioglycosides which are found naturally in Cruciferae including the genus Brassica. When enzymatically hydrolysed, glucosinolates yield isothiocyanates and give a pungent taste. Both glucosinolates and isothiocyanates have been linked with anticancer activity as well as antifungal and antibacterial properties and therefore the quantification of these compounds is scientifically important. A wide range of literature exists on glucosinolates, however the extraction and quantification procedures differ greatly resulting in discrepancies between studies. The aim of this study was therefore to compare the most popular extraction procedures to identify the most efficacious method and whether each extraction can also be used for the quantification of total isothiocyanates. Four extraction techniques were compared for the quantification of sinigrin from mustard cv. Centennial (Brassica juncea L.) seed; boiling water, boiling 50% (v/v) aqueous acetonitrile, boiling 100% methanol and 70% (v/v) aqueous methanol at 70 °C. Prior to injection into the HPLC, the extractions which involved solvents (acetonitrile or methanol) were freeze-dried and resuspended in water. To identify whether the same extract could be used to measure total isothiocyanates, a dichloromethane extraction was carried out on the sinigrin extracts. For the quantification of sinigrin alone, boiling 50% (v/v) acetonitrile was found to be the most efficacious extraction solvent of the four tested yielding 15% more sinigrin than the water extraction. However, the removal of the acetonitrile by freeze-drying had a negative impact on the isothiocyanate content. Quantification of both sinigrin and total isothiocyanates was possible when the sinigrin was extracted using boiling water. Two columns were compared for the quantification of sinigrin revealing the Zorbax Eclipse to be the best column using this particular method. PMID:22743340

  19. [2+2+2] cyclotrimerization of alkynes and isocyanates/isothiocyanates catalyzed by ruthenium-alkylidene complexes.

    PubMed

    Alvarez, Silvia; Medina, Sandra; Domínguez, Gema; Pérez-Castells, Javier

    2013-10-01

    Ruthenium carbene catalysts are able to catalyze crossed [2+2+2] cyclotrimerizations of α,ω-diynes with isocyanates, isothiocyanates, and carbon disulfide. Both aliphatic and aromatic isocyanates can be used to produce fused 2-pyridones, although aliphatic isocyanates were more reactive. Aromatic isocyanates give better results when they bear electron-donating substituents. The reaction of unsymmetrical α,ω-diynes gave a product only with the substituent adjacent to the 2-pyridone nitrogen. Isothiocyanates gave thiopyranimines upon reaction with the C═S bond, whereas CS2 reacted efficiently to give a thioxothiopyrane.

  20. Fumigation of wheat using liquid ethyl formate plus methyl isothiocyanate in 50-tonne farm bins.

    PubMed

    Ren, Yonglin; Lee, Byungho; Mahon, Daphne; Xin, Ni; Head, Matthew; Reid, Robin

    2008-04-01

    Australian Standard White wheat, Triticum aestivum L. (a marketing grade with mixed grain hardness),with a moisture content of 12.5% was fumigated with a new ethyl formate formulation (95% ethyl formate plus 5% methyl isothiocyanate) identified and developed by Commonwealth Scientific and Industrial Research Organization Entomology, Canberra, Australia. Wheat was fumigated with the formulation at a calculated application rate of 80 g/m3 in two 50-tonne sealed metal vertical silos located at Fisherman Islands, Queensland, Australia. Access was gained through the top of the silo where the application of the formulation was completed within a few minutes by pouring it onto the top of the wheat. After 2 h of recirculation, using a 0.5-kW fan, the in-bin concentrations of ethyl formate achieved equilibrium with a concentration variation < 7%. The ethyl formate concentration, in both silos 1 and 2, during the first day's exposure period remained above 10 g/m3. The concentration of ethyl formate by time product achieved was 790 and 650 g h/m3 in silos 1 and 2, respectively. In silo 1, the formulation was sufficient to kill all life stages of mixed age cultures of Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst). In silo 2, control was 100% for R. dominica and T. castaneum and 99.4% for S. oryzae. After 5 d fumigation, the silo top-hatch was opened but no forced aeration was initiated. The in-bin concentration of ethyl formate was lower than the Australian experimental threshold limit value of 100 ppm. The ethyl formate and methyl isothiocyanate residues in the grain had declined to below the Australian experimental maximum residue limit of 0.2 and 0.1 mg/kg, respectively. The workspace and environmental levels of ethyl formate and methyl isothiocyanate were less than the detection limit of 0.1 ppm. The treatment with ethyl formate formulation had no affect on the wheat germination and seed color compared with untreated controls. PMID

  1. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid (PLA) and chitosan were incorporated with AIT and coated on one side of the film. T...

  2. Structural Interactions Dictate the Kinetics of Macrophage Migration Inhibitory Factor Inhibition by Different Cancer-Preventive Isothiocyanates

    PubMed Central

    Crichlow, Gregg V.; Fan, Chengpeng; Keeler, Camille; Hodsdon, Michael; Lolis, Elias J.

    2012-01-01

    Regulation of cellular processes by dietary nutrients is known to affect the likelihood of cancer development. One class of cancer preventive nutrients, isothiocyanates (ITCs) derived from consumption of cruciferous vegetables, is known to have various effects on cellular biochemistry. One target of ITCs is macrophage migration inhibitory factor (MIF), a widely expressed protein with known inflammatory, pro-tumorigenic, pro-angiogenic, and anti-apoptotic properties. MIF is covalently inhibited by a variety of ITCs, which in part, may explain how they exert their cancer-preventive effects. We report the crystallographic structures of human MIF bound to phenethylisothiocyanate and to L-sulforaphane (dietary isothiocyanates derived from watercress and broccoli, respectively), and correlate structural features of these two isothiocyanates with their second-order rate constants for MIF inactivation. We also characterize changes in the MIF structure using NMR HSQC spectra of these complexes and observe many changes at the subunit interface. While a number of chemical shifts do not change, many of those that change do not have similar features in magnitude or direction for the two isothiocyanates. The difference in the binding modes of these two ITCs provides a means of using structure-activity relationships to reveal insights into MIF biological interactions. The results of this study provide a framework for the development of therapeutics that target MIF. PMID:22931430

  3. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells.

    PubMed

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  4. DNA Microarray Highlights Nrf2-Mediated Neuron Protection Targeted by Wasabi-Derived Isothiocyanates in IMR-32 Cells

    PubMed Central

    Trio, Phoebe Zapanta; Fujisaki, Satoru; Tanigawa, Shunsuke; Hisanaga, Ayami; Sakao, Kozue; Hou, De-Xing

    2016-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), 6-(methylthio)hexyl isothiocyanate (6-MTITC), and 4-(methylsulfinyl)butyl isothiocyanate (4-MSITC) are isothiocyanate (ITC) bioactive compounds from Japanese Wasabi. Previous in vivo studies highlighted the neuroprotective potential of ITCs since ITCs enhance the production of antioxidant-related enzymes. Thus, in this present study, a genome-wide DNA microarray analysis was designed to profile gene expression changes in a neuron cell line, IMR-32, stimulated by these ITCs. Among these ITCs, 6-MSITC caused the expression changes of most genes (263), of which 100 genes were upregulated and 163 genes were downregulated. Gene categorization showed that most of the differentially expressed genes are involved in oxidative stress response, and pathway analysis further revealed that Nrf2-mediated oxidative stress pathway is the top of the ITC-modulated signaling pathway. Finally, real-time polymerase chain reaction (PCR) and Western blotting confirmed the gene expression and protein products of the major targets by ITCs. Taken together, Wasabi-derived ITCs might target the Nrf2-mediated oxidative stress pathway to exert neuroprotective effects. PMID:27547033

  5. Overexpression of Glutathione Transferase E7 in Drosophila Differentially Impacts Toxicity of Organic Isothiocyanates in Males and Females

    PubMed Central

    Mannervik, Bengt; Mannervik, Mattias

    2014-01-01

    Organic isothiocyanates (ITCs) are allelochemicals produced by plants in order to combat insects and other herbivores. The compounds are toxic electrophiles that can be inactivated and conjugated with intracellular glutathione in reactions catalyzed by glutathione transferases (GSTs). The Drosophila melanogaster GSTE7 was heterologously expressed in Escherichia coli and purified for functional studies. The enzyme showed high catalytic activity with various isothiocyanates including phenethyl isothiocyanate (PEITC) and allyl isothiocyanate (AITC), which in millimolar dietary concentrations conferred toxicity to adult D. melanogaster leading to death or a shortened life-span of the flies. In situ hybridization revealed a maternal contribution of GSTE7 transcripts to embryos, and strongest zygotic expression in the digestive tract. Transgenesis involving the GSTE7 gene controlled by an actin promoter produced viable flies expressing the GSTE7 transcript ubiquitously. Transgenic females show a significantly increased survival when subjected to the same PEITC treatment as the wild-type flies. By contrast, transgenic male flies show a significantly lower survival rate. Oviposition activity was enhanced in transgenic flies. The effect was significant in transgenic females reared in the absence of ITCs as well as in the presence of 0.15 mM PEITC or 1 mM AITC. Thus the GSTE7 transgene elicits responses to exposure to ITC allelochemicals which differentially affect life-span and fecundity of male and female flies. PMID:25329882

  6. Antimicrobial effect of allyl isothiocyanate and modified atmosphere on Pseudomonas aeruginosa in fresh catfish fillet under abuse temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 degree C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aeru...

  7. Effect of allyl isothiocyanate in headspace and modified atmosphere on Pseduomonas Aeruginosa growth in fresh catfish fillets under abuse temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 deg C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aerugin...

  8. 40 CFR 180.1167 - Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Allyl isothiocyanate as a component of food grade oil of mustard; exemption from the requirement of a tolerance. 180.1167 Section 180.1167 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES...

  9. Sensitivity to allyl isothiocyanate, dimethyl trisulfide, sinigrin, and cooked cauliflower consumption.

    PubMed

    Engel, Erwan; Martin, Nathalie; Issanchou, Sylvie

    2006-05-01

    The consumption of cauliflower consumers has been related to the olfactory and gustatory sensitivities to potentially objectionable flavor compounds in this vegetable. Based on the ascending concentration series method of limits, a first experiment was designed to develop rapid tests dedicated to estimate individuals' olfactory thresholds for allyl isothiocyanate (AITC) and dimethyl trisulfide (DMTS) and gustatory thresholds for sinigrin (SIN). The best compromise between rapidity and reliability was obtained with two replications of a four-alternative forced choice (AFC) at six ascending concentrations (6x2x4-AFC) for both AITC and DMTS, and with a 6x1x4-AFC for SIN. In a second experiment, sensitivity to SIN, AITC and DMTS was determined on 267 participants divided into three cauliflower consumer target groups: non-, medium- or high consumers. The non-consumers were significantly more sensitive to SIN and AITC than were the medium and high consumers. No effect of consumer's sensitivity to DMTS was observed.

  10. Milk prevents the degradation of daikon (Raphanus sativus L.) isothiocyanate and enhances its absorption in rats.

    PubMed

    Ippoushi, Katsunari; Ueda, Hiroshi; Takeuchi, Atsuko

    2014-10-15

    Epidemiological and experimental researches show that isothiocyanate (ITC), a class of phytochemical compounds that imparts a characteristic biting taste and pungent odour to cruciferous vegetables, such as daikon (Japanese white radish, Raphanus sativus L. Daikon Group), broccoli, cabbage, and Chinese cabbage, possesses anticancer and anti-inflammatory properties. The concentration of daikon ITC, which degrades in aqueous solution, was measured in mixtures of daikon juice and water, corn oil, or milk. Daikon juice mixed with corn oil or milk showed a higher concentration (1.4-fold) of daikon ITC than that in mixture with water; thus, corn oil and milk prevent the degradation of daikon ITC. Moreover, orally administered daikon juice with milk increased daikon ITC absorption in rats. Therefore, dishes or drinks that include raw daikon with corn oil or milk may promote the possible health benefits of daikon ITC by preventing ITC degradation and enhancing its absorption in vivo.

  11. Antiangiogenic and proapoptotic activities of allyl isothiocyanate inhibit ascites tumor growth in vivo.

    PubMed

    Kumar, Akhilesh; D'Souza, Saritha S; Tickoo, Sanjay; Salimath, Bharathi P; Singh, H B

    2009-03-01

    The authors investigate the antiangiogenic and proapoptotic effects of mustard essential oil containing allyl isothiocyanate (AITC) and explore its mechanism of action on Ehrlich ascites tumor (EAT) cells. Swiss albino mice transplanted with EAT cells were used to study the effect of AITC. AITC was effective at a concentration of 10 mum as demonstrated by the inhibition of proliferation of EAT cells when compared with the normal HEK293 cells. It significantly reduced ascites secretion and tumor cell proliferation by about 80% and inhibited vascular endothelial growth factor expression in tumor-bearing mice in vivo. It also reduced vessel sprouting and exhibited potent antiangiogenic activity in the chorioallantoic membrane and cornea of the rat. AITC arrested the growth of EAT cells by inducing apoptosis and effectively arrested cell cycle progression at the G1 phase. The results clearly suggest that AITC inhibits tumor growth by both antiangiogenic and proapoptotic mechanisms.

  12. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    PubMed Central

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-01-01

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic α- and β-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy in coping with crisis of misfolded proteins. PMID:19682429

  13. Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis

    PubMed Central

    Angelino, Donato; Dosz, Edward B.; Sun, Jianghao; Hoeflinger, Jennifer L.; Van Tassell, Maxwell L.; Chen, Pei; Harnly, James M.; Miller, Michael J.; Jeffery, Elizabeth H.

    2015-01-01

    Brassicales contain a myrosinase enzyme that hydrolyzes glucosinolates to form toxic isothiocyanates (ITC), as a defense against bacteria, fungi, insects and herbivores including man. Low levels of ITC trigger a host defense system in mammals that protects them against chronic diseases. Because humans typically cook their brassica vegetables, destroying myrosinase, there is a great interest in determining how human microbiota can hydrolyze glucosinolates and release them, to provide the health benefits of ITC. ITC are highly reactive electrophiles, binding reversibly to thiols, but accumulating and causing damage when free thiols are not available. We found that addition of excess thiols released protein-thiol-bound ITC, but that the microbiome supports only poor hydrolysis unless exposed to dietary glucosinolates for a period of days. These findings explain why 3–5 servings a week of brassica vegetables may provide health effects, even if they are cooked. PMID:26500669

  14. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery

    SciTech Connect

    Mi, Lixin; Gan, Nanqin; Chung, Fung-Lung

    2009-10-16

    Unwanted or misfolded proteins are either refolded by chaperones or degraded by the ubiquitin-proteasome system (UPS). When UPS is impaired, misfolded proteins form aggregates, which are transported along microtubules by motor protein dynein towards the juxta-nuclear microtubule-organizing center to form aggresome, a single cellular garbage disposal complex. Because aggresome formation results from proteasome failure, aggresome components are degraded through the autophagy/lysosome pathway. Here we report that small molecule isothiocyanates (ITCs) can induce formation of aggresome-like structure (ALS) through covalent modification of cytoplasmic {alpha}- and {beta}-tubulin. The formation of ALS is related to neither proteasome inhibition nor oxidative stress. ITC-induced ALS is a proteasome-dependent assembly for emergent removal of misfolded proteins, suggesting that the cell may have a previously unknown strategy to cope with misfolded proteins.

  15. Early events in herpes simplex virus type 1 infection: photosensitivity of fluorescein isothiocyanate-treated virions

    SciTech Connect

    DeLuca, N.; Bzik, D.; Person, S.; Snipes, W.

    1981-02-01

    Herpes simplex virus type 1 is photosensitized by treatment with fluorescein isothiocyanate (FITC). The inactivation of FITC-treated virions upon subsequent exposure to light is inhibited by the presence of sodium azide, suggesting the involvement of singlet oxygen in the process. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed that treatment with FITC plus light induces crosslinks in viral envelope glycoproteins. Treatment of virions with high concentrations of FITC (50 ..mu..g/ml) plus light causes a reduction in the adsorption of the virus to monolayers of human embryonic lung cells. For lower concentrations of FITC (10 ..mu..g/ml) plus light, treated virions adsorb to the host cells, but remain sensitive to light until entry occurs. The loss of light sensitivity coincides with the development of resistance to antibodies. These results are most consistent with a mechanism of entry for herpes simplex virus involving fusion of the viral membrane with the plasma membrane of the host cell.

  16. 7-Methylsulfinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes.

    PubMed

    Rose, P; Faulkner, K; Williamson, G; Mithen, R

    2000-11-01

    Watercress is an exceptionally rich dietary source of beta-phenylethyl isothiocyanate (PEITC). This compound inhibits phase I enzymes, which are responsible for the activation of many carcinogens in animals, and induces phase II enzymes, which are associated with enhanced excretion of carcinogens. In this study, we show that watercress extracts are potent inducers of quinone reductase (QR) in murine hepatoma Hepa 1c1c7 cells, a widely adopted assay for measuring phase II enzyme induction. However, contrary to expectations, this induction was not associated with PEITC (which is rapidly lost to the atmosphere upon tissue disruption due to its volatility) or a naturally occurring PEITC-glutathione conjugate, but with 7-methylsulfinyheptyl and 8-methylsulfinyloctyl isothiocyanates (ITCs). While it was confirmed that PEITC does induce QR (5 microM required for a two-fold induction in QR), 7-methylsulfinyheptyl and 8-methylsulfinyloctyl ITCs were more potent inducers (0.2 microM and 0.5 microM, respectively, required for a two-fold induction in QR). Thus, while watercress contains three times more phenylethyl glucosinolate than methylsulfinylalkyl glucosinolates, ITCs derived from methylsulfinylalkyl glucosinolates may be more important phase II enzyme inducers than PEITC, having 10 - to 25-fold greater potency. Analysis of urine by liquid chromatography-mass spectroscopy (LC-MS) following consumption of watercress demonstrated the presence of N:-acetylcysteine conjugates of 7-methylsulfinylheptyl, 8-methylsulfinyloctyl ITCs and PEITC, indicating that these ITCs are taken up by the gut and metabolized in the body. Watercress may have exceptionally good anticarcinogenic potential, as it combines a potent inhibitor of phase I enzymes (PEITC) with at least three inducers of phase II enzymes (PEITC, 7-methylsulfinylheptyl ITC and 8-methylsulfinyloctyl ITC). The study also demonstrates the application of LC-MS for the detection of complex glucosinolate-derived metabolites in

  17. Anti-NF-κB and Anti-inflammatory Activities of Synthetic Isothiocyanates: effect of chemical structures and cellular signaling

    PubMed Central

    Prawan, Auemduan; Saw, Constance Lay Lay; Khor, Tin Oo; Keum, Young-Sam; Yu, Siwang; Hu, Longqin; Kong, Ah-Ng

    2009-01-01

    Many cancer chemopreventive agents have been associated with lower cancer risk by suppressing nuclear factor-κB (NF-κB) signaling pathways, which subsequently leads to attenuated pro-inflammatory mediators and activities. Of the natural compounds, the isothiocyanates (ITCs) found in cruciferous vegetables have received particular attention because of their potential anti-cancer effects. However, limited studies regarding the influence of ITCs structure on NF-κB transactivation and anti-inflammatory action are reported. In the present study, the anti-inflammatory potential of ten structurally divergent synthetic ITCs were evaluated in HT-29-N9 human colon cancer cells and RAW 264.7 murine macrophages. The effect of ITCs on the basal transcriptional activation of NF-κB and the inflammatory response to bacterial lipopolysaccharide (LPS) were assessed. The synthetic ITC analogs suppressed NF-κB-mediated pro-inflammatory gene transcription. Among the ITC analogs, tetrahydrofurfuryl isothiocyanate, methyl-3-isothiocyanatopropionate, 3-morpholinopropyl isothiocyanate and 3,4-methyelendioxybenzyl isothiocyanate showed stronger NF-κB inhibition as compared to the parent compound, phenylethyl isothiocyanate (PEITC). Molecular analysis revealed that several of the pro-inflammatory mediators and cytokines (iNOS, COX-2, IL-1β , IL-6 and TNF-α ,) were reduced by ITCs, and correlated with the downregulation of NF-κB signaling pathways. Immunoblotting showed that ITCs suppressed LPS-induced phosphorylation and degradation of IκBα and decreased nuclear translocation of p65. In parallel, ITCs suppressed the phosphorylation of IκB kinase α /β (IKKα /β ). Taken together, our findings provide the possibility that synthetic ITC analogs might have promising cancer chemopreventive potential, based on their stronger anti-NF-κB and anti-inflammatory activities, than the natural ITCs. PMID:19159619

  18. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins

    SciTech Connect

    Sarkar, Ruma; Mukherjee, Sutapa; Biswas, Jaydip; Roy, Madhumita

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer HSPs (27, 70 and 90) and HSF1 are overexpressed in MCF-7 and MDA-MB-231 cells. Black-Right-Pointing-Pointer Sulphoraphane, a natural isothiocyanate inhibited HSPs and HSF1 expressions. Black-Right-Pointing-Pointer Inhibition of HSPs and HSF1 lead to regulation of apoptotic proteins. Black-Right-Pointing-Pointer Alteration of apoptotic proteins activate of caspases particularly caspase 3 and 9 leading to induction of apoptosis. Black-Right-Pointing-Pointer Alteration of apoptotic proteins induce caspases leading to induction of apoptosis. -- Abstract: Heat shock proteins (HSPs) are involved in protein folding, aggregation, transport and/or stabilization by acting as a molecular chaperone, leading to inhibition of apoptosis by both caspase dependent and/or independent pathways. HSPs are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion and metastasis. HSPs particularly 27, 70, 90 and the transcription factor heat shock factor1 (HSF1) play key roles in the etiology of breast cancer and can be considered as potential therapeutic target. The present study was designed to investigate the role of sulphoraphane, a natural isothiocyanate on HSPs (27, 70, 90) and HSF1 in two different breast cancer cell lines MCF-7 and MDA-MB-231 cells expressing wild type and mutated p53 respectively, vis-a-vis in normal breast epithelial cell line MCF-12F. It was furthermore investigated whether modulation of HSPs and HSF1 could induce apoptosis in these cells by altering the expressions of p53, p21 and some apoptotic proteins like Bcl-2, Bax, Bid, Bad, Apaf-1 and AIF. Sulphoraphane was found to down-regulate the expressions of HSP70, 90 and HSF1, though the effect on HSP27 was not pronounced. Consequences of HSP inhibition was upregulation of p21 irrespective of p53 status. Bax, Bad, Apaf-1, AIF were upregulated followed by down-regulation of Bcl-2 and this effect was prominent

  19. Multidirectional Time-Dependent Effect of Sinigrin and Allyl Isothiocyanate on Metabolic Parameters in Rats

    PubMed Central

    2010-01-01

    Sinigrin (SIN) and allyl isothiocyanate (AITC) are compounds found in high concentrations in Brassica family vegetables, especially in Brussels sprouts. Recently, they have been used as a nutrition supplement for their preventive and medicinal effect on some types of cancer and other diseases. In this research, nutritional significance of parent glucosinolate sinigrin 50 μmol/kg b. w./day and its degradation product allyl isothiocyanate 25 μmol/kg b. w./day and 50 μmol/kg b. w./day was studied by the evaluation of their influence on some parameters of carbohydrate and lipid metabolism in an animal rat model in vivo after their single (4 h) and 2 weeks oral administration. Additionally, the aim of this trial was to evaluate the direct action of AITC on basal and epinephrine-induced lipolysis in isolated rat adipocytes at concentration 1 μM, 10 μM and 100 μM in vitro. Sole AITC after 4 h of its ingestion caused liver triacylglycerols increment at both doses and glycaemia only at the higher dose. Multiple SIN treatment showed its putative bioconversion into AITC. It was found that SIN and AITC multiple administration in the same way strongly disturbed lipid and carbohydrate homeostasis, increasing esterified and total cholesterol, free fatty acids and lowering tracylglycerols in the blood serum. Additionally, AITC at both doses elevated insulinaemia and liver glycogen enhancement. The in vitro experiment revealed that AITC potentiated basal lipolysis process at 10 μM, and had stimulatory effect on epinephrine action at 1 μM and 10 μM. The results of this study demonstrated that the effect of SIN and AITC is multidirectional, indicating its impact on many organs like liver as well as pancreas, intestine in vivo action and rat adipocytes in vitro. Whilst consumption of cruciferous vegetables at levels currently considered “normal” seems to be beneficial to human health, this data suggest that any large increase in intake could conceivably lead

  20. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs. PMID:23470258

  1. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  2. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    PubMed Central

    Sporsheim, Bjørnar; Øverby, Anders; Bones, Atle Magnar

    2015-01-01

    Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP)-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER), vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system. PMID:26690132

  3. Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal.

    PubMed

    Ishikawa, Shota; Maruyama, Atsushi; Yamamoto, Yukihiro; Hara, Setsuko

    2014-01-01

    While some isothiocyanate (ITCs) are attractive targets for the agricultural and pharmaceutical industries, the presence of goitrin and ITCs has hampered the widespread utilization of rapeseed meal. ITCs are the products of the myrosinase-mediated hydrolysis of glucosinolate (GSLs). As such, a study was conducted in order to gain a better understanding into the identity of the GSLs contained in rapeseed meal. Extraction of the GSLs was carried out with 20% ethanol, affording 3.0% GSL content. The resulting GSL extracts were purified via silica gel column chromatography resulting in the isolation of main three pure GLSs (GSL A, B, and C) and a final GSL content of 39.8%. The indirect-identification of the GSLs in rapeseed meal was also carried out via GC/MS analysis of ITCs. The GSLs, progoitrin and gluconapin, were present in the highest concentration in these extracts. Interestingly, only goitrin was produced when GSL A was the substrate for the defatted rapeseed meal mediated hydrolysis reaction. This indicates GSL A is a progoitrin. Conversely, 3-butenyl ITC was produced only when GSL B was used as substrate, indicating GSL B is gluconapin. These results will be helpful for opening the doors for the use of rapeseed meal in the agricultural or pharmaceutical sectors.

  4. Effect of combined application of methyl isothiocyanate and chloropicrin on their transformation.

    PubMed

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin

    2004-01-01

    Combining several soil fumigants to increase the broad spectrum of pest control is a common fumigation practice in current production agriculture. In this study, we investigated the effect of combined application of chloropicrin and methyl isothiocyanate (MITC) on their transformations and persistence in the environment. In aqueous solution, no direct reaction between MITC and chloropicrin occurred and relatively slow rates of hydrolysis of these compounds were observed in aquatic environments free of suspended solids. The transformation of chloropicrin, however, was accelerated in aqueous solution with MITC because of a reduction reaction with bisulfide (HS(-)), which is a by-product of MITC hydrolysis. In soil, when fumigants were applied simultaneously, the degradation of MITC was suppressed under the bi-fumigant application due to the inhibition of soil microbial activity and a possible abiotic competition with chloropicrin for a limited number of reaction sites on the surface of soil particles. However, the degradation rate of chloropicrin was significantly enhanced in the bi-fumigant soil system, which was primarily attributed to the reaction of chloropicrin and HS(-). Two sequential application approaches were developed to investigate the feasibility of the combined application of metam sodium (parent compound of MITC) and chloropicrin in soil and assess their potential effects on environmental fate. For both application sequences, the degradation of chloropicrin was accelerated and that of MITC, as a major breakdown product of metam sodium, was inhibited in soil. PMID:15537938

  5. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    PubMed

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  6. Involvement of the Electrophilic Isothiocyanate Sulforaphane in Arabidopsis Local Defense Responses1

    PubMed Central

    Andersson, Mats X.; Nilsson, Anders K.; Johansson, Oskar N.; Boztaş, Gülin; Adolfsson, Lisa E.; Pinosa, Francesco; Petit, Christel Garcia; Aronsson, Henrik; Mackey, David; Tör, Mahmut; Hamberg, Mats; Ellerström, Mats

    2015-01-01

    Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell-to-cell factors acting at the local level generating the full defense reaction have remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naive tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis (Arabidopsis thaliana) leaf tissue undergoing the HR and that this compound induces cell death as well as primes defense in naive tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated programmed cell death upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds toward insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented here indicate that these compounds also trigger local defense responses in Arabidopsis tissue. PMID:25371552

  7. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance and hepatic gluconeogenesis in mice

    PubMed Central

    Waterman, Carrie; Rojas-Silva, Patricio; Tumer, Tugba Boyunegmez; Kuhn, Peter; Richard, Allison J.; Wicks, Shawna; Stephens, Jacqueline M.; Wang, Zhong; Mynatt, Randy; Cefalu, William; Raskin, Ilya

    2015-01-01

    Scope Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. Methods and results C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti- diabetic effects observed. Conclusion Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes. PMID:25620073

  8. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation.

    PubMed

    Hu, Ping; Hollister, Emily B; Somenahally, Anilkumar C; Hons, Frank M; Gentry, Terry J

    2014-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  9. Anabolic and Antiresorptive Modulation of Bone Homeostasis by the Epigenetic Modulator Sulforaphane, a Naturally Occurring Isothiocyanate.

    PubMed

    Thaler, Roman; Maurizi, Antonio; Roschger, Paul; Sturmlechner, Ines; Khani, Farzaneh; Spitzer, Silvia; Rumpler, Monika; Zwerina, Jochen; Karlic, Heidrun; Dudakovic, Amel; Klaushofer, Klaus; Teti, Anna; Rucci, Nadia; Varga, Franz; van Wijnen, Andre J

    2016-03-25

    Bone degenerative pathologies like osteoporosis may be initiated by age-related shifts in anabolic and catabolic responses that control bone homeostasis. Here we show that sulforaphane (SFN), a naturally occurring isothiocyanate, promotes osteoblast differentiation by epigenetic mechanisms. SFN enhances active DNA demethylation viaTet1andTet2and promotes preosteoblast differentiation by enhancing extracellular matrix mineralization and the expression of osteoblastic markers (Runx2,Col1a1,Bglap2,Sp7,Atf4, andAlpl). SFN decreases the expression of the osteoclast activator receptor activator of nuclear factor-κB ligand (RANKL) in osteocytes and mouse calvarial explants and preferentially induces apoptosis in preosteoclastic cells via up-regulation of theTet1/Fas/Caspase 8 and Caspase 3/7 pathway. These mechanistic effects correlate with higher bone volume (∼20%) in both normal and ovariectomized mice treated with SFN for 5 weeks compared with untreated mice as determined by microcomputed tomography. This effect is due to a higher trabecular number in these mice. Importantly, no shifts in mineral density distribution are observed upon SFN treatment as measured by quantitative backscattered electron imaging. Our data indicate that the food-derived compound SFN epigenetically stimulates osteoblast activity and diminishes osteoclast bone resorption, shifting the balance of bone homeostasis and favoring bone acquisition and/or mitigation of bone resorptionin vivo Thus, SFN is a member of a new class of epigenetic compounds that could be considered for novel strategies to counteract osteoporosis. PMID:26757819

  10. [Effect of phenylhexyl isothiocyanate on Wnt/beta-catenin signaling pathway in Jurkat cell line].

    PubMed

    Lin, Juan; Huang, Yi-Qun; Ma, Xu-Dong

    2013-04-01

    This study was purposed to investigate the effect of phenylhexyl isothiocyanate (PHI) on Wnt/β-catenin signaling pathway, histone acetylation, histone methylation and cell apoptosis in Jurkat cell line. The viability of Jurkat cells after treatment with PHI was tested by MTT. Apoptotic rate of Jurkat cells was measured by flow cytometry. The levels of Wnt/β-catenin related proteins including β-catenin, TCF, c-myc, and cyclinD1, histone acetylated H3 and H4, histone methylated H3K9 and H3K4 were detected by Western blot. The results showed that PHI inhibited the cell growth and induced apoptosis in Jurkat cells in time-and dose-dependent manners. Its IC50 at 48 h was about 20 µmol/L. Expression of histone acetylated H3, H4 and histone methylated H3k4 increased after exposure to PHI for 3 h, while histone methylated H3K9 decreased. Expression of β-catenin was not changed after exposure to PHI for 3 h, but expression of β-catenin, and its cell cycle-related genes such as TCF, c-myc and cyclinD1 decreased after exposure to PHI for 7 h. It is concluded that PHI regulates acetylation and methylation of histone, inhibits Wnt/β-catenin signal pathway, and is able to induce apoptosis and inhibits growth of Jurkat cells. PMID:23628033

  11. Emission, distribution and leaching of methyl isothiocyanate and chloropicrin under different surface containments.

    PubMed

    Zhang, Y; Wang, D

    2007-06-01

    The environmental fate of fumigants methyl isothiocyanate (MITC) and chloropicrin (CP) is of great concern for potential air and groundwater contamination while retaining sufficient concentrations for pest control efficacy. The emission, gas phase distribution, leaching, and persistence of MITC and CP were examined in repacked columns filled with sandy soils under three surface conditions: tarp without irrigation, tarp with limited irrigation, and 5-d irrigation without tarp cover. For MITC, cumulative emission constituted 62%, 36%, and 0.3% of the amount applied under tarp without irrigation, tarp with limited irrigation, and 5-d irrigation without tarp surface conditions, respectively. The corresponding cumulative emission losses were 45%, 30%, and 5.4% for CP. During the first 24h after injection, soil air concentrations of the two fumigants were much higher in the 15-25cm depth range than other depths in the soil profile. Small amounts of leaching occurred for both fumigants, indicating potential for groundwater contamination should heavy rain fall or irrigation occurs immediately after soil fumigation. Very small amounts of residual MITC and CP (<2%) were found in the soil 24 days after the experiment. The study clearly showed that atmospheric emission and degradation were the two primary pathways of MITC and CP dissipation during soil fumigation. Emission could be effectively reduced with 5-d irrigation if small leaching is acceptable or be prevented.

  12. Benzyl isothiocyanate inhibits HNSCC cell migration and invasion, and sensitizes HNSCC cells to cisplatin.

    PubMed

    Wolf, M Allison; Claudio, Pier Paolo

    2014-01-01

    Metastasis and chemoresistance represent two detrimental events that greatly hinder the outcome for those suffering with head and neck squamous cell carcinoma (HNSCC). Herein, we investigated benzyl isothiocyanate's (BITC) ability to inhibit HNSCC migration and invasion and enhance chemotherapy. Our data suggests that treatment with BITC 1) induced significant reductions in the viability of multiple HNSCC cell lines tested (HN12, HN8, and HN30) after 24 and 48 h, 2) decreased migration and invasion of the HN12 cells in a dose dependent manner, and 3) inhibited expression and altered localization of the epithelial-mesenchymal transition (EMT) marker, vimentin. We also observed that a pretreatment of BITC followed by cisplatin treatment 1) induced a greater decrease in HN12, HN30, and HN8 cell viability and total cell count than either treatment alone and 2) significantly increased apoptosis when compared to either treatment alone. Taken together these data suggest that BITC has the capacity to inhibit processes involved in metastasis and enhance the effectiveness of chemotherapy. Consequently, the results indicate that further investigation, including in vivo studies, are warranted.

  13. Comparison of bioactive phytochemical content and release of isothiocyanates in selected brassica sprouts.

    PubMed

    De Nicola, Gina Rosalinda; Bagatta, Manuela; Pagnotta, Eleonora; Angelino, Donato; Gennari, Lorenzo; Ninfali, Paolino; Rollin, Patrick; Iori, Renato

    2013-11-01

    The consumption of brassica sprouts as raw vegetables provides a fair amount of glucosinolates (GLs) and active plant myrosinase, which enables the breakdown of GLs into health-promoting isothiocyanates (ITCs). This study reports the determination of the main constituents related to human health found in edible sprouts of two Brassica oleracea varieties, broccoli and Tuscan black kale, and two Raphanus sativus varieties, Daikon and Sango. Radish sprouts exhibited the highest ability to produce ITCs, with Daikon showing the greatest level of conversion of GLs into bioactive ITCs (96.5%), followed by Sango (90.0%). Tuscan black kale gave a value of 68.5%, whereas broccoli displayed the lowest with 18.7%. ITCs were not the exclusive GL breakdown products in the two B. oleracea varieties, since nitriles were also produced, thus accounting for the lower conversion observed. Measuring the release of plant ITCs is a valuable tool in predicting the potential level of exposure to these bioactive compounds after the consumption of raw brassica sprouts.

  14. Effect of allyl isothiocyanate against Anisakis larvae during the anchovy marinating process.

    PubMed

    Giarratana, Filippo; Panebianco, Felice; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro

    2015-04-01

    Allyl isothiocyanate (AITC), is a natural compound found in plants belonging to the family Cruciferae and has strong antimicrobial activity and a biocidal activity against plants parasites. Anisakidosis is a zoonotic disease caused by the ingestion of larval nematodes in raw, almost raw, and marinated and/or salted seafood dishes. The aim of this work was to evaluate the effect of AITC against Anisakis larvae and to study its potential use during the marinating process. The effects of AITC against Anisakis larvae were tested in three experiment: in vitro with three liquid media, in semisolid media with a homogenate of anchovy muscle, and in a simulation of two kinds of anchovy fillets marinating processes. For all tests, the concentrations of AITC were 0, 0.01, 0.05, and 0.1%. Significant activity of AITC against Anisakis larvae was observed in liquid media, whereas in the semisolid media, AITC was effective only at higher concentrations. In anchovy fillets, prior treatment in phosphate buffer solution (1.5% NaCl, pH 6.8) with 0.1% AITC and then marination under standard conditions resulted in a high level of larval inactivation. AITC is a good candidate for further investigation as a biocidal agent against Anisakis larvae during the industrial marinating process.

  15. Evaluation of Fluorescein Isothiocyanate-labeled Whole Antiserum in the Immunofluorescent Identification of Microorganisms

    PubMed Central

    Sweet, George H.; Schindler, Charles A.

    1967-01-01

    Portions of a whole antiserum to Histoplasma capsulatum were reacted with amounts of fluorescein isothiocyanate (FITC) that ranged from 50 to 400 μg/mg of protein. Portions of the globulin from the same antiserum were reacted with amounts of FITC that ranged from 12.5 to 50 μg of FITC per mg of protein. The globulin conjugates (postlabeled globulins), the whole serum conjugates, and the globulins from the whole serum conjugates (prelabeled globulins) were compared with respect to their fluorescein-protein (F:P) ratios and fluorescent-antibody (FA) activities. The whole serum sample treated with 50 μg of FITC per mg of protein was least reactive in FA tests, and its globulin had the lowest F:P. All other conjugates had globulins with F:P ratios that were considered to be adequate for high FA activity. It was found, however, that the prelabeled globulins were considerably less reactive than the postlabeled globulins or the whole serum conjugates. A larger amount of brightly staining reagent per milliliter of original serum could be obtained from labeled whole serum than from postlabeled globulin. Lissamine-rhodamine conjugated to bovine serum albumin (LRBSA) was evaluated as a counterstain to be used in conjunction with FITC-labeled whole antisera. The counterstain was effective in masking nonspecific FITC fluorescence in Formalin-fixed tissues and in culture smears of fungi. Masking was incomplete in culture smears of a bacterium and in blood smears containing a protozoan. Images PMID:5337774

  16. Dibutyl Maleate and Dibutyl Fumarate Enhance Contact Sensitization to Fluorescein Isothiocyanate in Mice.

    PubMed

    Matsuoka, Takeshi; Kurohane, Kohta; Suzuki, Wakana; Ogawa, Erina; Kobayashi, Kamiyu; Imai, Yasuyuki

    2016-01-01

    Di-n-butyl phthalate (DBP), a phthalate ester, has been shown to have an adjuvant effect on fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) mouse models. Di-n-butyl maleate (DBM), widely used as a plasticizer for industrial application, has been reported to cause dermatitis in humans. DBM is a butyl alcohol ester of di-carboxylic acid that represents a part of the DBP structure, while di-n-butyl fumarate (DBF) is a trans isomer of DBM. We examined whether DBM or DBF exhibits an adjuvant effect like DBP does. When BALB/c mice were epicutaneously sensitized with FITC in the presence of DBM or DBF, the FITC-specific CHS response was enhanced, as we have observed for DBP. As to underlying mechanisms, DBM and DBF facilitated the trafficking of FITC-presenting CD11c(+) dendritic cells (DCs) from skin to draining lymph nodes and increased the cytokine production by draining lymph nodes. In conclusion, DBM and DBF may have an effect that aggravates contact dermatitis through a skin sensitization process. PMID:26632200

  17. Honey-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence

    PubMed Central

    Abdul Kadir, Habsah; Tayyab, Saad

    2013-01-01

    Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔGDH2O and ΔGD25°C in presence of honey also suggested protein stabilization. PMID:24222758

  18. Effects of hyperthermia, irradiation, and cytotoxic drugs on fluorescein isothiocyanate staining intensity for flow cytofluorometry

    SciTech Connect

    Dyson, J.E.; McLaughlin, J.B.; Surrey, C.R.; Simmons, D.M.; Daniel, J.

    1987-01-01

    Measurement of fluorescein isothiocyanate (FITC) staining intensity of cultured lymphoblastoid cells following hyperthermia showed large increases without concomitant increases in nuclear protein. Similar measurements of cells following incubation with cytotoxic drugs showed fluorescent intensity increases that exceeded the increases in nuclear protein that were due to the cell cycle blocking action of the drug. The reverse, however, was true for cells following irradiation. In contrast, FITC staining intensity and nuclear protein measurements of cells proceeding through the cell cycle after removal of the cycle blocking agent showed nearly parallel changes, although there were reproducible minor differences, especially following blocking with hydroxyurea. These results suggest that FITC staining intensity is a function not only of nuclear protein content but also of stain access to the reaction sites of the protein constituents of the chromatin. Thus, it is possible that FITC staining may be used as a probe of changes in chromatin structure following experimental manipulation of cells in vitro or treatment of tumors in vivo.

  19. Broad spectrum antibacterial activity of a mixture of isothiocyanates from nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix).

    PubMed

    Conrad, A; Biehler, D; Nobis, T; Richter, H; Engels, I; Biehler, K; Frank, U

    2013-02-01

    Isothiocyanates have been reported to exert antimicrobial activity. These compounds are found in a licensed native preparation of nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix) which is used for treatment of upper respiratory and urinary tract infections. The aim of our investigation was to assess the antimicrobial activity of a mixture of the contained benzyl-, allyl-, and phenylethyl- isothiocyanates against clinically important bacterial and fungal pathogens including antimicrobial resistant isolates. Susceptibility testing was performed by agar-dilution technique. Isothiocyanates were mixed in proportions identical to the licensed drug. Minimum inhibitory- and minimum bactericidal concentrations were assessed. The Minimum inhibitory concentration90 was defined as the concentration which inhibited 90% of the microbial species tested. H. influenzae, M. catarrhalis, S. marcescens, P. vulgaris, and Candida spp. were found to be highly susceptible, with minimum inhibitory concentration90 -values ranging between ≤0.0005% and 0.004% (v/v) of total ITC. Intermediate susceptibilities were observed for S. aureus, S. pyogenes, S. pneumoniae, K. pneumoniae, E. coli and P. aeruginosa, with Minimum inhibitory concentration90 -values ranging between 0.004% and 0.125% (v/v), but with elevated Minimum bactericidal concentrations90-values (2-7 dilution steps above Minimum inhibitory concentration90). Low susceptibilities were determined for viridans streptococci and enterococci. Interestingly, both resistant and non-resistant bacteria were similarly susceptible to the test preparation.

  20. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells

    PubMed Central

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F. H.

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate—the benzyl isothiocyanate (BITC)—modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC—extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase—to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  1. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).

    PubMed

    Sávio, André Luiz Ventura; da Silva, Glenda Nicioli; Salvadori, Daisy Maria Fávero

    2015-01-01

    Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype. PMID:25771977

  2. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion.

    PubMed

    Bhattacharya, Arup; Li, Yun; Wade, Kristina L; Paonessa, Joseph D; Fahey, Jed W; Zhang, Yuesheng

    2010-12-01

    Allyl isothiocyanate (AITC), which occurs in many common cruciferous vegetables, was recently shown to be selectively delivered to bladder cancer tissues through urinary excretion and to inhibit bladder cancer development in rats. The present investigation was designed to test the hypothesis that AITC-containing cruciferous vegetables also inhibit bladder cancer development. We focused on an AITC-rich mustard seed powder (MSP-1). AITC was stably stored as its glucosinolate precursor (sinigrin) in MSP-1. Upon addition of water, however, sinigrin was readily hydrolyzed by the accompanying endogenous myrosinase. This myrosinase was also required for full conversion of sinigrin to AITC in vivo, but the matrix of MSP-1 had no effect on AITC bioavailability. Sinigrin itself was not bioactive, whereas hydrated MSP-1 caused apoptosis and G(2)/M phase arrest in bladder cancer cell lines in vitro. Comparison between hydrated MSP-1 and pure sinigrin with added myrosinase suggested that the anticancer effect of MSP-1 was derived principally, if not entirely, from the AITC generated from sinigrin. In an orthotopic rat bladder cancer model, oral MSP-1 at 71.5 mg/kg (sinigrin dose of 9 μmol/kg) inhibited bladder cancer growth by 34.5% (P < 0.05) and blocked muscle invasion by 100%. Moreover, the anticancer activity was associated with significant modulation of key cancer therapeutic targets, including vascular endothelial growth factor, cyclin B1 and caspase 3. On an equimolar basis, the anticancer activity of AITC delivered as MSP-1 appears to be more robust than that of pure AITC. MSP-1 is thus an attractive delivery vehicle for AITC and it strongly inhibits bladder cancer development and progression. PMID:20889681

  3. Growth-inhibitory activity of natural and synthetic isothiocyanates against representative human microbial pathogens

    PubMed Central

    Kurepina, Natalia; Kreiswirth, Barry N.; Mustaev, Arkady

    2013-01-01

    Aims The aim of this study was to test the growth inhibition activity of isothiocyanates (ITC), defense compounds of plants, against common human microbial pathogens. Methods and Results In this study we have tested the growth inhibitory activity of a diverse collection of new and previously known representative ITC of various structural classes against pathogenic bacteria, fungi and molds by a serial dilution method. Generally, the compounds were more active against Gram-positive bacteria and fungi exhibiting species-specific bacteriostatic or bactericidal effect. The most active compounds inhibited the growth of both drug-susceptible and multi drug resistant (MDR) pathogens at micromolar concentrations. In the case of Mycobacterium tuberculosis some compounds were more active against MDR, rather than against susceptible strains. The average anti-microbial activity for some of new derivatives was significantly higher than previously reported for the most active ITC compounds. The structure-activity relationship (SAR) established for various classes of ITC with Bacillus cereus (model organism for B. anthracis) followed a distinct pattern, thereby enabling prediction of new more efficient inhibitors. Remarkably, tested bacteria failed to develop resistance to ITC. While effectively inhibiting microbial growth, ITCs displayed moderate toxicity towards eukaryotic cells. Conclusions High antimicrobial activity coupled with moderate toxicity grants further thorough studies of the ITC compounds aimed at elucidation of their cellular targets and inhibitory mechanism. Significance and impact of the study This systematic study identified new ITC compounds highly active against common human microbial pathogens at the concentrations comparable with those for currently used antimicrobial drugs (e.g. rifampicin, fluconazole). Tested representative pathogens do not develop resistance to the inhibitors. These properties justify further evaluation of ITC compounds as potential

  4. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  5. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).

    PubMed

    Sávio, André Luiz Ventura; da Silva, Glenda Nicioli; Salvadori, Daisy Maria Fávero

    2015-01-01

    Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype.

  6. Benefits and Risks of the Hormetic Effects of Dietary Isothiocyanates on Cancer Prevention

    PubMed Central

    Bao, Yongping; Wang, Wei; Zhou, Zhigang; Sun, Changhao

    2014-01-01

    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 µM) to promote cell proliferation to 120–143% of the controls in a number of human cell lines, whilst at high levels (10–40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10–20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint. PMID:25532034

  7. Anticancer Activities of Pterostilbene-Isothiocyanate Conjugate in Breast Cancer Cells: Involvement of PPARγ

    PubMed Central

    Nikhil, Kumar; Sharan, Shruti; Singh, Abhimanyu K.; Chakraborty, Ajanta; Roy, Partha

    2014-01-01

    Trans-3,5-dimethoxy-4′-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway. PMID:25119466

  8. Anticancer activities of pterostilbene-isothiocyanate conjugate in breast cancer cells: involvement of PPARγ.

    PubMed

    Nikhil, Kumar; Sharan, Shruti; Singh, Abhimanyu K; Chakraborty, Ajanta; Roy, Partha

    2014-01-01

    Trans-3,5-dimethoxy-4'-hydroxystilbene (PTER), a natural dimethylated analog of resveratrol, preferentially induces certain cancer cells to undergo apoptosis and could thus have a role in cancer chemoprevention. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is a ligand-dependent transcription factor whose activation results in growth arrest and/or apoptosis in a variety of cancer cells. Here we investigated the potential of PTER-isothiocyanate (ITC) conjugate, a novel class of hybrid compound (PTER-ITC) synthesized by appending an ITC moiety to the PTER backbone, to induce apoptotic cell death in hormone-dependent (MCF-7) and -independent (MDA-MB-231) breast cancer cell lines and to elucidate PPARγ involvement in PTER-ITC action. Our results showed that when pre-treated with PPARγ antagonists or PPARγ siRNA, both breast cancer cell lines suppressed PTER-ITC-induced apoptosis, as determined by annexin V/propidium iodide staining and cleaved caspase-9 expression. Furthermore, PTER-ITC significantly increased PPARγ mRNA and protein levels in a dose-dependent manner and modulated expression of PPARγ-related genes in both breast cancer cell lines. This increase in PPARγ activity was prevented by a PPARγ-specific inhibitor, in support of our hypothesis that PTER-ITC can act as a PPARγ activator. PTER-ITC-mediated upregulation of PPARγ was counteracted by co-incubation with p38 MAPK or JNK inhibitors, suggesting involvement of these pathways in PTER-ITC action. Molecular docking analysis further suggested that PTER-ITC interacted with 5 polar and 8 non-polar residues within the PPARγ ligand-binding pocket, which are reported to be critical for its activity. Collectively, our observations suggest potential applications for PTER-ITC in breast cancer prevention and treatment through modulation of the PPARγ activation pathway. PMID:25119466

  9. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China.

    PubMed

    Fowke, Jay H; Shu, Xiao-Ou; Dai, Qi; Shintani, Ayumi; Conaway, C Clifford; Chung, Fung-Lung; Cai, Qiuyin; Gao, Yu-Tang; Zheng, Wei

    2003-12-01

    Alternative measures of Brassica vegetable consumption (e.g., cabbage) may clarify the association between Brassica and cancer risk. Brassica isothiocyanates (ITCs) are excreted in urine and may provide a sensitive and food-specific dietary biomarker. However, the persistence of ITCs in the body may be brief and dependent on the activity of several Phase II enzymes, raising questions about the relationship between a single ITC measure and habitual dietary patterns. This study investigates the association between urinary ITC excretion and habitual Brassica consumption, estimated by a food frequency questionnaire, among healthy Chinese women enrolled in the Shanghai Breast Cancer Study. Participants (n = 347) completed a validated food frequency questionnaire querying habitual dietary intake during the prior 5 years and provided a fasting first-morning urine specimen. Genetic deletion of glutathione S-transferases (GSTM1/GSTT1), and single nucleotide substitutions in GSTP1 (A313G) and NAD(P)H:quinone oxidoreductase 1 (NQO1: C609T), were identified from blood DNA. Urinary ITC excretion levels were marginally higher with the GSTT1-null or GSTP1-G/G genotypes (P = 0.07, P = 0.05, respectively). Mean habitual Brassica intake was 98.3 g/day, primarily as bok choy, and Brassica intake significantly increased across quartile categories of ITC levels. The association between habitual Brassica intake and urinary ITC levels was stronger among women with GSTT1-null or GSTP1-A/A genotypes, or NQO1 T-allele, and the interaction was statistically significant across GSTP1 genotype. In conclusion, a single urinary ITC measure, in conjunction with markers of Phase II enzyme activity, provides a complementary measure of habitual Brassica intake among Shanghai women.

  10. Hepatoprotective effects of allyl isothiocyanate against carbon tetrachloride-induced hepatotoxicity in rat.

    PubMed

    Ahn, Meejung; Kim, Jeongtae; Bang, Hyojin; Moon, Jihwan; Kim, Gi Ok; Shin, Taekyun

    2016-07-25

    We evaluated the hepatoprotective activity of allyl isothiocyanate (AITC) against carbon tetrachloride (CCl4)-induced liver injury in rats. Sprague Dawley rats were orally administered AITC at doses of 5 (AITC 5) and 50 (AITC 50) mg/kg body weight once daily for 3 days, with or without intraperitoneal injection of CCl4. Serum chemistry was assessed for changes in alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The enzyme activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were examined in liver tissues, while pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) mRNA expression were analyzed using real-time polymerase chain reaction. And heme oxygenase-1 (HO-1) and ionized calcium binding protein-1 (Iba-1) immunoreactivities were evaluated by Western blot analysis and immunohistochemistry, respectively. In serum chemistry, the oral administration of AITC itself did not affect the serum levels of ALT or AST, furthermore pretreatment with AITC 5 and AITC 50 significantly reduced the ALT and AST activity levels that were elevated in CCl4-intoxicated rats. In addition, AITC significantly suppressed the reduction of SOD and CAT, and the elevation of MDA, TNF-α mRNA expression, on the other hands, induced the expression of HO-1 compared with those of the vehicle-treated CCl4 group. The histopathological evaluation and Iba-1 immunoreactivity also supported the hepatoprotective effects of AITC against CCl4-induced liver injury. These results suggest that AITC ameliorates oxidative liver injury, possibly through reducing lipid peroxidation, enhancing antioxidant enzymes, and suppressing Kupffer cells and macrophages. PMID:27241356

  11. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    PubMed

    Guzmán-Pérez, Valentina; Bumke-Vogt, Christiane; Schreiner, Monika; Mewis, Inga; Borchert, Andrea; Pfeiffer, Andreas F H

    2016-01-01

    Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC)-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance. PMID:27622707

  12. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China.

    PubMed

    Fowke, Jay H; Shu, Xiao-Ou; Dai, Qi; Shintani, Ayumi; Conaway, C Clifford; Chung, Fung-Lung; Cai, Qiuyin; Gao, Yu-Tang; Zheng, Wei

    2003-12-01

    Alternative measures of Brassica vegetable consumption (e.g., cabbage) may clarify the association between Brassica and cancer risk. Brassica isothiocyanates (ITCs) are excreted in urine and may provide a sensitive and food-specific dietary biomarker. However, the persistence of ITCs in the body may be brief and dependent on the activity of several Phase II enzymes, raising questions about the relationship between a single ITC measure and habitual dietary patterns. This study investigates the association between urinary ITC excretion and habitual Brassica consumption, estimated by a food frequency questionnaire, among healthy Chinese women enrolled in the Shanghai Breast Cancer Study. Participants (n = 347) completed a validated food frequency questionnaire querying habitual dietary intake during the prior 5 years and provided a fasting first-morning urine specimen. Genetic deletion of glutathione S-transferases (GSTM1/GSTT1), and single nucleotide substitutions in GSTP1 (A313G) and NAD(P)H:quinone oxidoreductase 1 (NQO1: C609T), were identified from blood DNA. Urinary ITC excretion levels were marginally higher with the GSTT1-null or GSTP1-G/G genotypes (P = 0.07, P = 0.05, respectively). Mean habitual Brassica intake was 98.3 g/day, primarily as bok choy, and Brassica intake significantly increased across quartile categories of ITC levels. The association between habitual Brassica intake and urinary ITC levels was stronger among women with GSTT1-null or GSTP1-A/A genotypes, or NQO1 T-allele, and the interaction was statistically significant across GSTP1 genotype. In conclusion, a single urinary ITC measure, in conjunction with markers of Phase II enzyme activity, provides a complementary measure of habitual Brassica intake among Shanghai women. PMID:14693750

  13. Disintegration of microtubules in Arabidopsis thaliana and bladder cancer cells by isothiocyanates

    PubMed Central

    Øverby, Anders; Bævre, Mette S.; Thangstad, Ole P.; Bones, Atle M.

    2015-01-01

    Isothiocyanates (ITCs) from biodegradation of glucosinolates comprise a group of electrophiles associated with growth-inhibitory effects in plant- and mammalian cells. The underlying modes of action of this feature are not fully understood. Clarifying this has involved mammalian cancer cells due to ITCs' chemopreventive potential. The binding of ITCs to tubulins has been reported as a mechanism by which ITCs induce cell cycle arrest and apoptosis. In the present study we demonstrate that ITCs disrupt microtubules in Arabidopsis thaliana contributing to the observed inhibited growth phenotype. We also confirmed this in rat bladder cancer cells (AY-27) suggesting that cells from plant and animals share mechanisms by which ITCs affect growth. Exposure of A. thaliana to vapor-phase of allyl ITC (AITC) inhibited growth and induced a concurrent bleaching of leaves in a dose-dependent manner. Transcriptional analysis was used to show an upregulation of heat shock-genes upon AITC-treatment. Transgenic A. thaliana expressing GFP-marked α-tubulin was employed to show a time- and dose-dependent disintegration of microtubules by AITC. Treatment of AY-27 with ITCs resulted in a time- and dose-dependent decrease of cell proliferation and G2/M-arrest. AY-27 transiently transfected to express GFP-tagged α-tubulin were treated with ITCs resulting in a loss of microtubular filaments and the subsequent formation of apoptotic bodies. In conclusion, our data demonstrate an ITC-induced mechanism leading to growth inhibition in A. thaliana and rat bladder cancer cells, and expose clues to the mechanisms underlying the physiological role of glucosinolates in vivo. PMID:25657654

  14. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion.

    PubMed

    Bhattacharya, Arup; Li, Yun; Wade, Kristina L; Paonessa, Joseph D; Fahey, Jed W; Zhang, Yuesheng

    2010-12-01

    Allyl isothiocyanate (AITC), which occurs in many common cruciferous vegetables, was recently shown to be selectively delivered to bladder cancer tissues through urinary excretion and to inhibit bladder cancer development in rats. The present investigation was designed to test the hypothesis that AITC-containing cruciferous vegetables also inhibit bladder cancer development. We focused on an AITC-rich mustard seed powder (MSP-1). AITC was stably stored as its glucosinolate precursor (sinigrin) in MSP-1. Upon addition of water, however, sinigrin was readily hydrolyzed by the accompanying endogenous myrosinase. This myrosinase was also required for full conversion of sinigrin to AITC in vivo, but the matrix of MSP-1 had no effect on AITC bioavailability. Sinigrin itself was not bioactive, whereas hydrated MSP-1 caused apoptosis and G(2)/M phase arrest in bladder cancer cell lines in vitro. Comparison between hydrated MSP-1 and pure sinigrin with added myrosinase suggested that the anticancer effect of MSP-1 was derived principally, if not entirely, from the AITC generated from sinigrin. In an orthotopic rat bladder cancer model, oral MSP-1 at 71.5 mg/kg (sinigrin dose of 9 μmol/kg) inhibited bladder cancer growth by 34.5% (P < 0.05) and blocked muscle invasion by 100%. Moreover, the anticancer activity was associated with significant modulation of key cancer therapeutic targets, including vascular endothelial growth factor, cyclin B1 and caspase 3. On an equimolar basis, the anticancer activity of AITC delivered as MSP-1 appears to be more robust than that of pure AITC. MSP-1 is thus an attractive delivery vehicle for AITC and it strongly inhibits bladder cancer development and progression.

  15. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth.

    PubMed

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-10-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53(R175), one of the most frequent 'hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53(R175) mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53(R175) mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53(R175) mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53(R175) and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary

  16. Urinary Isothiocyanate Levels and Lung Cancer Risk Among Non-Smoking Women: a Prospective Investigation

    PubMed Central

    Fowke, Jay H.; Gao, Yu-Tang; Chow, Wong-Ho; Cai, Qiuyin; Shu, Xiao-Ou; Li, Hong-lan; Ji, Bu-Tian; Rothman, Nat; Yang, Gong; Chung, Fung-Lung; Zheng, Wei

    2010-01-01

    Background Aside from tobacco carcinogen metabolism, isothiocyanates (ITC) from cruciferous vegetables may induce apoptosis or steroid metabolism to reduce lung cancer risk. To separate the effect of these divergent mechanisms of action, we investigated the association between urinary ITC levels and lung cancer risk among non-smoking women. Methods We conducted a nested case-control within the Shanghai Women’s Health Study. Subjects included 209 incident lung cancer cases who never used tobacco, and 787 individually matched non-smoking controls. Conditional logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI) summarizing the association between urinary ITC levels and lung cancer. Secondary analyses stratified the ITC-lung cancer analyses by menopausal status, exposure to environmental tobacco smoke, and GSTM1 and GSTT1 genotypes. Results Urinary ITC levels were not significantly associated with lower lung cancer risk among non-smoking women, regardless of exposure to environmental tobacco smoke or menopausal status. Furthermore, this association was not modified by GSTT1 genotype. However, an inverse association was suggested among women with a GSTM1-positive genotype (Q1: OR=1.0 (reference); Q2: OR=0.35 (0.14, 0.89); Q3: OR=0.47 (0.20, 1.10); Q4: OR=0.63 (0.35, 1.54), p-trend = 0.38)). In contrast, lung cancer risk was positively associated with urinary ITC levels among women with the GSTM1-null genotype (Q1: OR=1.0 (reference); Q2: OR=1.67 (0.80, 3.50); Q3: OR=1.54 (0.71, 3.33); Q4: OR=2.22 (1.05, 4.67), p-trend = 0.06)). Conclusion Urinary ITC levels were not associated overall with lower lung cancer risk among non-smoking women, but secondary analyses suggested an interaction between urinary ITC levels, GSTM1 genotype, and lung cancer risk. PMID:21122939

  17. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth

    PubMed Central

    Aggarwal, M; Saxena, R; Sinclair, E; Fu, Y; Jacobs, A; Dyba, M; Wang, X; Cruz, I; Berry, D; Kallakury, B; Mueller, S C; Agostino, S D; Blandino, G; Avantaggiati, M L; Chung, F-L

    2016-01-01

    Mutations in the p53 tumor-suppressor gene are prevalent in human cancers. The majority of p53 mutations are missense, which can be classified into contact mutations (that directly disrupts the DNA-binding activity of p53) and structural mutations (that disrupts the conformation of p53). Both of the mutations can disable the normal wild-type (WT) p53 activities. Nevertheless, it has been amply documented that small molecules can rescue activity from mutant p53 by restoring WT tumor-suppressive functions. These compounds hold promise for cancer therapy and have now entered clinical trials. In this study, we show that cruciferous-vegetable-derived phenethyl isothiocyanate (PEITC) can reactivate p53 mutant under in vitro and in vivo conditions, revealing a new mechanism of action for a dietary-related compound. PEITC exhibits growth-inhibitory activity in cells expressing p53 mutants with preferential activity toward p53R175, one of the most frequent ‘hotspot' mutations within the p53 sequence. Mechanistic studies revealed that PEITC induces apoptosis in a p53R175 mutant-dependent manner by restoring p53 WT conformation and transactivation functions. Accordingly, in PEITC-treated cells the reactivated p53R175 mutant induces apoptosis by activating canonical WT p53 targets, inducing a delay in S and G2/M phase, and by phosphorylating ATM/CHK2. Interestingly, the growth-inhibitory effects of PEITC depend on the redox state of the cell. Further, PEITC treatments render the p53R175 mutant sensitive to degradation by the proteasome and autophagy in a concentration-dependent manner. PEITC-induced reactivation of p53R175 and its subsequent sensitivity to the degradation pathways likely contribute to its anticancer activities. We further show that dietary supplementation of PEITC is able to reactivate WT activity in vivo as well, inhibiting tumor growth in xenograft mouse model. These findings provide the first example of mutant p53 reactivation by a dietary compound and

  18. Nrf2 Knockout Attenuates the Anti-Inflammatory Effects of Phenethyl Isothiocyanate and Curcumin

    PubMed Central

    2015-01-01

    The role of phytochemicals in preventive and therapeutic medicine is a major area of scientific research. Several studies have illustrated the mechanistic roles of phytochemicals in Nrf2 transcriptional activation. The present study aims to examine the importance of the transcription factor Nrf2 by treating peritoneal macrophages from Nrf2+/+ and Nrf2–/– mice ex vivo with phenethyl isothiocyanate (PEITC) and curcumin (CUR). The peritoneal macrophages were pretreated with the drugs and challenged with lipopolysaccharides (LPSs) alone and in combination with PEITC or CUR to assess their anti-inflammatory and antioxidative effects based on gene and protein expression in the treated cells. LPS treatment resulted in an increase in the expression of inflammatory markers such as cycloxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in both Nrf2+/+ and Nrf2–/– macrophages, detected by quantitative polymerase chain reaction (qPCR). Nrf2+/+ macrophages treated with PEITC and CUR exhibited a significant decrease in the expression of these anti-inflammatory genes along with an increase in the expression of hemeoxygenase-1 (HO-1), which is an antioxidative stress gene downstream of the Nrf2 transcription factor battery. Although there was no significant decrease in the expression of the anti-inflammatory genes or an increase in HO-1 expression in Nrf2–/– macrophages treated with either PEITC or CUR, there was a significant decrease in the protein expression of COX-2 and an increase in the expression of HO-1 in Nrf2+/+ macrophages treated with PEITC compared to that with CUR treatment. No significant changes were observed in the macrophages from knockout animals. Additionally, there was a significant decrease in LPS-induced IL-6 and TNF-α production following PEITC treatment compared with that following CUR in Nrf2+/+ macrophages, whereas no change was observed in the macrophages from knockout

  19. Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in Indian mustard (Brassica juncea L.).

    PubMed

    Gerendás, Jóska; Podestát, Jana; Stahl, Thorsten; Kübler, Kerstin; Brückner, Hans; Mersch-Sundermann, Volker; Mühling, Karl H

    2009-05-13

    Food derived from Brassica species is rich in glucosinolates. Hydrolysis of these compounds by myrosinase yields isothiocyanates and other breakdown products, which due to their pungency represent the primary purpose of Indian mustard cultivation. Strong interactive effects of S (0.0, 0.2, and 0.6 g pot(-1)) and N (1, 2, and 4 g pot(-1)) supply on growth, seed yield, and the concentrations of glucosinolates and isothiocyanates in seeds were observed in growth experiments, reflecting the involvement of S-containing amino acids in both protein and glucosinolate synthesis. At intermediate S supply, a strong N-induced S limitation was apparent, resulting in high concentrations of sinigrin (12 micromol g(-1) of DM) and allyl isothiocyanate (213 micromol kg(-1) of DM) at low N supply only. Myrosinase activity in seeds increased under low N and low S supply, but the results do not suggest that sinigrin functions as a transient reservoir for S. PMID:19309148

  20. [3,3]-Sigmatropic shifts and retro-ene rearrangements in cyanates, isocyanates, thiocyanates, and isothiocyanates of the form RX-YCN and RX-NCY.

    PubMed

    Koch, Rainer; Finnerty, Justin J; Murali, Sukumaran; Wentrup, Curt

    2012-02-17

    Retro-ene type [2π + 2π + 2σ] and [3,3]-sigmatropic shift reactions involving the substituent groups R in heteroatom-substituted cyanates and thiocyanates RX-YCN and the isomeric isocyanates and isothiocyanates of the type RX-NCY (X = CR(2), NR', O, or S; Y = O or S) have been investigated computationally at the B3LYP/6-311++G(d,p) level. Retro-ene reactions of alkyl derivatives of the title compounds afford alkenes, imines, carbonyl and thiocarbonyl compounds together with HNCO (HNCS) or HOCN (HSCN). [3,3]-Sigmatropic shifts (hetero-Cope rearrangements) of the corresponding allyl, propargyl, benzyl, and aryl derivatives causes allylic rearrangements, propargyl-allenyl rearrangement, conversion of benzyl cyanates to o-isocyanatotoluenes, and conversion of N-cyanatoarylamines to o-isocyanatoanilines, etc. The corresponding rearrangements of allyl thiocyanates, arylamino thiocyanates and isothiocyanates, and arylsulfenyl thiocyanates and isothiocyanates are also described. PMID:22251012

  1. The toxic effects of benzyl glucosinolate and its hydrolysis product, the biofumigant benzyl isothiocyanate, to Folsomia fimetaria.

    PubMed

    Jensen, John; Styrishave, Bjarne; Gimsing, Anne Louise; Bruun Hansen, Hans Christian

    2010-02-01

    Natural isothiocyanates (ITCs) are toxic to a range of pathogenic soil-living species, including nematodes and fungi, and can thus be used as natural fumigants called biofumigants. Natural isothiocyanates are hydrolysis products of glucosinolates (GSLs) released from plants after cell rupture. The study investigated the toxic effects of benzyl-GSL and its hydrolysis product benzyl-ITC on the springtail Folsomia fimetaria, a beneficial nontarget soil-dwelling micro-arthropod. The soil used was a sandy agricultural soil. Half-lives for benzyl-ITC in the soil depended on the initial soil concentration, ranging from 0.2 h for 67 nmol/g to 13.2 h for 3,351 nmol/g. For benzyl-ITC, the concentration resulting in 50% lethality (LC50) value for F. fimetaria adult mortality was 110 nmol/g (16.4 mg/kg) and the concentration resulting in 50% effect (EC50) value for juvenile production was 65 nmol/g (9.7 mg/kg). Benzyl-GSL proved to be less toxic and consequently an LC50 value for mortality could not be estimated for springtails exposed to benzyl-GSL. For reproduction, an EC50 value was estimated to approximately 690 nmol/g. The study indicates that natural soil concentrations of ITCs may be toxic to beneficial nontarget soil-dwelling arthropods such as springtails. PMID:20821454

  2. Identification and analysis of isothiocyanates and new acylated anthocyanins in the juice of Raphanus sativus cv. Sango sprouts.

    PubMed

    Matera, Riccardo; Gabbanini, Simone; De Nicola, Gina Rosalinda; Iori, Renato; Petrillo, Gianna; Valgimigli, Luca

    2012-07-15

    The freeze-dried sprouts' juice of Raphanus sativus (L.) cv. Sango was prepared and analysed for the first time. HPLC analysis of total isothiocyanates, after protein displacement, resulted in 77.8 ± 3.0 μmol/g of dry juice while GC-MS analysis of hexane and acetone extracts showed E- and Z-raphasatin (8.9 and 0.11 μmol/g, respectively) and sulforaphene (11.7 μmol/g), summing up to 20.7 ± 1.7 μmol/g of free isothiocyanates. Sprouts' juice contained an unprecedented wealth of anthocyanins and a new fractionation methodology allowed us to isolate 34 mg/g of acylated anthocyanins (28.3 ± 1.9 μmol/g), belonging selectively to the cyanidin family. Analysis was performed by HPLC-PDA-ESI-MS(n) and extended to deacylated anthocyanins and aglycones, obtained, respectively, by alkaline and acid hydrolysis. This study identified 70 anthocyanins, 19 of which have never been described before and 32 of which are reported here in R. sativus for the first time. Sango radish sprouts are exceptional dietary sources of heath-promoting micronutrients.

  3. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.

    PubMed

    Chen, Yi-Ming; Cheng, Tian-Lu; Tseng, Wei-Lung

    2009-10-01

    Selective turn-on fluorescence detection of I(-) was accomplished using fluorescein isothiocyanate-decorated gold nanoparticles (FITC-AuNPs). FITC molecules, which fluoresce strongly in an alkaline solution, were severely quenched when they were attached to the surface of AuNPs through their isothiocyanate group. Upon the addition of I(-), FITC molecules were detached because of I(-) adsorption on the surface of AuNPs. As a result, released FITC molecules were restored to their original fluorescence intensity. Because I(-) has a higher binding affinity to the surface of Au than do Br(-), Cl(-), or F(-), the FITC-AuNPs obviously have a higher selectivity toward I(-) than toward these other anions. Meanwhile, after IO(3)(-) was reduced to I(-) with ascorbic acid, the detection of IO(3)(-) was successfully achieved using the FITC-AuNPs. Under an optimum pH and AuNP concentration, the lowest detectable concentrations of I(-) and IO(3)(-) using this probe were 10.0 and 50.0 nM, respectively. The FITC-AuNPs provide a number of advantages, including easy preparation, selectivity, sensitivity, and low cost. This unique probe was applied to an analysis of the total iodine in edible salt and seawater.

  4. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots.

    PubMed

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A; Kushad, Mosbah M

    2015-03-25

    Horseradish (Armoracia rusticana) is a perennial crop and its ground root tissue is used in condiments because of the pungency of the glucosinolate (GS)-hydrolysis products allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) derived from sinigrin and gluconasturtiin, respectively. Horseradish roots are sold in three grades: U.S. Fancy, U.S. No. 1, and U.S. No. 2 according to the USDA standards. These grading standards are primarily based on root diameter and length. There is little information on whether root grades vary in their phytochemical content or potential health promoting properties. This study measured GS, GS-hydrolysis products, potential anticancer activity (as quinone reductase inducing activity), total phenolic content, and antioxidant activities from different grades of horseradish accessions. U.S. Fancy showed significantly higher sinigrin and AITC concentrations than U.S. No. 1 ,whereas U.S. No. 1 showed significantly higher concentrations of 1-cyano 2,3-epithiopropane, the epithionitrile hydrolysis product of sinigrin, and significantly higher total phenolic concentrations than U.S. Fancy.

  5. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species.

  6. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation.

    PubMed

    Tripathi, Kaushlendra; Hussein, Usama K; Anupalli, Roja; Barnett, Reagan; Bachaboina, Lavanya; Scalici, Jennifer; Rocconi, Rodney P; Owen, Laurie B; Piazza, Gary A; Palle, Komaraiah

    2015-03-10

    Allyl isothiocyanate (AITC), a constituent of many cruciferous vegetables exhibits significant anticancer activities in many cancer models. Our studies provide novel insights into AITC-induced anticancer mechanisms in human A549 and H1299 non-small cell lung cancer (NSCLC) cells. AITC exposure induced replication stress in NSCLC cells as evidenced by γH2AX and FANCD2 foci, ATM/ATR-mediated checkpoint responses and S and G2/M cell cycle arrest. Furthermore, AITC-induced FANCD2 foci displayed co-localization with BrdU foci, indicating stalled or collapsed replication forks in these cells. Although PITC (phenyl isothiocyanate) exhibited concentration-dependent cytotoxic effects, treatment was less effective compared to AITC. Previously, agents that induce cell cycle arrest in S and G2/M phases were shown to sensitize tumor cells to radiation. Similar to these observations, combination therapy involving AITC followed by radiation treatment exhibited increased DDR and cell killing in NSCLC cells compared to single agent treatment. Combination index (CI) analysis revealed synergistic effects at multiple doses of AITC and radiation, resulting in CI values of less than 0.7 at Fa of 0.5 (50% reduction in survival). Collectively, these studies identify an important anticancer mechanism displayed by AITC, and suggest that the combination of AITC and radiation could be an effective therapy for NSCLC.

  7. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    PubMed

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species. PMID:25625566

  8. Isothiocyanate-Functionalized Bifunctional Chelates and fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) Complexes for Targeting uPAR in Prostate Cancer.

    PubMed

    Kasten, Benjamin B; Ma, Xiaowei; Cheng, Kai; Bu, Lihong; Slocumb, Winston S; Hayes, Thomas R; Trabue, Steven; Cheng, Zhen; Benny, Paul D

    2016-01-20

    Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).

  9. Fibroblasts contracting collagen matrices form transient plasma membrane passages through which the cells take up fluorescein isothiocyanate-dextran and Ca2+.

    PubMed Central

    Lin, Y C; Ho, C H; Grinnell, F

    1997-01-01

    When fibroblasts contract collagen matrices, the cells activate a Ca(2+)-dependent cyclic AMP signaling pathway. We have found that contraction also stimulates uptake of fluorescein isothiocyanate-dextran molecules from the medium. Our results indicate that fluorescein isothiocyanate-dextran enters directly into the cell cytoplasm through 3- to 5-nm plasma membrane passages. These passages, which reseal in less than 5 s in the presence of divalent cations, also are likely sites of Ca2+ uptake during contraction and the first step in contraction-activated cyclic AMP signaling. The formation of plasma membrane passages during fibroblast contraction may reflect a general cellular response to rapid mechanical changes. Images PMID:9017595

  10. Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models

    PubMed Central

    2012-01-01

    Background HER2 is an oncogene, expression of which leads to poor prognosis in 30% of breast cancer patients. Although trastuzumab is apparently an effective therapy against HER2-positive tumors, its systemic toxicity and resistance in the majority of patients restricts its applicability. In this study we evaluated the effects of phenethyl isothiocyanate (PEITC) in HER2-positive breast cancer cells. Methods MDA-MB-231 and MCF-7 breast cancer cells stably transfected with HER2 (high HER2 (HH)) were used in this study. The effect of PEITC was evaluated using cytotoxicity and apoptosis assay in these syngeneic cells. Western blotting was used to delineate HER2 signaling. SCID/NOD mice were implanted with MDA-MB-231 (HH) xenografts. Results Our results show that treatment of MDA-MB-231 and MCF-7 cells with varying concentrations of PEITC for 24 h extensively reduced the survival of the cells with a 50% inhibitory concentration (IC50) of 8 μM in MDA-MB-231 and 14 μM in MCF-7 cells. PEITC treatment substantially decreased the expression of HER2, epidermal growth factor receptor (EGFR) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr-705. The expression of BCL-2-associated × (BAX) and BIM proteins were increased, whereas the levels of B cell lymphoma-extra large (BCL-XL) and X-linked inhibitor of apoptosis protein (XIAP) were significantly decreased in both the cell lines in response to PEITC treatment. Substantial cleavage of caspase 3 and poly-ADP ribose polymerase (PARP) were associated with PEITC-mediated apoptosis in MDA-MB-231 and MCF-7 cells. Notably, transient silencing of HER2 decreased and overexpressing HER2 increased the effects of PEITC. Furthermore, reactive oxygen species (ROS) generation, mitochondrial depolarization and apoptosis by PEITC treatment were much higher in breast cancer cells expressing higher levels of HER2 (HH) as compared to parent cell lines. The IC50 of PEITC following 24 h of treatment was

  11. Isothiocyanate-functionalized bifunctional chelates and fac-[MI(CO)3]+ (M = Re, 99mTc) complexes for targeting uPAR in prostate cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing strategies to rapidly incorporate the fac-[MI(CO)3]+ (M = Re, 99mTc) core into biological targeting vectors is a growing realm in radiopharmaceutical development. This work presents the preparation of a novel isothiocyanate-functionalized bifunctional chelate based on 2,2´-dipicolylamine ...

  12. Generation of the antioxidant yellow pigment derived from 4-methylthio-3-butenyl isothiocyanate in salted radish roots (takuan-zuke).

    PubMed

    Takahashi, Asaka; Yamada, Tsuyoshi; Uchiyama, Yohei; Hayashi, Satomi; Kumakura, Kei; Takahashi, Hitoe; Kimura, Norihisa; Matsuoka, Hiroki

    2015-01-01

    2-[3-(2-Thioxopyrrolidin-3-ylidene)methyl]-tryptophan (TPMT) is a yellow pigment of salted radish roots (takuan-zuke) derived from 4-methylthio-3-butenyl isothiocyanate (MTBITC), the pungent component of radish roots. Here, we prepared salted radish and analyzed the behavior of the yellow pigment and related substances in the dehydration process and long-term salting process. All salted radish samples turned yellow, and their b(*) values increased with time and temperature. The salted radish that was sun-dried and pickled at room temperature turned the brightest yellow, and the generation of TPMT was clearly confirmed. These results indicate that tissue shrinkage due to dehydration, salting temperature, and pH play important roles in the yellowing of takuan-zuke.

  13. Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate.

    PubMed

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell(®) system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT-FITC rapid dissociation as an intermediate phase.

  14. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate

    PubMed Central

    Shityakov, Sergey; Salvador, Ellaine; Pastorin, Giorgia; Förster, Carola

    2015-01-01

    In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT–FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood–brain barrier. The results indicated that the MWCNT–FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT–FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT–FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCNT–FITC rapid dissociation as an intermediate phase. PMID:25784800

  15. Fluorescein Isothiocyanate-Labeled Lectin Analysis of the Surface of the Nitrogen-Fixing Bacterium Azospirillum brasilense by Flow Cytometry

    PubMed Central

    Yagoda-Shagam, Janet; Barton, Larry L.; Reed, William P.; Chiovetti, Robert

    1988-01-01

    The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies. Images PMID:16347693

  16. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. PMID:26945724

  17. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition.

    PubMed

    Hanschen, Franziska S; Yim, Bunlong; Winkelmann, Traud; Smalla, Kornelia; Schreiner, Monika

    2015-01-01

    Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products. PMID:26186695

  18. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition

    PubMed Central

    Hanschen, Franziska S.; Yim, Bunlong; Winkelmann, Traud; Smalla, Kornelia; Schreiner, Monika

    2015-01-01

    Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation). In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products. PMID:26186695

  19. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells

    PubMed Central

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  20. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    PubMed

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases.

  1. Nuclear factor-kappaB sensitizes to benzyl isothiocyanate-induced antiproliferation in p53-deficient colorectal cancer cells.

    PubMed

    Abe, N; Hou, D-X; Munemasa, S; Murata, Y; Nakamura, Y

    2014-01-01

    Benzyl isothiocyanate (BITC), a dietary isothiocyanate derived from cruciferous vegetables, inhibits the proliferation of colorectal cancer cells, most of which overexpress β-catenin as a result of mutations in the genes for adenomatous polyposis coli or mutations in β-catenin itself. Because nuclear factor-κB (NF-κB) is a plausible target of BITC signaling in inflammatory cell models, we hypothesized that it is also involved in BITC-inhibited proliferation of colorectal cancer cells. siRNA-mediated knockdown of the NF-κB p65 subunit significantly decreased the BITC sensitivity of human colorectal cancer HT-29 cells with mutated p53 tumor suppressor protein. Treating HT-29 cells with BITC induced the phosphorylation of IκB kinase, IκB-α and p65, the degradation of IκB-α, the translocation of p65 to the nucleus and the upregulation of NF-κB transcriptional activity. BITC also decreased β-catenin binding to a positive cis element of the cyclin D1 promoter and thus inhibited β-catenin-dependent cyclin D1 transcription, possibly through a direct interaction between p65 and β-catenin. siRNA-mediated knockdown of p65 confirmed that p65 negatively affects cyclin D1 expression. On the other hand, when human colorectal cancer HCT-116 cells with wild-type p53 were treated with BITC, translocation of p65 to the nucleus was inhibited rather than enhanced. p53 knockout increased the BITC sensitivity of HCT-116 cells in a p65-dependent manner, suggesting that p53 negatively regulates p65-dependent effects. Together, these results identify BITC as a novel type of antiproliferative agent that regulates the NF-κB pathway in p53-deficient colorectal cancer cells. PMID:25412312

  2. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments.

    PubMed

    Van Eylen, D; Oey, I; Hendrickx, M; Van Loey, A

    2007-03-21

    The Brassicaceae plant family contains high concentrations of glucosinolates, which can be hydrolyzed by myrosinase yielding products having an anticarcinogenic activity. The pressure and temperature stabilities of endogenous broccoli myrosinase, as well as of the synthetic isothiocyanates sulforaphane and phenylethyl isothiocyanate, were studied in broccoli juice on a kinetic basis. At atmospheric pressure, kinetics of thermal (45-60 degrees C) myrosinase inactivation could be described by a consecutive step model. In contrast, only one phase of myrosinase inactivation was observed at elevated pressure (100-600 MPa) combined with temperatures from 10 up to 60 degrees C, indicating inactivation according to first-order kinetics. An antagonistic effect of pressure (up to 200 MPa) on thermal inactivation (50 degrees C and above) of myrosinase was observed indicating that pressure retarded the thermal inactivation. The kinetic parameters of myrosinase inactivation were described as inactivation rate constants (k values), activation energy (Ea values), and activation volume (Va values). On the basis of the kinetic data, a mathematical model describing the pressure and temperature dependence of myrosinase inactivation rate constants was constructed. The stability of isothiocyanates was studied at atmospheric pressure in the temperature range from 60 to 90 degrees C and at elevated pressures in the combined pressure-temperature range from 600 to 800 MPa and from 30 to 60 degrees C. It was found that isothiocyanates were relatively thermolabile and pressure stable. The kinetics of HP/T isothiocyanate degradation could be adequately described by a first-order kinetic model. The obtained kinetic information can be used for process evaluation and optimization to increase the health effect of Brassicaceae.

  3. Mechanisms of Nrf2/Keap1-Dependent Phase II Cytoprotective and Detoxifying Gene Expression and Potential Cellular Targets of Chemopreventive Isothiocyanates

    PubMed Central

    Das, Biswa Nath; Kim, Young-Woo

    2013-01-01

    Isothiocyanates (ITCs) are abundantly found in cruciferous vegetables. Epidemiological studies suggest that chronic consumption of cruciferous vegetables can lower the overall risk of cancer. Natural ITCs are key chemopreventive ingredients of cruciferous vegetables, and one of the prime chemopreventive mechanisms of natural isothiocyanates is the induction of Nrf2/ARE-dependent gene expression that plays a critical role in cellular defense against electrophiles and reactive oxygen species. In the present review, we first discuss the underlying mechanisms how natural ITCs affect the intracellular signaling kinase cascades to regulate the Keap1/Nrf2 activities, thereby inducing phase II cytoprotective and detoxifying enzymes. We also discuss the potential cellular protein targets to which natural ITCs are directly conjugated and how these events aid in the chemopreventive effects of natural ITCs. Finally, we discuss the posttranslational modifications of Keap1 and nucleocytoplasmic trafficking of Nrf2 in response to electrophiles and oxidants. PMID:23781297

  4. Triflic acid-promoted cycloisomerization of 2-alkynylphenyl isothiocyanates and isocyanates: a novel synthetic method for a variety of indole derivatives.

    PubMed

    Saito, Takao; Sonoki, Yoshihiko; Otani, Takashi; Kutsumura, Noriki

    2014-11-14

    A new approach towards the synthesis of indole derivatives via triflic acid-promoted cycloisomerization with rearrangement of 2-(alkyn-1-yl)phenyl isothiocyanates and 2-(alkyn-1-yl)phenyl isocyanates has been achieved. By this methodology, structurally diverse types of indole derivatives such as thieno- and furo-indoles, spiro-indolethiones, spiro-oxindoles, and 3-alkylidene-oxindoles were synthesized.

  5. Mitochondria-mediated apoptosis in human lung cancer A549 cells by 4-methylsulfinyl-3-butenyl isothiocyanate from radish seeds.

    PubMed

    Wang, Nan; Wang, Wei; Huo, Po; Liu, Cai-Qin; Jin, Jian-Chang; Shen, Lian-Qing

    2014-01-01

    4-Methylsulfinyl-3-butenyl isothiocyanate (MTBITC) found in the radish (Raphanus sativus L.), is a well- known anticancer agent. In this study, the mechanisms of the MTBITC induction of cell apoptosis in human A549 lung cancer cells were investigated. Our PI staining results showed that MTBITC treatment significantly increased the apoptotic sub-G1 fraction in a dose-dependent manner. The mechanism of apoptosis induced by MTBITC was investigated by testing the change of mitochondrial membrane potential (Δψm), the expression of mRNAs of apoptosis-related genes by RT-PCR, and the activities of caspase-3 and -9 by caspase colorimetric assay. MTBITC treatment decreased mitochondrial membrane potential by down-regulating the rate of Bcl-2/ Bax and Bcl-xL/Bax, and activation of caspase-3 and -9. Therefore, mitochondrial pathway and Bcl-2 gene family could be involved in the mechanisms of A549 cell apoptosis induced by MTBITC. PMID:24716946

  6. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl inhibits angiogenesis by suppressing VEGFR2 and Tie2 phosphorylation

    PubMed Central

    Liu, Yuanyuan; Gao, Jing; Huang, Shuangsheng; Hu, Lamei; Wang, Zhiqiang; Wang, Zheyuan; Chen, Xiao; Zhang, Xiaoyu; Li, Wenguang

    2016-01-01

    Reactive oxygen species (ROS) are involved in the signaling pathway and are triggered by angiogenic factors, including vascular endothelial growth factor and angiopoietins. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl (4-ISO-Tempo) is one of the nitroxides that exhibits antioxidant activity. However, the anti-angiogenic effect of 4-ISO-Tempo remains unknown. The aim of this study was to investigate the effect of 4-ISO-Tempo on tumor proliferation and angiogenesis as well as its underlying mechanisms. Our results revealed that 4-ISO-Tempo significantly inhibited the viability of neoplastic and endothelial cells. Furthermore, the effective concentration of 4-ISO-Tempo on human microvascular endothelial cell 1 (HMEC-1) was lower than that on human lung adenocarcinoma A549 and human colon cancer SW620 cells. This suggested that endothelial cells were more sensitive to 4-ISO-Tempo than tumor cells. Furthermore, we demonstrated that 4-ISO-Tempo also suppressed secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and migration and tube formation of HMEC-1 cells. The mechanism is attributed to the decreasing ROS generation and further phosphorylation of vascular endothelial growth factor receptor 2 and Tie2. Our findings suggest that 4-ISO-Tempo should be investigated for its usefulness in anti-angiogenesis therapies.

  7. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery

    PubMed Central

    Calmes, Benoit; N’Guyen, Guillaume; Dumur, Jérome; Brisach, Carlos A.; Campion, Claire; Iacomi, Béatrice; Pigné, Sandrine; Dias, Eva; Macherel, David; Guillemette, Thomas; Simoneau, Philippe

    2015-01-01

    Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola. PMID:26089832

  8. Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro.

    PubMed

    Bordin, K; Saladino, F; Fernández-Blanco, C; Ruiz, M J; Mañes, J; Fernández-Franzón, M; Meca, G; Luciano, F B

    2017-02-15

    This study investigates the reduction of zearalenone (ZEA) and α-zearalenol (α-ZOL) on a solution model using allyl isothiocyanate (AITC) and also determines the bioaccessibility and bioavailability of the reaction products isolated and identified by MS-LIT. Mycotoxin reductions were dose-dependent, and ZEA levels decreased more than α-ZOL, ranging from 0.2 to 96.9% and 0 to 89.5% respectively, with no difference (p⩽0.05) between pH 4 and 7. Overall, simulated gastric bioaccessibility was higher than duodenal bioaccessibility for both mycotoxins and mycotoxin-AITC conjugates, with duodenal fractions representing ⩾63.5% of the original concentration. Simulated bioavailability of reaction products (α-ZOL/ZEA-AITC) were lower than 42.13%, but significantly higher than the original mycotoxins. The cytotoxicity of α-ZOL and ZEA in Caco-2/TC7 cells was also evaluated, with toxic effects observed at higher levels than 75μM. Further studies should be performed to evaluate the toxicity and estrogenic effect of α-ZOL/ZEA-AITC. PMID:27664682

  9. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson’s Disease

    PubMed Central

    Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana

    2016-01-01

    Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases’ pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127

  10. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC.

    PubMed

    Herz, Corinna; Hertrampf, Anke; Zimmermann, Stefan; Stetter, Nadine; Wagner, Meike; Kleinhans, Claudia; Erlacher, Miriam; Schüler, Julia; Platz, Stefanie; Rohn, Sascha; Mersch-Sundermann, Volker; Lamy, Evelyn

    2014-12-01

    In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level.

  11. Characterization of some amino acid derivatives of benzoyl isothiocyanate: Crystal structures and theoretical prediction of their reactivity

    NASA Astrophysics Data System (ADS)

    Odame, Felix; Hosten, Eric C.; Betz, Richard; Lobb, Kevin; Tshentu, Zenixole R.

    2015-11-01

    The reaction of benzoyl isothiocyanate with L-serine, L-proline, D-methionine and L-alanine gave 2-[(benzoylcarbamothioyl)amino]-3-hydroxypropanoic acid (I), 1-(benzoylcarbamothioyl)pyrrolidine-2-carboxylic acid (II), 2-[(benzoylcarbamothioyl)amino]-4-(methylsulfanyl)butanoic acid (III) and 2-[(benzoylcarbamothioyl)amino]propanoic acid (IV), respectively. The compounds have been characterized by IR, NMR, microanalyses and mass spectrometry. The crystal structures of all the compounds have also been discussed. Compound II showed rotamers in solution. DFT calculations of the frontier orbitals of the compounds have been carried out to ascertain the groups that contribute to the HOMO and LUMO, and to study their contribution to the reactivity of these compounds. The calculations indicated that the carboxylic acid group in these compounds is unreactive hence making the conversion to benzimidazoles via cyclization on the carboxylic acids impractical. This has been further confirmed by the reaction of compounds I-IV, respectively, with o-phenylene diamine which was unsuccessful but gave compound V.

  12. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions.

    PubMed

    Li, Weili; Liu, Linshu; Jin, Tony Z

    2012-12-01

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm(2) of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.

  13. Remote loading of diclofenac, insulin and fluorescein isothiocyanate labeled insulin into liposomes by pH and acetate gradient methods.

    PubMed

    Hwang, S H; Maitani, Y; Qi, X R; Takayama, K; Nagai, T

    1999-03-01

    Remote loading of the model drugs diclofenac, insulin and fluorescein isothiocyanate labeled insulin (FITC-insulin) into liposomes by formation of transmembrane gradients were examined. A trapping efficiency of almost 100% was obtained for liposomal diclofenac, by the calcium acetate gradient method, whereas liposomes prepared by the conventional reverse-phase evaporation vesicle method had 1-8% trapping efficiencies. Soybean-derived sterol was a better stabilizer of the dipalmitoylphosphatidylcholine bilayer membrane than cholesterol, as shown from trapping efficiencies and drug release. The pH gradient method resulted in a 5-50% of FITC-insulin liposomal trapping efficiency, while insulin could not be loaded by this method. Liposomes released calcein in response to insulin, showing insulin interacts with the liposomal membrane in the presence of a transmembrane gradient. The present work has demonstrated a remote loading method for weak acids such as diclofenac into liposomes by the acetate gradient method. From the result of remote loading of FITC-insulin into liposomes by the pH gradient method, this method may be available for the preparation of liposomal peptides.

  14. Gas-phase reaction of methyl isothiocyanate and methyl isocyanate with hydroxyl radicals under static relative rate conditions.

    PubMed

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2014-02-26

    Gaseous methyl isothiocyanate (MITC), the principal breakdown product of the soil fumigant metam sodium (sodium N-methyldithiocarbamate), is an inhalation exposure concern to persons living near treated areas. Inhalation exposure also involves gaseous methyl isocyanate (MIC), a highly reactive and toxic transformation product of MITC. In this work, gas-phase hydroxyl (OH) radical reaction rate constants of MITC and MIC have been determined using a static relative rate technique under controlled laboratory conditions. The rate constants obtained are 15.36 × 10(-12) cm(3) molecule(-1) s(-1) for MITC and 3.62 × 10(-12) cm(3) molecule(-1) s(-1) for MIC. The average half-lives of MITC and MIC in the atmosphere are estimated to be 15.7 and 66.5 h, respectively. The molar conversion of MITC to MIC for OH radical reactions is 67% ± 8%, which indicates that MIC is the primary product of the MITC-OH reaction in the gas phase.

  15. Lack of Impact of High Dietary Vitamin A on T Helper 2-Dependent Contact Hypersensitivity to Fluorescein Isothiocyanate in Mice.

    PubMed

    Kobayashi, Chie; Kurohane, Kohta; Imai, Yasuyuki

    2015-01-01

    Overuse of vitamin A as a dietary supplement is a concern in industrialized countries. High-level dietary vitamin A is thought to shift immunity to a T helper 2 (Th2)-dominant one, resulting in the promotion of allergies. We have been studying a fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) mouse model that involves Th2-type immunity. We fed a diet with a high retinyl palmitate content (250 international units (IU)/g diet) or a control diet (4 IU/g diet) to BALB/c mice for three weeks. No augmentation of FITC-induced CHS was found in mice fed the diet with a high vitamin A content, although accumulation of the vitamin was confirmed in the livers of these animals. The results indicated that relatively short-term feeding of the high-level vitamin A diet did not influence the Th2-driven response at a stage with significant retinol accumulation in the liver. The results were in contrast to the high-dose pyridoxine diets that produced a reduced response in FITC-induced CHS. PMID:26299258

  16. Antiproliferative activity of the dietary isothiocyanate erucin, a bioactive compound from cruciferous vegetables, on human prostate cancer cells.

    PubMed

    Melchini, Antonietta; Traka, Maria H; Catania, Stefania; Miceli, Natalizia; Taviano, Maria Fernanda; Maimone, Patrizia; Francisco, Marta; Mithen, Richard F; Costa, Chiara

    2013-01-01

    It is becoming increasingly clear that many dietary agents, such as isothiocyanates (ITCs) from cruciferous vegetables, can retard or prevent the process of prostate carcinogenesis. Erucin (ER) is a dietary ITC, which has been recently considered a promising cancer chemopreventive phytochemical. The potential protective activity of ER against prostate cancer was investigated using prostate adenocarcinoma cells (PC3), to analyze its effects on pathways involved in cell growth regulation, such as the cyclin-dependent kinase (CDKs) inhibitor p21(WAF1/CIP1) (p21), phosphatidylinositol-3 kinase/AKT, and extracellular signal-regulated kinases (ERK)1/2 signaling pathways. We have shown for the first time that ER increases significantly p21 protein expression and ERK1/2 phosphorylation in a dose-dependent manner to inhibit PC3 cell proliferation (P ≤ 0.01). Compared to the structurally related sulforaphane, a well-studied broccoli-derived ITC, ER showed lower potency in inhibiting proliferation of PC3 cells, as well as in modulating p21 and pERK1/2 protein levels. Neither of the naturally occurring ITCs was able to affect significantly pAKT protein levels in prostate cells at all concentrations tested (0-25 μM). It is clearly important for the translation of laboratory findings to clinical approaches to investigate in animal and cell studies the molecular mechanisms by which ITCs may exert health promoting effects.

  17. Formation of Thioxopyrrolidines and Dithiocarbamates from 4-Methylthio-3-butenyl Isothiocyanates, the Pungent Principle of Radish, in Aqueous Media.

    PubMed

    Matsuoka, H; Toda, Y; Yanagi, K; Takahashi, A; Yoneyama, K; Uda, Y

    1997-01-01

    Reaction products of 4-methylthio-3-butenyl isothiocyanate (MTBI), the radish pungent principle, in aqueous media were identified and their antimicrobial activities were examined. A rapid degradation of MTBI in aqueous media afforded a mixture of 3-(hydroxy)methylene-2-thioxopyrrolidine (1), (Z)-3-(methylthio)-methylene-2-thioxopyrrolidine (2), its (E)-isomer (3), methyl 4-methylthiobutyldithiocarbamate (4), methyl (Z)-4-methylthio-3-butenyldithiocarbarnaie (5), and its (E)-isomer (6). The products 1, 2, and 3 were detected at all pHs examined, while 4, 5, and 6 were formed at pH over 6.0. The formation of 4 from 6 was accompanied by an oxidation of methanethiol released from MTBI in aqueous media. Antimicrobial activities of 2 and 3 against all microbes examined were much lower than that of 1, which had MICs ranging from 50 to 400 μg/ml. As for 4, 5, and 6, antifungal activities were comparable to that of 1, but little antibacterial activities were observed. The antimicrobial activities of the six products were considered to be far lower than that of MTBI.

  18. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson's Disease.

    PubMed

    Sita, Giulia; Hrelia, Patrizia; Tarozzi, Andrea; Morroni, Fabiana

    2016-01-01

    Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder and is characterized by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the mechanisms involved in neuronal loss are not completely understood yet; however, misfolded proteins, oxidative stress, excitotoxicity and inflammation play a pivotal role in the progression of the pathology. Neuroinflammation may have a greater function in PD pathogenesis than initially believed, taking part in the cascade of events that leads to neuronal death. To date, no efficient therapy, able to arrest or slow down PD, is available. In this context, the need to find novel strategies to counteract neurodegenerative progression by influencing diseases' pathogenesis is becoming increasingly clear. Isothiocyanates (ITCs) have already shown interesting properties in detoxification, inflammation, apoptosis and cell cycle regulation through the induction of phase I and phase II enzyme systems. Moreover, ITCs may be able to modulate several key points in oxidative and inflammatory evolution. In view of these considerations, the aim of the present review is to describe ITCs as pleiotropic compounds capable of preventing and modulating the evolution of PD. PMID:27598127

  19. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. PMID:26146190

  20. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl inhibits angiogenesis by suppressing VEGFR2 and Tie2 phosphorylation

    PubMed Central

    Liu, Yuanyuan; Gao, Jing; Huang, Shuangsheng; Hu, Lamei; Wang, Zhiqiang; Wang, Zheyuan; Chen, Xiao; Zhang, Xiaoyu; Li, Wenguang

    2016-01-01

    Reactive oxygen species (ROS) are involved in the signaling pathway and are triggered by angiogenic factors, including vascular endothelial growth factor and angiopoietins. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl (4-ISO-Tempo) is one of the nitroxides that exhibits antioxidant activity. However, the anti-angiogenic effect of 4-ISO-Tempo remains unknown. The aim of this study was to investigate the effect of 4-ISO-Tempo on tumor proliferation and angiogenesis as well as its underlying mechanisms. Our results revealed that 4-ISO-Tempo significantly inhibited the viability of neoplastic and endothelial cells. Furthermore, the effective concentration of 4-ISO-Tempo on human microvascular endothelial cell 1 (HMEC-1) was lower than that on human lung adenocarcinoma A549 and human colon cancer SW620 cells. This suggested that endothelial cells were more sensitive to 4-ISO-Tempo than tumor cells. Furthermore, we demonstrated that 4-ISO-Tempo also suppressed secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and migration and tube formation of HMEC-1 cells. The mechanism is attributed to the decreasing ROS generation and further phosphorylation of vascular endothelial growth factor receptor 2 and Tie2. Our findings suggest that 4-ISO-Tempo should be investigated for its usefulness in anti-angiogenesis therapies. PMID:27698866

  1. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1

    PubMed Central

    Li, Qiwei; Zhan, Ming; Chen, Wei; Zhao, Benpeng; Yang, Kai; Yang, Jie; Yi, Jing; Huang, Qihong; Mohan, Man; Hou, Zhaoyuan; Wang, Jian

    2016-01-01

    Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients. PMID:26848531

  2. The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC

    PubMed Central

    Herz, Corinna; Hertrampf, Anke; Zimmermann, Stefan; Stetter, Nadine; Wagner, Meike; Kleinhans, Claudia; Erlacher, Miriam; Schüler, Julia; Platz, Stefanie; Rohn, Sascha; Mersch-Sundermann, Volker; Lamy, Evelyn

    2014-01-01

    In contrast to cancer cells, most normal human cells have no or low telomerase levels which makes it an attractive target for anti-cancer drugs. The small molecule sulforaphane from broccoli is known for its cancer therapeutic potential in vitro and in vivo. In animals and humans it was found to be quickly metabolized into 4-methylthiobutyl isothiocyanate (MTBITC, erucin) which we recently identified as strong selective apoptosis inducer in hepatocellular carcinoma (HCC) cells. Here, we investigated the relevance of telomerase abrogation for cytotoxic efficacy of MTBITC against HCC. The drug was effective against telomerase, independent from TP53 and MTBITC also blocked telomerase in chemoresistant subpopulations. By using an orthotopic human liver cancer xenograft model, we give first evidence that MTBITC at 50 mg/KG b.w./d significantly decreased telomerase activity in vivo without affecting enzyme activity of adjacent normal tissue. Upon drug exposure, telomerase decrease was consistent with a dose-dependent switch to anti-survival, cell arrest and apoptosis in our in vitro HCC models. Blocking telomerase by the specific inhibitor TMPyP4 further sensitized cancer cells to MTBITC-mediated cytotoxicity. Overexpression of hTERT, but not enzyme activity deficient DNhTERT, protected against apoptosis; neither DNA damage nor cytostasis induction by MTBITC was prevented by hTERT overexpression. These findings imply that telomerase enzyme activity does not protect against MTBITC-induced DNA damage but impacts signalling processes upstream of apoptosis execution level. PMID:25256442

  3. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    PubMed

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives.

  4. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Tarozzi, Andrea; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-11-17

    A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD. PMID:25257035

  5. Beta-phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages.

    PubMed

    Rose, Peter; Won, Yen Kim; Ong, Choon Nam; Whiteman, Matt

    2005-06-01

    Beta-phenylethyl (PEITC) and 8-methylsulphinyloctyl isothiocyanates (MSO) represent two phytochemical constituents present in watercress Rorripa nasturtium aquaticum, with known chemopreventative properties. In the present investigation, we examined whether PEITC and MSO could modulate the inflammatory response of Raw 264.7 macrophages to bacterial lipopolysaccharide (LPS) by assessment of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Overproduction of both nitric oxide (NO) and prostaglandins (PGE) has been associated with numerous pathological conditions including chronic inflammation and cancer. Our results demonstrate that LPS (1 microg/ml approximately 24 h) induced nitrite and prostaglandin E2 (PGE-2) synthesis in Raw 264.7 cells was attenuated by both isothiocyanates (ITCs) in a concentration-dependent manner. Both PEITC and MSO decreased (iNOS) and (COX-2) protein expression levels leading to reduced secretion of both pro-inflammatory mediators. Interestingly, the reduction in both iNOS and COX-2 expression were associated with the inactivation of nuclear factor-kappaB and stabilization of IkappaBalpha. Taken together our data gives further insight into the possible chemopreventative properties of two dietary derived isothiocyanates from watercress.

  6. Phenethyl isothiocyanate suppresses EGF-stimulated SAS human oral squamous carcinoma cell invasion by targeting EGF receptor signaling.

    PubMed

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Amagaya, Sakae; Lin, Yung-Chang; Yang, Jai-Sing

    2013-08-01

    Phenethyl isothiocyanate (PEITC) is a natural compound that is involved in chemoprevention as well as inhibition of cell growth and induction of apoptosis in several types of cancer cells. Previous studies have revealed that PEITC suppresses the invasion of AGS gastric and HT-29 colorectal cancer cells. However, the effects of PEITC on the metastasis of SAS oral cancer cells remain to be determined. Our results showed that PEITC treatment inhibited the invasion of EGF-stimulated SAS cells in a concentration-dependent manner, but appeared not to affect the cell viability. The expression and enzymatic activities of matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) were suppressed by PEITC. Concomitantly, we observed an increase in the protein expression of both tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2 (TIMP-2) in treated cells. Furthermore, PEITC treatments decreased the protein phosphorylation of epidermal growth factor receptor (EGFR) and downstream signaling proteins including PDK1, PI3K (p85), AKT, phosphorylated IKK and IκB to inactivate NF-κB for the suppression of MMP-2 and MMP-9 expression. In addition, PEITC can trigger the MAPK signaling pathway through the increase in phosphorylated p38, JNK and ERK in treated cells. Our data indicate that PEITC is able to inhibit the invasion of EGF-stimulated SAS oral cancer cells by targeting EGFR and its downstream signaling molecules and finally lead to the reduced expression and enzymatic activities of both MMP-2 and MMP-9. These results suggest that PEITC is promising for the therapy of oral cancer metastasis.

  7. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.

    PubMed

    Müller, Caroline; van Loon, Joop; Ruschioni, Sara; De Nicola, Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-10-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently enter the gas phase and all ITCs may react with matrix components. Deterrence to herbivores resulting from topically applied volatile ITCs in artificial feeding assays may hence lead to ambiguous conclusions. In the present study, the non-volatile ITC moringin (4-(α-L-rhamnopyranosyloxy)benzyl ITC) and its glucosinolate precursor glucomoringin were examined for effects on behaviour and taste physiology of specialist insect herbivores of Brassicales. In feeding bioassays, glucomoringin was not deterrent to larvae of Pieris napi (Lepidoptera: Pieridae) and Athalia rosae (Hymenoptera: Tenthredinidae), which are adapted to glucosinolates. Glucomoringin stimulated feeding of larvae of the related Pieris brassicae (Lepidoptera: Pieridae) and also elicited electrophysiological activity from a glucosinolate-sensitive gustatory neuron in the lateral maxillary taste sensilla. In contrast, the ITC moringin was deterrent to P. napi and P. brassicae at high levels and to A. rosae at both high and low levels when topically applied to cabbage leaf discs (either 12, 120 or 1200 nmol moringin per leaf disc of 1cm diameter). Survival of A. rosae was also significantly reduced when larvae were kept on leaves treated with moringin for several days. Furthermore, moringin elicited electrophysiological activity in a deterrent-sensitive neuron in the medial maxillary taste sensillum of P. brassicae, providing a sensory mechanism for the deterrence and the first known ITC taste response of an insect. In simulated feeding assays, recovery of moringin was high, in accordance with its non-volatile nature. Our results demonstrate taste-mediated deterrence of a non-volatile, natural ITC to glucosinolate

  8. Inhibition of mitochondrial fusion is an early and critical event in breast cancer cell apoptosis by dietary chemopreventative benzyl isothiocyanate.

    PubMed

    Sehrawat, Anuradha; Croix, Claudette St; Baty, Catherine J; Watkins, Simon; Tailor, Dhanir; Singh, Rana P; Singh, Shivendra V

    2016-09-01

    Benzyl isothiocyanate (BITC) is a highly promising phytochemical abundant in cruciferous vegetables with preclinical evidence of in vivo efficacy against breast cancer in xenograft and transgenic mouse models. Mammary cancer chemoprevention by BITC is associated with apoptotic cell death but the underlying mechanism is not fully understood. Herein, we demonstrate for the first time that altered mitochondrial dynamics is an early and critical event in BITC-induced apoptosis in breast cancer cells. Exposure of MCF-7 and MDA-MB-231 cells to plasma achievable doses of BITC resulted in rapid collapse of mitochondrial filamentous network. BITC treatment also inhibited polyethyleneglycol-induced mitochondrial fusion. In contrast, a normal human mammary epithelial cell line (MCF-10A) that was derived from fibrocystic breast disease, was resistant to BITC-mediated alterations in mitochondrial dynamics as well as apoptosis. Transient or sustained decrease in levels of proteins engaged in regulation of mitochondrial fission and fusion was clearly evident after BITC treatment in both cancer cell lines. A trend for a decrease in the levels of mitochondrial fission- and fusion-related proteins was also observed in vivo in tumors of BITC-treated mice compared with control. Immortalized mouse embryonic fibroblasts from Drp1 knockout mice were resistant to BITC-induced apoptosis when compared with those from wild-type mice. Upon treatment with BITC, Bak dissociated from mitofusin 2 in both MCF-7 and MDA-MB-231 cells suggesting a crucial role for interaction of Bak and mitofusins in BITC-mediated inhibition of fusion and morphological dynamics. In conclusion, the present study provides novel insights into the molecular complexity of BITC-induced cell death. PMID:27374852

  9. Study of the Role of Antimicrobial Glucosinolate-Derived Isothiocyanates in Resistance of Arabidopsis to Microbial Pathogens1

    PubMed Central

    Tierens, Koenraad F.M.-J.; Thomma, Bart P.H.J.; Brouwer, Margreet; Schmidt, Jürgen; Kistner, Katherine; Porzel, Andrea; Mauch-Mani, Brigitte; Cammue, Bruno P.A.; Broekaert, Willem F.

    2001-01-01

    Crude aqueous extracts from Arabidopsis leaves were subjected to chromatographic separations, after which the different fractions were monitored for antimicrobial activity using the fungus Neurospora crassa as a test organism. Two major fractions were obtained that appeared to have the same abundance in leaves from untreated plants versus leaves from plants challenge inoculated with the fungus Alternaria brassicicola. One of both major antimicrobial fractions was purified to homogeneity and identified by 1H nuclear magnetic resonance, gas chromatography/electron impact mass spectrometry, and gas chromatography/chemical ionization mass spectrometry as 4-methylsulphinylbutyl isothiocyanate (ITC). This compound has previously been described as a product of myrosinase-mediated breakdown of glucoraphanin, the predominant glucosinolate in Arabidopsis leaves. 4-Methylsulphinylbutyl ITC was found to be inhibitory to a wide range of fungi and bacteria, producing 50% growth inhibition in vitro at concentrations of 28 μm for the most sensitive organism tested (Pseudomonas syringae). A previously identified glucosinolate biosynthesis mutant, gsm1-1, was found to be largely deficient in either of the two major antimicrobial compounds, including 4-methylsulphinylbutyl ITC. The resistance of gsm1-1 was compared with that of wild-type plants after challenge with the fungi A. brassicicola, Plectosphaerella cucumerina, Botrytis cinerea, Fusarium oxysporum, or Peronospora parasitica, or the bacteria Erwinia carotovora or P. syringae. Of the tested pathogens, only F. oxysporum was found to be significantly more aggressive on gsm1-1 than on wild-type plants. Taken together, our data suggest that glucosinolate-derived antimicrobial ITCs can play a role in the protection of Arabidopsis against particular pathogens. PMID:11299350

  10. Protection of humans by plant glucosinolates: efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora.

    PubMed

    Fahey, Jed W; Wehage, Scott L; Holtzclaw, W David; Kensler, Thomas W; Egner, Patricia A; Shapiro, Theresa A; Talalay, Paul

    2012-04-01

    Plant-based diets rich in crucifers are effective in preventing cancer and other chronic diseases. Crucifers contain very high concentrations of glucosinolates (GS; β-thioglucoside-N-hydroxysulfates). Although not themselves protective, GS are converted by coexisting myrosinases to bitter isothiocyanates (ITC) which defend plants against predators. Coincidentally, ITC also induce mammalian genes that regulate defenses against oxidative stress, inflammation, and DNA-damaging electrophiles. Consequently, the efficiency of conversion of GS to ITC may be critical in controlling the health-promoting benefits of crucifers. If myrosinase is heat-inactivated by cooking, the gastrointestinal microflora converts GS to ITC, a process abolished by enteric antibiotics and bowel cleansing. When single oral doses of GS were administered as broccoli sprout extracts (BSE) to two dissimilar populations (rural Han Chinese and racially mixed Baltimoreans) patterns of excretions of urinary dithiocarbamates (DTC) were very similar. Individual conversions in both populations varied enormously, from about 1% to more than 40% of dose. In contrast, administration of ITC (largely sulforaphane)-containing BSE resulted in uniformly high (70%-90%) conversions to urinary DTC. Despite the remarkably large range of conversion efficiencies between individuals, repeated determinations within individuals were much more consistent. The rates of urinary excretion (slow or fast) were unrelated to the ultimate magnitudes (low or high) of these conversions. Although no demographic factors affecting conversion efficiency have been identified, there are clearly diurnal variations: conversion of GS to DTC was greater during the day, but conversion of ITC to DTC was more efficient at night. PMID:22318753

  11. Erucin, the Major Isothiocyanate in Arugula (Eruca sativa), Inhibits Proliferation of MCF7 Tumor Cells by Suppressing Microtubule Dynamics

    PubMed Central

    Azarenko, Olga; Jordan, Mary Ann; Wilson, Leslie

    2014-01-01

    Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthio)butane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill.), kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM) in parallel with cell cycle arrest at mitosis (IC50 = 13 µM) and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5–15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities. PMID:24950293

  12. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa.

    PubMed

    Tan, Sean Yang-Yi; Liu, Yang; Chua, Song Lin; Vejborg, Rebecca Munk; Jakobsen, Tim Holm; Chew, Su Chuen; Li, Yingying; Nielsen, Thomas E; Tolker-Nielsen, Tim; Yang, Liang; Givskov, Michael

    2014-11-01

    Food is now recognized as a natural resource of novel antimicrobial agents, including those that target the virulence mechanisms of bacterial pathogens. Iberin, an isothiocyanate compound from horseradish, was recently identified as a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. In this study, we used a comparative systems biology approach to unravel the molecular mechanisms of the effects of iberin on QS and virulence factor expression of P. aeruginosa. Our study shows that the two systems biology methods used (i.e., RNA sequencing and proteomics) complement each other and provide a thorough overview of the impact of iberin on P. aeruginosa. RNA sequencing-based transcriptomics showed that iberin inhibits the expression of the GacA-dependent small regulatory RNAs RsmY and RsmZ; this was verified by using gfp-based transcriptional reporter fusions with the rsmY or rsmZ promoter regions. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics showed that iberin reduces the abundance of the LadS protein, an activator of GacS. Taken together, the findings suggest that the mode of QS inhibition in iberin is through downregulation of the Gac/Rsm QS network, which in turn leads to the repression of QS-regulated virulence factors, such as pyoverdine, chitinase, and protease IV. Lastly, as expected from the observed repression of small regulatory RNA synthesis, we also show that iberin effectively reduces biofilm formation. This suggests that small regulatory RNAs might serve as potential targets in the future development of therapies against pathogens that use QS for controlling virulence factor expression and assume the biofilm mode of growth in the process of causing disease. PMID:25155599

  13. Comparative systems biology analysis to study the mode of action of the isothiocyanate compound Iberin on Pseudomonas aeruginosa.

    PubMed

    Tan, Sean Yang-Yi; Liu, Yang; Chua, Song Lin; Vejborg, Rebecca Munk; Jakobsen, Tim Holm; Chew, Su Chuen; Li, Yingying; Nielsen, Thomas E; Tolker-Nielsen, Tim; Yang, Liang; Givskov, Michael

    2014-11-01

    Food is now recognized as a natural resource of novel antimicrobial agents, including those that target the virulence mechanisms of bacterial pathogens. Iberin, an isothiocyanate compound from horseradish, was recently identified as a quorum-sensing inhibitor (QSI) of the bacterial pathogen Pseudomonas aeruginosa. In this study, we used a comparative systems biology approach to unravel the molecular mechanisms of the effects of iberin on QS and virulence factor expression of P. aeruginosa. Our study shows that the two systems biology methods used (i.e., RNA sequencing and proteomics) complement each other and provide a thorough overview of the impact of iberin on P. aeruginosa. RNA sequencing-based transcriptomics showed that iberin inhibits the expression of the GacA-dependent small regulatory RNAs RsmY and RsmZ; this was verified by using gfp-based transcriptional reporter fusions with the rsmY or rsmZ promoter regions. Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics showed that iberin reduces the abundance of the LadS protein, an activator of GacS. Taken together, the findings suggest that the mode of QS inhibition in iberin is through downregulation of the Gac/Rsm QS network, which in turn leads to the repression of QS-regulated virulence factors, such as pyoverdine, chitinase, and protease IV. Lastly, as expected from the observed repression of small regulatory RNA synthesis, we also show that iberin effectively reduces biofilm formation. This suggests that small regulatory RNAs might serve as potential targets in the future development of therapies against pathogens that use QS for controlling virulence factor expression and assume the biofilm mode of growth in the process of causing disease.

  14. Inhibition of Listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized Oriental mustard extract.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2016-08-01

    Ready-to-eat meats are considered foods at high risk to cause life-threatening Listeria monocytogenes infections. This study screened 5 L. monocytogenes strains for their ability to hydrolyze sinigrin (a glucosinolate in Oriental mustard), which formed allyl isothiocyanate (AITC) and reduced L. monocytogenes viability on inoculated vacuum-packed, cooked, cured roast chicken slices at 4 °C. Tests involved incorporation of 25-50 μl/g AITC directly or 100-250 mg/g Oriental mustard extract in 0.5% (w/v) κ-carrageenan/2% (w/v) chitosan-based coatings prepared using 1.5% malic or acetic acid. L. monocytogenes strains hydrolyzed 33.6%-48.4% pure sinigrin in MH broth by 21 d at 25 °C. Acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 100-250 mg/g mustard reduced the viability of L. monocytogenes and aerobic bacteria on cooked, cured roast chicken slices by 4.1 to >7.0 log10 CFU/g compared to uncoated chicken stored at 4 °C for 70 d. Coatings containing malic acid were significantly more antimicrobial than those with acetic acid. During storage for 70 d, acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 250 mg/g mustard extract reduced lactic acid bacteria (LAB) numbers 3.8 to 5.4 log10 CFU/g on chicken slices compared to uncoated samples. Acidified κ-carrageenan/chitosan-based coatings containing either AITC or Oriental mustard extract at the concentrations tested had the ability to control L. monocytogenes viability and delay growth of potential spoilage bacteria on refrigerated, vacuum-packed cured roast chicken. PMID:27052706

  15. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications.

    PubMed

    Oltolina, Francesca; Gregoletto, Luca; Colangelo, Donato; Gómez-Morales, Jaime; Delgado-López, José Manuel; Prat, Maria

    2015-02-10

    Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.

  16. Measurement of glycoprotein IIb/IIIa blockade by flow cytometry with fluorescein isothiocyanate-conjugated crotavirin, a member of disintegrins.

    PubMed

    Liu, C Z; Hur, B T; Huang, T F

    1996-10-01

    The blockade of platelet membrane glycoprotein IIb/IIIa by a monoclonal antibody, 7E3, was measured by flow cytometry using a fluorescein isothiocyanate-conjugated disintegrin, FITC-crotavirin, as the probe. After treatment of platelets with 7E3 or 7E3 F(ab')2, there is a good correlation between the inhibition of platelet aggregation and the blockade of FITC-crotavirin's binding to platelets. The content of glycoprotein IIb/IIIa for the subsequent binding of FITC-crotavirin to the 7E3-pretreated platelets highly correlated to the extent of glycoprotein IIb/IIIa, remaining available. It was evidenced by the observation that the sum of glycoprotein IIb/IIIa occupation by 7E3 and that of FITC-crotavirin approached the total amount of glycoprotein IIb/IIIa expressed on the platelet membrane. This indicates that the percentage inhibition of FITC-crotavirin's binding at the saturation dose reflects the extent of glycoprotein IIb/IIIa blockade by 7E3. At the saturation binding concentration (5 micrograms/ml), FITC-crotavirin did not displace platelet bound 7E3. Gating the light-scattering profile for platelets, the binding of FITC-crotavirin to platelet glycoprotein IIb/IIIa could be easily determined in diluted whole blood by direct stain method. The available unoccupied glycoprotein IIb/IIIa of platelets in the 7E3 or 7E3 F(ab')2-pretreated whole blood were measured by flow cytometry at the saturation binding dose of FITC-crotavirin (4 micrograms/ml) and the data showed that the higher deconcentration of antibody added into whole blood, the lower debinding of FITC-crotavirin to platelets. This technique may provide an alternative rapid method for measuring the blockade of glycoprotein IIb/IIIa by 7E3, a promising anti-thrombotic agent, thus providing a monitoring method for adjusting the therapeutic dose of 7E3 or its related derivatives.

  17. Sulforaphane homologues: Enantiodivergent synthesis of both enantiomers, activation of the Nrf2 transcription factor and selective cytotoxic activity.

    PubMed

    Elhalem, Eleonora; Recio, Rocío; Werner, Sabine; Lieder, Franziska; Calderón-Montaño, José Manuel; López-Lázaro, Miguel; Fernández, Inmaculada; Khiar, Noureddine

    2014-11-24

    Reported is an enantiodivergent approach for the synthesis of both enantiomers of sulforaphane (SFN) homologues with different chain lengths between the sulfinyl sulfur and the isothiocyanate groups and different substituents on the sulfinyl sulfur. The homologues were designed in order to unravel the effect of all the diversity elements included in sulforaphane's structure. The key step of the approach is the diastereoselective synthesis of both sulfinate ester epimers at sulfur, using as single chiral auxiliary the sugar derived diacetone-d-glucose. The approach allows the first synthesis of both enantiomers of 5-methylsulfinylpentyl isothiocyanate, and the biologically important 6-methylsulfinylhexyl isothiocyanate (6-HITC) found in Japanese horseradish, wasabi (Wasabia japonica). The ability of the synthesized compounds as inductors of phase II detoxifying enzymes has been studied by determining their ability to activate the cytoprotective transcription factor Nrf2. The cytotoxic activity of all the synthesized compounds against human lung adenocarcinoma (A549) and foetal lung fibroblasts (MRC-5) is also reported. PMID:25299679

  18. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F

    2010-05-01

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but spoilage then occurred due to growth of fermentative yeasts, which produced ethanol in the cucumbers. Allyl isothiocyanate (2 mM) prevented growth of Zygosaccharomyces globiformis, which has been responsible for commercial pickle spoilage, as well as the yeasts that were present on fresh cucumbers. However, allyl isothiocyanate did not prevent growth of Lactobacillus plantarum. When these compounds were added in combination to acidified cucumbers, the cucumbers were successfully preserved as indicated by the fact that neither yeasts or lactic acid bacteria increased in numbers nor were lactic acid or ethanol produced by microorganisms when cucumbers were stored at 30 degrees C for at least 2 mo. This combination of 2 naturally occurring preservative compounds may serve as an alternative approach to the use of sodium benzoate or sodium metabisulfite for preservation of acidified vegetables without a thermal process.

  19. Preliminary Investigation on the Use of Allyi Isothiocyanate to Increase the Shelf-Life of Gilthead Sea Bream (Sparus Aurata) Fillets

    PubMed Central

    Crinò, Chiara; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro; Panebianco, Antonio

    2015-01-01

    The aim of this work is to evaluate the activity of allyl isothiocyanate (AITC) against fish spoilage bacteria (specific spoilage organisms; SSOs) as well as its possible use in gilthead sea bream (Sparus aurata) fillets to extend their shelf-life. In this regard, in vitro tests are carried out in order to evaluate the inhibitory activity of AITC and its vapours on several strains of SSOs. The AITC effect on the shelf-life of sea bream fillets was made by putting them in plastic trays hermetically closed with the addition AITC. Microbiological and sensorial evaluations were made on fish fillets during storage. Treated fillets maintained microbial populations at a significantly lower level compared with the control samples during storage, showing better sensorial characteristics. Therefore, the use of AITC’s vapours seems to be a new and interesting alternative way to increase fish product shelf-life. PMID:27800402

  20. Conversion to isothiocyanates via dithiocarbamates for the determination of aromatic primary amines by headspace-solid phase microextraction and gas chromatography.

    PubMed

    Jain, Archana; Reddy-Noone, Kishan; Pillai, Aradhana K K V; Verma, Krishna K

    2013-11-01

    A novel and highly selective method has been developed for the determination of aromatic primary amines by their conversion to dithiocarbamates by reaction with carbon disulphide, and then to isothiocyanates, which are volatile, by heating in the presence of a heavy metal ion. Zinc(II) was selected owing to its low toxicity and optimum yield of isothiocyanates. The latter were sampled by headspace-solid phase microextraction (HS-SPME) on divinylbenzene-carboxen-polydimethylsiloxane fibre, 50/30 μm. The HS-SPME procedure was optimized to provide adequate limits of detection in the analysis of aromatic amines in their real samples by gas chromatography with mass spectrometry (GC-MS) or flame ionization detection (GC-FID). The method gave rectilinear calibration graph, correlation coefficient and limit of detection, respectively, over the range 0.08-100 μg L(-1), 0.9950-0.9990 and 25-240 ng L(-1) in gas chromatography-mass spectrometry, and 0.01-10 mg L(-1), 0.9910-0.9991 and 0.8-3.0 μg L(-1) in gas chromatography-flame ionization detection. At two different levels, 10 and 40 μg L(-1), the range of intra-day RSD was 3.7-8.5% (GC-MS) and 3.3-9.2% (GC-FID), respectively. The proposed method is simple and rapid, and has been applied to determine aromatic primary amines in the environmental waters, food samples of ice cream powder and soft drinks concentrate, and food colours. The intra-day RSD in the analysis of real samples by GC-MS was in the range 3.6-6.2%. The food/colour samples were found to contain elevated levels of aniline and 2-toluidine. PMID:24139574

  1. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates.

    PubMed

    Saw, Constance Lay-Lay; Cintrón, Melvilí; Wu, Tien-Yuan; Guo, Yue; Huang, Ying; Jeong, Woo-Sik; Kong, Ah-Ng Tony

    2011-07-01

    The antioxidant response element (ARE) is a critical regulatory element for the expression of many phase II drug metabolizing enzymes (DME), phase III transporters and antioxidant enzymes, mediated by the transcription factor Nrf2. The aim of this study was to examine the potential activation and synergism of Nrf2-ARE-mediated transcriptional activity between four common phytochemicals present in cruciferous vegetables; the indoles: indole-3-carbinol (I3C), 3,3'-diindolylmethane (DIM); and the isothiocyanates (ITCs): phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). The cytotoxicity of the compounds was determined in a human liver hepatoma cell line (HepG2-C8). The combination index was calculated to assess the synergistic effects on the induction of ARE-mediated gene expressions. Quantitative real-time polymerase chain reaction (qPCR) was employed to measure the mRNA expressions of Nrf2 and Nrf2-mediated genes. I3C and DIM showed less cytotoxicity than SFN and PEITC. Compared with I3C, DIM was found to be a stronger inducer of ARE. Synergism was observed after combined treatments of 6.25 µm I3C + 1 µm SFN, 6.25 µm I3C + 1 µm PEITC and 6.25 µm DIM + 1 µm PEITC, while an additive effect was observed for 6.25 µm DIM + 1 µm SFN. Induction of endogenous Nrf2, phase II genes (GSTm2, UGT1A1 and NQO1) and antioxidant genes (HO-1 and SOD1) was also observed. In summary, the indole I3C or DIM alone could induce or syngergistically induce in combination with the ITCs SFN or PEITC, Nrf2-ARE-mediated gene expression, which could potentially enhance cancer chemopreventive activity. PMID:21656528

  2. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    SciTech Connect

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  3. Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression.

    PubMed

    Gross-Steinmeyer, Kerstin; Stapleton, Patricia L; Tracy, Julia H; Bammler, Theo K; Strom, Stephen C; Eaton, David L

    2010-08-01

    Primary cultures of human hepatocytes were used to investigate whether the dietary isothiocyanates, sulforaphane (SFN), and phenethyl isothiocyanate (PEITC) can reduce DNA adduct formation of the hepatocarcinogen aflatoxin B(1) (AFB). Following 48 h of pretreatment, 10 and 50 microM SFN greatly decreased AFB-DNA adduct levels, whereas 25muM PEITC decreased AFB-DNA adducts in some but not all hepatocyte preparations. Microarray and quantitative reverse transcriptase (RT)-PCR analyses of gene expression in SFN and PEITC-treated hepatocytes demonstrated that SFN greatly decreased cytochrome P450 (CYP) 3A4 mRNA but did not induce the expression of either glutathione S-transferase (GST) M1 or GSTT1. The protective effects of SFN required pretreatment; cotreatment of hepatocytes with SFN and AFB in the absence of pretreatment had no effect on AFB-DNA adduct formation. When AFB-DNA adduct formation was evaluated by GST genotype, the presence of one or two functional alleles of GSTM1 was associated with a 75% reduction in AFB-DNA adducts, compared with GSTM1 null. In conclusion, these results demonstrate that the inhibition of AFB-DNA adduct formation by SFN is dependent on changes in gene expression rather than direct inhibition of catalytic activity. Transcriptional repression of genes involved in AFB bioactivation (CYP3A4 and CYP1A2), but not transcriptional activation of GSTs, may be responsible for the protective effects of SFN. Although GSTM1 expression was not induced by SFN, the presence of a functional GSTM1 allele can afford substantial protection against AFB-DNA damage in human liver. The downregulation of CYP3A4 by SFN may have important implications for drug interactions. PMID:20442190

  4. 4(α-l-rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; De Nicola, Gina Rosalinda; Iori, Renato; Bramanti, Placido; Mazzon, Emanuela

    2015-01-01

    4(α-l-Rhamnosyloxy)-benzyl isothiocyanate (glucomoringin isothiocyanate; GMG-ITC) is released from the precursor 4(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin; GMG) by myrosinase (β-thioglucoside glucohydrolase; E.C. 3.2.1.147) catalyzed hydrolysis. GMG is an uncommon member of the glucosinolate group as it presents a unique characteristic consisting in a second glycosidic residue within the side chain. It is a typical glucosinolate found in large amounts in the seeds of Moringa oleifera Lam., the most widely distributed plant of the Moringaceae family. GMG was purified from seed-cake of M. oleifera and was hydrolyzed by myrosinase at neutral pH in order to form the corresponding GMG-ITC. This bioactive phytochemical can play a key role in counteracting the inflammatory response connected to the oxidative-related mechanisms as well as in the control of the neuronal cell death process, preserving spinal cord tissues after injury in mice. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24g) for 1 min., via four-level T5-T8 after laminectomy. In particular, the purpose of this study was to investigate the dynamic changes occurring in the spinal cord after ip treatment with bioactive GMG-ITC produced 15 min before use from myrosinase-catalyzed hydrolysis of GMG (10mg/kg body weight+5 μl Myr mouse/day). The following parameters, such as histological damage, distribution of reticular fibers in connective tissue, nuclear factor (NF)-κB translocation and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) degradation, expression of inducible Nitric Oxide Synthases (iNOS), as well as apoptosis, were evaluated. In conclusion, our results show a protective effect of bioactive GMG-ITC on the secondary damage, following spinal cord injury, through an antioxidant mechanism of neuroprotection. Therefore, the bioactive phytochemical GMG-ITC freshly produced before use by myrosinase

  5. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression and inducible nitric oxide synthase by 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera

    PubMed Central

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.

    2011-01-01

    Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591

  6. The effect of radish sourced 4-(Methylthio)-3-butenyl isothiocyanate on ameliorating the severity of high fat diet inducted nonalcoholic fatty liver disease in rats

    PubMed Central

    You, Hong; Hao, Rui; Li, Ru; Zhang, Liang; Zhu, Yi; Luo, Yunbo

    2015-01-01

    The aim of this study is to develop a high fat diet and over nutrition induced nonalcoholic fatty liver disease(NAFLD) in rat, and to investigate the effect of 4-(Methylthio)-3-butenyl isothiocyanate (MTBITC) on ameliorating the NAFLD. Twenty Sprague-Dawley (SD) rats were equally divided into 4 groups (C, M, E1 & E2). Control group (C) were treated with standard restricted diet; Model group (M) were given high fat liquid diet ad libitum; Experimental group (E1 & E2) were treated with high fat liquid diet ad libitum and MTBITC by gavage. The experiment last 9 weeks, and serum chemistry and liver histology were assessed. The rats of M group showed severe lipid deposition and peroxidation in liver. When compared with group C, group M also showed significantly higher serum concentration of low-density lipoprotein, tumor necrosis factor-α and glucose. Histopathologic sections demonstrated lipid accumulation and macrovascular steatosis with ballooning degeneration in the livers of M. Group E2 presented significantly better conditions when assessed based on the parameters of NAFLD. The data suggested that MTBITC might significantly attenuate fat liquid diet induced NAFLD. PMID:26629094

  7. Fullerol-fluorescein isothiocyanate-concanavalin agglutinin phosphorescent sensor for the detection of alpha-fetoprotein and forecast of human diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin

    2013-11-01

    Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.

  8. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates.

    PubMed

    Rajendran, Praveen; Kidane, Ariam I; Yu, Tian-Wei; Dashwood, Wan-Mohaiza; Bisson, William H; Löhr, Christiane V; Ho, Emily; Williams, David E; Dashwood, Roderick H

    2013-06-01

    Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.

  9. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest.

    PubMed

    Cho, Han Jin; Lim, Do Young; Kwon, Gyoo Taik; Kim, Ji Hee; Huang, Zunnan; Song, Hyerim; Oh, Yoon Sin; Kang, Young-Hee; Lee, Ki Won; Dong, Zigang; Park, Jung Han Yoon

    2016-01-01

    Benzyl isothiocyanate (BITC) is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC) was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker), cyclin A, cyclin D1, and cyclin-dependent kinase (CDK)2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC. PMID:26907265

  10. Sulforaphane, a Dietary Isothiocyanate, Induces G2/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association

    PubMed Central

    Cheng, Ya-Min; Tsai, Ching-Chou; Hsu, Yi-Chiang

    2016-01-01

    Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins. PMID:27626412

  11. Modulation of carcinogen metabolizing cytochromes P450 in rat liver and kidney by cabbage and sauerkraut juices: comparison with the effects of indole-3-carbinol and phenethyl isothiocyanate.

    PubMed

    Szaefer, Hanna; Krajka-Kuźniak, Violetta; Bartoszek, Agnieszka; Baer-Dubowska, Wanda

    2012-08-01

    This study investigated the effect of raw cabbage and sauerkraut juices on the activity and expression of CYP1A1, 1A2, 1B1 and 2B in Wistar rat liver and kidney. The results were compared with those of two commercially available products of glucosinolates degradation: indole-3-carbinol (I3C) and phenethyl isothiocyanate (PEITC). Significant differences in the effect of the cabbage juices as well as I3C and PEITC between the liver and kidney were found. In the liver, both juices decreased the activities of enzymatic markers of CYP1A1 and CYP1A2 after 10 days of the experiment, while in the kidney an enhancement of the activity of these enzymes was observed on days 4 and 10. The increased activity of these enzymes and CYP1A1/1A2 protein level in the liver was found after 30 days of treatment with sauerkraut juice. A similar effect was observed as a result of PEITC treatment. I3C increased the expression and activity of hepatic CYPs at all time points investigated. In conclusion, the present study demonstrates that raw cabbage and sauerkraut juices may affect CYPs involved in the activation of carcinogens/xenobiotics and in this way exert anticarcinogenic activity. The final effects, however, depend on the time-frame of exposure and the type of tissue.

  12. Raman Imaging Spectroscopy as a Tool To Investigate the Cell Damage on Aspergillus ochraceus Caused by an Antimicrobial Packaging Containing Benzyl Isothiocyanate.

    PubMed

    Clemente, Isabel; Aznar, Margarita; Nerín, Cristina

    2016-05-01

    Raman imaging spectroscopy is a nondestructive analytical method that can be a useful tool to obtain detailed information about the molecular composition and morphology of biological samples. Its high spatial resolution was used to collect spectra of Aspergillus ochraceus, a mold producer of ochratoxin A (OTA), in order to investigate the cell damage caused on it by the action of the antimicrobial benzyl isothiocyanate (BITC). The study was performed in both direct contact and vapor phase, in order to check the use of BITC as active agent in food packaging material. The results showed that there were morphologic alteration and a characteristic Raman spectrum on spore and hyphae exposed to BITC. BITC was accumulated in the mold cells where it caused an enormous amount of alterations in cellular components (lipids, proteins, saccharides, amino acids...) and cellular functions (cell cycle, respiration, metabolism, transcription of genes, fluidity of the cellular wall). All these structural, composition, and metabolic changes will affect the production of OTA. Pattern recognition with chemometrics using principal component analysis (PCA) demonstrated an excellent separation between control and BITC treated samples, both in spores and hyphae. PCA results also showed two different affection levels when samples were exposed to BITC in the vapor phase. PMID:27032001

  13. The effect of benzyl isothiocyanate and its computer-aided design derivants targeting alkylglycerone phosphate synthase on the inhibition of human glioma U87MG cell line.

    PubMed

    Zhu, Yu; Liu, Anmin; Zhang, Xuebin; Qi, Lisha; Zhang, Ling; Xue, Jing; Liu, Yi; Yang, Ping

    2015-05-01

    Benzyl isothiocyanate (BITC) has been shown to have inhibitory potential for human glioma U87MG cells; however, the effect and mechanism were not fully clear. In the present study, we found that BITC could inhibit U87MG cell proliferation, adhesion, invasion, and vasculogenic mimicry (VM) formation potential and induce oxidative stress, apoptosis, and cell cycle arrest. We also found that the expression of proliferation, invasion, VM oxidative stress, apoptosis, and cell cycle-related gene and the activity of tumor-related signaling pathways, including protein kinase C (PKC) ζ and Akt/nuclear factor-kappa B (NF-κB) pathways, were suppressed by BITC treatment. We also explored the anti-tumor potential of BITC in vivo, and we found that BITC also could regulate the expression of tumor-related gene and angiogenesis in nude mice model. Finally, we optimized the BITC construction targeting alkylglycerone phosphate synthase (AGPS) by computer-aided design, and the derivants also showed anti-tumor potential in vitro.

  14. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl–Group Channeling during [NiFe]–Hydrogenase Cofactor Generation

    PubMed Central

    Stripp, Sven T.; Lindenstrauss, Ute; Sawers, R. Gary; Soboh, Basem

    2015-01-01

    [NiFe]–hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so–called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP–dependent condensation reaction, the C–terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]–hydrogenase active site cofactor. We present a FT–IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF–catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro–electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (–N=C=S) rather than thiocyanate (–S–C≡N). This has important implications for cyanyl–group channeling during [NiFe]–hydrogenase cofactor generation. PMID:26186649

  15. A Novel Ratiometric Probe Based on Nitrogen-Doped Carbon Dots and Rhodamine B Isothiocyanate for Detection of Fe3+ in Aqueous Solution

    PubMed Central

    Liu, Lin; Chen, Lu; Liang, Jiangong; Liu, Lingzhi; Han, Heyou

    2016-01-01

    A ratiometric probe for determining ferric ions (Fe3+) was developed based on nitrogen-doped carbon dots (CDs) and rhodamine B isothiocyanate (RhB), which was then applied to selective detection of Fe3+ in PB buffer solution, lake water, and tap water. In the sensing system, FePO4 particles deposit on the surface of CDs, resulting in larger particles and surface passivation. The fluorescence (FL) intensity and the light scattering (LS) intensity of CDs can be gradually enhanced with the addition of Fe3+, while the FL intensity of RhB remains constant. The ratiometric light intensity of CDs LS and RhB FL was quantitatively in response to Fe3+ concentrations in a dynamic range of 0.01–1.2 μM, with a detection limit as low as 6 nM. Other metal ions, such as Fe2+, Al3+, K+, Ca2+, and Co2+, had no significant interference on the determination of Fe3+. Compared with traditional probes based on single-signal probe for Fe3+ detection, this dual-signal-based ratiometric probe exhibits a more reliable and stable response on target concentration and is characterized by easy operation in a simple fluorescence spectrophotometer. PMID:27119042

  16. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+

    PubMed Central

    2015-01-01

    Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with 68Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced 68Ga3+ in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60–80 MBq nmol–1. Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new 68Ga3+-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1–2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of 68Ga biomolecules under mild conditions suitable for peptides and proteins. PMID:26286399

  17. Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death

    PubMed Central

    Chen, Po-Yuan; Lin, Kai-Chun; Lin, Jing-Pin; Tang, Nou-Ying; Yang, Jai-Sing; Lu, Kung-Wen; Chung, Jing-Gung

    2012-01-01

    Phenethyl isothiocyanate (PEITC), an effective anticancer and chemopreventive agent, has been reported to inhibit cancer cell growth through cell-cycle arrest and induction of apoptotic events in various human cancer cells models. However, whether PEITC inhibits human oral squamous cell carcinoma HSC-3 cell growth and its underlying mechanisms is still not well elucidated. In the present study, we evaluated the inhibitory effects of PEITC in HSC-3 cells and examined PEITC-modulated cell-cycle arrest and apoptosis. The contrast-phase and flow cytometric assays were used for examining cell morphological changes and viability, respectively. The changes of cell-cycle and apoptosis-associated protein levels were determined utilizing Western blotting in HSC-3 cells after exposure to PEITC. Our results indicated that PEITC effectively inhibited the HSC-3 cells' growth and caused apoptosis. PEITC induced G0/G1 phase arrest through the effects of associated protein such as p53, p21, p17, CDK2 and cyclin E, and it triggered apoptosis through promotion of Bax and Bid expression and reduction of Bcl-2, leading to decrease the levels of mitochondrial membrane potential (ΔΨm), and followed the releases of cytochrome c, AIF and Endo G then for causing apoptosis in HSC-3 cells. These results suggest that PEITC could be an antitumor compound for oral cancer therapy. PMID:22919418

  18. Administration of 4-(α-L-Rhamnosyloxy)-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    De Nicola, Gina Rosalinda; Mazzon, Emanuela

    2015-01-01

    4-(α-L-Rhamnosyloxy)-benzyl glucosinolate (glucomoringin, GMG) is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy)-benzyl isothiocyanate (GMG-ITC). The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS) using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg) bioactivated with myrosinase (20 µL/rat) via intraperitoneal (i.p.) injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease. PMID:26075221

  19. Sulforaphane, a Dietary Isothiocyanate, Induces G₂/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association.

    PubMed

    Cheng, Ya-Min; Tsai, Ching-Chou; Hsu, Yi-Chiang

    2016-01-01

    Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN) is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G₂/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa). We found that cytotoxicity is associated with an accumulation of cells in the G₂/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G₂/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins. PMID:27626412

  20. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells

    PubMed Central

    Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J.W.

    2016-01-01

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer. PMID:27034170

  1. Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine.

    PubMed

    Pilipczuk, Tadeusz; Kusznierewicz, Barbara; Chmiel, Tomasz; Przychodzeń, Witold; Bartoszek, Agnieszka

    2017-01-01

    The procedure for the isothiocyanates (ITCs) determination that involves derivatization with N-acetyl-l-cysteine (NAC) and separation by HPLC was developed. Prior to derivatization, plant ITCs were isolated and purified using solid-phase extraction (SPE). The optimum conditions of derivatization are: 500μL of isopropanolic eluate obtained by SPE combined with 500μL of derivatizing reagent (0.2M NAC and 0.2M NaHCO3 in water) and reaction time of 1h at 50°C. The formed dithiocarbamates are directly analyzed by HPLC coupled with diode array detector and mass spectrometer if required. The method was validated for nine common natural ITCs. Calibration curves were linear (R(2)⩾0.991) within a wide range of concentrations and limits of detection were below 4.9nmol/mL. The recoveries were in the range of 83.3-103.7%, with relative standard deviations <5.4%. The developed method has been successfully applied to determine ITCs in broccoli, white cabbage, garden cress, radish, horseradish and papaya. PMID:27507514

  2. Infrared Diode Laser Studies of the Products from the Reaction Methylene (x Triplet B(1)) + Oxygen and from the Near-Uv Photolysis of Methyl Isothiocyanate.

    NASA Astrophysics Data System (ADS)

    Alvarez, Ramon Arturo

    The absolute yields of the stable carbon containing products CO, CO_2, and H _2CO formed in the reaction of triplet methylene rm (~{X} ^3B _1equiv CH_2) with O _2 have been determined using a flash kinetic spectrometer. CH_2 radicals were generated by excimer laser photolysis of ketene and product formation was monitored by time-resolved infrared diode laser absorption. The reaction was carried out in a static gas cell at room temperature (T = 298 +/- 3 K) with total pressures in the range 1-25 torr. The measured product yields were CO, 0.34 +/- 0.06: CO_2, 0.40 _sp{-0.07}{+0.09}; and H_2CO, 0.16 +/- 0.04. The rate constants for production of CO and CO _2 were equivalent to the published rate constant for removal of CH_2. Additionally, indirect evidence indicated that the yield of OH is 0.30 +/- 0.05. The ultraviolet spectrum of methyl isothiocyanate (CH_3NCS equiv MITC) and the quantum yield for its dissociation into methyl isocyanide (CH_3NC) and atomic sulfur at 308 nm, Phi = 0.98 +/- 0.24, were measured. MITC is widely used as a fumigant and readily enters the atmosphere during and after application. The results indicate that photodissociation by sunlight is an effective pathway for the removal of MITC from the atmosphere. A mechanism is proposed to account for the observed formation of methyl isocyanate (CH _3NCO) as a secondary product in controlled laboratory studies.

  3. Cell cycle kinetics, apoptosis rates, DNA damage and TP53 gene expression in bladder cancer cells treated with allyl isothiocyanate (mustard essential oil).

    PubMed

    Savio, André Luiz Ventura; da Silva, Glenda Nicioli; de Camargo, Elaine Aparecida; Salvadori, Daisy Maria Fávero

    2014-04-01

    Allyl isothiocyanate (AITC) is present in plants of the cruciferous family and is abundant in mustard seed. Due to its high bioavailability in urine after ingestion, AITC has been considered a promising antineoplastic agent against bladder cancer. Because TP53 mutations are the most common alterations in bladder cancer cells and are frequently detected in in situ carcinomas, in this study, we investigated whether the AITC effects in bladder cancer cells are dependent on the TP53 status. Two bladder transitional carcinoma cell lines were used: RT4, with wild-type TP53; and T24, mutated TP53 gene. AITC was tested at concentrations of 0.005, 0.0625, 0.0725, 0.0825, 0.0925, 0.125 and 0.25 μM in cytotoxicity, cell and clonogenic survival assays, comet and micronucleus assays and for its effects on cell cycle and apoptosis by flow cytometry and on TP53 gene expression. The data showed increased primary DNA damage in both cell lines; however, lower concentrations of AITC were able to induce genotoxicity in the mutant cells for the TP53 gene. Furthermore, the results demonstrated increased apoptosis and necrosis rates in the wild-type cells, but not in mutated TP53 cells, and cell cycle arrest in the G2 phase for mutated cells after AITC treatment. No significant differences were detected in TP53 gene expression in the two cell lines. In conclusion, AITC caused cell cycle arrest, increased apoptosis rates and varying genotoxicity dependent on the TP53 status. However, we cannot rule out the possibility that those differences could reflect other intrinsic genetic alterations in the examined cell lines, which may also carry mutations in genes other than TP53. Therefore, further studies using other molecular targets need to be performed to better understand the mechanisms by which AITC may exert its antineoplastic properties against tumor cells. PMID:24625788

  4. Benzyl isothiocyanate disturbs lipid metabolism in rats in a way independent of its thyroid impact following in vivo long-term treatment and in vitro adipocytes studies.

    PubMed

    Okulicz, Monika; Hertig, Iwona

    2013-03-01

    During recent decades, benzyl isothiocyanate (BITC) was examined mainly in terms of its cancer chemopreventive action. Although some research has been conducted on goitrogenic activity of many glucosinolate derivatives, little attention has been paid to the BITC impact on the thyroid gland and lipid metabolism strictly associated with it. Therefore, this research project aimed at expanding our knowledge about how non-physiological doses of BITC (widely used in chemotherapy) influence some hormonal and metabolic (lipid) parameters in in vivo and in vitro experiments. The trial was focused on BITC action on thyroid tissue, liver, as well as white adipocyte tissue, at doses which were previously proved to exert a strong anticancer effect (10 mg/kg body weight in vivo and 1, 10 and 100 μmol/L in in vitro trials, respectively). Two-week oral administration of BITC in in vivo trial affected thyroid gland by decreasing total thyroxine and triiodothyronine. However, the obtained lipid profile was not specific for thyroid hormone deficiency because no lipid changes in the blood serum and liver steatosis were observed. BITC per se evoked elevation of basal lipolysis at 1 and 100 μmol/L and limitation of basal lipogenesis at 100 μmol/L in adipocyte tissues in in vitro experiment. BITC did not remain indifferent to liver metabolism by its possible influence on hepatic cholesterol 7α-hydroxylase and 5-deiodinase as well as on adipocytes by its enhanced basal lipolysis and limited lipogenesis independently of epinephrine and insulin action steps, respectively. Additionally, BITC was probably involved in bile flow obstruction.

  5. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    PubMed

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.

  6. Elimination of Escherichia coli O157:H7 from Fermented Dry Sausages at an Organoleptically Acceptable Level of Microencapsulated Allyl Isothiocyanate

    PubMed Central

    Chacon, Pedro A.; Muthukumarasamy, Parthiban; Holley, Richard A.

    2006-01-01

    Four sausage batters (17.59% beef, 60.67% pork, and 17.59% pork fat) were inoculated with two commercial starter culture organisms (>7 log10 CFU/g Pediococcus pentosaceus and 6 log10 CFU/g Staphylococcus carnosus) and a five-strain cocktail of nonpathogenic variants of Escherichia coli O157:H7 to yield 6 to 7 log10 CFU/g. Microencapsulated allyl isothiocyanate (AIT) was added to three batters at 500, 750, or 1,000 ppm to determine its antimicrobial effects. For sensory analysis, separate batches with starter cultures and 0, 500, or 750 ppm microencapsulated AIT were produced. Sausages were fermented at ≤26°C and 88% relative humidity (RH) for 72 h. Subsequently sausages were dried at 75% RH and 13°C for at least 25 days. The water activity (aw), pH, and levels of starter cultures, E. coli O157:H7, and total bacteria were monitored during fermentation and drying. All sausages showed changes in the initial pH from 5.57 to 4.89 and in aw from 0.96 to 0.89 by the end of fermentation and drying, respectively. Starter culture numbers were reduced during sausage maturation, but there was no effect of AIT on meat pH reduction. E. coli O157:H7 was reduced by 6.5 log10 CFU/g in sausages containing 750 and 1,000 ppm AIT after 21 and 16 days of processing, respectively. E. coli O157:H7 numbers were reduced by 4.75 log10 CFU/g after 28 days of processing in treatments with 500 ppm AIT, and the organism was not recovered from this treatment beyond 40 days. During sensory evaluation, sausages containing 500 ppm AIT were considered acceptable although slightly spicy by panelists. PMID:16672446

  7. Assessment of hepatobiliary function and placental barrier integrity in pregnant rats by combination of bromosulphophthalein and fluorescein isothiocyanate plasma disappearance tests.

    PubMed Central

    Villaneuva, G. R.; Sanchez-Abarca, L. I.; Bravo, P.; el-Mir, M. Y.; Marin, J. J.

    1995-01-01

    The permeability of the placental barrier to bromosulphophthalein (BSP) is believed to be very low. Whether this property is shared by other cholephilic organic anions, such as fluorescein isothiocyanate (FITC), is not known. When BSP was injected (140 mumol/kg body wt) into the left jugular vein of non-pregnant or pregnant female rats (at the 21st day of pregnancy), a similar and rapid plasma disappearance was observed during the first few minutes; afterwards, a slower disappearance phase was found. This phase was different in these groups, that is, a longer retention of BSP in the maternal bloodstream of pregnant rats was accompanied by a slower BSP output into bile. It was impossible to demonstrate the presence of BSP in fetal blood or the placenta by colorimetric methods. These results are consistent with the modifications occurring in the hepatic handling of BSP during pregnancy together with a marked impermeability of the placenta to the dye, at least in the mother-to-fetus direction. After intravenous FITC (10 mumol/kg body wt) administration to the mother, the compound was rapidly transferred into both the maternal bile and the fetal blood. Thereafter, FITC refluxed back from the fetal-placental compartment to the maternal blood as soon as the maternal liver reduced its plasma concentrations, which were first higher (approximately threefold) and then similar to those found in fetal blood. The reversible retention of FITC by the fetal-placental compartment accounts for a significant delay in both FITC bile output and plasma disappearance as compared with those observed in non-pregnant rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7547429

  8. Identification of cancer chemopreventive isothiocyanates as direct inhibitors of the arylamine N-acetyltransferase-dependent acetylation and bioactivation of aromatic amine carcinogens

    PubMed Central

    Duval, Romain; Xu, Ximing; Bui, Linh-Chi; Mathieu, Cécile; Petit, Emile; Cariou, Kevin; Dodd, Robert H.; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Aromatic amines (AAs) are chemicals of industrial, pharmacological and environmental relevance. Certain AAs, such as 4-aminobiphenyl (4-ABP), are human carcinogens that require enzymatic metabolic activation to reactive chemicals to form genotoxic DNA adducts. Arylamine N-acetyltransferases (NAT) are xenobiotic metabolizing enzymes (XME) that play a major role in this carcinogenic bioactivation process. Isothiocyanates (ITCs), including benzyl-ITC (BITC) and phenethyl-ITC (PEITC), are phytochemicals known to have chemopreventive activity against several aromatic carcinogens. In particular, ITCs have been shown to modify the bioactivation and subsequent mutagenicity of carcinogenic AA chemicals such as 4-ABP. However, the molecular and biochemical mechanisms by which these phytochemicals may modulate AA carcinogens bioactivation and AA-DNA damage remains poorly understood. This manuscript provides evidence indicating that ITCs can decrease the metabolic activation of carcinogenic AAs via the irreversible inhibition of NAT enzymes and subsequent alteration of the acetylation of AAs. We demonstrate that BITC and PEITC react with NAT1 and inhibit readily its acetyltransferase activity (ki = 200 M−1.s−1 and 66 M−1.s−1 for BITC and PEITC, respectively). Chemical labeling, docking approaches and substrate protection assays indicated that inhibition of the acetylation of AAs by NAT1 was due to the chemical modification of the enzyme active site cysteine. Moreover, analyses of AAs acetylation and DNA adducts in cells showed that BITC was able to modulate the endogenous acetylation and bioactivation of 4-ABP. In conclusion, we show that direct inhibition of NAT enzymes may be an important mechanism by which ITCs exert their chemopreventive activity towards AA chemicals. PMID:26840026

  9. Unexpected side products in the conjugation of an amine-derivatized morpholino oligomer with p-isothiocyanate benzyl DTPA and their removal.

    PubMed

    Liu, Guozheng; Dou, Shuping; Liu, Yuxia; Liang, Minmin; Chen, Ling; Cheng, Dengfeng; Greiner, Dale; Rusckowski, Mary; Hnatowich, Donald J

    2011-02-01

    In connection with pretargeting, an amine-derivatized morpholino phosphorodiamidate oligomer (NH(2)-cMORF) was conjugated conventionally with p-isothiocyanate benzyl-DTPA (p-SCN-Bn-DTPA). However, after (111)In radiolabeling, unexpected label instability was observed. To understand this instability, the NH(2)-cMORF and, as control, the native cMORF without the amine were conjugated in the conventional manner. Surprisingly, the (111)In labeling of the native cMORF conjugate was equally effective as that of the NH(2)-cMORF conjugate (>95%) despite the absence of the amine group. Furthermore, heating the radiolabeled NH(2)-cMORF and native cMORF conjugates resulted in a 35% loss and a complete loss of the label, respectively. Since the (111)In labeled DTPA is known to be stable, the instability in both cases must be due to some unstable association of DTPA to the cMORF, presumably unstable association to some endogenous sites in cMORF. Based on this assumption, a postconjugation-prepurification heating step was introduced, and labeling efficiency and stability were again investigated. By introducing the heating step, the side products were dissociated, and after purification and labeling, the NH(2)-cMORF conjugate provided a stable label and high labeling efficiency with no need for postlabeling purification. The biodistribution of this radiolabeled conjugate in normal mice showed significantly lower backgrounds compared with the labeled unstable native cMORF conjugate. In conclusion, the conventional conjugation procedure to attach the p-SCN-Bn-DTPA to NH(2)-cMORF resulted in side product(s) that were responsible for the (111)In label instability. Adding a postconjugation-prepurification heating step dissociated the side products, improved the label stability and lowered tissue backgrounds in mice. PMID:21315270

  10. Cytotoxicity, Antioxidant and Apoptosis Studies of Quercetin-3-O Glucoside and 4-(β-D-Glucopyranosyl-1→4-α-L-Rhamnopyranosyloxy)-Benzyl Isothiocyanate from Moringa oleifera.

    PubMed

    Maiyo, Fiona C; Moodley, Roshila; Singh, Moganavelli

    2016-01-01

    Moringa oleifera, from the family Moringaceae, is used as a source of vegetable and herbal medicine and in the treatment of various cancers in many African countries, including Kenya. The present study involved the phytochemical analyses of the crude extracts of M.oleifera and biological activities (antioxidant, cytotoxicity and induction of apoptosis in-vitro) of selected isolated compounds. The compounds isolated from the leaves and seeds of the plant were quercetin-3-O-glucoside (1), 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate (2), lutein (3), and sitosterol (4). Antioxidant activity of compound 1 was significant when compared to that of the control, while compound 2 showed moderate activity. The cytotoxicity of compounds 1 and 2 were tested in three cell lines, viz. liver hepatocellular carcinoma (HepG2), colon carcinoma (Caco-2) and a non-cancer cell line Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, 5-fluorouracil. Apoptosis studies were carried out using the acridine orange/ethidium bromide dual staining method. The isolated compounds showed selective in vitro cytotoxic and apoptotic activity against human cancer and non-cancer cell lines, respectively. Compound 1 showed significant cytotoxicity against the Caco-2 cell line with an IC50 of 79 μg mL(-1) and moderate cytotoxicity against the HepG2 cell line with an IC50 of 150 μg mL(-1), while compound 2 showed significant cytotoxicity against the Caco- 2 and HepG2 cell lines with an IC50 of 45 μg mL(-1) and 60 μg mL(-1), respectively. Comparatively both compounds showed much lower cytotoxicity against the HEK293 cell line with IC50 values of 186 μg mL(-1) and 224 μg mL(-1), respectively. PMID:26428271

  11. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    SciTech Connect

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  12. Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system.

    PubMed

    Ke, Chen-Yi; Wu, Yun-Tse; Tseng, Wei-Lung

    2015-07-15

    This study describes the synthesis of a dual emission probe for the fluorescent ratiometric sensing of hydrogen peroxide (H2O2), enzyme activity, and environmental pH change. Green-emitting fluorescein-5-isothiocyanate (FITC) was conjugated to the amino groups of bovine serum albumin (BSA). This FITC-conjugated BSA acted as a template for the synthesis of red-emitting gold nanoclusters (AuNCs) under alkaline conditions. Under single wavelength excitation, FITC/BSA-stabilized AuNCs (FITC/BSA-AuNCs) emitted fluorescence at 525 and 670nm, which are sensitive to changes in solution pH and H2O2 concentration, respectively. The effective fluorescence quenching of AuNCs by H2O2 enabled FITC/BSA-AuNCs to ratiometrically detect the H2O2 product-related enzyme system and its inhibition, including glucose oxidase-catalyzed oxidation of glucose, acetylcholinesterase/choline oxidase-mediated hydrolysis and oxidation of acetylcholine, and paraoxon-induced inhibition of acetylcholinesterase activity. When pH-insensitive AuNCs were used as an internal standard, FITC/BSA-AuNCs offered a sensitive and reversible ratiometric sensing of a 0.1-pH unit change in the pH range 5.0-8.5. The pH-induced change in FITC fluorescence enabled FITC/BSA-AuNCs to detect an ammonia product-related enzyme system. This was exemplified with the determination of urea in plasma by urease-mediated hydrolysis of urea.

  13. Combined effects of isothiocyanate intake, glutathione S-transferase polymorphisms and risk habits for age of oral squamous cell carcinoma development.

    PubMed

    Karen-Ng, Lee Peng; Marhazlinda, Jamaludin; Rahman, Zainal Arif Abdul; Yang, Yi-Hsin; Jalil, Norma; Cheong, Sok Ching; Zain, Rosnah Binti

    2011-01-01

    Dietary isothiocyanates (ITCs) found in cruciferous vegetables (Brassica spp.) has been reported to reduce cancer risk by inducing phase II conjugating enzymes, in particular glutathione S-transferases (GSTs). This case-control study was aimed at determining associations between dietary ITCs, GSTs polymorphisms and risk habits (cigarette smoking, alcohol drinking and betel-quid chewing) with oral cancer in 115 cases and 116 controls. Information on dietary ITC intake from cruciferous vegetables was collected via a semi-quantitative food frequency questionnaire (FFQ). Peripheral blood lymphocytes were obtained for genotyping of GSTM1, GSTT1 and GSTP1 using PCR multiplex and PCR-RFLP. Chi-square and logistic regression were performed to determine the association of ITC and GSTs polymorphism and risk of oral cancer. When dietary ITC was categorized into high (greater than/equal to median) and low (less than median) intake, there was no significant difference between cases and control group. Logistic regression yielding odd ratios resulted in no significant association between dietary ITC intake, GSTM1, GSTT1 or GSTP1 genotypes with oral cancer risk overall. However, GSTP1 wild-type genotype was associated with later disease onset in women above 55 years of age (p= 0.017). Among the men above 45 years of age, there was clinical significant difference of 17 years in the age of onset of oral cancer between GSTP1 wild-type + low ITC intake and GSTP1 polymorphism + high ITC intake (p= 0.001). Similar conditions were also seen among men above 45 years of age with risk habits like drinking and chewing as the earlier disease onset associated with GSTP1 polymorphism and high ITC intake (p< 0.001). This study suggests that combination effects between dietary ITCs, GSTP1 polymorphism and risk habits may be associated with the risk of oral cancer and modulate the age of disease onset. PMID:21875259

  14. MiR-135a and MRP1 play pivotal roles in the selective lethality of phenethyl isothiocyanate to malignant glioma cells

    PubMed Central

    Zhang, Taolan; Shao, Yingying; Chu, Tang-Yuan; Huang, Hsuan-Shun; Liou, Yu-Ligh; Li, Qing; Zhou, Honghao

    2016-01-01

    Amounting evidence has demonstrated that phenethyl isothiocyanate (PEITC) is a strong inducer of reactive oxygen species (ROS) and functions as a selective killer to various human cancer cells. However, it remains obscure whether PEITC has potential selective lethality to malignant glioma cells. Thus in this study, we performed multiple analysis such as MTT assay, Hoechst 33258 staining, flow cytometry, foci formation, RT-PCR, Western blot, and transfection to explore the selective lethality of PEITC to malignant glioma cells and the underlying mechanisms. We found that PEITC induced a selective apoptosis and suppressed tumorigenicity and migration of malignant glioma cells. Furthermore, we found PEITC significantly induced GSH depletion, ROS production, caspase-9 and caspase-3 activation, and miR-135a upregulation in malignant glioma cells but not in normal cells. Moreover, PEITC activated the miR-135a-mitochondria dependent apoptosis pathway as demonstrated by downregulation of STAT6, SMAD5 and Bcl-xl while upregulation of Bax expression and Cytochrome-C release in malignant glioma cell lines but not in the immortalized human normal glial HEB cells. Correspondingly, the above PEITC-induced activation of the ROS-MiR-135a-Mitochondria dependent apoptosis pathways in malignant glioma was attenuated by pre-transfection with miR-135a inhibitor, pre-treatment with multidrug resistance-associated protein 1 (MRP1) inhibitor Sch B, or combination with glutathione (GSH). These results revealed that PEITC selectively induced apoptosis of malignant glioma cells through MRP1-mediated export of GSH to activate ROS-MiR-135a-Mitochondria dependent apoptosis pathway, suggesting a potential application of PEITC for treating glioma. PMID:27293991

  15. Determination of benzyl isothiocyanate metabolites in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.).

    PubMed

    Platz, Stefanie; Kühn, Carla; Schiess, Sonja; Schreiner, Monika; Mewis, Inga; Kemper, Margrit; Pfeiffer, Andreas; Rohn, Sascha

    2013-09-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine the concentration of benzyl isothiocyanate (BITC) metabolites in human plasma and urine. In this study, the following BITC metabolites have been considered: BITC-glutathione, BITC-cysteinylglycine, BITC-cysteine, and BITC-N-acetyl-L-cysteine. The assay development included: (1) synthesis of BITC conjugates acting as reference substances; (2) sample preparation based on protein precipitation and solid-phase extraction; (3) development of a quantitative LC-MS/MS method working in the multiple-reaction monitoring mode; (4) validation of the assay; (5) investigation of the stability and the reactivity of BITC conjugates in vitro; (6) application of the method to samples from a human intervention study. The lower limits of quantification were in the range of 21-183 nM depending on analyte and matrix, whereas the average recovery rates from spiked plasma and urine were approximately 85 and 75 %, respectively. BITC conjugates were found to be not stable in alkaline buffered solutions. After consumption of nasturtium, containing 1,000 μM glucotropaeolin, the primary source of BITC, quantifiable levels of BITC-NAC, BITC-Cys, and BITC-CysGly were found in human urine samples. Maximum levels in urine were determined 4 h after the ingestion of nasturtium. With regard to the human plasma samples, all metabolites were determined including individual distributions. The work presented provides a validated LC-MS/MS method for the determination of BITC metabolites and its successful application for the analysis of samples collected in a human intervention study.

  16. Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2015-06-01

    Control of Salmonella in poultry is a public health concern as salmonellosis is one of the most common foodborne diseases worldwide. This study aimed to screen the ability of 5 Salmonella serovars to degrade the mustard glucosinolate, sinigrin (by bacterial myrosinase) in Mueller-Hinton broth at 25 °C for 21 d and to reduce Salmonella on fresh chicken breasts by developing an edible 0.2% (w/v) κ-carrageenan/2% (w/v) chitosan-based coating containing Oriental mustard extract, allyl isothiocyanate (AITC), EDTA or their combinations. Individual Salmonella serovars degraded 50.2%-55.9% of the sinigrin present in 21 d. κ-Carrageenan/chitosan-based coatings containing 250 mg Oriental mustard extract/g or 50 μl AITC/g reduced the numbers of Salmonella on chicken breasts 2.3 log10 CFU/g at 21 d at 4 °C. However, when either mustard extract or AITC was combined with 15 mg/g EDTA in κ-carrageenan/chitosan-based coatings, Salmonella numbers were reduced 2.3 log10 CFU/g at 5 d and 3.0 log10 CFU/g at 21 d. Moreover, these treatments reduced numbers of lactic acid bacteria and aerobic bacteria by 2.5-3.3 log10 CFU/g at 21 d. κ-Carrageenan/chitosan coatings containing either 50 μl AITC/g or 250 mg Oriental mustard extract/g plus 15 mg EDTA/g have the potential to reduce Salmonella on raw chicken.

  17. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    PubMed

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer. PMID:27375275

  18. Control of off-gassing rates of methyl isothiocyanate from the application of metam-sodium by chemigation and shank injection

    NASA Astrophysics Data System (ADS)

    Sullivan, D. A.; Holdsworth, M. T.; Hlinka, D. J.

    Fumigants are used to enhance the yield and quality of agricultural produce, which is critical to the maintenance of the production levels of carrots, potatoes, tomatoes, strawberries, melons, and many other crops grown in the US and throughout much of the world. With the worldwide phase-out of methyl bromide in progress, the continued availability of the remaining alternatives, such as metam-sodium, 1,3-dichloropropene, and chloropicrin, is becoming increasingly important. Metam-sodium has been used for over 40 years and is the second most widely used fumigant in the United States. Reduction in off-gassing rates of fumigants can promote health and safety benefits and an increased dose in the treatment zone, thereby increasing the potential efficacy of these products. On this basis, there is a need to evaluate off-gassing rates as a function of application and sealing methods. This paper summarizes recent research into the volatilization of the principal transformation product of metam-sodium, i.e., methyl isothiocyanate (MITC), into the atmosphere as a function of application and sealing methods. Seven field studies were conducted from 1999-2001 to evaluate the off-gassing rates of MITC from applications of metam-sodium by shank injection and chemigation using two different water sealing methods, i.e., standard water sealing and intermittent water sealing. MITC is slightly soluble in water. Irrigation of a field following an application helps to retain the compound in the soil, minimizing off-gassing while increasing the dose to the target pests. Intermittent water sealing involves applying water on an intermittent basis to minimize off-gassing rates during nighttime periods when relatively poor atmospheric dispersion conditions often occur. Research conducted by the Metam-Sodium TASK Force indicates that intermittent water sealing significantly reduces off-gassing rates both for shank injection and chemigation applications when compared with standard water

  19. Easy Preparation Method for 2-Thioxopyrrolidine Derivatives Including 3-Hydroxy- methylene-2-thioxopyrrolidine, an Antimicrobial Degradation Product of Radish Pungent Principle, via (E,Z)-4-Ylethoxy-3-butenyl Isothiocyanate.

    PubMed

    Matsuoka, H; Uda, Y; Mitani, K; Yoneyama, K; Maeda, Y

    1996-01-01

    An easy preparation method was developed for 3-hydroxymethylene-2-thioxopyrrolidine (TPC), an antimicrobial degradation product of radish pungent principle. The key intermediate, 4- methoxy-3-butenyl-isothiocyanate (MBI), which was prepared from 3-cyanopropionaldehyde dimethyl acetal in 3 reaction steps, was easily converted to TPC in acidic (pH 3.0-4.0) aqueous media. In methanol or ethanol with a few drops of acetic acid, MBI afforded corresponding 3-(α,α-dialkoxy)methyl-2-thioxopyrrolidines as the major products.

  20. Enantiomeric purity test of bevantolol by reversed-phase high performance liquid chromatography after derivatization with 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl isothiocyanate.

    PubMed

    Kim, K H; Heo, S Y; Hong, S P; Lee, B C

    2000-12-01

    A reversed-phase high-performance liquid chromatographic method was developed to determine the optical purity of bevantolol enantiomers. (S)-(-)-Menthyl chloroformate((-)-MCF), (S)-(-)-alpha-methylbenzyl isocyanate((-)-MBIC) and 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl isothiocyanate(GITC), which can react with the secondary amine group of bevantolol were investigated as chiral derivatization reagents. Among them indirect chiral HPLC method using GITC gave the best result. The derivatization proceeded quantitatively within 20 min at room temperature. Separation of the enantiomers as diastereomers was achieved by reversed-phase HPLC within 20min using ODS column. Different ratios of (S)-(-)-bevantolol and (R)-(+)-bevantolol were prepared. Enantiomeric separation of these mixtures took place on a chiralcel OD column or, after derivatization with GITC, on a ODS column. No racemization was found during the experiment. This method allowed determination of 0.05% of either enantiomer in the presence of its stereoisomer and method validation showed adequete linearity over the required range.

  1. Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells.

    PubMed

    Miyoshi, Noriyuki; Uchida, Koji; Osawa, Toshihiko; Nakamura, Yoshimasa

    2007-02-01

    In the present study, experiments using presynchronization culture cells demonstrated that benzyl ITC (BITC), previously isolated from a tropical papaya fruit extract, induced the cytotoxic effect preferentially in the proliferating human colon CCD-18Co cells to the quiescent ones. Quiescent CCD-18Co cells were virtually unaffected by BITC and marginal cytotoxicity was observed at 15 microM. We observed that BITC dramatically induced the p53 phosphorylation and stabilization only in the quiescent (G(0)/G(1) phase-arrested) cells, but not significantly in the proliferating human colon CCD-18Co cells when compared with quiescent ones. We also observed ataxia telangiectasia-mutated (ATM) phosphorylation in the quiescent cells. The BITC-induced p53 phosphorylation was counteracted by caffeine treatment, implying the involvement of an ATM/ataxia telangiectasia and Rad3-related kinase signaling pathway. Moreover, downregulation of p53 by a siRNA resulted in the enhancement of susceptibility to undergo apoptosis by BITC. We also showed here that depletion of p53 abrogated G(0)/G(1) arrest accompanied by the declined expression of p21(waf1/cip1) and p27(kip1) in CCD-18Co cells. In conclusion, we identified p53 as a potential negative regulator of the apoptosis induction by BITC in the normal colon CCD-18Co cells through the inhibition of cell-cycle progression at the G(0)/G(1) phase. PMID:17096346

  2. Natural and synthetic isothiocyanates for pest control in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic fumigants are widely used in agriculture to provide highly efficacious pre-plant pest control for high cash crops. However, stringent regulations aimed at controlling soil to air emissions govern fumigant use. This has led to increased interest in biofumigation using Brassica species which...

  3. Structure of isothiocyanic acid dimers. Theoretical and FTIR matrix isolation studies

    NASA Astrophysics Data System (ADS)

    Krupa, Justyna; Wierzejewska, Maria

    2016-05-01

    A quantum mechanical study of the potential energy surface for the HNCS dimer is reported. The calculations were performed using DFT and ab initio MP2 methods. The most stable is a cyclic form with a double N-H⋯S interaction and the interaction energy in the range of 16.91-18.92 kJ mol-1. An open HNCS dimer bound by the N-H⋯N hydrogen bond is by ca 3.3-5.1 kJ mol-1 less stable. Experimental FTIR matrix isolation studies of HNCS/N2 system show that exclusively less stable open dimer is formed in solid nitrogen. Possible reasons for the observed discrepancy between theory and experiment are discussed.

  4. Assessment of DNA Damage and Repair in Adults Consuming AllylIsothiocyanate or Brassica Vegetables

    PubMed Central

    Charron, Craig S.; Clevidence, Beverly A.; Albaugh, George A.; Kramer, Matthew H.; Vinyard, Bryan T.; Milner, John A.; Novotny, Janet A.

    2012-01-01

    Allylisothiocyanate (AITC) is a dietary component with possible anti-cancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n=46) consumed AITC, AITC-rich vegetables (mustard and cabbage), or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells (PBMCs) was assessed by single cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and creatinine. Ten day intake of neither AITC nor mustard/cabbage(M/C) resulted in statistically significant differences in DNA strand breaks (LS mean % DNA in tail ± SEM: 4.8 ± 0.6 for control, 5.7 ± 0.7 for AITC, 5.3 ± 0.6 for M/C) or urinary 8-oxodG (LS mean µg 8-oxodG/g creatinine ± SEM: 2.95 ± 0.09 for control, 2.88 ± 0.09 for AITC, 3.06 ± 0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3h post-consumption (LS mean % DNA in tail ± SEM: 3.2 ± 0.7 for control, 8.3 ± 1.7 for AITC, 8.0 ± 1.7 for M/C), and this difference disappeared at 6h (4.2 ± 0.9 for control, 5.7 ± 1.2 for AITC, 5.5 ± 1.2 for M/C). Genotypes for GSTM1, GSTT1, and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair. PMID:22902324

  5. The Biosynthesis of Some Isothiocyanates and Oxazolidinethiones in Rape (Brassica campestris L.) 1

    PubMed Central

    Chisholm, M. D.; Wetter, L. R.

    1967-01-01

    The incorporation of the radioactivity from acetate-1-14C, acetate-2-14C, dl-methionine-1-14C, dl-methionine-2-14C, dl-methionine-3,4-14C, dl-homomethionine-2-14C, dl-allyl-glycine-2-14C, and dl-2-amino-5-hydroxyvalerate-2-14C into the aglycones of progoitrin, gluconapin, and glucobrassicanapin of maturing rape plants (Brassica campestris L.) was investigated. Radioactivity from dl-methionine-2-14C, dl-methionine-3,4-14C, dl-homomethionine-2-14C, and acetate-2-14C were incorporated into the 3 major thioglucosides. The other organic compounds were poorly incorporated except for dl-allylglycine-2-14C into glucobrassicanapin. The results obtained suggest that the rape plant can synthesize amino acids by the condensation of acetate (as acetyl CoA) to α-keto acids to yield a homologue of the original amino acid. These newly formed amino acids are then employed to synthesize the 3 major thioglucosides. PMID:16656711

  6. Microcapsule preparation of allyl isothiocyanate and its application on mature green tomato preservation.

    PubMed

    Wu, Hua; Xue, Na; Hou, Chang-liang; Feng, Jun-tao; Zhang, Xing

    2015-05-15

    Studies have shown that AITC can effectively control pathogenic fungi, which cause fruits and vegetables decay and rotting during storage. However, because of its strong irritant, AITC has not been conveniently used in fruits and vegetables preservation. Microencapsulation techniques may solve this problem. Up to 2% (w/v) gelatin and 2% (w/v) gum arabic (as wall material and materials), as well as AITC (as core material) were prepared used to form microcapsules with a ratio of 1:2 (the core material: to wall material). On the basis of the microcapsule option conditions, the AITC microcapsule encapsulation efficiency is above 90%, which can effectively control AITC release decrease irritant. Compared with control group, the storage time of the tomato of AITC microcapsule preservation was prolonged significantly, and the sensory quality of the tomato was better. Thus, the AITC microcapsule preservation has broad application prospects and development value prospects.

  7. Toxicity of allyl isothiocyanate and cinnamic aldehyde assessed using cultured human KB cells and yeast, Saccharomyces cervisiae

    SciTech Connect

    Mochida, K.; Gomyoda, M.; Fujita, T.; Yamagata, K.

    1988-03-01

    The main components of mustard and cinnamon oils are allyl isothiocyante (AIT) and cinnamic aldehyde (CA), substances used as food additives. The acute toxicity of these substances has been noted in rats (Jenner et al. 1964) and it is desirable to obtain information on the toxic effects of these compounds in vitro systems. The authors report the toxicity of AIT and CA on human KB cells and Saccharomyces cervisiae cultivated in culture systems.

  8. Inactivation of Salmonellae in liquid egg white by antimicrobial bottle coating with allvl isothiocyanate, nisin and ZnO nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to develop an antimicrobial bottle coating effective at inhibiting the growth of Salmonella in liquid egg albumen (egg white) and reduce the risk of human Salmonellosis. Four-ounce glass jars were coated with a mixture of polylactic acid (PLA) polymer and antimicrobial ...

  9. [Experience of biologically active supplements to food containing indoles and isothiocyanates in patients with chronic viral hepatitis].

    PubMed

    Gichev, Iu P; Gichev, Iu Iu; Grek, O R; Tolokonskaia, N P; Chernousova, N Ia; Tomilenko, T G; Makkosland, K

    2002-01-01

    We have studied the effect of dietary supplement "ExPress" on clinical and biochemical parameters and on the activity of detoxification enzymes of liver in patients with chronic viral hepatitis B and C. 24 patients (19 females and 5 males aged 16-39 years) were enrolled in the study. Patients in case group received dietary supplement "ExPress" in addition to basic treatment. Average indices of total bilirubin in cases after treatment were 26.98 +/- 2.85 mmol/l, while in controls--34.31 +/- 5.72 mmol/l (p > 0.05). Average indices of alanin-aminotransferase and aspartate-aminotransferase were 78.75 +/- 11.25 and 160.75 +/- 23.67 units while in controls--208.5 +/- 56.4 and 330.25 +/- 65.14 units respectively (p < 0.05). In case group we observed full normalization of thymol test--from 9.99 +/- 1.51 to 4.03 +/- 0.73 units (p = 0.001), while in controls--from 7.9 +/- 1.56 only to 5.2 +/- 1.15 units (p = 0.194). Contents of non-metabolized antipyrine in cases decreased from 9.76 +/- 1.2% (p = 0.0002) whilst in controls--from 9.38 +/- 1.28% only to 3.93 +/- 1.18% (p = 0.01). Results of the study show that dietary supplement "ExPress" induces the activity of detoxification enzymes of liver and increases the efficiency of basic treatment. PMID:12462952

  10. Correlates of self-reported dietary cruciferous vegetable intake and urinary isothiocyanate from two cohorts in China

    PubMed Central

    Vogtmann, Emily; Yang, Gong; Li, Hong-Lan; Wang, Jing; Han, Li-Hua; Wu, Qi-Jun; Xie, Li; Cai, Quiyin; Li, Guo-Liang; Waterbor, John W.; Levitan, Emily B.; Zhang, Bin; Gao, Yu-Tang; Zheng, Wei; Xiang, Yong-Bing; Shu, Xiao-Ou

    2015-01-01

    Objective To assess correlations between cruciferous vegetable intake and urinary ITC level, in addition to glutathione S-transferase (GST) genotypes and other individual factors. Design This study included cohort participants whose urinary ITC levels had been previously ascertained. Urinary ITC was assessed using high-performance liquid chromatography. Usual dietary intake of cruciferous vegetables was assessed using a validated food frequency questionnaire and total dietary ITC was calculated. Recent cruciferous vegetable intake was determined. GST genotypes were assessed using duplex real-time quantitative polymerase chain reaction assays. Spearman correlations were calculated between the covariates and urinary ITC levels and linear regression analyses were used to calculate the mean urinary ITC according to GST genotype. Setting Urban city in China Subjects This study included 3,589 women and 1,015 men from the Shanghai Women’s and Men’s Health Studies. Results Median urinary ITC level was 1.61 nmol/mg creatinine. Self-reported usual cruciferous vegetable intake was weakly correlated with urinary ITC level (rs = 0.1149; p < 0.0001), while self-reported recent intake was more strongly correlated with urinary ITC (rs = 0.2591; p < 0.0001). Overall, the GST genotypes were not associated with urinary ITC level, but significant differences according to genotype were observed among current smokers and participants who provided an afternoon urine sample. Other factors, including previous gastrectomy or gastritis, were also related to urinary ITC level. Conclusions This study suggests that urinary secretion of ITC may provide additional information on cruciferous vegetable intake and that GST genotypes are related to urinary ITC level only in some subgroups. PMID:25098275

  11. The thiocarbonyl 'S' is softer than thiolate 'S': a catalyst-free one-pot synthesis of isothiocyanates in water.

    PubMed

    Jamir, Latonglila; Ali, Abdur Rezzak; Ghosh, Harisadhan; Chipem, Francis A S; Patel, Bhisma K

    2010-04-01

    Treatment of the preformed or the in situ generated aryl/alkyl dithiocarbamates triethylammonium salt (ArNHCSS(-).Et(3)NH(+)) with methyl acrylate in an aqueous medium gave solely arylisothiocyanate (ArNCS), whereas the in situ generated aryl dithiocarbamic acid (ArNHCSS(-).H(+)) yielded exclusively the thia-Michael adduct (ArNHCSSCH(2)CH(2)COOMe). This differential reactivity can be explained by two alternative mechanisms which is dependent both on the nature of the counter cation and on the pH of the reaction medium. Irrespective of the counter cations, the thiocarbonyl sulfur (=S) atom, having large orbital-coefficient, is softer compared to the thiol/thiolate sulfur (-SH/S(-)) in a dithiocarbamate salt and the former adds to the Michael acceptor by a 1,4-addition. PMID:20237681

  12. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R.Br.) leaves.

    PubMed

    Palaniswamy, Usha R; McAvoy, Richard J; Bible, Bernard B; Stuart, James D

    2003-08-27

    Watercress (Nasturtium officinale R.Br.) is the richest source of glucosinolate nasturtiin, which on hydrolysis produces phenethyl isothiocyante (PEITC). Interest in growing watercress is stimulated since demonstration of the role of PEITC in protection against cancers associated with tobacco specific carcinogens. Twenty-one days old watercress seedlings were transplanted into growth chambers (16-h days/8-h nights of 25/22 degrees C and photosynthetic photon flux (PPF) of approximately 265 micromol m(-2) s(-)(1)). The study was replicated three times. Leaves were analyzed for PEITC and ascorbic acid concentrations at transplant, and harvested at 10-days intervals until 60 days after transplant. The PEITC and ascorbic acid concentrations were the highest in leaves harvested at 40 days and the lowest at transplant. Leaves harvested at 40 days produced about 150% higher PEITC concentrations compared to the leaves at transplant. Both PEITC and ascorbic acid concentrations of leaves increased linearly with age until 40 days after transplant after which there was no significant increase. Seedlings at transplant had the lowest dry mass and leaf area, while plants harvested at 60 days had the highest dry mass and leaf area.

  13. Syntheses, crystal structures, luminescent and magnetic properties of two molecular solids containing naphthylmethylene triphenylphosphinium cations and tetra(isothiocyanate)cobalt(II) dianion.

    PubMed

    Cai, Hua-Tang; Liu, Qian-Ting; Ye, Hui-Qing; Su, Li-Jie; Zheng, Xiao-Xu; Li, Jin-Ni; Ou, Shu-Hua; Zhou, Jia-Rong; Yang, Le-Min; Ni, Chun-Lin

    2015-05-01

    The reaction of CoCl2 with the naphthalene methylated triphenylphosphinium bromide [n-NAPMeTPP]Br (n=1, 2) and KSCN, in a methanolic medium at ambient temperature, leads to the self-assembly formation of hybrid 2:1 organic-inorganic molecular solids, [1-NAPMeTPP]2[Co(NCS)4](1) and [2-NAPMeTPP]2[Co(NCS)4](2) ([NAPMeTPP](+)=(naphthylmethylene)(triphenyl)phosphinium), which have been characterized by elemental analyses, IR spectroscopy, UV-Vis spectra, ESI-MS, molar conductivity and single-crystal X-ray diffraction structural analyses. Compound 1 crystallizes in the orthorhombic space group Pna21, while 2 does in the monoclinic space group C2/c. The cations form a dimer through the weak intermolecular C-H⋯π interactions in 1 and π⋯π interaction in 2, while the anion and cation are linked by the C-H⋯S hydrogen bond in 1. Two molecular solids show dual functionalities: (1) the broad fluorescence emission around 400nm in the solid state at room temperature; (2) the weak antiferromagnetic coupling behavior.

  14. Broccoli ( Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters.

    PubMed

    Rodríguez-Cantú, Laura N; Gutiérrez-Uribe, Janet A; Arriola-Vucovich, Jennifer; Díaz-De La Garza, Rocio I; Fahey, Jed W; Serna-Saldivar, Sergio O

    2011-02-23

    This study investigated the effects of broccoli sprouts (BS) on sterol and lipid homeostasis in Syrian hamsters with dietary-induced hypercholesterolemia. Treatments included freeze-dried BS containing 2 or 20 μmol of glucoraphanine (BSX, BS10X), glucoraphanine-rich BS extract (GRE), sulforaphane-rich BS extract (SFE), and simvastatin. Each experimental diet was offered to eight animals (male and female) for 7 weeks. Hepatic cholesterol was reduced by BS10X and SFE treatments in all animals. This correlated with a down-regulation of gene expression of sterol regulatory element-binding proteins (SREBP-1 and -2) and fatty acid synthase (FAS) caused by GRE and SFE diets. BS10X caused changes in gene expression in a gender-specific manner; additionally, it increased coprostanol excretion in females. With the same concentration of glucoraphanin, consumption of broccoli sprouts (BS10X) had more marked effects on cholesterol homeostasis than GRE; this finding reinforces the importance of the matrix effects on the bioactivity of functional ingredients.

  15. Benzyl isothiocyanate mediated inhibition of histone deacetylase leads to NF-κB turn-off in human pancreatic carcinoma cells

    PubMed Central

    Batra, Sanjay; Sahu, Ravi P.; Kandala, Prabodh K.; Srivastava, Sanjay K.

    2010-01-01

    NF-κB/p65 is constitutively activated in pancreatic cancers where it plays critical role in the transcriptional activation of multiple cell survival genes. We have previously demonstrated the apoptosis-inducing effects of BITC in pancreatic cancer cells. We hypothesized that inhibition of NF-κB/p65 could be the mechanism of BITC-induced apoptosis. Therefore, the effect of BITC on NF-κB/p65 was evaluated in BxPC-3, Capan-2 and normal HPDE-6 cells by western blotting, transcriptional and DNA-binding activity and by immunohistochemistry in the xenografted tumors. Our results reveal a remarkable decrease in the phosphorylation of NF-κB/p65 at Ser536 in both BxPC-3 and Capan-2 cells by BITC treatment. The expression of NF-kB/p65 was down-regulated significantly in BxPC-3 cells whereas it remained unchanged in Capan-2 cells. BITC treatment caused significant decrease in NF-κB transcriptional and DNA-binding activity in both BxPC-3 and Capan-2 cells. A drastic decrease was observed in the expression and reporter activity of cyclin D1 in both the cell lines. Moreover, BITC also caused significant decrease in the expression and activity of HDAC1 and HDAC3 in BxPC-3 and HDAC3 in Capan-2 cells. Overexpression of HDAC1 or HDAC3 abrogated the effects of BITC. BITC treatment did not caused any change in HDAC expression in normal HPDE-6 cells. Immunohistochemical analysis of tumors from BITC-treated mice showed significantly reduced staining for NF-kB, cyclin D1, HDAC-1/3, compared to control. Our results suggest that inhibition of HDAC1/3 by BITC as a plausible mechanism of NF-κB inactivation resulting in the in vitro and in vivo growth suppression of pancreatic cancer cells. PMID:20484017

  16. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  17. Stage and organ dependent effects of 1-O-hexyl-2,3,5-trimethylhydroquinone, ascorbic acid derivatives, n-heptadecane-8-10-dione and phenylethyl isothiocyanate in a rat multiorgan carcinogenesis model.

    PubMed

    Ogawa, K; Futakuchi, M; Hirose, M; Boonyaphiphat, P; Mizoguchi, Y; Miki, T; Shirai, T

    1998-06-10

    The effects of 1-O-hexyl-2,3,5-trimethylhydroquinone (HTHQ), phenylethylisothiocyanate (PEITC), 3-O-ethylascorbic acid, 3-O-dodecylcarbomethylascorbic acid and n-heptadecane-8, 10-dione were analyzed in a rat multiorgan carcinogenesis model. Groups of 15 animals were given a single intraperitoneal (i.p.) injection of diethylnitrosamine and 4 i.p. injections of N-methylnitrosourea as well as N-butyl-N-(4-hydroxybutyl) nitrosamine in the drinking water during the first 2 weeks. Then 4 subcutaneous (s.c.) injections of dimethylhydrazine and 2,2'-dihydroxy-di-n-propylnitrosamine were given in the drinking water over the next 2 weeks for initiation. Test compounds were administered during the initiation or post-initiation periods. The dietary dose was 1% except for n-heptadecane-8, 10-dione and PEITC (0.1%). Complete autopsy was performed at the end of experimental week 28. All 5 compounds reduced the number of lung hyperplasia, particularly PEITC when given during the initiation period. In addition, HTHQ lowered the incidence of esophageal hyperplasia in the initiation period, and of small and large intestinal adenomas in the post-initiation period. However, it also enhanced the development of hyperplasia and papilloma in the forestomach and tongue. PEITC lowered the induction of esophageal hyperplasia, kidney atypical tubules and liver glutathione S-transferase placental form (GST-P)-positive foci when given during the initiation period but enhanced the development of liver GST-P positive foci and urinary bladder tumors in the post-initiation period. Moreover, it induced hyperplasia of the urinary bladder. Our results indicate minor adverse effects for HTHQ in the forestomach and tongue, and demonstrate that PEITC, which inhibits carcinogenesis at the initiation stage in several organs, also exhibits promotion potential in liver and urinary bladder in the post-initiation stage under the present experimental conditions.

  18. Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3′-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy

    PubMed Central

    Fuentes, Francisco; Paredes-Gonzalez, Ximena; Kong, Ah-Ng Tony

    2015-01-01

    Glucosinolates are a group of sulfur-containing glycosides found in many plant species, including cruciferous vegetables such as broccoli, cabbage, brussels sprouts, and cauliflower. Accumulating evidence increasingly supports the beneficial effects of dietary glucosinolates on overall health, including as potential anti-cancer agents, because of their role in the prevention of the initiation of carcinogenesis via the induction of cellular defense detoxifying/antioxidant enzymes and their epigenetic mechanisms, including modification of the CpG methylation of cancer-related genes, histone modification regulation and changes in the expression of miRNAs. In this context, the defense mechanism mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against oxidative stress and reactive metabolites of carcinogens. In this review, we summarize the cancer chemopreventive role of naturally occurring glucosinolate derivatives as inhibitors of carcinogenesis, with particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo human cancer animal models. PMID:26457242

  19. Augmentation of natural killer cell and antibody-dependent cellular cytotoxicity in BALB/c mice by sulforaphane, a naturally occurring isothiocyanate from broccoli through enhanced production of cytokines IL-2 and IFN-gamma.

    PubMed

    Thejass, P; Kuttan, G

    2006-01-01

    Effect of sulforaphane on cell-mediated immune (CMI) response was studied in normal as well as Ehrlich ascites tumor-bearing BALB/c mice. Administration of sulforaphane significantly enhanced natural killer (NK) cell activity in both normal as well as tumor-bearing animals, and the activity was observed earlier than in tumor-bearing control animals. Antibody-dependent cellular cytotoxicity (ADCC) also was enhanced significantly in both normal as well as tumor-bearing animals after sulforaphane administration compared with untreated control tumor-bearing animals. An early antibody-dependent complement-mediated cytotoxicity (ACC) also was observed in sulforaphane-treated normal and tumor-bearing animals. Administration of sulforaphane significantly enhanced the production of Interleukin-2 and Interferon-gamma in normal as well as tumor-bearing animals. In addition, sulforaphane significantly enhanced the proliferation of splenocytes, bone marrow cells, and thymocytes by stimulating the mitogenic potential of various mitogens such as concanavalin A, phytohaemagglutinin, poke weed mitogen, and lipopolysaccharide. PMID:16997793

  20. Distribution and efficacy of drip-applied metam-sodium against the survival of Rhizoctonia solani and yellow nutsedge in plastic-mulched sandy soil beds.

    PubMed

    Candole, Byron L; Csinos, Alexander S; Wang, Dong

    2007-05-01

    The effects of metam-sodium application rate on soil residence time, spatial and temporal distributions of methyl isothiocyanate and pest control efficacy were studied in a Georgia sandy soil. Metam-sodium 420 g L(-1) SL was drip applied at rates of 147 and 295 L ha(-1) in plastic-mulched raised beds. Methyl isothiocyanate concentrations in soil air space were monitored from four preselected sites: 10 and 20 cm below the emitter, and 20 and 30 cm laterally away from the emitter at 3, 12, 24, 48, 72, 120 and 240 h after chemigation. A higher rate of metam-sodium application resulted in higher methyl isothiocyanate concentrations in the soil. Highest methyl isothiocyanate concentrations were found at 20 cm below the emitter, and lowest at 30 cm laterally away from the emitter. Methyl isothiocyanate concentrations decreased with time and distance from the emitter. Lower methyl isothiocyanate concentration x time product values at 20 and 30 cm away from the emitter resulted in lower mortalities of Rhizoctonia solani Kühn and yellow nutsedge (Cyperus esculentus L.). The results demonstrated that methyl isothiocyanate can be delivered at lethal doses with drip-applied water downward within the beds. Lateral diffusion of methyl isothiocyanate from the point of application did not reach biologically active concentrations to affect the survival of R. solani or yellow nutsedge. Further studies on the lateral distribution of methyl isothiocyanate in sandy soils are needed to circumvent this limitation. PMID:17397113

  1. Efficient approaches to S-alkyl-N-alkylisothioureas: syntheses of histamine H3 antagonist clobenpropit and its analogues.

    PubMed

    Yoneyama, Hiroki; Shimoda, Ayako; Araki, Lisa; Hatano, Kouta; Sakamoto, Yasuhiko; Kurihara, Takushi; Yamatodani, Atsushi; Harusawa, Shinya

    2008-03-21

    S-Alkyl-N-alkylisothioureas were efficiently synthesized via synthetic approach (A) using 3-phenylpropionyl isothiocyanate (PPI). The utility of the approach was proved by the syntheses of clobenpropit, a potent histamine H(3) antagonist, and its analogues. Alternatively, clobenpropit could be prepared via intramolecular amide cleavage (B) with use of 2-nitrophenylacetyl isothiocyanate (NPAI).

  2. Determination of volatile glucosinolate degradation products in seed coat, stem and in vitro cultures of Moringa peregrina (Forssk.) Fiori.

    PubMed

    Dehshahri, S; Afsharypuor, S; Asghari, G; Mohagheghzadeh, A

    2012-01-01

    Moringaceae, a monogeneric family in Capparales (glucosinolate-containing species), includes 14 species. One of them is Moringa peregrina (Forssk.) Fiori., a small tree, which grows in south east of Iran. Volatile constituents of seed coat and stem of M. peregrina were determined by GC and GC/MS. Moreover, extracts of seed and different cultured cells were analyzed by TLC and GC. Three volatile isothiocyanates including isopropyl isothiocyanate (4.2%), sec-butyl isothiocyanate (< 0.1%) and isobutyl isothiocyanate (92.9%) were found in the volatile oil of the stem , while only two volatile isothiocyanates namely isopropyl isothiocyanate (7.0%) and isobutyl isothiocyanate (51.5%) were determined in the seed coat of the tree. For the first time, the callus and suspension cultures of M. peregrina were initiated and established successfully on Murashige and Skoog medium, containing plant growth hormones. Different precursors and elicitors were fed to the cultures to induce glucosinolates production. This is the first report of in vitro culture production of M. peregrina. There was no production of volatile isothiocyanates in M. peregrina callus and suspension cultures with different treatments. PMID:23181080

  3. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  4. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables.

    PubMed

    Ishida, Masahiko; Hara, Masakazu; Fukino, Nobuko; Kakizaki, Tomohiro; Morimitsu, Yasujiro

    2014-05-01

    Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates.

  5. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables

    PubMed Central

    Ishida, Masahiko; Hara, Masakazu; Fukino, Nobuko; Kakizaki, Tomohiro; Morimitsu, Yasujiro

    2014-01-01

    Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates. PMID:24987290

  6. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables.

    PubMed

    Ishida, Masahiko; Hara, Masakazu; Fukino, Nobuko; Kakizaki, Tomohiro; Morimitsu, Yasujiro

    2014-05-01

    Unique secondary metabolites, glucosinolates (S-glucopyranosyl thiohydroximates), are naturally occurring S-linked glucosides found mainly in Brassicaceae plants. They are enzymatically hydrolyzed to produce sulfate ions, D-glucose, and characteristic degradation products such as isothiocyanates. The functions of glucosinolates in the plants remain unclear, but isothiocyanates possessing a pungent or irritating taste and odor might be associated with plant defense from microbes. Isothiocyanates have been studied extensively in experimental in vitro and in vivo carcinogenesis models for their cancer chemopreventive properties. The beneficial isothiocyanates, glucosinolates that are functional for supporting human health, have received attention from many scientists studying plant breeding, plant physiology, plant genetics, and food functionality. This review presents a summary of recent topics related with glucosinolates in the Brassica family, along with a summary of the chemicals, metabolism, and genes of glucosinolates in Brassicaceae. The bioavailabilities of isothiocyanates from certain functional glucosinolates and the importance of breeding will be described with emphasis on glucosinolates. PMID:24987290

  7. Contact allergic reactions to diphenylthiourea and phenylisothiocyanate in PVC adhesive tape.

    PubMed

    Fregert, S; Trulson, L; Zimerson, E

    1982-01-01

    28 patients reacting to a PVC adhesive tape used in routine patch testing gave positive reactions to diphenylthiourea (DPTU) and to phenylisothiocyanate (PITC) in low concentrations. DPTU is a heat stabilizer in the PVC and is partly decomposed to PITC. The two substances were found in another type of PVC. Thioureas giving isothiocyanates are also used in certain types of rubber. Isothiocyanates are present in plants, mainly of the Cruciferae family, and are also formed from thiuram sulfides and thiocarbamates. The connection between isothiocyanates derived from different sources should be investigated. PMID:6802568

  8. EVALUATION OF CRYPTOSPORIDIUM OOCYST RECOVERY IN WATER BY EPA METHOD 1623 WITH A MODIFIED IMS DISSOCIATION PROCEDURE.

    EPA Science Inventory

    EPA Methods 1622 and 1623 are the benchmarks for detection of Cryptosporidium spp. oocysts in water. 5-7 These methods consist of filtration, elution, purification by immunomagnetic separation (IMS), and microscopic analysis after staining with a fluorescein isothiocyanate conju...

  9. CRYPTOSPORIDIUM OOCYST RECOVERY IN WATER BY EPA METHOD 1623: EVALUATION OF A MODIFIED IMS DISSOCIATION

    EPA Science Inventory

    EPA Methods 1622 and 1623 are the benchmarks for detection of Cryptosporidium spp. oocysts in water. These methods consist of filtration, elution, purification by immunomagnetic separation (IMS), and microscopic analysis after staining with a fluorescein isothiocyanate conjugate...

  10. Synthesis and structure-activity relationships of 2-alkylidenethiazolidine-4,5-diones as antibiotic agents.

    PubMed

    Albrecht, Uwe; Gördes, Dirk; Schmidt, Enrico; Thurow, Kerstin; Lalk, Michael; Langer, Peter

    2005-07-15

    2-Alkylidenethiazolidine-4,5-diones were prepared by novel one-pot cyclizations of arylacetonitriles with isothiocyanates and ethyl 2-chloro-2-oxoacetate. The products show antibiotic activity against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus.

  11. Oil additives containing a thiocarbamyl moiety

    SciTech Connect

    Brois, S.J.; Gutierrez, A.

    1988-12-27

    This patent describes a polyalkenyl isothiocyanate having the isothiocyanate group attached to a carbon which is one carbon removed from an ethylenically unsaturated carbon, the polyalkenyl isothiocyanate being obtained by the method of: adding a solution of a thiocyanogen halide in acetic acid, tetrahydrofuran or alcohol solvent to a polyalkene to form an adduct wherein the polyalkene is selected from the group consisting of polypropylene, polyisobutylene, ethylene copolymers, ethylene terpolymers, polybutadiene-isoprene interpolymer, butylene-isoprene interpolymer, and mixtures thereof; removing a hydrogen halide from the adduct to produce a polyalkenyl thiocyanate having the thiocyanate group attached is a carbon which is one carbon removed from an ethylenically unsaturated carbon; and thermally rearranging the polyalkenyl thiocyanate to the polyalkenyl isothiocyanate.

  12. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1.

    PubMed

    Jordt, Sven-Eric; Bautista, Diana M; Chuang, Huai-Hu; McKemy, David D; Zygmunt, Peter M; Högestätt, Edward D; Meng, Ian D; Julius, David

    2004-01-15

    Wasabi, horseradish and mustard owe their pungency to isothiocyanate compounds. Topical application of mustard oil (allyl isothiocyanate) to the skin activates underlying sensory nerve endings, thereby producing pain, inflammation and robust hypersensitivity to thermal and mechanical stimuli. Despite their widespread use in both the kitchen and the laboratory, the molecular mechanism through which isothiocyanates mediate their effects remains unknown. Here we show that mustard oil depolarizes a subpopulation of primary sensory neurons that are also activated by capsaicin, the pungent ingredient in chilli peppers, and by Delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana. Both allyl isothiocyanate and THC mediate their excitatory effects by activating ANKTM1, a member of the TRP ion channel family recently implicated in the detection of noxious cold. These findings identify a cellular and molecular target for the pungent action of mustard oils and support an emerging role for TRP channels as ionotropic cannabinoid receptors. PMID:14712238

  13. Comparison of different staining methods for polyvinylidene difluoride membranes.

    PubMed

    Christiansen, J; Houen, G

    1992-03-01

    Several new staining methods for polyvinylidene difluoride membranes, including mercurochrome, silver and dimethylaminoazobenzene isothiocyanate staining were compared with Coomassie Brilliant Blue and gold staining. Of these, Coomassie was most versatile and completely compatible with ensuing microsequencing, immunostaining or other visualization methods, while gold and silver staining were more sensitive. Mercurochrome allows selective detection of sulfhydryl-containing proteins while dimethylaminoazobenzene isothiocyanate staining may allow quantitation of sequenceable protein. PMID:1375557

  14. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables.

    PubMed

    Song, Lijiang; Thornalley, Paul J

    2007-02-01

    Epidemiological studies have shown that consumption of Brassica vegetables decrease the risk of cancer. These associations are linked to dietary intake of glucosinolates and their metabolism to cancer preventive isothiocyanates. Bioavailability of glucosinolates and related isothiocyanates are influenced by storage and culinary processing of Brassica vegetables. In this work, the content of the 7 major glucosinolates in broccoli, Brussels sprouts, cauliflower and green cabbage and their stability under different storage and cooking conditions is examined. Glucosinolates and isothiocyanates were quantified by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). Isothiocyanates were detected with high sensitivity as the corresponding thiourea derivatives. Storage at ambient temperature and in a domestic refrigerator showed no significant difference and a minor loss (9-26%) of glucosinolate levels over 7 days. Vegetables shredded finely showed a marked decline of glucosinolate level with post-shredding dwell time - up to 75% over 6h. Glucosinolate losses were detected partly as isothiocyanates. Cooking by steaming, microwaving and stir-fry did not produce significant loss of glucosinolates whereas boiling showed significant losses by leaching into cooking water. Most of the loss of the glucosinolates (approximately 90%) was detected in the cooking water. Increased bioavailability of dietary isothiocyanates may be achieved by avoiding boiling of vegetables.

  15. Can crayfish take the heat? Procambarus clarkii show nociceptive behaviour to high temperature stimuli, but not low temperature or chemical stimuli

    PubMed Central

    Puri, Sakshi; Faulkes, Zen

    2015-01-01

    Nociceptors are sensory neurons that are tuned to tissue damage. In many species, nociceptors are often stimulated by noxious extreme temperatures and by chemical agonists that do not damage tissue (e.g., capsaicin and isothiocyanate). We test whether crustaceans have nociceptors by examining nociceptive behaviours and neurophysiological responses to extreme temperatures and potentially nocigenic chemicals. Crayfish (Procambarus clarkii) respond quickly and strongly to high temperatures, and neurons in the antenna show increased responses to transient high temperature stimuli. Crayfish showed no difference in behavioural response to low temperature stimuli. Crayfish also showed no significant changes in behaviour when stimulated with capsaicin or isothiocyanate compared to controls, and neurons in the antenna did not change their firing rate following application of capsaicin or isothiocyanate. Noxious high temperatures appear to be a potentially ecologically relevant noxious stimulus for crayfish that can be detected by sensory neurons, which may be specialized nociceptors. PMID:25819841

  16. Kinetic changes in glucosinolate-derived volatiles by heat-treatment and myrosinase activity in nakajimana (Brassica rapa L. cv. nakajimana).

    PubMed

    Kato, Mika; Imayoshi, Yuriko; Iwabuchi, Hisakatsu; Shimomura, Koichiro

    2011-10-26

    Nakajimana (Brassica rapa L. cv. nakajimana), of the family Brassicaceae, is a traditional vegetable in Japan. Three isothiocyanates and five cyanides in the leaves of nakajimana were identified by gas chromatography (GC) and GC-mass spectrometry (GC-MS), and their kinetic changes using heat-treatment (temperature and time) were investigated. In addition, myrosinase activity of extracts prepared from fresh nakajimana leaf was determined. In crushed heat-treated leaves of nakajimana (70 °C for 30 s), formation of isothiocyanates and myrosinase activity increased, whereas formation of 1-cyano-3,4-epithiobutane and 1-cyano-4,5-epithiopentane decreased. Heat-treatment can significantly alter the content of potentially beneficial compounds in nakajimana, and ingestion of suitable isothiocyanates for human health may be better facilitated by mild boiling.

  17. [3,3]-sigmatropic rearrangements of fluorinated allyl (Thio)cyanates - a tool for the synthesis of fluorinated (Thio)ureas.

    PubMed

    Ramb, Daniel C; Kost, Lisa; Haufe, Günter

    2014-01-01

    The first (thio)cyanate to iso(thio)cyanate rearrangements based on 2-fluoroallylic alcohols are presented. Long-chain 2-fluoroallylic alcohols were converted to corresponding N-unsubstituted carbamates by treatment with trichloroacetyl isocyanate. Dehydration using trifluoroacetic anhydride in the presence of triethylamine formed intermediate allylic cyanates, which immediately underwent sigmatropic rearrangement to fluorinated allyl isocyanates. Without isolation the latter delivered fluorinated ureas by addition of amines. The thiocyanate to isothiocyanate rearrangements started from the same fluorinated allylic alcohols, which were first converted to mesylates. Heating in THF with potassium thiocyanate led to fluorinated allyl isothiocyanates, via [3,3]-sigmatropic rearrangement of intermediate allyl thiocyanates. The formed products were further reacted with amines to fluorinated thioureas.

  18. Biological Profile of Erucin: A New Promising Anticancer Agent from Cruciferous Vegetables

    PubMed Central

    Melchini, Antonietta; Traka, Maria H.

    2010-01-01

    Consumption of cruciferous vegetables has been associated with a reduced risk in the development of various types of cancer. This has been attributed to the bioactive hydrolysis products that are derived from these vegetables, namely isothiocyanates. Erucin is one such product derived from rocket salads, which is structurally related to sulforaphane, a well-studied broccoli-derived isothiocyanate. In this review, we present current knowledge on mechanisms of action of erucin in chemoprevention obtained from cell and animal models and relate it to other isothiocyanates. These mechanisms include modulation of phase I, II and III detoxification, regulation of cell growth by induction of apoptosis and cell cycle arrest, induction of ROS-mechanisms and regulation androgen receptor pathways. PMID:22069601

  19. Total myrosinase activity estimates in brassica vegetable produce.

    PubMed

    Dosz, Edward B; Ku, Kang-Mo; Juvik, John A; Jeffery, Elizabeth H

    2014-08-13

    Isothiocyanates, generated from the hydrolysis of glucosinolates in plants of the Brassicaceae family, promote health, including anticancer bioactivity. Hydrolysis requires the plant enzyme myrosinase, giving myrosinase a key role in health promotion by brassica vegetables. Myrosinase measurement typically involves isolating crude protein, potentially underestimating activity in whole foods. Myrosinase activity was estimated using unextracted fresh tissues of five broccoli and three kale cultivars, measuring the formation of allyl isothiocyanate (AITC) and/or glucose from exogenous sinigrin. A correlation between AITC and glucose formation was found, although activity was substantially lower measured as glucose release. Using exogenous sinigrin or endogenous glucoraphanin, concentrations of the hydrolysis products AITC and sulforaphane correlated (r = 0.859; p = 0.006), suggesting that broccoli shows no myrosinase selectivity among sinigrin and glucoraphanin. Measurement of AITC formation provides a novel, reliable estimation of myrosinase-dependent isothiocyanate formation suitable for use with whole vegetable food samples. PMID:25051514

  20. Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure.

    PubMed

    Faizi, S; Siddiqui, B S; Saleem, R; Siddiqui, S; Aftab, K; Gilani, A H

    1994-09-01

    Bioassay-guided analysis of an EtOH extract of Moringa oleifera leaves showing hypotensive activity led to the isolation of two nitrile glycosides, niazirin [1] and niazirinin [2], and three mustard oil glycosides, 4-[(4'-O-acetyl-alpha-L-rhamnosyloxy)benzyl]isothiocyanate [4], niaziminin A, and niaziminin B. Glycoside 2 is a new compound. Niaziminins A and B have previously been obtained from the left extract as a mixture, while compound 4 is new from this source. Structural determination was accomplished by means of spectroscopic methods including appropriate 2D nmr experiments and chemical reactions. This is the first report of the isolation of nitriles, an isothiocyanate, and thiocarbamates from the same plant species. Isothiocyanate 4 and the thiocarbamate glycosides niaziminin A and B showed hypotensive activity while nitrile glycosides 1 and 2 were found to be inactive in this regard. PMID:7798960

  1. Two rapid fluorescence procedures for the detection of some thio pungent compounds in plant tissues.

    PubMed

    Bruni, A; Dall'olio, G

    1980-01-01

    Two rapid flourescence procedures are described for detecting sulphydryl, disulphide and isothiocyanate groups of scented and pungent principles present in the vacuolar sap of onion, garlic and cabbage. To localize compounds containing sulphydryl groups, fresh or fixed frozen sections of the plants were treated with mercurochrome. After the fluorochromization, strongly-positive sulphydryl sites emitted an intense orange-red fluorescence, while weakly-positive sites emitted a distinctive red-brown fluorescence. Disulphide groups were detected by first reducing with thioglycolic acid to thiol groups before treating with mercurochrome. To effect isothiocyanate localization, frozen sections were exposed to ammonia: isothiocyanates were converted to thioureas and the engendered amino groups were revealed with fluorescamine. PMID:6154673

  2. The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences Trichoplusia ni Herbivory

    PubMed Central

    Lambrix, Virginia; Reichelt, Michael; Mitchell-Olds, Thomas; Kliebenstein, Daniel J.; Gershenzon, Jonathan

    2001-01-01

    Glucosinolates are anionic thioglucosides that have become one of the most frequently studied groups of defensive metabolites in plants. When tissue damage occurs, the thioglucoside linkage is hydrolyzed by enzymes known as myrosinases, resulting in the formation of a variety of products that are active against herbivores and pathogens. In an effort to learn more about the molecular genetic and biochemical regulation of glucosinolate hydrolysis product formation, we analyzed leaf samples of 122 Arabidopsis ecotypes. A distinct polymorphism was observed with all ecotypes producing primarily isothiocyanates or primarily nitriles. The ecotypes Columbia (Col) and Landsberg erecta (Ler) differed in their hydrolysis products; therefore, the Col × Ler recombinant inbred lines were used for mapping the genes controlling this polymorphism. The major quantitative trait locus (QTL) affecting nitrile versus isothiocyanate formation was found very close to a gene encoding a homolog of a Brassica napus epithiospecifier protein (ESP), which causes the formation of epithionitriles instead of isothiocyanates during glucosinolate hydrolysis in the seeds of certain Brassicaceae. The heterologously expressed Arabidopsis ESP was able to convert glucosinolates both to epithionitriles and to simple nitriles in the presence of myrosinase, and thus it was more versatile than previously described ESPs. The role of ESP in plant defense is uncertain, because the generalist herbivore Trichoplusia ni (the cabbage looper) was found to feed more readily on nitrile-producing than on isothiocyanate-producing Arabidopsis. However, isothiocyanates are frequently used as recognition cues by specialist herbivores, and so the formation of nitriles instead of isothiocyanates may allow Arabidopsis to be less apparent to specialists. PMID:11752388

  3. Simplified method for DNA and protein staining of human hematopoietic cell samples. [Cell flow systems

    SciTech Connect

    Crissman, H.A.; Egmond, J.V.; Holdrinet, R.S.; Pennings, A.; Haanen, C.

    1981-01-01

    A rapid reproducible method yielding high resolution analysis of DNA and protein in human hematopoietic cell samples has been developed by modification of the propidium iodide and fluorescein isothiocyanate procedure. Cell staining involves sequential addition of each reagent (RNase, fluorescein isothiocyanate and propidium iodide) to ethanol-fixed cells and requires no centrifugation steps. Stained cells are analyzed in the reagent solutions. Analysis of bone marrow samples from multiple myeloma patients showed mixed normal and aneuploid populations with a major portion of the aneuploid cells having a significantly higher protein content. This approach permitted differential cell cycle analysis of normal and the aneuploid populations.

  4. Click grafting of seaweed polysaccharides onto PVC surfaces using an ionic liquid as solvent and catalyst.

    PubMed

    Bigot, Sandra; Louarn, Guy; Kébir, Nasreddine; Burel, Fabrice

    2013-11-01

    Seaweed antibacterial polysaccharides were grafted onto poly(vinylchloride) (PVC) surfaces using an original click chemistry pathway. PVC isothiocyanate surfaces (PVC-NCS) were first prepared by nucleophilic substitution of the chloride groups by isothiocyanate groups in DMSO/water medium. Then, unmodified Ulvan, Fucan, Laminarin or Zosterin was directly grafted onto the PVC-NCS surface using 1-ethyl-3-methyl imidazolium phosphate, an ionic liquid, as solvent and catalyst. To attest the grafting effectiveness, the new PVC surfaces were well characterized by AFM, XPS and contact angle measurements.

  5. Orthogonally bifunctionalised polyacrylamide nanoparticles: a support for the assembly of multifunctional nanodevices

    NASA Astrophysics Data System (ADS)

    Giuntini, F.; Dumoulin, F.; Daly, R.; Ahsen, V.; Scanlan, E. M.; Lavado, A. S. P.; Aylott, J. W.; Rosser, G. A.; Beeby, A.; Boyle, R. W.

    2012-03-01

    Polyacrylamide nanoparticles bearing two orthogonal reactive functionalities were prepared by reverse microemulsion polymerisation. Water-soluble photosensitisers and peptide or carbohydrate moieties were sequentially attached to the new nanospecies by orthogonal conjugations based on copper-catalysed azide-alkyne cycloaddition and isothiocyanate chemistry.Polyacrylamide nanoparticles bearing two orthogonal reactive functionalities were prepared by reverse microemulsion polymerisation. Water-soluble photosensitisers and peptide or carbohydrate moieties were sequentially attached to the new nanospecies by orthogonal conjugations based on copper-catalysed azide-alkyne cycloaddition and isothiocyanate chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11947a

  6. Real-time monitoring of the mitophagy process by a photostable fluorescent mitochondrion-specific bioprobe with AIE characteristics.

    PubMed

    Zhang, Weijie; Kwok, Ryan T K; Chen, Yilong; Chen, Sijie; Zhao, Engui; Yu, Chris Y Y; Lam, Jacky W Y; Zheng, Qichang; Tang, Ben Zhong

    2015-05-28

    An isothiocyanate-functionalized tetraphenylethene is synthesized and used as a fluorescent bioprobe for mitochondrion imaging with high specificity and photostability. The covalent conjugation of the bioprobe to mitochondrial proteins endows it with high resistance to microenvironmental changes, enabling it for real-time monitoring of mitophagy.

  7. Inactivation of Salmonella enterica serovar Typhimurium and quality maintenance of cherry tomatoes treated with gaseous essential oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antimicrobial activity of the essential oils (EOs) from cinnamon bark, oregano, mustard and of their major components cinnamaldehyde, carvacrol, and allyl isothiocyanate (AIT) were evaluated as a gaseous treatment to reduce Salmonella enterica serovar Typhimurium in vitro and on tomatoes. In dif...

  8. A general entry to linear, dendritic and branched thiourea-linked glycooligomers as new motifs for phosphate ester recognition in water.

    PubMed

    Jiménez Blanco, José L; Bootello, Purificación; Ortiz Mellet, Carmen; Gutiérrez Gallego, Ricardo; García Fernández, José M

    2004-01-01

    A blockwise iterative synthetic strategy for the preparation of linear, dendritic and branched full-carbohydrate architectures has been developed by using sugar azido(carbamate) isothiocyanates as key templates; the presence of intersaccharide thiourea bridges provides anchoring points for hydrogen bond-directed molecular recognition of phosphate esters in water.

  9. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  10. ORGANOPHOSPHORUS HYDROLASE-BASED ASSAY FOR ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    We report a rapid and versatile Organophosphorus hydrolase (OPH)-based method for measurement of organophosphates. This assay is based on a substrate-dependent change in pH at the local vicinity of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC), ...

  11. Improving Hydrocarbon Separation In Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Woeller, F.; Kojiro, D. R.

    1983-01-01

    Modified solica spheres enhance chromatographic separation. Commercially available silica spheres are modified by reacting them with molecules containing isocyante and isothiocyanate groups. Applications of surface derivatized spheres that result from reaction include analysis of samples prouced by atmospheric or soil probes.

  12. 75 FR 14153 - National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ...; chloroacetone; dichlorvos; hexane; hydrogen bromide; hydrogen iodide; ketene; methyl isothiocyanate; methylene chloride; monoethanolamine; nerve agent VX; nitric oxide; oleum; propargyl alcohol; propionaldehyde; red... chloride. DATES: A meeting of the NAC/AEGL Committee will be held from 10 a.m. to 5 p.m. on April 13,...

  13. A novel fluoro-chromogenic click reaction for the labelling of proteins and nanoparticles with near-IR theranostic agents.

    PubMed

    Planas, Oriol; Gallavardin, Thibault; Nonell, Santi

    2015-04-01

    Reaction of porphycene isothiocyanates with primary and secondary amines leads to the formation of thiazolo[4,5-c]porphycenes, with a substantial shift in the absorption and fluorescence spectra. The conjugates show fluorescence in the near-infrared and are capable of photosensitizing the production of the cytotoxic species singlet oxygen. PMID:25531206

  14. Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl N-Thiocarbamoylbenzotriazoles as Bench-Stable Reagents.

    PubMed

    Štrukil, Vjekoslav; Gracin, Davor; Magdysyuk, Oxana V; Dinnebier, Robert E; Friščić, Tomislav

    2015-07-13

    Monitoring of mechanochemical thiocarbamoylation by in situ Raman spectroscopy revealed the formation of aryl N-thiocarbamoylbenzotriazoles, reactive intermediates deemed unisolable in solution. The first-time isolation and structural characterization of these elusive molecules demonstrates the ability of mechanochemistry to access otherwise unobtainable intermediates and offers a new range of masked isothiocyanate reagents.

  15. Evaluation of changes in serum chemistry in association with feed withdrawal or high dose oral gavage with Dextran Sodium Sulfate (DSS) induced gut leakage in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dextran sodium sulfate (DSS) has been shown to be effective at inducing enteric inflammation in broiler chickens, resulting in increased leakage of orally administered fluorescein isothiocyanate dextran to circulation. In a previous study, two doses of DSS (0.45g/dose) administered as oral gavage re...

  16. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sulforaphane (SFN) is a naturally occurring member of the isothiocyanate family of chemopreventive agents and the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon c...

  17. Prolonged Sulforaphane Treatment Activates Extracellular-Regulated Kinase 1/2 Signaling in Nontumorigenic Colon Cells but not Colon Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sulforaphane (SFN) is a naturally occurring member of the isothiocyanate family of chemopreventive agents and the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon c...

  18. Sulforaphane plays common and different roles in tumorigenic and nontumorigenic colon cell growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sulforaphane (SFN) is a naturally occurring member of the isothiocyanate family of chemopreventive agents and the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon c...

  19. Identifying rates of meadowfoam (Limnanthes alba) seed meal needed for suppression of Meloidogyne hapla and Pythium irregulare in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meadowfoam (Limnanthes alba) is a commercial oilseed crop grown in Oregon. After extracting oil from seed, the remaining seed meal is rich in the secondary plant metabolite glucolimnanthin, which can be converted into pesticidal compounds such as 3-methoxybenzyl isothiocyanate (ITC) and 3-methoxyphe...

  20. Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects.

    PubMed

    Rungapamestry, Vanessa; Duncan, Alan J; Fuller, Zoë; Ratcliffe, Brian

    2007-04-01

    The isothiocyanate, sulforaphane, has been implicated in the cancer-protective effects of brassica vegetables. When broccoli is consumed, sulforaphane is released from hydrolysis of glucoraphanin by plant myrosinase and/or colonic microbiota. The influence of meal composition and broccoli-cooking duration on isothiocyanate uptake was investigated in a designed experiment. Volunteers (n 12) were each offered a meal, with or without beef, together with 150 g lightly cooked broccoli (microwaved 2.0 min) or fully cooked broccoli (microwaved 5.5 min), or a broccoli seed extract. They received 3 g mustard containing pre-formed allyl isothiocyanate (AITC) with each meal. Urinary output of allyl (AMA) and sulforaphane (SFMA) mercapturic acids, the biomarkers of production of AITC and sulforaphane respectively, were measured for 24 h after meal consumption. The estimated yield of sulforaphane in vivo was about 3-fold higher after consumption of lightly cooked broccoli than fully cooked broccoli. Absorption of AITC from mustard was about 1.3-fold higher following consumption of the meat-containing meal compared with the non meat-containing alternative. The meal matrix did not significantly influence the hydrolysis of glucoraphanin and its excretion as SFMA from broccoli. Isothiocyanates may interact with the meal matrix to a greater extent if they are ingested pre-formed rather than after their production from hydrolysis of glucosinolates in vivo. The main influence on the production of isothiocyanates in vivo is the way in which brassica vegetables are cooked, rather than the effect of the meal matrix.

  1. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design

    PubMed Central

    Clarke, John D.; Hsu, Anna; Riedl, Ken; Bella, Deborah; Schwartz, Steven J.; Stevens, Jan F.; Ho, Emily

    2011-01-01

    Broccoli consumption may reduce the risk of various cancers and many broccoli supplements are now available. The bioavailability and excretion of the mercapturic acid pathway metabolites isothiocyanates after human consumption of broccoli supplements has not been tested. Two important isothiocyanates from broccoli are sulforaphane and erucin. We employed a cross-over study design in which 12 subjects consumed 40 grams of fresh broccoli sprouts followed by a 1 month washout period and then the same 12 subjects consumed 6 pills of a broccoli supplement. As negative controls for isothiocyanate consumption four additional subjects consumed alfalfa sprouts during the first phase and placebo pills during the second. Blood and urine samples were collected for 48 hours during each phase and analyzed for sulforaphane and erucin metabolites using LC-MS/MS. The bioavailability of sulforaphane and erucin is dramatically lower when subjects consume broccoli supplements compared to fresh broccoli sprouts. The peaks in plasma concentrations and urinary excretion were also delayed when subjects consumed the broccoli supplement. GSTP1 polymorphisms did not affect the metabolism or excretion of sulforaphane or erucin. Sulforaphane and erucin are able to interconvert in vivo and this interconversion is consistent within each subject but variable between subjects. This study confirms that consumption of broccoli supplements devoid of myrosinase activity does not produce equivalent plasma concentrations of the bioactive isothiocyanate metabolites compared to broccoli sprouts. This has implications for people who consume the recommended serving size (1 pill) of a broccoli supplement and believe they are getting equivalent doses of isothiocyanates. PMID:21816223

  2. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.

    PubMed

    Williams, David J; Critchley, Christa; Pun, Sharon; Chaliha, Mridusmita; O'Hare, Timothy J

    2009-01-01

    Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.

  3. Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes.

    PubMed

    Li, Dan; Wu, Kun; Howie, A Forbes; Beckett, Geoffrey J; Wang, Wei; Bao, Yongping

    2008-09-01

    Dietary isothiocyanates and selenium (Se) can up-regulate thioredoxin reductase 1 (TR1) in cultured human HepG2 and MCF-7 cells [Zhang et al. (2003). Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis, 24, 497-503; Wang et al. (2005). Sulforaphane, erucin and iberin up-regulate thioredoxin reductase expression in human MCF-7 cells. Journal of Agricultural and Food Chemistry, 53, 1417-1421] at both the protein and mRNA levels. In this study, broccoli sprout extract (a rich source of the isothiocyanates sulforaphane and iberin) and Se interacted synergistically to induce TR1 in immortalised human hepatocytes. Broccoli sprout extracts containing 1.6, 4 and 8μM isothiocyanates were tested for their ability to induce TR1 at the protein and mRNA level. Although induction of TR1 mRNA by broccoli sprout extract (1.6-8μM) was only 1.7-2.2-fold, co-treatment with Se (0.2-1μM) enhanced the expression of TR1 mRNA (3.0-3.3-fold). Moreover, broccoli sprout extract induced the cellular concentration of TR1 and TR enzymatic activity, an induction that was augmented by Se addition. Thus, broccoli sprout extract (8μM) and Se induced cellular TR1 concentration and enzymatic activity 3.7- and 5-fold respectively, whereas, Se or broccoli sprout extract alone produced an induction of only approximately 2-fold. These data suggest that dietary isothiocyanates from broccoli sprouts and Se are important agents in the regulation of redox status in human liver cells. The synergistic effect between isothiocyanates and Se at physiologically-relevant concentrations on the induction of TR1 may play an important role in protection against oxidative stress.

  4. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea Var. capitata) cooked for different durations.

    PubMed

    Rungapamestry, Vanessa; Duncan, Alan J; Fuller, Zoë; Ratcliffe, Brian

    2006-10-01

    In cabbage, glucosinolates such as sinigrin are hydrolyzed by plant myrosinase to allyl isothiocyanate (AITC), allyl cyanide, and, in the presence of an epithiospecifier protein, 1-cyano-2,3-epithiopropane (CEP). Isothiocyanates have been implicated in the cancer-protective effects of Brassica vegetables. The effect of processing on the hydrolysis of glucosinolates was investigated in cabbage. Cabbage was steamed or microwaved for six time durations over 7 min. Glucosinolate concentrations were slightly reduced after microwave cooking (P < 0.001) but were not influenced after steaming (P < 0.05). Myrosinase activity was effectively lost after 2 min of microwave cooking and after 7 min of steaming. Hydrolysis of residual glucosinolates following cooking yielded predominantly CEP at short cooking durations and AITC at longer durations until myrosinase activity was lost. Lightly cooked cabbage produced the highest yield of AITC on hydrolysis in vitro, suggesting that cooking Brassica vegetables for a relatively short duration may be desirable from a health perspective.

  5. 3′-Functionalized Adamantyl Cannabinoid Receptor Probes

    PubMed Central

    Ogawa, Go; Tius, Marcus A.; Zhou, Han; Nikas, Spyros P.; Halikhedkar, Aneetha; Mallipeddi, Srikrishnan; Makriyannis, Alexandros

    2015-01-01

    The aliphatic side chain plays a pivotal role in determining the cannabinergic potency of tricyclic classical cannabinoids, and we have previously shown that this chain could be substituted successfully by adamantyl or other polycyclic groups. In an effort to explore the pharmacophoric features of these conformationally fixed groups, we have synthesized a series of analogues in which the C3 position is substituted directly with an adamantyl group bearing functionality at one of the tertiary carbon atoms. These substituents included the electrophilic isothiocyanate and photoactivatable azido groups, both of which are capable of covalent attachment with the target protein. Our results show that substitution at the 3′-adamantyl position can lead to ligands with improved affinities and CB1/CB2 selectivities. Our work has also led to the development of two successful covalent probes with high affinities for both cannabinoid receptors, namely, the electrophilic isothiocyanate AM994 and the photoactivatable aliphatic azido AM993 analogues. PMID:25760146

  6. Synthesis and carbonic anhydrase I, II, IX and XII inhibition studies of 4-N,N-disubstituted sulfanilamides incorporating 4,4,4-trifluoro-3-oxo-but-1-enyl, phenacylthiourea and imidazol-2(3H)-one/thione moieties.

    PubMed

    Congiu, Cenzo; Onnis, Valentina; Balboni, Gianfranco; Supuran, Claudiu T

    2014-04-01

    A series of sulfonamides incorporating the sulfanilamide (SA) scaffold were prepared. Reaction of the 4-amino moiety of SA with benzyl chlorides or substituted bromoacetophenones afforded the 4-mono-alkylated derivatives which were then reacted with 1,1,1-trifluoro-4-isobutoxybut-3-en-2-one leading to a series of 4-N,N-disubstituted SAs. The key intermediates were also reacted with ethoxycarbonyl isothiocyanate leading to thioureas or were cyclized in the presence of potassium cyanate/isothiocyanate to the corresponding imidazol-2(3H)-one/thiones. The new compounds were tested as inhibitors of four carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, and the transmembrane, tumor-associated CA IX and XII. These sulfonamides were ineffective CA I and II inhibitors but were nanomolar CA IX and XII inhibitors, making them of interest as clinical candidates for antitumor/antimetastasis applications. PMID:24589511

  7. Phytochemical profiling of five medicinally active constituents across 14 Eutrema species.

    PubMed

    Hao, Guoqian; Wang, Qian; Liu, Bingbing; Liu, Jianquan

    2016-04-01

    Wasabi or Japanese horseradish (Eutrema japonicum) is both a traditional condiment and a medicinally important plant with diverse uses. Its medicinally active constituents appear to include five isothiocyanates, but their spatial variations in naturally occurring congeners are unknown. Thus, in this study we measured concentrations of these five active constituents in 20 populations of 14 species of Eutrema and one related species, Yinshania sinuata. Three to five of these constituents were detected in each of the examined species, at concentrations that varied greatly between sampled species and populations of the same species. However, two species, Eutrema tenue and Eutrema deltoideum, had higher total concentrations of the five isothiocyanates and substantially higher concentrations of one or two, than the widely cultivated E. japonicum. Thus, both of these species could be important wild resources for artificial cultivation, in addition to the currently widely cultivated E. japonicum. PMID:26946379

  8. Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data.

    PubMed

    Spadafora, Natasha D; Amaro, Ana L; Pereira, Maria J; Müller, Carsten T; Pintado, Manuela; Rogers, Hilary J

    2016-11-15

    Rocket salad (Diplotaxis tenuifolia; wild rocket) is an important component of ready to eat salads providing a distinct peppery flavour and containing nutritionally relevant compounds. Quality deteriorates during post-harvest, in relation to time and storage temperature amongst other factors. Volatile organic compounds (VOCs) are easily measurable from rocket leaves and may provide useful quality indicators for e.g. changes in isothiocyanates derived from nutritionally important glucosinolates. VOC profiles discriminated storage temperatures (0, 5 and 10°C) and times (over 14days). More specifically, concentrations of aldehydes and isothiocyanates decreased with time paralleling a fall in vitamin C and a reduction in sensorial quality at the two higher temperatures. Sulphur containing compounds rise at later time-points and at higher temperatures coincident with an increase in microbial titre, mirroring a further drop in sensorial quality thus indicating their contribution to off-odours. PMID:27283614

  9. Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data.

    PubMed

    Spadafora, Natasha D; Amaro, Ana L; Pereira, Maria J; Müller, Carsten T; Pintado, Manuela; Rogers, Hilary J

    2016-11-15

    Rocket salad (Diplotaxis tenuifolia; wild rocket) is an important component of ready to eat salads providing a distinct peppery flavour and containing nutritionally relevant compounds. Quality deteriorates during post-harvest, in relation to time and storage temperature amongst other factors. Volatile organic compounds (VOCs) are easily measurable from rocket leaves and may provide useful quality indicators for e.g. changes in isothiocyanates derived from nutritionally important glucosinolates. VOC profiles discriminated storage temperatures (0, 5 and 10°C) and times (over 14days). More specifically, concentrations of aldehydes and isothiocyanates decreased with time paralleling a fall in vitamin C and a reduction in sensorial quality at the two higher temperatures. Sulphur containing compounds rise at later time-points and at higher temperatures coincident with an increase in microbial titre, mirroring a further drop in sensorial quality thus indicating their contribution to off-odours.

  10. Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Ding, Lin; Yang, Min; Ju, Huangxian

    2015-06-01

    To elucidate the biological and pathological functions of sialyltransferases (STs), intracellular ST activity evaluation is necessary. Focusing on the lack of noninvasive methods for obtaining the dynamic activity information, this work designs a sensing platform for in situ FRET imaging of intracellular ST activity and tracing of sialylation process. The system uses tetramethylrhodamine isothiocyanate labeled asialofetuin (TRITC-AF) as a ST substrate and fluorescein isothiocyanate labeled 3-aminophenylboronic acid (FITC-APBA) as the chemoselective recognition probe of sialylation product, both of which are encapsulated in a liposome vesicle for cellular delivery. The recognition of FITC-APBA to sialylated TRITC-AF leads to the FRET signal that is analyzed by FRET efficiency images. This strategy has been used to evaluate the correlation of ST activity with malignancy and cell surface sialylation, and the sialylation inhibition activity of inhibitors. This work provides a powerful noninvasive tool for glycan biosynthesis mechanism research, cancer diagnostics and drug development.

  11. Eradication of bacterial species via photosensitization

    NASA Astrophysics Data System (ADS)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1999-02-01

    Photosensitization and inactivation efficacy of three bacterial species: Prevotella nigrescens, Staphylococcus aureus and Escherichia coli have been investigated. Samples of Staphylococcus aureus and Escherichia coli were treated with the triphenylmethane dye malachite green isothiocyanate and exposed to light from a variety of continuous and pulsed light sauces at a wavelength of approximately 630 nm. Inactivation of the Gram-positive species Staphylococcus aureus was found to increase with radiation dose, whilst Gram-negative Escherichia coli was resistant to such treatment. Samples of the pigmented species Prevotella nigrescens were found to be inactivated by exposure to light alone. The mechanism of photosensitization and inactivation of Staphylococcus aureus with malachite green isothiocyanate is addressed. The possible roles of the excited triplet state of the photosensitizer, the involvement of molecular oxygen, and the bacterial cell wall are discussed. Photosensitization may provide a way of eliminating naturally pigmented species responsible for a variety of infections, including oral diseases such as gingivitis and periodontitis.

  12. Efficacy of Fumigant and Nonfurmigant Nematicides for Control of Meloidogyne arenaria on Peanut

    PubMed Central

    Dickson, D. W.; Hewlett, T. E.

    1988-01-01

    Three tests were conducted to evaluate the efficacy of fumigant and nonfumigant nematicides for control of Meloidogyne arenaria race 1 on peanut. Methyl bromide, 1,3-D, methyl isothiocyanate, and methyl isothiocyanate mixtures were applied 7 or 8 days preplant either broadcast or in-the-row. Aldicarb, ethoprop, fenamiphos, and F5145 were applied at different rates and by different methods at-plant or at early flowering. Of the 32 treatments evaluated, only seven resulted in yield increases (P = 0.05), although early season vigor was high in all treated plots. During the latter one-third of the growing season, however, nematode control was not adequate in most treatments resulting in heavy peg, pod, and root infection by M. arenaria. PMID:19290312

  13. Efficient Approaches to S-alkyl-N-alkylisothioureas and Application to Novel Histamine H3R Antagonists.

    PubMed

    Yoneyama, Hiroki; Yamamoto, Daisuke; Yamatodani, Atsushi; Harusawa, Shinya

    2016-01-01

    S-Alkyl-N-alkylisothiourea compounds, which contain various cyclic amines, were synthesized using 3-phenylpropionyl isothiocyanate (PPI) to discover novel non-imidazole histamine H3 receptor (H3R) antagonists. The synthetic route was improved remarkably by using 2-nitrophenylacetyl isothiocyanate (NPAI). Among the synthesized compounds, N-[4-(4-chlorophenyl)butyl]-S-[3-piperidin-1-yl)propyl]isothiourea (1k, OUP-186) exhibited potent and selective antagonism against human H3R but not human H4R, in vitro. Of particular interest, they did not show antagonism for the histamine release in rat brain microdialysis in vivo, suggesting species-selective differences in antagonist affinities. Furthermore, in silico docking studies of OUP-186 and its C2-homolog (OUP-181) in human/rat H3Rs suggested that the structural difference of antagonist-docking sites between human and rat H3Rs was attributable to the Ala122/Val122 mutation. PMID:27592826

  14. Multistep divergent synthesis of benzimidazole linked benzoxazole/benzothiazole via copper catalyzed domino annulation.

    PubMed

    Liao, Jen-Yu; Selvaraju, Manikandan; Chen, Chih-Hau; Sun, Chung-Ming

    2013-04-21

    An efficient, facile synthesis of structurally diverse benzimidazole integrated benzoxazole and benzothiazoles has been developed. In a multi-step synthetic sequence, 4-fluoro-3-nitrobenzoic acid was converted into benzimidazole bis-heterocycles, via the intermediacy of benzimidazole linked ortho-chloro amines. The amphiphilic reactivity of this intermediate was designed to achieve the title compounds by the reaction of various acid chlorides and isothiocyanates in a single step through the in situ formation of ortho-chloro anilides and thioureas under microwave irradiation. A versatile one pot domino annulation reaction was developed to involve the reaction of benzimidazole linked ortho-chloro amines with acid chlorides and isothiocyanates. The initial acylation and urea formation followed by copper catalyzed intramolecular C-O and C-S cross coupling reactions furnished the angularly oriented bis-heterocycles which bear a close resemblance to the streptomyces antibiotic UK-1.

  15. Investigation of pH and temperature effects on FRET systems for glucose sensing

    NASA Astrophysics Data System (ADS)

    Meledeo, Michael A.; Ibey, Bennett L.; O'Neal, D. P.; Pishko, Michael V.; Cote, Gerard L.

    2002-05-01

    Glucose monitoring is of critical importance in the life of Type I and many Type II diabetics. This research furthers work toward a minimally invasive implantable glucose sensor based on fluorescence detection. Current experimental models use heterogeneous fluorescence resonance energy transfer (FRET) systems for sensing; ideally, the response of one fluorophore bound to a large polysaccharide is enhanced greatly in the presence of glucose while the other fluorophore bound to a glucose sensitive protein is diminished or unaffected. Many fluorophores are affected by environmental factors such as pH and temperature. FRET experiments using two fluorophores, tetramethylrodamine isothiocyanate (TRITC) and fluoroscein isothiocyanate (FITC), are performed evaluating the effects of fluctuations over the range of pH 4-8 and temperature 25-45 degree(s)C for various concentrations of glucose in a flow cell. TRITC is bound to the lectin Concanavalin A (Con A), and FITC is bound to dextran molecules of varying sizes.

  16. Time-resolved laser-induced fluorescence study on dyes used in DNA sequencing

    SciTech Connect

    Chang, Kaisyang; Force, R.K. )

    1993-01-01

    Research on the time-resolved fluorescence of fluorescein isothiocyanate, NBD, tetramethylrhodamine isothiocyanate, and Texas Red - the dyes used for fluorescence-based DNA sequencing - is described. Mean fluorescence lifetiems in both aqueous buffer solution and 5.3%T, 4.8%C polyacrylamide gel were determined as a function of excitation wave-lengths at 337, 470, and 550 nm and were found to be 3.5, 1.1, 2.5, and 4.3 ns; the detection limits are 10, 200, 200 and 200 amol for FITC, NBD, TEMR, and T. Red, respectively. Comparisons of fluorescence parameters between the conjugated dyes and the free dyes are also reported. Results on the optimization of the excitation source wavelengths to improve sensitivity and reduce background scattering in polyacrylamide gel are also reported. Time-resolved fluorescence was successfully applied to resolve spectral overlapping of emissions in both solution and in polyacrylamide gel. 12 refs., 6 figs., 1 tab.

  17. Monitoring of environmental cancer initiators through hemoglobin adducts by a modified Edman degradation method

    SciTech Connect

    Toernqvist, M.M.; Mowrer, J.; Jensen, S.; Ehrenberg, L.

    1986-04-01

    Tissue doses of cancer initiators/mutagens are suitably monitored through hemoglobin adducts formed in vivo, but the use of this method has been hampered by a lack of sufficiently simple and fast procedures. It was previously observed that when the N-terminal amino acid in hemoglobin, valine, is alkylated it is cleaved off by the Edman sequencing reagent, phenyl isothiocyanate, in the neutral-alkaline coupling medium, as opposed to the acidic medium required by normal amino acids. Based on this principle, conditions for a functioning procedure for gas chromatography/mass spectrometry (GC/MS) determination of N-terminal alkylvalines in hemoglobin were worked out. Derivatizing the protein in formamide solution with pentafluorophenyl isothiocyanate, using a /sup 2/H-alkylated protein as internal standard, and applying on-column injection during analysis, permit reproducible determination of hydroxyethylvaline and other adducts down into the dose range where cancer risks may be considered acceptably low.

  18. Multipurpose ligand, DAKLI (Dynorphin A-analogue Kappa LIgand), with high affinity and selectivity for dynorphin (. kappa. opioid) binding sites

    SciTech Connect

    Goldstein, A.; Nestor, J.J. Jr.; Naidu, A.; Newman, S.R. )

    1988-10-01

    The authors describe a synthetic ligand, DALKI (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as {sup 125}I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin ({kappa} opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites.

  19. Trigeminal sensitization and desensitization in the nasal cavity: a study of cross interactions.

    PubMed

    Jacquot, Laurence; Monnin, Julie; Lucarz, Annie; Brand, Gérard

    2005-06-01

    Chemical irritation in the human nasal cavity is poorly documented. In this field, an important issue concerns the differential responses produced by successive stimulation. Repeated identical chemical irritant stimuli can produce increases or decreases in responses (two phenomena known as self-sensitization or self-desensitization). In the same way, different molecules can interact and produce cross-sensitization or cross-desensitization. The aim of this study was to contribute to this question using two specific molecules, acetic acid (AA) and allyl isothiocyanate (AIC). As the self-sensitization and -desensitization for AIC is known, a first experiment in the present work investigated the response, acute effects and time course of sensitization or desensitization to acetic acid. A second experiment tested the responses of acetic acid after a previous stimulation with allyl isothiocyanate (mustard oil) and inversely with a short inter-stimulus interval (ISI of 45 s). A third experiment similar to the second used a long inter-stimulus interval (ISI of 3 min 30). Twelve healthy subjects participated in the study using psychophysical (intensity ratings) and psychophysiological (skin conductance response) measurements. Firstly, the results showed that repeated nasal stimulation with acetic acid produced a self-desensitization whatever the ISI. Secondly, the results showed a cross-desensitization of allyl isothiocyanate by previous acetic acid stimulation. In contrast, previous stimulation with allyl isothiocyanate had no effect on the following acetic acid response. These findings confirm that trigeminal sensitization and desensitization in the nasal cavity do not follow the same processes in relation to molecules used.

  20. Difluoromethyltrialkylammonium salts--their expeditious synthesis from chlorodifluoromethane and tertiary amines in the presence of concentrated aqueous sodium hydroxide. The catalytic process.

    PubMed

    Nawrot, Ewelina; Joñczyk, Andrzej

    2007-12-21

    We found that difluorocarbene generated from chlorodifluoromethane with 50% aqueous sodium hydroxide reacts with lipophilic tertiary amines 1a-g giving difluoromethyltrialkylammonium chlorides 2a-g in high yields. Similarly, difluoromethyltrialkylammonium iodides 3h-l, nitrates 4h-k, or isothiocyanates 5i,j were synthesized from hydrophilic tertiary amines 1h-l and the corresponding sodium or potassium salts. The process is catalytic with respect to the base used.

  1. Reactions of a persistent phosphinyl radical/diphosphine with heteroallenes.

    PubMed

    Giffin, Nick A; Hendsbee, Arthur D; Masuda, Jason D

    2016-08-01

    The persistent phosphinyl radical, (H2C)2(NDipp)2P˙, formed upon dissolution from the homolytic cleavage of the P-P bond in the diphosphane [(H2C)2(NDipp)2P]2, was reacted with carbon disulfide, phenyl isocyanate, and phenyl isothiocyanate. The phosphinyl fragments add across the C[double bond, length as m-dash]S or C[double bond, length as m-dash]O double bond to give neutral, diamagnetic species. PMID:27443569

  2. Detection of Cryptosporidium parvum in soil extracts.

    PubMed

    Walker, Mark; Redelman, Douglas

    2004-03-01

    Epifluorescent microscopy and flow cytometry were used in different combinations with fluorescein isothiocyanate-labeled immunoglobulins M and G3 to estimate the numbers of Cryptosporidium parvum oocysts in soil extracts containing 10 to 10,017 oocysts/ml. No combination had a systematic effect on accuracy or precision. Background debris may have produced overestimates at low oocyst concentrations when flow cytometry was used. PMID:15006810

  3. "DAKLI": a multipurpose ligand with high affinity and selectivity for dynorphin (kappa opioid) binding sites.

    PubMed Central

    Goldstein, A; Nestor, J J; Naidu, A; Newman, S R

    1988-01-01

    We describe a synthetic ligand, "DAKLI" (Dynorphin A-analogue Kappa LIgand), related to the opioid peptide dynorphin A. A single reactive amino group at the extended carboxyl terminus permits various reporter groups to be attached, such as 125I-labeled Bolton-Hunter reagent, fluorescein isothiocyanate, or biotin. These derivatives have high affinity and selectivity for the dynorphin (kappa opioid) receptor. An incidental finding is that untreated guinea pig brain membranes have saturable avidin binding sites. PMID:2902630

  4. Localization of Legionella pneumophila in tissue using FITC-conjugated specific antibody and a background stain

    SciTech Connect

    Lowry, B.S.; Vega, F.G. Jr.; Hedlund, K.W.

    1982-05-01

    Lightly staining formalin-fixed or fresh tissue with Gram's crystal violet obviates interfering nonspecific fluorescence by acting as a metachromatic stain in ultraviolet light. Against the easily recognized background of tissues and cells fluorescein isothiocyanate-tagged Legionella pneumophila antibodies can then identify this bacterium in or on individual cells. This procedure can be run at room temperature in two hours and has the potential for further widespread applicability.

  5. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    SciTech Connect

    Simonsson, Carl; Stenfeldt, Anna-Lena; Karlberg, Ann-Therese; Ericson, Marica B.; Jonsson, Charlotte A.M.

    2012-10-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  6. Aqueous extract from Spanish black radish (Raphanus sativus L. Var. niger) induces detoxification enzymes in the HepG2 human hepatoma cell line.

    PubMed

    Hanlon, Paul R; Webber, David M; Barnes, David M

    2007-08-01

    Spanish black radish (Raphanus sativus L. var. niger) is a member of the Cruciferae family that also contains broccoli and Brussels sprouts, well-known to contain health-promoting constituents. Spanish black radishes (SBR) contain high concentrations of a glucosinolate unique to the radish family, glucoraphasatin, which represents >65% of the total glucosinolates present in SBR. The metabolites of glucosinolates, such as isothiocyanates, are implicated in health promotion, although it is unclear whether glucosinolates themselves elicit a similar response. The crude aqueous extract from 0.3 to 3 mg of dry SBR material increased the activity of the phase II detoxification enzyme quinone reductase in the human hepatoma HepG2 cell line with a maximal effect at a concentration of 1 mg/mL. Treatment of HepG2 cells with the crude aqueous extract of 1 mg of SBR per mL also significantly induced the expression of mRNA corresponding to the phase I detoxification enzymes: cytochrome P450 (CYP) 1A1, CYP1A2, and CYP1B1 as well as the phase II detoxification enzymes: quinone reductase, heme oxygenase 1, and thioredoxin reductase 1. Previous studies have shown that the myrosinase metabolites of different glucosinolates vary in their ability to induce detoxification enzymes. Here, we show that while glucoraphasatin addition was ineffective, the isothiocyanate metabolite of glucoraphasatin, 4-methylthio-3-butenyl isothiocyanate (MIBITC), significantly induced phase II detoxification enzymes at a concentration of 10 microM. These data demonstrate that the crude aqueous extract of SBR and the isothiocyanate metabolite of glucoraphasatin, MIBITC, are potent inducers of detoxification enzymes in the HepG2 cell line.

  7. Restoration of catalytic activity by replacement of a coordinated amide group: Synthesis and laser-induced luminescence studies of the phosphate diester transesterification catalyst [Eu(NBAC)]{sup 3+}

    SciTech Connect

    Amin, S.; Voss, D.A. Jr.; Morrow, J.R.

    1996-12-18

    Here the authors report the preparation, solution characterization, and catalytic properties of the Eu(III) complex of the NBAC ligand (NBAC = 1-(4-nitrobenzyl)-4,7,10-tris-(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane). The nitrobenzyl group was chosen as a precursor to an isothiocyanate group for conjugation of the complex to a modified oligonucleotide. Such catalysts may be useful for the sequence-specific cleavage of RNA.

  8. Chemical Characterization and Release Efficiency of Defatted Mustard Meals: 2000-2002

    SciTech Connect

    Morra, M. J.

    2005-07-01

    Glucosinolates, compounds that occur in agronomically important crops, may represent a viable source of allelochemic control for various soil-borne plant pests. Toxicity is not attributed to intact glucosinolates, but instead to biologically active products such as isothiocyanates (ITCs), organic cyanides, oxazolidinethiones, and ionic thiocyanate (SCN-) released upon enzymatic degradation by myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) in the presence of water.

  9. SERS enhancement of silver nanoparticles prepared by a template-directed triazole ligand strategy.

    PubMed

    Kashmery, Heba A; Thompson, David G; Dondi, Ruggero; Mabbott, Samuel; Graham, Duncan; Clark, Alasdair W; Burley, Glenn A

    2015-08-21

    Two advances in the development of a one-pot method to prepare silver nanoparticles (AgNPs) using the Tollens' reagent are described. First, a template-directed process of AgNP synthesis using resorcinol triazole ligands bearing two pendent galactose sugars is shown. Second, the conversion of these AgNPs into SERS nanotags is demonstrated using malachite green isothiocyanate as the Raman reporter molecule. PMID:26179948

  10. Functional group analysis

    SciTech Connect

    Smith, W.T. Jr.; Patterson, J.M.

    1986-04-01

    Analytical methods for functional group analysis are reviewed. Literature reviewed is from the period of December 1983 through November 1985 and presents methods for determining the following compounds: acids, acid halides, active hydrogen, alcohols, aldehydes, ketones, amides, amines, amino acids, anhydrides, aromatic hydrocarbons, azo compounds, carbohydrates, chloramines, esters, ethers, halogen compounds, hydrazines, isothiocyanates, nitro compounds, nitroso compounds, organometallic compounds, oxiranes, peroxides, phenols, phosphorus compounds, quinones, silicon compounds, sulfates, sulfonyl chlorides, thioamides, thiols, and thiosemicarbazones. 150 references.

  11. Functionalized membrane supports for covalent protein microsequence analysis

    SciTech Connect

    Coull, J.M.; Pappin, D.J.; Mark, J.; Aebersold, R.; Koester, H. )

    1991-04-01

    Methods were developed for high yield covalent attachment of peptides and proteins to isothiocyanate and arylamine-derivatized poly(vinylidene difluoride) membranes for solid-phase sequence analysis. Solutions of protein or peptide were dried onto 8-mm membrane disks such that the functional groups on the surface and the polypeptide were brought into close proximity. In the case of the isothiocyanate membrane, reaction between polypeptide amino groups and the surface isothiocyanate moieties was promoted by application of aqueous N-methylmorpholine. Attachment of proteins and peptides to the arylamine surface was achieved by application of water-soluble carbodiimide in a pH 5.0 buffer. Edman degradation of covalently bound polypeptides was accomplished with initial and repetitive sequence yields ranging from 33 to 75% and 88.5 to 98.5%, respectively. The yields were independent of the sample load (20 pmol to greater than 1 nmol) for either surface. Significant loss of material was not observed when attachment residues were encountered during sequence runs. Application of bovine beta-lactoglobulin A chain, staphylococcus protein A, or the peptide melittin to the isothiocyanate membrane allowed for extended N-terminal sequence identification (35 residues from 20 pmol of beta-lactoglobulin). A number of synthetic and naturally occurring peptides were sequenced to the C-terminal residue following attachment to the arylamine surface. In one example, 10 micrograms of bovine alpha-casein was digested with staphylococcal protease V8 and the peptides were separated by reverse-phase chromatography. Peptide fractions were then directly applied to arylamine membrane disks for covalent sequence analysis. From as little as 2 pmol of initial signal it was possible to determine substantial sequence information (greater than 10 residues).

  12. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  13. Galangal pungent component, 1'-acetoxychavicol acetate, activates TRPA1.

    PubMed

    Narukawa, Masataka; Koizumi, Kanako; Iwasaki, Yusaku; Kubota, Kikue; Watanabe, Tatsuo

    2010-01-01

    We investigated the activation of transient receptor potential cation channel (TRP) subfamily V, member 1 (TRPV1) and TRP subfamily A, member 1 (TRPA1) by 1'-acetoxychavicol acetate (ACA), the main pungent component in galangal. ACA did not activate TRPV1-expressing human embryonic kidney (HEK) cells, but strongly activated TRPA1-expressing HEK cells. ACA was more potent than allyl isothiocyanate, the typical TRPA1 agonist.

  14. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress.

    PubMed

    Martínez-Ballesta, Maria del Carmen; Muries, Beatriz; Moreno, Diego Ángel; Dominguez-Perles, Raúl; García-Viguera, Cristina; Carvajal, Micaela

    2014-02-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress. For this purpose, water uptake and its transport through the plasma membrane were determined in plants after NaCl addition, when sinigrin was also supplied. We found higher hydraulic conductance (L0 ) and water permeability (Pf ) and increased abundance of PIP2 aquaporins after the direct administration of sinigrin, showing the ability of the roots to promote cellular water transport across the plasma membrane in spite of the stress conditions imposed. The higher content of the allyl-isothiocyanate and the absence of sinigrin in the plant tissues suggest that the isothiocyanate is related to water balance; in fact, a direct effect of this nitro-sulphate compound on water uptake is proposed. This work provides the first evidence that the addition of a glucosinolate can regulate aquaporins and water transport: this effect and the mechanism(s) involved merit further investigation. PMID:23837634

  15. Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man.

    PubMed

    Fuller, Zoë; Louis, Petra; Mihajlovski, Agnès; Rungapamestry, Vanessa; Ratcliffe, Brian; Duncan, Alan J

    2007-08-01

    Glucosinolate consumption from brassica vegetables has been implicated in reduction of cancer risk. The isothiocyanate breakdown products of glucosinolates appear to be particularly important as chemoprotective agents. Before consumption, brassica vegetables are generally cooked, causing the plant enzyme, myrosinase, to be denatured, influencing the profile of glucosinolate breakdown products produced. Some human intestinal microflora species show myrosinase-like activity (e.g. bifidobacteria). We aimed to increase bifidobacteria by offering a prebiotic (inulin) in a randomised crossover study. Six volunteers consumed inulin (10 g/d) for 21 d followed by a 21 d control period (no inulin). Treatment periods were reversed for the remaining six volunteers. During the last 5 d of each period two cabbage-containing meals were consumed. Total urine output was collected for 24 h following each meal. Cabbage was microwaved for 2 min (lightly cooked) or 5.5 min (fully cooked). Faecal samples were collected at the start and after the inulin and control treatments. Bifidobacteria were enumerated by real-time PCR. Allyl isothiocyanate production was quantified by measuring urinary excretion of allyl mercapturic acid (AMA). Bifidobacteria increased following prebiotic supplementation (P < 0.001) but there was no impact of this increase on AMA excretion. AMA excretion was greater following consumption of lightly cooked cabbage irrespective of prebiotic treatment (P < 0.001). In conclusion, the most effective way to increase isothiocyanate production may be to limit the length of time that brassica vegetables are cooked prior to consumption.

  16. Determination of Goitrogenic Metabolites in the Serum of Male Wistar Rat Fed Structurally Different Glucosinolates

    PubMed Central

    Choi, Eun-ji; Zhang, Ping

    2014-01-01

    Glucosinolates (GLSs) are abundant in cruciferous vegetables and reported to have anti thyroidal effects. Four GLSs (sinigrin, progoitrin, glucoerucin, and glucotropaeolin) were administered orally to rats, and the breakdown products of GLSs (GLS-BPs: thiocyanate ions, cyanide ions, organic isothiocyanates, organic nitriles, and organic thiocyanates) were measured in serum. Thiocyanate ions were measured by colorimetric method, and cyanide ions were measured with CI-GC-MS. Organic isothiocyanates and their metabolites were measured with the cyclocondensation assay. Organic nitriles and organic thiocyanates were measured with EI-GC-MS. In all treatment groups except for progoitrin, thiocyanate ions were the highest among the five GLS-BPs. In the progoitrin treated group, a high concentration of organic isothiocyanates (goitrin) was detected. In the glucoerucin treated group, a relatively low amount of goitrogenic substances was observed. The metabolism to thiocyanate ions happened within five hours of the administration, and the distribution of GLSs varied with the side chain. GLSs with side chains that can form stable carbocation seemed to facilitate the degradation reaction and produce a large amount of goitrogenic thiocyanate ions. Because goitrogenic metabolites can be formed without myrosinase, the inactivation of myrosinase during cooking would have no effect on the anti-nutritional effect of GLSs in cruciferous vegetables. PMID:25071920

  17. Rapid method for measuring protease activity in milk using radiolabeled casein

    SciTech Connect

    Christen, G.L.

    1987-09-01

    A rapid means to detect the presence of protease activity in raw milk could be useful in predicting keeping ability of products made from that milk. A 30-min assay has been developed and compared with three other methods of detecting protease. Casein, (methyl-/sup 14/C)-methylated-alpha was purchased from a radioisotope supplier. Concentrations of substrate from 2 to 20 nCi gave counts per minute, which increased linearly when counted with the Charm analyzer. There was not a significant difference in counting times of 10, 20, or 30 min. A mixture of sodium acetate and acetic acid precipitated nonhydrolyzed substrate with an efficiency of 97%. Comparison of the (/sup 14/C) casein assay, a casein fluorescein isothiocyanate assay, trinitrobenzenesulfonic acid procedure, and the Hull procedure using protease from psychrotrophic bacteria revealed that the (/sup 14/C) casein and casein fluorescein isothiocyanate methods were roughly equivalent and that the radiometric procedure was 10 times more sensitive than the trinitrobenzenesulfonic acid assay. The radiometric procedure was approximately 10(4) times more sensitive than the Hull procedure. The (/sup 14/C) casein and casein fluorescein isothiocyanate methods were similar in time required, about 30 min, while the trinitrobenzenesulfonic acid assay and Hull method required about 1 h plus reagent preparation time. The (/sup 14/C) casein procedure was most expensive per test; the other three were cheaper and similar to each other in cost.

  18. A Comparison of Semiochemically Mediated Interactions Involving Specialist and Generalist Brassica-feeding Aphids and the Braconid Parasitoid Diaeretiella rapae.

    PubMed

    Blande, J D; Pickett, J A; Poppy, G M

    2007-04-01

    Diaeretiella rapae, a parasitoid that predominately specializes in the parasitism of Brassica-feeding aphids, attacks Lipaphis erysimi, a specialist feeding aphid of the Brassicaceae and other families in the Capparales, at a greater rate than the generalist-feeding aphid, Myzus persicae. In this study, we investigated the orientation behavior of D. rapae to the volatile chemicals produced when these two aphid species feed on turnip (Brassica rapa var rapifera). We showed no significant preference orientation behavior to either aphid/turnip complex over the other. Isothiocyanates are among the compounds emitted by plants of the Brassicaceae in response to insect feeding damage, including by aphids. We assessed parasitoid orientation behavior in response to laboratory-formulated isothiocyanates. We tested two formulations and discovered significant orientation toward 3-butenyl isothiocyanate. We also assessed plant and aphid glucosinolate content, and showed large levels of glucosinolate concentration in L. erysimi, whereas there was little change in plant content in response to aphid feeding. Our results suggest that during the process of host location, similar cues may be utilized for locating L. erysimi and M. persicae, whereas the acceptance of hosts and their suitability may involve aspects of nonvolatile aphid chemistry.

  19. Anti-reproductive and other medicinal effects of Tropaeolum tuberosum.

    PubMed

    Johns, T; Kitts, W D; Newsome, F; Towers, G H

    1982-03-01

    Tropaeolum tuberosum is an edible-tuber-producing cultigen of the Andes mountains. Historical beliefs relating to the effects of this species on human reproductive potential continue to the present day. T. tuberosum subsp. tuberosum contains p-methoxybenzylglucosinolate as its major secondary metabolite. The putative anti-aphrodisiac activity of T. tuberosum was examined in male rats fed a diet containing tubers of this taxon. Experimental animals and controls showed equal capability in impregnating females, although animals fed T. tuberosum showed a 45% drop in their blood levels of testosterone/dihydrotestosterone. This decrease appears to be related to the presence of isothiocyanates in the tubers. Feeding studies of female guinea pigs and in vitro studies to test the 17 beta-estradiol binding inhibition of plant extracts and of pure isothiocyanates failed to substantiate any estrogenic activity of these taxa. However, preliminary results suggest that N, N-di-(methoxy-4-benzyl)thiourea competitively inhibits estradiol binding and may have estrogenic activity. The antibiotic, insecticidal, nematocidal and diuretic properties of isothiocyanates substantiate several of the uses of T. tuberosum in Andean folk medicine.

  20. The Isothiocyanato Moiety. An Ideal Protecting Group for Stereoselective Sialic Acid Glycoside Synthesis and Subsequent Diversification**

    PubMed Central

    Mandhapati, Appi Reddy; Rajender, Salla; Shaw, Jonathan

    2014-01-01

    The preparation of a crystalline, peracetyl adamantanyl thiosialoside donor protected by an isothiocyanate group is described. On activation at -78 C in the presence of typical carbohydrate acceptors this donor gives high yields of the corresponding sialosides with exquisite α-selectivity. The high selectivity extends to the 4-O-benzyl-protected 3-OH acceptors that are typically less reactive and selective than galactose 3,4-diols. Treatment of the α-sialosides with tris(trimethylsilyl)silane or allyltris(trimethylsilyl)silane sialosides replaces the C5-N5 bond by a C-H or a C-C bond. Reaction of the isothiocyanate-protected sialosides with thioacids achieves conversion into amides. Reaction of the isothiocyanate with an amine gives a thiourea, which can be converted to a guanidine. The very high α-selectivities observed with the new donor and the rich chemistry of the isothiocyante function considerably extend the scope for optimization at the sialoside 5-position. PMID:25446629

  1. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue.

    PubMed

    Park, Hye-Mi; Kim, Junheon; Chang, Kyu-Sik; Kim, Byung-Seok; Yang, Yu-Jung; Kim, Gil-Hah; Shin, Sang-Chul; Park, Il-Kwon

    2011-03-01

    The larvicidal activity of 11 Myrtaceae essential oils and their constituents was evaluated against Aedes aegypti L. Of the 11, Melaleuca linariifolia Sm., Melaleuca dissitiflora F. Muell., Melaleuca quinquenervia (Cav.) S. T. Blake, and Eucalyptus globulus Labill oils at 0.1 mg/ml exhibited > or = 80% larval mortality. At this same concentration, the individual constituents tested, allyl isothiocyanate, alpha-terpinene, p-cymene, (+)-limonene, (-)-limonene, gamma-terpinene, and (E)-nerolidol, resulted in > or = 95% mortality. We also tested the acute toxicity of these four active oils earlier mentioned and their constituents against Daphnia magna Straus. M. linariifolia and allyl isothiocyanate was the most toxic to D. magna. Twodays after treatment, residues of M. dissitiflora, M. linariifolia, M. quinquenervia, and E. globulus oils in water were 55.4, 46.6, 32.4, and 14.8%, respectively. Less than 10% of allyl isothiocyanate, alpha-terpinene, p-cymene, (-)-limonene, (+)-limonene, and gamma-terpinene was detected in the water at 2 d after treatment. Our results indicated that oils and their constituents could easily volatilize in water within a few days after application, thus minimizing their effect on the aqueous ecosystem. Therefore, Myrtaceae essential oils and their constituents could be developed as control agents against mosquito larvae. PMID:21485381

  2. Time-related survival effects of two gluconasturtiin hydrolysis products on the terrestrial isopod Porcellio scaber.

    PubMed

    van Ommen Kloeke, A E Elaine; Jager, Tjalling; van Gestel, Cornelis A M; Ellers, Jacintha; van Pomeren, Marinda; Krommenhoek, Thibault; Styrishave, Bjarne; Hansen, Martin; Roelofs, Dick

    2012-11-01

    Glucosinolates are compounds produced by commercial crops which can hydrolyse in a range of natural toxins that may exert detrimental effects on beneficial soil organisms. This study examined the effects of 2-phenylethyl isothiocyanate and 3-phenylpropionitrile on the survival and growth of the woodlouse Porcellio scaber exposed for 28 d. 2-Phenylethyl isothiocyanate dissipated from the soil with half-lives ranging from 19 to 96 h. Exposure through soil showed toxic effects only on survival. The LC50s after 28 d were significantly different at 65.3 mg kg(-1) for 2-phenylethyl isothiocyanate and 155 mg kg(-1) for 3-phenylpropionitrile. A toxicokinetic-toxicodynamic (TKTD) approach, however, revealed that both compounds in fact have very similar effect patterns. The TKTD model was better suited to interpret the survival data than descriptive dose-response analysis (LC(x)), accounting for the fast dissipation of the compounds in the soil. Found effects were within environmentally relevant concentrations. Care should therefore be taken before allowing these natural toxins to enter soil ecosystems in large quantities.

  3. An investigation of paper based microfluidic devices for size based separation and extraction applications.

    PubMed

    Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L

    2015-09-01

    Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices.

  4. Germination stimulants of Phelipanche ramosa in the rhizosphere of Brassica napus are derived from the glucosinolate pathway.

    PubMed

    Auger, Bathilde; Pouvreau, Jean-Bernard; Pouponneau, Karinne; Yoneyama, Kaori; Montiel, Grégory; Le Bizec, Bruno; Yoneyama, Koichi; Delavault, Philippe; Delourme, Régine; Simier, Philippe

    2012-07-01

    Phelipanche ramosa is a major parasitic weed of Brassica napus. The first step in a host-parasitic plant interaction is stimulation of parasite seed germination by compounds released from host roots. However, germination stimulants produced by B. napus have not been identified yet. In this study, we characterized the germination stimulants that accumulate in B. napus roots and are released into the rhizosphere. Eight glucosinolate-breakdown products were identified and quantified in B. napus roots by gas chromatography-mass spectrometry. Two (3-phenylpropanenitrile and 2-phenylethyl isothiocyanate [2-PEITC]) were identified in the B. napus rhizosphere. Among glucosinolate-breakdown products, P. ramosa germination was strongly and specifically triggered by isothiocyanates, indicating that 2-PEITC, in particular, plays a key role in the B. napus-P. ramosa interaction. Known strigolactones were not detected by ultraperformance liquid chromatography-tandem mass spectrometry, and seed of Phelipanche and Orobanche spp. that respond to strigolactones but not to isothiocyanates did not germinate in the rhizosphere of B. napus. Furthermore, both wild-type and strigolactone biosynthesis mutants of Arabidopsis thaliana Atccd7 and Atccd8 induced similar levels of P. ramosa seed germination, suggesting that compounds other than strigolactone function as germination stimulants for P. ramosa in other Brassicaceae spp. Our results open perspectives on the high adaptation potential of root-parasitic plants under host-driven selection pressures. PMID:22414435

  5. Identification and phytotoxicity of a new glucosinolate breakdown product from Meadowfoam (Limnanthes alba) seed meal.

    PubMed

    Intanon, Suphannika; Reed, Ralph L; Stevens, Jan F; Hulting, Andrew G; Mallory-Smith, Carol A

    2014-07-30

    Meadowfoam (Limnanthes alba Hartw. ex Benth.) is an oilseed crop grown in the Willamette Valley of Oregon. Meadowfoam seed meal (MSM), a byproduct after oil extraction, contains 2-4% glucosinolate (glucolimnanthin). Activated MSM, produced by adding freshly ground myrosinase-active meadowfoam seeds to MSM, facilitates myrosinase-mediated formation of glucosinolate-derived degradation products with herbicidal activity. In the activated MSM, glucolimnanthin was converted into 3-methoxybenzyl isothiocyanate ("isothiocyanate") within 24 h and was degraded by day three. 3-Methoxyphenylacetonitrile ("nitrile") persisted for at least 6 days. Methoxyphenylacetic acid (MPAA), a previously unknown metabolite of glucolimnanthin, appeared at day three. Its identity was confirmed by LC-UV and high resolution LC-MS/MS comparisons with a standard of MPAA. Isothiocyanate inhibited lettuce germination 8.5- and 14.4-fold more effectively than MPAA and nitrile, respectively. Activated MSM inhibited lettuce germination by 58% and growth by 72% compared with the control. Results of the study suggest that MSM has potential uses as a pre-emergence bioherbicide. PMID:24998843

  6. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents.

    PubMed

    Nibret, E; Wink, M

    2010-10-01

    Essential oils from three Ethiopian medicinal plants; Hagenia abyssinica (Rosaceae), Leonotis ocymifolia (Lamiaceae), and Moringa stenopetala (Moringaceae) were investigated for their chemical composition, trypanocidal, and cytotoxic activities. Twenty components were identified from the essential oil of H. abyssinica female flowers, ledol (58.57%) being the principal volatile oil component. Sixty-eight components were identified from the essential oil of L. ocymifolia aerial part, caryophyllene oxide (12.06%) being the major component. The essential oil of M. stenopetala seeds was dominated by isothiocyanates; benzyl isothiocyanate (54.30%) and isobutyl isothiocyanate (16.37%) were the major components. The trypanocidal (Trypanosoma b. brucei) and antileukaemic (HL-60) effects of the three essential oils were studied. The oil of M. stenopetala seeds and its main compound, benzyl isothiocyanate showed the most potent trypanocidal activities with IC(50) values of 5.03 μg/ml and 1.20 μg/ml, respectively. The oils of H. abyssinica and L. ocymifolia exhibited trypanocidal activities with IC(50) values of 42.30 μg/ml and 15.41 μg/ml, respectively. Individual components (28 compounds) of the essential oils bearing different functional groups were also studied for their structure-activity relationships using trypanosomes and human leukaemia cells. Cinnamaldehyde (IC(50)=2.93 μg/ml) (a representative for aldehydes), nerolidol (IC(50)=15.78 μg/ml) (an alcohol), cedrene (IC(50)=4.07 μg/ml) (a hydrocarbon), benzyl isothiocyanate (IC(50)=1.20 μg/ml) (a representative for mustard oils), 1,8-cineole (IC(50)=83.15 μg/ml) (an ether), safrole (IC(50)=18.40 μg/ml) (aromatics with allyl and/or methoxy side chains), carvone (IC(50)=12.94μg/ml) (a ketone), styrene oxide (IC(50)=3.76 μg/ml) (an epoxide) and carvacrol (IC(50)=11.25 μg/ml) (a phenol) showed the most potent trypanocidal activities from their respective groups. Of all essential oil components tested, carvone

  7. Cruciferous Vegetables Have Variable Effects on Biomarkers of Systemic Inflammation in a Randomized Controlled Trial in Healthy Young Adults12

    PubMed Central

    Navarro, Sandi L.; Schwarz, Yvonne; Song, Xiaoling; Wang, Ching-Yun; Chen, Chu; Trudo, Sabrina P.; Kristal, Alan R.; Kratz, Mario; Eaton, David L.; Lampe, Johanna W.

    2014-01-01

    Background: Isothiocyanates in cruciferous vegetables modulate signaling pathways critical to carcinogenesis, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a central regulator of inflammation. Glutathione S-transferase (GST) M1 and GSTT1 metabolize isothiocyanates; genetic variants may result in differences in biologic response. Objective: The objective of this study was to test whether consumption of cruciferous or cruciferous plus apiaceous vegetables altered serum concentrations of interleukin (IL)-6, IL-8, C-reactive protein (CRP), tumor necrosis factor (TNF) α, and soluble TNF receptor (sTNFR) I and II, and whether this response was GSTM1/GSTT1 genotype dependent. Methods: In a randomized crossover trial, healthy men (n = 32) and women (n = 31) aged 20–40 y consumed 4 14-d controlled diets: basal (vegetable-free), single-dose cruciferous (1xC) [7 g vegetables/kg body weight (BW)], double-dose cruciferous (2xC) (14 g/kg BW), and cruciferous plus apiaceous (carrot family) (1xC+A) vegetables (7 and 4 g/kg BW, respectively), with a 21-d washout period between each intervention. Urinary isothiocyanate excretion was also evaluated as a marker of systemic isothiocyanate exposure. Fasting morning blood and urine samples were collected on days 0 and 14 and analyzed. Results: IL-6 concentrations were significantly lower on day 14 of the 2xC and 1xC+A diets than with the basal diet [−19% (95% CI: −30%, −0.1%) and −20% (95% CI: −31%, -0.7%), respectively]. IL-8 concentrations were higher after the 1xC+A diet (+16%; 95% CI: 4.2%, 35.2%) than after the basal diet. There were no effects of diet on CRP, TNF-α, or sTNFRI or II. There were significant differences between GSTM1-null/GSTT1+ individuals for several biomarkers in response to 1xC+A compared with basal diets (CRP: −37.8%; 95% CI: −58.0%, −7.4%; IL-6: −48.6%; 95% CI: −49.6%, −12.0%; IL-8: 16.3%; 95% CI: 6.7%, 57.7%) and with the 2xC diet compared with the

  8. Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1.

    PubMed

    Yang, Ming; Teng, Wendi; Qu, Yue; Wang, Haiyong; Yuan, Qipeng

    2016-07-01

    Sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) is a member of isothiocyanates, which is derived from radish seeds. It has shown that multiple isothiocyanates, such as sulforaphane, can effectively inhibit cancer cell proliferation in vitro and in vivo. However, it is still largely unknown if SFE could impact breast cancer. In this study, we investigated the anticancer effects of SFE on triple negative breast cancer (TNBC) via a series of in vitro and in vivo assays. We found that SFE can significantly inhibit cell proliferation in multiple TNBC cell lines through inducing G2/M phase arrest as well as cell apoptosis. Nude mice xenograft assays support the anti-TNBC role of SFE in vivo. Interestingly, SFE can repress expression of cyclinB1, Cdc2, and phosphorylated Cdc2, and, then, induced G2/M phase arrest of TNBC cells. To identify SFE target genes, we detected genome-wide gene expression changes through gene expression profiling and observed 27 upregulated and 18 downregulated genes in MDA-MB-453 cells treated with SFE. Among these genes, Egr1 was successfully validated as a consistently activated gene after SFE treatment in TNBC MDA-MB-453 and MDA-MB-436 cells. Egr1 overexpression inhibited proliferation of TNBC cells. However, Egr1 knockdown using siRNAs significantly promoted TNBC cell growth, indicating the tumor suppressor nature of Egr1. In sum, we for the first time found that SFE might be a potential anti-TNBC natural compound and its antiproliferation effects might be mediated by tumor suppressor Egr1. PMID:27377973

  9. Toll-like Receptors as a Target of Food-derived Anti-inflammatory Compounds*

    PubMed Central

    Shibata, Takahiro; Nakashima, Fumie; Honda, Kazuya; Lu, Yu-Jhang; Kondo, Tatsuhiko; Ushida, Yusuke; Aizawa, Koichi; Suganuma, Hiroyuki; Oe, Sho; Tanaka, Hiroshi; Takahashi, Takashi; Uchida, Koji

    2014-01-01

    Toll-like receptors (TLRs) play a key role in linking pathogen recognition with the induction of innate immunity. They have been implicated in the pathogenesis of chronic inflammatory diseases, representing potential targets for prevention/treatment. Vegetable-rich diets are associated with the reduced risk of several inflammatory disorders. In the present study, based on an extensive screening of vegetable extracts for TLR-inhibiting activity in HEK293 cells co-expressing TLR with the NF-κB reporter gene, we found cabbage and onion extracts to be the richest sources of a TLR signaling inhibitor. To identify the active substances, we performed activity-guiding separation of the principal inhibitors and identified 3-methylsulfinylpropyl isothiocyanate (iberin) from the cabbage and quercetin and quercetin 4′-O-β-glucoside from the onion, among which iberin showed the most potent inhibitory effect. It was revealed that iberin specifically acted on the dimerization step of TLRs in the TLR signaling pathway. To gain insight into the inhibitory mechanism of TLR dimerization, we developed a novel probe combining an isothiocyanate-reactive group and an alkyne functionality for click chemistry and detected the probe bound to the TLRs in living cells, suggesting that iberin disrupts dimerization of the TLRs via covalent binding. Furthermore, we designed a variety of iberin analogues and found that the inhibition potency was influenced by the oxidation state of the sulfur. Modeling studies of the iberin analogues showed that the oxidation state of sulfur might influence the global shape of the isothiocyanates. These findings establish the TLR dimerization step as a target of food-derived anti-inflammatory compounds. PMID:25294874

  10. Glutathione and its related enzymes in the gonad of Nile Tilapia (Oreochromis niloticus).

    PubMed

    Hamed, R R; Saleh, N S M; Shokeer, A; Guneidy, R A; Abdel-Ghany, S S

    2016-02-01

    Glutathione (GSH) concentration, the activity of its metabolizing enzymes, glutathione transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), and the antioxidant enzyme catalase (CAT) in O. niloticus ovary and testis were examined. GSH concentration of O. niloticus testis exhibited high concentration (129 ± 21 nmol/g tissue) compared with GSH concentration (49.2 ± 8.3 nmol/g tissue) in the ovary. GST, GPx, GR, and CAT activities of O. niloticus testis exhibited high values compared with their corresponding values in ovary homogenates. However, protein concentration in ovary homogenates exhibited higher values (175 ± 40.6 mg) compared with testis homogenates (27.1 ± 3.7 mg). O. niloticus ovary was less effective in excretion of xenobiotices compared with the testis, where its function is mainly in increasing the protein content of the eggs; however, in O. niloticus testis, the glutathione cycle operated in accelerated way in the direction of reduced GSH production in order to protect the maturation stages in a save way. A simple reproducible procedure for the purification of GST from O. niloticus ovary was established. The enzymes proved to be homogenous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and its molecular weight was calculated to be 25.1 kDa. GST of O. niloticus ovary exhibited maximum activity at pH 7.5. The Michaelis-Menten constant (K(m)) of the purified ovary GST for GSH and CDNB was 0.076 mM and 1.0 mM, respectively. Cibacron blue was the most potent inhibitor of ovary GST activity (IC50 value, concentration of inhibitor that will give 50% inhibition, equal 0.002 μM). The specific activity of GST toward different electrophilic substrates was determined. GST activity toward benzyl isothiocyanate was the highest compared with phenethyl isothiocyanate and allyl isothiocyanate.

  11. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling.

    PubMed

    Michl, Carina; Vivarelli, Fabio; Weigl, Julia; De Nicola, Gina Rosalinda; Canistro, Donatella; Paolini, Moreno; Iori, Renato; Rascle, Anne

    2016-01-01

    Sulforaphane (SFN) and moringin (GMG-ITC) are edible isothiocyanates present as glucosinolate precursors in cruciferous vegetables and in the plant Moringa oleifera respectively, and recognized for their chemopreventive and medicinal properties. In contrast to the well-studied SFN, little is known about the molecular pathways targeted by GMG-ITC. We investigated the ability of GMG-ITC to inhibit essential signaling pathways that are frequently upregulated in cancer and immune disorders, such as JAK/STAT and NF-κB. We report for the first time that, similarly to SFN, GMG-ITC in the nanomolar range suppresses IL-3-induced expression of STAT5 target genes. GMG-ITC, like SFN, does not inhibit STAT5 phosphorylation, suggesting a downstream inhibitory event. Interestingly, treatment with GMG-ITC or SFN had a limited inhibitory effect on IFNα-induced STAT1 and STAT2 activity, indicating that both isothiocyanates differentially target JAK/STAT signaling pathways. Furthermore, we showed that GMG-ITC in the micromolar range is a more potent inhibitor of TNF-induced NF-κB activity than SFN. Finally, using a cellular system mimicking constitutive active STAT5-induced cell transformation, we demonstrated that SFN can reverse the survival and growth advantage mediated by oncogenic STAT5 and triggers cell death, therefore providing experimental evidence of a cancer chemopreventive activity of SFN. This work thus identified STAT5, and to a lesser extent STAT1/STAT2, as novel targets of moringin. It also contributes to a better understanding of the biological activities of the dietary isothiocyanates GMG-ITC and SFN and further supports their apparent beneficial role in the prevention of chronic illnesses such as cancer, inflammatory diseases and immune disorders. PMID:27304884

  12. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling

    PubMed Central

    Weigl, Julia; De Nicola, Gina Rosalinda; Canistro, Donatella; Paolini, Moreno; Iori, Renato; Rascle, Anne

    2016-01-01

    Sulforaphane (SFN) and moringin (GMG-ITC) are edible isothiocyanates present as glucosinolate precursors in cruciferous vegetables and in the plant Moringa oleifera respectively, and recognized for their chemopreventive and medicinal properties. In contrast to the well-studied SFN, little is known about the molecular pathways targeted by GMG-ITC. We investigated the ability of GMG-ITC to inhibit essential signaling pathways that are frequently upregulated in cancer and immune disorders, such as JAK/STAT and NF-κB. We report for the first time that, similarly to SFN, GMG-ITC in the nanomolar range suppresses IL-3-induced expression of STAT5 target genes. GMG-ITC, like SFN, does not inhibit STAT5 phosphorylation, suggesting a downstream inhibitory event. Interestingly, treatment with GMG-ITC or SFN had a limited inhibitory effect on IFNα-induced STAT1 and STAT2 activity, indicating that both isothiocyanates differentially target JAK/STAT signaling pathways. Furthermore, we showed that GMG-ITC in the micromolar range is a more potent inhibitor of TNF-induced NF-κB activity than SFN. Finally, using a cellular system mimicking constitutive active STAT5-induced cell transformation, we demonstrated that SFN can reverse the survival and growth advantage mediated by oncogenic STAT5 and triggers cell death, therefore providing experimental evidence of a cancer chemopreventive activity of SFN. This work thus identified STAT5, and to a lesser extent STAT1/STAT2, as novel targets of moringin. It also contributes to a better understanding of the biological activities of the dietary isothiocyanates GMG-ITC and SFN and further supports their apparent beneficial role in the prevention of chronic illnesses such as cancer, inflammatory diseases and immune disorders. PMID:27304884

  13. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec).

    PubMed

    Soliva, Carla R; Amelchanka, Sergej L; Duval, Stéphane M; Kreuzer, Michael

    2011-07-01

    Ruminants represent an important source of methane (CH(4)) emissions; therefore, CH(4) mitigation by diet supplementation is a major goal in the current ruminant research. The objective of the present study was to use a rumen simulation technique to evaluate the CH(4)-mitigating potential of pure compounds in comparison with that achieved with garlic oil, a known anti-methanogenic supplement. A basal diet (15 g DM/d) consisting of ryegrass hay, barley and soyabean meal (1:0·7:0·3) was incubated with the following additives: none (negative control); garlic oil (300 mg/l incubation liquid; positive control); allyl isothiocyanate (75 mg/l); lovastatin (150 mg/l); chenodeoxycholic acid (150 mg/l); 3-azido-propionic acid ethyl ester (APEE, 150 mg/l); levulinic acid (300 mg/l); 4-[(pyridin-2-ylmethyl)-amino]-benzoic acid (PABA, 300 mg/l). Fermentation profiles (SCFA, microbial counts and N turnover) and H(2) and CH(4) formation were determined. Garlic oil, allyl isothiocyanate, lovastatin and the synthetic compound APEE decreased the absolute daily CH(4) formation by 91, 59, 42 and 98 %, respectively. The corresponding declines in CH(4) emitted per mmol of SCFA were 87, 32, 40 and 99 %, respectively, compared with the negative control; the total SCFA concentration was unaffected. Garlic oil decreased protozoal numbers and increased bacterial counts, while chenodeoxycholic acid completely defaunated the incubation liquid. In vitro, neutral-detergent fibre disappearance was lower following chenodeoxycholic acid and PABA treatments (- 26 and - 18 %, respectively). In conclusion, garlic oil and APEE were extremely efficient at mitigating CH(4) without noticeably impairing microbial nutrient fermentation. Other promising substances were allyl isothiocyanate and lovastatin. PMID:21554814

  14. Cruciferous vegetable feeding alters UGT1A1 activity: diet- and genotype-dependent changes in serum bilirubin in a controlled feeding trial1

    PubMed Central

    Navarro, Sandi L.; Peterson, Sabrina; Chen, Chu; Makar, Karen W.; Schwarz, Yvonne; King, Irena B; Li, Shuying S.; Li, Lin; Kestin, Mark; Lampe, Johanna W.

    2009-01-01

    Chemoprevention by isothiocyanates from cruciferous vegetables occurs partly through up-regulation of phase-II conjugating enzymes, such as UDP-glucuronosyl-transferases (UGT). UGT1A1 glucuronidates bilirubin, estrogens, and several dietary carcinogens. The UGT1A1*28 polymorphism reduces transcription compared to the wild-type, resulting in decreased enzyme activity. Isothiocyanates are metabolized by glutathione-S-transferases (GST); variants may alter isothiocyanate clearance, such that response to crucifers may vary by genotype. We evaluated, in a randomized, controlled, cross-over feeding trial in humans (n=70), 3 test diets, (single- and double-“dose” cruciferous and cruciferous plus apiaceous) compared to a fruit-and-vegetable-free basal diet. We measured serum bilirubin concentrations on days 0, 7, 11 and 14 of each 2-week feeding period to monitor UGT1A1 activity, and determined effects of UGT1A1*28 and GSTM1/GSTT1-null variants on response. Aggregate bilirubin response to all vegetable-containing diets was statistically significantly lower compared to the basal diet (p<0.03 for all). Within each UGT1A1 genotype, lower bilirubin concentrations were seen in: *1/*1 in both single and double-dose cruciferous diets compared to basal (p<0.03 for both); *1/*28 in double-dose cruciferous and cruciferous plus apiaceous compared to basal, and cruciferous plus apiaceous compared to single-dose cruciferous (p<0.02 for all); and *28/*28 in all vegetable-containing diets compared to basal (p<0.02 for all). Evaluation of the effects of diet stratified by GST genotype revealed some statistically significant genotypic differences however, the magnitude was similar and not statistically significant between genotypes. These results may have implications for altering carcinogen metabolism through dietary intervention, particularly among UGT1A1*28/*28 individuals. PMID:19336732

  15. Stimulation of phagocytosis by sulforaphane

    SciTech Connect

    Suganuma, Hiroyuki; Fahey, Jed W.; Bryan, Kelley E.; Healy, Zachary R.; Talalay, Paul

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  16. Trifunctional Agents as a Design Strategy for Tailoring Ligand Properties: Irreversible Inhibitors of A1 Adenosine Receptors†

    PubMed Central

    Boring, Daniel L.; Ji, Xiao-Duo; Zimmet, Jeff; Taylor, Kirk E.; Stiles, Gary L.

    2012-01-01

    The 1,3-phenylene diisothiocyanate conjugate of XAC (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]-oxy]phenyl]-l,3-dipropylxanthine, a potent A1 selective adenosine antagonist) has been characterized as an irreversible inhibitor of A1 adenosine receptors. To further extend this work, a series of analogues were prepared containing a third substituent in the phenyl isothiocyanate ring, incorporated to modify the physiochemical or spectroscopic properties of the conjugate. Symmetrical trifunctional cross-linking reagents bearing two isothiocyanate groups were prepared as general intermediates for cross-linking functionalized congeners and receptors. Xanthine isothiocyanate derivatives containing hydrophilic, fluorescent, or reactive substituents, linked via an amide, thiourea, or methylene group in the 5-position, were synthesized and found to be irreversible inhibitors of A1 adenosine receptors. The effects of the 5-substituent on water solubility and on the A1/A2 selectivity ratio derived from binding assays in rat brain membranes were examined. Inhibition of binding of [3H]-N6-(2-phenylisopropyl)-adenosine and [3H]CGS21680 (2-[[2-[4-(2-carboxyethyl)phenyl]ethyl]amino]adenosine-5′-N-ethylcarboxamide) at central A1 and A2 adenosine receptors, respectively, was measured. A conjugate of XAC and 1,3,5-triisothiocyanatobenzene was 894-fold selective for A1 receptors. Reporter groups, such as fluorescent dyes and a spin-label, were included as chain substituents in the irreversibly binding analogues, which were designed for spectroscopic assays, histochemical characterization, and biochemical characterization of the receptor protein. PMID:1868116

  17. Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector

    NASA Astrophysics Data System (ADS)

    Yamasaki, Keita; Nakazawa, Hirokazu; Misawa, Nobuo; Ishida, Makoto; Sawada, Kazuaki

    2013-06-01

    Single nucleotide polymorphism (SNP) analysis that is commonly performed using fluorescence is important in drug development and pathology research. In this study, to facilitate the analysis, multicolor fluorescence detection for SNP genotyping using a filter-less fluorescence detector (FFD) was investigated. FFDs do not require any optical filters for multicolor fluorescence detection. From the experimental results, FFD could identify 0 μM, 1 μM, and 10 μM solutions of Texas Red and fluorescein isothiocyanate. Moreover, a mixture of Texas Red and 6-FAM could be detected in the SNP genotyping simulation. Therefore, a small and low-cost SNP genotyping system is feasible.

  18. Antimalarial Isocyano and Isothiocyanato Sesquiterpenes with Tri- and Bicyclic Skeletons from the Nudibranch Phyllidia ocellata.

    PubMed

    White, Andrew M; Pierens, Gregory K; Skinner-Adams, Tina; Andrews, Katherine T; Bernhardt, Paul V; Krenske, Elizabeth H; Mollo, Ernesto; Garson, Mary J

    2015-06-26

    Five new isocyano/isothiocyanato sesquiterpenes (1-5) with tri- or bicyclic carbon skeletons have been characterized from Australian specimens of the nudibranch Phyllidia ocellata. Spectroscopic analyses at 900 MHz were informed by DFT calculations. The 1S, 5S, 8R configuration of 2-isocyanoclovene (1) was determined by X-ray crystallographic analysis of formamide 6. A biosynthetic pathway to clovanes 1 and 2 from epicaryolane precursors is proposed. Isocyanides 1, 2, and 4 showed activity against Plasmodium falciparum (IC50 0.26-0.30 μM), while isothiocyanate 3 and formamide 6 had IC50 values of >10 μM. PMID:26056748

  19. Folate-conjugated luminescent Fe3O4 nanoparticles for magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Barick, K. C.; Rana, Suman; Hassan, P. A.

    2014-04-01

    We demonstrate a facile approach for the synthesis of folate-conjugated luminescent iron oxide nanoparticles (FLIONs). XRD and TEM analyses reveal the formation of highly crystalline single-phase Fe3O4 nanoparticles of size about 10 nm. The conjugation of folate receptor (folic acid, FA) and luminescent molecule (fluorescein isothiocyanate, FITC) onto the surface of nanoparticles was evident from FTIR and UV-visible spectroscopy. These FLIONs show good colloidal stability, high magnetic field responsivity and excellent self-heating efficacy. Specifically, a new class of magnetic nanoparticles has been fabricated, which can be used as an effective heating source for hyperthermia.

  20. Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno; Ren, Bin; Picardi, Gennaro; Schuster, Rolf; Ertl, Gerhard

    2004-03-01

    Tip-enhanced Raman spectroscopy (TERS) is based on the optical excitation of localized surface plasmons in the tip-substrate cavity, which provides a large but local field enhancement near the tip apex. We report on TERS with smooth single crystalline surfaces as substrates. The adsorbates were CN- ions at Au(111) and malachite green isothiocyanate (MGITC) molecules at Au(111) and Pt(110) using either Au or Ir tips. The data analysis yields Raman enhancements of about 4×105 for CN- and up to 106 for MGITC at Au(111) with a Au tip, probing an area of less than 100nm radius.

  1. Reactions of a cerium(iii) amide with heteroallenes: insertion, silyl-migration and de-insertion.

    PubMed

    Yin, Haolin; Carroll, Patrick J; Schelter, Eric J

    2016-07-28

    Reactions of Ce[N(SiMe3)Ph(F)]3 (-Ph(F) = pentafluorophenyl) toward small molecules of the type E1[double bond, length as m-dash]C[double bond, length as m-dash]E2 (E1, E2 = O, S, NR), including carbon disulfide, carbodiimide, carbon dioxide, isocyanate and isothiocyanate are reported, resulting in distinct products, including cerium(iii) dithiocarbamate, cerium(iii) guanidinate, isocyanates and unsymmetric carbodiimides. These reactions were rationalized as three consecutive stages of the same reaction pathway: insertion, silyl-migration and de-insertion. PMID:27416923

  2. Fluorescein-labeled glutathione to study protein S-glutathionylation.

    PubMed

    Landino, Lisa M; Brown, Carolyn M; Edson, Carolyn A; Gilbert, Laura J; Grega-Larson, Nathan; Wirth, Anna Jean; Lane, Kelly C

    2010-07-01

    Numerous studies of S-glutathionylation of cysteine thiols indicate that this protein modification plays a key role in redox regulation of proteins. To facilitate the study of protein S-glutathionylation, we developed a synthesis and purification to produce milligram quantities of fluorescein-labeled glutathione. The amino terminus of the glutathione tripeptide reacted with fluorescein isothiocyanate readily in ammonium bicarbonate. Purification by solid phase extraction on C8 and C18 columns separated excess reactants from desired products. Both oxidized and reduced fluorescein-labeled glutathione reacted with a variety of thiol-containing proteins to yield fluorescent proteins. PMID:20156418

  3. The moisture-triggered controlled release of a natural food preservative from a microporous metal-organic framework.

    PubMed

    Wang, Hao; Lashkari, Elham; Lim, Hyuna; Zheng, Chong; Emge, Thomas J; Gong, Qihan; Yam, Kit; Li, Jing

    2016-02-01

    In this work we demonstrate that allyl isothiocyanate (AITC), a common food flavoring agent and food preservative, can be effectively captured by and released in a controlled manner from a microporous metal-organic framework (MOF). The extent of AITC-MOF interactions is quantitatively measured by orbital overlap population calculations. Controlled release experiments show that loaded AITC can be released by applying higher relative humidity. Further analysis reveals that the underlying mechanism of the controlled release is associated with the transformation of the MOF from a porous to a nonporous structure at high humidity. This study represents the first example of making use of MOF porosity in food preservation.

  4. Trivalent Gd-DOTA reagents for modification of proteins† †Electronic supplementary information (ESI) available: Synthetic details for known compounds; materials and methods for bioconjugation reactions; copies of spectra of new compounds and compounds prepared according to new procedures. See DOI: 10.1039/c5ra20359g Click here for additional data file.

    PubMed Central

    Fisher, Martin J.; Williamson, Daniel J.; Burslem, George M.; Plante, Jeffrey P.; Manfield, Iain W.; Tiede, Christian; Ault, James R.; Stockley, Peter G.; Plein, Sven; Maqbool, Azhar; Tomlinson, Darren C.; Foster, Richard; Warriner, Stuart L.

    2015-01-01

    The development of novel protein-targeted MRI contrast agents crucially depends on the ability to derivatise suitable targeting moieties with a high payload of relaxation enhancer (e.g., gadolinium(iii) complexes such as Gd-DOTA), without losing affinity for the target proteins. Here, we report robust synthetic procedures for the preparation of trivalent Gd-DOTA reagents with various chemical handles for site-specific modification of biomolecules. The reagents were shown to successfully label proteins through isothiocyanate ligation or through site-specific thiol–maleimide ligation and strain-promoted azide–alkyne cycloaddition. PMID:27019702

  5. Chemical composition, allelopatic and cytotoxic effects of essential oils of flowering tops and leaves of Crambe orientalis L. from Iran.

    PubMed

    Razavi, Seyed Mehdi; Nejad-Ebrahimi, Samad

    2009-01-01

    Crambe orientalis L. (Brassicaceae), a perennial herb, is indigenous to Iran. The essential oils of flowering tops and leaves of the plant were evaluated by GC-MS. Our results showed that while 2-methyl-5-hexenitrile (19.5%) and benzyl cyanide (16.9%) were the major components of flowering tops oil, the oil of the leaves was dominated by octyl-acetate (54.3%) and butenyl-4-isothiocyanates (22.6%). The oils exhibited modest allelopatic effects on lettuce. The leaf oil showed high-cytotoxic effects against Mc-Coy cell lines, with an RC(50) value of 16 microg mL(-1).

  6. Synthesis of fluorescent dye-tagged nanomachines for single-molecule fluorescence spectroscopy.

    PubMed

    Vives, Guillaume; Guerrero, Jason M; Godoy, Jazmin; Khatua, Saumyakanti; Wang, Yu-Pu; Kiappes, J L; Link, Stephan; Tour, James M

    2010-10-01

    In an effort to elucidate the mechanism of movement of nanovehicles on nonconducting surfaces, the synthesis and optical properties of five fluorescently tagged nanocars are reported. The nanocars were specifically designed for studies by single-molecule fluorescence spectroscopy and bear a tetramethylrhodamine isothiocyanate fluorescent tag for excitation at 532 nm. The molecules were designed such that the arrangement of their molecular axles and p-carborane wheels relative to the chassis would be conducive to the control of directionality in the motion of these nanovehicles.

  7. Functional heterogeneity of rat hepatocytes: predominance of aryl hydrocarbon hydroxylase activity in perivenular zone.

    PubMed

    Tazawa, J; Endou, H; Sato, A; Hasumura, Y; Takeuchi, J

    1988-06-01

    To elucidate the hepatic intralobular distribution of aryl hydrocarbon hydroxylase (AHH) activity biochemically, periportal (PP) and perivenular hepatocytes (PV) from male Sprague-Dawley rats were separated by a fluorescence-activated cell sorter after labeling the PP zone with fluorescein diacetate and the perivenular zone with fluorescein isothiocyanate. AHH activity was higher in PV than in PP. The enzyme activity was induced about 6-fold in hepatocytes of rats pretreated with 3-methyl-cholanthrene, and the induction was more prominent in PP than in PV. Neither phenobarbital pretreatment nor altered lipid content of the diet induced the change in the enzyme activity.

  8. Determination of amino acids in pomegranate juices and fingerprint for adulteration with apple juices.

    PubMed

    Tezcan, Filiz; Uzaşçı, Sesil; Uyar, Güler; Oztekin, Nevin; Erim, F Bedia

    2013-11-15

    A new chiral micellar electrokinetic chromatography-laser induced fluorescence (MEKC-LIF) method was developed using sodium dodecylbenzene sulphonate (SDBS) as surfactant for the determination of chiral amino acids in pomegranate juices. The use of SDBS as the micellar medium enhanced the fluorescence intensities of amino acids derivatised with fluorescein isothiocyanate (FITC). The amino acid profile of pomegranate juices was compared to apple amino acids and l-Asn was proposed as a marker for the adulteration of pomegranate juices with apple juices.

  9. ESIPT-exhibiting protein probes: a sensitive method for rice proteins detection during starch extraction.

    PubMed

    Cardoso, Mateus Borba; Samios, Dimitrios; da Silveira, Nádya Pesce; Rodembusch, Fabiano Severo; Stefani, Valter

    2007-01-01

    The 2-(4'-isothiocyanate-2'-hydroxyphenyl)benzoxazole dye was successfully applied as label of rice proteins during the alkaline extraction of starch. Direct fluorescence measurements were used to observe the presence of proteins labelled in different steps of rice starch extraction. The results were compared to those obtained with the well-known biuret colorimetric test. Whereas the colorimetric test indicates the absence of protein after the third extraction step, the fluorescence emission of the conjugate could be observed in all extraction steps. The separation of different rice proteins could also be observed.

  10. Laser inactivation of periodontal bacteria using photosensitizing dyes

    NASA Astrophysics Data System (ADS)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1996-12-01

    We demonstrate the killing of the oral bacteria Prevotella nigrescens using a photosensitizer and light from a 10 Hz, frequency doubled, Q-switched Nd:YAG pumped dye laser, with modified oscillator to increase output power. This system produced light at wavelengths close to 620 nm, the absorption maximum of the photosensitizing agent, malachite green isothiocyanate, a wavelength that is not significantly absorbed by tissue. A bacterial reduction of 97.5 percent was achieved at an energy density of 0.67 J/cm2 and exposure times of 300 seconds.

  11. Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yao; Xu, Zheng; Li, Yong-kui; Liu, Chong; Liu, Jun-shan; Chen, Li; Du, Li-qun; Wang, Li-ding

    2013-07-01

    In this paper, the nanopore density effect on ion enrichment is quantitatively described with the ratio between electrophoresis flux and electroosmotic flow flux based on the Poisson-Nernst-Planck equations. A polyacrylamide gel plug is integrated into a microchannel to form a micro-nanofluidic chip. With the chip, electrokinetic ion enrichment is relatively stable and enrichment ratio of fluorescein isothiocyanate can increase to 600-fold within 120 s at the electric voltage of 300 V. Both theoretical research and experiments show that enrichment ratio can be improved through increasing nanopore density. The result will be beneficial to the design of micro-nanofluidic chips.

  12. Simplified method for DNA and protein staining of human hematopoietic cell samples

    SciTech Connect

    Crissman, H.A.; Egmond, J.V.; Holdrinet, R.S.; Pennings, A.; Haanen, C.

    1980-01-01

    A rapid reproducible method yielding high resolution analysis of DNA and protein in human hematopoietic cell samples was developed by modification of the propidium iodide (PI) and fluorescein isothiocyanate (FITC) procedure. Cell staining involved sequential addition of each reagent (RNase, FITC, and PI) to ethanol-fixed cells and requires no centrifiguation steps. Stained cells are analyzed in the reagent solutions. Analysis of bone marrow samples from multiple myeloma patients revealed mixed 2C DNA and aneuploid populations with the aneuploid cells having a significantly higher protein content. This approach permitted differential cell cycle kinetic analysis of the 2C DNA and the aneuploid population.

  13. Antimicrobial Packaging for Extending the Shelf Life of Bread-A Review.

    PubMed

    Jideani, V A; Vogt, K

    2016-06-10

    Antimicrobial packaging is an important form of active packaging that can release antimicrobial substances for enhancing the quality and safety of food during extended storage. It is in response to consumers demand for preservative-free food as well as more natural, disposable, biodegradable, and recyclable food-packaging materials. The potential of a combination of allyl isothiocyanate and potassium sorbate incorporated into polymers in providing the needed natural antimicrobial protection for bread products is discussed. The role of double extrusion process as a means for obtaining a homogeneous mix of the sorbate into the polymer (polyethylene or ethylenevinyalcohol), is highlighted. PMID:25603190

  14. Antimicrobial Packaging for Extending the Shelf Life of Bread-A Review.

    PubMed

    Jideani, V A; Vogt, K

    2016-06-10

    Antimicrobial packaging is an important form of active packaging that can release antimicrobial substances for enhancing the quality and safety of food during extended storage. It is in response to consumers demand for preservative-free food as well as more natural, disposable, biodegradable, and recyclable food-packaging materials. The potential of a combination of allyl isothiocyanate and potassium sorbate incorporated into polymers in providing the needed natural antimicrobial protection for bread products is discussed. The role of double extrusion process as a means for obtaining a homogeneous mix of the sorbate into the polymer (polyethylene or ethylenevinyalcohol), is highlighted.

  15. Design and engineering of disulfide crosslinked nanocomplexes of polyamide polyelectrolytes: stability under biorelevant conditions and potent cellular internalization of entrapped model peptide.

    PubMed

    Sharma, Aashish; Kundu, Somanath; Reddy M, Amarendar; Bajaj, Avinash; Srivastava, Aasheesh

    2013-07-01

    Counter polyelectrolytes (PEs) having a degradable polyamide backbone and controlled thiolation are prepared. Their nanosized polyelectrolyte complexes (PECs) spontaneously crosslink under ambient conditions via bioreducible disulfide bonds. These PECs are regenerable after centrifugation, and resist degradation by proteases. They are stable to variations of pH and electrolyte concentration, similar to those encountered in biological milieu. However, they are unraveled in reductive conditions. These PECs act as efficient vectors for delivering entrapped cargo. They entrap with high efficiency, and controllably release, fluorescein isothiocyanate (FITC)-insulin (a model peptide) in vitro. Potent cellular internalization of FITC-insulin within human lung cancer cells with high cell viability is demonstrated.

  16. Fluorescein-labeled glutathione to study protein S-glutathionylation.

    PubMed

    Landino, Lisa M; Brown, Carolyn M; Edson, Carolyn A; Gilbert, Laura J; Grega-Larson, Nathan; Wirth, Anna Jean; Lane, Kelly C

    2010-07-01

    Numerous studies of S-glutathionylation of cysteine thiols indicate that this protein modification plays a key role in redox regulation of proteins. To facilitate the study of protein S-glutathionylation, we developed a synthesis and purification to produce milligram quantities of fluorescein-labeled glutathione. The amino terminus of the glutathione tripeptide reacted with fluorescein isothiocyanate readily in ammonium bicarbonate. Purification by solid phase extraction on C8 and C18 columns separated excess reactants from desired products. Both oxidized and reduced fluorescein-labeled glutathione reacted with a variety of thiol-containing proteins to yield fluorescent proteins.

  17. Investigations of receptor-mediated phagocytosis by hormone-induced (imprinted) Tetrahymena pyriformis.

    PubMed

    Kovács, P; Sundermann, C A; Csaba, G

    1996-08-15

    Receptor-mediated endocytosis by Tetrahvmena pyriformis was studied using tetramethylrhodamine isothiocyanate-labeled concanavalin A (TRITC-Con A) with fluorescence and confocal microscopy. In the presence of insulin, or 24 h after insulin pretreatment (hormonal imprinting), the binding and uptake of TRITC-Con A increased when compared to controls, owing to the binding of TRITC-Con A to sugar oligomers of insulin receptors. Mannose inhibited the binding of Con A, thus demonstrating the specificity of binding. Histamine, a phagocytosis-promoting factor in mammals and Tetrahymena, and galactose, did not influence the uptake of TRITC-Con A.

  18. Design, synthesis and biological evaluation of new peptide-based ureas and thioureas as potential antagonists of the thrombin receptor PAR1.

    PubMed

    Ventosa-Andrés, Pilar; Valdivielso, Angel M; Pappos, Ioannis; García-López, M Teresa; Tsopanoglou, Nikos E; Herranz, Rosario

    2012-12-01

    By applying a diversity oriented synthesis strategy for the search of new antagonists of the thrombin receptor PAR1, a series of peptide-based ureas and thioureas, including analogues of the PAR1 reference antagonist RWJ-58259, has been designed and synthesized. The general synthetic scheme involves reduction of basic amino acid-derived amino nitriles by hydrogen transfer from hydrazine monohydrate in the presence of Raney Ni, followed by reaction with diverse isocyanates and isothiocyanates, and protecting group removal. All new compounds have been evaluated as inhibitors of human platelet aggregation induced by the PAR1 agonist SFLLRN. Some protected peptide-based ureas displayed significant antagonist activity. PMID:23123726

  19. The role of intermolecular interactions in the assemblies of Fe{sup II} and Co{sup II} tetrakis-isothiocyanatometalates with tris(1,10-phenanthroline)-Ru{sup II}: Crystal structures of two dual-metal assemblies featuring octahedral cationic and tetrahedral anionic modules

    SciTech Connect

    Ghazzali, Mohamed Langer, Vratislav; Ohrstroem, Lars

    2008-09-15

    Two new dual-metal assemblies: 2[Ru(phen){sub 3}]{sup 2+}.[Fe(SCN){sub 4}]{sup 2-}.2SCN{sup -}.4H{sub 2}O 1 and [Ru(phen){sub 3}]{sup 2+}.[Co(SCN){sub 4}]{sup 2-}2, (phen:1,10-phenanthroline), have been prepared and their structures were characterized by X-ray diffraction. In 1, the cationic octahedral enantiomers are arranged with a {lambda}{delta}{lambda}{delta}{lambda} sequence supported by {pi}-{pi} stacking and the anionic inorganic tetrahedral units are oriented between these stacks by interacting with the nearby water molecules through strong O-H...O and O-H...S hydrogen bonds. In 2, homochiral double helices in the b-direction are revealed, with tetrakis-isothiocyanate Co{sup II} anions arranged in the crystal to furnish one-dimensional (1D)-helical chains with S...S intermolecular interactions at 3.512(2) and 3.966(2) A supporting [Ru(phen){sub 3}]{sup 2+}{lambda}- and {delta}-helices with Ru...Ru shortest distance of 8.676(7) A. In both 1 and 2, the supramolecular assembly is maintained by C-H...S hydrogen bonds extending between the phenanthroline aromatic carbons in the cationic nodes and the sulphur atoms of the isothiocyanates anions. Analysis of S...S interactions in isothiocyanate containing compounds using Cambridge structural database (CSD) showed an angle dependence categorizing these interactions into 'type-I' and 'type-II'. - Graphical abstract: Side projection in 2 showing the crankshaft caused by S...S interactions in [Co(NCS){sub 4}]{sup 2-} in-between [Ru{sup II}(phen){sub 3}]{sup 2+} helices. Only isothiocyanates arms of [Co(NCS){sub 4}]{sup 2-} that are part of S...S interactions are shown and [Ru{sup II}(phen){sub 3}]{sup 2+} are presented as polyhedra.

  20. Marine Isonitriles and Their Related Compounds

    PubMed Central

    Emsermann, Jens; Kauhl, Ulrich; Opatz, Till

    2016-01-01

    Marine isonitriles represent the largest group of natural products carrying the remarkable isocyanide moiety. Together with marine isothiocyanates and formamides, which originate from the same biosynthetic pathways, they offer diverse biological activities and in spite of their exotic nature they may constitute potential lead structures for pharmaceutical development. Among other biological activities, several marine isonitriles show antimalarial, antitubercular, antifouling and antiplasmodial effects. In contrast to terrestrial isonitriles, which are mostly derived from α-amino acids, the vast majority of marine representatives are of terpenoid origin. An overview of all known marine isonitriles and their congeners will be given and their biological and chemical aspects will be discussed. PMID:26784208

  1. Cyanobiont diversity within and among cycads of one field site.

    PubMed

    Zimmerman, W J; Rosen, B H

    1992-12-01

    Limited diversity was found among cyanobionts from a cultivated population of cycads at a field site in Florida. All isolates were classified as Nostoc but were different from the one Nostoc species found in the soil. These cyanobacteria were root endophytes of several plants of Zamia integrifolia and one of Dioon. The isolates were similar morphologically and in their reactions to four fluorescein isothiocyanate conjugated lectins. Electrophoretic protein profiles and zymograms distinguished one cyanobiont and the soil Nostoc. A tenacious Anabaena epiphyte was also discovered inhabiting the surfaces of root nodules.

  2. Ultrastructural localization of wheat germ agglutinin binding sites on the sperm surface of water buffalo (Bubalus bubalis). A fracture label study.

    PubMed

    Bains, H K; Pabst, M A; Werner, G; Bawa, S R

    1993-10-01

    In the present study we have examined the plasma membrane surface organization employing fluorescein isothiocyanate linked wheat germ agglutinin (WGA) of the cauda epididymal and ejaculated spermatozoa of water buffalo. Intramembrane particle distribution pattern in the various segments of the spermatozoa has also been observed. WGA-ovomucoid gold has been used to study the distribution of sialoproteins on the sperm surface. With fracture label, WGA receptor sites have been identified on the fractured membrane halves of the sperm plasma membrane overlying the acrosome as well as the middle piece and the principle piece.

  3. Immobilization of glucoamylase on polymer surface by radiation-induced polymerization of glass-forming monomers at low temperatures. [Gamma radiation; 2-hydroxyethyl methacrylate; diethylene glycol dimethacrylate

    SciTech Connect

    Yoshida, M.; Kaetsu, I.

    1981-02-01

    Glucoamylase was immobilized in hydrophilic porous poly(2-hydroxyethyl methacrylate) (PHEMA) and hydrophobic microsphere poly(diethylene glycol dimethyacrylate) (PDGDA) by radiation-induced polymerization at low temperatures, in the presence of acetate buffer solution. The distribution on the matrix of immobilized glucoamylase was investigated using fluorescein isothiocyanate (FITC)-conjugated glucoamylase and the fluorescence microscope. It was found that in the porous PHEMA system, the FITC-conjugated glucoamylase is present mainly on the interface between polymer membrane and pore structure and partly in the polymer, while in the microsphere PDGDA system the immobilized glucoamylase is present merely on the surface of the polymer microsphere.

  4. Confirmation of the configuration of 10-isothiocyanato-4-cadinene diastereomers through synthesis.

    PubMed

    Nishikawa, Keisuke; Umezawa, Taiki; Garson, Mary J; Matsuda, Fuyuhiko

    2012-12-28

    The marine sponge metabolite 10-isothiocyanato-4-cadinene (1) was first isolated by Garson et al. from Acanthella cavernosa in 2000. The same structure 1 was later reported by Wright et al. from the nudibranch Phyllidiella pustulosa and its sponge diet, but with different NMR data. The syntheses of both enantiomers of 1 were accomplished through the isothiocyanation of 10-isocyano-4-cadinene (2) previously synthesized by our group. The correct spectroscopic data and specific rotation value of the structure 1 were determined on the basis of the syntheses. The NMR data of synthetic 1 matched those of the isothiocyanate isolated by Garson and differed from those reported by Wright. The spectroscopic data and specific rotation values of 10-epi-10-isothiocyanato-4-cadinene (6) and di-1,6-epi-10-isothiocyanato-4-cadinene (8) were also established through the syntheses of these diastereomers. Structure 6 has been reported as a natural product by Mitome et al., but the NMR data for the synthetic sample of 6 differ from those of the natural isolate. PMID:23163354

  5. Role of Reactive Oxygen Intermediates in Cellular Responses to Dietary Cancer Chemopreventive Agents

    PubMed Central

    Antosiewicz, Jedrzej; Ziolkowski, Wieslaw; Kar, Siddhartha; Powolny, Anna A.; Singh, Shivendra V.

    2008-01-01

    Epidemiological studies continue to support the premise that diets rich in fruits and vegetables may offer protection against cancer of various anatomical sites. This correlation is quite persuasive for some vegetables including Allium (e.g., garlic) and cruciferous (e.g., broccoli and watercress) vegetables. The bioactive food components responsible for cancer chemopreventive effects of various edible plants have been identified. For instance, anticancer effects of Allium and cruciferous vegetables are attributed to organosulfur compounds (e.g., diallyl trisulfide) and isothiocyanates (e.g., sulforaphane and phenethyl isothiocyanate), respectively. Bioactive food components with anticancer activity are generally considered antioxidants due to their ability to modulate expression/activity of anti-oxidative and phase 2 drug metabolizing enzymes and scavenging free radicals. At the same time, more recent studies have provided convincing evidence to indicate that certain dietary cancer chemopreventive agents cause generation of reactive oxygen species to trigger signal transduction culminating in cell cycle arrest and/or programmed cell death (apoptosis). Interestingly, the ROS generation by some dietary anticancer agents is tumor cell specific and does not occur in normal cells. This review summarizes experimental evidence supporting involvement of ROS in cellular responses to cancer chemopreventive agents derived from common edible plants. PMID:18671201

  6. Confocal and electron microscopy to characterize sialoglycoconjugates in mouse sublingual gland acinar cells.

    PubMed

    Menghi, G; Bondi, A M; Marchetti, L; Ballarini, P; Materazzi, G

    1998-08-01

    Double lectin labeling for confocal microscopy and lectin-protein A-gold binding for electron microscopy were applied to the mouse sublingual gland in order to study surface and cytoplasmic sialoglycoconjugates. For this purpose, serially cut sections were submitted to sialidase followed by incubation with lectins recognizing usually acceptor sugars for terminal sialic acids. At the electron microscope level, the residues subtended to sialic acid were individually identified on adjacent sections by an indirect technique of labeling, whereas with confocal microscopy the above sugars were simultaneously visualized on the same section by a double staining method using fluorescein isothiocyanate (FITC)- and tetramethylrhodamine isothiocyanate (TRITC)-conjugated lectins. Acinar cells were found to contain the terminal sequence sialic acid-beta-galactose in abundance while the sequence sialic acid-alpha-N-acetylgalactosamine appeared to be present in modest amounts. Both sialoglycoconjugates were homogeneously codistributed inside acinar cells. The combination with a saponification method also allowed the occurrence of C4 acetylated sialic acids linked to beta-galactose to be discovered, at the electron microscope level, on acinar cell secretory products.

  7. Functional single-walled carbon nanotubes/chitosan conjugate for tumor cells targeting

    NASA Astrophysics Data System (ADS)

    Wu, Baoyan; Ou, Zhongmin; Xing, Da

    2009-08-01

    The application of single-walled carbon nanotubes (SWCNTs) in the field of biomedicine is becoming an exciting topic because of their flexible structure and propensity for chemical functionalization. In this assay, a novel noncovalently functional SWCNTs based on a natural biocompatible polymer chitosan has been developed for tumor cells targeting. First, SWCNTs were modified by chitosan (CHIT-SWCNT). Second, CHIT-SWCNT was coupled with fluorescein isothiocyanate (FITC), based on the reaction between the isothiocyanate group of FITC and the primary amino group of chitosan. Third, the FITC functionalized CHIT-SWCNT was conjugated with folic acid (FA) after activation with EDC/NHS, based on the reaction between the NHS group of FA and the primary free amino group of chitosan to construct the functional SWCNT/CHIT conjugate, CHIT-SWCNT-FA. The fluorescence CHIT-SWCNT-FA has been used to detect tumor cells with confocal microscopy imaging technology. Our experimental results indicate that the novel CHIT-SWCNT-FA is soluble and stable in PBS, and it can be readily transported inside tumor cells. Combining the intrinsic properties of carbon nanotubes and the versatility of chitosan, CHIT-SWCNT can be used as potential devices for targeted drug delivery and tumor cell sensing. The proposed assay could provide a feasible alternative to presently available functional SWCNTs in biological applications.

  8. Thiopyrazole preactivated chitosan: combining mucoadhesion and drug delivery.

    PubMed

    Müller, Christiane; Ma, Benjamin N; Gust, Ronald; Bernkop-Schnürch, Andreas

    2013-05-01

    The objective of this study was to develop a preactivated chitosan derivative by the introduction of thioglycolic acid followed by 3-methyl-1-phenylpyrazole-5-thiol (MPPT) coupling via disulfide bond formation. The newly synthesized conjugate was characterized in terms of water-absorbing capacity, cohesive properties, mucoadhesion and drug release kinetics. Further in vitro characterization was conducted regarding permeation enhancement of the model compound fluorescein isothiocyanate dextran (FD4) and cytotoxic effects on Caco-2 cells. Based on the attachment of the hydrophobic residue, chitosan-S-S-MPPT test discs showed increased stability of the polymer matrix as well as improved water uptake and liberation of fluorescein isothiocyanate dextran (FD4) compared to chitosan only. The mucoadhesive qualities on porcine intestinal mucosa could be improved 38-fold based on the enhanced bonding between chitosan-S-S-MPPT and mucus through the thiol/disulfide exchange reaction of polymer and mucosal cysteine-rich domains supported by MPPT as the leaving group. This novel biomaterial presents a disulfide conjugation-based delivery system that releases the antibacterial thiopyrazole when the polymer comes into contact with the intestinal mucosa. These properties, together with the safe toxicological profile, make chitosan-S-S-MPPT a valuable carrier for mucoadhesive drug delivery systems and a promising matrix for the development of antimicrobial excipients. PMID:23321304

  9. Research of the fluorescence detection apparatus for nutrients

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yan, Huimin; Ni, Xuxiang; Xu, Xiaoyi; Chen, Shibing

    2015-10-01

    The research of the multifunctional analyzer of Clinical Nutrition, which integrates the absorbance, luminescence, fluorescence and other optical detection methods, can overcome the functional limitations of a single technology on human nutrition analysis, and realize a rapid and accurate analysis of the nutrients. This article focuses on the design of fluorescence detection module that uses a photomultiplier tube(PMT) to detect weak fluorescence, and utilizes the single photon counting method to measure the fluorescence intensity, and then according to the relationship between the fluorescent marker and fluorescence intensity, the concentration of the analyte can be derived. Using fluorescein isothiocyanate(FITC, the most widely used fluorescein currently)to mark antibodies in the experiment, therefore, according to the maximum absorption wavelength and the maximum emission wavelength of the fluorescein isothiocyanate, to select the appropriate filters to set up the optical path. In addition, the fluorescence detection apparatus proposed in this paper uses an aspherical lens with large numerical aperture, in order to improve the capacity of signal acquisition more effectively, and the selective adoption of flexible optical fiber can realize a compact opto-mechanical structure, which is also conducive to the miniaturization of the device. The experimental results show that this apparatus has a high sensitivity, can be used for the detection and analysis of human nutrition.

  10. Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells

    PubMed Central

    Bao, Wenlong; Wang, Junya; Wang, Qiang; O’Hare, Dermot; Wan, Yinglang

    2016-01-01

    Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants. PMID:27221055

  11. Impact of Lipid-Based Drug Delivery Systems on the Transport and Uptake of Insulin Across Caco-2 Cell Monolayers.

    PubMed

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2016-09-01

    Self-(nano)-emulsifying drug delivery systems (SNEDDSs) used to deliver peptides and proteins across biological barriers, such as the small intestinal membrane, represents an increasingly interesting field in nanomedicine. Hence, the present study was designed to evaluate the impact of SNEDDS on the transport and uptake mechanisms of insulin across the intestinal membrane. For this purpose, 3 SNEDDS were prepared, and Caco-2 cell monolayers were used to study transport and uptake. The prepared SNEDDSs were all in the range of 35-50 nm and had a negative zeta potential (between -8 and -25 mV). The entrapment of insulin on dispersion in the experimental media ranged from 40% to 78% for all SNEDDSs. Fluorescent microscopy studies indicated that fluorescein isothiocyanate-labeled insulin when administered in solution, as well as when loaded into MCT1 or MCT2 SNEDDS, localized within the intercellular space of the Caco-2 cell monolayer, indicating transport by paracellular diffusion. In contrast, the fluorescein isothiocyanate-labeled insulin in LCT SNEDDS was taken up by the cells. In conclusion, the present study demonstrated that MCT1 and MCT2 SNEDDS, but not LCT SNEDDS increased the transepithelial permeability of insulin, via the paracellular route.

  12. Effects of Food Components That Activate TRPA1 Receptors on Mucosal Ion Transport in the Mouse Intestine

    PubMed Central

    Fothergill, Linda J.; Callaghan, Brid; Rivera, Leni R.; Lieu, TinaMarie; Poole, Daniel P.; Cho, Hyun-Jung; Bravo, David M.; Furness, John B.

    2016-01-01

    TRPA1 is a ligand-activated cation channel found in the intestine and other tissues. Components of food that stimulate TRPA1 receptors (phytonutrients) include allyl isothiocyanate, cinnamaldehyde and linalool, but these may also act at other receptors. Cells lining the intestinal mucosa are immunoreactive for TRPA1 and Trpa1 mRNA occurs in mucosal extracts, suggesting that the TRPA1 receptor is the target for these agonists. However, in situ hybridisation reveals Trpa1 expression in 5-HT containing enteroendocrine cells, not enterocytes. TRPA1 agonists evoke mucosal secretion, which may be indirect (through release of 5-HT) or direct by activation of enterocytes. We investigated effects of the phytonutrients on transmucosal ion currents in mouse duodenum and colon, and the specificity of the phytonutrients in cells transfected with Trpa1, and in Trpa1-deficient mice. The phytonutrients increased currents in the duodenum with the relative potencies: allyl isothiocyanate (AITC) > cinnamaldehyde > linalool (0.1 to 300 μM). The rank order was similar in the colon, but linalool was ineffective. Responses to AITC were reduced by the TRPA1 antagonist HC-030031 (100 μM), and were greatly diminished in Trpa1−/− duodenum and colon. Responses were not reduced by tetrodotoxin, 5-HT receptor antagonists, or atropine, but inhibition of prostaglandin synthesis reduced responses. Thus, functional TRPA1 channels are expressed by enterocytes of the duodenum and colon. Activation of enterocyte TRPA1 by food components has the potential to facilitate nutrient absorption. PMID:27735854

  13. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity.

    PubMed

    Zhang, Weiwei; Wang, Wenhe; Liu, Zihe; Xie, Yongchao; Wang, Hao; Mu, Yajuan; Huang, Yao; Feng, Yue

    2016-09-16

    Specifier proteins are important components of the glucosinolate-myrosinase system, which mediate plant defense against herbivory and pathogen attacks. Upon tissue disruption, glucosinolates are hydrolyzed to instable aglucones by myrosinases, and then aglucones will rearrange to form defensive isothiocyanates. Specifier proteins can redirect this reaction to form other products, such as simple nitriles, epithionitriles and organic thiocyanates instead of isothiocyanates based on the side chain structure of glucosinolate and the type of the specifier proteins. Nevertheless, the molecular mechanism underlying the different product spectrums of various specifier proteins was not fully understood. Here in this study, we solved the crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana (AtESP) at 2.3 Å resolution. Structural comparisons with the previously solved structure of thiocyanate forming protein, TFP from Thlaspi arvense (TaTFP) reveal that AtESP shows a dimerization pattern different from TaTFP. Moreover, AtESP harbors a slightly larger active site pocket than TaTFP and several residues around the active site are different between the two proteins, which might account for the different product spectrums of the two proteins. Together, our structural study provides important insights into the molecular mechanisms of specifier proteins and shed light on the basis of their different product spectrums. PMID:27498030

  14. The concentration and biosynthesis of nicotinamide nucleotides in the livers of rats treated with carcinogens

    PubMed Central

    Clark, J. B.; Greenbaum, A. L.; McLean, Patricia

    1966-01-01

    1. The oxidoreduction state and concentration of both NAD and NADP as well as the maximum potential activities of NMN adenylyltransferase and NAD+ kinase have been measured in the livers of rats treated for 14–28 days with 4-dimethylamino-3′-methylazobenzene, 4-dimethylamino-4′-fluoroazobenzene, α-naphthyl isothiocyanate or ethionine and in primary hepatomas induced by 4-dimethylamino-3′-methylazobenzene. 2. The total NAD and total NADP both decreased in the livers of rats treated with either azo-dyes or α-naphthyl isothiocyanate but not in those treated with ethionine. The activities of NMN adenylyltransferase and NAD+ kinase did not alter appreciably after such treatments. 3. In the primary hepatomas the concentrations of both NAD and NADP fell drastically and the activities of NMN adenylyltransferase and NAD+ kinase fell to about 50% of the control activities. 4. No correlation could be established between the concentrations of the nucleotides and the activities of the enzymes synthesizing them. It appears, however, that a relationship exists between the NAD content of the tissue and the amount of NADP present. 5. The results are discussed with respect to the control of NAD and NADP synthesis by ATP. At the concentrations of NAD normally present in the cell it is suggested that NAD may be a rate-limiting substrate in NADP synthesis. PMID:4380162

  15. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  16. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density. PMID:26388182

  17. Pollinators, "mustard oil" volatiles, and fruit production in flowers of the dioecious tree Drypetes natalensis (Putranjivaceae).

    PubMed

    Johnson, Steven D; Griffiths, Megan E; Peter, Craig I; Lawes, Michael J

    2009-11-01

    The Putranjivaceae is an enigmatic family, notable for being the only lineage outside the Capparales to possess the glucosinolate biochemical pathway, which forms the basis of an induced chemical defense system against herbivores (the "mustard oil bomb"). We investigated the pollination biology and floral scent chemistry of Drypetes natalensis (Putranjivaceae), a dioecious subcanopy tree with flowers borne on the stem (cauliflory). Flowering male trees were more abundant than female ones and produced about 10-fold more flowers. Flowers of both sexes produce copious amounts of nectar on disc-like nectaries accessible to short-tongued insects. The main flower visitors observed were cetoniid beetles, bees, and vespid wasps. Pollen load analysis indicated that these insects exhibit a high degree of fidelity to D. natalensis flowers. Insects effectively transfer pollen from male to female plants resulting in about 31% of female flowers developing fruits with viable seeds. Cetoniid beetles showed significant orientation toward the scent of D. natalensis flowers in a Y-maze olfactometer. The scents of male and female flowers are similar in chemical composition and dominated by fatty acid derivatives and isothiocyanates from the glucosinolate pathway. The apparent constitutive emission of isothiocyanates raises interesting new questions about their functional role in flowers. PMID:21622327

  18. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    PubMed

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera. PMID:25230187

  19. Plutella xylostella (L.) infestations at varying temperatures induce the emission of specific volatile blends by Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Truong, Dieu-Hien; Delory, Benjamin M; Brostaux, Yves; Heuskin, Stéphanie; Delaplace, Pierre; Francis, Frédéric; Lognay, Georges

    2014-01-01

    The effect of combined abiotic and biotic factors on plant volatile organic compound (VOC) emissions is poorly understood. This study evaluated the VOC emissions produced by Arabidopsis thaliana (L.) Col-0 subjected to 3 temperature regimes (17, 22, and 27°C) in the presence and absence of Plutella xylostella larvae over 2 time intervals (0–4 and 4–8 h), in comparison to control plants. The analyses of VOCs emitted by Arabidopsis plants were made by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). It was found that certain volatile groups (e.g., alcohols, ketones, aldehydes, and terpenes) are induced by both single factors (temperature or larval infestation) and combined factors (temperature and larvae interactions), whereas other volatile groups (e.g., isothiocyanates [ITCs] and nitrile) were specific to the experimental conditions. ITCs (mainly 4-methylpentyl isothiocyanate) were emitted from plants subjected to larval infestation at 17 and 27°C after the 2 time intervals. The proportions of sulfides (mainly dimethyl disulfide) and 4-(methylthio) butanenitrile were significantly higher on herbivore-infested plants at 22°C compared to the other treatments. Overall, our findings indicate that changes in all experimental conditions caused significant changes to the VOC emissions of Arabidopsis plants. Therefore, the interaction between temperature and larval feeding may represent an important factor determining the variability of volatile emissions by plants subjected to multiple simultaneous factors. PMID:25482777

  20. Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables.

    PubMed

    Abdull Razis, Ahmad F; Bagatta, Manuela; De Nicola, Gina R; Iori, Renato; Ioannides, Costas

    2010-11-01

    The currently accepted view is that the chemopreventive activity of glucosinolates is exclusively mediated by their degradation products, such as isothiocyanates. In the present study, evidence is presented for the first time that intact glucosinolates can modulate carcinogen-metabolising enzyme systems. The glucosinolates glucoraphanin and glucoerucin were isolated from cruciferous vegetables and incubated with precision-cut rat liver slices. Both glucosinolates elevated the O-dealkylations of methoxy- and ethoxyresorufin, markers for CYP1 activity; supplementation of the incubation medium with myrosinase, the enzyme that converts glucosinolates to their corresponding isothiocyanates, abolished these effects. Moreover, both glucoerucin and glucoraphanin increased the apoprotein levels of microsomal CYP1A1, CYP1A2 and CYP1B1. At higher concentrations, both glucosinolates enhanced quinone reductase activity, whereas glucoraphanin also elevated glutathione S-transferase; in this instance, however, supplementation of the incubation medium with myrosinase exacerbated the inductive effect. Finally, both glucosinolates increased modestly cytosolic quinone reductase, GSTα and GSTμ protein levels, which became more pronounced when myrosinase was added to the incubations with the glucosinolate. It may be inferred that intact glucosinolates can modulate the activity of hepatic carcinogen-metabolising enzyme systems and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.

  1. Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots.

    PubMed

    Hanlon, Paul R; Barnes, David M

    2011-01-01

    Radishes (Raphanus sativus L.) are members of the cruciferous vegetable family that contain many classes of biologically active phytochemicals. This study determined the phytochemical composition of the sprouts and mature taproots of 8 radish varieties. Radish sprouts contained significantly greater concentrations of glucosinolates (3.8-fold) and isothiocyanates (8.2-fold) than the mature radish taproot and also contained significantly greater concentrations of phenolics (on average 6.9-fold). The anthocyanin concentrations of the mature radish taproot were significantly greater than in the sprouts of red, pink, and purple varieties. The primary anthocyanidins present in the red and pink radish varieties were pelargonidin and delphinidin, while the primary anthocyanidin in the purple radish variety was cyanidin. Radish sprouts were between 9- and 59-fold more potent than the corresponding mature taproot at activating the antioxidant response element (ARE) in a stably transfected hepatoma cell line. The ARE activity of the radish sprouts and mature taproots was significantly correlated with the total isothiocyanate concentration of the radishes. Practical Application: Understanding the influence variety and developmental stage has on the biological activity of cruciferous vegetables provides important information for further studies examining the in vivo effects of radish treatment and foundation for providing recommendations to reduce the risk of chronic disease through dietary intervention.

  2. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    PubMed

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters.

  3. Analysis and anti-Helicobacter activity of sulforaphane and related compounds present in broccoli ( Brassica oleracea L.) sprouts.

    PubMed

    Moon, Joon-Kwan; Kim, Jun-Ran; Ahn, Young-Joon; Shibamoto, Takayuki

    2010-06-01

    A crude methanol extract prepared from fresh broccoli sprouts was extracted with hexane, chloroform, ethyl acetate, and butanol sequentially. Residual water fraction was obtained from the residual aqueous layer. The greatest inhibition zones (>5 cm) were noted for Helicobacter pylori strain by the chloroform extract, followed by the hexane extract (5.03 cm), the ethyl acetate extract (4.90 cm), the butanol extract (3.10 cm), and the crude methanol extract (2.80 cm), whereas the residual water fraction did not show any inhibition zone. Including sulforaphane, five sulforaphane-related compounds were positively identified in the chloroform extract, of which 5-methylsulfinylpentylnitrile was found in the greatest concentration (475.7 mg/kg of fresh sprouts), followed by sulforaphane (222.6 mg/kg) and 4-methylsulfinylbutylnitrile (63.0 mg/kg). Among 18 sulforaphane and related compounds synthesized (6 amines, 6 isothiocyanates, and 6 nitriles), 2 amines, 6 isothiocyanates, and 1 nitrile exhibited >5 cm inhibitory zones for H. pylori strain. The results indicate that broccoli sprouts can be an excellent food source for medicinal substances.

  4. Structural, DFT and biological studies on Cr(III) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Alduaij, O. K.; Ahmed, Sara F.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2016-12-01

    Three ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Cr(III) chloride complexes were prepared and characterized by conventional techniques. The data confirmed that the complexes have the following formulaes, [Cr(H2PAPS)Cl3], [Cr(HPAPT)Cl2(H2O)2] and [Cr(HPABT)Cl2(H2O)]. The IR spectra of complexes shows that H2PAPS behaves as neutral tridentate via both CO of hydrazide moiety and Cdbnd N(azomethine) due to enolization of CO isocyanate without deprotonation. H2PAPT suggests the coordination as mononegative bidentate via both CO of hydrazide moiety in keto and deprotonated enolic oxygen atoms. H2PABT act as mononegative tridentate via carbonyl oxygen (Cdbnd O)3, the deprotonated enolic oxygen atom (dbnd Csbnd Osbnd)1 and NH1 groups. The experimental IR data of ligands are compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the ligand molecules. The calculated values of binding energies indicates the higher stability of metal complexes than of ligands. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods.

  5. Enhanced activation of the transient receptor potential channel TRPA1 by ajoene, an allicin derivative.

    PubMed

    Yassaka, Ricardo Tsuneo; Inagaki, Hidetoshi; Fujino, Tsuchiyoshi; Nakatani, Kei; Kubo, Tai

    2010-01-01

    TRPA1 is a calcium-permeable, nonselective cation channel expressed in the dorsal root ganglion and trigeminal ganglia nociceptive neurons. It is activated by the pungent compounds in mustard oil (AITC, allyl isothiocyanate), cinnamon (cinnamaldehyde), garlic (allicin), and is believed to mediate the inflammatory actions of environmental irritants and proalgesic agents. Thiosulfinate (allicin) and isothiocyanate (AITC) compounds contain reactive electrophilic chemical groups that react with cysteine residues within the TRPA1 channel N terminus, leading to channel activation. Ajoene also contains reactive electrophilic chemical groups likely to target TRPA1 channel. Here, we have used voltage-clamp recordings to show that TRPA1-responses are enhanced by ajoene application in a Xenopus oocyte expression system. Though ajoene alone did not activate TRPA1, subsequent application of ajoene enhanced the AITC-, allicin- and depolarization-induced responses of TRPA1. Moreover, when increasing concentrations of ajoene were applied along with constant concentrations of allicin or AITC, stronger responses were elicited. These findings suggest that ajoene is a novel TRPA1 channel enhancer, operating in a channel-opening-dependent manner.

  6. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products.

    PubMed

    Cheng, D-L; Hashimoto, K; Uda, Y

    2004-03-01

    Three strains of Bifidobacterium sp., B. pseudocatenulatum, B. adolescentis, and B. longum were studied for their ability to digest glucosinolates, sinigrin (SNG) and glucotropaeolin (GTL), in vitro. All strains digested both glucosinolates during 24-48 h cultivation, accompanied by a decline in the medium pH from 7.1 to 5.2. The digestion of glucosinolates by a cell-free extract prepared from sonicated cells of B. adolescentis, but not cultivated broth, increased in the presence of 0.5 mM l-ascorbic acid. Also, a time-dependent formation of allyl isothiocyanate (AITC) was observed when the cell-free extract was incubated with 0.25 mM SNG for 120 min at pH 7.0. These reaction features suggest that the digestive activity may have been due to an enzyme similar to myrosinase, an enzyme of plant origin. GC-MS analysis of the Bifidobacterial cultured broth showed that the major products were 3-butenenitrile (BCN) and phenylacetonitrile (PhACN), from SNG and GTL, respectively and nitriles, probably due to a decrease in the pH of the media. AITC and benzyl isothiocyanate (BzITC) were barely detectable in the broth. It was concluded that the three species of Bifidobacteria could be involved in digestive degradation of glucosinolates in the human intestinal tract.

  7. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    PubMed Central

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  8. 'Moringa oleifera: study of phenolics and glucosinolates by mass spectrometry'.

    PubMed

    Maldini, Mariateresa; Maksoud, Salwa A; Natella, Fausta; Montoro, Paola; Petretto, Giacomo Luigi; Foddai, Marzia; De Nicola, Gina Rosalinda; Chessa, Mario; Pintore, Giorgio

    2014-09-01

    Moringa oleifera is a medicinal plant and an excellent dietary source of micronutrients (vitamins and minerals) and health-promoting phytochemicals (phenolic compounds, glucosinolates and isothiocyanates). Glucosinolates and isothiocyanates are known to possess anti-carcinogenic and antioxidant effects and have attracted great interest from both toxicological and pharmacological points of view, as they are able to induce phase 2 detoxification enzymes and to inhibit phase 1 activation enzymes. Phenolic compounds possess antioxidant properties and may exert a preventative effect in regards to the development of chronic degenerative diseases. The aim of this work was to assess the profile and the level of bioactive compounds in all parts of M. oleifera seedlings, by using different MS approaches. First, flow injection electrospray ionization mass spectrometry (FI-ESI-MS) fingerprinting techniques and chemometrics (PCA) were used to achieve the characterization of the different plant's organs in terms of profile of phenolic compounds and glucosinolates. Second, LC-MS and LC-MS/MS qualitative and quantitative methods were used for the identification and/or determination of phenolics and glucosinolates in M. oleifera.

  9. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  10. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation

    PubMed Central

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  11. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells.

    PubMed

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependent manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  12. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  13. Double-label immunofluorescence with the laser scanning confocal microscope using cyanine dyes.

    PubMed

    Sargent, P B

    1994-11-01

    The laser scanning confocal microscope, when used with the krypton-argon ion laser, is well suited for the simultaneous detection of pairs of antigens by immunofluorescence. Traditionally, double-label studies have utilized secondary antibodies conjugated to fluorescein isothiocyanate (FITC), excited by the 488-nm line (blue), and to tetramethyl rhodamine isothiocyanate or Texas Red, excited by the 568-nm line (yellow). However, the use of fluorophores excited by the 488 nm line produces unsatisfactory results when tissue contains low wavelength-excitable autofluorescence. In the amphibian cardiac ganglion, for example, autofluorescent granules within parasympathetic neurons obscure cell surface-derived signals and prevent one from analyzing the relative position of acetylcholine receptor clusters and synaptic boutons by double-label immunofluorescence. This problem has been solved by using cyanine 3.18 (Cy3)- and cyanine 5.18 (Cy5)-conjugated secondary antibodies, which are excited efficiently by the 568-nm (yellow) and the 647-nm (red) lines and which emit in the orange/red and in the far-red, respectively, and thus by avoiding the 488-nm line altogether. The resulting images are as good or better than those obtained with FITC and Texas Red, even without consideration of autofluorescence.

  14. Amylase binding to starch granules under hydrolysing and non-hydrolysing conditions.

    PubMed

    Dhital, Sushil; Warren, Frederick J; Zhang, Bin; Gidley, Michael J

    2014-11-26

    Although considerable information is available about amylolysis rate, extent and pattern of granular starches, the underlying mechanisms of enzyme action and interactions are not fully understood, partly due to the lack of direct visualisation of enzyme binding and subsequent hydrolysis of starch granules. In the present study, α-amylase (AA) from porcine pancreas was labelled with either fluorescein isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (TRITC) fluorescent dye with maintenance of significant enzyme activity. The binding of FITC/TRITC-AA conjugate to the surface and interior of granules was studied under both non-hydrolysing (0 °C) and hydrolysing (37 °C) conditions with confocal microscopy. It was observed that enzyme binding to maize starch granules under both conditions was more homogenous compared with potato starch. Enzyme molecules appear to preferentially bind to the granules or part of granules that are more susceptible to enzymic degradation. The specificity is such that fresh enzyme added after a certain time of incubation binds at the same location as previously bound enzyme. By visualising the enzyme location during binding and hydrolysis, detailed information is provided regarding the heterogeneity of granular starch digestion. PMID:25256464

  15. Herbicidal Activity of Glucosinolate Degradation Products in Fermented Meadowfoam (Limnanthes alba) Seed Meal

    PubMed Central

    STEVENS, JAN F.; REED, RALPH L.; ALBER, SUSAN; PRITCHETT, LARRY; MACHADO, STEPHEN

    2009-01-01

    Meadowfoam (Limnanthes alba) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate, glucolimnanthin. We investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome (Bromus tectorum) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO4 (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile and the thioamide, as a total, correlated with an increase of herbicidal potency of seed meal (r2 = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  16. Amylase binding to starch granules under hydrolysing and non-hydrolysing conditions.

    PubMed

    Dhital, Sushil; Warren, Frederick J; Zhang, Bin; Gidley, Michael J

    2014-11-26

    Although considerable information is available about amylolysis rate, extent and pattern of granular starches, the underlying mechanisms of enzyme action and interactions are not fully understood, partly due to the lack of direct visualisation of enzyme binding and subsequent hydrolysis of starch granules. In the present study, α-amylase (AA) from porcine pancreas was labelled with either fluorescein isothiocyanate (FITC) or tetramethylrhodamine isothiocyanate (TRITC) fluorescent dye with maintenance of significant enzyme activity. The binding of FITC/TRITC-AA conjugate to the surface and interior of granules was studied under both non-hydrolysing (0 °C) and hydrolysing (37 °C) conditions with confocal microscopy. It was observed that enzyme binding to maize starch granules under both conditions was more homogenous compared with potato starch. Enzyme molecules appear to preferentially bind to the granules or part of granules that are more susceptible to enzymic degradation. The specificity is such that fresh enzyme added after a certain time of incubation binds at the same location as previously bound enzyme. By visualising the enzyme location during binding and hydrolysis, detailed information is provided regarding the heterogeneity of granular starch digestion.

  17. Pungent products from garlic activate the sensory ion channel TRPA1.

    PubMed

    Bautista, Diana M; Movahed, Pouya; Hinman, Andrew; Axelsson, Helena E; Sterner, Olov; Högestätt, Edward D; Julius, David; Jordt, Sven-Eric; Zygmunt, Peter M

    2005-08-23

    Garlic belongs to the Allium family of plants that produce organosulfur compounds, such as allicin and diallyl disulfide (DADS), which account for their pungency and spicy aroma. Many health benefits have been ascribed to Allium extracts, including hypotensive and vasorelaxant activities. However, the molecular mechanisms underlying these effects remain unknown. Intriguingly, allicin and DADS share structural similarities with allyl isothiocyanate, the pungent ingredient in wasabi and other mustard plants that induces pain and inflammation by activating TRPA1, an excitatory ion channel on primary sensory neurons of the pain pathway. Here we show that allicin and DADS excite an allyl isothiocyanate-sensitive subpopulation of sensory neurons and induce vasodilation by activating capsaicin-sensitive perivascular sensory nerve endings. Moreover, allicin and DADS activate the cloned TRPA1 channel when expressed in heterologous systems. These and other results suggest that garlic excites sensory neurons primarily through activation of TRPA1. Thus different plant genera, including Allium and Brassica, have developed evolutionary convergent strategies that target TRPA1 channels on sensory nerve endings to achieve chemical deterrence. PMID:16103371

  18. Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats.

    PubMed

    Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnazi; Tsagareli, Merab G

    2016-02-01

    A sensitive response of the nervous system to changes in temperature is of predominant importance for homeotherms to maintain a stable body temperature. A number of temperature-sensitive transient receptor potential (TRP) ion channels have been studied as nociceptors that respond to extreme temperatures and harmful chemicals. Recent findings in the field of pain have established a family of six thermo-TRP channels (TRPA1, TRPM8, TRPV1, TRPV2, TRPV3, and TRPV4) that exhibit sensitivity to increases or decreases in temperature, as well as to chemical substances eliciting the respective hot or cold sensations. In this study, we used behavioral methods to investigate whether mustard oil (allyl isothiocyanate) and capsaicin affect the sensitivity to heat, innocuous and noxious cold, and mechanical stimuli in male rats. The results obtained indicate that TRPA1 and TRPV1 channels are clearly involved in pain reactions, and the TRPA1 agonist allyl isothiocyanate enhances the heat pain sensitivity, possibly by indirectly modulating TRPV1 channels coexpressed in nociceptors with TRPA1. Overall, our data support the role of thermosensitive TRPA1 and TRPV1 channels in pain modulation and show that these two thermoreceptor channels are in a synergistic and/or conditional relationship with noxious heat and cold cutaneous stimulation.

  19. New approaches for bottom-up assembly of tobacco mosaic virus-derived nucleoprotein tubes on defined patterns on silica- and polymer-based substrates.

    PubMed

    Azucena, Carlos; Eber, Fabian J; Trouillet, Vanessa; Hirtz, Michael; Heissler, Stefan; Franzreb, Matthias; Fuchs, Harald; Wege, Christina; Gliemann, Hartmut

    2012-10-23

    The capability of some natural molecular building blocks to self-organize into defined supramolecular architectures is a versatile tool for nanotechnological applications. Their site-selective integration into a technical context, however, still poses a major challenge. RNA-directed self-assembly of tobacco mosaic virus-derived coat protein on immobilized RNA scaffolds presents a possibility to grow nucleoprotein nanotubes in place. Two new methods for their site-selective, bottom-up assembly are introduced. For this purpose, isothiocyanate alkoxysilane was used to activate oxidic surfaces for the covalent immobilization of DNA oligomers, which served as linkers for assembly-directing RNA. Patterned silanization of surfaces was achieved (1) on oxidic surfaces via dip-pen nanolithography and (2) on polymer surfaces (poly(dimethylsiloxane)) via selective oxidization by UV-light irradiation in air. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the surfaces. It is shown for the first time that the combination of the mentioned structuring methods and the isothiocyanate-based chemistry is appropriate (1) for the site-selective immobilization of nucleic acids and, thus, (2) for the formation of viral nanoparticles by bottom-up self-assembly after adding the corresponding coat proteins.

  20. Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems

    NASA Astrophysics Data System (ADS)

    Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.

    2011-12-01

    Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.

  1. Evidence of transcellular albumin transport after hemorrhagic shock.

    PubMed

    Childs, Ed W; Udobi, Kahdi F; Hunter, Felicia A; Dhevan, Vijian

    2005-06-01

    Hemorrhagic shock-induced ischemia-reperfusion injury is characterized by an increase in microvascular permeability. This increase in permeability is thought to occur mainly via passive transport through interendothelial cell junctions. However, recent data have suggested that a transcellular (caveolae) transport mechanism(s) may also play a role after shock. The purpose of our study was to investigate the role of caveolae transport after hemorrhagic shock. After a control period, blood was withdrawn to reduce the mean arterial pressure to 40 mmHg for 1 h in urethane-anesthetized Sprague-Dawley rats. Mesenteric postcapillary venules in a transilluminated segment of small intestine were examined to determine changes in permeability. Rats received an intravenous injection of fluorescein isothiocyanate-bovine albumin during the control period. The fluorescent light intensity emitted from the fluorescein isothiocyanate-bovine albumin was recorded with digital microscopy within the lumen of the microvasculature and was compared with the intensity of light in the extravascular space. The images were downloaded to a computerized image analysis program that quantitates changes in light intensity. This change in light intensity represents albumin extravasation. Our results demonstrated a marked increase in albumin leak after hemorrhagic shock that was significantly attenuated with two different inhibitors of transcellular transport, N-ethylmaleimide and methyl-beta-cyclodextrin. These data suggest that caveolae transport plays a significant role in microvascular permeability after hemorrhagic shock. PMID:15897811

  2. The preparation and use of fluorescent-protein conjugates for microvascular research.

    PubMed

    McDonagh, P F; Williams, S K

    1984-01-01

    A procedure is described for making large quantities (100 ml) of fluorochrome-labeled albumin. Chromatographic techniques are described for the purification of commercial albumin (BSA) and the purification of albumin from serum. We report experimentally determined optimal conditions for the covalent attachment of fluorescent dyes (rhodamine isothiocyanate (RITC) and fluorescein isothiocyanate (FITC] to albumin. Subsequent removal of all unreacted fluorescent material (UFM) was achieved using charcoal adsorption. We observed no loss of protein following charcoal treatment. The final protein conjugate was analyzed by polyacrylamide gel electrophoresis, gel chromatography, and isoelectric focusing. The conjugates were determined to be free of UFM and homogeneous with respect to molecular weight. However, FITC conjugation lowered the average isoelectric point of albumin by 0.1 to 0.3 pH units. Illustrations of combining fluorescence microscopy with FITC-BSA and RITC-BSA to view microvascular phenomena in skeletal muscle and the heart are given. Knowledge of the biochemical characteristics of the fluorochrome employed is important for proper interpretation of experimental results using this technique.

  3. Monoclonal antibodies that bind the renal Na/sup +//glucose symport system. 2. Stabilization of an active conformation

    SciTech Connect

    Wu, J.S.R.; Lever, J.E.

    1987-09-08

    Conformation-dependent fluorescein isothiocyanate (FITC) labeling of the pig renal Na/sup +//glucose symporter was investigated with specific monoclonal antibodies (MAb's). When renal brush border membranes were pretreated with phenyl isothiocyanate (PITC), washed, and then treated at neutral pH with FITC in the presence of transporter substrates Na/sup +/ and glucose, most of the incorporated fluorescence was associated with a single peak after resolution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent molecular mass of the FITC-labeled species ranged from 79 to 92 kDa. Labeling of this peak was specifically reduced by 70% if Na/sup +/ and glucose were omitted. Na/sup +/ could not be replaced by K/sup +/, Rb/sup +/, or Li/sup +/. FITC labeling of this peak was also stimulated after incubation of membranes with MAb's known to influence high-affinity phlorizin binding, and stimulation was synergistically increased when MAb's were added in the presence of Na/sup +/ and glucose. Substrate-induced or MAb-induced labeling correlated with inactivation of Na/sup +/-dependent phlorizin binding. MAb's recognized an antigen of 75 kDa in the native membranes whereas substrate-induced FITC labeling was accompanied by loss of antigen recognition and protection from proteolysis. These findings are consistent with a model in which MAb's stabilize a Na/sup +/-induced active conformer of the Na/sup +//glucose symport system.

  4. Tunable two dimensional protein patterns through self-assembly nanosphere template

    NASA Astrophysics Data System (ADS)

    Li, Zhishi; Ruan, Weidong; Shen, Shanshan; Wang, Haiyang; Guo, Zhinan; Xue, Xiangxin; Mao, Zhu; Ji, Wei; Wang, Xu; Song, Wei; Zhao, Bing

    2012-10-01

    By the aim of constructing surfaces for multi-component and multifunctional bioassay, a microsphere lithography technique was employed to control the surface morphology. Two kinds of protein molecules (antibodies) were used as building blocks. As a result, dual-component biocompatible surfaces with alternate immunoglobulin micropatterns were fabricated. The employed antibodies included human Immunoglobulin G (IgG) and rabbit IgG, which composed nanometer scale surface arrays on the surfaces. The antibodies were identified specially by immunoreactions with labeled antigens of fluorescein isothiocyanate (FITC)-antihuman IgG and tetramethylrhodamine-5-(and 6)-isothiocyanate (TRITC)-antirabbit IgG. The immune responses were confirmed by confocal fluorescence (FL) microscopy. A study on the sensitivity and quantification was done by using surface-enhanced resonance Raman scattering (SERRS) spectroscopy. The obtained SERRS spectra showed satisfactory resolution in the multi-component detection objects. No interference was observed from inner- or interactions of detecting molecules. The detection limits for both of the antigens reached to as low as 1 ng/mL, which was comparable to FL method. Meanwhile, a good linear relationship between SERRS peak intensity and the logarithm of antigens' concentrations (from 1 ng/mL to 1 mg/mL) were observed. The results demonstrated that SERRS is a very promising detection technique for multi-component immunoassay, and has great potential applications in biotechnology and biochemistry.

  5. Herbicidal activity of glucosinolate degradation products in fermented meadowfoam ( Limnanthes alba ) seed meal.

    PubMed

    Stevens, Jan F; Reed, Ralph L; Alber, Susan; Pritchett, Larry; Machado, Stephen

    2009-03-11

    Meadowfoam ( Limnanthes alba ) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate glucolimnanthin. This study investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome ( Bromus tectorum ) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO(4) (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile, and the thioamide, as a total, correlated with an increase of herbicidal potency of the seed meal (r(2) = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  6. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  7. Synthesis, crystal structure, and in vitro and in silico molecular docking of novel acyl thiourea derivatives

    NASA Astrophysics Data System (ADS)

    Haribabu, Jebiti; Subhashree, Govindarajulu Rangabashyam; Saranya, Sivaraj; Gomathi, Kannayiram; Karvembu, Ramasamy; Gayathri, Dasararaju

    2015-08-01

    In the present study, a series of six biologically active substituted acyl thiourea compounds (1-6) has been synthesized from cyclohexanecarbonyl isothiocyanate and various primary amines (2-methyl aniline, aniline, 4-methoxy aniline, 4-ethoxy aniline, benzyl amine and 2-methoxy aniline). The synthesized compounds were characterized by elemental analyses, UV-Visible, FT-IR, 1H & 13C NMR and mass spectroscopic techniques. Three dimensional molecular structure of two compounds (1 and 5) was determined by single crystal X-ray crystallography. All the synthesized compounds show good anti-oxidant and anti-haemolytic activities. In silico molecular docking studies were performed to screen against DprE1 and HSP90 enzymes targeting tuberculosis and cancer respectively.

  8. Influence of laser parameters on nanoparticle-induced membrane permeabilization

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Qu, Xiaochao; Zhang, Zhenxi; Hüttmann, Gereon; Rahmanzadeh, Ramtin

    2009-09-01

    Light-absorbing nanoparticles that are heated by short laser pulses can transiently increase membrane permeability. We evaluate the membrane permeability by flow cytometry assaying of propidium iodide and fluorescein isothiocyanate dextran (FITC-D) using different laser sources. The dependence of the transfection efficiency on laser parameters such as pulse duration, irradiant exposure, and irradiation mode is investigated. For nano- and also picosecond irradiation, we show a parameter range where a reliable membrane permeabilization is achieved for 10-kDa FITC-D. Fluorescent labeled antibodies are able to penetrate living cells that are permeabilized using these parameters. More than 50% of the cells are stained positive for a 150-kDa IgG antibody. These results suggest that the laser-induced permeabilization approach constitutes a promising tool for targeted delivery of larger exogenous molecules into living cells.

  9. GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis) and Its Seed.

    PubMed

    Hong, Eunyoung; Kim, Gun-Hee

    2013-09-01

    Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed. PMID:24471136

  10. Antibody-based biological toxin detection

    SciTech Connect

    Menking, D.E.; Goode, M.T.

    1995-12-01

    Fiber optic evanescent fluorosensors are under investigation in our laboratory for the study of drug-receptor interactions for detection of threat agents and antibody-antigen interactions for detection of biological toxins. In a direct competition assay, antibodies against Cholera toxin, Staphylococcus Enterotoxin B or ricin were noncovalently immobilized on quartz fibers and probed with fluorescein isothiocyanate (FITC) - labeled toxins. In the indirect competition assay, Cholera toxin or Botulinum toxoid A was immobilized onto the fiber, followed by incubation in an antiserum or partially purified anti-toxin IgG. These were then probed with FITC-anti-IgG antibodies. Unlabeled toxins competed with labeled toxins or anti-toxin IgG in a dose dependent manner and the detection of the toxins was in the nanomolar range.

  11. Graphene-Based Fluorescence-Quenching-Related Fermi Level Elevation and Electron-Concentration Surge.

    PubMed

    Lin, Weiyi; Tian, Bo; Zhuang, Pingping; Yin, Jun; Zhang, Cankun; Li, Qiongyu; Shih, Tien-Mo; Cai, Weiwei

    2016-09-14

    Intermolecular p-orbital overlaps in unsaturated π-conjugated systems, such as graphene and fluorescent molecules with aromatic structure, serve as the electron-exchanged path. Using Raman-mapping measurements, we observe that the fluorescence intensity of fluorescein isothiocyanate (FITC) is quenched by graphene, whereas it persists in graphene-absent substrates (SiO2). After identifying a mechanism related to photon-induced electron transfer (PET) that contributes to this fluorescence quenching phenomenon, we validate this mechanism by conducting analyses on Dirac point shifts of FITC-coated graphene. From these shifts, Fermi level elevation and the electron-concentration surge in graphene upon visible-light impingements are acquired. Finally, according to this mechanism, graphene-based biosensors are fabricated to show the sensing capability of measuring fluorescently labeled-biomolecule concentrations. PMID:27513317

  12. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing.

    PubMed

    Barba, Francisco J; Nikmaram, Nooshin; Roohinejad, Shahin; Khelfa, Anissa; Zhu, Zhenzhou; Koubaa, Mohamed

    2016-01-01

    Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized in the gut lumen. When cruciferous are consumed without processing, myrosinase enzyme present in these plants hydrolyzes the glucosinolates in the proximal part of the gastrointestinal tract to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. When cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates transit to the colon where they are hydrolyzed by the intestinal microbiota. Numerous factors, such as storage time, temperature, and atmosphere packaging, along with inactivation processes of myrosinase are influencing the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability. PMID:27579302

  13. An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement.

    PubMed

    Wang, Kuan-Chih; Kumar, Aloke; Williams, Stuart J; Green, Nicolas G; Kim, Kyung Chun; Chuang, Han-Sheng

    2014-10-21

    Technologies that can enable concentration of low-abundance biomarkers are essential for early diagnosis of diseases. In this study, an optoelectrokinetic technique, termed Rapid Electrokinetic Patterning (REP), was used to enable dynamic particle manipulation in bead-based bioassays. Various manipulation capabilities, such as micro/nanoparticle aggregation, translation, sorting and patterning, were developed. The technique allows for versatile multi-parameter (voltage, light intensity and frequency) based modulation and dynamically addressable manipulation with simple device fabrication. Signal enhancement of a bead-based bioassay was demonstrated using dilute biotin-fluorescein isothiocyanate (FITC) solutions mixed with streptavidin-conjugated particles and rapidly concentrated with the technique. As compared with a conventional ELISA reader, the REP-enabled detection achieved a minimal readout of 3.87 nM, which was a 100-fold improvement in sensitivity. The multi-functional platform provides an effective measure to enhance detection levels in more bead-based bioassays. PMID:25109364

  14. Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria

    SciTech Connect

    Feil, Susanne C.; Tang, Julian; Hansen, Guido; Gorman, Michael A.; Wiktelius, Eric; Stenberg, Gun; Parker, Michael W.

    2009-05-08

    Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds.

  15. Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: synthesis and in vitro antimicrobial and cytotoxic activities.

    PubMed

    Vega-Pérez, José M; Periñán, Ignacio; Argandoña, Montserrat; Vega-Holm, Margarita; Palo-Nieto, Carlos; Burgos-Morón, Estefanía; López-Lázaro, Miguel; Vargas, Carmen; Nieto, Joaquín J; Iglesias-Guerra, Fernando

    2012-12-01

    A series of new isoprenyl-thiourea and urea derivatives were synthesized by the reaction of alkyl or aryl isothiocyanate or isocyanate and primary amines. The structures of the compounds were established by (1)H NMR, (13)C NMR, MS, HRMS and elemental analysis. The new compounds were screened for in vitro antimicrobial activity against seven strains representing different types of gram-positive and gram-negative bacteria. More than a third of the synthesized compounds showed variable inhibition activities against the tested strains. Best antimicrobial activities were found for those thiourea analogues with 3-methyl-2-butenyl, isobutyl or isopentyl groups and aromatic rings possessing electron withdrawing substituents. The new compounds were also subjected to a preliminary screening for antitumoral activity. The presence of a highly lipophilic group and an electron withdrawing group in the aromatic rings enhanced anticancer activity of the synthesized compounds, showing in most cases more activity than that of the controls.

  16. Effect of commercial processing of canola and rapeseed on growth of larvae of the yellow mealworm, Tenebrio molitor L.

    PubMed

    Davis, G R; Campbell, S J; McGregor, D I

    1981-11-01

    Larvae of Tenebrio molitor L., Gembloux strain, race F, were used to determine the nutritional quality of commercial canola and rapeseed products. Application of heat in commercial processing increased considerably the nutritive values of Midas, Tower and Torch cultivars, and to a lesser extent that of Candle. This improvement was most noticeable for thigh-glucosinolate cultivars, presumably through the destruction of a mechanism for production of isothiocyanates that may be phagodeterrent or toxic to the larvae. For low-glucosinolate varieties, the improvement may be related to inhibition of nitrile production in heated material. The processing also reduced the concentration of available lysine in the products of all four cultivars; however, growth was unimpaired by this reduction. The latter results suggest that the feed products resulting from processing may exceed the optimal dietary requirement of lysine by larvae of Tenebrio molitor.

  17. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis.

    PubMed

    Kloucek, Pavel; Smid, Jakub; Flesar, Jaroslav; Havlik, Jaroslav; Titera, Dalibor; Rada, Vojtech; Drabek, Ondrej; Kokoska, Ladislav

    2012-02-01

    This work evaluates the in vitro inhibitory activity of 70 essential oils (EOs) in the vapor phase for the control of Chalkbrood disease caused by Ascosphaera apis Maassen ex Claussen (Olive et Spiltoir). Two wild strains isolated from infected honey bee colonies together with one standard collection strain were tested by the microatmosphere method. From 70 EOs, 39 exhibited an antifungal effect against A. apis standard and wild strains. The greatest antifungal action was observed for EO vapors from Armoracia rusticana, followed by Thymus vulgaris, Cymbopogon flexosus, Origanum vulgare and Allium sativum. An investigation of chemical composition by GC-MS revealed, that the most active EOs contained allyl isothiocyanate, citral, carvacrol and diallyl sulfides as the main constituents. The chemical composition plays a key role, as activities of different EOs from the same botanical species were different according to their composition. PMID:22474973

  18. Carbonic anhydrase inhibitors: benzenesulfonamides incorporating cyanoacrylamide moieties are low nanomolar/subnanomolar inhibitors of the tumor-associated isoforms IX and XII.

    PubMed

    Alafeefy, Ahmed M; Isik, Semra; Abdel-Aziz, Hatem A; Ashour, Abdelkader E; Vullo, Daniela; Al-Jaber, Nabila A; Supuran, Claudiu T

    2013-03-15

    A series of benzenesulfonamides incorporating cyanoacrylamide moieties (tyrphostine analogues) have been obtained by reaction of sulfanilamide with ethylcyanoacetate followed by condensation with aromatic/heterocyclic aldehydes, isothiocyanates or diazonium salts. The new compounds have been investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4. 2.1.1), and more specifically against the cytosolic human (h) isoforms hCA I and II, as well as the transmembrane, tumor-associated ones CA IX and XII, which are validated antitumor targets. Most of the new benzenesulfonamides were low nanomolar or subnanomolar CA IX/XII inhibitors whereas they were less effective as inhibitors of CA I and II. The structure-activity relationship for this class of effective CA inhibitors is also discussed. Generally, electron donating groups in the starting aldehyde reagent favored CA IX and XII inhibition, whereas halogeno, methoxy and dimethylamino moieties led to very potent CA XII inhibitors. PMID:23290254

  19. Preparation of base-modified nucleosides suitable for non-radioactive label attachment and their incorporation into synthetic oligodeoxyribonucleotides.

    PubMed Central

    Haralambidis, J; Chai, M; Tregear, G W

    1987-01-01

    A very mild and efficient procedure has been developed for the preparation of C-5 substituted deoxyuridines. The substituent carries a masked primary aliphatic amino group. These compounds are readily converted into their phosphoramidites and can be used to prepare oligonucleotides carrying one or more aliphatic amino groups. Fluorescein isothiocyanate coupled to these compounds gives oligonucleotide probes carrying multiple fluorescein labels. These compounds have a free 5'-hydroxy group enabling additional 5'- end radioactive labelling for evaluation of their hybridization characteristics. It was found that oligonucleotides carrying a long (11 atom) linker arm to the fluorescein hybridize more efficiently to mRNA than those carrying a short (4 atom) arm. The long linker arm derivatives are comparable to underivatized oligonucleotides in hybridizing to mRNA. Images PMID:3110740

  20. Detection of Campylobacter jejuni in food and poultry viscera using immunomagnetic separation and microtitre hybridization.

    PubMed

    Lamoureux, M; MacKay, A; Messier, S; Fliss, I; Blais, B W; Holley, R A; Simard, R E

    1997-11-01

    Thermophillic Campylobacter and Camp. jejuni were detected from samples of chicken liver, gall bladder, muscle and contaminated milk and chicken meat after an enrichment step by using immunomagnetic capture of cells with monoclonal antibody against a specific outer membrane protein of thermophilic Campylobacter. The detection of captured cells was achieved using two different hybridization methods. In one of the methods, the captured cells were lysed by guanidine isothiocyanate and the 23S rRNA was reacted with a microtitre plate-immobilized rDNA probe specific for thermophilic Campylobacter. In the other method, the captured cells were subjected to lysis by ultrasonication and the genomic DNA reacted with a microtitre plate-immobilized RNA probe specific for Camp.jejuni. Detection of the RNA-DNA hybrids formed in the wells was carried out using a monoclonal anti-RNA-DNA hybrid antibody.

  1. Preparation and characterization of folate-poly(ethylene glycol)-grafted-trimethylchitosan for intracellular transport of protein through folate receptor-mediated endocytosis.

    PubMed

    Zheng, Yu; Song, Xiangrong; Darby, Michael; Liang, Yufeng; He, Ling; Cai, Zheng; Chen, Qiuhong; Bi, Yueqi; Yang, Xiaojuan; Xu, Jiapeng; Li, Yuanbo; Sun, Yiyi; Lee, Robert J; Hou, Shixiang

    2010-01-01

    To develop a receptor-mediated intracellular delivery system that can transport therapeutic proteins to specific tumor cells, folate-poly(ethylene glycol)-grafted-trimethylchitosan (folate-PEG-g-TMC) was synthesized. Nano-scaled spherical polyelectrolyte complexes between the folate-PEG-g-TMC and fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) were prepared under suitable weight ratio of copolymer to FITC-BSA by ionic interaction between the positively charged copolymers and the negatively charged FITC-BSA. Intracellular uptake of FITC-BSA was specifically enhanced in SKOV3 cells (folate receptor over-expressing cell line) through folate receptor-mediated endocytosis compared with A549 cells (folate receptor deficient cell line). Folate-PEG-g-TMC shows promise for intracellular transport of negatively charged therapeutic proteins into folate receptor over-expressing tumor cells.

  2. Efficient synthesis of trisubstituted pyrazoles and isoxazoles using a traceless "catch and release" solid-phase strategy.

    PubMed

    Ma, Wenli; Peterson, Brian; Kelson, Andrew; Laborde, Edgardo

    2009-01-01

    An efficient three-component, two-step "catch and release" solid-phase synthesis of 3,4,5-trisubstituted pyrazoles and isoxazoles has been developed. The first step involves a base-promoted condensation of a 2-sulfonyl- or a 2-carbonyl-acetonitrile derivative (1 or 7) with an isothiocyanate 2 and in situ immobilization of the resulting thiolate anion on Merrifield resin. Reaction of the resin-bound sulfonyl intermediate 4 with hydrazine or hydroxylamine, followed by release from the resin and intramolecular cyclization, affords 3,5-diamino-4-(arylsulfonyl)-1H-pyrazoles 5 or isoxazoles 6, respectively. Reaction of the resin-bound carbonyl intermediate 9 with hydrazine, on the other hand, leads to 3-(arylamino)-5-aryl-1H-pyrazole-4-carbonitriles 10.

  3. Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells.

    PubMed

    Radzi, Rozanaliza; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Minami, Saburo; Nakayama, Yuji; Okamoto, Yoshiharu

    2012-05-01

    We examined the effects of photodynamic hyperthemal therapy (PHT), which is a combination of photodynamic therapy (PDT) and hyperthermia (HT), on the apoptosis and cell cycle progression of murine melanoma B16F10 cells. The percentage of apoptotic cell was determined by flow cytometry using fluorescein isothiocyanate (FITC)-conjugated Annexin V and propidium iodide (PI) double staining. The cell cycle analysis was performed by PI staining with flow cytometry. The expression of cyclins and heat shock protein 70 (Hsp70) were examined by a Western blotting analysis. PHT induces death in B16F10 cells, and PHT-mediated apoptosis occurred acutely and persistently in vitro. Our study demonstrated that PHT using indocyanine green (ICG) and near infrared (NIR) light source induces apoptosis and G0/G1 cell cycle arrest in the B16F10 cells. PMID:22146339

  4. Plasmonic luminescent core-shell nanocomposites-enhanced chemiluminescence arising from the decomposition of peroxomonosulfite

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Xue, Wei; Lu, Chao; Li, Hai-fang; Zheng, Yongzan; Lin, Jin-Ming

    2013-12-01

    A core-shell structure of plasmonic luminescent nanocomposite, Ni@SiO2@FITC@SiO2 (NSFS) combining the stable luminescence of fluorophore with the excellent plasmonic property of metal nanomaterials, has been synthesized through layer-by-layer assembly. The effect of NSFS on the ultraweak chemiluminescence (CL) reaction of hydrogen peroxide (H2O2) and sodium bisulfite (NaHSO3) was explored for the first time. It was found that the CL intensity from the decomposition of peroxomonosulfite was significantly enhanced by NSFS. The mechanism of the nanocomposite-enhanced CL was revealed as the coupling of chemically induced excited states of fluorescein isothiocyanate (FITC) with surface plasmons of Ni nanoparticles based on studies of CL emission spectra, electron spin resonance spectra, extinction spectra and fluorescence spectra. The work sheds new light on the characteristics of the versatile materials and gives us new insight into the optical properties of fluorophores.

  5. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    SciTech Connect

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-02-20

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  6. Rhenium and technetium tricarbonyl complexes of 1,4-Substituted pyridyl-1,2,3-triazole bidentate 'click' ligands conjugated to a targeting RGD peptide.

    PubMed

    Connell, Timothy U; Hayne, David J; Ackermann, Uwe; Tochon-Danguy, Henri J; White, Jonathan M; Donnelly, Paul S

    2014-04-01

    New 1,4-substituted pyridyl-1,2,3-triazole ligands with pendent phenyl isothiocyanate functional groups linked to the heterocycle through a short methylene or longer polyethylene glycol spacers were prepared and conjugated to a peptide containing the arginine-glycine-aspartic acid peptide motif. Rhenium and technetium carbonyl complexes, [M(CO)3 L(x) (py)](+) (where M = Re(I) or (99m) Tc(I) ; L(x)  = 1,4-substituted pyridyl-1,2,3-triazole ligands and py = pyridine) were prepared. One rhenium complex has been characterized by X-ray crystallography, and the luminescent properties of [M(CO)3 L(x) (py)](+) are reported.

  7. A Periosteum-Inspired 3D Hydrogel-Bioceramic Composite for Enhanced Bone Regeneration .

    PubMed

    Chun, Yong Yao; Wang, Jun Kit; Tan, Nguan Soon; Chan, Peggy Puk Yik; Tan, Timothy Thatt Yang; Choong, Cleo

    2016-02-01

    A 3D injectable hydrogel-bioceramic composite consisting of gelatin-3-(4-hydroxyphenyl) propionic acid (Gtn-HPA) and carboxymethyl cellulose-tyramine (CMC-Tyr), incorporated with fish scale-derived calcium phosphate (CaP), is developed for bone applications. The hydrogel-bioceramic composite has significantly improved the elastic modulus compared to the non-filled hydrogel, of which the addition of 10 w/v% CaP showed zero order fluorescein isothiocyanate (FITC)-dextran release profile and a significantly higher proliferation rate of encapsulated cells. All the samples promote the nucleation and growth of CaP minerals when exposed to 1× SBF. Overall, the hydrogel-bioceramic composite with 10 w/v% CaP can potentially be used as a periosteum-mimicking membrane to facilitate bone regeneration.

  8. Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species

    PubMed Central

    Sestili, Piero; Fimognari, Carmela

    2015-01-01

    According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species' formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species. PMID:26185755

  9. Plasmonic luminescent core-shell nanocomposites-enhanced chemiluminescence arising from the decomposition of peroxomonosulfite.

    PubMed

    Chen, Hui; Xue, Wei; Lu, Chao; Li, Hai-fang; Zheng, Yongzan; Lin, Jin-Ming

    2013-12-01

    A core-shell structure of plasmonic luminescent nanocomposite, Ni@SiO2@FITC@SiO2 (NSFS) combining the stable luminescence of fluorophore with the excellent plasmonic property of metal nanomaterials, has been synthesized through layer-by-layer assembly. The effect of NSFS on the ultraweak chemiluminescence (CL) reaction of hydrogen peroxide (H2O2) and sodium bisulfite (NaHSO3) was explored for the first time. It was found that the CL intensity from the decomposition of peroxomonosulfite was significantly enhanced by NSFS. The mechanism of the nanocomposite-enhanced CL was revealed as the coupling of chemically induced excited states of fluorescein isothiocyanate (FITC) with surface plasmons of Ni nanoparticles based on studies of CL emission spectra, electron spin resonance spectra, extinction spectra and fluorescence spectra. The work sheds new light on the characteristics of the versatile materials and gives us new insight into the optical properties of fluorophores.

  10. Influence of polyethylene glycol on the size of Schizosaccharomyces pombe electropores

    SciTech Connect

    Hood, M.T.; Stachow, C. )

    1992-04-01

    The role of polyethylene glycol (PEG) in the transformation of Schizosaccharomyces pombe by electroporation is investigated by fluorescein isothiocyanate-dextran uptake and transformation studies. It is shown that when S. pombe cells are electroporated in the presence of PEG, the permeability state created is sustained until removal of PEG. In addition, the permeability of electroporated S. pombe envelopes is further increased with longer incubation times in PEG. The increased permeability is apparently a result of enlarged pores (electropores) due to the presence of PEG. Comparison of a heat pulse transformation protocol with electroporation suggests a second role for PEG in the uptake of macromolecules. Since pores are not thought to be created during a heat pulse, the PEG may be facilitating the uptake of plasmid DNA. This facilitation of uptake would also be expected to affect DNA uptake by electroporated cells.

  11. Microwave-assisted synthesis of new N₁,N₄-substituted thiosemicarbazones.

    PubMed

    Reis, Camilla Moretto dos; Pereira, Danilo Sousa; Paiva, Rojane de Oliveira; Kneipp, Lucimar Ferreira; Echevarria, Aurea

    2011-01-01

    We present an efficient procedure for the synthesis of thirty-six N₁,N₄-substituted thiosemicarbazones, including twenty-five ones that are reported for the first time, using a microwave-assisted methodology for the reaction of thiosemicarbazide intermediates with aldehydes in the presence of glacial acetic acid in ethanol and under solvent free conditions. Overall reaction times (20-40 min when ethanol as solvent, and 3 min under solvent free conditions) were much shorter than with the traditional procedure (480 min); satisfactory yields and high-purity compounds were obtained. The thiosemicarbazide intermediates were obtained from alkyl or aryl isothiocyanates and hydrazine hydrate or phenyl hydrazine by stirring at room temperature for 60 min or by microwave irradiation for 30 min, with lower yields for the latter. The preliminary in vitro antifungal activity of thiosemicarbazones was evaluated against Aspergillus parasiticus and Candida albicans. PMID:22186954

  12. Photodynamic hyperthermal therapy with indocyanine green (ICG) induces apoptosis and cell cycle arrest in B16F10 murine melanoma cells.

    PubMed

    Radzi, Rozanaliza; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Minami, Saburo; Nakayama, Yuji; Okamoto, Yoshiharu

    2012-05-01

    We examined the effects of photodynamic hyperthemal therapy (PHT), which is a combination of photodynamic therapy (PDT) and hyperthermia (HT), on the apoptosis and cell cycle progression of murine melanoma B16F10 cells. The percentage of apoptotic cell was determined by flow cytometry using fluorescein isothiocyanate (FITC)-conjugated Annexin V and propidium iodide (PI) double staining. The cell cycle analysis was performed by PI staining with flow cytometry. The expression of cyclins and heat shock protein 70 (Hsp70) were examined by a Western blotting analysis. PHT induces death in B16F10 cells, and PHT-mediated apoptosis occurred acutely and persistently in vitro. Our study demonstrated that PHT using indocyanine green (ICG) and near infrared (NIR) light source induces apoptosis and G0/G1 cell cycle arrest in the B16F10 cells.

  13. Ellagitannins in Cancer Chemoprevention and Therapy

    PubMed Central

    Ismail, Tariq; Calcabrini, Cinzia; Diaz, Anna Rita; Fimognari, Carmela; Turrini, Eleonora; Catanzaro, Elena; Akhtar, Saeed; Sestili, Piero

    2016-01-01

    It is universally accepted that diets rich in fruit and vegetables lead to reduction in the risk of common forms of cancer and are useful in cancer prevention. Indeed edible vegetables and fruits contain a wide variety of phytochemicals with proven antioxidant, anti-carcinogenic, and chemopreventive activity; moreover, some of these phytochemicals also display direct antiproliferative activity towards tumor cells, with the additional advantage of high tolerability and low toxicity. The most important dietary phytochemicals are isothiocyanates, ellagitannins (ET), polyphenols, indoles, flavonoids, retinoids, tocopherols. Among this very wide panel of compounds, ET represent an important class of phytochemicals which are being increasingly investigated for their chemopreventive and anticancer activities. This article reviews the chemistry, the dietary sources, the pharmacokinetics, the evidence on chemopreventive efficacy and the anticancer activity of ET with regard to the most sensitive tumors, as well as the mechanisms underlying their clinically-valuable properties. PMID:27187472

  14. A bio-ballistic micro-jet for drug injection into animal skin using a Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Yoh, J. J.; Jang, H.; Park, M.; Han, T.; Hah, J.

    2016-01-01

    Imaging of the abdominal skin of a guinea pig after injecting a fluorescent probe and biotin via the laser-induced ballistic technique revealed the epidermal and dermal layers which were stained well below 60 \\upmu m underneath the outer layer of the skin. An extensive network of cells was evident in the deeper layer of the stained dermis as the distributed fluorescein isothiocyanate dose was administered by repeated injection using a laser-based micro-jet. We performed optically controlled release of the drug by breaching the guinea pig's skin tissue targeting the region 10-400 \\upmu m beneath the outermost layer. Tissue damage was minimized by reducing the injection volume to approximately 100 nl per pulse. This was done using a micro-jet diameter equal to half of that of a conventional 200 \\upmu m syringe needle. Thus, the optimally controlled delivery of liquid drugs using an irradiated laser pulse was shown to be possible.

  15. Evaluation of parameters influencing the molecular delivery by biodegradable microsphere-mediated perforation using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, Tatsuki; Terakawa, Mitsuhiro

    2014-01-01

    The parameters critically influencing the delivery rate on the biodegradable microsphere-mediated femtosecond (fs) laser perforation are investigated in detail with the aim of developing efficient molecular delivery. Cell membrane was perforated by the irradiation of weakly focused fs laser pulses to the spherical polylactic acid microspheres conjugated to the cell membrane. The delivery of fluorescein isothiocyanate-dextran and fluorescent silica particles to A431 cells is investigated in detail. The increase in the number of irradiated laser pulses had resulted in the increase of delivery rate. The delivery rate depends on the size and functionalization of fluorescent silica particles in which silica particles of 100 nm in diameter were able to be delivered into 20% of the irradiated cells, suggesting that the pore sizes are large enough for the delivery of therapeutic agents into cells. These findings contribute to the development of an efficient and safe phototherapy and drug delivery.

  16. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham.

    PubMed

    Dussault, Dominic; Vu, Khanh Dang; Lacroix, Monique

    2014-01-01

    The purpose of this research was to evaluate the application of commercially available essential oils (EOs) and oleoresins to control bacterial pathogens for ready to eat food. In this study, sixty seven commercial EOs, oleoresins (ORs) and pure compounds were used to evaluate in vitro their antimicrobial activity against six food pathogens. These products were first screened for their antimicrobial activity using disk diffusion assay. Forty one products were then chosen for further analysis to determine their minimum inhibitory concentration against 6 different bacteria. There were 5 different products (allyl isothiocyanate, cinnamon Chinese cassia, cinnamon OR, oregano and red thyme) that showed high antimicrobial activity against all tested bacteria. Further analysis examined the effect of four selected EOs on controlling the growth rate of mixed cultures of Listeria monocytogenes in ham. A reduction of the growth rate by 19 and 10% was observed when oregano and cinnamon cassia EOs were respectively added in ham at a concentration of 500 ppm. PMID:24012976

  17. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    NASA Technical Reports Server (NTRS)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  18. Flavor-active compounds potentially implicated in cooked cauliflower acceptance.

    PubMed

    Engel, Erwan; Baty, Céline; Le Corre, Daniel; Souchon, Isabelle; Martin, Nathalie

    2002-10-23

    The aim of the present study was to determine the flavor-active compounds responsible for the "sulfur" and "bitter" flavors of cooked cauliflower potentially implicated in cauliflower rejection by consumers. Eleven varieties of cauliflower were cooked and assessed by a trained sensory panel for flavor profile determination. Among the 13 attributes, the varieties differed mainly according to their "cauliflower odor note" and their "bitterness". Various glucosinolates were quantified by HPLC and correlated with bitterness intensity. The results showed that neoglucobrassicin and sinigrin were responsible for the bitterness of cooked cauliflower. Application of Dynamic Headspace GC-Olfactometry and DH-GC-MS showed that allyl isothiocyanate (AITC), dimethyl trisulfide (DMTS), dimethyl sulfide (DMS), and methanethiol (MT) were the key odorants of cooked cauliflower "sulfur" odors. Moreover, these volatile compounds corresponded to the main compositional differences observed between varieties. Finally, AITC, DMTS, DMS, MT, sinigrin, and neoglucobrassicin were shown to be potential physicochemical determinants of cooked cauliflower acceptance.

  19. New construction of an animal model for the orthotopic transplantation of an ovarian tumor

    PubMed Central

    2014-01-01

    A new technique has successfully established the non-obese diabetic/severely combined immunodeficiency (NOD/SCID) mouse model of ovarian cancer. Under 4% chloral hydrate (0.1 mL/g dose) anesthesia, female mice were inoculated with tumor-cell suspension. The expression rate of OVCAR3 to CA125 was assessed using flow cytometry. The inoculated site was hand palpated and the signs and symptoms related to tumor growth were observed with the naked eye. The allophycocyanin (APC) indirectly labeled mouse-antihuman CA125 and fluorescein isothiocyanate (FITC)-labeled anti-mouse MHC Class I molecule (H-2Kd/H-2Dd) were observed using a confocal laser scanning microscope. The animal model of ovarian cancer constructed using this method can more directly reflect the characteristics of cancer cells. It provides reliable experimental results and presents a technical platform for the research of ovarian cancer stem cells. PMID:24955132

  20. Oxytocinase-immunohistochemical demonstration in the immature and term human placenta.

    PubMed

    Small, C W; Watkins, W B

    1975-10-27

    Oxytocinase (cystine aminopeptidase) was purified from human retroplacental serum by a combination of fractional precipitation, hydroxylapatite chromatography and gel exlusion chromatography on Sephadex G-200. The purified enzyme possessed a specific activity of 980 mIU/mg using L-cystine-di-p-nitroanilide as substrate. This represented a 3200 fold concentration from the starting material in an overall yield of 12%. Antibodies against oxytocinase were raised in rabbits and the gamma-globulins fraction labelled with fluorescein isothiocyanate prior to its use in the immunofluorescence histochemical localization of the enzyme in human placental tissue. Oxytocinase was confined to the syncytiotrophoblastic cells of normal term, and immature placentas as well as in placentas from patients suffering from severe toxaemia. Specific immunofluorescence was also present in the outer margins of the chorion and to a lesser extent in the amnion.

  1. Raphanus sativus L. var niger as a source of phytochemicals for the prevention of cholesterol gallstones.

    PubMed

    Castro-Torres, Ibrahim Guillermo; De la O-Arciniega, Minarda; Gallegos-Estudillo, Janeth; Naranjo-Rodríguez, Elia Brosla; Domínguez-Ortíz, Miguel Ángel

    2014-02-01

    Raphanus sativus L. var niger (black radish) is a plant of the cruciferous family with important ethnobotanical uses for the treatment of gallstones in Mexican traditional medicine. It has been established that the juice of black radish decreases cholesterol levels in plasma and dissolves gallstones in mice. Glucosinolates, the main secondary metabolites of black radish, can hydrolyze into its respective isothiocyanates and have already demonstrated antioxidant properties as well as their ability to diminish hepatic cholesterol levels; such therapeutic effects can prevent the formation of cholesterol gallstones. This disease is considered a current problem of public health. In the present review, we analyze and discuss the therapeutic effects of the main glucosinolates of black radish, as well as the effects that this plant has on cholesterol gallstones disease.

  2. Certain tricyclic and pentacyclic-hetero nitrogen rhodol dyes

    DOEpatents

    Haugland, Richard P.; Whitaker, James E.

    1993-01-01

    Novel fluorescent dyes based on the rhodol structure are provided. The new reagents contain functional groups capable of forming a stable fluorescent product with functional groups typically found in biomolecules or polymers including amines, phenols, thiols, acids, aldehydes and ketones. Reactive groups in the rhodol dyes include activated esters, isothiocyanates, amines, hydrazines, halides, acids, azides, maleimides, aldehydes, alcohols, acrylamides and haloacetamides. The products are detected by their absorbance or fluorescence properties. The spectral properties of the fluorescent dyes are sufficiently similar in wavelengths and intensity to fluorescein or rhodamine derivatives as to permit use of the same equipment. The dyes, however, show less spectral sensitivity to pH in the physiological range than does fluorescein, have higher solubility in non-polar solvents and have improved photostability and quantum yields.

  3. Use of TD-GC-TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa).

    PubMed

    Bell, Luke; Spadafora, Natasha D; Müller, Carsten T; Wagstaff, Carol; Rogers, Hilary J

    2016-03-01

    An important step in breeding for nutritionally enhanced varieties is determining the effects of the post-harvest supply chain on phytochemicals and the changes in VOCs produced over time. TD-GC-TOF-MS was used and a technique for the extraction of VOCs from the headspace using portable tubes is described. Forty-two compounds were detected; 39 were identified by comparison to NIST libraries. Thirty-five compounds had not been previously reported in Eruca sativa. Seven accessions were assessed for changes in headspace VOCs over 7days. Relative amounts of VOCs across 3 time points were significantly different - isothiocyanate-containing molecules being abundant on 'Day 0'. Each accession showed differences in proportions/types of volatiles produced on each day. PCA revealed a separation of VOC profiles according to the day of sampling. Changes in VOC profiles over time could provide a tool for assessment of shelf life.

  4. A high-performance liquid chromatographic assay for the enantiomers of bevantolol in human plasma.

    PubMed

    Rose, S E; Randinitis, E J

    1991-06-01

    A method was developed and validated for the simultaneous analysis of (+)- and (-)-bevantolol in human plasma. The assay involves plasma protein precipitation, derivatization of racemic bevantolol to its diastereomeric thioureas with 2,3,4,5-tetra-o-acetyl-alpha-D-glucopyranosyl isothiocyanate, and solid-phase extraction of the diastereomers from 0.5 ml human plasma. Chromatographic separation was accomplished under isocratic conditions using a reversed-phase C-18 analytical column and mobile phase consisting of equal parts of 75 mM dibasic ammonium phosphate buffer (adjusted to pH 3.5 with phosphoric acid) and acetonitrile, with a detection wavelength of 220 nm. The absolute peak-height method was employed for quantitation. Retention times for the diastereomers of (+)- and (-)-bevantolol were 7.4 and 6.4 min, respectively. The method is suitable for the quantification of the enantiomers over a concentration range of 40 to 800 ng/ml per enantiomer.

  5. A double fluorescence staining protocol to determine the cross-sectional area of myofibers using image analysis

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Fassel, T. A.; Schultz, E.; Greaser, M. L.; Cassens, R. G.

    1996-01-01

    A double fluorescence staining protocol was developed to facilitate computer based image analysis. Myofibers from experimentally treated (irradiated) and control growing turkey skeletal muscle were labeled with the anti-myosin antibody MF-20 and detected using fluorescein-5-isothiocyanate (FITC). Extracellular material was stained with concanavalin A (ConA)-Texas red. The cross-sectional area of the myofibers was determined by calculating the number of pixels (0.83 mu m(2)) overlying each myofiber after subtracting the ConA-Texas red image from the MF-20-FITC image for each region of interest. As expected, myofibers in the irradiated muscle were smaller (P < 0.05) than those in the non-irradiated muscle. This double fluorescence staining protocol combined with image analysis is accurate and less labor-intensive than classical procedures for determining the cross-sectional area of myofibers.

  6. Anticancer Mechanism of Sulfur-Containing Compounds.

    PubMed

    De Gianni, Elena; Fimognari, Carmela

    2015-01-01

    Fruit and vegetables have traditionally represented a main source for the discovery of many biologically active substances with therapeutic values. Among the many bioactive compounds identified over the years, sulfur-containing compounds, which are present especially in the genera Allium and Brassica, have been showing a protective effect against different types of cancer. Many in vitro and in vivo studies reported that apoptosis is crucial for the anticancer effects of sulfur-containing compounds. Garlic and onion compounds and isothiocyanates contained in Brassica vegetables are able to modulate apoptosis by a wide range of mechanisms. This chapter will give an overview on the induction of apoptosis by sulfur-containing compounds in cancer cells and their different molecular mechanisms. Finally, the potential clinical implications of their proapoptotic effects will be discussed. PMID:26298460

  7. B-Decachloro-o-carborane Derivatives suitable for the preparation of boron-labeled biological macromolecules.

    PubMed

    Gabel, D; Walczyna, R

    1982-10-01

    B-decachloro-o-carborane derivatives in which one of the carbon atoms was substituted by -CH2CH2CO2H (I), -CH2CHOHCH2-O-CH2CH=CH2 (II) and -CH2CHOHCH2-O-p-C6H4NHCOOC(CH3)3 (III) were prepared from decachloro-o-carborane and the corresponding bromo (I) or epoxi (II and III) derivatives under alkaline conditions. II could be epoxidized and bound to dextran, Concanavalin A, and human IgG, with a boron content of 4.3, 4.8, and 4.9% (w/w), respectively. III could be converted to the corresponding amine and further to the isothiocyanate. Such boron derivatives could be suitable compounds for neutron capture therapy of tumors, as they are well water soluble and could be attached to tumor specific antibodies.

  8. Synthesis of diverse nitrogen-enriched heterocyclic scaffolds using a suite of tunable one-pot multicomponent reactions.

    PubMed

    Martinez-Ariza, Guillermo; Ayaz, Muhammad; Medda, Federico; Hulme, Christopher

    2014-06-01

    Five elegant and switchable three-component reactions which enable access to a new series of nitrogen-containing heterocycles are reported. A novel one-step addition of an isocyanide to a hydrazine derived Schiff base affords unique six-membered pyridotriazine scaffolds (A and E). With slight modification of reaction conditions and replacement of the nucleophilic isocyanide moiety with different electrophiles (i.e., isocyanates, isothiocyanates, cyclic anhydrides, and acyl chlorides) five-membered triazolopyridine scaffolds (B, D, F, G) are generated in a single step. Furthermore, the use of phenyl hydrazine enables access to dihydroindazole-carboxamides, devoid of a bridge-head nitrogen (C). All protocols are robust and tolerate a diverse collection of reactants, and as such, it is expected that the new scaffolds and associated chemistry will garner high interest from medicinal chemists involved in either file enhancement or specific target-related drug discovery campaigns.

  9. Allergic contact dermatitis to plants: understanding the chemistry will help our diagnostic approach.

    PubMed

    Rozas-Muñoz, E; Lepoittevin, J P; Pujol, R M; Giménez-Arnau, A

    2012-01-01

    Allergic contact dermatitis due to plants is common. Potentially allergenic plants and plant products are found in many everyday environments, such as the home, the garden, the workplace, and recreational settings. By improving our knowledge of allergenic plant-derived chemical compounds, we will be better positioned to identify novel allergens. We review the most relevant chemical allergens that contribute to plant allergic contact dermatitis and propose a clinical classification system based on 5 major families of chemical sensitizers: α-methylene-γ-butyrolactones, quinones, phenol derivatives, terpenes, and miscellaneous structures (disulfides, isothiocyanates, and polyacetylenic derivates). We also describe the different clinical pictures of plant allergic contact dermatitis and review currently available patch test materials. A better understanding of the specific allergens involved in plant allergic contact dermatitis will help to predict cross-reactivity between different plant species or families.

  10. Impact of carbondiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery

    NASA Astrophysics Data System (ADS)

    Hao, Yuzhi; Xu, Peng; He, Chuan; Yang, Xiaoyan; Huang, Min; Xing, James; Chen, Jie

    2011-07-01

    1-ethyl-3-(3-dimethylaminopropyl) carbondiimide hydrochloride (EDC) is commonly used as a crosslinker to help bind biomolecules, such as DNA plasmids, with nanostructures. However, EDC often remains, after a crosslink reaction, in the micro-aperture of the nanostructure, e.g., carbon nanotube. The remaining EDC shows positive green fluorescent signals and makes a nanostructure with a strong cytotoxicity which induces cell death. The toxicity of EDC was confirmed on a breast cancer cell line (MCF-7) and two leukemic cell lines (THP-1 and KG-1). The MCF-7 cells mainly underwent necrosis after treatment with EDC, which was verified by fluorescein isothiocyanate (FITC) annexin V staining, video microscopy and scanning electronic microscopy (SEM). If the EDC was not removed completely, the nanostructures with remaining EDC produced a green fluorescent background that could interfere with flow cytometry (FACS) measurement and result in false information about GFP plasmid delivery. Effective methods to remove residual EDC on macromolecules were also developed.

  11. Definition of two agonist types at the mammalian cold-activated channel TRPM8.

    PubMed

    Janssens, Annelies; Gees, Maarten; Toth, Balazs Istvan; Ghosh, Debapriya; Mulier, Marie; Vennekens, Rudi; Vriens, Joris; Talavera, Karel; Voets, Thomas

    2016-01-01

    Various TRP channels act as polymodal sensors of thermal and chemical stimuli, but the mechanisms whereby chemical ligands impact on TRP channel gating are poorly understood. Here we show that AITC (allyl isothiocyanate; mustard oil) and menthol represent two distinct types of ligands at the mammalian cold sensor TRPM8. Kinetic analysis of channel gating revealed that AITC acts by destabilizing the closed channel, whereas menthol stabilizes the open channel, relative to the transition state. Based on these differences, we classify agonists as either type I (menthol-like) or type II (AITC-like), and provide a kinetic model that faithfully reproduces their differential effects. We further demonstrate that type I and type II agonists have a distinct impact on TRPM8 currents and TRPM8-mediated calcium signals in excitable cells. These findings provide a theoretical framework for understanding the differential actions of TRP channel ligands, with important ramifications for TRP channel structure-function analysis and pharmacology. PMID:27449282

  12. Goat serums for fluorescent antibody conjugates to chlamydial antigens.

    PubMed Central

    Tessler, J

    1984-01-01

    Serums from goats hyperimmunized with Chlamydia psittaci consistently produce antichlamydial fluorescent antibody conjugate of high titer. The titer of the fluorescent antibody conjugate prepared from a given serum correlated well with the titer obtained by agar gel precipitin, but not with the complement fixation. The agar gel precipitin test can be used to predict whether a given serum is satisfactory for use in production of a conjugate for direct fluorescent antibody tests. Serums with an agar gel precipitin titer of 1/8 or higher generally produce a usable fluorescent antibody conjugate. Labeling gamma globulins with fluorescein isothiocyanate at a ratio of 1/150 resulted in satisfactory fluorescent antibody conjugates. Cultures of Vero cells infected with chlamydiae were found to be suitable for titration of the fluorescent antibody conjugates. PMID:6372973

  13. Spectroscopic and nonlinear optical properties of new chalcone fluorescent probes for bioimaging applications: a theoretical and experimental study.

    PubMed

    Krawczyk, Przemysław; Pietrzak, Marek; Janek, Tomasz; Jędrzejewska, Beata; Cysewski, Piotr

    2016-06-01

    In this study, the newly synthesized non-centrosymmetric, 4-dimethylamino-3'-isothiocyanatochalcone (PKA) compound was presented. This compound belongs to the chalcone group, and its main purpose is to be used in biomedical imaging as a fluorescence dye. For this reason, the linear and nonlinear properties in solvents of different polarity were thoroughly studied. In accordance with the requirements for a fluorochrome, the PKA compound is characterized by strong absorption, large Stokes' shifts, relatively high fluorescence quantum yields and high nonlinear optical response. Moreover, the isothiocyanate reactive probe was conjugated with Concanavalin A. Conventional fluorescence microscopy imaging of Candida albicans cells incubated with the PKA-Concanavalin A, is presented. The results of this study show that the novel conjugate PKA-Concanavalin A could be a promising new probe for cellular labelling in biological and biomedical research. Graphical abstract Spectroscopic behavior of the PKA dye. PMID:27168200

  14. Simultaneous amination of TiO2 nanoparticles in the gas phase synthesis for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-No; Kim, Yangeon; Lee, Chang-Woo; Lee, Jai-Sung

    2011-10-01

    A simultaneous synthesis and surface amination method to effectively modify the surface of inorganic nanoparticles is discussed in this study. As a target material system and surface functional group, TiO2 nanoparticles and amine were selected. APTES (3-aminopropyltriethoxysilane), the source of amine group, was mixed with TTIP (titanium tetraisopropoxide) and used for the synthesis of aminated TiO2 nanoparticles. XRD (X-ray diffractometry) results showed TiO2 nanoparticles of pure anatase phase, 15 nm in crystallite size, were successfully synthesized at 700°C and 50 mbar. Fourier transformation infrared (FT-IR) spectroscopy measurement and confocal microscopy study using fluoresceine isothiocyanate (FITC) confirmed that amine groups were successfully deposited and activated on the surface of TiO2 nanoparticles.

  15. Immunocytochemical localization of myrosinase in Brassica napus L.

    PubMed

    Thangstad, O P; Iversen, T H; Slupphaug, G; Bones, A

    1990-01-01

    The cytological and intracellular localization of myrosinase (EC 3.2.3.1) has been studied by immunochemical techniques using paraffin-embedded sections of radicles and cotyledons from seeds of Brassica napus L. cv. Niklas. For immunolabelling, sections were sequentially incubated with a monoclonal anti-myrosinase antibody and with peroxidase-and fluorescein-isothiocyanate-conjugated secondary antibodies. Enzyme and fluorescence label was present in typical myrosin cells both in radicles and in cotyledons. With higher magnification, fluorescence label revealed that the intracellular localization of myrosinase was associated with the tonoplast-like membrane surrounding the myrosin grains in the myrosin cells. The results also indicate that a large proportion of the positive myrosin cells are located in the second-outermost cell layer of the peripheral cortex region of the radicles. PMID:24201952

  16. Co-assembly of plasma and cellular fibronectins into fibrils in human fibroblast cultures

    PubMed Central

    1990-01-01

    Exogenous plasma and endogenous cellular fibronectins on the surface of cultured fibroblasts and in extracellular matrix fibrils were colocalized by fluorescent and high voltage immunoelectron microscopy. Fibroblast cultures grown in the presence or absence of cycloheximide were incubated with exogenous plasma fibronectin labeled with fluorescein isothiocyanate. A monoclonal antibody specific for the EIIIA sequence of cellular fibronectin was used to detect cellular fibronectin. A rabbit antifluorescein antibody identified fluoresceinated plasma fibronectin. In cultures incubated in the presence of cycloheximide, plasma fibronectin was bound to the cell surface and was assembled into extracellular fibrils. In cultures grown in the absence of cycloheximide, plasma and cellular fibronectins were observed in the same matrix fibrils and in the same locations on the cell surface. There was not, however, random admixture of the two proteins. PMID:2114411

  17. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  18. Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery

    PubMed Central

    2016-01-01

    Bottom-up hierarchical assembly has emerged as an elaborate and energy-efficient strategy for the fabrication of smart materials. Herein, we present a hierarchical assembly process, whereby linear amphiphilic block copolymers are self-assembled into micelles, which in turn are accommodated at the interface of microfluidic droplets via cucurbit[8]uril-mediated host–guest chemistry to form supramolecular microcapsules. The monodisperse microcapsules can be used for simultaneous carriage of both organic (Nile Red) and aqueous-soluble (fluorescein isothiocyanate-dextran) cargo. Furthermore, the well-defined compartmentalized structure benefits from the dynamic nature of the supramolecular interaction and offers synergistic delivery of cargos with triggered release or through photocontrolled porosity. This demonstration of premeditated hierarchical assembly, where interactions from the molecular to microscale are designed, illustrates the power of this route toward accessing the next generation of functional materials and encapsulation strategies. PMID:26982167

  19. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  20. Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1982-01-01

    The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.

  1. Functionalization of cubic boron nitride films with rhodamine B and their fluorescent properties

    NASA Astrophysics Data System (ADS)

    Liu, W. M.; Zhang, H. Y.; Wang, P. F.; Ye, Q.; Yang, Y.; He, B.; Bello, I.; Lee, S. T.; Zhang, W. J.

    2011-08-01

    Fluorophore-functionalized cubic boron nitride (cBN) films grown by chemical vapor deposition were achieved by immobilizing rhodamine B isothiocyanate onto their surfaces. To perform the immobilization, the cBN substrates were modified with amino groups by photochemical reaction between hydrogen-terminated cBN surfaces and allylamine. The surface analysis of hydrogen-terminated cBN films surfaces and after functionalization with x-ray photoelectron spectroscopy verified that rhodamine B was indeed attached to the cBN surfaces with covalent bonding. The rhodamine B-functionalized cBN surfaces showed significant variation in fluorescent spectra and confocal imaging upon the treatment in acidic or basic solutions.

  2. Functionalization of cubic boron nitride films with rhodamine B and their fluorescent properties

    SciTech Connect

    Liu, W. M.; Zhang, H. Y.; Wang, P. F.; Ye, Q.; Yang, Y.; He, B.; Bello, I.; Lee, S. T.; Zhang, W. J.

    2011-08-08

    Fluorophore-functionalized cubic boron nitride (cBN) films grown by chemical vapor deposition were achieved by immobilizing rhodamine B isothiocyanate onto their surfaces. To perform the immobilization, the cBN substrates were modified with amino groups by photochemical reaction between hydrogen-terminated cBN surfaces and allylamine. The surface analysis of hydrogen-terminated cBN films surfaces and after functionalization with x-ray photoelectron spectroscopy verified that rhodamine B was indeed attached to the cBN surfaces with covalent bonding. The rhodamine B-functionalized cBN surfaces showed significant variation in fluorescent spectra and confocal imaging upon the treatment in acidic or basic solutions.

  3. Fluorescence correlation spectroscopy reveals strong fluorescence quenching of FITC adducts on PEGylated gold nanoparticles in water and the presence of fluorescent aggregates of desorbed thiolate ligands.

    PubMed

    Loumaigne, Matthieu; Praho, Raïssa; Nutarelli, Daniele; Werts, Martinus H V; Débarre, Anne

    2010-09-28

    Colloidal gold particles functionalised with oligoethylene-glycolated disulfide ligands and fluorescent moieties derived from fluorescein isothiocyanate (FITC) have been prepared and studied in aqueous suspension using fluorescence correlation spectroscopy (FCS). FCS probes the dynamics of the particles at the single object level, and reveals the desorption of fluorescent ligands which subsequently aggregate into larger (slower diffusing) objects. Cross-correlation spectroscopy of the FITC fluorescence and the Rayleigh-Mie scattering (RM-FCCS) of the gold cores shows that the only detectable fluorescent objects are free ligands and aggregates not associated with a gold particle. The fluorescence of bound fluorophores is quenched making their fluorescence too weak to be detected. FCS and RM-FCCS are useful tools for characterising functionalised noble metal particles in solution, under conditions similar to those used in optical bio-imaging. Desorption of thiolates from gold nanoparticles needs to be taken into account when working with these materials at low concentration.

  4. TRPA1 detects environmental chemicals and induces avoidance behavior and arousal from sleep.

    PubMed

    Yonemitsu, Toru; Kuroki, Chiharu; Takahashi, Nobuaki; Mori, Yasuo; Kanmura, Yuichi; Kashiwadani, Hideki; Ootsuka, Youichirou; Kuwaki, Tomoyuki

    2013-01-01

    Detecting threats and escaping before serious confrontations are important for animals to avoid danger and death. Transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily, is expressed in a subset of sensory neurons and mediates nociception evoked by pungent chemicals. Using behavioral testing, we found that TRPA1 knockout mice failed to avoid entering a chamber filled with vapor of formalin, allyl isothiocyanate, and acrolein. The avoidance behavior was blocked by nasal but not subcutaneous administration of a blocker to TRPA1. We also found that TRPA1 knockout mice did not wake when exposed to formalin during sleep. Additionally, the spinal trigeminal nucleus, the first relay neurons of the trigeminal system, showed massive expression of c-Fos after a brief (3 min) exposure to formalin vapor. TRPA1 seems to be a sentinel for environmental chemicals and induces avoidance behaviors and waking by way of the trigeminal system. PMID:24172941

  5. Near-field Raman spectroscopy using a tetrahedral SNOM tip

    NASA Astrophysics Data System (ADS)

    Klein, Stefan; Reichert, Joachim; Fuchs, Harald; Fischer, Ulrich

    2006-04-01

    An example of near-field Raman spectroscopy based on the tip-enhancement at an apertureless tetrahedral scanning near-field optical tip (t-tip) is presented. Tip-enhanced Raman spectroscopy (TERS) is based on the excitation of localized surface plasmons (LSP) in the cavity of tip and surface. The LSP provide a highly confined and large field enhancement at the tip apex which allows molecular spectroscopy at the nanoscale. The t-tip consists, in contrast to other TERS configurations which use opaque tips, of a gold coated glass tip which is irradiated from the inside. We demonstrate TERS spectra of the dye malachite green isothiocyanate and show an increased bleaching of the dye in presence of the tip. Data analysis show that the actual experimental conditions support moderate enhancement of the Raman signal.

  6. Syntheses and Reactions of Chalcogen-containing Heterocycles.

    PubMed

    Sashida, Haruki

    2016-01-01

    The advances in my laboratory for the past 20-25 years concerning the chemistry of chalcogen-containing heterocycles are reviewed. The intramolecular cyclization of the chalcogenols (-TeH, -SeH, -SH) into a triple bond or appropriate leaving group produced various chalcogen-containing heterocycles. The reactions of the obtained products were examined: the reactions of 1-benzo- and 2-benzopyrylium salts containing a tellurium or selenium element with several nucleophiles, including alkoxides, amines, the cyanide ion, an active methyl compound (acetone), Grignard reagents, copper reagents, and tin reagents, along with hydrogenation and hydrolysis reactions, provided corresponding chromes or isochromes having various functional groups at the 2- or 1-C position. Isothiocyanate and isoselenocyanate were used as chalcogen sources for the preparation of five- or six-membered heterocycles. In addition, double intramolecular cyclization, ring-expansion reactions, electrophilic cyclization and iodocyclization were also carried out. PMID:27252064

  7. Fluorescent magnetic nanoprobes: design and application for cell imaging.

    PubMed

    Zhang, Guo; Feng, Jianghua; Lu, Lehui; Zhang, Baohua; Cao, Linyuan

    2010-11-01

    Multifunctional nanoprobes combining magnetic nanoparticles with organic dyes have attracted tremendous interest due to their promising applications in biomedical field. Here we demonstrate a facile and general strategy for the fabrication of robust fluorescent magnetic nanoprobes with high payloads of dye molecules and their use as multimodal nanoprobes for cell imaging. These nanoprobes not only effectively keep photochemical stability of dyes, but also provide a platform for grafting other functional or targeted moieties into silica surface via primary amines. Moreover, the nanoprobes are uniformly spherical morphology and can be dispersed well in aqueous solution, which are very desirable for biomedical applications. Importantly, this method can be extended to synthesize other bifunctional nanoprobes by using the dyes with isothiocyanate group.

  8. Price-Focused Analysis of Commercially Available Building Blocks for Combinatorial Library Synthesis.

    PubMed

    Kalliokoski, Tuomo

    2015-10-12

    Combinatorial libraries are synthesized by combining smaller reagents (building blocks), the price of which is an important component of the total costs associated with the synthetic exercise. A significant portion of commercially available reagents are too expensive for large scale work. In this study, 13 commonly used reagent classes in combinatorial library synthesis (primary and secondary amines, carboxylic acids, alcohols, ketones, aldehydes, boronic acids, acyl halides, sulfonyl chlorides, isocyanates, isothiocyanates, azides and chloroformates) were analyzed with respect to the cost, physicochemical properties (molecular weight and calculated logP), chemical diversity, and 3D-likeness using a large data set. The results define the chemical space accessible under a constraint of limited financial resources.

  9. Reduction of pressure in postcapillary venules induced by EPI-fluorescent illumination of FITC-dextrans

    SciTech Connect

    Bekker, A.Y.; Ritter, A.B.; Duran, W.N.

    1987-01-01

    Blue light (488nm) irradiation of intravenously injected fluorescein isothiocyanate (FITC)-Dextrans induces platelet aggregation in microvessels. The build-up of the aggregates in the microvessel lumen results in a change in microcirculatory hemodynamics. We found that lumenal pressure falls to approximately 75% of the control pressure within the first 10 seconds following the onset of irradiation. The damage, however, is not permanent and pressure returns to control level after the illumination of the microcirculatory field is discontinued. This effect can lead to erroneous conclusions in studies of microcirculatory hemodynamics and macromolecular permselectivity in preparations in which intravital fluorescence microscopy is employed. Short time irradiation (1 min. or less) of the microcirculatory field is recommended as a means of minimizing the deleterious effects of blue light irradiation.

  10. Phytochemicals in cancer prevention and therapy: truth or dare?

    PubMed

    Russo, Maria; Spagnuolo, Carmela; Tedesco, Idolo; Russo, Gian Luigi

    2010-04-01

    A voluminous literature suggests that an increase in consumption of fruit and vegetables is a relatively easy and practical strategy to reduce significantly the incidence of cancer. The beneficial effect is mostly associated with the presence of phytochemicals in the diet. This review focuses on a group of them, namely isothiocyanate, curcumin, genistein, epigallocatechin gallate, lycopene and resveratrol, largely studied as chemopreventive agents and with potential clinical applications. Cellular and animal studies suggest that these molecules induce apoptosis and arrest cell growth by pleiotropic mechanisms. The anticancer efficacy of these compounds may result from their use in monotherapy or in association with chemotherapeutic drugs. This latter approach may represent a new pharmacological strategy against several types of cancers. However, despite the promising results from experimental studies, only a limited number of clinical trials are ongoing to assess the therapeutic efficacy of these molecules. Nevertheless, the preliminary results are promising and raise solid foundations for future investigations.

  11. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  12. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents.

    PubMed

    Nagender, P; Naresh Kumar, R; Malla Reddy, G; Krishna Swaroop, D; Poornachandra, Y; Ganesh Kumar, C; Narsaiah, B

    2016-09-15

    A series of novel pyrazolo[3,4-b]pyridine based target compounds were synthesized starting from the key intermediate ethyl 2-(3-amino-6-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-1-yl)acetate 5 on reaction with hydrazine hydrate followed by reaction with different aldehydes, acid chlorides and isothiocyanates to form hydrazones 7, oxadiazoles 8, 1,2,4 triazoles 10 and thiadiazoles 11 respectively in high yield. All the final compounds were screened for anticancer activity against four human cancer cell lines. Among them, 1,2,4 triazole derivatives showed promising activity and compound 10d is identified as a lead molecule. PMID:27528432

  13. Use of fluorescein hydrazide and fluorescein thiosemicarbazide reagents for the fluorometric determination of protein carbonyl groups and for the detection of oxidized protein on polyacrylamide gels.

    PubMed

    Ahn, B; Rhee, S G; Stadtman, E R

    1987-03-01

    Highly fluorescent thiosemicarbazide and hydrazide prepared by reaction of fluorescein isothiocyanate with hydrazine or adipic acid dihydrazide have been used to monitor the presence of carbonyl groups in oxidatively modified proteins. After oxidation, proteins react with these reagents under anaerobic conditions in the dark to yield fluorescent protein conjugates (presumably thiosemicarbazones or hydrazones) which can be visualized as fluorescent bands following electrophoresis (0-4 degrees C) on lithium dodecyl sulfate-polyacrylamide gels. These reagents do not react with unoxidized proteins. The conjugates formed dissociate readily at room temperature but are fairly stable at pH 6-9, 0 degrees C. Current data suggest that these reagents will be useful in the detection and quantitation of oxidatively modified proteins in biological systems. PMID:2883911

  14. Quantitative profiling of glucosinolates by LC-MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane.

    PubMed

    Sasaki, Katsunori; Neyazaki, Makiko; Shindo, Kazutoshi; Ogawa, Toshiya; Momose, Masaki

    2012-08-15

    Sulforaphane is an isothiocyanate well known for its potential health benefits. With the aim of finding sulforaphane supply sources, its precursor, glucoraphanin, was widely searched for among Brassica oleracea varieties. Quantitative profiling of seven glucosinolates by LC-MS analysis was performed on 6 cultivars of broccoli, 32 of cabbage and 24 cultivars of kale. The glucoraphanin levels found in three cultivars of cabbage and six cultivars of kale were comparable with, or even higher than, the highest of broccoli (119.4 mg/100g FW). The most promising group belonged to the black kale, Cavolo nero. Use of a C30 column and an ammonium formate buffer in LC-MS and a micro plate solid phase extraction technique was highly effective.

  15. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing

    PubMed Central

    Barba, Francisco J.; Nikmaram, Nooshin; Roohinejad, Shahin; Khelfa, Anissa; Zhu, Zhenzhou; Koubaa, Mohamed

    2016-01-01

    Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized in the gut lumen. When cruciferous are consumed without processing, myrosinase enzyme present in these plants hydrolyzes the glucosinolates in the proximal part of the gastrointestinal tract to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. When cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates transit to the colon where they are hydrolyzed by the intestinal microbiota. Numerous factors, such as storage time, temperature, and atmosphere packaging, along with inactivation processes of myrosinase are influencing the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability. PMID:27579302

  16. Labeling Thiols on Proteins, Living Cells, and Tissues with Enhanced Emission Induced by FRET

    NASA Astrophysics Data System (ADS)

    Yuan, Yue; Wang, Xijun; Mei, Bin; Zhang, Dongxin; Tang, Anming; An, Linna; He, Xiaoxiao; Jiang, Jun; Liang, Gaolin

    2013-12-01

    Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved.

  17. Novel urea and thiourea derivatives of thiazole-glutamic acid conjugate as potential inhibitors of microbes and fungi.

    PubMed

    Sharma, A; Suhas, R; Chandan, S; Gowda, D C

    2013-01-01

    Since discovery and development of effective as well as safe drugs has brought a progressive era in human healthcare that is accompanied by the appearance of drug resistant bacterial strains, there is constant need of new antibacterial agent having novel mechanisms of action to act against the harmful pathogens. In the present study, several N-terminal substituted urea/thiourea derivatives were synthesized by the reaction of glutamic acid and 3-(1-piperazinyl)-1,2-benzisothiazole with various substituted phenyl isocyanates/isothiocyanates. Elemental analysis, IR, 1H NMR, 13C NMR and mass spectral data confirmed the structure of the newly synthesized compounds. The derivatives were investigated for their antibacterial and antifungal activities against various pathogens of human origin by agar well diffusion method and microdilution method. The preliminary antimicrobial bioassay reveals that the compounds containing fluoro and bromo as substituents showed promising antimicrobial activity.

  18. Pharmacological Modulation of Lung Carcinogenesis in Smokers: Preclinical and Clinical Evidence.

    PubMed

    De Flora, Silvio; Ganchev, Gancho; Iltcheva, Marietta; La Maestra, Sebastiano; Micale, Rosanna T; Steele, Vernon E; Balansky, Roumen

    2016-02-01

    Many drugs in common use possess pleiotropic properties that make them capable of interfering with carcinogenesis mechanisms. We discuss here the ability of pharmacological agents to mitigate the pulmonary carcinogenicity of mainstream cigarette smoke. The evaluated agents include anti-inflammatory drugs (budesonide, celecoxib, aspirin, naproxen, licofelone), antidiabetic drugs (metformin, pioglitazone), antineoplastic agents (lapatinib, bexarotene, vorinostat), and other drugs and supplements (phenethyl isothiocyanate, myo-inositol, N-acetylcysteine, ascorbic acid, berry extracts). These drugs have been evaluated in mouse models mimicking interventions either in current smokers or in ex-smokers, or in prenatal chemoprevention. They display a broad spectrum of activities by attenuating either smoke-induced preneoplastic lesions or benign tumors and/or malignant tumors. Together with epidemiological data, these findings provide useful information to predict the potential effects of pharmacological agents in smokers. PMID:26726119

  19. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2015-12-01

    Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites.

  20. Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis.

    PubMed

    Pinheiro, Paula C; Sousa, Célia T; Araújo, João P; Guiomar, António J; Trindade, Tito

    2013-11-15

    This work reports research on the development of bimodal magnetic and fluorescent 1D nanoprobes. First, ferromagnetic nickel nanowires (NiNW) have been prepared by Ni electrodeposition in an anodic aluminum oxide (AAO) template. The highly ordered self-assembled AAO nanoporous templates were fabricated using a two-step anodization method of aluminum foil. The surface of the NiNW were then modified with polyethyleneimine (PEI) which was previously labeled with an organic dye (fluorescein isothiocyanate: FITC) via covalent bonding. The ensuing functionalized NiNW exhibited the characteristic green fluorescence of FITC and could be magnetically separated from aqueous solutions by using a NdFeB magnet. Finally, the interest of these bimodal NiNW as nanoprobes for in vitro cell separation and biolabeling was preliminary assessed in a proof of principle experiment that involved the attachment of biofunctionalized NiNW to blood cells.

  1. Labeling thiols on proteins, living cells, and tissues with enhanced emission induced by FRET.

    PubMed

    Yuan, Yue; Wang, Xijun; Mei, Bin; Zhang, Dongxin; Tang, Anming; An, Linna; He, Xiaoxiao; Jiang, Jun; Liang, Gaolin

    2013-01-01

    Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved. PMID:24343586

  2. Anti-Biofouling Effect of PEG-Grafted Block Copolymer Synthesized by RAFT Polymerization.

    PubMed

    Kim, Seon-Mi; Han, Sang Suk; Kim, A Young; Choi, Beom-Jin; Paik, Hyun-Jong; Lee, Inwon; Park, Hyun; Chun, Ho Hwan; Cho, Youngjin; Hwang, Do-Hoon

    2015-10-01

    Poly(glycidyl methadrylate-block-styrene) (PGMA-b-PS), a block copolymer consisting of glycidyl methacrylate and styrene, was synthesized via reversible addition-fragmentation chain transfer living polymerization. The synthesized PGMA-b-PS was then grafted with low-molecular-weight polyethylene glycol (PEG) via epoxy ring opening to give PGMA-g-PEG-b-PS, which was evaluated as an anti-biofouling coating material. As a preliminary test for the anti-biofouling effect, a protein adsorption experiment was performed on the synthesized block copolymer surface. The block copolymers were spin-coated onto silicon wafers, and protein adsorption experiments were carried out using fluorescein isothiocyanate conjugate-labeled bovine serum albumin. The fluorescence intensity of the protein adsorbed on the block copolymer surface was compared with that of a polystyrene film as a reference. The synthesized PGMA-g-PEG-b-PS film showed much lower fluorescence intensity than that of the PS film.

  3. Soil Fumigation: Principles and Application Technology

    PubMed Central

    Lembright, H. W.

    1990-01-01

    The principal soil fumigants and their order of discovery are carbon disulfide, chloropicrin, methyl bromide, 1,3-dichloropropene, ethylene dibromide, 1,2-dibromo-3-chloropropane, and methyl isothiocyanate. Biological activity of soil fumigants ranges from limited to broad spectrum. Fumigants diffuse through the continuous soil air space as gases. Physical and chemical characteristics determine diffusion rates, distribution between the soil air and moisture, and sorption onto and into the soil particles. The principal soil factors affecting the efficacy of each treatment are the size and continuity of air space, moisture, temperature, organic matter, and depth of placement. Application can be made overall with tractor injection or plow-sole, or as a row or bed treatment. Treatment for trees is best made in conjunction with tree site backhoeing. PMID:19287772

  4. Synthesis of Diverse Nitrogen-Enriched Heterocyclic Scaffolds Using a Suite of Tunable One-Pot Multicomponent Reactions

    PubMed Central

    2015-01-01

    Five elegant and switchable three-component reactions which enable access to a new series of nitrogen-containing heterocycles are reported. A novel one-step addition of an isocyanide to a hydrazine derived Schiff base affords unique six-membered pyridotriazine scaffolds (A and E). With slight modification of reaction conditions and replacement of the nucleophilic isocyanide moiety with different electrophiles (i.e., isocyanates, isothiocyanates, cyclic anhydrides, and acyl chlorides) five-membered triazolopyridine scaffolds (B, D, F, G) are generated in a single step. Furthermore, the use of phenyl hydrazine enables access to dihydroindazole-carboxamides, devoid of a bridge-head nitrogen (C). All protocols are robust and tolerate a diverse collection of reactants, and as such, it is expected that the new scaffolds and associated chemistry will garner high interest from medicinal chemists involved in either file enhancement or specific target-related drug discovery campaigns. PMID:24788091

  5. Binding of Bacillus thuringiensis Cry1A toxins with brush border membrane vesicles of maize stem borer (Chilo partellus Swinhoe).

    PubMed

    Sharma, Priyanka; Nain, Vikrant; Lakhanpaul, Suman; Kumar, P A

    2011-02-01

    Maize stem borer (Chilo partellus) is a major insect pest of maize and sorghum in Asia and Africa. Bacillus thuringiensis (Bt) δ-endotoxins have been found effective against C. partellus, both in diet-overlay assay and in transgenic plants. Gene stacking as one of the resistance management strategies in Bt maize requires an understanding of receptor sharing and binding affinity of δ-endotoxins. In the present study, binding affinity of three fluorescein isothiocyanate labeled Cry1A toxins showed high correlation with the toxicity of respective δ-endotoxins. Competitive binding studies showed that Cry1Ab toxins share some of the binding sites with Cry1Aa and Cry1Ac with low affinity and that Cry1Ab may have additional binding sites that are unavailable to the other two toxins tested. PMID:20831871

  6. Impact of carbondiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery.

    PubMed

    Hao, Yuzhi; Xu, Peng; He, Chuan; Yang, Xiaoyan; Huang, Min; Xing, James; Chen, Jie

    2011-07-15

    1-Ethyl-3-(3-dimethylaminopropyl) carbondiimide hydrochloride (EDC) is commonly used as a crosslinker to help bind biomolecules, such as DNA plasmids, with nanostructures. However, EDC often remains, after a crosslink reaction, in the micro-aperture of the nanostructure, e.g., carbon nanotube. The remaining EDC shows positive green fluorescent signals and makes a nanostructure with a strong cytotoxicity which induces cell death. The toxicity of EDC was confirmed on a breast cancer cell line (MCF-7) and two leukemic cell lines (THP-1 and KG-1). The MCF-7 cells mainly underwent necrosis after treatment with EDC, which was verified by fluorescein isothiocyanate (FITC) annexin V staining, video microscopy and scanning electronic microscopy (SEM). If the EDC was not removed completely, the nanostructures with remaining EDC produced a green fluorescent background that could interfere with flow cytometry (FACS) measurement and result in false information about GFP plasmid delivery. Effective methods to remove residual EDC on macromolecules were also developed.

  7. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis

    PubMed Central

    Li, Q.; Zhu, Y.; Zhang, N.-Q.; Fang, Q.

    2016-01-01

    In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 105 N/m) were achieved. PMID:27230468

  8. Hybrid aptamer-antibody linked fluorescence resonance energy transfer based detection of trinitrotoluene.

    PubMed

    Sabherwal, Priyanka; Shorie, Munish; Pathania, Preeti; Chaudhary, Shilpa; Bhasin, K K; Bhalla, Vijayender; Suri, C Raman

    2014-08-01

    Combining synthetic macromolecules and biomolecular recognition units are promising in developing novel diagnostic and analysis techniques for detecting environmental and/or clinically important substances. Fluorescence resonance energy transfer (FRET) apta-immunosensor for explosive detection is reported using 2,4,6-trinitrotoluene (TNT) specific aptamer and antibodies tagged with respective FRET pair dyes in a sandwich immunoassay format. FITC-labeled aptamer was used as a binder molecule in the newly developed apta-immunoassay format where the recognition element was specific anti-TNT antibody labeled with rhodamine isothiocyanate. The newly developed sensing platform showed excellent sensitivity with a detection limit of the order of 0.4 nM presenting a promising candidate for routine screening of TNT in samples.

  9. Immunolocalization of non-extractable (bound) residues of pesticides and industrial contaminants in plants and soil.

    PubMed

    Dankwardt, A; Hock, B

    2001-11-01

    The application of immunochemical methods for the investigation of non-extractable (bound) residues is reviewed. Non-extractable residues may be presented to antibodies as antigenic determinants, which are exposed for instance in plant tissue and humic substances. Fluorescent probes as well as enzyme markers have been applied for the detection of bound residues. The application of antibodies labeled with fluorescein isothiocyanate (FITC) and phycoerythrin revealed the presence of atrazine in cryosections of atrazine-treated corn leaves and water plants. Atrazine could be localized by antibodies coupled to fluorescent markers in soil from corn fields but not in atrazine-free soil. Quantitative results were obtained by the application of enzyme immunoassays to the investigation of triazine and 2,4,6-trinitrotoluene (TNT) residues, bound to soil humic acids. Finally, the use of antibodies with different recognition patterns provides information on the ligation of non-extractable residues to the matrix.

  10. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhu, Y.; Zhang, N.-Q.; Fang, Q.

    2016-05-01

    In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 105 N/m) were achieved.

  11. Biofumigation for control of pale potato cyst nematodes: activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil.

    PubMed

    Lord, James S; Lazzeri, Luca; Atkinson, Howard J; Urwin, Peter E

    2011-07-27

    The effects of brassica green manures on Globodera pallida were assessed in vitro and in soil microcosms. Twelve of 22 brassica accessions significantly inhibited the motility of G. pallida infective juveniles in vitro. Green manures of selected brassicas were then incorporated into soil containing encysted eggs of G. pallida. Their effect on egg viability was estimated by quantifying nematode actin 1 mRNA by RT-qPCR. The leaf glucosinolate profiles of the plants were determined by high-performance liquid chromatography. Three Brassica juncea lines (Nemfix, Fumus, and ISCI99) containing high concentrations of 2-propenyl glucosinolate were the most effective, causing over 95% mortality of encysted eggs of G. pallida in polyethylene-covered soil. The toxic effects of green manures were greater in polyethylene-covered than in open soil. Toxicity in soil correlated with the concentration of isothiocyanate-producing glucosinolate but not total glucosinolate in green manures.

  12. [Study on oral absorption enhancers of astragalus polysaccharides].

    PubMed

    Chen, Xiao-Yun; Tan, Xiao-Bin; Sun, E; Liu, Dan; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2014-04-01

    Astragalus polysaccharides was lounded to 4-(2-aminoethylphenol), followed by labeling the APS-Tyr with fluorescein-5-isothiocyanate (FITC) at the secondary amino group. The absorption enhancement effects of low molecular weight chitosan and protamine on astragalus polysaccharides were evaluated via Caco-2 cell culture model. The results show that the fluorecent labeling compound has good stability and high sensitivity. On the other hand low molecular weight chitosan and protamine also can promoted absorption of the astragalus polysaccharides without any cytotoxity, and the absorption increase was more significant with increasing the amount of low molecular weight chitosan and protamine. At the same time, the low molecular weight chitosan has slightly better effect. The transepithelial electric resistance (TEER) of Caco-2 cells show that absorption enhancers could improve its membrane transport permeability by opening tight junctions between cells and increasing the cell membrane fluidity.

  13. Cancer Chemoprotection Through Nutrient-mediated Histone Modifications

    PubMed Central

    Gao, Yifeng; Tollefsbol, Trygve O.

    2016-01-01

    Epigenetics, the study of heritable changes in gene expression without modifying the nucleotide sequence, is among the most important topics in medicinal chemistry and cancer chemoprotection. Among those changes, DNA methylation and histone modification have been shown to be associated with various types of cancers in a number of ways, many of which are regulated by dietary components that are mostly found in plants. Although, mechanisms of nutrient components affecting histone acetylation/deacetylation in cancer are widely studied, how those natural compounds affect cancer through other histone modifications, such as methylation, phosphorylation and ubiquitylation, is rarely reviewed. Thus, this review article discusses impacts recently studied on histone acetylation as well as other histone modifications by dietary components, such as genistein, resveratrol, curcumin, epigallocatechin-3-gallate (EGCG), 3,3′-diindolylmethane (DIM), diallyl disulfide, garcinol, procyanidin B3, quercetin, sulforaphane and other isothiocyanates, in various types of cancer. PMID:25891109

  14. Sensitive fiber-optic immunoassay

    NASA Astrophysics Data System (ADS)

    Walczak, Irene M.; Love, Walter F.; Slovacek, Rudolf E.

    1991-07-01

    The principles of evanescent wave theory were applied to an immunological sensor for detecting the cardiac-specific isoenzyme creatine kinase-MB (CK-MB). The detection of the CK-MB isoenzyme is used in conjunction with the total CK measurement in the diagnosis of acute myocardial infarction. The clinical range for CK-MB is from 2-100 ng/ml. Previous work which utilized the fluorophor, Fluorescein isothiocyanate (FITC), was able to discriminate between 0 and 3 ng/ml CK-MB. Use of the fluorophor B-phycoerythrin (BPE) increased the assay sensitivity to 0.1 ng/ml CK-MB. The data was collected for 15 minutes using an optical launch and collection angle of 25 degree(s). This fiber optic based system is homogeneous and requires no subsequent washing, handling, or processing steps after exposure to the sample.

  15. Energy Transfer of CdSe/ZnS Nanocrystals Encapsulated with Rhodamine-Dye Functionalized Poly(acrylic acid)

    PubMed Central

    Somers, Rebecca C.; Snee, Preston T.; Bawendi, Moungi G.; Nocera, Daniel G.

    2014-01-01

    Energy transfer between a CdSe/ZnS nanocrystal (NC) donor and a rhodamine isothiocyanate (RITC) acceptor has been achieved via a functionalized poly(acrylic acid) (PAA) encapsulating layer over the surface of the NC. The modification of PAA with both N-octylamine (OA) and 5-amino-1-pentanol (AP), [PAA-OA-AP], allows for the simultaneous water-solubilization and functionalization of the NCs, underscoring the ease of synthesizing NC-acceptor conjugates with this strategy. Photophysical studies of the NC-RITC constructs showed that energy transfer is efficient, with kFRET approaching 108 s−1. The ease of the covalent conjugation of molecules to NCs with PAA-OA-AP coating, together with efficient energy transfer, makes the NCs encapsulated with PAA-OA-AP attractive candidates for sensing applications. PMID:24926175

  16. Highly sensitive detection of copper ions by densely grafting fluorescein inside polyethyleneimine core-silica shell nanoparticles.

    PubMed

    Qiao, Yali; Zheng, Xingwang

    2015-12-21

    In this work, polyethyleneimine (PEI) core-silica shell nanoparticles were synthesized and used for densely grafting fluorescent receptor units inside the core of these particles to result in multi-receptor units collectively sensing a target. Herein, copper ion quenching of the fluorescence intensity of a fluorescein isothiocyanate (FITC) system was selected as a model to confirm our proof-of-concept strategy. Our results showed that, compared to free FITC in solution, a 10-fold enhancement of the Stern-Volmer constant value for Cu(2+) quenching of the fluorescence intensity of the grafted state of FITC in PEI core-silica shell nanoparticles was achieved. Furthermore, compared to a previous collective sensing scheme by densely grafting fluorescent receptor units on a silica nanoparticle surface, the proposed scheme, which grafted fluorescent receptor units inside a polymer nano-core, was simple, highly efficient and presented higher sensitivity.

  17. Phytochemicals in Cancer Prevention and Therapy: Truth or Dare?

    PubMed Central

    Russo, Maria; Spagnuolo, Carmela; Tedesco, Idolo; Russo, Gian Luigi

    2010-01-01

    A voluminous literature suggests that an increase in consumption of fruit and vegetables is a relatively easy and practical strategy to reduce significantly the incidence of cancer. The beneficial effect is mostly associated with the presence of phytochemicals in the diet. This review focuses on a group of them, namely isothiocyanate, curcumin, genistein, epigallocatechin gallate, lycopene and resveratrol, largely studied as chemopreventive agents and with potential clinical applications. Cellular and animal studies suggest that these molecules induce apoptosis and arrest cell growth by pleiotropic mechanisms. The anticancer efficacy of these compounds may result from their use in monotherapy or in association with chemotherapeutic drugs. This latter approach may represent a new pharmacological strategy against several types of cancers. However, despite the promising results from experimental studies, only a limited number of clinical trials are ongoing to assess the therapeutic efficacy of these molecules. Nevertheless, the preliminary results are promising and raise solid foundations for future investigations. PMID:22069598

  18. Use of TD-GC–TOF-MS to assess volatile composition during post-harvest storage in seven accessions of rocket salad (Eruca sativa)

    PubMed Central

    Bell, Luke; Spadafora, Natasha D.; Müller, Carsten T.; Wagstaff, Carol; Rogers, Hilary J.

    2016-01-01

    An important step in breeding for nutritionally enhanced varieties is determining the effects of the post-harvest supply chain on phytochemicals and the changes in VOCs produced over time. TD-GC–TOF-MS was used and a technique for the extraction of VOCs from the headspace using portable tubes is described. Forty-two compounds were detected; 39 were identified by comparison to NIST libraries. Thirty-five compounds had not been previously reported in Eruca sativa. Seven accessions were assessed for changes in headspace VOCs over 7 days. Relative amounts of VOCs across 3 time points were significantly different – isothiocyanate-containing molecules being abundant on ‘Day 0’. Each accession showed differences in proportions/types of volatiles produced on each day. PCA revealed a separation of VOC profiles according to the day of sampling. Changes in VOC profiles over time could provide a tool for assessment of shelf life. PMID:26471601

  19. Visual detection of Akt mRNA in living cell using gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Tian, Caiping; Li, Siwen; Wang, Zhaohui; Gu, Yueqing

    2014-09-01

    PI3K-Akt signaling pathway plays the key role in cell apoptosis and survival, and the components of PI3K /Akt signaling pathway are often abnormally expressed in human tumors. Therefore, determination of the Akt (protein kinase B, PKB) messenger ribonucleic acid (mRNA) expression is significantly important in understanding the mechanism of tumor progression. In this study, we designed a special hairpin deoxyribonucleic acid (DNA) functionalized with gold nanoparticles and fluorescein isothiocyanate(FITC) as a beacon for detecting human Akt mRNA. Spectrofluorometer was used to detect the fluorescence quenching and recovery of the beacons, and laser confocal scanning microscopy was adopted to image Akt mRNA in cells. The results showed that this beacon could sensitively and quantitatively measure the Akt mRNA in living cells . This strategy is potentially useful for the cellular imaging of RNA or protein expression in living cells.

  20. Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids.

    PubMed

    Zhai, Hong; Feng, Ting; Dong, Lingyu; Wang, Liyun; Wang, Xiangfeng; Liu, Hailing; Liu, Yuan; Chen, Luan; Xie, MengXia

    2016-08-01

    A novel dual emission ratiometric fluorescence probe for determination of glucose has been developed. The reference dye fluorescence isothiocyanate (FITC) has been encapsulated in the silica nanoparticles and then the red emission CdTe QDs were grafted on the surface of the silica particles to obtain the fluorescence probe. With glucose and dopamine as substrates, the glucose level was proportional to the fluorescence ratio change of above probe caused by dopamine oxidation, which was produced via bienzyme catalysis (glucose oxidase and horseradish peroxidase). The established approach was sensitive and selective, and has been applied to determine the glucose in beverage, urine and serum samples. The average recoveries of the glucose at various spiking levels ranged from 95.5% to 108.9% with relative standard deviations from 1.5% to 4.3%. The results provided a clue to develop sensors for rapid determination of the target analytes from complex matrices. PMID:26988523