Science.gov

Sample records for 6-ohda lesion model

  1. Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson's Disease

    PubMed Central

    Thiele, Sherri L.; Warre, Ruth; Nash, Joanne E.

    2012-01-01

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients1-4. However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise3,5. In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice9,10. However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer11. More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this model has proven

  2. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.

  3. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group. PMID:24140562

  4. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA lesioned rats

    PubMed Central

    Kaminer, Jaime; Thakur, Pratibha

    2015-01-01

    Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short- and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms. PMID:25673748

  5. RGS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease.

    PubMed

    Ko, Wai Kin D; Martin-Negrier, Marie-Laure; Bezard, Erwan; Crossman, Alan R; Ravenscroft, Paula

    2014-10-01

    Regulators of G-protein signalling (RGS) proteins are implicated in striatal G-protein coupled receptor (GPCR) sensitisation in the pathophysiology of l-DOPA-induced abnormal involuntary movements (AIMs), also known as dyskinesia (LID), in Parkinson's disease (PD). In this study, we investigated RGS protein subtype 4 in the expression of AIMs in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID. The effects of RGS4 antisense brain infusion on the behavioural and molecular correlates of l-DOPA priming in 6-OHDA-lesioned rats were assessed. In situ hybridisation revealed that repeated l-DOPA/benserazide treatment caused an elevation of RGS4 mRNA levels in the striatum, predominantly in the lateral regions. The increased expression of RGS4 mRNA in the rostral striatum was found to positively correlate with the behavioural (AIM scores) and molecular (pre-proenkephalin B, PPE-B expression) markers of LID. We found that suppressing the elevation of RGS4 mRNA in the striatum by continuous infusion of RGS4 antisense oligonucleotides, via implanted osmotic mini-pumps, during l-DOPA priming, reduced the induction of AIMs. Moreover, ex vivo analyses of the rostral dorsolateral striatum showed that RGS4 antisense infusion attenuated l-DOPA-induced elevations of PPE-B mRNA and dopamine-stimulated [(35)S]GTPγS binding, a marker used for measuring dopamine receptor super-sensitivity. Taken together, these data suggest that (i) RGS4 proteins play an important pathophysiological role in the development and expression of LID and (ii) suppressing the elevation of RGS4 mRNA levels in l-DOPA priming attenuates the associated pathological changes in LID, dampening its physiological expression. Thus, modulating RGS4 proteins could prove beneficial in the treatment of dyskinesia in PD.

  6. LPA signaling is required for dopaminergic neuron development and is reduced through low expression of the LPA1 receptor in a 6-OHDA lesion model of Parkinson's disease.

    PubMed

    Yang, Xiao-Yun; Zhao, Ethan Y; Zhuang, Wen-Xin; Sun, Feng-Xiang; Han, Hai-Lin; Han, Hui-Rong; Lin, Zhi-Juan; Pan, Zhi-Fang; Qu, Mei-Hua; Zeng, Xian-Wei; Ding, Yuchuan

    2015-11-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that activates at least five known G-protein-coupled receptors (GPCRs): LPA1-LPA5. The nervous system is a major locus for LPA1 expression. LPA has been shown to regulate neuronal proliferation, migration, and differentiation during central nervous system development as well as neuronal survival. Furthermore, deficient LPA signaling has been implicated in several neurological disorders including neuropathic pain and schizophrenia. Parkinson's disease (PD) is a neurodegenerative movement disorder that results from the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The specific molecular pathways that lead to DA neuron degeneration, however, are poorly understood. The influence of LPA in the differentiation of mesenchymal stem cells (MSCs) into DA neurons in vitro and LPA1 expression in a 6-hydroxydopamine (6-OHDA) lesion model of PD in vivo were examined in the present study. LPA induced neuronal differentiation in 80.2 % of the MSC population. These MSCs developed characteristic neuronal morphology and expressed the neuronal marker, neuron-specific enolase (NSE), while expression of the glial marker, glial fibrillary acidic protein (GFAP), was absent. Moreover, 27.6 % of differentiated MSCs were positive for tyrosine hydroxylase (TH), a marker for DA neurons. In the 6-OHDA PD rat model, LPA1 expression in the substantia nigra was significantly reduced compared to control. These results suggest LPA signaling via activation of LPA1 may be necessary for DA neuron development and survival. Furthermore, reduced LPA/LPA1 signaling may be involved in DA neuron degeneration thus contributing to the pathogenesis of PD. PMID:26169757

  7. Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson's disease and L-DOPA-induced dyskinesia.

    PubMed

    Kobylecki, Christopher; Crossman, Alan R; Ravenscroft, Paula

    2013-09-01

    Abnormal corticostriatal plasticity is a key mechanism of L-DOPA-induced dyskinesia (LID) in Parkinson's disease (PD). Antagonists at glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, such as IEM 1460, reduce induction and expression of dyskinesia in rat and non-human primate models of PD. AMPA receptor function is regulated by post-transcriptional splicing of subunit mRNA to produce flip and flop isoforms, which may therefore influence corticostriatal plasticity. The aim of this work was to evaluate alterations in alternative splicing of striatal AMPA receptor subunits in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID and PD. Male Sprague-Dawley rats received 12.5 μg 6-OHDA injections into the right medial forebrain bundle. In experiment 1, to assess acute dyskinesia, rats received L-DOPA/benserazide (6/15 mg/kg, i.p.) or vehicle for 21 days. In experiment 2, to assess dyskinesia priming, rats received vehicle, L-DOPA+vehicle or L-DOPA+IEM 1460 (3 mg/kg, i.p.) for 21 days. Animals were humanely killed 1h following final treatment in experiment 1, and 48 h following final treatment in experiment 2. Coronal sections of rostral striatum were processed for in situ hybridisation histochemistry, using oligonucleotide probes specific for the GluR1 and GluR2 subunits and their flip and flop isoforms. L-DOPA treatment increased GluR2-flip mRNA expression in the lesioned striatum of both groups; this was blocked by the Ca(2+)-permeable AMPA receptor antagonist IEM 1460. GluR1-flip expression was increased after 48 h drug washout but not in acute LID. There were no changes in expression of flop isoforms. Alternative splicing of AMPAR subunits contributes to abnormal striatal plasticity in the induction and expression of LID. Increases in GluR2-flip expression depend on activation of Ca(2+)-permeable AMPA receptors, which are a potential target of anti-dyskinetic therapies. PMID:23360800

  8. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.

  9. Adrenal Medullary Grafts Restore Olfactory Deficits and Catecholamine Levels of 6-OHDA Amygdala Lesioned Animals

    PubMed Central

    Fernández-Ruiz, Juan; Guzmán, Rubén; Martínez, María Dolores; Miranda, María Isabel; Bermúdez-Rattoni, Federico; Drucker-Colín, René

    1993-01-01

    Aside from motor and cognitive deficits, Parkinson patients also manifest a little-studied olfactory deficit. Since in Parkinson's disease there is a dopamine depletion of the amygdala due to mesocorticolimbic system degeneration, we decided to test olfactory and taste performance of 6-OHDA amygdala lesioned rats, as well as the possible restoration of either function with adrenal medullary transplants. Two 6-OHDA lesioned groups and one control group were tested in the potentiation of odor by taste aversion paradigm. On taste aversion none of the groups showed any impairment. In contrast, the 6-OHDA lesioned rats showed a marked impairment in olfactory aversion. At this point, one of the lesioned groups received a bilateral adrenal medullary graft within the lesioned area. After two months, all groups were submitted again to the behavioral paradigm. Taste remained unaffected, but the lesioned only group did not recover either olfactory aversion or normal catecholamine levels. The grafted group, on the other hand, restored olfactory aversion and catecholamine levels. It can be concluded from this study that catecholamine depletion of the amygdala is sufficient to produce a selective olfactory deficit, not accompanied by taste impairments, and that such a deficit can be reversed by adrenal medullary transplants, which in turn restore catecholamine levels. PMID:7948179

  10. Protective effect of methanolic extract of Garcinia indica fruits in 6-OHDA rat model of Parkinson's disease

    PubMed Central

    Antala, Bhaveshkumar V.; Patel, Manishkumar S.; Bhuva, Satish V.; Gupta, Shiv; Rabadiya, Samir; Lahkar, Mangala

    2012-01-01

    Context: Several studies have reported that antioxidants play an important role in Parkinson's disease (PD). Garcinia indica extract is a natural antioxidant, the present study was undertaken to evaluate the neuroprotective effect of methanolic extract of Garcinia indica (GIM) against 6-hydroxydopamine (6-OHDA) neurotoxicity for striatal dopaminergic neurons in the rat. Materials and Methods: Thirty adult Wistar rats were randomly divided into five groups namely control, 6-OHDA model, and GIM (100, 200, and 400 mg/kg body weight suspended in one ml of 0.1% carboxymethyl cellulose). The treatment was started three days before surgery and continued for next 14 days. The surgery was done on third day in all groups for administration of 6-OHDA into the right striatum and right substantia nigra, whereas control group injected with 6-OHDA vehicle. Various behavior and biochemical tests (Apomorphine-induced rotational behavior, Stepping test, Initiation time, Postural balance test, and Disengage time) were used to evaluate the neuroprotective effect of GIM. One-way analysis of variance (ANOVA) followed by Dunnett's test was used to compare inter-group differences. P<0.05 was considered as statistically significant. Results: GIM had significant (P<0.05, P<0.01) preventive effect in biochemical tests, i.e., dopamine and its metabolites measurement and in various behavior tests, i.e., apomorphine-induced rotational behavior, stepping test, initiation time, postural balance test, and disengage time as compared to 6-OHDA-treated rats. Conclusions: Our results demonstrated that GIM acted as an effective neuroprotective agent for striatal dopaminergic neurons in 6-OHDA lesioned rat model of PD. PMID:23248394

  11. Walking pattern analysis after unilateral 6-OHDA lesion and transplantation of foetal dopaminergic progenitor cells in rats.

    PubMed

    Klein, Alexander; Wessolleck, Johanna; Papazoglou, Anna; Metz, Gerlinde A; Nikkhah, Guido

    2009-05-16

    Functional sensorimotor recovery after transplantation of mesencephalic dopaminergic (DAergic) neurons has been well documented in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. However, the functional restoration of more specific gait-related patterns such as skilled walking, balance, and individual limb movements have been insufficiently studied. The purpose of this study was to investigate the behavioural effects of intrastriatal DA grafts on different aspects of normal and skilled walking in rats following unilateral 6-OHDA lesions of the medial forebrain bundle. Rats were subjected to drug-induced rotation, detailed footprint analysis, and assessment of skilled walking in the ladder rung walking test prior and after the transplantation of E14 ventral mesencephalon-derived progenitor cells. Good DAergic graft survival, as revealed by immunohistochemistry, was accompanied by a compensation of drug-induced rotational asymmetries. Interestingly, the analysis of walking patterns displayed a heterogeneous graft-induced response in skilled and non-skilled limb use. Grafted animals made fewer errors with their contralateral limbs in skilled walking than the sham-transplanted rats, and they improved their ipsi- and contralateral limb rotation. However, the parameter distance between feet showed a delayed recovery, and the stride length was not affected by the DA grafts at all. These findings indicate that ectopic intrastriatal transplantation of E14 ventral mesencephalon-derived cells promotes recovery of gait balance and stability, but does not ameliorate the shuffling gait pattern associated with 6-OHDA lesions. A full restoration of locomotor gait pattern might require a more complete and organotypic reconstruction of the mesotelencephalic DAergic pathway. PMID:19124044

  12. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease.

    PubMed

    Sadan, Ofer; Bahat-Stromza, Merav; Barhum, Yael; Levy, Yossef S; Pisnevsky, Anat; Peretz, Hagit; Ilan, Avihay Bar; Bulvik, Shlomo; Shemesh, Noam; Krepel, Dana; Cohen, Yoram; Melamed, Eldad; Offen, Daniel

    2009-10-01

    Stem cell-based therapy is a promising treatment for neurodegenerative diseases. In our laboratory, a novel protocol has been developed to induce bone marrow-derived mesenchymal stem cells (MSC) into neurotrophic factors- secreting cells (NTF-SC), thus combining stem cell-based therapy with the NTF-based neuroprotection. These cells produce and secrete factors such as brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor. Conditioned medium of the NTF-SC that was applied to a neuroblastoma cell line (SH-SY5Y) 1 h before exposure to the neurotoxin 6-hydroxydopamine (6-OHDA) demonstrated marked protection. An efficacy study was conducted on the 6-OHDA-induced lesion, a rat model of Parkinson's disease. The cells, either MSC or NTF-SC, were transplanted on the day of 6-OHDA administration and amphetamine-induced rotations were measured as a primary behavior index. We demonstrated that when transplanted posterior to the 6-OHDA lesion, the NTF-SC ameliorated amphetamine-induced rotations by 45%. HPLC analysis demonstrated that 6-OHDA induced dopamine depletion to a level of 21% compared to the untreated striatum. NTF-SC inhibited dopamine depletion to a level of 72% of the contralateral striatum. Moreover, an MRI study conducted with iron-labeled cells, followed by histological verification, revealed that the engrafted cells migrated toward the lesion. In a histological assessment, we found that the cells induced regeneration in the damaged striatal dopaminergic nerve terminal network. We therefore conclude that the induced MSC have a therapeutic potential for neurodegenerative processes and diseases, both by the NTFs secretion and by the migratory trait toward the diseased tissue.

  13. Lithium fails to protect dopaminergic neurons in the 6-OHDA model of Parkinson's disease.

    PubMed

    Yong, Yue; Ding, Hanqing; Fan, Zhiqin; Luo, Jia; Ke, Zun-Ji

    2011-03-01

    Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative diseases, the therapeutic potential of lithium receives great attention. Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons. The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD.

  14. Behavioural Assessment of the A2a/NR2B Combination in the Unilateral 6-OHDA-Lesioned Rat Model: A New Method to Examine the Therapeutic Potential of Non-Dopaminergic Drugs

    PubMed Central

    Michel, Anne; Downey, Patrick; Van Damme, Xavier; De Wolf, Catherine; Schwarting, Rainer; Scheller, Dieter

    2015-01-01

    In Parkinson’s disease (PD), dopaminergic therapies are often associated with the development of motor complications. Attention has therefore been focused on the use of non-dopaminergic drugs. This study developed a new behavioural method capable of demonstrating the added value of combining adenosinergic and glutamatergic receptor antagonists in unilateral 6-OHDA lesioned rats. Rats were dosed orally with Tozadenant, a selective A2A receptor antagonist, and three different doses of Radiprodil, an NR2B-selective NMDA receptor antagonist. The drugs were given alone or in combination and rats were placed in an open-field for behavioural monitoring. Video recordings were automatically analysed. Five different behaviours were scored: distance traveled, ipsi- and contraversive turns, body position, and space occupancy. The results show that A2A or NR2B receptor antagonists given alone or in combination did not produce enhanced turning as observed with an active dose of L-Dopa/benserazide. Instead the treated rats maintained a straight body position, were able to shift from one direction to the other and occupied a significantly larger space in the arena. The highest “Tozadenant/Radiprodil” dose combination significantly increased all five behavioural parameters recorded compared to rats treated with vehicle or the same doses of the drugs alone. Our data suggest that the A2A/NR2B antagonist combination may be able to stimulate motor activity to a similar level as that achieved by L-Dopa but in the absence of the side-effects that are associated with dopaminergic hyperstimulation. If these results translate into the clinic, this combination could represent an alternative symptomatic treatment option for PD. PMID:26322641

  15. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine.

    PubMed

    Santiago, Ronise M; Barbieiro, Janaína; Lima, Marcelo M S; Dombrowski, Patrícia A; Andreatini, Roberto; Vital, Maria A B F

    2010-08-16

    Depression is a frequently encountered non-motor feature of Parkinson's disease (PD) and it can have a significant impact on patient's quality of life. Considering the differential pathophysiology of depression in PD, it prompts the idea that a degenerated nigrostriatal system plays a role in depressive-like behaviors, whilst animal models of PD are employed. Therefore, we addressed the question of whether dopamine (DA) depletion, promoted by the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), lipopolysaccharide (LPS) and rotenone are able to induce depressive-like behaviors and neurotransmitters alterations similarly that encountered in PD. To test this rationale, we performed intranigral injections of each neurotoxin, followed by motor behavior, depressive-like behaviors, histological and neurochemical tests. After the motor recovery period, MPTP, 6-OHDA and rotenone were able to produce anhedonia and behavioral despair. These altered behavioral responses were accompanied by reductions of striatal DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) restricted to the 6-OHDA group. Additionally, decreases on the hippocampal serotonin (5-HT) content were detected for the MPTP, 6-OHDA and rotenone groups. Notably, strong correlations were detected among the groups when 5-HT and DA were correlated with swimming (r=+0.97; P=0.001) and immobility (r=-0.90; P=0.012), respectively. Our data indicate that MPTP, 6-OHDA and rotenone, but not LPS were able to produce depressive-like behaviors accompanied primarily by hippocampal 5-HT reductions. Moreover, DA and 5-HT strongly correlated with "emotional" impairments suggesting an important participation of these neurotransmitters in anhedonia and behavioral despair after nigral lesions promoted by the neurotoxins.

  16. Nitrosative and cognitive effects of chronic L-DOPA administration in rats with intra-nigral 6-OHDA lesion.

    PubMed

    Ramírez-García, G; Palafox-Sánchez, V; Limón, I D

    2015-04-01

    Besides motor disturbances, other symptoms found in the early stage of Parkinson's disease (PD) are deficits in both learning and memory. The nigro-striatal-cortical pathway is affected in this pathology, with this neuronal circuit involved in cognitive processes such as spatial working memory (SWM). However, cognitive dysfunction appears even when the patients are receiving L-DOPA treatment. There is evidence that the dopamine metabolism formed by L-DOPA generates free radicals such as nitric oxide, which may cause damage through the nitrosative stress (NS). The aim of this study was to evaluate both the effects of chronic L-DOPA administration on SWM and the production of NS in rats using an intra-nigral lesion caused by 6-hydroxydopamine (6-OHDA). Post-lesion, the animals were administered orally with L-DOPA/Carbidopa (100-mg/kg) for 20 days. An SWM task in a Morris water maze was conducted post-treatment. Nitrite levels and immunoreactivity of 3-Nitrotyrosine (3-NT), Inducible Nitric Oxide Synthase (iNOS), Glial Fibrillary Acidic Protein (GFAP), and Tyrosine Hydroxylase (TH) were evaluated in the substantia nigra pars compacta, the dorsal striatum and the medial prefrontal cortex. Our results show that chronic L-DOPA administration in rats with intra-nigral 6-OHDA-lesion caused significant increases in SWM deficit, nitrite levels and the immunoreactivity of 3-NT, iNOS and GFAP in the nigro-striatal-cortical pathway. These facts suggest that as L-DOPA can induce NS in rats with dopaminergic intra-nigral lesion, it could play a key role in the impairment of the SWM, and thus can be considered as a toxic mechanism that induces cognitive deficit in PD patients. PMID:25644418

  17. Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson's Disease.

    PubMed

    Umarao, Preeti; Bose, Samrat; Bhattacharyya, Supti; Kumar, Anil; Jain, Suman

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the dopaminergic neurons of the substantia nigra leading to various motor and non-motor deficits. We explored the neuroprotective potential of superparamagnetic iron oxide nanoparticles (IONPs) along with exposure to EMF in 6-OHDA rat model of PD. IONPs were implanted at the site of lesion and 24 h thereafter the rats were exposed to magnetic fields 2 h/day for one week. Bilateral lesions of the striatum were made with 6-OHDA. The rats in all the intervention groups improved progressively over the days and by post-surgery day 4 they were active and bright. We observed a significant beneficial effect of the IONPs implantation and MF exposure on feeding behavior, gait and postural stability. There was a significant enhancement of mitochondrial function and attenuation of lesion volume in all the intervention groups as compared to PD. The results demonstrate neuroprotective effect of iron oxide nanoparticle implantation and magnetic field exposure in an in vivo 6-OHDA rat model of PD. PMID:27398453

  18. Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson's Disease

    PubMed Central

    Bitu Pinto, Natália; da Silva Alexandre, Bruno; Neves, Kelly Rose Tavares; Silva, Aline Holanda; Leal, Luzia Kalyne A. M.; Viana, Glauce S. B.

    2015-01-01

    Camellia sinensis (green tea) is largely consumed, mainly in Asia. It possesses several biological effects such as antioxidant and anti-inflammatory properties. The objectives were to investigate the neuroprotective actions of the standardized extract (CS), epicatechin (EC) and epigallocatechin gallate (EGCG), on a model of Parkinson's disease. Male Wistar rats were divided into SO (sham-operated controls), untreated 6-OHDA-lesioned and 6-OHDA-lesioned treated for 2 weeks with CS (25, 50, or 100 mg/kg), EC (10 mg/kg), or EGCG (10 mg/kg) groups. One hour after the last administration, animals were submitted to behavioral tests and euthanized and their striata and hippocampi were dissected for neurochemical (DA, DOPAC, and HVA) and antioxidant activity determinations, as well as immunohistochemistry evaluations (TH, COX-2, and iNOS). The results showed that CS and catechins reverted behavioral changes, indicating neuroprotection manifested as decreased rotational behavior, increased locomotor activity, antidepressive effects, and improvement of cognitive dysfunction, as compared to the untreated 6-OHDA-lesioned group. Besides, CS, EP, and EGCG reversed the striatal oxidative stress and immunohistochemistry alterations. These results show that the neuroprotective effects of CS and its catechins are probably and in great part due to its powerful antioxidant and anti-inflammatory properties, pointing out their potential for the prevention and treatment of PD. PMID:26167188

  19. Behavioral and Neurochemical Effects of Alpha-Lipoic Acid in the Model of Parkinson's Disease Induced by Unilateral Stereotaxic Injection of 6-Ohda in Rat

    PubMed Central

    de Araújo, Dayane Pessoa; De Sousa, Caren Nádia Soares; Araújo, Paulo Victor Pontes; Menezes, Carlos Eduardo de Souza; Sousa Rodrigues, Francisca Taciana; Escudeiro, Sarah Souza; Lima, Nicole Brito Cortez; Patrocínio, Manoel Claúdio Azevedo; Aguiar, Lissiana Magna Vasconcelos; Viana, Glauce Socorro de Barros; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This study aimed to investigate behavioral and neurochemical effects of α-lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinson's disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α-Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α-lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α-lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α-lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment. PMID:24023579

  20. Measuring dopaminergic function in the 6-OHDA-lesioned rat: a comparison of PET and microdialysis

    PubMed Central

    2013-01-01

    Background [18 F]fluorodopa (FDOPA) positron emission tomography (PET) allows assessment of levodopa (LDOPA) metabolism and is widely used to study Parkinson's disease. We examined how [18 F]FDOPA PET-derived kinetic parameters relate the dopamine (DA) and DA metabolite content of extracellular fluid measured by microdialysis to aid in the interpretation of data from both techniques. Methods [18 F]FDOPA PET imaging and microdialysis measurements were performed in unilaterally 6-hydroxydopamine-lesioned rats (n = 8) and normal control rats (n = 3). Microdialysis testing included baseline measurements and measurements following acute administration of LDOPA. PET imaging was also performed using [11C]dihydrotetrabenazine (DTBZ), which is a ligand for the vesicular monoamine transporter marker and allowed assessment of denervation severity. Results The different methods provided highly correlated data. Lesioned rats had reduced DA metabolite concentrations ipsilateral to the lesion (p < 0.05 compared to controls), with the concentration being correlated with FDOPA's effective distribution volume ratio (EDVR; r = 0.86, p < 0.01) and DTBZ's binding potential (BPND; r = 0.89, p < 0.01). The DA metabolite concentration in the contralateral striatum of severely (>80%) lesioned rats was lower (p < 0.05) than that of less severely lesioned rats (<80%) and was correlated with the ipsilateral PET measures (r = 0.89, p < 0.01 for BPND) but not with the contralateral PET measures. EDVR and BPND in the contralateral striatum were not different from controls and were not correlated with the denervation severity. Conclusions The demonstrated strong correlations between the PET and microdialysis measures can aid in the interpretation of [18 F]FDOPA-derived kinetic parameters and help compare results from different studies. The contralateral striatum was affected by the lesioning and so cannot always serve as an unaffected control. PMID:24088510

  1. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    PubMed

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  2. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats

    PubMed Central

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson’s disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy. PMID:25395834

  3. Rapid eye movement (REM) sleep deprivation in 6-OHDA nigro-striatal lesioned rats with and without transplants of dissociated chromaffin cells.

    PubMed

    Drucker-Colín, R; Durán-Vázquez, A; Salín-Pascual, R J; Verdugo-Díaz, L; Mendoza-Ramírez, J L; Jiménez-Anguiano, A

    1996-08-12

    Since both REM sleep deprivation and unilateral 6-OHDA lesions induce supersensitivity of DA receptors, the purpose of this study was to determine whether the response of rats with such lesions would be modified by REM sleep deprivation. In addition, the effect of grafts of dissociated chromaffin cells was also tested. Rats with 6-OHDA lesions were subjected to 24 or 72 h of REM sleep deprivation and tested with various doses of apomorphine to determine turning behavior frequencies. At end of those experiments, the animals were transplanted with dissociated chromaffin cells and turning behavior was tested again. The results showed that REM sleep deprivation nearly doubled the turning behavior frequency, that chromaffin cell grafts decreased it, but that REM deprivation in grafted animals still seemed to produce an increase of post-synaptic supersensitivity independent of denervation. The results were discussed in terms of the possible relationship of sleep with Parkinson's disease through the DA system.

  4. Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model.

    PubMed

    Shi, Zhenhua; Lu, Zhongbing; Zhao, Yashuo; Wang, Yueqi; Zhao-Wilson, Xi; Guan, Peng; Duan, Xianglin; Chang, Yan-Zhong; Zhao, Baolu

    2013-06-01

    Previous pharmacological studies have indicated that AC11 (a standardized aqueous extract of Uncaria tomentosa) has beneficial effects on DNA repair and immune function. However, its benefits go beyond this. The present study utilized electron spin resonance (ESR) and spin trapping technique, as well as the 6-OHDA-induced cell damage and transgenic Caenorhabditis elegans models, towards exploring the antioxidant and neuroprotective ability of AC11. Our results showed that AC11 could scavenge several types of free radicals, especially hydroxyl radicals (60% of hydroxyl radicals were scavenged by 30 μg/ml of AC11). In SH-SY5Y cells, we found that AC11 could dose dependently protect 6-OHDA induced cell damage by increase cell viability and mitochondrial membrane potential. AC11 pretreatment also significantly decreased the level of lipid peroxidation, intracellular reactive oxygen species and nitric oxide in 6-OHDA treated cells. In NL5901 C. elegans, 10 μg/ml AC11 could reduce the aggregation of α-synuclein by 40%. These findings encourage further investigation on AC11 and its active constituent compounds, as possible therapeutic intervention against Parkinson's disease.

  5. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats.

    PubMed

    Cai, Jingli; Yang, Ming; Poremsky, Elizabeth; Kidd, Sarah; Schneider, Jay S; Iacovitti, Lorraine

    2010-07-01

    Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on renewable stem cells. Human induced pluripotent stem (hiPS) cells offer great promise in this regard. If hiPS cells can be differentiated into authentic mDA neuron, hiPS could provide a potential autologous source of transplant tissue when generated from PD patients, a clear advantage over human embryonic stem (hES) cells. Here, we report that mDA neurons can be derived from a commercially available hiPS cell line, IMR90 clone 4, using a modified hES differentiation protocol established in our lab. These cells express all the markers (Lmx1a, Aldh1a1, TH, TrkB), follow the same mDA lineage pathway as H9 hES cells, and have similar expression levels of DA and DOPAC. Moreover, when hiPS mDA progenitor cells are transplanted into 6-OHDA-lesioned PD rats, they survive long term and many develop into bona fide mDA neurons. Despite their differentiation and integration into the brain, many Nestin+ tumor-like cells remain at the site of the graft. Our data suggest that as with hES cells, selecting the appropriate population of mDA lineage cells and eliminating actively dividing hiPS cells before transplantation will be critical for the future success of hiPS cell replacement therapy in PD patients.

  6. Intraventricular administration of endoneuraminidase-N facilitates ectopic migration of subventricular zone-derived neural progenitor cells into 6-OHDA lesioned striatum of mice.

    PubMed

    Li, Chen; Zhang, Yong-Xin; Yang, Chun; Hao, Fei; Chen, Sha-Sha; Hao, Qiang; Lu, Tao; Qu, Ting-Yu; Zhao, Li-Ru; Duan, Wei-Ming

    2016-03-01

    Polysialic acid (PSA), a carbohydrate polymer associated with the neural cell adhesion molecule (NCAM), plays an important role in the migration, differentiation and maturation of neuroblasts. Endoneuraminidase-N (Endo-N) can specifically cleave PSA from NCAM. The objective of the present study was to examine: the effect of Endo-N on characteristics of subventricular zone (SVZ)-derived neural progenitor cells (NPCs) in vitro; whether intraventricular administration of Endo-N could increase ectopic migration of SVZ-derived NPCs into 6-hydroxydopamine (6-OHDA)-lesioned striatum, and whether migrated NPCs could differentiate into neuronal and glial cells. In in vitro study, Endo-N was found to inhibit the migration of NPCs, and to enhance the differentiation of NPCs. In in vivo study, mice sequentially received injections of 6-OHDA into the right striatum, Endo-N into the right lateral ventricle, and bromodeoxyuridine (BrdU) intraperitoneally. The data showed that intraventricular injections of Endo-N disorganized the normal structure of the rostral migratory stream (RMS), and drastically increased the number of BrdU-immunoreactive (IR) cells in 6-OHDA-lesioned striatum. In addition, a number of BrdU-IR cells were double labeled for doublecortin (DCX), NeuN or glial fibrillary acidic protein (GFAP). The results suggest that interruption of neuroblast chain pathway with Endo-N facilitates ectopic migration of SVZ-derived NPCs into the lesioned striatum, and migrated NPCs can differentiate into neurons and astrocytes. PMID:26724216

  7. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    SciTech Connect

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  8. High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats.

    PubMed

    Yang, Chen; Zhang, Jia-Rui; Chen, Lei; Ge, Shun-Nan; Wang, Jue-Lei; Yan, Zhi-Qiang; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2015-05-19

    Many studies showed that abnormal oscillations in the cortical-basal ganglia loop is involved in the pathophysiology of Parkinson's disease (PD). In contrast to the well-studied beta synchronization, high-voltage spindles (HVSs), another type of abnormal oscillation observed in PD, are neglected. To explore the role of subthalamic nucleus-deep brain stimulation (STN-DBS) in HVSs regulation, we simultaneously recorded the local field potential (LFP) in the globus pallidus (GP) and electrocorticogram (ECoG) in the primary motor cortex(M1) in freely moving 6-hydroxydopamine (6-OHDA) lesioned or control rats before, during, and after STN-DBS. Consistent with our previous study, HVSs occurrence, duration, and relative power and coherence between the M1 cortex and GP increased in 6-OHDA lesioned rats. We found that high but not low frequency stimulation restored the abnormal HVSs activity and motor deficit. These results suggest that the STN is involved in the abnormal oscillation between the M1 cortex and GP.

  9. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease

    PubMed Central

    Xu, Qi; Kanthasamy, Anumantha G.; Jin, Huajun; Reddy, Manju B.

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  10. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    PubMed

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  11. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    PubMed

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.

  12. Altered extracellular striatal in vivo biotransformation of the opioid neuropeptide dynorphin A(1-17) in the unilateral 6-OHDA rat model of Parkinson's disease.

    PubMed

    Klintenberg, Rebecka; Andrén, Per E

    2005-02-01

    The in vivo biotransformation of dynorphin A(1-17) (Dyn A) was studied in the striatum of hemiparkinsonian rats by using microdialysis in combination with nanoflow reversed-phase liquid chromatography/electrospray time-of-flight mass spectrometry. The microdialysis probes were implanted into both hemispheres of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats. Dyn A (10 pmol microl(-1)) was infused through the probes at 0.4 microl min(-1) for 2 h. Samples were collected every 30 min and analyzed by mass spectrometry. The results showed for the first time that there was a difference in the Dyn A biotransformation when comparing the two corresponding sides of the brain. Dyn A metabolites 1-8, 1-16, 5-17, 10-17, 7-10 and 8-10 were detected in the dopamine-depleted striatum but not in the untreated striatum. Dyn A biotransformed fragments found in both hemispheres were N-terminal fragments 1-4, 1-5, 1-6, 1-11, 1-12 and 1-13, C-terminal fragments 2-17, 3-17, 4-17, 7-17 and 8-17 and internal fragments 2-5, 2-10, 2-11, 2-12, and 8-15. The relative levels of these fragments were lower in the dopamine-depleted striatum. The results imply that the extracellular in vivo processing of the dynorphin system is being disturbed in the 6-OHDA-lesion animal model of Parkinson's disease. PMID:15706626

  13. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD. PMID:25449120

  14. 6-OHDA lesions to amygdala and hippocampus attenuate memory-enhancing effect of the 3-7 fragment of angiotensin II.

    PubMed

    Winnicka, M M; Braszko, J J; Wiśniewski, K

    1998-05-01

    We have previously shown that facilitatory effect of angiotensin II (AII) on the retrieval of memory is mediated by the dopaminergic system. In the present study, we searched for the influence of the 3-7 fragment of angiotensin II [AII(3-7)] on the retrieval processes in a passive avoidance situation after bilateral 6-OHDA lesions to the central amygdala (CA) and the CA4 field of the hippocampus (HI). AII(3-7) given 15 min before the retention testing, at the intracerebroventricular dose of 1 nmol, significantly prolonged avoidance latencies in sham-operated rats (i.e. improved retrieval of memory for the electric footshock experienced during the learning trial). Bilateral lesions to CA totally abolished, and to HI significantly diminished, this facilitatory effect. An increase of spontaneous locomotor activity in rats lesioned to CA and a decrease in rats lesioned to HI were unlikely to interfere with the cognitive effect of AII (3-7). These results suggest that the anatomical substrate of facilitating retrieval of information activity of AII(3-7) is closely related to the dopaminergic projection from the ventral tegmental area and substantia nigra to CA and HI.

  15. An enteric nervous system progenitor cell implant promotes a behavioral and neurochemical improvement in rats with a 6-OHDA-induced lesion.

    PubMed

    Parra-Cid, Carmen; García-López, Julieta; García, Esperanza; Ibarra, Clemente

    2014-01-01

    The enteric nervous system (ENS) of mammals is derived from neural crest (NC) cells during embryogenesis and at the beginning of postnatal life. However, neural progenitor cells from the ENS (or ENSPC) are also found in the adult intestine and can be used for neuronal regeneration in diseases that lead to a loss of cell population, such as Parkinson's disease (PD), in which there is a decrease of dopaminergic neurons. The objective of this study was to evaluate the capacity of ENSPC to restore damaged nervous tissue and to show that they are functional for a behavioral and neurochemical recovery. We found that animals with ENSPC implants exhibited a motor recovery of 35% vs. the lesion group. In addition, DA levels were partially restored in 34%, while Homovanillic acid (HVA) levels remained at 21% vs. the group with a 6-Hydroxydopamine (6-OHDA)-induced lesion, suggesting that ENSPC represent a possible alternative in the study of cell transplants and the preservation of functional dopaminergic neurons in PD.

  16. Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat.

    PubMed

    Carta, Anna R; Frau, Lucia; Lucia, Frau; Pinna, Annalisa; Annalisa, Pinna; Pontis, Silvia; Silvia, Pontis; Simola, Nicola; Nicola, Simola; Schintu, Nicoletta; Nicoletta, Schintu; Morelli, Micaela; Micaela, Morelli

    2008-07-01

    Prolonged treatment with L-DOPA induces highly disabling dyskinesia in Parkinson's disease (PD) patients. In contrast, dopaminergic agonists display variably dyskinetic outcome, depending on pharmacokinetic/pharmacodynamic profile. The present study was aimed at assessing behavioral and biochemical correlates of intense or mild dyskinesia displayed by the different dopamine (DA) receptors stimulation in a rat model of PD. The effect of subchronic stimulation of the D(1) receptor by SKF38393, and the D(2)/D(3) receptor by ropinirole was evaluated in unilaterally 6-hydroxyDA-lesioned rats. Sensitization of contralateral turning (SCT) behavior and abnormal involuntary movements (AIMs) were assessed as behavioral correlates of dyskinetic responses. Opioid peptides mRNA in the dorsolateral striatum (dlStr) and glutamic acid decarboxylase (GAD67) mRNA content in globus pallidus (GP), were evaluated as an index of neuroadaptive changes occurring in the direct and indirect basal ganglia pathways. Subchronic SKF38393 caused AIMs and SCT whereas ropinirole elicited SCT only, indicating that both drugs induced some dyskinetic response, albeit of different type. Peptides mRNA evaluation in dlStr, showed that SKF38393 subchronic treatment was associated to an overexpression of both dynorphin (DYN) and enkephalin (ENK) mRNAs, in the direct and indirect striatal pathway respectively. In contrast, a decrease in DYN mRNA levels only was observed after treatment with ropinirole. Analysis of GAD67 mRNA levels in the GP showed an increase after both D(1) and D(2)/D(3) agonist treatments. Results suggest that presence of SCT alone or SCT plus AIMs might represent correlates of the differential severity of dyskinetic movements induced by treatment with low (ropinirole) or high (SKF38393) dyskinetic potential. Neuroadaptive increases in opioid peptide expression in both direct and indirect striatal pathways were associated to the appearance of AIMs alone. In contrast, increase of GAD67 m

  17. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    PubMed

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo. PMID:23430275

  18. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    PubMed

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo.

  19. Reduced expression of choline acetyltransferase in vagal motoneurons and gastric motor dysfunction in a 6-OHDA rat model of Parkinson's disease.

    PubMed

    Zheng, Li-Fei; Wang, Zhi-Yong; Li, Xiao-feng; Song, Jin; Hong, Feng; Lian, Hui; Wang, Qian; Feng, Xiao-Yan; Tang, Yuan-yuan; Zhang, Yue; Zhu, Jin-Xia

    2011-10-28

    Parkinson's disease (PD) has been characterized by dopaminergic neuron degeneration in the substantia nigra (SN) accompanied by pathology of the dorsal motor nucleus of the vagus (DMV). PD patients have often experienced gastrointestinal dysfunctions, such as gastroparesis. However, the mechanism underlying these symptoms in PD patients is not clear. In the present study, we investigated alterations of cholinergic and catecholaminergic neurons in the DMV and gastric motor function in rats microinjected with 6-hydroxydopamine (6-OHDA) bilaterally into the SN (referred to as 6-OHDA rats) and explored possible mechanisms. A strain gauge force transducer was used to record gastric motility in vivo. Expression of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) was evaluated by immunofluorescence and western blot analysis. Acetylcholine (Ach) content was measured using ultra-performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS) analysis. After treatment with 6-OHDA for 6weeks, 6-OHDA rats exhibited decreased ChAT and enhanced TH expression in the DMV and decreased Ach content in the gastric muscular layer. Delayed gastric emptying and impaired gastric motility in vivo were observed in 6-OHDA rats. The results of the present study indicated that decreased ChAT and enhanced TH expression in the DMV may be correlated with the development of delayed gastric emptying and impaired gastric motility, which may be partly due to the decreased Ach release from the vagus. PMID:21955729

  20. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis

    PubMed Central

    Im, Hyung-Jun; Hahm, Jarang; Kang, Hyejin; Choi, Hongyoon; Lee, Hyekyoung; Hwang, Do Won; Kim, E. Edmund; Chung, June-Key; Lee, Dong Soo

    2016-01-01

    Movement impairments in Parkinson’s disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using 18F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD. PMID:27650055

  1. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson's disease examined using persistent homology-based analysis.

    PubMed

    Im, Hyung-Jun; Hahm, Jarang; Kang, Hyejin; Choi, Hongyoon; Lee, Hyekyoung; Hwang, Do Won; Kim, E Edmund; Chung, June-Key; Lee, Dong Soo

    2016-01-01

    Movement impairments in Parkinson's disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using (18)F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD. PMID:27650055

  2. Striatal Injury with 6-OHDA Transiently Increases Cerebrospinal GFAP and S100B

    PubMed Central

    Batassini, Cristiane; Broetto, Núbia; Tortorelli, Lucas Silva; Borsoi, Milene; Zanotto, Caroline; Galland, Fabiana; Souza, Tadeu Mello; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2015-01-01

    Both glial fibrillary acidic protein (GFAP) and S100B have been used as markers of astroglial plasticity, particularly in brain injury; however, they do not necessarily change in the same time frame or direction. Herein, we induced a Parkinson's disease (PD) model via a 6-OHDA intrastriatal injection in rats and investigated the changes in GFAP and S100B using ELISA in the substantia nigra (SN), striatum, and cerebrospinal fluid on the 1st, 7th, and 21st days following the injection. The model was validated using measurements of rotational behaviour induced by methylphenidate and tyrosine hydroxylase in the dopaminergic pathway. To our knowledge, this is the first measurement of cerebrospinal fluid S100B and GFAP in the 6-OHDA model of PD. Gliosis (based on a GFAP increase) was identified in the striatum, but not in the SN. We identified a transitory increment of cerebrospinal fluid S100B and GFAP on the 1st and 7th days, respectively. This initial change in cerebrospinal fluid S100B was apparently related to the mechanical lesion. However, the 6-OHDA-induced S100B secretion was confirmed in astrocyte cultures. Current data reinforce the idea that glial changes precede neuronal damage in PD; however, these findings also indicate that caution is necessary regarding the interpretation of data in this PD model. PMID:26090233

  3. Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease.

    PubMed

    Boronat-García, Alejandra; Palomero-Rivero, Marcela; Guerra-Crespo, Magdalena; Millán-Aldaco, Diana; Drucker-Colín, René

    2016-01-01

    Cell replacement therapy in Parkinson's disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts. PMID:27525967

  4. Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease

    PubMed Central

    Boronat-García, Alejandra; Palomero-Rivero, Marcela; Guerra-Crespo, Magdalena; Millán-Aldaco, Diana; Drucker-Colín, René

    2016-01-01

    Cell replacement therapy in Parkinson’s disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts. PMID:27525967

  5. 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors.

    PubMed

    Tobón-Velasco, Julio C; Limón-Pacheco, Jorge H; Orozco-Ibarra, Marisol; Macías-Silva, Marina; Vázquez-Victorio, Genaro; Cuevas, Elvis; Ali, Syed F; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2013-02-01

    6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to better understand the cellular events further leading to neurodegeneration. The present work explored how 6-OHDA triggers early downstream signaling pathways that activate neurotoxicity in the rat striatum. Mitochondrial function, caspases-dependent apoptosis, kinases signaling (Akt, ERK 1/2, SAP/JNK and p38) and crosstalk between nuclear factor kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) were evaluated at early times post-lesion. We found that 6-OHDA initiates cell damage via mitochondrial complex I inhibition, cytochrome c and apoptosis-inducing factor (AIF) release, as well as activation of caspases 9 and 3 to induce apoptosis, kinase signaling modulation and NF-κB-mediated inflammatory responses, accompanied by inhibition of antioxidant systems regulated by the Nrf2 pathway. Our results suggest that kinases SAP/JNK and p38 up-regulation may play a role in the early stages of 6-OHDA toxicity to trigger intrinsic pathways for apoptosis and enhanced NF-κB activation. In turn, these cellular events inhibit the activation of cytoprotective mechanisms, thereby leading to a condition of general damage.

  6. Short-Term Treatment with Silymarin Improved 6-OHDA-Induced Catalepsy and Motor Imbalance in Hemi-Parkisonian Rats

    PubMed Central

    Haddadi, Rasool; Eyvari Brooshghalan, Shahla; Farajniya, Safar; Mohajjel Nayebi, Alireza; Sharifi, Hamdolah

    2015-01-01

    Purpose: Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by disabling motor abnormalities, which include tremor, muscle stiffness, paucity of voluntary movements, and postural instability. Silymarin (SM) or milk thistle extract, is known to own antioxidative, anti-apoptotic, anti-inflammatory and neuroprotective effects. In the present study, we investigated the effect of intraperitoneal (i.p) administration of SM, on 6-OHDA-induced motor-impairments (catalepsy and imbalance) in the rats. Methods: Experimental model of PD was induced by unilateral infusion of 6-hydroxydopamine (6-OHDA; 8 μg/2 μl/rat) into the central region of the substantia nigra pars compacta (SNc). Catalepsy and motor coordination were assessed by using of bar test and rotarod respectively. Results: The results showed a significant (p<0.001) increase in catalepsy of 6-OHDA-lesioned rats whereas; in SM (100, 200 and 300 mg/kg, i.p for 5 days) treated hemi-parkinsonian rats catalepsy was decreased markedly (p<0.001). Furthermore, there was a significant (p<0.001) increase in motor-imbalance of 6-OHDA-lesioned rats. SM improved motor coordination significantly (p<0.001) in a dose dependent manner and increased motor balance. Conclusion: In conclusion, we found that short-term treatment with SM could improve 6-OHDA-induced catalepsy and motor imbalance in rats. We suggest that SM can be used as adjunctive therapy along with commonly used anti-parkinsonian drugs. However, further clinical trial studies should be carried out to prove this hypothesis. PMID:26819917

  7. Amphetamine-evoked rotation requires newly synthesized dopamine at 14 days but not 1 day after intranigral 6-OHDA and is consistently dissociated from sensorimotor behavior.

    PubMed

    Paquette, Melanie A; Marsh, Steven T; Hutchings, Janet E; Castañeda, Eddie

    2009-06-01

    Immediately after unilateral, intranigral 6-hydroxydopamine (6-OHDA), amphetamine (AMPH) evokes "paradoxical" contraversive rotation, whereas 14 days later, AMPH evokes the traditional ipsiversive rotation used to model the chronic Parkinsonian state. In this study, the hypothesis was that accelerated dopamine (DA) synthesis ipsilateral to the lesion augments cytoplasmic DA to produce paradoxical rotation. Therefore, the sensitivity to synthesis inhibition of AMPH-evoked rotation at 1 or 14 days after 6-OHDA was assessed. To determine the functional status that might be reflected by paradoxical rotation, sensorimotor abilities were examined at 1 and 14 days following unilateral 6-OHDA using the elevated swing, paw placement, grip strength, ladder walking, somatosensory neglect, and cylinder tests. At 14 days after 6-OHDA when AMPH-evoked ipsiversive rotation is mediated by the intact hemisphere, rotation was dose-dependently reduced by tyrosine hydroxylase (TH) inhibition with alpha-methyl-p-tyrosine (alpha-MPT) or dopa decarboxylase (DDC) inhibition with 3-hydroxybenzyl hydrazine (NSD-1015), indicating dependence upon newly synthesized DA. Conversely, at 1 day after 6-OHDA, paradoxical rotation, presumably mediated by the treated hemisphere, was completely resistant to synthesis blockade, indicating an abundant supply of intracellular DA that is independent from synthesis rates. Sensorimotor behaviors were not correlated with AMPH-evoked rotation. The present data do not support the hypothesis that enhanced DA synthesis is required to express paradoxical rotation. Therefore, alternative mechanisms that may enhance cytoplasmic DA to produce paradoxical rotation are discussed. PMID:19378464

  8. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson’s Disease Model

    PubMed Central

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R.; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress. PMID:27493838

  9. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson's Disease Model.

    PubMed

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-08-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress.

  10. RNAi-mediated silencing of HLA A2 suppressed acute rejection against human fibroblast xenografts in the striatum of 6-OHDA lesioned rats.

    PubMed

    Liang, Caixia; Xu, Yunzhi; Zheng, Deyu; Sun, Xiaohong; Xu, Qunyuan; Duan, Deyi

    2016-08-15

    Major histocompatibility complex class l (MHC I) molecules play a role in determining whether transplanted cells will be accepted or rejected, and masking of MHC I on donor cells has been found useful for immunoprotection of neural xenografts. In the present study, primary human embryonic lung fibroblasts (HELF), HELF treated with lentivirus-mediated small interfering RNAs (siRNAs) targeting human leukocyte antigen A2 (HLA A2, MHC I in humans) (siHELF), and rat embryonic lung fibroblasts (RELF) were stereotaxically grafted into the striatum of 6-hydroxydopamine lesioned rats to explore whether knockdown of HLA A2 could reduce host immune responses against xenografts. Before lentiviral infection, the cells were transduced with retroviruses harboring tyrosine hydroxylase cDNA. Knockdown of HLA A2 protein was examined by Western blotting. The immune responses (the number of CD4 and CD8 T-cells in the brain and peripheral blood), glial reaction, and survival of human fibroblasts were quantitatively evaluated by flow cytometry and immunohistochemistry at 4d, 2w, and 6w post-graft. Animal behaviors were assessed by counting apomorphine-induced rotations pre- and post-grafts. It was shown that a lower level of HLA A2 was observed in siHELF grafts than in HELF grafts, and knockdown of HLA A2 decreased rat immune responses, as indicated by less remarkable increases in the number of CD8 and CD4 T-cells in the brain and the ratio of CD4:CD8 T-cells in the peripheral blood in rats grafted with siHELF. Rats grafted with siHELF exhibited a significant improvement in motor asymmetry post-transplantation and a better survival of human fibroblasts at 2w. The increasing number of activated microglia and the decreasing number of astrocytes were found in three groups of rats post-implantation. These data suggested that RNAi-mediated knockdown of HLA A2 could suppress acute rejection against xenogeneic human cell transplants in the rat brain. PMID:27397073

  11. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  12. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  13. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase

    SciTech Connect

    Wu Shaoping; Fu Ailing; Wang Yuxia; Yu Leiping; Jia Peiyuan; Li Qian; Jin Guozhang; Sun Manji . E-mail: Sunmj@nic.bmi.ac.cn

    2006-07-21

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 {mu}M) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD.

  14. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β.

    PubMed

    Muñoz, Ana; Garrido-Gil, Pablo; Dominguez-Meijide, Antonio; Labandeira-Garcia, Jose L

    2014-11-01

    Non-neuronal factors such as angiogenesis and neuroinflammation may play a role in l-dopa induced dyskinesias (LID). Vascular endothelial growth factor (VEGF) and proinflammatory cytokines such as interleukin-1β (IL-1β) have been found to be involved in LID. The renin-angiotensin system (RAS) is involved in the inflammatory response and VEGF synthesis via type 1 (AT1) receptors. However, it is not known whether the RAS plays a role in LID and whether AT1 antagonists could constitute a useful therapy against LID. In this study, we investigated whether manipulation of brain RAS is effective in preventing LID. Blocking AT1 receptors with candesartan significantly reduces LID in the 6-OHDA rat model. Chronic dopaminergic denervation induces an increase in striatal levels of VEGF and IL-1β. Dyskinetic animals showed significantly higher levels of VEGF and IL-1β in the lateral striatum and the substantia nigra, as revealed by western blot and real time-PCR analyses. Interestingly, animals treated with both candesartan and l-dopa displayed significantly lower levels of VEGF, IL-1β and dyskinesia than those treated with l-dopa alone. The stimulatory effect of angiotensin II (AII) on VEGF expression was confirmed by the addition of AII to primary mesencephalic cultures and intraventricular administration of AII in rats. The results of the present study reveal for the first time that blockage of AT-1 receptors reduces LID. A candesartan-induced decrease in VEGF and IL-1β may be responsible for the beneficial effects, suggesting the brain RAS as a new target for LID treatment in PD patients. PMID:25160895

  15. Effect of antidepressant drugs on 6-OHDA-treated mice in the FST.

    PubMed

    Chenu, F; Dailly, E; Bourin, M

    2007-02-01

    There is growing evidence suggesting that dopamine could be indirectly involved in the appearance of behavioural effects of antidepressants. In this study, we induced a partial (over 70%) and non-reversible depletion of dopamine-containing neurons in mice by i.c.v. infusion of 6-OHDA. Then, we compared the antidepressant-like effect of drugs (citalopram, paroxetine, desipramine and imipramine) with or without dopamine depletion in the mice forced swimming test. Our results clearly show that lesion with 6-OHDA does not modify the response of mice to desipramine and imipramine, whereas dopamine depletion abolished the antidepressant-like effect of citalopram and paroxetine. It could then be suggested that antidepressant-like effect of selective serotonin reuptake inhibitors (paroxetine and citalopram) in the mice FST requires the activation of dopaminergic pathways to occur.

  16. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents.

    PubMed

    Nie, Shuke; Xu, Yan; Chen, Guiqin; Ma, Kai; Han, Chao; Guo, Zhenli; Zhang, Zhentao; Ye, Keqiang; Cao, Xuebing

    2015-12-01

    Dopaminergic neurons loss in the substantia nigra (SN) and dopamine (DA) content loss in the striatum correlate well with disease severity in Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is a member of neurotrophin family and is necessary for the survival and development of DA neurons in the SN. Deficits in BDNF/TrkB receptors signaling contribute to the dysfunction of PD. Deoxygedunin, a derivative of gedunin produced from Indian neem tree, binds TrkB receptor and activates TrkB and its downstream signaling cascades in a BDNF-independent manner, and possesses neuroprotective effects in vitro and in vivo. In this study, we tested the neuroprotective effects of deoxygedunin in 6-hydroxydopamine (6-OHDA)-lesioned rat model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease. Rats were treated with deoxygedunin 5 mg/kg (i.p.) for one month started two weeks before 6-OHDA lesion (pre-treatment), or for two weeks right after lesion (post-treatment), with isovolumetric vehicle as control and normal. Mice were given deoxygedunin 5 mg/kg (i.p.) for 2 weeks and administrated with MPTP twice at the dose of 20 mg/kg (i.p.) on day 7. The results revealed that pretreatment with deoxygedunin improved PD models' behavioral performance and reduced dopaminergic neurons loss in SN, associated with the activation of TrkB receptors and its two major signaling cascades involving mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K). Thus, our current study indicates that deoxygedunin, as a small molecule TrkB agonist, displays prominent neuroprotective properties, providing a novel therapeutic strategy for treating Parkinson's disease. PMID:26282118

  17. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats.

    PubMed

    Song, Shilei; Nie, Qingmei; Li, Zhifang; Du, Gang

    2016-04-01

    Our previous study has demonstrated that curcumin (CM), a natural ingredient isolated from Zingiberaceae, exerts the effect of inhibiting hippocampal injury in 6-hydroxydopamine (6-OHDA)-induced parkinsonian rat. However, the potential effect of CM on 6-OHDA-injured substantia nigra (SN) needs to be investigated. This study aimed to further evaluate the therapeutic effectiveness of CM against damaged SN in rats. Methodologically, Parkinson's disease (PD) rat was prepared by using a surgical approach of injecting 6-hydroxydopamine (6-OHDA) into the SN. Morris water maze, open-field assays, and rotarod test were used to assess the neurobehavioral manifestations. Neurotransmitter contents in the SN were determined by using the biochemical tests. Western blotting was employed to evaluate the target protein expressions. The representative data showed that CM protected against 6-OHDA-induced neural impairments in the SN, as evidenced by improved memory abilities, elevated intercalatum levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and reduced concentration of malonaldehyde (MDA). In addition, dopamine (DA) and acetylcholine (ACh) levels were increased in the SN. Moreover, intercalatum heat shock protein 70 (HSP70) was lowered, while basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and receptor tyrosine kinase A (TrkA) expressions were up-regulated, respectively. Taken together, the findings indicate that curcum in exerts neuroprotection in the SN via ameliorating neurofunctions of PD rats. PMID:26922613

  18. Induction of depressive-like behavior by intranigral 6-OHDA is directly correlated with deficits in striatal dopamine and hippocampal serotonin.

    PubMed

    Santiago, Ronise M; Barbiero, Janaína; Gradowski, Raisa W; Bochen, Suelen; Lima, Marcelo M S; Da Cunha, Cláudio; Andreatini, Roberto; Vital, Maria A B F

    2014-02-01

    Among the non-motor phenomena of Parkinson's disease (PD) are depressive symptoms, with a prevalence of 40-70%. The reason for this high prevalence is not yet clear. The basal ganglia receives dopamine (DA) inputs from the substantia nigra pars compacta (SNpc), which is known to be impaired in PD patients. The neurotransmitter deficiency hypothesis of PD considers that low serotonin (5-hydroxytryptamine [5-HT]) activity in the brain in PD patients is a risk factor for depression. We investigated whether DA depletion promoted by the neurotoxin 6-hydroxydopamine (6-OHDA) is able to induce depressive-like behavior and neurotransmitter alterations that are similar to those observed in PD. To test this hypothesis, we performed intranigral injections of 6-OHDA in male Wistar rats and conducted motor behavior, depressive-like behavior, histological, and neurochemical tests. After the motor recovery period, 6-OHDA was able to produce anhedonia and behavioral despair 7, 14, and 21 days after neurotoxin infusion. These altered behavioral responses were accompanied by reductions of striatal DA. Additionally, decreases in hippocampal 5-HT content were detected in the 6-OHDA group. Notably, correlations were found between 5-HT and DA levels and swimming, immobility, and sucrose preference. Our results indicate that 6-OHDA produced depressive-like behavior accompanied by striatal DA and hippocampal 5-HT reductions. Moreover, DA and 5-HT levels were strongly correlated with "emotional" impairments, suggesting the important participation of these neurotransmitters in anhedonia and behavioral despair after 6-OHDA-induced nigral lesions.

  19. Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival during 6-OHDA-Induced Oxidative Stress

    PubMed Central

    Asaithambi, Arunkumar; Ay, Muhammet; Jin, Huajun; Gosh, Anamitra; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2014-01-01

    Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD. PMID:24806360

  20. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis.

    PubMed

    Toti, Luca; Travagli, R Alberto

    2014-11-15

    Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis. PMID:25277799

  1. Intrastriatal grafts of fetal ventral mesencephalon improve allodynia-like withdrawal response to mechanical stimulation in a rat model of Parkinson's disease.

    PubMed

    Takeda, Ryuichiro; Ishida, Yasushi; Ebihara, Kosuke; Abe, Hiroshi; Matsuo, Hisae; Ikeda, Tetsuya; Koganemaru, Go; Kuramashi, Aki; Funahashi, Hideki; Magata, Yasuhiro; Kawai, Keiichi; Nishimori, Toshikazu

    2014-06-24

    We previously reported that a unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease showed allodynia-like withdrawal response to mechanical stimulation of the ipsilateral side of the rat hindpaw. The goal of this study was to investigate the effect of intrastriatal grafts of fetal ventral mesencephalon (VM) on the withdrawal response in 6-OHDA rats. The withdrawal threshold in response to the mechanical stimulation of the rat hindpaw was measured using von Frey filaments. In the ipsilateral side of the 6-OHDA lesions, the withdrawal threshold in response to mechanical stimulation significantly increased in 6-OHDA rats with VM grafts compared with those with sham grafts, but did not change in the contralateral side at 5 weeks after transplantation. The present results suggest that the intrastriatal grafts of fetal VM may relieve pain sensation induced by mechanical stimulation in 6-OHDA rats. PMID:24831182

  2. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  3. Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway

    PubMed Central

    Zhang, Jing; Fan, Wenchuang; Wang, Hui; Bao, Lihua; Li, Guibao; Li, Tao; Song, Shouyang; Li, Hongyu; Hao, Jing; Sun, Jinhao

    2015-01-01

    Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM). The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p < 0.01). Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p < 0.01). Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway. PMID:26681969

  4. Murine model for Parkinson's disease: from 6-OH dopamine lesion to behavioral test.

    PubMed

    da Conceição, Fabio S L; Ngo-Abdalla, Stacie; Houzel, Jean-Christophe; Rehen, Stevens K

    2010-01-01

    Parkinson's disease (PD) affects at least 6.5 million people worldwide, irrespective of gender, social, ethnic, economic, or geographic boundaries. Key symptoms, such as tremor, rigidity and bradikinesia, develop when about 3/4 of dopaminergic cells are lost in the substantia nigra, and fail to provide for the smooth, coordinated regulation of striatal motor circuits. Depression and hallucinations are common, and dementia eventually occurs in 20% of patients. At this time, there is no treatment to delay or stop the progression of PD. Rather, the medications currently available aim more towards the alleviation of these symptoms. New surgical strategies may reversibly switch on the functionally damaged circuits through the electrical stimulation of deep brain structures, but although deep brain stimulation is a major advance, it is not suitable for all patients. It remains therefore necessary to test new cell therapy approaches in preclinical models. Selective neurotoxic disruption of dopaminergic pathways can be reproduced by injection of 6-hydroxydopamine (6-OHDA) or MPTP (1-methyl-4-phenyl-1,2,3,6-tertahydropyridine) whereas depleting drugs and oxidative-damaging chemicals may also reproduce specific features of PD in rodents. Unlike MPTP, 6-OHDA lesions cause massive irreversible neuronal loss, and can be uni- or bilateral. The 6-OHDA lesion model is reliable, leads to robust motor deficits, and is the most widely used after 40 years of research in rats. As interactions between grafted cells and host can now be studied more thoroughly in mice rather than in rats, the model has been transposed to mice, where it has been recently characterized. In this video, we demonstrate how to lesion the left nigro-striatal pathway of anesthetized mice by slowly delivering 2.0 microL of 6-OHDA through a stereotaxically inserted micro-syringe needle. The loss of dopaminergic input occurs within days, and the functional impairments can be monitored over post-operative weeks and

  5. Murine model for Parkinson's disease: from 6-OH dopamine lesion to behavioral test.

    PubMed

    da Conceição, Fabio S L; Ngo-Abdalla, Stacie; Houzel, Jean-Christophe; Rehen, Stevens K

    2010-01-01

    Parkinson's disease (PD) affects at least 6.5 million people worldwide, irrespective of gender, social, ethnic, economic, or geographic boundaries. Key symptoms, such as tremor, rigidity and bradikinesia, develop when about 3/4 of dopaminergic cells are lost in the substantia nigra, and fail to provide for the smooth, coordinated regulation of striatal motor circuits. Depression and hallucinations are common, and dementia eventually occurs in 20% of patients. At this time, there is no treatment to delay or stop the progression of PD. Rather, the medications currently available aim more towards the alleviation of these symptoms. New surgical strategies may reversibly switch on the functionally damaged circuits through the electrical stimulation of deep brain structures, but although deep brain stimulation is a major advance, it is not suitable for all patients. It remains therefore necessary to test new cell therapy approaches in preclinical models. Selective neurotoxic disruption of dopaminergic pathways can be reproduced by injection of 6-hydroxydopamine (6-OHDA) or MPTP (1-methyl-4-phenyl-1,2,3,6-tertahydropyridine) whereas depleting drugs and oxidative-damaging chemicals may also reproduce specific features of PD in rodents. Unlike MPTP, 6-OHDA lesions cause massive irreversible neuronal loss, and can be uni- or bilateral. The 6-OHDA lesion model is reliable, leads to robust motor deficits, and is the most widely used after 40 years of research in rats. As interactions between grafted cells and host can now be studied more thoroughly in mice rather than in rats, the model has been transposed to mice, where it has been recently characterized. In this video, we demonstrate how to lesion the left nigro-striatal pathway of anesthetized mice by slowly delivering 2.0 microL of 6-OHDA through a stereotaxically inserted micro-syringe needle. The loss of dopaminergic input occurs within days, and the functional impairments can be monitored over post-operative weeks and

  6. CCK-8 injected into the nucleus accumbens attenuates the supersensitive locomotor response to apomorphine in 6-OHDA and chronic-neuroleptic treated rats.

    PubMed

    Weiss, F; Ettenberg, A; Koob, G F

    1989-01-01

    Postsynaptic dopamine-cholecystokinin (CCK) interactions in the nucleus accumbens were studied in two behavioral preparations of DA receptor supersensitivity: chronic-neuroleptic treated and 6-hydroxydopamine (6-OHDA) denervated rats. Subcutaneous (SC) injections of apomorphine (APO; 0.15 mg/kg) in experiment 1 produced marked hyperlocomotion in rats following 12 days of pretreatment with cis-[Z]-flupenthixol (2 mg/kg; twice per day). Bilateral intra-accumbens (N.Acc.) microinjections of CCK-8 (2 ng and 2 micrograms) reliably reduced APO-stimulated hyperlocomotion. An intermediate CCK dose (20 ng) was without effect. No change in APO responsivity following chronic vehicle treatment was observed and the baseline APO response was not altered by CCK at any dose. Denervation of mesolimbic dopamine (DA) terminals by intra-N.Acc. injections of 6-hydroxydopamine (6-OHDA; 8 micrograms/side) in experiment 2 similarly resulted in intense locomotor hyperactivity after APO stimulation (0.1 mg/kg; SC). Bilateral intra-N.Acc. injections of CCK-8 (1, 10, 100 ng, and 1 micrograms) significantly attenuated the supersensitive locomotor response to APO. As in experiment 1, CCK produced "biphasic" dose-response effects with strong attenuation that persisted throughout the entire 60-min test at both high (1 microgram) and low (1 ng) doses. Intermediate CCK doses (10 and 100 ng) produced only short-term reductions in activity. Hypomotility induced by APO in SHAM-lesioned rats was not effectively reversed by CCK treatments. CCK had no effect on unstimulated baseline locomotor activity in either 6-OHDA or SHAM-lesioned rats. These results provide further evidence that CCK-8 modulates mesolimbic DA activity by functionally opposing the postsynaptic effects of DA in the region of the nucleus accumbens. PMID:2574480

  7. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions

    PubMed Central

    Bonito-Oliva, Alessandra; Masini, Débora; Fisone, Gilberto

    2014-01-01

    Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson's disease (PD). These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA) in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to revert the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual noradrenergic terminals. PMID

  8. Spontaneous locomotor activity and L-DOPA-induced dyskinesia are not linked in 6-OHDA parkinsonian rats

    PubMed Central

    Sgroi, Stefania; Kaelin-Lang, Alain; Capper-Loup, Christine

    2014-01-01

    Bradykinesia (slowness of movement) and other characteristic motor manifestations of Parkinson’s disease (PD) are alleviated by treatment with L-dihydroxyphenylalanine (L-DOPA). Long-term L-DOPA treatment, however, is associated with complications such as motor fluctuations and dyskinesia that severely impair the quality of life. It is unclear whether the effect of L-DOPA on spontaneous motor activity and its dyskinesia-inducing effect share a common mechanism. To investigate the possible connection between these two effects, we analyzed the spontaneous locomotor activity of parkinsonian rats before surgery (unilateral injection of 6-OHDA in the right medial forebrain bundle), before treatment with L-DOPA, during L-DOPA treatment (the “ON” phase), and after the end of L-DOPA treatment (the “OFF” phase). We correlated the severity of dyskinesia (AIM scores) with locomotor responses in the ON/OFF phases of chronic L-DOPA treatment at two different doses. We treated three groups of parkinsonian animals with chronic injections of 8 mg/kg L-DOPA, 6 mg/kg L-DOPA, and saline solution and one group of non-lesioned animals with 8 mg/kg L-DOPA. At the end of the experiment, tyrosine hydroxylase (TH) immunoreactivity was analyzed in the striatum of all parkinsonian rats. We found no correlation between the severity of dyskinesia and spontaneous locomotor activity in the ON or OFF phase of L-DOPA treatment. The only observed correlation was between the pathological rotation induced by L-DOPA at the highest dose and locomotor activity in the ON phase of L-DOPA treatment. In addition, a L-DOPA withdrawal effect was observed, with worse motor performance in the OFF phase than before the start of L-DOPA treatment. These findings suggest that different neural mechanisms underlie the effect of L-DOPA on spontaneous motor activity and its dyskinesia-inducing effect, with a different dose-response relationship for each of these two effects. PMID:25324746

  9. Phloroglucinol attenuates motor functional deficits in an animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Ryu, Junghwa; Zhang, Rui; Hong, Bo-Hyun; Yang, Eun-Jung; Kang, Kyoung Ah; Choi, Moonseok; Kim, Ki Cheon; Noh, Su-Jin; Kim, Hee Soo; Lee, Nam-Ho; Hyun, Jin Won; Kim, Hye-Sun

    2013-01-01

    In this study, we investigated whether phloroglucinol (1,3,5-trihydroxybenzene) has therapeutic effects in cellular and animal model of Parkinson's disease (PD). PD is the second most common, chronic and progressive neurodegenerative disease, and is clinically characterized with motor dysfunctions such as bradykinesia, rigidity, postural instability, gait impairment, and resting tremor. In the brains of PD patients, dopaminergic neuronal loss is observed in the Substantia nigra. Although the exact mechanisms underlying PD are largely unknown, mitochondrial dysfunction and oxidative stress are thought to be critical factors that induce the onset of the disease. Here, phloroglucinol administration was shown to attenuate motor functional deficits evaluated with rota-rod and apomorphine-induced rotation tests in 6-hydroxydopamine (6-OHDA)-induced PD animal models. Moreover, phloroglucinol ameliorated the loss of synapses as assessed with protein levels and immunoreactivity against synaptophysin in the midbrain region of the 6-OHDA-lesioned rats. In addition, in SH-SY5Y cultures, the cytotoxicity of 6-OHDA was reduced by pre-treatment with phloroglucinol. The increase in the reactive oxygen species, lipid peroxidation, protein carbonyl formation and 8-hydroxyguanine caused by treatment with 6-OHDA was attenuated by phloroglucinol in SH-SY5Y cells. Furthermore, phloroglucinol treatment rescued the reduced levels of nuclear Nrf2, antioxidant enzymes, i.e., catalase and glutathione peroxidase, in 6-OHDA-treated cells. Taken together, phloroglucinol has a therapeutic potential for treatment of PD.

  10. Circadian distribution of motor-activity in unilaterally 6-hydroxy-dopamine lesioned rats.

    PubMed

    Baier, Paul Christian; Branisa, Pablo; Koch, Reinhard; Schindehütte, Jan; Paulus, Walter; Trenkwalder, Claudia

    2006-02-01

    Sleep abnormalities in idiopathic Parkinson's disease (PD) frequently consist in a reduction of total sleep time and efficacy and subsequent excessive daytime sleepiness. As it remains unclear whether these phenomena are part of the disease itself or result from pharmacological treatment, animal models for investigating the pathophysiology of sleep alterations in PD may add knowledge to this research area. In the present study, we investigate whether changes in circadian motor activity occur in 6-OHDA-lesioning model for PD, and allow a screening for disturbed sleep-waking behaviour. Activity measurements of six male Wistar rats with 6-OHDA-lesions in the medial forebrain bundle and six controls were carried out in two consecutive 12:12 h light-dark (LD) cycles. A computer-based video-analysis system, recording the animals' movement tracks was used. Distance travelled and number of transitions between movement periods and resting periods were determined. Although 6-OHDA-lesioned animals show a reduced locomotor activity compared to non-lesioned rats, the circadian distribution basically remained intact. However, some lesioning effects were more pronounced in the resting phase than in the activity phase, possibly paralleling nocturnal akinesia in PD. In order to further elucidate the described phenomena, it will be necessary to perform studies combining sleep recordings with locomotor activity measurements.

  11. Effect of pre- and postnatal manganese exposure on brain histamine content in a rodent model of Parkinson's disease.

    PubMed

    Brus, Ryszard; Jochem, Jerzy; Nowak, Przemysław; Adwent, Marta; Boroń, Dariusz; Brus, Halina; Kostrzewa, Richard M

    2012-02-01

    Rats lesioned shortly after birth with 6-hydroxydopamine (6-OHDA; 134 μg icv) represent a near-ideal model of severe Parkinson's disease because of the near-total destruction of nigrostriatal dopaminergic fibers. There are scarce data that in Parkinson's disease, activity of the central histaminergic system is increased. The element manganese, an essential cofactor for many enzymatic reactions, itself in toxic amount, replicates some clinical features similar to those of Parkinson's disease. The aim of this study was to examine the effect of neonatal manganese exposure on 6-OHDA modeling of Parkinson's disease in rats, and to determine effects on histamine content in the brain of these rats in adulthood. Manganese (MnCl₂·4H₂O; 10,000 ppm) was included in the drinking water of pregnant Wistar rats from the time of conception until the 21st day after delivery, the age when neonatal rats were weaned. Control rats consumed tap water. Other groups of neonatal rat pups, on the 3rd day after birth, were pretreated with desipramine (20 mg/kg ip 1 h) prior to bilateral icv administration of 6-OHDA (60 or 134 μg) or its vehicle saline-ascorbic (0.1%) (control). At 2 months after birth, in rats lesioned with 60 or 134 μg 6-OHDA, endogenous striatal dopamine (DA) content was reduced, respectively, by 92 and 98% (HPLC/ED), while co-exposure of these groups to perinatal manganese did not magnify the DA depletion. However, there was prominent enhancement of histamine content in frontal cortex, hippocampus, hypothalamus, and medulla oblongata of adult rat brain after 6-OHDA (60 and 134 μg) injection on the day 3rd postnatal day. These findings indicate that histamine and the central histaminergic system are altered in the brain of rats lesioned to model Parkinson's disease, and that manganese enhances effects of 6-OHDA on histamine in brain. PMID:21822760

  12. Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates.

    PubMed

    Torres, E M; Lane, E L; Heuer, A; Smith, G A; Murphy, E; Dunnett, S B

    2011-08-30

    The 6-hydroxydopamine (6-OHDA) lesion is the most widely used rat model of Parkinson's disease. A single unilateral injection of 6-OHDA into the median forebrain bundle (MFB) selectively destroys dopamine neurons in the ipsilateral substantia nigra pars compacta (SNc) and ventral tegmental area (VTA), removing more than 95% of the dopamine innervation from target areas. The stereotaxic coordinates used to deliver 6-OHDA to the MFB have been used in our laboratory successfully for more than 25 years. However, in recent years we have observed a decline in the success rate of this lesion. Previously regular success rates of >80% of rats lesioned, have become progressively more variable, with rates as low as 20% recorded in some experiments. Having excluded variability of the neurotoxin and operator errors, we hypothesized that the change seen might be due to the use of smaller rats at the time of first surgery. An attempt to proportionally adjust the lesion coordinates base on head size did not increase lesion efficacy. However, in support of the small rat hypothesis it was observed that, using the standard coordinates, rat's heads had a "nose-up" position in the stereotaxic fame. Adjustment of the nose bar to obtain a flat head position during surgery improved lesion success, and subsequent adjustments of the lesion coordinates to account for smaller head size led to a greatly increased lesion efficacy (>90%) as assessed by amphetamine induced rotation.

  13. Electroacupuncture Produces the Sustained Motor Improvement in 6-Hydroxydopamine-Lesioned Mice

    PubMed Central

    Deng, Jiahui; Sun, Min; Jia, Jun; Wang, Xiaomin

    2016-01-01

    Clinical and research evidence has shown that electroacupuncture (EA) promotes recovery of motor function in patients with Parkinson’s disease (PD). However, the “efficacy span” of EA treatment, especially the long-term effect of EA that is thought to last after the cessation of EA treatment, has not been investigated. The present study thus investigated and compared the effect of EA during and after chronic EA application on motor activity and dopamine lesions in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Chronic EA treatment (30 min a day, 6 days a week for 2 or 4 weeks) significantly attenuated motor deficiency and reduced dopamine neuron degeneration. Remarkably, EA showed a long-lasting effect after the cessation of EA stimulation. At 2 and 4 weeks after the termination of EA, EA continued to improve motor function in 6-OHDA-lesioned mice. Consistent with sustained behavioral effects, EA induced an enduring increase in the dopamine turnover ratio in the striatum 2 weeks after the cessation of EA treatment. Here we demonstrated that the therapeutic effect of EA outlasted the duration of EA application. During a relatively long period of time after the completion of EA treatment, EA is able to continue to improve motor function and enhance dopamine availability in 6-OHDA-lesioned PD mice. PMID:26894437

  14. Neuroprotective potentials of neurotrophin rich olfactory ensheathing cell's conditioned media against 6OHDA-induced oxidative damage.

    PubMed

    Shukla, A; Mohapatra, T M; Parmar, D; Seth, K

    2014-05-01

    On the basis of recent reports, we propose that impaired neurotrophin signaling (PI3k/Akt), low antioxidant levels, and generation of reactive oxygen species (ROS) conjointly participate in the progressive events responsible for the dopaminergic cell loss in Parkinson's disease (PD). In the present study we tried to target these deficits collectively through multiple neurotrophic factors (NTFs) support in the form of Olfactory Ensheathing Cell's Conditioned Media (OEC CM) using human SH-SY5Y neuroblastoma cell line exposed to 6 hydroxydopamine (6OHDA). 6OHDA exposure induced, oxidative stress-mediated apoptotic cell death viz. enhanced ROS generation, diffused cytosolic cytochrome c (cyt c), impaired Bcl-2: Bax levels along with decrease in GSH content. These changes were accompanied by loss in Akt phosphorylation and TH levels in SH-SY5Y cells. OEC CM significantly checked apoptotic cell death by preserving pAkt levels which coincided with enhanced GSH and suppressed oxidative injury. Functional integrity of OEC CM supported cells was evident by maintained tyrosine hydroxylase (TH) expression. Intercepting Akt signaling by specific inhibitor LY294002 blocked the protective effect. Taken together our findings provide important evidence that the key to protective effect of multiple NTF support via OEC CM is enhanced Akt survival signaling which promotes antioxidant defense leading to suppression of oxidative damage. PMID:24528157

  15. [Effects of hypothalamic microinjections of 6-hydroxydopamine (6-OHDA) on estral cycle and morphology of the genital tract in the female rat (author's transl)].

    PubMed

    Sala, M A; Oteui, J T; Benedetti, W I

    1975-01-01

    To determine whether central catecholaminergic pathways are involved in the neural contral of gonadotrophin secretion, they were interrupted at the hypothalamic level by microinjections of 6-hydroxydopamine (6-OHDA). The effects on ovulation, estral cycle and ovarian and uterine histology were studied. Microinjections of 50 mug of 6-OHDA hydrobromyde were made bilaterally into the anterolateral hypothalamus in a group of rats. Another group was injected with 25 mug of 6-OHDA, while a control group recieved an equivalent volume (5 mul) of saline with ascorbic acid. Animals injected with 50 mug of 6-OHDA showed blockade of ovulation, vaginal cytology characteristics of persistent estrous, polyfollicular ovaries and enlarged uteri with hypertrophic endometrial glands. In the group injected with 25 mug, similiar effects were demonstrated, but the number of affected animals was smaller than that in the 50 mug group. Control animals dit not show modifications, either in estral cycle or in ovarian and uterine histology. These results suggest that 6-OHDA injected into the anterolateral hypothalmus interferes with catecholaminergic pathways that participate in the neural control of ovulation.

  16. Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: a model for early Parkinson's disease.

    PubMed

    Eagle, Andrew L; Olumolade, Oluyemi O; Otani, Hajime

    2015-03-01

    Parkinson's disease (PD) produces progressive nigrostriatal dopamine (DA) denervation resulting in cognitive and motor impairment. However, it is unknown whether cognitive impairments, such as instrumental learning deficits, are associated with the early stage PD-induced mild DA denervation. The current study sought to model early PD-induced instrumental learning impairments by assessing the effects of low dose (5.5μg), bilateral 6OHDA-induced striatal DA denervation on acquisition of instrumental stimulus discrimination in rats. 6OHDA (n=20) or sham (n=10) lesioned rats were tested for stimulus discrimination acquisition either 1 or 2 weeks post surgical lesion. Stimulus discrimination acquisition across 10 daily sessions was used to assess discriminative accuracy, or a probability measure of the shift toward reinforced responding under one stimulus condition (Sd) away from extinction, when reinforcement was withheld, under another (S(d) phase). Striatal DA denervation was assayed by tyrosine hydroxylase (TH) staining intensity. Results indicated that 6OHDA lesions produced significant loss of dorsal striatal TH staining intensity and marked impairment in discrimination acquisition, without inducing akinetic motor deficits. Rather 6OHDA-induced impairment was associated with perseveration during extinction (S(Δ) phase). These findings suggest that partial, bilateral striatal DA denervation produces instrumental learning deficits, prior to the onset of gross motor impairment, and suggest that the current model is useful for investigating mild nigrostriatal DA denervation associated with early stage clinical PD.

  17. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease

    PubMed Central

    Glajch, Kelly E.; Fleming, Sheila M.; Surmeier, D. James; Osten, Pavel

    2012-01-01

    Parkinson’s disease (PD), the second most common neurodegenerative disorder, is characterized by marked impairments in motor function caused by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Animal models of PD have traditionally been based on toxins, such as 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that selectively lesion dopaminergic neurons. Motor impairments from 6-OHDA lesions of SNc neurons are well characterized in rats, but much less work has been done in mice. In this study, we compare the effectiveness of a series of drug-free behavioral tests in assessing sensorimotor impairments in the unilateral 6-OHDA mouse model, including six tests used for the first time in this PD mouse model (the automated treadmill “DigiGait” test, the challenging beam test, the adhesive removal test, the pole test, the adjusting steps test, and the test of spontaneous activity) and two tests used previously in 6-OHDA-lesioned mice (the limb-use asymmetry “cylinder” test and the manual gait test). We demonstrate that the limb-use asymmetry, challenging beam, pole, adjusting steps, and spontaneous activity tests are all highly robust assays for detecting sensorimotor impairments in the 6-OHDA mouse model. We also discuss the use of the behavioral tests for specific experimental objectives, such as simple screening for well-lesioned mice in studies of PD cellular pathophysiology or comprehensive behavioral analysis in preclinical therapeutic testing using a battery of sensorimotor tests. PMID:22178078

  18. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. L-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, L-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of L-DOPA and CSC or ZM 241385 did not change the effect of L-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of L-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical.

  19. β-asarone increases MEF2D and TH levels and reduces α-synuclein level in 6-OHDA-induced rats via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway: Chaperone-mediated autophagy activation, macroautophagy inhibition and HSP70 up-expression.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Liu, Shu; Fang, Yongqi

    2016-10-15

    Inactive myocyte enhancer factor 2D (MEF2D) and alpha-synuclein (α-syn) aggregation will cause neuronal death. MEF2D or α-syn degradation is also associated with macroautophagy, chaperone-mediated autophagy (CMA) and heat-shock protein 70 (HSP70). We found that β-asarone had positive effects on treating 6-hydroxydopamine (6-OHDA)-induced rats, but mechanisms of β-asarone affecting on MEF2D and α-syn via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway remain unclear. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create PD rats, which were divided into four groups and administered for 30days: 6-OHDA model group, MEF2D inhibitor-treated group (SB203580, 0.5mg/kg, i.p.), MEF2D activator-treated group (LiCl, 100mg/kg, i.p.), β-asarone-treated group (15mg/kg, p.o.). Expressions of tyrosine hydroxylase (TH), α-syn, heat-shock cognate protein 70 (HSC70), lysosome-associated membrane protein type 2a (LAMP-2A), MEF2D, HSP70, Beclin-1, light chain 3B (LC3B) and p62 in the mesencephalon were measured after 30-day administration. α-syn, Beclin-1 and LC3B levels were higher in the 6-OHDA model group, while TH, MEF2D, HSC70, LAMP-2A, p62 levels were lower compared to the sham-operated group. Our results also showed thatβ-asarone treatment reduced protein and mRNA levels of α-syn, Beclin-1 and LC3B, but increased HSP70, TH, MEF2D, HSC70, LAMP-2A and p62 levels compared to the 6-OHDA model group. Additionally, certain correlations among α-syn, TH, Beclin-1, LC3B, p62, HSP70, LAMP-2A and MEF2D were also discovered in this study. These findings suggested that β-asarone treatment could increase MEF2D and TH as well as reduce α-syn to protect against 6-OHDA induced damage in PD rat mesencephalon via modulating the HSP70/MAPK/MEF2D/Beclin-1 pathway.

  20. Respiratory deficits in a rat model of Parkinson's disease.

    PubMed

    Tuppy, M; Barna, B F; Alves-Dos-Santos, L; Britto, L R G; Chiavegatto, S; Moreira, T S; Takakura, A C

    2015-06-25

    Parkinson's disease (PD) is a neurodegenerative disease characterized by loss of the dopaminergic nigrostriatal pathway. In addition to deficits in voluntary movement, PD involves a disturbance of breathing regulation. However, the cause and nature of this disturbance are not well understood. Here, we investigated breathing at rest and in response to hypercapnia (7% CO2) or hypoxia (8% O2), as well as neuroanatomical changes in brainstem regions essential for breathing, in a 6-hydroxydopamine (6-OHDA) rat model of PD. Bilateral injections of 6-OHDA (24μg/μl) into the striatum decreased tyrosine hydroxylase (TH(+))-neurons in the substantia nigra pars compacta (SNpc), transcription factor phox2b-expressing neurons in the retrotrapezoid nucleus and neurokinin-1 receptors in the ventral respiratory column. In 6-OHDA-lesioned rats, respiratory rate was reduced at rest, leading to a reduction in minute ventilation. These animals also showed a reduction in the tachypneic response to hypercapnia, but not to hypoxia challenge. These results suggest that the degeneration of TH(+) neurons in the SNpc leads to impairment of breathing at rest and in hypercapnic conditions. Our data indicate that respiratory deficits in a 6-OHDA rat model of PD are related to downregulation of neural systems involved in respiratory rhythm generation. The present study suggests a new avenue to better understand the respiratory deficits observed in chronic stages of PD.

  1. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression

    PubMed Central

    Gao, J; Kang, X-y; Sun, S; Li, L; Zhang, B-l; Li, Y-q; Gao, D-s

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  2. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression.

    PubMed

    Gao, J; Kang, X-Y; Sun, S; Li, L; Zhang, B-L; Li, Y-Q; Gao, D-S

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  3. Neuroprotective Effect of Pseudoginsenoside-F11 on a Rat Model of Parkinson's Disease Induced by 6-Hydroxydopamine

    PubMed Central

    Wang, Jian Yu; Yang, Jing Yu; Wang, Fang; Fu, Shi Yuan; Hou, Yue; Jiang, Bo; Ma, Jie; Song, Cui; Wu, Chun Fu

    2013-01-01

    Pseudoginsenoside-F11 (PF11), a component of Panax quinquefolism (American ginseng), plays a lot of beneficial effects on disorders of central nervous system. In this paper, the neuroprotective effect of PF11 on Parkinson's disease (PD) and the possible mechanism were investigated in a rat PD model. PF11 was orally administered at 3, 6, and 12 mg/kg once daily for a period of 2 weeks before and 1 week after the unilateral lesion of left medial forebrain bundle (MFB) induced by 6-hydroxydopamine (6-OHDA). The results showed that PF11 markedly improved the locomotor, motor balance, coordination, and apomorphine-induced rotations in 6-OHDA-lesioned rats. The expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and the content of extracellular dopamine (DA) in striatum were also significantly increased after PF11 treatment. Moreover, significant reduction in the levels of striatal extracellular hydroxyl radical (∙OH), detected as 2,3- and 2,5-dihydroxy benzoic acid (2,3- and 2,5-DHBA), and increase in the level of striatal extracellular ascorbic acid (AA) were observed in the PF11-treated groups compared with 6-OHDA-lesioned rats. Taken together, we propose that PF11 has potent anti-Parkinson property possibly through inhibiting free radical formation and stimulating endogenous antioxidant release. PMID:24386001

  4. Adaptive down-regulation of the serotonin transporter in the 6-hydroxydopamine-induced rat model of preclinical stages of Parkinson's disease and after chronic pramipexole treatment.

    PubMed

    Berghauzen-Maciejewska, K; Wardas, J; Kosmowska, B; Domin, H; Śmiałowska, M; Głowacka, U; Ossowska, K

    2016-02-01

    Our recent study has indicated that a moderate lesion induced by bilateral 6-hydroxydopamine (6-OHDA) injections into the ventrolateral region of the caudate-putamen (CP) in rats, modeling preclinical stages of Parkinson's disease, induces a "depressive-like" behavior which is reversed by chronic treatment with pramipexole (PRA). The aim of the present study was to examine the influence of the above lesion and chronic PRA treatment on binding to the serotonin transporter (SERT) in different brain regions. As before, 6-OHDA (15 μg/2.5 μl) was administered bilaterally into the CP. PRA (1mg/kg) was injected subcutaneously twice a day for 2 weeks. Serotonergic and dopaminergic neurons of the dorsal raphe (DR) were immunostained for tryptophan hydroxylase and tyrosine hydroxylase, respectively, and were counted stereologically. Binding of [(3)H]GBR 12,935 to the dopamine transporter (DAT) and [(3)H]citalopram to SERT was analyzed autoradiographically. Intrastriatal 6-OHDA injections decreased the number of dopaminergic, but not serotonergic neurons in the DR. 6-OHDA reduced the DAT binding in the CP, and SERT binding in the nigrostriatal system (CP, substantia nigra (SN)), limbic system (ventral tegmental area (VTA), nucleus accumbens (NAC), amygdala, prefrontal cortex (PFCX), habenula, hippocampus) and DR. A significant positive correlation was found between DAT and SERT binding in the CP. Chronic PRA did not influence DAT binding but reduced SERT binding in the above structures, and deepened the lesion-induced losses in the core region of the NAC, SN, VTA and PFCX. The present study indicates that both the lesion of dopaminergic neurons and chronic PRA administration induce adaptive down-regulation of SERT binding. Moreover, although involvement of stimulation of dopaminergic transmission by chronic PRA in its "antidepressant" effect seems to be prevalent, additional contribution of SERT inhibition cannot be excluded.

  5. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease

    PubMed Central

    Harkavyi, Alexander; Abuirmeileh, Amjad; Lever, Rebecca; Kingsbury, Ann E; Biggs, Christopher S; Whitton, Peter S

    2008-01-01

    Background It has recently become apparent that neuroinflammation may play a significant role in Parkinson's disease (PD). This is also the case in animal paradigms of the disease. The potential neuroprotective action of the glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 (EX-4), which is protective against cytokine mediated apoptosis and may stimulate neurogenesis, was investigated In paradigms of PD. Methods Two rodent 'models' of PD, 6-hydroxydopamine (6-OHDA) and lipopolysaccaride (LPS), were used to test the effects of EX-4. Rats were then investigated in vivo and ex vivo with a wide range of behavioural, neurochemical and histological tests to measure integrity of the nigrostriatal system. Results EX-4 (0.1 and 0.5 μg/kg) was given seven days after intracerebral toxin injection. Seven days later circling behaviour was measured following apomorphine challenge. Circling was significantly lower in rats given EX-4 at both doses compared to animals given 6-OHDA/LPS and vehicle. Consistent with these observations, striatal tissue DA concentrations were markedly higher in 6-OHDA/LPS + EX-4 treated rats versus 6-OHDA/LPS + vehicle groups, whilst assay of L-DOPA production by tyrosine hydroxylase was greatly reduced in the striata of 6-OHDA/LPS + vehicle rats, but this was not the case in rats co-administered EX-4. Furthermore nigral TH staining recorded in 6-OHDA/LPS + vehicle treated animals was markedly lower than in sham-operated or EX-4 treated rats. Finally, EX-4 clearly reversed the loss of extracellular DA in the striata of toxin lesioned freely moving rats. Conclusion The apparent ability of EX-4 to arrest progression of, or even reverse nigral lesions once established, suggests that pharmacological manipulation of the GLP-1 receptor system could have substantial therapeutic utility in PD. Critically, in contrast to other peptide agents that have been demonstrated to possess neuroprotective properties in pre-clinical models of PD, EX-4 is in

  6. Multiple lesion track structure model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1992-01-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.

  7. Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model.

    PubMed

    Sedaghat, Reza; Roghani, Mehrdad; Khalili, Mohsen

    2014-01-01

    Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD.

  8. Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model

    PubMed Central

    Sedaghat, Reza; Roghani, Mehrdad; Khalili, Mohsen

    2014-01-01

    Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and cellular abnormalities and markers of oxidative stress in an experimental model of early PD in rat. Unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were daily pretreated p.o. with TQ at doses of 5 and/or 10 mg/Kg three times at an interval of 24 h. After 1 week, apomorphine caused contralateral rotations, a reduction in the number of neurons on the left side of the substantia nigra pars compacta (SNC) was observed, malondialdehyde (MDA) and nitrite level in midbrain homogenate increased and activity of superoxide dismutase (SOD) reduced in the 6-OHDA lesion group. TQ pretreatment significantly improved turning behavior, prevented loss of SNC neurons, and lowered level of MDA. These results suggest that TQ could afford neuroprotection against 6-OHDA neurotoxicity that is partly due to the attenuation of lipid peroxidation and this may provide benefits, along with other therapies, in neurodegenerative disorders including PD. PMID:24734075

  9. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson's Disease.

    PubMed

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson's disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  10. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Tarozzi, Andrea; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-11-17

    A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD. PMID:25257035

  11. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson’s Disease

    PubMed Central

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson’s disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  12. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease.

    PubMed

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2016-08-01

    Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential.

  13. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease.

    PubMed

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2016-08-01

    Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential. PMID:26414358

  14. Sequential bilateral striatal lesions have additive effects on single skilled limb use in rats.

    PubMed

    Faraji, Jamshid; Metz, Gerlinde A

    2007-02-27

    Unilateral dopamine depletion in rats induced by injection of 6-hydroxydopamine (6-OHDA) into the nigrostriatal system causes permanent impairments in limb use. The disturbances in limb use, including impairments in skilled reaching, are most severe on the side contralateral to the lesion. A number of studies, however, have also described ipsilateral deficits in skilled reaching. The purpose of this study was to investigate the effects of sequential bilateral striatal 6-OHDA lesions on skilled reaching movements in rats to compare the contribution of contra- versus ipsilateral motor control. Rats were trained in a reaching task to grasp food pellets with their preferred paw prior to receiving an intrastriatal 6-OHDA injection on the side contralateral to the preferred paw. The lesion significantly reduced reaching success along with qualitative impairments in limb use. In addition, animals displayed asymmetry in limb use and contraversive rotation bias after an apomorphine challenge. Three weeks later, animals received a second lesion induced by intrastriatal 6-OHDA injection into the hemisphere ipsilateral to the preferred paw. This lesion exaggerated the previous impairments in limb use and further reduced reaching success of the preferred paw. In the ladder rung walking task, additional impairments were found only in the forelimb ipsilateral to the first lesion. The findings of additive effects of sequential bilateral lesions suggest that both the contra- and ipsilateral striatum control single limb use. This supports the notion of bilateral control of skilled forelimb use by the mesostriatal dopaminergic system. PMID:17182115

  15. Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys

    PubMed Central

    Joers, Valerie; Seneczko, Kailie; Goecks, Nichole C.; Kamp, Timothy J.; Hacker, Timothy A.; Brunner, Kevin G.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, R. Jerome; Holden, James E.; Emborg, Marina E.

    2012-01-01

    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog 11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia. PMID:22539969

  16. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  17. Increased antiparkinson efficacy of the combined administration of VEGF- and GDNF-loaded nanospheres in a partial lesion model of Parkinson's disease.

    PubMed

    Herrán, Enara; Requejo, Catalina; Ruiz-Ortega, Jose Angel; Aristieta, Asier; Igartua, Manoli; Bengoetxea, Harkaitz; Ugedo, Luisa; Pedraz, Jose Luis; Lafuente, Jose Vicente; Hernández, Rosa Maria

    2014-01-01

    Current research efforts are focused on the application of growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), as neuroregenerative approaches that will prevent the neurodegenerative process in Parkinson's disease. Continuing a previous work published by our research group, and with the aim to overcome different limitations related to growth factor administration, VEGF and GDNF were encapsulated in poly(lactic-co-glycolic acid) nanospheres (NS). This strategy facilitates the combined administration of the VEGF and GDNF into the brain of 6-hydroxydopamine (6-OHDA) partially lesioned rats, resulting in a continuous and simultaneous drug release. The NS particle size was about 200 nm and the simultaneous addition of VEGF NS and GDNF NS resulted in significant protection of the PC-12 cell line against 6-OHDA in vitro. Once the poly(lactic-co-glycolic acid) NS were implanted into the striatum of 6-OHDA partially lesioned rats, the amphetamine rotation behavior test was carried out over 10 weeks, in order to check for in vivo efficacy. The results showed that VEGF NS and GDNF NS significantly decreased the number of amphetamine-induced rotations at the end of the study. In addition, tyrosine hydroxylase immunohistochemical analysis in the striatum and the external substantia nigra confirmed a significant enhancement of neurons in the VEGF NS and GDNF NS treatment group. The synergistic effect of VEGF NS and GDNF NS allows for a reduction of the dose by half, and may be a valuable neurogenerative/neuroreparative approach for treating Parkinson's disease. PMID:24920904

  18. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model.

    PubMed

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung; Kim, Kyoung-Shim; Kim, Mee Ree

    2016-08-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD.

  19. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model.

    PubMed

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung; Kim, Kyoung-Shim; Kim, Mee Ree

    2016-08-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  20. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model

    PubMed Central

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  1. Calretinin-containing axons and neurons are resistant to an intrastriatal 6-hydroxydopamine lesion.

    PubMed

    Tsuboi, K; Kimber, T A; Shults, C W

    2000-06-01

    Relative preservation of dopaminergic axons in patches and a subcallosal layer was observed in the dorsal, lateral and caudal striatum 4 weeks after intrastriatal injection of 6-hydroxydopamine (6-OHDA), a neurotoxin selective for catecholaminergic neurons. Since calcium binding proteins are reported to provide neuroprotective influence in neurons, differences in the distribution of the calcium binding proteins might be related to the different vulnerabilities of dopaminergic neurons and axons to neurotoxins. To address this possibility, we characterized patches of relatively dense tyrosine hydroxylase-immunoreactive (TH-IR) axons in intrastriatal 6-OHDA lesioned rats, focusing on two calcium binding proteins, calbindin (CB) and calretinin (CR). The patches and subcallosal layer of preserved dopaminergic axons in the striatum of rats lesioned with 6-OHDA contained CR, a 31-kDa calcium-binding protein, but interestingly not CB. Dopaminergic neurons containing CR in the substantia nigra pars compacta (SNpc) were relatively spared compared to those that did not contain CR. Taken together, our data indicate that dopaminergic axons and neurons containing CR in the nigrostriatal pathway are more resistant to 6-OHDA lesion than those that do not contain CR.

  2. Efficient Expression of Igf-1 from Lentiviral Vectors Protects In Vitro but Does Not Mediate Behavioral Recovery of a Parkinsonian Lesion in Rats.

    PubMed

    Lu-Nguyen, Ngoc B; Broadstock, Martin; Yáñez-Muñoz, Rafael J

    2015-11-01

    Gene therapy approaches delivering neurotrophic factors have offered promising results in both preclinical and clinical trials of Parkinson's disease (PD). However, failure of glial cell line-derived neurotrophic factor in phase 2 clinical trials has sparked a search for other trophic factors that may retain efficacy in the clinic. Direct protein injections of one such factor, insulin-like growth factor (IGF)-1, in a rodent model of PD has demonstrated impressive protection of dopaminergic neurons against 6-hydroxydopamine (6-OHDA) toxicity. However, protein infusion is associated with surgical risks, pump failure, and significant costs. We therefore used lentiviral vectors to deliver Igf-1, with a particular focus on the novel integration-deficient lentiviral vectors (IDLVs). A neuron-specific promoter, from the human synapsin 1 gene, excellent for gene expression from IDLVs, was additionally used to enhance Igf-1 expression. An investigation of neurotrophic effects on primary rat neuronal cultures demonstrated that neurons transduced with IDLV-Igf-1 vectors had complete protection on withdrawal of exogenous trophic support. Striatal transduction of such vectors into 6-OHDA-lesioned rats, however, provided neither protection of dopaminergic substantia nigra neurons nor improvement of animal behavior.

  3. Modeling fall propensity in Parkinson's disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation.

    PubMed

    Kucinski, Aaron; Paolone, Giovanna; Bradshaw, Marc; Albin, Roger L; Sarter, Martin

    2013-10-16

    Cognitive symptoms, complex movement deficits, and increased propensity for falls are interrelated and levodopa-unresponsive symptoms in patients with Parkinson's disease (PD). We developed a test system for the assessment of fall propensity in rats and tested the hypothesis that interactions between loss of cortical cholinergic and striatal dopaminergic afferents increase fall propensity. Rats were trained to traverse stationary and rotating rods, placed horizontally or at inclines, and while exposed to distractors. Rats also performed an operant Sustained Attention Task (SAT). Partial cortical cholinergic and/or caudate dopaminergic deafferentation were produced by bilateral infusions of 192 IgG-saporin (SAP) into the basal forebrain and/or 6-hydroxydopamine (6-OHDA) into the caudate nucleus, respectively, modeling the lesions seen in early PD. Rats with dual cholinergic-dopaminergic lesions (DL) fell more frequently than SAP or 6-OHDA rats. Falls in DL rats were associated with incomplete rebalancing after slips and low traversal speed. Ladder rung walking and pasta handling performance did not indicate sensorimotor deficits. SAT performance was impaired in DL and SAP rats; however, SAT performance and falls were correlated only in DL rats. Furthermore, in DL rats, but not in rats with only dopaminergic lesions, the placement and size of dopaminergic lesion correlated significantly with fall rates. The results support the hypothesis that after dual cholinergic-dopaminergic lesions, attentional resources can no longer be recruited to compensate for diminished striatal control of complex movement, thereby "unmasking" impaired striatal control of complex movements and yielding falls. PMID:24133257

  4. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  5. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum.

    PubMed

    Serratos, Iris N; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Colín-González, Ana Laura; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Sánchez-García, Aurora; Gómez, Isabel; Rangel-López, Edgar; Santamaria, Abel

    2016-04-01

    The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity.

  6. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD.

  7. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD. PMID:26773499

  8. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Haas, Stefan Jean-Pierre; Zhou, Xiaolai; Machado, Venissa; Wree, Andreas; Krieglstein, Kerstin; Spittau, Björn

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor β1 (Tgfβ1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfβ1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO). PMID:26869879

  9. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson’s Disease

    PubMed Central

    Garea-Rodríguez, Enrique; Eesmaa, Ave; Lindholm, Päivi; Schlumbohm, Christina; König, Jessica; Meller, Birgit; Krieglstein, Kerstin; Helms, Gunther; Saarma, Mart; Fuchs, Eberhard

    2016-01-01

    Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF. PMID:26901822

  10. The Use of Perinatal 6-Hydroxydopamine to Produce a Rodent Model of Lesch-Nyhan Disease.

    PubMed

    Knapp, Darin J; Breese, George R

    2016-01-01

    Lesch-Nyhan disease is a neurologically, metabolically, and behaviorally devastating condition that has eluded complete characterization and adequate treatment. While it is known that the disease is intimately associated with dysfunction of the hypoxanthine phosphoribosyltransferase 1 (HPRT1) gene that codes for an enzyme of purine metabolism (hypoxanthine-guanine phosphoribosyltransferase) and is associated with neurological, behavioral, as well as metabolic dysfunction, the mechanisms of the neurobehavioral manifestations are as yet unclear. However, discoveries over the past few decades not only have created useful novel animal models (e.g., the HPRT-deficient mouse and the serendipitously discovered perinatal 6-hydroxydopamine (6-OHDA lesion model), but also have expanded into epigenetic, genomic, and proteomic approaches to better understand the mechanisms underlying this disease. The perinatal 6-OHDA model, in addition to modeling self-injury and dopamine depletion in the clinical condition, also underscores the profound importance of development in the differential course of maladaptive progression in the face of a common/single neurotoxic insult at different ages. Recent developments from clinical and basic science efforts attest to the fact that while the disease would seem to have a simple single gene defect at its core, the manifestations of this defect are profound and unexpectedly diverse. Future efforts employing the 6-OHDA model and others in the context of the novel technologies of genome editing, chemo- and opto-genetics, epigenetics, and further studies on the mechanisms of stress-induced maladaptations in brain all hold promise in taking our understanding of this disease to the next level. PMID:27029809

  11. Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease--Effects of Nanoencapsulated Neurotrophic Factors Administration.

    PubMed

    Requejo, C; Ruiz-Ortega, J A; Bengoetxea, H; Garcia-Blanco, A; Herrán, E; Aristieta, A; Igartua, M; Ugedo, L; Pedraz, J L; Hernández, R M; Lafuente, J V

    2015-10-01

    Administration of various neurotrophic factors is a promising strategy against Parkinson's disease (PD). An intrastriatal infusion of 6-hydroxidopamine (6-OHDA) in rats is a suitable model to study PD. This work aims to describe stereological parameters regarding rostro-caudal gradient, in order to characterize the model and verify its suitability for elucidating the benefits of therapeutic strategies. Administration of 6-OHDA induced a reduction in tyrosine hidroxylase (TH) reactivity in the dorsolateral part of the striatum, being higher in the caudal section than in the rostral one. Loss of TH-positive neurons and axodendritic network was highly significant in the external third of substantia nigra (e-SN) in the 6-OHDA group versus the saline one. After the administration of nanospheres loaded with neurotrophic factors (NTF: vascular endothelial growth factor (VEGF) + glial cell line-derived neurotrophic factor (GDNF)), parkinsonized rats showed more TH-positive fibers than those of control groups; this recovery taking place chiefly in the rostral sections. Neuronal density and axodendritic network in e-SN was more significant than in the entire SN; the topographical analysis showed that the highest difference between NTF versus control group was attained in the middle section. A high number of bromodeoxyuridine (BrdU)-positive cells were found in sub- and periventricular areas in the group receiving NTF, where most of them co-expressed doublecortin. Measurements on the e-SN achieved more specific and significant results than in the entire SN. This difference in rostro-caudal gradients underpins the usefulness of a topological approach to the assessment of the lesion and therapeutic strategies. Findings confirmed the neurorestorative, neurogenic, and synergistic effects of VEGF+GDNF administration. PMID:26041662

  12. Motor disturbances and thalamic electrical power of frequency bands' improve by grape seed extract in animal model of Parkinson's disease

    PubMed Central

    Sarkaki, Alireza; Eidypour, Zainab; Motamedi, Freshteh; keramati, keivan; Farbood, Yaghoub

    2012-01-01

    Objective: Previous studies showed that grape seed extract (GSE) is an excellent natural substance with potent antioxidant effect and free radical scavenger. This study aimed to evaluate the effect of GSE on motor dysfunctions and thalamic local Electroencephalography (EEG) frequency bands' powers in rats with Parkinson's disease (PD). Materials and Methods: In this study 8 µg 6-hydroxydopamine (6-OHDA) dissolved in 2 µl normal saline containing 0.01% ascorbic acid was infused into right medial forebrain bundle (MFB) to make an animal model of PD. Rats with PD received four weeks GSE (100 mg/kg, p.o.) after apomorphine-induced rotation test. Spontaneous motor tests and also thalamic ventroanterior nucleus (AV) local EEG recording were done in freely moving rats in all groups. Results: Chronic treatment of PD rats with GSE could influence potentially frequency bands' powers of thalamic VA and improve post-lesion motor dysfunctions significantly (p<0.05 and p<0.01, respectively). Conclusion: Our findings suggest that GSE modulates the CNS function and has beneficial effects on the direct and indirect striato-thalamo-cortical pathways in PD. GSE acts as a new and potent natural free radical scavenger which removes oxidants produced by neurotoxin 6-OHDA in brain. Therefore, it reinforces electrical power of remained thalamic VA neurons and thereby improves post-lesion motor disorders. PMID:25050252

  13. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson's disease.

    PubMed

    Reglodi, Dóra; Lubics, Andrea; Tamás, Andrea; Szalontay, Luca; Lengvári, István

    2004-05-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide, exerting different actions in the central and peripheral nervous systems. Among others, it has neurotrophic and neuroprotective effects. In the present study, we investigated the effects of PACAP in a rat model of Parkinson's disease. Rats were given unilateral injections of 6-hydroxydopamine (6-OHDA) into the substantia nigra. PACAP-treated animals received 0.1 microg PACAP as a pretreatment. Control animals without PACAP treatment displayed severe hypokinesia at 1 and 10 days postlesion when compared to animals receiving saline only. In only 1 day postlesion, by contrast, PACAP-treated rats showed no hypokinesia. Asymmetrical signs, such as turning, rearing and biased thigmotaxic scanning were observed in all lesioned animals 1 day postlesion. PACAP-treated animals, however, showed better recovery as they ceased to display asymmetrical signs 10 days later and showed markedly less apomorphine-induced rotations. Tyrosine-hydroxylase immunohistochemistry revealed that control animals had more than 95% loss of the dopaminergic cells in the ipsilateral substantia nigra, while PACAP-treated animals had only approximately 50% loss of dopaminergic cells. In summary, the present results show the neuroprotective effect of PACAP in 6-OHDA-induced lesion of substantia nigra, with less severe acute neurological symptoms and a more rapid amelioration of behavioral deficits.

  14. Malignancy Risk Models for Oral Lesions

    PubMed Central

    Zarate, Ana M.; Brezzo, María M.; Secchi, Dante G.; Barra, José L.

    2013-01-01

    Objectives: The aim of this work was to assess risk habits, clinical and cellular phenotypes and TP53 DNA changes in oral mucosa samples from patients with Oral Potentially Malignant Disorders (OPMD), in order to create models that enable genotypic and phenotypic patterns to be obtained that determine the risk of lesions becoming malignant. Study Design: Clinical phenotypes, family history of cancer and risk habits were collected in clinical histories. TP53 gene mutation and morphometric-morphological features were studied, and multivariate models were applied. Three groups were estabished: a) oral cancer (OC) group (n=10), b) OPMD group (n=10), and c) control group (n=8). Results: An average of 50% of patients with malignancy were found to have smoking and drinking habits. A high percentage of TP53 mutations were observed in OC (30%) and OPMD (average 20%) lesions (p=0.000). The majority of these mutations were GC ? TA transversion mutations (60%). However, patients with OC presented mutations in all the exons and introns studied. Highest diagnostic accuracy (p=0.0001) was observed when incorporating alcohol and tobacco habits variables with TP53 mutations. Conclusions: Our results prove to be statistically reliable, with parameter estimates that are nearly unbiased even for small sample sizes. Models 2 and 3 were the most accurate for assessing the risk of an OPMD becoming cancerous. However, in a public health context, model 3 is the most recommended because the characteristics considered are easier and less costly to evaluate. Key words:TP53, oral potentially malignant disorders, risk factors, genotype, phenotype. PMID:23722122

  15. Long-term treatment with L-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease.

    PubMed

    Chiu, W-H; Depboylu, C; Hermanns, G; Maurer, L; Windolph, A; Oertel, W H; Ries, V; Höglinger, G U

    2015-08-01

    Non-motor symptoms such as hyposmia and depression are often observed in Parkinson's disease (PD) and can precede the onset of motor symptoms for years. The underlying pathological alterations in the brain are not fully understood so far. Dysregulation of adult neurogenesis in the dentate gyrus of the hippocampus and the olfactory bulb has been recently suggested to be implicated in non-motor symptoms of PD. However, there is so far no direct evidence to support the relationship of non-motor symptoms and the modulation of adult neurogenesis following dopamine depletion and/or dopamine replacement. In this study, we investigated the long-term effects of l-DOPA and pramipexole, a dopamine agonist, in a mouse model of bilateral intranigral 6-OHDA lesion, in order to assess the impact of adult neurogenesis on non-motor behavior. We found that l-DOPA and pramipexole can normalize decreased neurogenesis in the hippocampal dentate gyrus and the periglomerular layer of the olfactory bulb caused by a 6-OHDA lesion. Interestingly, pramipexole showed an antidepressant and anxiolytic effect in the forced swim test and social interaction test. However, there was no significant change in learning and memory function after dopamine depletion and dopamine replacement, respectively.

  16. Long-term treatment with L-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease.

    PubMed

    Chiu, W-H; Depboylu, C; Hermanns, G; Maurer, L; Windolph, A; Oertel, W H; Ries, V; Höglinger, G U

    2015-08-01

    Non-motor symptoms such as hyposmia and depression are often observed in Parkinson's disease (PD) and can precede the onset of motor symptoms for years. The underlying pathological alterations in the brain are not fully understood so far. Dysregulation of adult neurogenesis in the dentate gyrus of the hippocampus and the olfactory bulb has been recently suggested to be implicated in non-motor symptoms of PD. However, there is so far no direct evidence to support the relationship of non-motor symptoms and the modulation of adult neurogenesis following dopamine depletion and/or dopamine replacement. In this study, we investigated the long-term effects of l-DOPA and pramipexole, a dopamine agonist, in a mouse model of bilateral intranigral 6-OHDA lesion, in order to assess the impact of adult neurogenesis on non-motor behavior. We found that l-DOPA and pramipexole can normalize decreased neurogenesis in the hippocampal dentate gyrus and the periglomerular layer of the olfactory bulb caused by a 6-OHDA lesion. Interestingly, pramipexole showed an antidepressant and anxiolytic effect in the forced swim test and social interaction test. However, there was no significant change in learning and memory function after dopamine depletion and dopamine replacement, respectively. PMID:25839898

  17. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: A model on the dissociation of bradykinesia from hypokinesia.

    PubMed

    Ribeiro, Renata Pietsch; Santos, Danúbia Bonfanti; Colle, Dirleise; Naime, Aline Aita; Gonçalves, Cinara Ludvig; Ghizoni, Heloisa; Hort, Mariana Appel; Godoi, Marcelo; Dias, Paulo Fernando; Braga, Antonio Luiz; Farina, Marcelo

    2016-05-15

    Bradykinesia and hypokinesia represent well-known motor symptoms of Parkinson's disease (PD). While bradykinesia (slow execution of movements) is present in less affected PD patients and aggravates as the disease severity increases, hypokinesia (reduction of movement) seems to emerge prominently only in the more affected patients. Here we developed a model based on the central infusion of low dose (40μg) 6-hydroxydopamine (6-OHDA) in mice in an attempt to discriminate bradykinesia (accessed through forelimb inability) from hypokinesia (accessed through locomotor and exploratory activities). The potential beneficial effects of succinobucol against 6-OHDA-induced forelimb inability were also evaluated. One week after the beginning of treatment with succinobucol (i.p. injections, 10mg/kg/day), mice received a single i.c.v. infusion of 6-OHDA (40μg/site). One week after 6-OHDA infusion, general locomotor/exploratory activities (open field test), muscle strength (grid test), forelimb skill (single pellet task), as well as striatal biochemical parameters related to oxidative stress and cellular homeostasis (glutathione peroxidase, glutathione reductase and NADH dehydrogenases activities, lipid peroxidation and TH levels), were evaluated. 6-OHDA infusions did not change locomotor/exploratory activities and muscle strength, as well as the evaluated striatal biochemical parameters. However, 6-OHDA infusions caused significant reductions (50%) in the single pellet reaching task performance, which detects forelimb skill inability and can be used to experimentally identify bradykinesia. Succinobucol partially protected against 6-OHDA-induced forelimb inability. The decreased forelimb ability with no changes in locomotor/exploratory behavior indicates that our 6-OHDA-based protocol represents a useful tool to mechanistically study the dissociation of bradykinesia and hypokinesia in PD.

  18. Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [18F]LBT-999 in a Parkinson’s Disease Rat Model

    PubMed Central

    Sérrière, Sophie; Doméné, Aurélie; Vercouillie, Johnny; Mothes, Céline; Bodard, Sylvie; Rodrigues, Nuno; Guilloteau, Denis; Routier, Sylvain; Page, Guylène; Chalon, Sylvie

    2015-01-01

    The inverse association between nicotine intake and Parkinson’s disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [18F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [3H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD. PMID:26389120

  19. Preventive effects of soy meal (+/- isoflavone) on spatial cognitive deficiency and body weight in an ovariectomized animal model of Parkinson's disease.

    PubMed

    Sarkaki, A; Badavi, M; Aligholi, H; Moghaddam, A Zand

    2009-10-15

    The aim of the present study was to investigate the preventive effect of 4 weeks soy meal (+/- isoflavone) on post-menopausal cognitive deficiency and body weight alteration in ovariectomized (OVX)-6-hydroxy dopamine (6-OHDA)-induced animal model of Parkinson's Disease (PD) which mimics status in menopause women. Female Wistar rats (250-300 g, 5-6 months old) were divided into 2 main groups. (1) Control; (2) OVX; included 5 subgroups that were pre-treated with 10 or 20 g soy with isoflavone in 30 g daily diet (10 and 20 groups, respectively), 10 or 20 g soy without isoflavone in 30 g daily diet (-10 and -20 groups, respectively) and 0 g soy (sham treated group) during 4 weeks after OVX. To induce animal model ofPD in main second group (OVX rats) the substantia nigra pars compacta (SNpc) was lesioned by 6-hydroxydopamine (6-OHDA) (8 microg kg(-1) 4 microL(-1) normal saline contains 0.1% ascorbate). All animals were trained in Morris water maze for evaluating the spatial learning and memory. The results indicated that pre-treatment of Parkinsonian rats with different doses of dietary soy meal (+/- isoflavone) improved the spatial learning and memory and prevents increasing the body weight after menopause significantly. Our data show that, long-duration dietary soy meal may have the potential neuroprotective effect against post-menopausal cognitive deficiency induced by degeneration of nigrostriatal dopaminergic system and constant body weight during post-menopausal life cycle.

  20. Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids.

    PubMed

    Berg, Jürgen; Roch, Manfred; Altschüler, Jennifer; Winter, Christine; Schwerk, Anne; Kurtz, Andreas; Steiner, Barbara

    2015-02-01

    Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson's disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype.

  1. Neuron-derived IgG protects dopaminergic neurons from insult by 6-OHDA and activates microglia through the FcγR I and TLR4 pathways.

    PubMed

    Zhang, Jie; Niu, Na; Wang, Mingyu; McNutt, Michael A; Zhang, Donghong; Zhang, Baogang; Lu, Shijun; Liu, Yuqing; Liu, Zhihui

    2013-08-01

    Oxidative and immune attacks from the environment or microglia have been implicated in the loss of dopaminergic neurons of Parkinson's disease. The role of IgG which is an important immunologic molecule in the process of Parkinson's disease has been unclear. Evidence suggests that IgG can be produced by neurons in addition to its traditionally recognized source B lymphocytes, but its function in neurons is poorly understood. In this study, extensive expression of neuron-derived IgG was demonstrated in dopaminergic neurons of human and rat mesencephalon. With an in vitro Parkinson's disease model, we found that neuron-derived IgG can improve the survival and reduce apoptosis of dopaminergic neurons induced by 6-hydroxydopamine toxicity, and also depress the release of NO from microglia triggered by 6-hydroxydopamine. Expression of TNF-α and IL-10 in microglia was elevated to protective levels by neuron-derived IgG at a physiologic level via the FcγR I and TLR4 pathways and microglial activation could be attenuated by IgG blocking. All these data suggested that neuron-derived IgG may exert a self-protective function by activating microglia properly, and IgG may be involved in maintaining immunity homeostasis in the central nervous system and serve as an active factor under pathological conditions such as Parkinson's disease.

  2. MODELING OPERANT BEHAVIOR IN THE PARKINSONIAN RAT

    PubMed Central

    Avila, Irene; Reilly, Mark P.; Sanabria, Federico; Posadas-Sánchez, Diana; Chavez, Claudia L.; Banerjee, Nikhil; Killeen, Peter; Castañeda, Edward

    2009-01-01

    Mathematical principles of reinforcement (MPR; Killeen, 1994) is a quantitative model of operant behavior that contains 3 parameters representing motor capacity (δ), motivation (a), and short term memory (λ). The present study applied MPR to characterize the effects of bilateral infusions of 6-OHDA into the substantia nigra pars compacta in the rat, a model of Parkinson’s disease. Rats were trained to lever press under a 5-component fixed ratio (5, 15, 30, 60, and 100) schedule of food reinforcement. Rats were tested for 15 days prior to dopamine lesions and again for 15 days post-lesion. To characterize functional loss relative to lesion size, rats were grouped according to the extent and the degree of lateralization of their dopamine loss. Response rates decreased as a function of dopamine depletion, primarily at intermediate ratios. MPR accounted for 98% of variance in pre- and post-lesion response rates. Consistent with reported disruptions in motor behavior induced by dopaminergic lesions, estimates of δ increased when dopamine was severely depleted. There was no support for different estimates of a based on pre- and post-lesion performance of any lesion group, suggesting that dopamine loss has negligible effects on incentive motivation. The present study demonstrates the usefulness of combining operant techniques with a theoretical model to better understand the effects of a neurochemical manipulation. PMID:19073222

  3. Behavioral effects of lesions in the A10 dopaminergic area of the rat.

    PubMed

    Galey, D; Simon, H; Le Moal, M

    1977-03-18

    Experiments have been carried out with 150 rats in order to study some psychophysiological functions of the mesencephalocortico limbic dopaminergic A10 group. Lesions in the A10 area were made by using 6-hydroxydopamine (6-OHDA) local injections; 2 small volumes of injections were used at the same concentration (2 mug/1 mul or 1 mug/0.5 mul). In a first experiment the effects of these two injections were tested on locomotor activity measured in a circular corridor, 10 and 30 days after surgery. Injections provoked hyperactivity, mainly during nocturnal basal activity periods, but not during initial exploratory activity periods. The larger the injection, the more important the hyperactivity was. The larger injections induced important food spillage evidence through the wire floor of the home cage and perturbation in a passive avoidance learning. There was no change in body weight or in amount of ingested food. In a second experiment, the effects of local injection of 6-OHDA in the other CA structures or bundles situated in or near the ventral tegmental area were tested. Injections in the substantia nigra compacta, in the noradrenergic ventral bundle, in the dorsal periventricular system-tegmental radiations did not provoke locomotor hyperactivity. In a third experiment, a possible role of the median raphe (MR) nucleus in the A10-lesion induced hyperactivity was tested: first, radiofrequency MR lesions were made and no durable significant hyperactivity was recorded; secondly, 6-OHDA (1 mug/0.5 mul) was injected into the A10 area and activity was measured 10 days later: these injections provoked significant hyperactivity during the nocturnal basal and the diurnal basal activity periods. It might be concluded that neither the neighboring CA fibers nor the MR were directly involved in the ventral tegmental -- 6-OHDA lesions syndrome. Anatomical controls by using the Fink-Heimer silver impregnating method have demonstrated, first, that the 6-OHDA injections did not

  4. Animal models to guide clinical drug development in ADHD: lost in translation?

    PubMed

    Wickens, Jeffery R; Hyland, Brian I; Tripp, Gail

    2011-10-01

    We review strategies for developing animal models for examining and selecting compounds with potential therapeutic benefit in attention-deficit hyperactivity disorder (ADHD). ADHD is a behavioural disorder of unknown aetiology and pathophysiology. Current understanding suggests that genetic factors play an important role in the aetiology of ADHD. The involvement of dopaminergic and noradrenergic systems in the pathophysiology of ADHD is probable. We review the clinical features of ADHD including inattention, hyperactivity and impulsivity and how these are operationalized for laboratory study. Measures of temporal discounting (but not premature responding) appear to predict known drug effects well (treatment validity). Open-field measures of overactivity commonly used do not have treatment validity in human populations. A number of animal models have been proposed that simulate the symptoms of ADHD. The most commonly used are the spontaneously hypertensive rat (SHR) and the 6-hydroxydopamine-lesioned (6-OHDA) animals. To date, however, the SHR lacks treatment validity, and the effects of drugs on symptoms of impulsivity and inattention have not been studied extensively in 6-OHDA-lesioned animals. At the present stage of development, there are no in vivo models of proven effectiveness for examining and selecting compounds with potential therapeutic benefit in ADHD. However, temporal discounting is an emerging theme in theories of ADHD, and there is good evidence of increased value of delayed reward following treatment with stimulant drugs. Therefore, operant behaviour paradigms that measure the effects of drugs in situations of delayed reinforcement, whether in normal rats or selected models, show promise for the future.

  5. Animal models to guide clinical drug development in ADHD: lost in translation?

    PubMed Central

    Wickens, Jeffery R; Hyland, Brian I; Tripp, Gail

    2011-01-01

    We review strategies for developing animal models for examining and selecting compounds with potential therapeutic benefit in attention-deficit hyperactivity disorder (ADHD). ADHD is a behavioural disorder of unknown aetiology and pathophysiology. Current understanding suggests that genetic factors play an important role in the aetiology of ADHD. The involvement of dopaminergic and noradrenergic systems in the pathophysiology of ADHD is probable. We review the clinical features of ADHD including inattention, hyperactivity and impulsivity and how these are operationalized for laboratory study. Measures of temporal discounting (but not premature responding) appear to predict known drug effects well (treatment validity). Open-field measures of overactivity commonly used do not have treatment validity in human populations. A number of animal models have been proposed that simulate the symptoms of ADHD. The most commonly used are the spontaneously hypertensive rat (SHR) and the 6-hydroxydopamine-lesioned (6-OHDA) animals. To date, however, the SHR lacks treatment validity, and the effects of drugs on symptoms of impulsivity and inattention have not been studied extensively in 6-OHDA-lesioned animals. At the present stage of development, there are no in vivo models of proven effectiveness for examining and selecting compounds with potential therapeutic benefit in ADHD. However, temporal discounting is an emerging theme in theories of ADHD, and there is good evidence of increased value of delayed reward following treatment with stimulant drugs. Therefore, operant behaviour paradigms that measure the effects of drugs in situations of delayed reinforcement, whether in normal rats or selected models, show promise for the future. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21480864

  6. Focal brain trauma in the cryogenic lesion model in mice.

    PubMed

    Raslan, Furat; Albert-Weißenberger, Christiane; Ernestus, Ralf-Ingo; Kleinschnitz, Christoph; Sirén, Anna-Leena

    2012-01-01

    The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral). The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location. PMID:22480252

  7. Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease.

    PubMed

    Yue, X; Hariri, D J; Caballero, B; Zhang, S; Bartlett, M J; Kaut, O; Mount, D W; Wüllner, U; Sherman, S J; Falk, T

    2014-01-31

    Vascular endothelial growth factor B (VEGF-B) has recently been shown to be a promising novel neuroprotective agent for several neurodegenerative conditions. In the current study we extended previous work on neuroprotective potential for Parkinson's disease (PD) by testing an expanded dose range of VEGF-B (1 and 10 μg) and directly comparing both neuroprotective and neurorestorative effects of VEGF-B in progressive unilateral 6-hydroxydopamine (6-OHDA) PD models to a single dose of glial cell line-derived neurotrophic factor (GDNF, 10 μg), that has been established by several groups as a standard in both preclinical PD models. In the amphetamine-induced rotational tests the treatment with 1 and 10 μg VEGF-B resulted in significantly improved motor function of 6-OHDA-lesioned rats compared to vehicle-treated 6-OHDA-lesioned rats in the neuroprotection paradigm. Both doses of VEGF-B caused an increase in tyrosine hydroxylase (TH)-positive cell and fiber count in the substantia nigra (SN) and striatum in the neuroprotective experiment. The effect size was comparable to the effects seen with GDNF. In the neurorestoration paradigm, VEGF-B injection had no significant effect in either the behavioral or the immunohistochemical analyses, whereas GDNF injection significantly improved the amphetamine-induced rotational behavior and reduced TH-positive neuronal cell loss in the SN. We also present a strong positive correlation (p=1.9e-50) of the expression of VEGF-B with nuclear-encoded mitochondrial genes involved in fatty acid metabolism in rat midbrain, pointing to the mitochondria as a site of action of VEGF-B. GDNF showed a positive correlation with nuclear-encoded mitochondrial genes that was not nearly as strong (p=0.018). VEGF-B counteracted rotenone-induced reduction of (a) fatty acid transport protein 1 and 4 levels and (b) both Akt protein and phosphorylation levels in SH-SY5Y cells. We further verified VEGF-B expression in the human SN pars compacta of healthy

  8. Protective effects of Althaea officinalis L. extract in 6-hydroxydopamine-induced hemi-Parkinsonism model: behavioral, biochemical and histochemical evidence.

    PubMed

    Rezaei, Maryam; Alirezaei, Masoud

    2014-05-01

    It is well known that Parkinson's disease (PD) is the second most common neurodegenerative disorder in humans. In this regard, the neuroprotective effect of Althaea officinalis (AO) has already been reported. Therefore, this study examined whether administration of AO extract would improve behavioral, biochemical and structural abnormalities in an experimental animal model of PD in rats. For this purpose, we induced hemi-Parkinsonism by unilateral intranigral injection of 6-hydroxydopamine (6-OHDA, 8 μg/5 μl saline-ascorbate). The rats were pretreated i.p. with AO extract (10 mg/kg) started 6 days before surgery and continued until the 3rd day post-surgery. Regarding oxidative stress, brain MDA concentration (as a lipid peroxidation marker) increased significantly in the 6-OHDA-administered group in comparison with rats pretreated with AO extract. It was found that AO treatment attenuated rotational behavior in the 6-OHDA-administered group and protected the neurons of substantia nigra pars compacta against 6-OHDA toxicity. Overall, AO extract administration indicated neuroprotective effects against 6-OHDA-induced hemi-Parkinsonism in rats.

  9. Lesion of the dopaminergic nigrostriatal pathway induces trigeminal dynamic mechanical allodynia

    PubMed Central

    Dieb, Wisam; Ouachikh, Omar; Durif, Franck; Hafidi, Aziz

    2014-01-01

    Background Pain constitutes the major non motor syndrome in Parkinson's disease (PD) and includes neuropathic pain; however current drug therapies used to alleviate it have only limited efficacy. This is probably due to poor understanding of the mechanisms underlying it. Aims We investigated a major class of trigeminal neuropathic pain, dynamic mechanical allodynia (DMA), in a rat model of PD and in which a bilateral 6-hydroxy dopamine (6-OHDA) injection was administered to produce a lesion of the nigrostriatal dopaminergic pathway. Results and discussion Lesioned animals presented significant DMA in the orofacial area that occurred from 4 days to 5 weeks post-injury. To investigate a segmental implication in the neuropathic pain induced by dopamine depletion, the expression of the isoform gamma of the protein kinase C (PKCg) and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2) was explored in the medullary dorsal horn (MDH). There was a high increase in PKCg expression in the III and IIi laminae of the MDH of lesioned-animals compared to shams. pERK1/2 expression was also significantly high in the ipsilateral MDH of lesioned rats in response to non-noxious tactile stimulus of the orofacial region. Since pERK1/2 is expressed only in response to nociceptive stimuli in the dorsal spinal horn, the current study demonstrates that non-noxious stimuli evoke allodynic response. Intraperitoneal and intracisternal administrations of bromocriptine, a dopamine 2 receptor (D2R) agonist, significantly decreased DMA compared to control rats injected with saline. These data demonstrate for the first time that nigrostriatal dopaminergic depletion produces trigeminal neuropathic pain that at least involves a segmental mechanism. In addition, bromocriptine was shown to have a remarkable analgesic effect on this neuropathic pain symptom. PMID:24944866

  10. Cholecystokinin tetrapeptide improves water maze performance of neonatally 6-hydroxydopamine-lesioned young rats.

    PubMed

    Rex, André; Fink, Heidrun

    2004-09-01

    This study addressed the proposed memory-modulating effect of the cholecystokinin (CCK) 2 agonist Boc-CCK-4 in rats using a Morris water maze. In the brain, CCK is colocalized and interacts with dopamine, respectively. To impair dopaminergic neurotransmission, and consequently, dopamine-mediated learning and memory, rat pups received the neurotoxin 6-hydroxydopamine (6-OHDA) into the left [Day 5 postnatal (p.n.)] and right (Day 8 p.n.) ventricles (50 microg/5 microl each). After 6-OHDA treatment, dopamine brain levels were reduced by 60% on Day 50 p.n. Lesioned rats had a lower body weight but normal swimming abilities. In the acquisition phase of the water maze (Day 50 p.n.), sham-lesioned rats learned quickly, compared to lesioned rats. Treatment with Boc-CCK-4 (40 microg/kg ip) did not affect performance in sham-lesioned rats but restored the learning curve in lesioned rats without increasing swimming speed indicating a better spatial learning in the dopamine-depleted rats. In summary, these findings demonstrate that stimulation of CCK2 receptors may counteract cognitive deficits of dopamine-depleted rats.

  11. Modeling realistic breast lesions using diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Rashidnasab, Alaleh; Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Diaz, Oliver; Wells, Kevin

    2012-03-01

    Synthesizing the appearance of malignant masses and inserting these into digital mammograms can be used as part of a wider framework for investigating the radiological detection task in X-ray mammography. However, the randomness associated with cell division within cancerous masses and the associated complex morphology challenges the realism of the modeling process. In this paper, Diffusion Limited Aggregation (DLA), a type of fractal growth process is proposed and utilized for modeling breast lesions. Masses of different sizes, shapes and densities were grown by controlling DLA growth parameters either prior to growth, or dynamically updating these during growth. A validation study was conducted by presenting 30 real and 30 simulated masses in a random order to a team of radiologists. The results from the validation study suggest that the observers found it difficult to differentiate between the real and simulated lesions.

  12. Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain.

    PubMed

    Hare, Dominic J; George, Jessica L; Grimm, Rudolph; Wilkins, Simon; Adlard, Paul A; Cherny, Robert A; Bush, Ashley I; Finkelstein, David I; Doble, Philip

    2010-11-01

    Three dimensional maps of iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and phosphorous (P) in a 6-hydroxydopamine (6-OHDA) lesioned mouse brain were constructed employing a novel quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging method known as elemental bio-imaging. The 3D maps were produced by ablating serial consecutive sections taken from the same animal. Each section was quantified against tissue standards resulting in a three dimensional map that represents the variation of trace element concentrations of the mouse brain in the area surrounding the substantia nigra (SN). Damage caused by the needle or the toxin did not alter the distribution of Zn, and Cu but significantly altered Fe in and around the SN and both Mn and Fe around the needle track. A 20% increase in nigral Fe concentration was observed within the lesioned hemisphere. This technique clearly shows the natural heterogeneous distributions of these elements throughout the brain and the perturbations that occur following trauma or intoxication. The method may applied to three-dimensional modelling of trace elements in a wide range of tissue samples. PMID:21072366

  13. Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats.

    PubMed

    Engber, T M; Susel, Z; Kuo, S; Gerfen, C R; Chase, T N

    1991-06-21

    The effects of striatal dopamine denervation and levodopa replacement therapy on neuronal populations in the rat striatum were assessed by measurement of glutamic acid decarboxylase (GAD) and choline acetyltransferase (CAT) activities in the striatum, dynorphin and substance P concentrations in the substantia nigra, and enkephalin concentration in the globus pallidus. Rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway were treated for 21 days with levodopa (100 mg/kg/day, i.p., with 25 mg/kg benserazide) on either an intermittent (b.i.d.) or continuous (osmotic pump infusion) regimen and sacrificed following a three day drug washout. In saline-treated control rats, striatal GAD activity and globus pallidus enkephalin content were elevated and nigral substance P content was reduced ipsilateral to the 6-OHDA lesion. Intermittent levodopa treatment further increased GAD activity, decreased CAT activity, restored substance P to control levels, markedly increased dynorphin content, and had no effect on enkephalin. In contrast, continuous levodopa elevated globus pallidus enkephalin beyond the levels occurring with denervation, but had no effect on any of the other neurochemical measures. These results indicate that striatal neuronal populations are differentially affected by chronic levodopa therapy and by the continuous or intermittent nature of the treatment regimen. With the exception of substance P, levodopa did not reverse the effects of the 6-OHDA lesion but, rather, either exacerbated the lesion-induced changes (e.g. GAD and enkephalin) or altered neurochemical markers which had been unaffected by the lesion (e.g. CAT and dynorphin).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1717109

  14. The Metabotropic Glutamate Receptor 4-Positive Allosteric Modulator VU0364770 Produces Efficacy Alone and in Combination with l-DOPA or an Adenosine 2A Antagonist in Preclinical Rodent Models of Parkinson's Disease

    PubMed Central

    Jones, Carrie K.; Bubser, Michael; Thompson, Analisa D.; Dickerson, Jonathan W.; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L.; Bridges, Thomas M.; Morrison, Ryan D.; Jadhav, Satyawan; Engers, Darren W.; Italiano, Kimberly; Bode, Jacob; Daniels, J. Scott; Lindsley, Craig W.; Hopkins, Corey R.; Conn, P. Jeffrey

    2012-01-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu4), including N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu4 PAMs exhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu4 in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu4 PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with l-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of l-DOPA, suggesting that mGlu4 PAMs may provide l-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu4 PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either l-DOPA or A2A antagonists. PMID:22088953

  15. Early-onset cortico-cortical synchronization in the hemiparkinsonian rat model.

    PubMed

    Jávor-Duray, B N; Vinck, M; van der Roest, M; Mulder, A B; Stam, C J; Berendse, H W; Voorn, P

    2015-02-01

    Changes in synchronized neuronal oscillatory activity are reported in both cortex and basal ganglia of Parkinson's disease patients. The origin of these changes, in particular their relationship with the progressive nigrostriatal dopaminergic denervation, is unknown. Therefore, in the present study we studied interregional neuronal synchronization in motor cortex and basal ganglia during the development of dopaminergic degeneration induced by a unilateral infusion of 6-hydroxydopamine (6-OHDA) into the rat medial forebrain bundle. We performed serial local field potential recordings bilaterally in the motor cortex and the subthalamic nucleus of the lesioned hemisphere prior to, during, and after development of the nigrostriatal dopaminergic cell loss. We obtained signal from freely moving rats in both resting and walking conditions, and we computed local spectral power, interregional synchronization (using phase lag index), and directionality (using Granger causality). After neurotoxin injection the first change in phase lag index was an increment in cortico-cortical synchronization. We observed increased bidirectional Granger causality in the beta frequency band between cortex and subthalamic nucleus within the lesioned hemisphere. In the walking condition, the 6-OHDA lesion-induced changes in synchronization resembled that of the resting state, whereas the changes in Granger causality were less pronounced after the lesion. Considering the relatively preserved connectivity pattern of the cortex contralateral to the lesioned side and the early emergence of increased cortico-cortical synchronization during development of the 6-OHDA lesion, we suggest a putative compensatory role of cortico-cortical coupling. PMID:25392174

  16. Category-specific visual agnosia: lesion to semantic memory versus extra-lesional variables in a case study and a connectionist model.

    PubMed

    Barbeau, E; Giusiano, B

    2003-12-01

    There is a current debate on the causes of category-specific agnosia. The aim of this study was to examine the effects of lesional and extra-lesional variables on object recognition. Extra-lesional variables, such as visual complexity or familiarity, are factors that influence recognition. Using a connectionist model based on study, we provide evidence that extra-lesional variables can yield dissociations in the recognition rate of different categories. Furthermore, it is shown that lesional and extra-lesional variables can interact (p < .01) when both are simultaneously modeled. Category-specific agnosia might thus result from complex interactions.

  17. Alterations of BDNF and trkB mRNA Expression in the 6-Hydroxydopamine-Induced Model of Preclinical Stages of Parkinson’s Disease: An Influence of Chronic Pramipexole in Rats

    PubMed Central

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; Głowacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively. PMID:25739024

  18. Neuroprotective Effect of the Marine-Derived Compound 11-Dehydrosinulariolide through DJ-1-Related Pathway in In Vitro and In Vivo Models of Parkinson’s Disease

    PubMed Central

    Feng, Chien-Wei; Hung, Han-Chun; Huang, Shi-Ying; Chen, Chun-Hong; Chen, Yun-Ru; Chen, Chun-Yu; Yang, San-Nan; Wang, Hui-Min David; Sung, Ping-Jyun; Sheu, Jyh-Horng; Tsui, Kuan-Hao; Chen, Wu-Fu; Wen, Zhi-Hong

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder characterized by tremor, rigidity, bradykinesia, and gait impairment. In a previous study, we found that the marine-derived compound 11-dehydrosinulariolide (11-de) upregulates the Akt/PI3K pathway to protect cells against 6-hydroxydopamine (6-OHDA)-mediated damage. In the present study, SH-SY5Y, zebrafish and rats were used to examine the therapeutic effect of 11-de. The results revealed the mechanism by which 11-de exerts its therapeutic effect: the compound increases cytosolic or mitochondrial DJ-1 expression, and then activates the downstream Akt/PI3K, p-CREB, and Nrf2/HO-1 pathways. Additionally, we found that 11-de could reverse the 6-OHDA-induced downregulation of total swimming distance in a zebrafish model of PD. Using a rat model of PD, we showed that a 6-OHDA-induced increase in the number of turns, and increased time spent by rats on the beam, could be reversed by 11-de treatment. Lastly, we showed that 6-OHDA-induced attenuation in tyrosine hydroxylase (TH), a dopaminergic neuronal marker, in zebrafish and rat models of PD could also be reversed by treatment with 11-de. Moreover, the patterns of DJ-1 expression observed in this study in the zebrafish and rat models of PD corroborated the trend noted in previous in vitro studies. PMID:27763504

  19. Basal and stress-induced corticosterone secretion is decreased by lesion of mesencephalic dopaminergic neurons.

    PubMed

    Casolini, P; Kabbaj, M; Leprat, F; Piazza, P V; Rougé-Pont, F; Angelucci, L; Simon, H; Le Moal, M; Maccari, S

    1993-09-17

    There is evidence that certain psychopathological conditions are accompanied by a dysfunction in both the hypothalamo-pituitary-adrenal axis and dopaminergic systems, although the relationship between these two systems is as yet unclear. In the present study we investigated the effect of a specific lesion of dopamine mesencephalic neurons (Ventral Tegmental Area) on basal and stress-induced corticosterone secretion. Three weeks after injection of 6-OHDA, there was a depletion in dopamine in the frontal cortex and in the ventral and dorsal striatum, whereas norepinephrine and serotonin levels were unchanged. The dopamine-lesioned rats exhibited a lower basal and stress-induced corticosterone secretion than the sham-lesioned animals. The results indicate that the dopaminergic system may have a stimulatory influence on the hypothalamo-pituitary-adrenal axis. PMID:8242373

  20. Neuroprotective activity of peripherally administered liver growth factor in a rat model of Parkinson's disease.

    PubMed

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucía; Reimers, Diana; Herranz, Antonio Sánchez; Rodríguez-Serrano, Macarena; Miranda, Cristina; Jiménez-Escrig, Adriano; Díaz-Gil, Juan José; Bazán, Eulalia

    2013-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson's disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson's disease.

  1. EPO-dependent activation of PI3K/Akt/FoxO3a signalling mediates neuroprotection in in vitro and in vivo models of Parkinson's disease.

    PubMed

    Jia, Yu; Mo, Shi-Jing; Feng, Qi-Qi; Zhan, Ma-Li; OuYang, Li-Si; Chen, Jia-Chang; Ma, Yu-Xin; Wu, Jia-Jia; Lei, Wan-Long

    2014-05-01

    Erythropoietin (EPO) may become a potential therapeutic candidate for the treatment of the neurodegenerative disorder -- Parkinson's disease (PD), since EPO has been found to prevent neuron apoptosis through the activation of cell survival signalling. However, the underlying mechanisms of how EPO exerts its neuroprotective effect are not fully elucidated. Here we investigated the mechanism by which EPO suppressed 6-hydroxydopamine (6-OHDA)-induced neuron death in in vitro and in vivo models of PD. EPO knockdown conferred 6-OHDA-induced cytotoxicity. This effect was reversed by EPO administration. Treatment of PC12 cells with EPO greatly diminished the toxicity induced by 6-OHDA in a dose- and time-dependent manner. EPO effectively reduced apoptosis of striatal neurons and induced a significant improvement on the neurological function score in the rat models of PD. Furthermore, EPO increased the expression of phosphorylated Akt and phosphorylated FoxO3a, and abrogated the 6-OHDA-induced dysregulation of Bcl-2, Bax and Caspase-3 in PC12 cells and in striatal neurons. Meanwhile, the EPO-dependent neuroprotection was notably reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that PI3K/Akt/FoxO3a signalling pathway may be a possible mechanism involved in the neuroprotective effect of EPO in PD. PMID:24390959

  2. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson's disease.

    PubMed

    Yin, Sheng-Ming; Zhao, Dan; Yu, De-Qin; Li, Sheng-Long; An, Dong; Peng, Yan; Xu, Hong; Sun, Yi-Ping; Wang, Dong-Mei; Zhao, Jie; Zhang, Wan-Qin

    2014-12-25

    Neuroprotective effect of scorpion venom on Parkinson's disease (PD) has already been reported. The present study was aimed to investigate whether scorpion venom heat resistant peptide (SVHRP) could attenuate ultrastructural abnormalities in mitochondria and oxidative stress in midbrain neurons of early-stage PD model. The early-stage PD model was established by injecting 6-hydroxydopamine (6-OHDA) (20 μg/3 μL normal saline with 0.1% ascorbic acid) into the striatum of Sprague Dawley (SD) rats unilaterally. The rats were intraperitoneally administered with SVHRP (0.05 mg/kg per day) or vehicle (saline) for 1 week. Two weeks after 6-OHDA treatment, the rats received behavior tests for validation of model. Three weeks after 6-OHDA injection, the immunoreactivity of dopaminergic neurons were detected by immunohistochemistry staining, and the ultrastructure of neuronal mitochondria in midbrain was observed by electron microscope. In the meantime, the activities of monoamine oxidase-B (MAO-B), superoxide dismutase (SOD) and content of malondialdehyde (MDA) in the mitochondria of the midbrain neurons, as well as the inhibitory ability of hydroxyl free radical and the antioxidant ability in the serum, were measured by corresponding kits. The results showed that 6-OHDA reduced the optical density of dopaminergic neurons, induced damage of mitochondrial ultrastructure of midbrain neurons, decreased SOD activity, increased MAO-B activity and MDA content, and reduced the antioxidant ability of the serum. SVHRP significantly reversed the previous harmful effects of 6-OHDA in early-stage PD model. These findings indicate that SVHRP may contribute to neuroprotection by preventing biochemical and ultrastructure damage changes which occur during early-stage PD. PMID:25516514

  3. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    PubMed Central

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; Terashita, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions. PMID:21991489

  4. Can physical exercise have a protective effect in an animal model of sleep-related movement disorder?

    PubMed

    Esteves, Andrea M; Lopes, Cleide; Frank, Miriam K; Arida, Ricardo M; Frussa-Filho, Roberto; Tufik, Sergio; de Mello, Marco Túlio

    2016-05-15

    The purpose of the present study was to determine whether physical exercise (PE) has a protective effect in an experimental animal model of sleep-related movement disorder (A11 dopaminergic nuclei lesions with 6-OHDA). Rats were divided into four groups (Control PE-CTRL/PE, SHAM/PE, A11 lesion/NPE, A11 lesion/PE). Two experiments were performed: (1) the rats underwent PE before (2 weeks) and after (4 weeks) the A11 lesion; and (2) the rats underwent PE only after (4 weeks) the A11 lesion. Electrode insertion surgery was performed and sleep analyses were conducted over a period of 24h (baseline and after PE) and analyzed in 6 blocks of 4h. The results demonstrated that the A11 lesion produced an increased percentage of wakefulness in the final block of the dark period (3-7am) and a significant enhancement of the number of limb movements (LM) throughout the day. Four weeks of PE was important for reducing the number of LMs in the A11 lesion group in the rats that performed PE before and after the A11 lesion. However, in the analysis of the protective effect of PE on LM, the results showed that the number of LMs was lower at baseline in the group that had performed 2 weeks of PE prior to the A11 lesion than in the group that had not previously performed PE. In conclusion, these findings consistently demonstrate that non-pharmacological manipulations had a beneficial effect on the symptoms of sleep-related movement disorder.

  5. Image-based modeling and characterization of RF ablation lesions in cardiac arrhythmia therapy

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Camp, Jon J.; Rettmann, Maryam E.; Holmes, David R.; Robb, Richard A.

    2013-03-01

    In spite of significant efforts to enhance guidance for catheter navigation, limited research has been conducted to consider the changes that occur in the tissue during ablation as means to provide useful feedback on the progression of therapy delivery. We propose a technique to visualize lesion progression and monitor the effects of the RF energy delivery using a surrogate thermal ablation model. The model incorporates both physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution in the tissue and geometry of the generated lesion in near real time. The ablation model has been calibrated and evaluated using ex vivo beef muscle tissue in a clinically relevant ablation protocol. To validate the model, the predicted temperature distribution was assessed against that measured directly using fiberoptic temperature probes inserted in the tissue. Moreover, the model-predicted lesions were compared to the lesions observed in the post-ablation digital images. Results showed an agreement within 5°C between the model-predicted and experimentally measured tissue temperatures, as well as comparable predicted and observed lesion characteristics and geometry. These results suggest that the proposed technique is capable of providing reasonably accurate and sufficiently fast representations of the created RF ablation lesions, to generate lesion maps in near real time. These maps can be used to guide the placement of successive lesions to ensure continuous and enduring suppression of the arrhythmic pathway.

  6. Neuroprotective Activity of Peripherally Administered Liver Growth Factor in a Rat Model of Parkinson’s Disease

    PubMed Central

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucía; Reimers, Diana; Herranz, Antonio Sánchez; Rodríguez-Serrano, Macarena; Miranda, Cristina; Jiménez-Escrig, Adriano; Díaz-Gil, Juan José; Bazán, Eulalia

    2013-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease. PMID:23861803

  7. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions.

    PubMed

    Rampersaud, N; Harkavyi, A; Giordano, G; Lever, R; Whitton, J; Whitton, P S

    2012-10-01

    Research on Parkinson's disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal pathway; however, post-mortem studies have demonstrated that other brain regions such as the locus coeruleus (LC) and raphe nuclei (RN) are significantly affected as well. Degeneration of these crucial neuronal cell bodies may be responsible for depressive behavior and cognitive decline present in the pre-motor stage of PD. We have thus set out to create a pre-motor rodent model of PD which mimics the early stages of the condition. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a selective noradrenergic neurotoxin, and parachloroampetamine (pCA), a selective serotonergic neurotoxin, were utilized concomitantly with bilateral 6-hydroxydopamine (6-OHDA) injections into the striatum to produce a pre-motor rodent model of PD with partial deficits in the dopaminergic, noradrenergic, and serotonergic systems. Our model exhibited a depressive/anhedonic condition as assessed using sucrose preference testing and the forced swim test. Our model also demonstrated deficits in object memory. These behavioral impairments were accompanied by a decline in both tissue and extracellular levels of all three neurotransmitters in both the frontal cortex and striatum. Immunohistochemistry also revealed a decrease in TH+ cells in the LC and substantia nigra. Exendin-4 (EX-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, promoted recovery of both the biochemical and behavioral dysfunction exhibited by our model. EX-4 was able to preserve the functional integrity of the dopaminergic, noradrenergic, and serotonergic systems. In conclusion, we have generated a novel animal model of PD that recapitulates certain pre-motor symptomology. These symptoms and causative physiology are ameliorated upon treatment with EX-4 and thus it could be used as a possible therapy for the non-motor symptoms prominent in the early stages of PD.

  8. A Model of Population and Subject (MOPS) Intensities with Application to Multiple Sclerosis Lesion Segmentation

    PubMed Central

    Tomas-Fernandez, Xavier; Warfield, Simon K.

    2015-01-01

    White matter (WM) lesions are thought to play an important role in multiple sclerosis (MS) disease burden. Recent work in the automated segmentation of white matter lesions from MRI has utilized a model in which lesions are outliers in the distribution of tissue signal intensities across the entire brain of each patient. However, the sensitivity and specificity of lesion detection and segmentation with these approaches have been inadequate. In our analysis, we determined this is due to the substantial overlap between the whole brain signal intensity distribution of lesions and normal tissue. Inspired by the ability of experts to detect lesions based on their local signal intensity characteristics, we propose a new algorithm that achieves lesion and brain tissue segmentation through simultaneous estimation of a spatially global within-the-subject intensity distribution and a spatially local intensity distribution derived from a healthy reference population. We demonstrate that MS lesions can be segmented as outliers from this intensity model of population and subject (MOPS). We carried out extensive experiments with both synthetic and clinical data, and compared the performance of our new algorithm to those of state-of-the art techniques. We found this new approach leads to a substantial improvement in the sensitivity and specificity of lesion detection and segmentation. PMID:25616008

  9. Young and Middle-Aged Rats Exhibit Isometric Forelimb Force Control Deficits in a Model of Early-Stage Parkinson's disease

    PubMed Central

    Bethel-Brown, Crystal S.; Morris, Jill K.; Stanford, John A.

    2011-01-01

    Deficits in manual motor control often accompany the early stages of Parkinson’s disease (PD), and are often revealed through isometric force tasks. In order to determine whether similar deficits occur in a rat model of early-stage PD, young (8 months) and middle-aged (18 months) rats were trained to produce sustained press-hold-release isometric forelimb responses that allowed for analyses of force output and spectral analysis of forelimb stability and tremor. Rats then received a 6-hydroxydopamine (6-OHDA) infusion into the striatum contralateral to the trained forelimb and were tested for four weeks post-lesion. The resulting partial striatal dopamine depletions (which at 41 ± 12% and 43 ± 6% in young and middle-aged rats, respectively, did not differ between the two groups) resulted in isometric forelimb deficits. Specifically, rats exhibited significantly diminished force stability and increased high frequency (10–25 Hz) tremor, indicating potential postural disturbances and increased postural tremor respectively. Durations of press-hold-release bouts were also increased post-lesion, suggesting difficulty in task disengagement. Despite pre-lesion differences in some of the force measures, the effects of partial nigrostriatal DA depletion did not differ between the two age groups. These results support the use of the press-while-licking task in preclinical studies modeling isometric force control deficits in PD. PMID:21767573

  10. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    SciTech Connect

    Leng, Shuai; Yu, Lifeng; Zhang, Yi; McCollough, Cynthia H.; Carter, Rickey; Toledano, Alicia Y.

    2013-08-15

    Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC) between the

  11. Model-based 3-D segmentation of multiple sclerosis lesions in dual-echo MRI data

    NASA Astrophysics Data System (ADS)

    Kamber, Micheline; Collins, D. Louis; Shinghal, Rajjan; Francis, G. S.; Evans, Alan C.

    1992-09-01

    This paper describes the development and use of a brain tissue probability model for the segmentation of multiple sclerosis lesions in magnetic resonance (MR) images of the human brain. Based on MR data obtained from a group of healthy volunteers, the model was constructed to provide prior probabilities of grey matter, white matter, ventricular cerebrospinal fluid (CSF), and external CSF distribution per unit voxel in a standardized 3- dimensional `brain space.' In comparison to purely data-driven segmentation, the use of the model to guide the segmentation of multiple sclerosis lesions reduced the volume of false positive lesions by 50%.

  12. a Computational Model for Lesion Dynamics in Multiple Sclerosis of the Brain

    NASA Astrophysics Data System (ADS)

    Mohan, T. R. Krishna; Sen, Surajit; Ramanathan, Murali

    Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS) that is characterized by lesions with inflammatory cells, axons with the insulating myelin sheath damaged, and axonal loss. The causes of MS are not known and there is as yet no cure. The purpose of this research was to evaluate a physically motivated network model for lesion formation in the brain. The parsimonious network model contained two elements: (i) a spatially spreading pathological process causing cell damage and death leading to neuro-degeneration and, (ii) generation of alarm signals by the damaged cells that lead to activation of programmed death of cells surrounding the lesions in an attempt to contain the spatial spread of the pathologic process. Simulation results with a range of network geometries indicated that the model was capable of describing lesion progression and arrest. The modeling results also demonstrated dynamical complexity with sensitivity to initial conditions.

  13. Toward Online Modeling for Lesion Visualization and Monitoring in Cardiac Ablation Therapy

    PubMed Central

    Linte, Cristian A.; Camp, Jon J.; Holmes, David R.; Rettmann, Maryam E.; Robb, Richard A.

    2015-01-01

    Despite extensive efforts to enhance catheter navigation, limited research has been done to visualize and monitor the tissue lesions created during ablation in the attempt to provide feedback for effective therapy. We propose a technique to visualize the temperature distribution and extent of induced tissue injury via an image-based model that uses physiological tissue parameters and relies on heat transfer principles to characterize lesion progression in near real time. The model was evaluated both numerically and experimentally using ex vivo bovine muscle samples while emulating a clinically relevant ablation protocol. Results show agreement to within 5°C between the model-predicted and experimentally measured end-ablation tissue temperatures, as well as comparable predicted and observed lesion characteristics. The model yields temperature and lesion updates in near real-time, thus providing reasonably accurate and sufficiently fast monitoring for effective therapy. PMID:24505643

  14. Enhanced Neuroprotective Effects of Coadministration of Tetrandrine with Glutathione in Preclinical Model of Parkinson's Disease

    PubMed Central

    Li, Xiang-Yun; Mei, Guang-Hai; Dong, Qiang; Zhang, Yu; Guo, Zhuang-Li; Su, Jing-Jing; Tang, Yu-Ping; Jin, Xue-Hong; Zhou, Hou-Guang; Huang, Yan-Yan

    2015-01-01

    Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment. PMID:26664824

  15. Enhanced Neuroprotective Effects of Coadministration of Tetrandrine with Glutathione in Preclinical Model of Parkinson's Disease.

    PubMed

    Li, Xiang-Yun; Mei, Guang-Hai; Dong, Qiang; Zhang, Yu; Guo, Zhuang-Li; Su, Jing-Jing; Tang, Yu-Ping; Jin, Xue-Hong; Zhou, Hou-Guang; Huang, Yan-Yan

    2015-01-01

    Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment. PMID:26664824

  16. Spatially regularized mixture model for lesion segmentation with application to stroke patients.

    PubMed

    Ozenne, Brice; Subtil, Fabien; Østergaard, Leif; Maucort-Boulch, Delphine

    2015-07-01

    In medical imaging, lesion segmentation (differentiation between lesioned and non-lesioned tissue) is a crucial and difficult task. Automated segmentation algorithms based on intensity analysis have been already proposed and recent developments have shown that integrating spatial information enhances automatic image segmentation. However, spatial modeling is often limited to short-range spatial interactions that deal only with noise or small artifacts. Previous tissue alterations (e.g. white matter disease (WMD)) similar in intensity with the lesion of interest require a broader-scale approach to be corrected. On the other hand, imaging techniques offer now a multiparametric voxel characterization that may help differentiating lesioned from non-lesioned voxels. We developed an unsupervised multivariate segmentation algorithm based on finite mixture modeling that incorporates spatial information. We extended the usual spatial Potts model to the regional scale using a 'multi-order' neighborhood potential, with internal adjustment of the regional scale according to the lesion size. We validate the ability of this new algorithm to deal with noise and artifacts (linear and spherical) using artificial data. We then assess its performance on real magnetic resonance imaging brain scans of stroke patients with history of WMD and show that regional regularization was able to remove large-scale WMD artifacts.

  17. Fish biomarkers for environmental monitoring: An integrated model supporting enzyme activity and histopathological lesions

    NASA Astrophysics Data System (ADS)

    Neta, Raimunda Nonata Fortes Carvalho; Torres Junior, Audalio Rebelo

    2014-10-01

    We present a mathematical model describing the association between glutathione-S-transferase activity and brachial lesions in the catfish, Sciades herzbergii (Ariidae) from a polluted port. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Brazil. Two biomarkers, hepatic glutathione S-transferase (GST) activity and histopathological lesions, in gills tissue were measured. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. The model developed in this study indicates that branchial and hepatic lesions are initiated when GST activity reaches 2.15 μmol min-1 mg protein-1. Beyond this limit, GST activity decreased to very low levels and irreversible histopathological lesions occurred. This mathematical model provides a realistic approach to analyze predictive biomarkers of environmental health status.

  18. Role of Estrogen Receptor Signaling Required for Endometriosis-Like Lesion Establishment in a Mouse Model

    PubMed Central

    Burns, Katherine A.; Rodriguez, Karina F.; Hewitt, Sylvia C.; Janardhan, Kyathanahalli S.; Young, Steven L.

    2012-01-01

    Endometriosis results from ectopic invasion of endometrial tissue within the peritoneal cavity. Aberrant levels of the estrogen receptor (ER), ERα and ERβ, and higher incidence of autoimmune disorders are observed in women with endometriosis. An immunocompetent mouse model of endometriosis was used in which minced uterine tissue from a donor was dispersed into the peritoneal cavity of a recipient. Wild-type (WT), ERα-knockout (αERKO), and βERKO mice were donors or recipients to investigate the roles of ERα, ERβ, and estradiol-mediated signaling on endometriosis-like disease. Mice were treated with vehicle or estradiol, and resulting location, number, and size of endometriosis-like lesions were assessed. In comparison with WT lesions in WT hosts, αERKO lesions in WT hosts were smaller and fewer in number. The effect of ER status and estradiol treatment on nuclear receptor status, proliferation, organization, and inflammation within lesions were examined. αERKO lesions in WT hosts did not form distal to the incision site, respond to estradiol, or proliferate but did have increased inflammation. WT lesions in αERKO hosts did respond to estradiol, proliferate, and show decreased inflammation with treatment, but surprisingly, progesterone receptor expression and localization remained unchanged. Only minor differences were observed between WT lesions in βERKO hosts and βERKO lesions in WT hosts, demonstrating the estradiol-mediated signaling responses are predominately through ERα. In sum, these results suggest ER in both endometriosis-like lesions and their environment influence lesion characteristics, and understanding these interactions may play a critical role in elucidating this enigmatic disease. PMID:22700766

  19. Histopathological Analogies in Chronic Pulmonary Lesions between Cattle and Humans: Basis for an Alternative Animal Model

    PubMed Central

    Ramírez-Romero, Rafael; Nevárez-Garza, Alicia M.; Rodríguez-Tovar, Luis E.; Wong-González, Alfredo; Ledezma-Torres, Rogelio A.; Hernández-Vidal, Gustavo

    2012-01-01

    Most of the natural cases of pneumonia in feedlot cattle are characterized by a longer clinical course due to chronic lung lesions. Microscopically, these lesions include interstitial fibroplasia, bronchitis, bronchiectasis, bronchiolitis obliterans, and epithelial metaplasia of the airways. Herein, the aim was to review, under a medical perspective, the pathologic mechanisms operating in these chronic pneumonic lesions in calves. Based on the similarities of these changes to those reported in bronchiolitis obliterans/organising pneumonia (BO/OP) and chronic obstructive pulmonary disease (COPD) in human beings, calves are proposed as an alternative animal model. PMID:22629176

  20. Atlas-based segmentation of pathological MR brain images using a model of lesion growth.

    PubMed

    Cuadra, Meritxell Bach; Pollo, Claudio; Bardera, Anton; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2004-10-01

    We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy. PMID:15493697

  1. Modeling HMI measurement of HIFU lesion formation with temperature-dependent tissue properties

    NASA Astrophysics Data System (ADS)

    Draudt, Andrew B.; Cleveland, Robin O.

    2012-10-01

    Monitoring tissue stiffness changes during HIFU lesion formation may be possible by measuring the motion induced by the amplitude-modulation of the HIFU beam. As a lesion forms both the stiffness and the acoustic absorption increase. Nominally the increase in tissue stiffness results in less motion, whilst the increase in acoustic absorption results in more forcing and hence more displacement. To investigate whether these two effects cancel out, a finite element model was developed which allowed the temperature dependence of absorption and shear modulus to affect the simultaneous evolution of the acoustic, thermal, and displacement fields. For the displacement the tissue surface was assumed to be in contact with water and was therefore free to move. Measurements of bovine liver and chicken breast indicated that after lesion formation attenuation increased by 200-500% and stiffness increased by 230% for chicken, and by a factor of 40 for liver. The model results showed that, until the lesion grew well outside of the focal region, the increase in attenuation dominated and the displacement increased by 30% after lesion formation. Experimental measurement of displacement vs depth in excised bovine liver and chicken breast subject to 1.1 MHz HIFU were consistent with the predictions of the model. However, sample-to-sample variation in displacement was greater than the predicted change due to lesion formation, suggesting that changes may be difficult to detect in practice. [Work supported in part by NSF through award EEC-9986821

  2. Modeling and Simulation of the Effects of Cyclic Loading on Articular Cartilage Lesion Formation

    PubMed Central

    Wang, Xiayi; Ayati, Bruce P.; Brouillete, Marc J.; Graham, Jason M.; Ramakrishnan, Prem S.; Martin, James A.

    2015-01-01

    We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. This model extends and modifies the reaction-diffusion-delay model by Graham et al. [20] for the spread of a lesion formed though a single traumatic event. Our model represents “implicitly” the effects of loading, meaning through a cyclic sink term in the equations for live cells. Our model forms the basis for in silico studies of cartilage damage relevant to questions in osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies. Computational results are presented that indicate the impact of differing levels of EPO on articular cartilage lesion abatement. PMID:24753483

  3. Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions

    NASA Astrophysics Data System (ADS)

    Yadav, Amol P.; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M.; Nicolelis, Miguel A. L.

    2014-01-01

    Although L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.

  4. Striatal pleiotrophin overexpression provides functional and morphological neuroprotection in the 6-hydroxydopamine model.

    PubMed

    Gombash, Sara E; Lipton, Jack W; Collier, Timothy J; Madhavan, Lalitha; Steece-Collier, Kathy; Cole-Strauss, Allyson; Terpstra, Brian T; Spieles-Engemann, Anne L; Daley, Brian F; Wohlgenant, Susan L; Thompson, Valerie B; Manfredsson, Fredric P; Mandel, Ronald J; Sortwell, Caryl E

    2012-03-01

    Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult.

  5. detecting multiple sclerosis lesions with a fully bioinspired visual attention model

    NASA Astrophysics Data System (ADS)

    Villalon-Reina, Julio; Gutierrez-Carvajal, Ricardo; Thompson, Paul M.; Romero-Castro, Eduardo

    2013-11-01

    The detection, segmentation and quantification of multiple sclerosis (MS) lesions on magnetic resonance images (MRI) has been a very active field for the last two decades because of the urge to correlate these measures with the effectiveness of pharmacological treatment. A myriad of methods has been developed and most of these are non specific for the type of lesions and segment the lesions in their acute and chronic phases together. On the other hand, radiologists are able to distinguish between several stages of the disease on different types of MRI images. The main motivation of the work presented here is to computationally emulate the visual perception of the radiologist by using modeling principles of the neuronal centers along the visual system. By using this approach we are able to detect the lesions in the majority of the images in our population sample. This type of approach also allows us to study and improve the analysis of brain networks by introducing a priori information.

  6. Location- and lesion-dependent estimation of background tissue complexity for anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Espig, Kathryn; Knippel, Eddie; Kimpe, Tom R. L.; Xthona, Albert; Maidment, Andrew D. A.

    2016-03-01

    In this paper, we specify a notion of background tissue complexity (BTC) as perceived by a human observer that is suited for use with model observers. This notion of BTC is a function of image location and lesion shape and size. We propose four unsupervised BTC estimators based on: (i) perceived pre- and post-lesion similarity of images, (ii) lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), (iii) tissue anomaly detection, and (iv) mammogram density measurement. The latter two are existing methods we adapt for location- and lesion-dependent BTC estimation. To validate the BTC estimators, we ask human observers to measure BTC as the visibility threshold amplitude of an inserted lesion at specified locations in a mammogram. Both human-measured and computationally estimated BTC varied with lesion shape (from circular to oval), size (from small circular to larger circular), and location (different points across a mammogram). BTCs measured by different human observers are correlated (ρ=0.67). BTC estimators are highly correlated to each other (0.84lesion shape or size, estimated BTC by LBA changes in the same direction as human-measured BTC. A generalization of proposed methods for viewing breast tomosynthesis sequences in cine mode is outlined. The proposed estimators, as-is or customized to a specific human observer, may be used to construct a BTC-aware model observer, with applications such as optimization of contrast-enhanced medical imaging systems, and creation of a diversified image dataset with characteristics of a desired population.

  7. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles

    PubMed

    Chavrier; Chapelon; Gelet; Cathignol

    2000-07-01

    The classical "Bio Heat Transfer Equation (BHTE)" model is adapted to take into account the effects of oscillating microbubbles that occur naturally in the tissue during high-intensity focused ultrasound (HIFU) treatment. First, the Gilmore-Akulichev model is used to quantify the acoustic pressure scattered by microbubbles submitted to HIFU. Because this scattered pressure is not monochromatic, the concept of harmonic attenuation is introduced and a global attenuation coefficient is estimated for bubble-filled tissues. The first results show that this global attenuation coefficient varies significantly with respect to several parameters such as the frequency and the density of microbubbles in the medium, but also with respect to the incident acoustic pressure which thus becomes a transcendental function. Under these conditions, a layer-by-layer modeling, in the direction of propagation, is proposed to calculate the ultrasonic beam. Finally, the BHTE is solved and the HIFU-induced lesions are estimated by the calculation of the thermal dose. Using this model, it can be observed first that, when the firing power increases, the lesion develops clearly in the direction of the transducer, with a shape agreeing with in vivo experimentation. Next, it is observed that the lesion can be significantly modified in size and position, if an interface (skin or inner wall) is simulated as a zone with multiple cavitation nuclei. With a firing power increase, it is also shown how a secondary lesion can appear at the interface and how, beyond a certain threshold, this lesion develops at the main lesion expense. Finally, a better in-depth homogeneity of lesions is observed when the acoustic frequency of HIFU is increased.

  8. A Rabbit Model of Thrombosis on Atherosclerotic Lesions

    PubMed Central

    Yamashita, Atsushi; Asada, Yujiro

    2011-01-01

    Thrombus formation on a disrupted atherosclerotic plaque is a key event that leads to atherothrombosis. Because thrombus is induced by chemical or physical injury of normal arteries in most animal models of thrombosis, the mechanisms of thrombogenesis and thrombus growth in atherosclerotic vessels should be investigated in diseased arteries of appropriate models. Pathological findings of human atherothrombosis suggest that tissue factor, an initiator of the coagulation cascade, significantly affects enhanced platelet aggregation and fibrin formation after plaque disruption. We established a rabbit model of atherothrombosis based on human pathology in which differences in thrombus formation between normal and atherosclerotic arteries, factors contributing to thrombus growth, and mechanisms of plaque erosion can be investigated. Emerging transgenic and stem cell technologies should also provide an invaluable rabbit experimental model in the near future. PMID:21253503

  9. A Mechanical and Biochemical Model of Intimal Atherosclerotic Lesions

    NASA Astrophysics Data System (ADS)

    Fok, Pak-Wing; Vandiver, Rebecca

    2014-03-01

    We investigate a 1D axisymmetric model of intimal hyperplasia using hyperelasticity theory. Our model incorporates growth of the intima due to cell proliferation which in turn is driven by the release of a cytokine such as Platelet-Derived Growth Factor (PDGF). The main novelty of our model is that the growth rate is tied to local stresses and the local concentration of PDGF. The resulting system is a triple free boundary problem with different regions of the vessel wall having different homeostatic stress, depending on the local PDGF concentration. This system is coupled to force-balance equations that yield distributions for the stress and deformation. We find that rapid intimal thickening coupled to a quiescent media puts the intima in a state of compression and results in slow time scales of evolution. Our results are compared with intima-media thickness measurements of carotid arteries from previous clinical studies. Funded by a Simons Collaboration Grant.

  10. Cause and prevention of demyelination in a model multiple sclerosis lesion

    PubMed Central

    Davies, Andrew L.; Tachrount, Mohamed; Kasti, Marianne; Laulund, Frida; Golay, Xavier; Smith, Kenneth J.

    2016-01-01

    Objective Demyelination is a cardinal feature of multiple sclerosis, but it remains unclear why new lesions form, and whether they can be prevented. Neuropathological evidence suggests that demyelination can occur in the relative absence of lymphocytes, and with distinctive characteristics suggestive of a tissue energy deficit. The objective was to examine an experimental model of the early multiple sclerosis lesion and identify pathogenic mechanisms and opportunities for therapy. Methods Demyelinating lesions were induced in the rat spinal dorsal column by microinjection of lipopolysaccharide, and examined immunohistochemically at different stages of development. The efficacy of treatment with inspired oxygen for 2 days following lesion induction was evaluated. Results Demyelinating lesions were not centered on the injection site, but rather formed 1 week later at the white–gray matter border, preferentially including the ventral dorsal column watershed. Lesion formation was preceded by a transient early period of hypoxia and increased production of superoxide and nitric oxide. Oligodendrocyte numbers decreased at the site shortly afterward, prior to demyelination. Lesions formed at a site of inherent susceptibility to hypoxia, as revealed by exposure of naive animals to a hypoxic environment. Notably, raising the inspired oxygen (80%, normobaric) during the hypoxic period significantly reduced or prevented the demyelination. Interpretation Demyelination characteristic of at least some early multiple sclerosis lesions can arise at a vascular watershed following activation of innate immune mechanisms that provoke hypoxia, and superoxide and nitric oxide formation, all of which can compromise cellular energy sufficiency. Demyelination can be reduced or eliminated by increasing inspired oxygen to alleviate the transient hypoxia. Ann Neurol 2016;79:591–604 PMID:26814844

  11. Repair of Artificial Lesions using an Acidic Remineralization Model Monitored with Cross – Polarization Optical Coherence Tomography

    PubMed Central

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2011-01-01

    It is difficult to completely remineralize carious lesions because diffusion into the interior of the lesion is inhibited as new mineral is deposited in the outermost layers. In previous remineralization studies employing polarization sensitive optical coherence tomography (PS-OCT), two models of remineralization were employed and in both models there was preferential deposition of mineral in the outer most layer. In this study we attempted to remineralize the entire lesion using an acidic remineralization model and demonstrate that this remineralization can be monitored using PS-OCT. Artificial lesions approximately 100–150 μm in-depth were exposed to an acidic remineralization regimen and the integrated reflectivity from the lesions was measured before and after remineralization. Automated integration routines worked well for assessing the integrated reflectivity for the lesion areas after remineralization. Although there was a higher degree of remineralization, there was still incomplete remineralization of the body of the lesion. PMID:21785533

  12. Differential pattern of motor impairments in neurotoxic, environmental and inflammation-driven rat models of Parkinson's disease.

    PubMed

    Naughton, Carol; Moriarty, Niamh; Feehan, Jennifer; O'Toole, Daniel; Dowd, Eilís

    2016-01-01

    One of the reasons proposed for the paucity of drug discovery for Parkinson's disease is the lack of relevant animal models of the condition. Parkinson's disease has been modelled extensively using the selective neurotoxin, 6-hydroxydopamine (6-OHDA). However, as this model bears little etiological resemblance to the human condition, there has been a drive to develop models with improved etiological validity. Two such models are those induced by the pesticide, rotenone, and the inflammagen, lipopolysaccharide (LPS). However, to date, these models have been poorly characterised in terms of their motor profiles and have never been directly compared to the more established models. Thus, the aim of this study was to characterise the behavioural profile of the rotenone and LPS models, and to compare them with the 6-OHDA model. Animals underwent baseline testing on the Stepping, Whisker, Corridor and Cylinder Tests of motor function. They were then grouped for unilateral intra-striatal infusion of 6-OHDA, rotenone or LPS. Motor testing continued for ten weeks after which the rats were processed for immunohistochemical analysis of nigrostriatal integrity. We found that, although all neurotoxins induced a similar level of nigrostriatal neurodegeneration, neither the rotenone nor LPS models were associated with amphetamine-induced rotation, and they were associated with significantly less pronounced and stable impairments in the spontaneous tasks than the 6-OHDA model. In conclusion, this study demonstrates key differences in the pattern of motor dysfunction induced by Parkinsonian neurotoxins which should be taken into consideration when selecting the most appropriate model for Parkinson's disease preclinical studies.

  13. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model

    SciTech Connect

    Haines, D.E.; Watson, D.D.; Verow, A.F. )

    1990-07-01

    Myocardial heating by transcatheter delivery of radiofrequency (RF) energy has been proposed as an effective means of arrhythmia ablation. A thermodynamic model describing the radial temperature gradient at steady state during RF-induced heating is proposed. If one assumes that RF power output is adjusted to maintain a constant electrode-tissue interface temperature at all times, then this thermodynamic model predicts that the radius of the RF-induced lesion will be directly proportional to the electrode radius. A total of 76 RF-induced lesions were created in a model of isolated canine right ventricular free wall perfused and superfused with oxygenated Krebs-Henseleit buffer. Electrode radius was varied between 0.75 and 2.25 mm. RF energy (500 kHz) was delivered for 90 seconds, and the power output was adjusted to maintain a constant electrode-tissue interface temperature of 60 degrees C. A strong linear correlation was observed between electrode radius and lesion radius in two dimensions: transverse (p = 0.0001, r = 0.85) and transmural (p = 0.0001, r = 0.89). With these data, the temperature correlation with irreversible myocardial injury in this model was calculated at 46.6-48.8 degrees C. Therefore, the proposed thermodynamic model closely predicts the observed relation between electrode radius and lesion size during RF myocardial heating.

  14. NMDA receptors mediate an early up-regulation of brain-derived neurotrophic factor expression in substantia nigra in a rat model of presymptomatic Parkinson's disease.

    PubMed

    Bustos, Gonzalo; Abarca, Jorge; Bustos, Victor; Riquelme, Eduardo; Noriega, Viviana; Moya, Catherine; Campusano, Jorge

    2009-08-01

    The clinical symptoms of Parkinson's disease (PD) appear late and only when the degenerative process at the level of the nigrostriatal dopamine (DA) pathway is quite advanced. An increase in brain-derived neurotrophic factor (BDNF) expression may be one of the molecular signals associated to compensatory and plastic responses occurring in basal ganglia during presymptomatic PD. In the present study, we used in vivo microdialysis, semiquantitative reverse transcriptase-polymerase chain reaction, and immunohistochemistry to study N-methyl-D-aspartic acid (NMDA) receptor regulation of BDNF expression in substantia nigra (SN) of adult rats after partial lesioning of the nigrostriatal DA pathway with unilateral striatal injections of 6-hydroxydopamine (6-OHDA). A time-dependent partial decrease of striatal DA tissue content as well as parallel and gradual increases in extracellular glutamate and aspartate levels in SN were found 1 to 7 days after unilateral 6-OHDA intrastriatal injection. Instead, the number of tyrosine hydroxylase-immunoreactive (IR) cells in the ipsilateral SN pars compacta remained statistically unchanged after neurotoxin injection. Intrastriatal administration of 6-OHDA also produced an early and transient augmentation of pan-BDNF, exon II-BDNF, and exon III-BDNF transcripts in the ipsilateral SN. The pan-BDNF and exon II-BDNF transcript increases were completely abolished by the prior systemic administration of MK-801, a selective antagonist of NMDA receptors. MK-801 also blocked the increase in BDNF-IR cells in SN observed 7 days after unilateral 6-OHDA intrastriatal injections. Our findings suggest that a coupling between glutamate release, NMDA receptor activation, and BDNF expression may exist in the adult SN and represent an important signal in this midbrain nucleus triggered in response to partial DA loss occurring in striatal nerve endings during presymptomatic PD.

  15. A pain model with a neuropathic somatosensory lesion: Morton neuroma.

    PubMed

    Quiding, Hans; Åkermark, Christian; Segerdahl, Märta; Reinholdsson, Ingalill; Svensson, Hanna; Jonzon, Bror

    2013-11-01

    A randomized, double-blind, three-period cross-over study was performed to characterize the sensory phenotype and pain demographics in patients with Morton neuroma (n=27) and to explore the effects of local administration (2mL) of placebo and lidocaine (1 and 10mg/mL) around the neuroma. Using the pain quality assessment scale (PQAS), the highest rating was seen for unpleasant pain and intensity of deep pain and the lowest for sensitive skin. Ongoing pain was reported in 32% of patients. Patients reported mild to moderate average pain, and that pain had interfered with sleep only marginally. Quantitative sensory testing (QST) measurements in the innervation territory showed hypophenomena or hyperphenomena in all patients, indicating that all had neuropathy. There was no particular QST modality that appeared to be specifically affected. Even the high-dose lidocaine resulted in limited effects on nerve-impulse conduction as judged by the effect on QST variables. However, both doses of lidocaine significantly reduced pain after step-ups, compared to placebo, indicating that lidocaine in this setting affected predominantly impulse generation and not impulse conduction. Following placebo treatment, pain after step-ups was similar in patients with and without hyperalgesia, indicating that the presence of hyperalgesia does not affect the pain intensity evoked by step-ups or walking. This pain model in patients with Morton neuroma allows investigation of drugs in a cross-over design and provides an opportunity to explore drug effects on both pain and QST variables. Commonly, neuromas are surgically removed and can be characterized in depth in vitro, thereby allowing close links to be established between pathophysiology and drug effect.

  16. Bentamapimod (JNK Inhibitor AS602801) Induces Regression of Endometriotic Lesions in Animal Models.

    PubMed

    Palmer, Stephen S; Altan, Melis; Denis, Deborah; Tos, Enrico Gillio; Gotteland, Jean-Pierre; Osteen, Kevin G; Bruner-Tran, Kaylon L; Nataraja, Selvaraj G

    2016-01-01

    Endometriosis is an estrogen (ER)-dependent gynecological disease caused by the growth of endometrial tissue at extrauterine sites. Current endocrine therapies address the estrogenic aspect of disease and offer some relief from pain but are associated with significant side effects. Immune dysfunction is also widely believed to be an underlying contributor to the pathogenesis of this disease. This study evaluated an inhibitor of c-Jun N-terminal kinase, bentamapimod (AS602801), which interrupts immune pathways, in 2 rodent endometriosis models. Treatment of nude mice bearing xenografts biopsied from women with endometriosis (BWE) with 30 mg/kg AS602801 caused 29% regression of lesion. Medroxyprogesterone acetate (MPA) or progesterone (PR) alone did not cause regression of BWE lesions, but combining 10 mg/kg AS602801 with MPA caused 38% lesion regression. In human endometrial organ cultures (from healthy women), treatment with AS602801 or MPA reduced matrix metalloproteinase-3 (MMP-3) release into culture medium. In organ cultures established with BWE, PR or MPA failed to inhibit MMP-3 secretion, whereas AS602801 alone or MPA + AS602801 suppressed MMP-3 production. In an autologous rat endometriosis model, AS602801 caused 48% regression of lesions compared to GnRH antagonist Antide (84%). AS602801 reduced inflammatory cytokines in endometriotic lesions, while levels of cytokines in ipsilateral horns were unaffected. Furthermore, AS602801 enhanced natural killer cell activity, without apparent negative effects on uterus. These results indicate that bentamapimod induced regression of endometriotic lesions in endometriosis rodent animal models without suppressing ER action. c-Jun N-terminal kinase inhibition mediated a comprehensive reduction in cytokine secretion and moreover was able to overcome PR resistance. PMID:26335175

  17. Brain MRI segmentation and lesion detection using generalized Gaussian and Rician modeling

    NASA Astrophysics Data System (ADS)

    Wu, Xuqiang; Bricq, Stéphanie; Collet, Christophe

    2011-03-01

    In this paper we propose a mixed noise modeling so as to segment the brain and to detect lesion. Indeed, accurate segmentation of multimodal (T1, T2 and Flair) brain MR images is of great interest for many brain disorders but requires to efficiently manage multivariate correlated noise between available modalities. We addressed this problem in1 by proposing an entirely unsupervised segmentation scheme, taking into account multivariate Gaussian noise, imaging artifacts,intrinsic tissue variation and partial volume effects in a Bayesian framework. Nevertheless, tissue classification remains a challenging task especially when one addresses the lesion detection during segmentation process2 as we did. In order to improve brain segmentation into White and Gray Matter (resp. WM and GM) and cerebro-spinal fluid (CSF), we propose to fit a Rician (RC) density distribution for CSF whereas Generalized Gaussian (GG) models are used to fit the likelihood between model and data corresponding to WM and GM. In this way, we present in this paper promising results showing that in a multimodal segmentation-detection scheme, this model fits better with the data and increases lesion detection rate. One of the main challenges consists in being able to take into account various pdf (Gaussian and non- Gaussian) for correlated noise between modalities and to show that lesion-detection is then clearly improved, probably because non-Gaussian noise better fits to the physic of MRI image acquisition.

  18. Numerical modelling of tooth enamel subsurface lesion formation induced by dental plaque.

    PubMed

    Ilie, O; van Turnhout, A G; van Loosdrecht, M C M; Picioreanu, C

    2014-01-01

    Using a one-dimensional mathematical model that couples tooth demineralisation and remineralisation with metabolic processes occurring in the dental plaque, two mechanisms for subsurface lesion formation were evaluated. It was found that a subsurface lesion can develop only as the result of alternating periods of demineralisation (acid attack during sugar consumption) and remineralisation (resting period) in tooth enamel with uniform mineral composition. It was also shown that a minimum plaque thickness that can induce an enamel lesion exists. The subsurface lesion formation can also be explained by assuming the existence of a fluoride-containing layer at the tooth surface that decreases enamel solubility. A nearly constant thickness of the surface layer was obtained with both proposed mechanisms. Sensitivity analysis showed that surface layer formation is strongly dependent on the length of remineralisation and demineralisation cycles. The restoration period is very important and the numerical simulations support the observation that often consumption of sugars is a key factor in caries formation. The calculated profiles of mineral content in enamel are similar to those observed experimentally. Most probably, both studied mechanisms interact in vivo in the process of caries development, but the simplest explanation for subsurface lesion formation remains the alternation between demineralisation and remineralisation cycles without any pre-imposed gradients.

  19. 6-Hydroxydopamine lesions of the anteromedial ventral striatum impair opposite-sex urinary odor preference in female mice.

    PubMed

    DiBenedictis, Brett T; Olugbemi, Adaeze O; Baum, Michael J; Cherry, James A

    2014-11-01

    Rodents rely upon their olfactory modality to perceive opposite-sex pheromonal odors needed to motivate courtship behaviors. Volatile and nonvolatile components of pheromonal odors are processed by the main (MOS) and accessory olfactory system (AOS), respectively, with inputs converging in the medial amygdala (Me). The Me in turn targets the mesolimbic dopamine system, including the nucleus accumbens core (AcbC) and shell (AcbSh), the ventral pallidum (VP), medial olfactory tubercle (mOT) and ventral tegmental area (VTA). We hypothesized that pheromone-induced dopamine (DA) release in the ventral striatum (particularly in the mAcb and mOT) may mediate the normal preference of female mice to investigate male pheromones. We made bilateral 6-OHDA lesions of DA fibers innervating either the mAcb alone or the mAcb+mOT in female mice and tested estrous females' preference for opposite-sex urinary odors. We found that 6-OHDA lesions of either the mAcb alone or the mAcb+mOT significantly reduced the preference of sexually naïve female mice to investigate breeding male urinary odors (volatiles as well as volatiles+nonvolatiles) vs. estrous female urinary odors. These same neurotoxic lesions had no effect on subjects' ability to discriminate between these two urinary odors, on their locomotor activity, or on their preference for consuming sucrose. The integrity of the dopaminergic innervation of the mAcb and mOT is required for female mice to prefer investigating male pheromones.

  20. Restoring Behavior via Inverse Neurocontroller in a Lesioned Cortical Spiking Model Driving a Virtual Arm.

    PubMed

    Dura-Bernal, Salvador; Li, Kan; Neymotin, Samuel A; Francis, Joseph T; Principe, Jose C; Lytton, William W

    2016-01-01

    Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors. PMID:26903796

  1. Restoring Behavior via Inverse Neurocontroller in a Lesioned Cortical Spiking Model Driving a Virtual Arm

    PubMed Central

    Dura-Bernal, Salvador; Li, Kan; Neymotin, Samuel A.; Francis, Joseph T.; Principe, Jose C.; Lytton, William W.

    2016-01-01

    Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors. PMID:26903796

  2. MSIM: multistage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis.

    PubMed

    Glaister, Jeffrey; Amelard, Robert; Wong, Alexander; Clausi, David A

    2013-07-01

    Melanoma is the most deadly form of skin cancer and it is costly for dermatologists to screen every patient for melanoma. There is a need for a system to assess the risk of melanoma based on dermatological photographs of a skin lesion. However, the presence of illumination variation in the photographs can have a negative impact on lesion segmentation and classification performance. A novel multistage illumination modeling algorithm is proposed to correct the underlying illumination variation in skin lesion photographs. The first stage is to compute an initial estimate of the illumination map of the photograph using a Monte Carlo nonparametric modeling strategy. The second stage is to obtain a final estimate of the illumination map via a parametric modeling strategy, where the initial nonparametric estimate is used as a prior. Finally, the corrected photograph is obtained using the final illumination map estimate. The proposed algorithm shows better visual, segmentation, and classification results when compared to three other illumination correction algorithms, one of which is designed specifically for lesion analysis.

  3. Application of radiosurgical techniques to produce a primate model of brain lesions.

    PubMed

    Kunimatsu, Jun; Miyamoto, Naoki; Ishikawa, Masayori; Shirato, Hiroki; Tanaka, Masaki

    2015-01-01

    Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130-150 Gy at ISO center) to the frontal eye field (FEF) of macaque monkeys using a clinical linear accelerator (LINAC). The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR) images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans. PMID:25964746

  4. Monitoring the Remineralization of Early Simulated Lesions using a pH Cycling Model with CP-OCT

    PubMed Central

    Kang, Hobin; Chan, Kenneth; Darling, Cynthia L.; Fried, Daniel

    2013-01-01

    If caries lesions are detected early enough they can be arrested by chemical intervention and dietary changes without the need for chemical intervention. Optical coherence tomography is ideally suited to monitor the changes that occur in caries lesions as a result of nonsurgical intervention, since OCT can nondestructively image the internal structure of the lesion. One of the most important changes that occurs in a lesion is preferential deposition of mineral in the outer surface zone. The deposition creates a highly mineralized and weakly scattering surface zone that is clearly visible in OCT images. Since this zone is near the highly reflective surface it is necessary to use cross-polarization OCT imaging to resolve this zone. Several CP-OCT studies have been conducted employing different remineralization models that produce lesions with varying mineral gradients. Previous studies have also demonstrated that automated algorithms can be used to assess the lesion depth and severity even with the presence of the weakly reflective surface zone. In this study we investigated the remineralization of lesions of varying severity using a pH cycling remineralization model and the change of the lesion was monitored using CP-OCT. Although the lesion depth and severity decreased after remineralization, there was still incomplete remineralization of the body of the lesion. PMID:24353383

  5. Monitoring the remineralization of early simulated lesions using a pH cycling model with CP-OCT

    NASA Astrophysics Data System (ADS)

    Kang, Hobin; Chan, Kenneth; Darling, Cynthia L.; Fried, Daniel

    If caries lesions are detected early enough they can be arrested by chemical intervention and dietary changes without the need for chemical intervention. Optical coherence tomography is ideally suited to monitor the changes that occur in caries lesions as a result of nonsurgical intervention, since OCT can nondestructively image the internal structure of the lesion. One of the most important changes that occurs in a lesion is preferential deposition of mineral in the outer surface zone. The deposition creates a highly mineralized and weakly scattering surface zone that is clearly visible in OCT images. Since this zone is near the highly reflective surface it is necessary to use cross-polarization OCT imaging to resolve this zone. Several CP-OCT studies have been conducted employing different remineralization models that produce lesions with varying mineral gradients. Previous studies have also demonstrated that automated algorithms can be used to assess the lesion depth and severity even with the presence of the weakly reflective surface zone. In this study we investigated the remineralization of lesions of varying severity using a pH cycling remineralization model and the change of the lesion was monitored using CP-OCT. Although the lesion depth and severity decreased after remineralization, there was still incomplete remineralization of the body of the lesion.

  6. Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

    PubMed

    Goes, A T R; Souza, L C; Filho, C B; Del Fabbro, L; De Gomes, M G; Boeira, S P; Jesse, C R

    2014-01-01

    Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.

  7. C-peptide promotes lesion development in a mouse model of arteriosclerosis

    PubMed Central

    Vasic, Dusica; Marx, Nikolaus; Sukhova, Galina; Bach, Helga; Durst, Renate; Grüb, Miriam; Hausauer, Angelina; Hombach, Vinzenz; Rottbauer, Wolfgang; Walcher, Daniel

    2012-01-01

    Abstract Patients with insulin resistance and early type 2 diabetes exhibit an increased propensity to develop a diffuse and extensive pattern of arteriosclerosis. Typically, these patients show elevated serum levels of the proinsulin cleavage product C-peptide and immunohistochemical data from our group revealed C-peptide deposition in early lesions of these individuals. Moreover, in vitro studies suggest that C-peptide could promote atherogenesis. This study examined whether C-peptide promotes vascular inflammation and lesion development in a mouse model of arteriosclerosis. ApoE-deficient mice on a high fat diet were treated with C-peptide or control injections for 12 weeks and the effect on lesion size and plaque composition was analysed. C-peptide treatment significantly increased C-peptide blood levels by 4.8-fold without having an effect on glucose or insulin levels, nor on the lipid profile. In these mice, C-peptide deposition in atherosclerotic plaques was significantly increased compared with controls. Moreover, lesions of C-peptide–treated mice contained significantly more macrophages (1.6 ± 0.3% versus 0.7 ± 0.2% positive area; P < 0.01) and more vascular smooth muscle cells (4.8 ± 0.6% versus 2.4 ± 0.3% positive area; P < 0.01). Finally, lipid deposition measured by Oil-red-O staining in the aortic arch was significantly higher in the C-peptide group compared with controls. Our results demonstrate that elevated C-peptide levels promote inflammatory cell infiltration and lesion development in ApoE-deficient mice without having metabolic effects. These data obtained in a mouse model of arteriosclerosis support the hypothesis that C-peptide may have an active role in atherogenesis in patients with diabetes and insulin resistance. PMID:21707916

  8. C-peptide promotes lesion development in a mouse model of arteriosclerosis.

    PubMed

    Vasic, Dusica; Marx, Nikolaus; Sukhova, Galina; Bach, Helga; Durst, Renate; Grüb, Miriam; Hausauer, Angelina; Hombach, Vinzenz; Rottbauer, Wolfgang; Walcher, Daniel

    2012-04-01

    Patients with insulin resistance and early type 2 diabetes exhibit an increased propensity to develop a diffuse and extensive pattern of arteriosclerosis. Typically, these patients show elevated serum levels of the proinsulin cleavage product C-peptide and immunohistochemical data from our group revealed C-peptide deposition in early lesions of these individuals. Moreover, in vitro studies suggest that C-peptide could promote atherogenesis. This study examined whether C-peptide promotes vascular inflammation and lesion development in a mouse model of arteriosclerosis. ApoE-deficient mice on a high fat diet were treated with C-peptide or control injections for 12 weeks and the effect on lesion size and plaque composition was analysed. C-peptide treatment significantly increased C-peptide blood levels by 4.8-fold without having an effect on glucose or insulin levels, nor on the lipid profile. In these mice, C-peptide deposition in atherosclerotic plaques was significantly increased compared with controls. Moreover, lesions of C-peptide-treated mice contained significantly more macrophages (1.6 ± 0.3% versus 0.7 ± 0.2% positive area; P < 0.01) and more vascular smooth muscle cells (4.8 ± 0.6% versus 2.4 ± 0.3% positive area; P < 0.01). Finally, lipid deposition measured by Oil-red-O staining in the aortic arch was significantly higher in the C-peptide group compared with controls. Our results demonstrate that elevated C-peptide levels promote inflammatory cell infiltration and lesion development in ApoE-deficient mice without having metabolic effects. These data obtained in a mouse model of arteriosclerosis support the hypothesis that C-peptide may have an active role in atherogenesis in patients with diabetes and insulin resistance.

  9. A New Surgical Model of Skeletal Muscle Injuries in Rats Reproduces Human Sports Lesions.

    PubMed

    Contreras-Muñoz, P; Fernández-Martín, A; Torrella, R; Serres, X; De la Varga, M; Viscor, G; Järvinen, T A H; Martínez-Ibáñez, V; Peiró, J L; Rodas, G; Marotta, M

    2016-03-01

    Skeletal muscle injuries are the most common sports-related injuries in sports medicine. In this work, we have generated a new surgically-induced skeletal muscle injury in rats, by using a biopsy needle, which could be easily reproduced and highly mimics skeletal muscle lesions detected in human athletes. By means of histology, immunofluorescence and MRI imaging, we corroborated that our model reproduced the necrosis, inflammation and regeneration processes observed in dystrophic mdx-mice, a model of spontaneous muscle injury, and realistically mimicked the muscle lesions observed in professional athletes. Surgically-injured rat skeletal muscles demonstrated the longitudinal process of muscle regeneration and fibrogenesis as stated by Myosin Heavy Chain developmental (MHCd) and collagen-I protein expression. MRI imaging analysis demonstrated that our muscle injury model reproduces the grade I-II type lesions detected in professional soccer players, including edema around the central tendon and the typically high signal feather shape along muscle fibers. A significant reduction of 30% in maximum tetanus force was also registered after 2 weeks of muscle injury. This new model represents an excellent approach to the study of the mechanisms of muscle injury and repair, and could open new avenues for developing innovative therapeutic approaches to skeletal muscle regeneration in sports medicine.

  10. Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease.

    PubMed

    Zhang, Yi; Dong, Weiren; Guo, Suiqun; Zhao, Shu; He, Suifen; Zhang, Lihua; Tang, Yinjuan; Wang, Haihong

    2014-12-01

    Parkinson disease (PD) is a progressive neurodegenerative disorder in which the nigrostriatal pathway, consisting of dopaminergic neuronal projections from the substantia nigra to the striatum, degenerates. Viral transduction is currently the most promising in vivo strategy for delivery of therapeutic proteins into the brain for treatment of PD. Sonic hedgehog (Shh) is necessary for cell proliferation, differentiation and neuroprotection in the central nervous system. In this study, we investigated the effects of overexpressed N-terminal product of SHH (SHH-N) in a PD model rat. A lentiviral vector containing SHH-N was stereotactically injected into the striatum 24 h after a striatal 6-OHDA lesion. We found that overexpressed SHH-N attenuated behavioral deficits and reduced the loss of dopamine neurons in the substantia nigra and the loss of dopamine fibers in the striatum. In addition, fluoro-ruby-labeled nigrostriatal projections were also repaired. Together, our results demonstrate the feasibility and efficacy of using the strategy of lentivirus-mediated Shh-N delivery to delay nigrostriatal pathway degeneration. This strategy holds the potential for therapeutic application in the treatment of PD.

  11. Differential Dopamine Receptor Occupancy Underlies L-DOPA-Induced Dyskinesia in a Rat Model of Parkinson's Disease

    PubMed Central

    Sahin, Gurdal; Thompson, Lachlan H.; Lavisse, Sonia; Ozgur, Merve; Rbah-Vidal, Latifa; Dollé, Frédéric

    2014-01-01

    Dyskinesia is a major side effect of an otherwise effective L-DOPA treatment in Parkinson's patients. The prevailing view for the underlying presynaptic mechanism of L-DOPA-induced dyskinesia (LID) suggests that surges in dopamine (DA) via uncontrolled release from serotonergic terminals results in abnormally high level of extracellular striatal dopamine. Here we used high-sensitivity online microdialysis and PET imaging techniques to directly investigate DA release properties from serotonergic terminals both in the parkinsonian striatum and after neuronal transplantation in 6-OHDA lesioned rats. Although L-DOPA administration resulted in a drift in extracellular DA levels, we found no evidence for abnormally high striatal DA release from serotonin neurons. The extracellular concentration of DA remained at or below levels detected in the intact striatum. Instead, our results showed that an inefficient release pool of DA associated with low D2 receptor binding remained unchanged. Taken together, these findings suggest that differential DA receptor activation rather than excessive release could be the underlying mechanism explaining LID seen in this model. Our data have important implications for development of drugs targeting the serotonergic system to reduce DA release to manage dyskinesia in patients with Parkinson's disease. PMID:24614598

  12. Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model

    PubMed Central

    Prats, Clara; Vilaplana, Cristina; Valls, Joaquim; Marzo, Elena; Cardona, Pere-Joan; López, Daniel

    2016-01-01

    The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of

  13. Characterization of perforant path lesions in rodent models of memory and attention.

    PubMed

    Kirkby, D L; Higgins, G A

    1998-03-01

    Early stage Alzheimer's disease (AD) pathology is associated with neurodegeneration of systems within the temporal cortex, e.g. the entorhinal cortex, perforant pathway and hippocampus. The perforant pathway provides the major neuronal input to the hippocampus from the entorhinal cortex and thus relays multimodal sensory information derived from cortical zones into the hippocampus. The earliest symptoms of AD include cognitive impairments, e.g. deficits in short-term memory and attention. Consequently, we have investigated the effect of bilateral knife cut lesions to the perforant path on cognition in rats using models measuring primarily short-term memory (operant delayed match to position task), attention (serial five-choice reaction time task) and spatial learning (Morris water maze). Rats receiving bilateral perforant path lesions showed normal neurological function and a mild hyperactivity. The lesion produced little effect on attention assessed using the five-choice task. In contrast, animals with equivalent lesions showed a robust delay-dependent deficit in the delayed match to position task. Spatial learning in the water maze task was also severely impaired. The delay-dependent deficit in the match to position task was not reversed by tacrine (3 mg/kg) pretreatment. The present data support a selective impairment of cognitive function following perforant path lesions that was confined to mnemonic rather than attentional processing. These findings complement primate and human studies identifying a critical role of the perforant pathway and associated temporal lobe structures in declarative memory. Degeneration of the perforant pathway is likely to contribute to the mnemonic deficits characteristic of early AD. The failure of tacrine to ameliorate these deficits may be relevant to an emerging clinical literature suggesting that cholinomimetic therapies improve attentional rather than mnemonic function in AD.

  14. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease.

    PubMed

    Danielyan, Lusine; Schäfer, Richard; von Ameln-Mayerhofer, Andreas; Bernhard, Felix; Verleysdonk, Stephan; Buadze, Marine; Lourhmati, Ali; Klopfer, Tim; Schaumann, Felix; Schmid, Barbara; Koehle, Christoph; Proksch, Barbara; Weissert, Robert; Reichardt, Holger M; van den Brandt, Jens; Buniatian, Gayane H; Schwab, Matthias; Gleiter, Christoph H; Frey, William H

    2011-02-01

    Safe and effective cell delivery remains one of the main challenges in cell-based therapy of neurodegenerative disorders. Graft survival, sufficient enrichment of therapeutic cells in the brain, and avoidance of their distribution throughout the peripheral organs are greatly influenced by the method of delivery. Here we demonstrate for the first time noninvasive intranasal (IN) delivery of mesenchymal stem cells (MSCs) to the brains of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. IN application (INA) of MSCs resulted in the appearance of cells in the olfactory bulb, cortex, hippocampus, striatum, cerebellum, brainstem, and spinal cord. Out of 1 × 10⁶ MSCs applied intranasally, 24% survived for at least 4.5 months in the brains of 6-OHDA rats as assessed by quantification of enhanced green fluorescent protein (EGFP) DNA. Quantification of proliferating cell nuclear antigen-positive EGFP-MSCs showed that 3% of applied MSCs were proliferative 4.5 months after application. INA of MSCs increased the tyrosine hydroxylase level in the lesioned ipsilateral striatum and substantia nigra, and completely eliminated the 6-OHDA-induced increase in terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine, 5'-triphosphate (dUTP)-biotin nick end labeling (TUNEL) staining of these areas. INA of EGFP-labeled MSCs prevented any decrease in the dopamine level in the lesioned hemisphere, whereas the lesioned side of the control animals revealed significantly lower levels of dopamine 4.5 months after 6-OHDA treatment. Behavioral analyses revealed significant and substantial improvement of motor function of the Parkinsonian forepaw to up to 68% of the normal value 40-110 days after INA of 1 × 10⁶ cells. MSC-INA decreased the concentrations of inflammatory cytokines-interleukin-1β (IL-1β), IL-2, -6, -12, tumor necrosis factor (TNF), interferon-γ (IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-CSF)-in the lesioned side to their

  15. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion

    PubMed Central

    Montalbano, Mauro; Curcurù, Giuseppe; Shirafkan, Ali; Vento, Renza; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Isolation of hepatocytes from cirrhotic human livers and subsequent primary culture are important new tools for laboratory research and cell-based therapeutics in the study of hepatocellular carcinoma (HCC). Using such techniques, we have previously identified different subpopulations of human hepatocytes and among them one is showing a progressive transformation of hepatocytes in HCC-like cells. We have hypothesized that increasing the distance from the neoplastic lesion might affect hepatocyte function and transformation capacity. However, limited information is available in comparing the growth and proliferation of human hepatocytes obtained from different areas of the same cirrhotic liver in relation to their distance from the HCC lesion. In this study, hepatocytes from 10 patients with cirrhosis and HCC undergoing surgical resections from specimens obtained at a proximal (CP) and distal (CD) distance from the HCC lesion were isolated and placed in primary culture. CP hepatocytes (CP-Hep) were isolated between 1 to 3 cm (leaving at least 1cm margin to avoid cancer cells and/or satellite lesions), while CD hepatocytes (CD-Hep) were isolated from more than 5 cm or from the contralateral-lobe. A statistical model was built to analyze the proliferation rates of these cells and we evaluated expression of HCC markers (Glypican-3 (GPC3), αSmooth Muscle Actin (α-SMA) and PCNA). We observed a significant difference in proliferation and in-vitro growth showing that CP-Hep had a proliferation pattern and rate significantly different than CD-Hep. Based on these data, this model can provide information to predict growth of human hepatocytes in primary culture in relation to their pre-cancerous state with significant differences in the HCC markers expression. This model provides an important innovative tool for in-vitro analysis of HCC. PMID:27074018

  16. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    SciTech Connect

    Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Besnard, S.

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  17. Detection of questionable occlusal carious lesions using an electrical bioimpedance method with fractional electrical model.

    PubMed

    Morais, A P; Pino, A V; Souza, M N

    2016-08-01

    This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites. PMID:27587136

  18. Detection of questionable occlusal carious lesions using an electrical bioimpedance method with fractional electrical model

    NASA Astrophysics Data System (ADS)

    Morais, A. P.; Pino, A. V.; Souza, M. N.

    2016-08-01

    This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites.

  19. Three-dimensional finite element model for lesion correspondence in breast imaging

    NASA Astrophysics Data System (ADS)

    Qiu, Yan; Li, Lihua; Goldgof, Dmitry; Sarkar, Sudeep; Anton, Sorin; Clark, Robert A.

    2004-05-01

    Predicting breast tissue deformation is of great significance in several medical applications such as biopsy, diagnosis, and surgery. In breast surgery, surgeons are often concerned with a specific portion of the breast, e.g., tumor, which must be located accurately beforehand. Also clinically it is important for combining the information provided by images from several modalities or at different times, for the detection/diagnosis, treatment planning and guidance of interventions. Multi-modality imaging of the breast obtained by X-ray mammography, MRI is thought to be best achieved through some form of data fusion technique. However, images taken by these various techniques are often obtained under entirely different tissue configurations, compression, orientation or body position. In these cases some form of spatial transformation of image data from one geometry to another is required such that the tissues are represented in an equivalent configuration. We propose to use a 3D finite element model for lesion correspondence in breast imaging. The novelty of the approach lies in the following facts: (1) Finite element is the most accurate technique for modeling deformable objects such as breast. The physical soundness and mathematical rigor of finite element method ensure the accuracy and reliability of breast modeling that is essential for lesion correspondence. (2) When both MR and mammographic images are available, a subject-specific 3D breast model will be built from MRIs. If only mammography is available, a generic breast model will be used for two-view mammography reading. (3) Incremental contact simulation of breast compression allows accurate capture of breast deformation and ensures the quality of lesion correspondence. (4) Balance between efficiency and accuracy is achieved through adaptive meshing. We have done intensive research based on phantom and patient data.

  20. A New Murine Model of Osteoblastic/Osteolytic Lesions from Human Androgen-Resistant Prostate Cancer

    PubMed Central

    Depalle, Baptiste; Serre, Claire Marie; Farlay, Delphine; Turtoi, Andrei; Bellahcene, Akeila; Follet, Hélène; Castronovo, Vincent; Clézardin, Philippe; Bonnelye, Edith

    2013-01-01

    Background Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer). Most of the murine models of mixed lesions derived from prostate cancer cells are androgen sensitive. Thus, we established a new model of CRPC (androgen receptor (AR) negative) that causes mixed lesions in bone. Methods PC3 and its derived new cell clone PC3c cells were directly injected into the tibiae of SCID male mice. Tumor growth was analyzed by radiography and histology. Direct effects of conditioned medium of both cell lines were tested on osteoclasts, osteoblasts and osteocytes. Results We found that PC3c cells induced mixed lesions 10 weeks after intratibial injection. In vitro, PC3c conditioned medium was able to stimulate tartrate resistant acid phosphatase (TRAP)-positive osteoclasts. Osteoprotegerin (OPG) and endothelin-1 (ET1) were highly expressed by PC3c while dikkopf-1 (DKK1) expression was decreased. Finally, PC3c highly expressed bone associated markers osteopontin (OPN), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP) and produced mineralized matrix in vitro in osteogenic conditions. Conclusions We have established a new CRPC cell line as a useful system for modeling human metastatic prostate cancer which presents the mixed phenotype of bone metastases that is commonly observed in prostate cancer patients with advanced disease. This model will help to understand androgen-independent mechanisms involved in the progression of prostate cancer in bone and provides a preclinical model for testing the effects of new treatments for bone metastases. PMID:24069383

  1. A Probiotic Preparation Alleviates Atopic Dermatitis-Like Skin Lesions in Murine Models.

    PubMed

    Kim, Min-Soo; Kim, Jin-Eung; Yoon, Yeo-Sang; Seo, Jae-Gu; Chung, Myung-Jun; Yum, Do-Young

    2016-04-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that encompasses immunologic responses. AD is frequently associated with elevated immunoglobulin (Ig) E levels, and common environmental factors contribute to its pathogenesis. Several recent studies have documented the role of specific lactic acid bacteria in the treatment and prevention of AD in humans and mice. In this study, the efficacy of Duolac ATP, a probiotic preparation, was determined in a mouse model with AD-like skin lesions. Alterations in the cytokine levels and histological staining suggested the alleviation of AD. The in vivo test showed that T helper (Th)2 cytokines, IgE, interleukin (IL)-4, and IL-5, were significantly downregulated, whereas Th1 cytokines, IL-12p40 and interferon (IFN)-γ, were upregulated in all groups of mice treated with Duolac ATP compared to that observed in the group of mice treated with 1-chloro-2,4-dinitrobenzene (DNCB) alone. Moreover, the scratch score decreased in all mice treated with Duolac ATP. Staining of the dorsal area of the mice in each group with hematoxylin and eosin and toluidine blue further confirmed the alleviation of AD in mice orally treated with Duolac ATP. These results suggest that Duolac ATP inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell response. Thus, Duolac ATP is beneficial and effective for the treatment of AD-like skin lesions. PMID:27123166

  2. A Probiotic Preparation Alleviates Atopic Dermatitis-Like Skin Lesions in Murine Models

    PubMed Central

    Kim, Min-Soo; Kim, Jin-Eung; Yoon, Yeo-Sang; Seo, Jae-Gu; Chung, Myung-Jun; Yum, Do-Young

    2016-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that encompasses immunologic responses. AD is frequently associated with elevated immunoglobulin (Ig) E levels, and common environmental factors contribute to its pathogenesis. Several recent studies have documented the role of specific lactic acid bacteria in the treatment and prevention of AD in humans and mice. In this study, the efficacy of Duolac ATP, a probiotic preparation, was determined in a mouse model with AD-like skin lesions. Alterations in the cytokine levels and histological staining suggested the alleviation of AD. The in vivo test showed that T helper (Th)2 cytokines, IgE, interleukin (IL)-4, and IL-5, were significantly downregulated, whereas Th1 cytokines, IL-12p40 and interferon (IFN)-γ, were upregulated in all groups of mice treated with Duolac ATP compared to that observed in the group of mice treated with 1-chloro-2,4-dinitrobenzene (DNCB) alone. Moreover, the scratch score decreased in all mice treated with Duolac ATP. Staining of the dorsal area of the mice in each group with hematoxylin and eosin and toluidine blue further confirmed the alleviation of AD in mice orally treated with Duolac ATP. These results suggest that Duolac ATP inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell response. Thus, Duolac ATP is beneficial and effective for the treatment of AD-like skin lesions. PMID:27123166

  3. PPARβ/δ and γ in a rat model of Parkinson's disease: possible involvement in PD symptoms.

    PubMed

    Falcone, Roberta; Florio, Tiziana Marilena; Di Giacomo, Erica; Benedetti, Elisabetta; Cristiano, Loredana; Antonosante, Andrea; Fidoamore, Alessia; Massimi, Mara; Alecci, Marcello; Ippoliti, Rodolfo; Giordano, Antonio; Cimini, Annamaria

    2015-05-01

    Parkinson's disease is one of the most common neurologic disorder, affecting about 1-4% of persons older than 60 years. Among the proposed mechanisms of PD generation, free radical damage is believed to play a pivotal role in the development and/or progression of the disease. Recently, PPARs, a class of transcription factors involved in several pathways both in physiological and pathological conditions, have been linked by us and others to neurodegeneration. Particularly, PPARγ and its ligands have been indicated as potential therapeutic targets for the treatment of several pathological conditions associated with neuroinflammation within the CNS. The anti-inflammatory function of PPARγ has attracted attention since agonists exert a broad spectrum of protective effects in several animal models of neurological diseases, including psychiatric diseases. On the other hand a detrimental role for PPARβ/δ has been proposed in Alzheimer, being closely related to the decrease of BDNF and Trkfl. On these bases, in this work we used a 6-OHDA hemi-lesioned rat model, inducing loss of dopaminergic neurons, to study the effects of the lesion at three time points from the lesion (1, 2, and 3 weeks), in relevant areas of PD motor symptoms, such as substantia nigra and globus pallidus and in the area of reward and mood control, the nucleus accumbens. In particular, it was studied: (i) the expression of BDNF and its downstream signals; (ii) the modulation of PPARs levels. The results obtained indicate the possible use of a dual PPARβ/δ antagonist/PPARγ agonist to counteract primary and secondary signs of PD neurodegeneration. PMID:25530507

  4. Effects of squalene/squalane on dopamine levels, antioxidant enzyme activity, and fatty acid composition in the striatum of Parkinson's disease mouse model.

    PubMed

    Kabuto, Hideaki; Yamanushi, Tomoko T; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2013-01-01

    Active oxygen has been implicated in the pathogenesis of Parkinson's disease (PD); therefore, antioxidants have attracted attention as a potential way to prevent this disease. Squalene, a natural triterpene and an intermediate in the biosynthesis of cholesterol, is known to have active oxygen scavenging activities. Squalane, synthesized by complete hydrogenation of squalene, does not have active oxygen scavenging activities. We examined the effects of oral administration of squalene or squalane on a PD mouse model, which was developed by intracerebroventricular injection of 6-hydroxydopamine (6-OHDA). Squalene administration 7 days before and 7 days after one 6-OHDA injection prevented a reduction in striatal dopamine (DA) levels, while the same administration of squalane enhanced the levels. Neither squalene nor squalane administration for 7 days changed the levels of catalase, glutathione peroxidase, or superoxide dismutase activities in the striatum. Squalane increased thiobarbituric acid reactive substances, a marker of lipid peroxidation, in the striatum. Both squalane and squalene increased the ratio of linoleic acid/linolenic acid in the striatum. These results suggest that the administration of squalene or squalane induces similar changes in the composition of fatty acids and has no effect on the activities of active oxygen scavenging enzymes in the striatum. However, squalane increases oxidative damage in the striatum and exacerbates the toxicity of 6-OHDA, while squalene prevents it. The effects of squalene or squalane treatment in this model suggest their possible uses and risks in the treatment of PD.

  5. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    SciTech Connect

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang; Zhao, Zuowei; Zhang, Lina

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  6. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist

    PubMed Central

    Iderberg, Hanna; Maslava, Natallia; Thompson, Analisa D.; Bubser, Michael; Niswender, Colleen M.; Hopkins, Corey R.; Lindsley, Craig W.; Conn, P. Jeffrey; Jones, Carrie K.; Cenci, M. Angela

    2015-01-01

    Metabotropic glutamate receptor 4 (mGlu4) negatively modulates GABA and glutamate release in the ‘indirect pathway’ of the basal ganglia, and has thus been proposed as a potential target to treat motor symptoms in Parkinson's disease. Here, we present an extensive comparison of the behavioural effects produced by the mGlu4 positive allosteric modulator (PAM), VU0364770, and the mGlu4 orthosteric agonist, LSP1-2111, in rats with unilateral 6-OHDA lesions. The compounds' activity was initially assessed in a test of haloperidol-induced catalepsy in intact rats, and effective doses were then evaluated in the hemiparkinsonian animal model. Neither of the two compounds modified the development of dyskinetic behaviours elicited by chronic treatment with full doses of l-DOPA. When given together with l-DOPA to rats with already established dyskinesias, neither VU0364770 nor LSP1-2111 modified the abnormal involuntary movement scores. VU0364770 potentiated, however, the motor stimulant effect of a sub-threshold l-DOPA dose in certain behavioural tests, whereas LSP1-2111 lacked this ability. Taken together, these results indicate that a pharmacological stimulation of mGlu4 lacks intrinsic antidyskinetic activity, but may have DOPA-sparing activity in Parkinson's disease. For the latter indication, mGlu4 PAMs appear to provide a better option than orthosteric agonists. PMID:25749357

  7. Characterization of Fetal Antigen 1/Delta-Like 1 Homologue Expressing Cells in the Rat Nigrostriatal System: Effects of a Unilateral 6-Hydroxydopamine Lesion

    PubMed Central

    Liechti, Rémy; Ducray, Angélique D.; Jensen, Pia; Di Santo, Stefano; Seiler, Stefanie; Jensen, Charlotte H.; Meyer, Morten; Widmer, Hans Rudolf

    2015-01-01

    Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes. PMID:25723595

  8. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions.

    PubMed

    Pradeep, C-R; Zeisel, A; Köstler, W J; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2012-08-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients' lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment.

  9. A longitudinal model for magnetic resonance imaging lesion count data in multiple sclerosis patients.

    PubMed

    MacKay Altman, Rachel; Petkau, A John; Vrecko, Dean; Smith, Alex

    2012-02-28

    Magnetic resonance imaging (MRI) data are routinely collected at multiple time points during phase 2 clinical trials in multiple sclerosis. However, these data are typically summarized into a single response for each patient before analysis. Models based on these summary statistics do not allow the exploration of the trade-off between numbers of patients and numbers of scans per patient or the development of optimal schedules for MRI scanning. To address these limitations, in this paper, we develop a longitudinal model to describe one MRI outcome: the number of lesions observed on an individual MRI scan. We motivate our choice of a mixed hidden Markov model based both on novel graphical diagnostic methods applied to five real data sets and on conceptual considerations. Using this model, we compare the performance of a number of different tests of treatment effect. These include standard parametric and nonparametric tests, as well as tests based on the new model. We conduct an extensive simulation study using data generated from the longitudinal model to investigate the parameters that affect test performance and to assess size and power. We determine that the parameters of the hidden Markov chain do not substantially affect the performance of the tests. Furthermore, we describe conditions under which likelihood ratio tests based on the longitudinal model appreciably outperform the standard tests based on summary statistics. These results establish that the new model is a valuable practical tool for designing and analyzing multiple sclerosis clinical trials. PMID:21964585

  10. Dopaminergic Lesions of the Dorsolateral Striatum in Rats Increase Delay Discounting in an Impulsive Choice Task

    PubMed Central

    Tedford, Stephanie E.; Persons, Amanda L.; Napier, T. Celeste

    2015-01-01

    Dysregulated dopamine transmission in striatal circuitry is associated with impulsivity. The current study evaluated the influence of dopaminergic inputs to the dorsolateral striatum on impulsive choice, one aspect of impulsive behavior. We implemented an operant task that measures impulsive choice in rats via delay discounting wherein intracranial self-stimulation (ICSS) was used as the positive reinforcer. To do so, rats were anesthetized to allow implanting of a stimulating electrode within the lateral hypothalamus of one hemisphere and bilateral dorsal striatal injections of the dopaminergic toxin, 6-OHDA (lesioned) or its vehicle (sham). Following recovery, rats were trained in a delay discounting task wherein they selected between a small ICSS current presented immediately after lever pressing, and a large ICSS current presented following a 0 to 15s delay upon pressing the alternate lever. Task acquisition and reinforcer discrimination were similar for lesioned and sham rats. All rats exhibited an initial preference for the large reinforcer, and as the delay was increased, preference for the large reinforcer was decreased indicating that the subjective value of the large reinforcer was discounted as a function of delay time. However, this discounting effect was significantly enhanced in lesioned rats for the longer delays. These data reveal a contribution of dopaminergic inputs to the dorsolateral striatum on impulsive choice behavior, and provide new insights into neural substrates underlying discounting behaviors. PMID:25927685

  11. Dopaminergic lesions of the dorsolateral striatum in rats increase delay discounting in an impulsive choice task.

    PubMed

    Tedford, Stephanie E; Persons, Amanda L; Napier, T Celeste

    2015-01-01

    Dysregulated dopamine transmission in striatal circuitry is associated with impulsivity. The current study evaluated the influence of dopaminergic inputs to the dorsolateral striatum on impulsive choice, one aspect of impulsive behavior. We implemented an operant task that measures impulsive choice in rats via delay discounting wherein intracranial self-stimulation (ICSS) was used as the positive reinforcer. To do so, rats were anesthetized to allow implanting of a stimulating electrode within the lateral hypothalamus of one hemisphere and bilateral dorsal striatal injections of the dopaminergic toxin, 6-OHDA (lesioned) or its vehicle (sham). Following recovery, rats were trained in a delay discounting task wherein they selected between a small ICSS current presented immediately after lever pressing, and a large ICSS current presented following a 0 to 15 s delay upon pressing the alternate lever. Task acquisition and reinforcer discrimination were similar for lesioned and sham rats. All rats exhibited an initial preference for the large reinforcer, and as the delay was increased, preference for the large reinforcer was decreased indicating that the subjective value of the large reinforcer was discounted as a function of delay time. However, this discounting effect was significantly enhanced in lesioned rats for the longer delays. These data reveal a contribution of dopaminergic inputs to the dorsolateral striatum on impulsive choice behavior, and provide new insights into neural substrates underlying discounting behaviors.

  12. An NR2B-Dependent Decrease in the Expression of trkB Receptors Precedes the Disappearance of Dopaminergic Cells in Substantia Nigra in a Rat Model of Presymptomatic Parkinson's Disease

    PubMed Central

    Riquelme, Eduardo; Abarca, Jorge; Campusano, Jorge M.; Bustos, Gonzalo

    2012-01-01

    Compensatory changes occurring during presymptomatic stages of Parkinson's disease (PD) would explain that the clinical symptoms of the disease appear late, when the degenerative process is quite advanced. Several data support the proposition that brain-derived neurotrophic factor (BDNF) could play a role in these plastic changes. In the present study, we evaluated the expression of the specific BDNF receptor, trkB, in a rat model of presymptomatic PD generated by intrastriatal injection of the neurotoxin 6-OHDA. Immunohistochemical studies revealed a decrease in trkB expression in SN pars compacta (SNc) seven days after 6-OHDA injection. At this time point, no change in the number of tyrosine hydroxylase (TH) immunoreactive (TH-IR) cells is detected, although a decrease is evident 14 days after neurotoxin injection. The decrease in TH-positive cells and trkB expression in SNc was significantly prevented by systemic administration of Ifenprodil, a specific antagonist of NR2B-containing NMDA receptors. Therefore, an NR2B-NMDA receptor-dependent decrease in trkB expression precedes the disappearance of TH-IR cells in SNc in response to 6-OHDA injection. These results support the idea that a functional coupling between NMDA receptors and BDNF/trkB signalling may be important for the maintenance of the dopaminergic phenotype in SNc during presymptomatic stages of PD. PMID:22720191

  13. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  14. Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images.

    PubMed

    Freire, Paulo G L; Ferrari, Ricardo J

    2016-06-01

    Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. PMID:27058437

  15. Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images.

    PubMed

    Freire, Paulo G L; Ferrari, Ricardo J

    2016-06-01

    Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI.

  16. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model

    PubMed Central

    Winner, Beate; Desplats, Paula; Hagl, Christian; Klucken, Jochen; Aigner, Robert; Ploetz, Sonja; Laemke, Jörn; Karl, Alexandra; Aigner, Ludwig; Masliah, Eliezer; Buerger, Erich; Winkler, Jürgen

    2016-01-01

    Cell proliferation of neural progenitors in the subventricular zone (SVZ) of Parkinson disease (PD) patients and animal models is decreased. It was previously demonstrated that the neurotransmitter dopamine modulates cell proliferation in the embryonic brain. The aim of the present study was to analyze whether oral treatment with the dopamine receptor agonist pramipexole (PPX) modulates adult neurogenesis in the SVZ/ olfactory bulb system in a dopaminergic lesion model. 6-Hydroxydopamine (6-OHDA) lesioned adult rats received either PPX (1,0 mg/kg) or PBS orally twice daily and bromodeoxyuridine (BrdU, a cell proliferation marker) for 10 days and were perfused immediately after treatment or 4 weeks after PPX withdrawal. Stereological analysis revealed a significant augmentation in SVZ proliferation by PPX. Consecutively, enhanced neuronal differentiation and more new neurons were present in the olfactory bulb 4 weeks after PPX withdrawal. In addition, dopaminergic neurogenesis was increased in the olfactory bulb after PPX treatment. Motor activity as assessed by using an open field paradigm was permanently increased even after long term PPX withdrawal. In addition, we demonstrate that D2 and D3 receptors are present on adult rat SVZ derived neural progenitors in vitro, and PPX specifically increased mRNA levels of epidermal growth factor receptor (EGF-R) and paired box gene 6 (Pax6). Oral PPX treatment selectively increases adult neurogenesis in the SVZ-olfactory bulb system by increasing proliferation and cell survival of newly generated neurons. Analyzing the neurogenic fate decisions mediated by D2/D3 signaling pathways may lead to new avenues to induce neural repair in the adult brain. PMID:19619535

  17. Impact of Prostate Inflammation on Lesion Development in the POET3+Pten+/− Mouse Model of Prostate Carcinogenesis

    PubMed Central

    Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.

    2015-01-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686

  18. Impact of prostate inflammation on lesion development in the POET3(+)Pten(+/-) mouse model of prostate carcinogenesis.

    PubMed

    Burcham, Grant N; Cresswell, Gregory M; Snyder, Paul W; Chen, Long; Liu, Xiaoqi; Crist, Scott A; Henry, Michael D; Ratliff, Timothy L

    2014-12-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten(+/-)) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten(+/-) mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b(+)Gr1(+) cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten(+/-) model of cancer.

  19. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    PubMed Central

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  20. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    PubMed

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  1. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Balog, E. M.; Fitts, R. H.; Riley, D. A.

    1999-01-01

    Sarcomere disruptions are observed in the adductor longus (AL) muscles following voluntary reloading of spaceflown and hindlimb suspension unloaded (HSU) rat, which resemble lesions in eccentrically challenged muscle. We devised and tested an eccentric contraction (ECCON) test system for the 14-day HSU rat AL. Six to 7 hours following ECCON, ALs were fixed to allow immunostaining and electron microscopy (EM). Toluidine blue-stained histology semithin sections were screened for lesion density (#/mm2). Serial semithin sections from the ECCON group were characterized for myosin immunointensity of lesions. Five myofibrillar lesion types were identified in histological semithin sections: focal contractions; wide A-bands; opaque areas; missing A-bands; and hyperstretched sarcomeres. Lesion density by type was greater for ECCON than NonECCON ALs (P< or =0.05; focal contractions and opaque regions). Lesion density (#-of-all-five-types/mm2) was significantly different (ECCON: 23.91+/-10.58 vs. NonECCON: 5.48+/-1.28, P< or =0.05; ECCON vs. SHAM: 0.00+/-0.00; P< or = 0.025). PostECCON optimal tension decreased (Poi-drop, 17.84+/-4.22%) and was correlated to lesion density (R2=0.596), but prestretch tension demonstrated the highest correlation with lesion density (R2=0.994). In lesions, the darkly staining A-band lost the normally organized thick filament alignment to differing degrees across the different lesion types. Ranking the five lesion types by a measure of lesion length deformation (hypercontracted to hyperstretched) at the light microscopy level, related to the severity of thick filament registry loss across the lesion types at the electron microscopic level. This ranking suggested that the five lesion types seen in semithin sections at the light level represented a lesion progression sequence and paralleled myosin immunostaining loss as the distorted A-band filaments spread across the hyperlengthening lesion types. Lesion ultrastructure indicated damage involved

  2. Effect of carbon dioxide laser treatment on lesion progression in an intraoral model

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Fried, Daniel; Gansky, Stuart A.; Stookey, George K.; Dunipace, Ann J.

    2001-04-01

    Previous studies have shown that pretreatment of dental enamel by specific carbon dioxide laser conditions inhibited subsequent progression of caries-like lesions in vitro. The aim of the present study was to use an intra-oral model to determine whether similar inhibition is observed in the human mouth. A cross over study with 23 subjects and three regimens was used. Pre-formed varies-like lesions were made in extracted human enamel and exposed intra-orally in partial dentures in each subject to A) placebo dentifrice and no laser treatment, B) placebo dentifrice following laser pretreatment, or C) sodium fluoride dentifrice and no laser treatment during each of three study periods. Samples were assessed by micro radiography to compare the mineral loss before and after each treatment and drive a net change in mineral value. Overall P was not significantly different form L but both P and L were different from F. For those subjects who demineralized in P, L and F were significantly better than P, with L showing an 84 percent inhibition of further demineralization, but no enhancement of demineralization.

  3. Computer-assisted lesion detection system for stomach screening using stomach shape and appearance models

    NASA Astrophysics Data System (ADS)

    Midoh, Y.; Nakamura, M.; Takashima, M.; Nakamae, K.; Fujioka, H.

    2007-03-01

    In Japan, stomach cancer is one of the three most common causes of death from cancer. Since periodic health checks of stomach X-rays have become more widely carried out, the physicians' burdens have been increasing in the mass screening to detect initial symptoms of a disease. For the purpose of automatic diagnosis, we try to develop a computer-assisted lesion detection system for stomach screening. The proposed system has two databases. One is the stomach shape database that consists of the computer graphics stomach 3D models based on biomechanics simulation and their projected 2D images. The other is the normal appearance database that is constructed by learning patterns in a normal patient training set. The stomach contour is extracted from an X-ray image including a barium filled region by the following steps. Firstly, the approximated stomach region is obtained by nonrigid registration based on mutual information. We define nonrigid transformation as one that includes translations, rotations, scaling, air-barium interface and weights of eigenvectors determined by principal components analysis in the stomach shape database. Secondly, the accurate stomach contour is extracted from the gradient of an image by using the Dynamic Programming. After then, stomach lesions are detected by inspecting whether the Mahalanobis distance from the mean in the normal appearance database is longer than a suitable value on the extracted stomach contour. We applied our system to 75 X-ray images of barium-filled stomach to show its validity.

  4. CT Lesion Model-Based Structural Allografts: Custom Fabrication and Clinical Experience

    PubMed Central

    Brune, Jan Claas; Hesselbarth, Uwe; Seifert, Philipp; Nowack, Dimitri; von Versen, Rüdiger; Smith, Mark David; Seifert, Dirk

    2012-01-01

    Summary Background Patients requiring knee and hip revision arthroplasty often present with difficult anatomical situations that limit options for surgery. Customised mega-implants may be one of few remaining treatment options. However, extensive damage to residual bone stock may also be present, and in such cases even customised prosthetics may be difficult to implant. Small quantities of lost bone can be replaced with standard allografts or autologous bone. Larger defects may require structural macro-allografts, sometimes in combination with implants (allograft-prosthesis composites). Methods Herein, we describe a process for manufacturing lesion-specific large structural allografts according to a 3D, full-scale, lithographically generated defect model. These macro-allografts deliver the volume and the mechanical stability necessary for certain complex revisions. They are patient-and implant-matched, negate some requirements for additional implants and biomaterials and save time in the operating theatre by eliminating the requirement for intra-operative sizing and shaping of standard allografts. Conclusion While a robust data set from long-term follow-up of patients receiving customised macro-allografts is not yet available, initial clinical experience and results suggest that lesion-matched macro-allografts can be an important component of revision joint surgery. PMID:23800856

  5. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  6. Unilateral Superior Laryngeal Nerve Lesion in an Animal Model of Dysphagia and Its Effect on Sucking and Swallowing

    PubMed Central

    Campbell-Malone, Regina; Holman, Shaina D.; Lukasik, Stacey L.; Fukuhara, Takako; Gierbolini-Norat, Estela M.; Thexton, Allan J.; German, Rebecca Z.

    2013-01-01

    We tested two hypotheses relating to the sensory deficit that follows a unilateral superior laryngeal nerve (SLN) lesion in an infant animal model. We hypothesized that it would result in (1) a higher incidence of aspiration and (2) temporal changes in sucking and swallowing. We ligated the right-side SLN in six 2–3-week-old female pigs. Using videofluoroscopy, we recorded swallows in the same pre- and post-lesion infant pigs. We analyzed the incidence of aspiration and the duration and latency of suck and swallow cycles. After unilateral SLN lesioning, the incidence of silent aspiration during swallowing increased from 0.7 to 41.5 %. The durations of the suck containing the swallow, the suck immediately following the swallow, and the swallow itself were significantly longer in the post-lesion swallows, although the suck prior to the swallow was not different. The interval between the start of the suck containing a swallow and the subsequent epiglottal movement was longer in the post-lesion swallows. The number of sucks between swallows was significantly greater in post-lesion swallows compared to pre-lesion swallows. Unilateral SLN lesion increased the incidence of aspiration and changed the temporal relationships between sucking and swallowing. The longer transit time and the temporal coordinative dysfunction between suck and swallow cycles may contribute to aspiration. These results suggest that swallow dysfunction and silent aspiration are common and potentially overlooked sequelae of unilateral SLN injury. This validated animal model of aspiration has the potential for further dysphagia studies. PMID:23417250

  7. Example based lesion segmentation

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2014-03-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer's disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  8. Example Based Lesion Segmentation

    PubMed Central

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2016-01-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer’s disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  9. Interleukin-6 receptor alpha blockade improves skin lesions in a murine model of systemic lupus erythematosus.

    PubMed

    Birner, Peter; Heider, Susanne; Petzelbauer, Peter; Wolf, Peter; Kornauth, Christoph; Kuroll, Madeleine; Merkel, Olaf; Steiner, Günter; Kishimoto, Tadamitsu; Rose-John, Stefan; Soleiman, Afschin; Moriggl, Richard; Kenner, Lukas

    2016-04-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by antinuclear autoantibodies (ANA) and immunocomplexes, commonly affecting kidneys, skin, heart, lung or even the brain. We have shown that JunB(Δep) mice develop a SLE phenotype linked to increased epidermal Interleukin (IL)-6 secretion. Blocking of IL-6 receptor alpha (IL-6Rα) is considered as therapeutic strategy for the treatment of SLE. JunB(Δep) and wild-type mice were treated for short (5 weeks) or long term (21 weeks) with the IL-6Rα-blocking antibody MR16-1. Skin and kidney of mice were investigated by histology and immunofluorescence, and in addition, kidneys were analysed by electron microscopy. Furthermore, soluble IL-6R (sIL-6R), antihistone and antinucleosome antibodies levels were measured and associated with disease parameters. Treatment with MR16-1 resulted in significant improvement of SLE-like skin lesions in JunB(Δep) mice, compared to untreated mice. The sIL-6R amount upon long-term treatment with MR16-1 was significantly higher in JunB(Δep) versus untreated JunB(Δep) (P = 0.034) or wild-type mice (P = 0.034). MR16-1 treatment over these time spans did not significantly improve kidney pathology of immunoglobulin deposits causing impaired function. Significantly higher antihistone (P = 0.028) and antinucleosome antibody levels (P = 0.028) were measured in MR16-1-treated JunB(Δep) mice after treatment compared to levels before therapy. In conclusion, blockade of IL-6Rα improves skin lesions in a murine SLE model, but does not have a beneficial effect on autoimmune-mediated kidney pathology. Inhibition of IL-6R signalling might be helpful in lupus cases with predominant skin involvement, but combinatorial treatment might be required to restrain autoantibodies. PMID:26739431

  10. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study.

    PubMed

    Petibon, Y; Ouyang, J; Zhu, X; Huang, C; Reese, T G; Chun, S Y; Li, Q; El Fakhri, G

    2013-04-01

    Cardiac motion and partial volume effects (PVE) are two of the main causes of image degradation in cardiac PET. Motion generates artifacts and blurring while PVE lead to erroneous myocardial activity measurements. Newly available simultaneous PET-MR scanners offer new possibilities in cardiac imaging as MRI can assess wall contractility while collecting PET perfusion data. In this perspective, we develop a list-mode iterative reconstruction framework incorporating both tagged-MR derived non-rigid myocardial wall motion and position dependent detector point spread function (PSF) directly into the PET system matrix. In this manner, our algorithm performs both motion 'deblurring' and PSF deconvolution while reconstructing images with all available PET counts. The proposed methods are evaluated in a beating non-rigid cardiac phantom whose hot myocardial compartment contains small transmural and non-transmural cold defects. In order to accelerate imaging time, we investigate collecting full and half k-space tagged MR data to obtain tagged volumes that are registered using non-rigid B-spline registration to yield wall motion information. Our experimental results show that tagged-MR based motion correction yielded an improvement in defect/myocardium contrast recovery of 34-206% as compared to motion uncorrected studies. Likewise, lesion detectability improved by respectively 115-136% and 62-235% with MR-based motion compensation as compared to gating and no motion correction and made it possible to distinguish non-transmural from transmural defects, which has clinical significance given the inherent limitations of current single modality imaging in identifying the amount of residual ischemia. The incorporation of PSF modeling within the framework of MR-based motion compensation significantly improved defect/myocardium contrast recovery (5.1-8.5%, p < 0.01) and defect detectability (39-56%, p < 0.01). No statistical difference was found in PET contrast and lesion

  11. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study

    NASA Astrophysics Data System (ADS)

    Petibon, Y.; Ouyang, J.; Zhu, X.; Huang, C.; Reese, T. G.; Chun, S. Y.; Li, Q.; El Fakhri, G.

    2013-04-01

    Cardiac motion and partial volume effects (PVE) are two of the main causes of image degradation in cardiac PET. Motion generates artifacts and blurring while PVE lead to erroneous myocardial activity measurements. Newly available simultaneous PET-MR scanners offer new possibilities in cardiac imaging as MRI can assess wall contractility while collecting PET perfusion data. In this perspective, we develop a list-mode iterative reconstruction framework incorporating both tagged-MR derived non-rigid myocardial wall motion and position dependent detector point spread function (PSF) directly into the PET system matrix. In this manner, our algorithm performs both motion ‘deblurring’ and PSF deconvolution while reconstructing images with all available PET counts. The proposed methods are evaluated in a beating non-rigid cardiac phantom whose hot myocardial compartment contains small transmural and non-transmural cold defects. In order to accelerate imaging time, we investigate collecting full and half k-space tagged MR data to obtain tagged volumes that are registered using non-rigid B-spline registration to yield wall motion information. Our experimental results show that tagged-MR based motion correction yielded an improvement in defect/myocardium contrast recovery of 34-206% as compared to motion uncorrected studies. Likewise, lesion detectability improved by respectively 115-136% and 62-235% with MR-based motion compensation as compared to gating and no motion correction and made it possible to distinguish non-transmural from transmural defects, which has clinical significance given the inherent limitations of current single modality imaging in identifying the amount of residual ischemia. The incorporation of PSF modeling within the framework of MR-based motion compensation significantly improved defect/myocardium contrast recovery (5.1-8.5%, p < 0.01) and defect detectability (39-56%, p < 0.01). No statistical difference was found in PET contrast and lesion

  12. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI.

    PubMed

    Subbanna, Nagesh; Precup, Doina; Arnold, Douglas; Arbel, Tal

    2015-01-01

    In this paper, we present IMaGe, a new, iterative two-stage probabilistic graphical model for detection and segmentation of Multiple Sclerosis (MS) lesions. Our model includes two levels of Markov Random Fields (MRFs). At the bottom level, a regular grid voxel-based MRF identifies potential lesion voxels, as well as other tissue classes, using local and neighbourhood intensities and class priors. Contiguous voxels of a particular tissue type are grouped into regions. A higher, non-lattice MRF is then constructed, in which each node corresponds to a region, and edges are defined based on neighbourhood relationships between regions. The goal of this MRF is to evaluate the probability of candidate lesions, based on group intensity, texture and neighbouring regions. The inferred information is then propagated to the voxel-level MRF. This process of iterative inference between the two levels repeats as long as desired. The iterations suppress false positives and refine lesion boundaries. The framework is trained on 660 MRI volumes of MS patients enrolled in clinical trials from 174 different centres, and tested on a separate multi-centre clinical trial data set with 535 MRI volumes. All data consists of T1, T2, PD and FLAIR contrasts. In comparison to other MRF methods, such as, and a traditional MRF, IMaGe is much more sensitive (with slightly better PPV). It outperforms its nearest competitor by around 20% when detecting very small lesions (3-10 voxels). This is a significant result, as such lesions constitute around 40% of the total number of lesions. PMID:26221699

  13. Recognizing Focal Liver Lesions in CEUS With Dynamically Trained Latent Structured Models.

    PubMed

    Liang, Xiaodan; Lin, Liang; Cao, Qingxing; Huang, Rui; Wang, Yongtian

    2016-03-01

    This work investigates how to automatically classify Focal Liver Lesions (FLLs) into three specific benign or malignant types in Contrast-Enhanced Ultrasound (CEUS) videos, and aims at providing a computational framework to assist clinicians in FLL diagnosis. The main challenge for this task is that FLLs in CEUS videos often show diverse enhancement patterns at different temporal phases. To handle these diverse patterns, we propose a novel structured model, which detects a number of discriminative Regions of Interest (ROIs) for the FLL and recognize the FLL based on these ROIs. Our model incorporates an ensemble of local classifiers in the attempt to identify different enhancement patterns of ROIs, and in particular, we make the model reconfigurable by introducing switch variables to adaptively select appropriate classifiers during inference. We formulate the model learning as a non-convex optimization problem, and present a principled optimization method to solve it in a dynamic manner: the latent structures (e.g. the selections of local classifiers, and the sizes and locations of ROIs) are iteratively determined along with the parameter learning. Given the updated model parameters in each step, the data-driven inference is also proposed to efficiently determine the latent structures by using the sequential pruning and dynamic programming method. In the experiments, we demonstrate superior performances over the state-of-the-art approaches. We also release hundreds of CEUS FLLs videos used to quantitatively evaluate this work, which to the best of our knowledge forms the largest dataset in the literature. Please find more information at "http://vision.sysu.edu.cn/projects/fllrecog/". PMID:26513779

  14. Effect of WR-1065 on 6-hydroxydopamine-induced catalepsy and IL-6 level in rats

    PubMed Central

    Kheradmand, Afshin; Nayebi, Alireza Mohajjel; Jorjani, Masoumeh; Haddadi, Rasool

    2016-01-01

    Objective(s): Neuroinflammation and oxidative stress play a key role in pathogenesis of Parkinson’s disease (PD). In the present study we investigated the effect of reactive oxygen species (ROS) scavenger WR-1065 on catalepsy and cerebrospinal fluid (CSF) level of interleukin 6(IL-6) and striatum superoxide dismutase (SOD) activity in 6-hydroxydopamine (6-OHDA) induced experimental model of PD. Materials and Methods: Seventy two male Wistar rats were divided into 9 equal groups and 6-OHDA (8 μg/2 μl/rat) was infused unilaterally into substantia nigra pars copmacta (SNc) to induce PD. Catalepsy was measured by standard bar test, CSF level of IL-6 was assessed by enzyme-linked immunosorbent assay (ELISA) method and SOD activity measured by spectrophotometric method. In pre-treatment groups WR-1065 (20, 40 and 80 μg/2 μl/rat/day, for 3 days) was infused into the SNc before 6-OHDA administration and 21 days later, as a recovery period, behavioral and molecular assay tests were done. Results: Our results showed that pre-treatment with WR-1065 improved (P<0.001) 6-OHDA-induced catalepsy in a dose dependent manner. In 6-OHDA-lesioned animals SOD activity in SNc and CSF level of IL-6 was decreased markedly (P<0.001) when compared with non-lesioned group, while pre-treatment with WR-1065(P<0.001) restored their levels up to the normal range. Conclusion: Our study indicated that pre-treatment with WR-1065 could modulate catalepsy and IL-6 level in 6-OHDA-lesioned rats. Also WR1065 could increase SOD activity up to normal range. It can be regarded as an anti-oxidative drug in prevention or adjunctive therapy of PD. PMID:27403255

  15. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism.

    PubMed

    Horev, Guy; Ellegood, Jacob; Lerch, Jason P; Son, Young-Eun E; Muthuswamy, Lakshmi; Vogel, Hannes; Krieger, Abba M; Buja, Andreas; Henkelman, R Mark; Wigler, Michael; Mills, Alea A

    2011-10-11

    Recurrent copy number variations (CNVs) of human 16p11.2 have been associated with a variety of developmental/neurocognitive syndromes. In particular, deletion of 16p11.2 is found in patients with autism, developmental delay, and obesity. Patients with deletions or duplications have a wide range of clinical features, and siblings carrying the same deletion often have diverse symptoms. To study the consequence of 16p11.2 CNVs in a systematic manner, we used chromosome engineering to generate mice harboring deletion of the chromosomal region corresponding to 16p11.2, as well as mice harboring the reciprocal duplication. These 16p11.2 CNV models have dosage-dependent changes in gene expression, viability, brain architecture, and behavior. For each phenotype, the consequence of the deletion is more severe than that of the duplication. Of particular note is that half of the 16p11.2 deletion mice die postnatally; those that survive to adulthood are healthy and fertile, but have alterations in the hypothalamus and exhibit a "behavior trap" phenotype-a specific behavior characteristic of rodents with lateral hypothalamic and nigrostriatal lesions. These findings indicate that 16p11.2 CNVs cause brain and behavioral anomalies, providing insight into human neurodevelopmental disorders. PMID:21969575

  16. Pharmacological targeting of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth in the mouse model of lymphangioleiomyomatosis.

    PubMed

    Atochina-Vasserman, Elena N; Abramova, Elena; James, Melane L; Rue, Ryan; Liu, Amy Y; Ersumo, Nathan Tessema; Guo, Chang-Jiang; Gow, Andrew J; Krymskaya, Vera P

    2015-12-15

    Pulmonary lymphangioleiomyomatosis (LAM), a rare progressive lung disease associated with mutations of the tuberous sclerosis complex 2 (Tsc2) tumor suppressor gene, manifests by neoplastic growth of LAM cells, induction of cystic lung destruction, and respiratory failure. LAM severity correlates with upregulation in serum of the prolymphangiogenic vascular endothelial growth factor D (VEGF-D) that distinguishes LAM from other cystic diseases. The goals of our study was to determine whether Tsc2 deficiency upregulates VEGF-D, and whether axitinib, the Food and Drug Administration-approved small-molecule inhibitor of VEGF receptor (VEGFR) signaling, will reduce Tsc2-null lung lesion growth in a mouse model of LAM. Our data demonstrate upregulation of VEGF-D in the serum and lung lining in mice with Tsc2-null lesions. Progressive growth of Tsc2-null lesions induces recruitment and activation of inflammatory cells and increased nitric oxide production. Recruited cells isolated from the lung lining of mice with Tsc2-null lesions demonstrate upregulated expression of provasculogenic Vegfa, prolymphangiogenic Figf, and proinflammatory Nos2, Il6, and Ccl2 genes. Importantly, axitinib is an effective inhibitor of Tsc2-null lesion growth and inflammatory cell recruitment, which correlates with reduced VEGF-D levels in serum and lung lining. Our data demonstrate that pharmacological inhibition of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth, attenuates recruitment and activation of inflammatory cells, and reduces VEGF-D levels systemically and in the lung lining. Our study suggests a potential therapeutic benefit of inhibition of VEGFR signaling for treatment of LAM.

  17. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization – sensitive optical coherence tomography

    PubMed Central

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2011-01-01

    Objectives It is difficult to completely remineralize carious lesions because diffusion into the interior of the lesion is inhibited as new mineral is deposited in the outermost layers. In previous remineralization studies employing polarization sensitive optical coherence tomography (PS-OCT), two models of remineralization were employed and in both models there was preferential deposition of mineral in the outer most layer. In this study we attempted to remineralize the entire lesion using an acidic remineralization model and demonstrate that this remineralization can be monitored using PS-OCT. Methods Artificial lesions approximately 100–150 µm in-depth were exposed to an acidic remineralization regimen and the integrated reflectivity from the lesions was measured before and after remineralization using PS-OCT. Results Automated integration routines worked well for assessing the integrated reflectivity for the lesion areas after remineralization. Although there was a high degree of remineralization, there was still incomplete remineralization of the body of the lesion. Conclusion This study demonstrated that PS-OCT can be used to non-destructively measure changes in lesion structure and severity upon exposure to an acidic remineralization model. This study also demonstrated that automated algorithms can be used to assess the lesion severity even with the presence of a weakly reflective surface zone. PMID:22204914

  18. Time course of lewisite-induced skin lesions and inflammatory response in the SKH-1 hairless mouse model.

    PubMed

    Nguon, Nina; Cléry-Barraud, Cécile; Vallet, Virginie; Elbakdouri, Nacéra; Wartelle, Julien; Mouret, Stéphane; Bertoni, Marine; Dorandeu, Frédéric; Boudry, Isabelle

    2014-01-01

    Data on the toxicity of lewisite (L), a vesicant chemical warfare agent, are scarce and conflicting, and the use of the specific antidote is not without drawbacks. This study was designed to evaluate if the SKH-1 hairless mouse model was suitable to study the L-induced skin injuries. We studied the progression of lesions following exposure to L vapors for 21 days using paraclinical parameters (color, transepidermal water loss (TEWL), and biomechanical measurements), histological assessments, and biochemical indexes of inflammation. Some data were also obtained over 27 weeks. The development of lesions was similar to that reported in other models. The TEWL parameter appeared to be the most appropriate index to follow their progression. Histological analysis showed inflammatory cell infiltration and microvesications at day 1 and a complete wound closure by day 21. Biochemical studies indicated a deregulation of the levels of several cytokines and receptors involved in inflammation. An increase in the quantity of pro-matrix metalloproteinases 2 and 9 was shown as observed in other models. This suggests that the SKH-1 mouse model is relevant for the investigation of the physiopathological process of skin lesions induced by L and to screen new treatment candidates. PMID:24635178

  19. R-apomorphine protects against 6-hydroxydopamine-induced nigrostriatal damage in rat.

    PubMed

    Yuan, Hong; Liang, Li-Wu; Chen, Zheng-Jing; Ji, Hui-Ru; Wang, Mei-Kang; Zhang, Hai-Ying; Li, Cao; Xu, Jian-Yang

    2006-11-01

    Objective The aim of the present study was not only to assess the retrograde degenerative changes in the dopaminergic neurons of the substantia nigra (SN) and ventral tegmental area (VTA) after injection of 6-hydroxydopamine (6-OHDA) into the striatum, but also to use this 6-OHDA model of Parkinson's disease to explore the possible neuroprotective effect of R-apomorphine (R-APO). Methods The partial lesion was obtained by intrastriatal administration of 6-OHDA. R-APO administration (10 mg/kg, s.c.) started 15 min prior to lesioning and continued daily for another 22 days post surgery. Testing was carried out 5 weeks after lesioning. We investigated the histology and associated behavior and neurochemical changes. Structural and functional deficits were quantified by tyrosine hydroxylase (TH) / Nissl-staining cell number counting, striatal dopamine (DA) content determination and amphetamine-induced rotation analysis. Results R-APO-treatment attenuated the amphetamine-induced ipsiversive rotation 5 weeks after the lesion induction. R-APO administration for 22 days significantly reduced the size of the lesion at the level of the SN from 50% (control group) to 69%. Moreover, the cell shape resembled that observed in the intact animals. R-APO treatment significantly increased the number of cells in both the lesion and the intact sides of VTA by 60%, suggesting selective neurotrophic effect of R-APO in this area. Finally, R-APO-treatment significantly attenuated the 6-OHDA-induced striatal DA depletion and normalized dihydroxyphenylacetic acid (DOPAC)/DA ratios. Conclusion We conclude that R-APO has neuroprotective and possible neurotrophic effect on a striatal lesion with 6-OHDA, suggesting that this drug may have rescuing properties in patients with early stage Parkinson's disease. These effects are more pronounced in VTA and enhance with duration of treatment. PMID:17690718

  20. Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study

    NASA Astrophysics Data System (ADS)

    Schaefferkoetter, Joshua; Casey, Michael; Townsend, David; El Fakhri, Georges

    2013-03-01

    Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF + PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic. Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF + PSF. These findings suggest a large potential benefit of TOF + PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients.

  1. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-01

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  2. Simulation and assessment of realistic breast lesions using fractal growth models.

    PubMed

    Rashidnasab, A; Elangovan, P; Yip, M; Diaz, O; Dance, D R; Young, K C; Wells, K

    2013-08-21

    A new method of generating realistic three dimensional simulated breast lesions known as diffusion limited aggregation (DLA) is presented, and compared with the random walk (RW) method. Both methods of lesion simulation utilize a physics-based method for inserting these simulated lesions into 2D clinical mammogram images that takes into account the polychromatic x-ray spectrum, local glandularity and scatter. DLA and RW masses were assessed for realism via a receiver operating characteristic (ROC) study with nine observers. The study comprised 150 images of which 50 were real pathology proven mammograms, 50 were normal mammograms with RW inserted masses and 50 were normal mammograms with DLA inserted masses. The average area under the ROC curve for the DLA method was 0.55 (95% confidence interval 0.51-0.59) compared to 0.60 (95% confidence interval 0.56-0.63) for the RW method. The observer study results suggest that the DLA method produced more realistic masses with more variability in shape compared to the RW method. DLA generated lesions can overcome the lack of complexity in structure and shape in many current methods of mass simulation. PMID:23892735

  3. Simulation and assessment of realistic breast lesions using fractal growth models

    NASA Astrophysics Data System (ADS)

    Rashidnasab, A.; Elangovan, P.; Yip, M.; Diaz, O.; Dance, D. R.; Young, K. C.; Wells, K.

    2013-08-01

    A new method of generating realistic three dimensional simulated breast lesions known as diffusion limited aggregation (DLA) is presented, and compared with the random walk (RW) method. Both methods of lesion simulation utilize a physics-based method for inserting these simulated lesions into 2D clinical mammogram images that takes into account the polychromatic x-ray spectrum, local glandularity and scatter. DLA and RW masses were assessed for realism via a receiver operating characteristic (ROC) study with nine observers. The study comprised 150 images of which 50 were real pathology proven mammograms, 50 were normal mammograms with RW inserted masses and 50 were normal mammograms with DLA inserted masses. The average area under the ROC curve for the DLA method was 0.55 (95% confidence interval 0.51-0.59) compared to 0.60 (95% confidence interval 0.56-0.63) for the RW method. The observer study results suggest that the DLA method produced more realistic masses with more variability in shape compared to the RW method. DLA generated lesions can overcome the lack of complexity in structure and shape in many current methods of mass simulation.

  4. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area.

    PubMed

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2013-09-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. The dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease by acting on the neuronal reward circuitry. Therefore this study was designed to explore the potential motivational effect of dopamine replacement therapy in bilateral VTA-lesioned animals. The posterior (p)VTA, which project to the nucleus accumbens (NAc) constitutes the major dopamine neuronal circuitry implicated in addictive disorders. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists, and cocaine in rat with a 6-OHDA bilateral lesion of the pVTA. Amongst the dopamine receptor agonists used in this study only the D2R and D3R agonists (bromocriptine, PD128907 and pramipexole), induced a significant CPP in pVTA-lesioned animals. Dopamine receptor agonists did not induce behavioral sensitization in sham animals. Moreover, confocal D2R immunostaining analysis showed a significant increase in the number of D2R per cell body in the NAc shell of pVTA lesioned rats compared to sham. This result correlated, for the first time, the dopamine receptor agonists effect with DR2 overexpression in the NAc shell of pVTA-lesioned rats. In addition, cocaine, which is known to increase dopamine release, induced behavioral sensitization in sham group but not in dopamine deprived group. Thus, the later result highlighted the importance of pVTA-NAc dopaminergic pathway in positive reinforcements. Altogether these data suggested that the implication of the dopamine replacement therapy in the appearance of dopamine dysregulation syndrome in Parkinson's disease is probably due to both neuronal degeneration in the posterior VTA and

  5. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents.

    PubMed

    Fernandes, Hélio B; Silva, Francilene V; Passos, Flávia Franceli B; Bezerra, Roosevelt D S; Chaves, Mariana H; Oliveira, Francisco A; Oliveira, Rita C Meneses

    2010-01-01

    Parkia platycephala Benth. (Leguminosae--Mimosoideae), popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH), as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52%, respectively), but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder.

  6. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents.

    PubMed

    Fernandes, Hélio B; Silva, Francilene V; Passos, Flávia Franceli B; Bezerra, Roosevelt D S; Chaves, Mariana H; Oliveira, Francisco A; Oliveira, Rita C Meneses

    2010-01-01

    Parkia platycephala Benth. (Leguminosae--Mimosoideae), popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH), as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52%, respectively), but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder. PMID:21526272

  7. Effects of transforming growth factor-beta in the development of inflammatory pseudotumour-like lesions in a murine model.

    PubMed

    Guariniello, Luciana Doria; Correa, Mariangela; Jasiulionis, Miriam Galvonas; Machado, Joel; Silva, José Antônio; Pesquero, João Bosco; Carneiro, Célia Regina Whitaker

    2006-06-01

    Alterations in transforming growth factor (TGF)-beta signalling have been frequently implicated in human cancer, and an important mechanism underlying its pro-oncogenic nature is suppression of the host antitumour immune response. Considering the immunosuppressive effect of TGF-beta, we asked whether human tumour cells, known to secrete TGF-beta in culture, would survive and grow when implanted into the peritoneal cavity of immunocompetent mice. Therefore, we developed a xenogeneic model where mice were intraperitoneally (i.p.) injected with a TGF-beta-secreting human colorectal adenocarcinoma cell line, LISP-A10. Although animals did not develop macroscopic tumours, the recovery and isolation of human tumour cells was achieved when an inflammatory environment was locally induced by the administration of complete Freund's adjuvant (CFA). This procedure significantly increased TGF-beta concentrations in the peritoneal fluid and was accompanied by impaired activation of the host-specific immune response against LISP-A10 cells. Furthermore, inflammatory lesions resembling human inflammatory pseudotumours (IPTs) were observed on the surface of i.p. organs. These lesions could be induced by either injection of LISP-A10 cells, cells-conditioned medium or recombinant TGF-beta but only after administration of CFA. In addition, host cyclooxygenase-2 and kinin receptors played an important role in the induction of TGF-beta-mediated IPT-like lesions in our experimental model. PMID:16709227

  8. A.T. Still's Osteopathic Lesion Theory and Evidence-Based Models Supporting the Emerged Concept of Somatic Dysfunction.

    PubMed

    Liem, Torsten

    2016-10-01

    Andrew Taylor Still, MD, DO, coined the original idea of lesion based on the obstruction of flow of body fluids, but primarily referring to bony structures and more precisely to the spine. Throughout the 20th century, this idea was shaped and developed into the concept of somatic dysfunction, a term that is familiar to both US-trained osteopathic physicians and foreign-trained osteopaths and has been an essential cornerstone of osteopathic practice and teaching. The present historical narrative review offers an overview of the evolution of Still's original lesion concept, major evidence-based models of somatic dysfunction that attempt to explain the clinical findings, and a critique of the concept. PMID:27669069

  9. Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson's Disease.

    PubMed

    Bortolanza, Mariza; Bariotto-Dos-Santos, Keila D; Dos-Santos-Pereira, Maurício; da-Silva, Célia Aparecida; Del-Bel, Elaine

    2016-07-01

    Amantadine is the noncompetitive antagonist of N-methyl-D-aspartate, receptor activated by the excitatory neurotransmitter glutamate. It is the only effective medication used to alleviate dyskinesia induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease patients. Unfortunately, adverse effects as abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia limit its clinical utility. Combined effective symptomatic treatment modalities may lessen the liability to undesirable events. Likewise drugs known to interfere with nitrergic system reduce AIMs in animal models of Parkinson's disease. We aimed to analyze an interaction between amantadine, neuronal nitric oxide synthase inhibitor (7-nitroindazole, 7NI), and nitric oxide donor (sodium nitroprusside, SNP) in 6-hydroxydopamine-(6-OHDA)-lesioned rats (microinjection in the medial forebrain bundle) presenting L-DOPA-induced dyskinesia (20 mg/kg, gavage, during 21 days). We confirm that 7NI-30 mg/kg, SNP-2/4 mg/kg and amantadine-40 mg/kg, individually reduced AIMs. Our results revealed that co-administration of sub-effective dose of amantadine (10 mg/kg) plus sub-effective dose of 7NI (20 mg/kg) potentiates the effect of reducing AIMs scores when compared to the effect of the drugs individually. No superior benefit on L-DOPA-induced AIMs was observed with the combination of amantadine and SNP. The results revealed that combination of ineffective doses of amantadine and 7NI represents a new strategy to increase antidyskinetic effect in L-DOPA-induced AIMs. It may provide additional therapeutic benefits to Parkinson's disease patients from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone. To close, we discuss the paradox of both nitric oxide synthase inhibitor and/or donor produced AIMs reduction by targeting nitric oxide synthase. PMID:27053252

  10. Transplanted Neural Stem Cells: Playing a Neuroprotective Role by Ceruloplasmin in the Substantia Nigra of PD Model Rats?

    PubMed

    Xiao, Jia-Jia; Yin, Ming; Wang, Ze-Jian; Wang, Xiao-Ping

    2015-01-01

    Although mounting evidence suggests that ceruloplasmin (CP) deficiency and iron deposition are pivotal factors responsible for exacerbating demise of dopaminergic neurons in the substantia nigra (SN) of the Parkinsonism and neural stem cells (NSCs) are believed to be excellent candidates for compensating the lost dopaminergic neurons, there are few researches to explore the change of CP expression and of iron deposition in the pathological microenvironment of SN after NSCs transplantation and the ability of grafted NSCs to differentiate directionally into dopaminergic neurons under the changed homeostasis. With substantia nigral stereotaxic technique and NSCs transplantation, we found that tyrosine hydroxylase and CP expression decreased and iron deposition increased in the lesioned SN after 6-OHDA administration compared with control, while tyrosine hydroxylase and CP expression increased and iron deposition decreased after NSCs transplantation compared to 6-OHDA administration alone. Only a small number of embedding NSCs are able to differentiate into dopaminergic neurons. These results suggest that grafted NSCs have an influence on improving the content of CP expression, which may play a neuroprotective role by decreasing iron deposition and ameliorating damage of dopaminergic neurons and possibly underline the iron-related common mechanism of Parkinson's disease and Wilson's disease.

  11. Improved bleeding scores using Gelfoam(®) Powder with incremental concentrations of bovine thrombin in a swine liver lesion model.

    PubMed

    Morse, Dennis C; Silva, Elif; Bartrom, Jolee; Young, Kelli; Bass, Eric J; Potter, David; Bieber, Trevor

    2016-10-01

    Topical hemostatic agents are used intra-operatively to prevent uncontrolled bleeding. Gelfoam(®) Powder contains a hemostatic agent prepared from purified pork skin gelatin, the efficacy of which is increased when combined with thrombin. However, the effect of increasing concentrations of thrombin on resultant hemostasis is not known. This study sought to evaluate the ability of various concentrations of thrombin in combination with Gelfoam Powder to control bleeding using a swine liver lesion model. Ten pigs underwent a midline laparotomy. Circular lesions were created in the left medial, right medial, and left lateral lobes; six lesions per lobe. Gelfoam Powder was hydrated with Thrombin-JMI(®) diluted to 250, 375, and 770 IU/mL. Each concentration was applied to two lesion sites per lobe. Bleeding scores were measured at 3, 6, 9, and 12 min using a 6-point system; comparison of bleeding scores was performed using ANOVA with the post hoc Tukey test. The bleeding scores with thrombin concentrations at 770 IU/mL were significantly lower than at 250 and 375 IU/mL at all four time points. The percentage of biopsies with a clinically acceptable bleeding score rose from 37.9, 46.6, and 71.2 % at 3 min to 55.2, 69.0, and 88.1 % at 12 min in the 250, 375, and 770 IU/mL thrombin groups, respectively. The study showed that the hemostatic response to thrombin was dose-related: using higher concentrations of thrombin with Gelfoam Powder yielded improved hemostasis, as determined by lower bleeding scores. PMID:27334382

  12. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation Is Essential for Functional Regeneration

    PubMed Central

    Tscherter, Anne; Heidemann, Martina; Kleinlogel, Sonja; Streit, Jürg

    2016-01-01

    Presently there exists no cure for spinal cord injury (SCI). However, transplantation of embryonic tissue into spinal cord (SC) lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated SC circuits. We tested the two hypotheses in an in vitro SC lesion model that is based on propagation of activity between two rat organotypic SC slices in culture. Transplantation of dissociated cells from E14 rat SC or forebrain (FB) re-established the relay of activity over the lesion site and thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays (MEAs) we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse FB cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated SC circuits. In contrast, transplantation of neurospheres (NS) induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated SC circuits. PMID:27708562

  13. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].

    PubMed

    Šaponjić, Jasna

    2011-01-01

    Many complex behavioral phenomena such as sleep can not be explained without multidisciplinary experimental approach, and complementay approaches in the animal models "in vivo" and human studies. Electrophysiological, pharmacological, anatomical and immunohistochemical techniques, and particularly stereotaxically guided local nanovolume microinjection technique, enable us to selectively stimulate and lesion the brain nuclei or their specific neuronal subpopulation, and to reslove the mechanisms of certain brain structure regulatory role, and its afferent-efferent connectivity within the brain. Local stereotaxically guided nanovolume microinjection technique enable us to investigate in animals the brain nulcei functional topography with a resolution of < or = 10 microM, and at a level of 300 microM of effective radius within the brain tissue "in vivo". The advantage of local glutamate or DL- homocysteic acid microinjection stimulation or local excitotoxic (glutamate, ibotenic acid, IgG saporin) microinjection lesion over electrical stimulation/lesion of the same neuronal population are that they reduces the likelihood of activation/lesion of fibers of passage. Much of our knowledge of the sleep neuronal substrates is based on animal studies primarly in cat and rat. Selective pharmacological stimulation of the pedunculopontine tegmentum (PPT) in freely moving rat, using glutamate microinjection, proved that excitation of its cholinergic part is necessary for induction of wakefulness or REM (Datta S, 2001). Local nanovolume glutamate microinjection into PPT of anesthetized rats (Saponjić et al, 2003a) additionally evidenced P-wave and respiratory regulating neuronal subpopulation within the cholinergic compartment of PPT (apneogenic neuronal zone). Local microinjection of serotonin and noradrenaline into cholinergic PPT apneogenic zone evidenced their opposed impact through PPT on breathing, in contrast to their convergent regulatory role in behavioral state control

  14. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse)

    PubMed Central

    Takahashi, Tetsuyuki; Nishida, Takeshi; Baba, Hayato; Hatta, Hideki; Imura, Johji; Sutoh, Mitsuko; Toyohara, Syunji; Hokao, Ryoji; Watanabe, Syunsuke; Ogawa, Hirohisa; Uehara, Hisanori; Tsuneyama, Koichi

    2016-01-01

    We previously reported that Tsumura-Suzuki obese diabetic (TSOD) mice, a polygenic model of spontaneous type 2 diabetes, is a valuable model of hepatic carcinogenesis via non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). One of the characteristics of tumors in these mice is the diffuse expression of glutamine synthetase (GS), which is a diagnostic marker for hepatocellular carcinoma (HCC). In this study, we performed detailed histopathological examinations and found that GS expression was diffusely positive in >70% of the hepatic tumors from 15-month-old male TSOD mice. Translocation of β-catenin into nuclei with enhanced membranous expression also occurred in GS-positive tumors. Small lesions (<1 mm) in GS-positive cases exhibited dysplastic nodules, with severe nuclear atypia, whereas large lesions (>3 mm) bore the characteristics of human HCC, exhibiting nuclear and structural atypia with invasive growth. By contrast, the majority of GS-negative tumors were hepatocellular adenomas with advanced fatty change and low nuclear grade. In GS-negative tumors, loss of liver fatty acid-binding protein expression was observed. These results suggest that the histological characteristics of GS-positive hepatic tumors in TSOD mice resemble human HCC; thus, this model may be a useful tool in translational research targeting the NAFLD/NASH-HCC sequence. PMID:27446562

  15. The Frog Vestibular System as a Model for Lesion-Induced Plasticity: Basic Neural Principles and Implications for Posture Control

    PubMed Central

    Lambert, François M.; Straka, Hans

    2011-01-01

    Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the central nervous system (CNS) to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the CNS include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims toward a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of vestibular function

  16. Vitamin D Repletion Reduces the Progression of Premalignant Squamous Lesions in the NTCU Lung Squamous Cell Carcinoma Mouse Model

    PubMed Central

    Mazzilli, Sarah A.; Hershberger, Pamela A.; Reid, Mary E.; Bogner, Paul N.; Atwood, Kristopher; Trump, Donald L.; Johnson, Candace S.

    2015-01-01

    The chemopreventive actions of vitamin D were examined in the N-nitroso-tris-chloroethylurea (NTCU) mouse model, a progressive model of lung squamous cell carcinoma (SCC). SWR/J mice were fed a deficient diet (D) containing no vitamin D3, a sufficient diet (S) containing 2000 IU/kg vitamin D3, or the same diets in combination with the active metabolite of vitamin D, calcitriol (C) (80 μg/kg, weekly). The percentage (%) of the mucosal surface of large airways occupied by dysplastic lesions was determined in mice after treatment with a total dose of 15 or 25 μmol NTCU (N). After treatment with 15 μmol NTCU, the % of the surface of large airways containing high-grade dysplastic (HGD) lesions were vitamin D-deficient +NTCU (DN), 22.7 % (p<0.05 compared to vitamin D-sufficient +NTCU (SN)); DN + C, 12.3%; SN, 8.7%; and SN + C, 6.6%. The extent of HGD increased with NTCU dose in the DN group. Proliferation, assessed by Ki-67 labeling, increased upon NTCU treatment. The highest Ki-67 labeling index was seen in the DN group. As compared to SN mice, DN mice exhibited a 3-fold increase (p <0.005) in circulating white blood cells (WBC), a 20% (p <0.05) increase in IL-6 levels, and a 4 -fold (p <0.005) increase in WBC in bronchial lavages. Thus, vitamin D repletion reduces the progression of premalignant lesions, proliferation, and inflammation, and may thereby suppress development of lung SCC. Further investigations of the chemopreventive effects of vitamin D in lung SCC are warranted. PMID:26276745

  17. Vascular Lesions.

    PubMed

    Jahnke, Marla N

    2016-08-01

    Vascular lesions in childhood are comprised of vascular tumors and vascular malformations. Vascular tumors encompass neoplasms of the vascular system, of which infantile hemangiomas (IHs) are the most common. Vascular malformations, on the other hand, consist of lesions due to anomalous development of the vascular system, including the capillary, venous, arterial, and lymphatic systems. Capillary malformations represent the most frequent type of vascular malformation. IHs and vascular malformations tend to follow relatively predictable growth patterns in that IHs grow then involute during early childhood, whereas vascular malformations tend to exhibit little change. Both vascular tumors and vascular malformations can demonstrate a wide range of severity and potential associated complications necessitating specialist intervention when appropriate. Evaluation and treatment of the most common types of vascular lesions are discussed in this article. [Pediatr Ann. 2016;45(8):e299-e305.]. PMID:27517358

  18. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study.

    PubMed

    Shobana, Chandrasekar; Kumar, Radhakrishnan Ramesh; Sumathi, Thangarajan

    2012-10-01

    Parkinson's disease is one of the commonest neurodegenerative diseases, and oxidative stress has been evidenced to play a vital role in its causation. In this study, we evaluated whether alcoholic extract of Bacopa monniera (AEBM), an antioxidant and memory enhancer can slow the neuronal injury in a 6-OHDA-rat model of Parkinson's. Rats were treated with 20 and 40 mg/kg bodyweight of AEBM for 3 weeks. On Day 21, 2 μl of 6-OHDA (12 μg in 0.01 % in ascorbic acid-saline) was infused into the right striatum, while the control group received 2 μl of vehicle. Three weeks after the 6-OHDA injection, the rats were tested for neurobehavioral activity (rotarod, locomotor activity, grip test, forced swim test, radial arm maze) and were killed after 6 weeks for the estimation of lipid peroxidation, reduced glutathione (GSH) content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase (SOD), and catalase (CAT). The deficits in behavioral activity due to 6-OHDA lesioning were significantly and dose dependently restored by AEBM. Lesioning was followed by an increased lipid peroxidation and significant depletion of reduced GSH content in the substantia nigra, which was prevented with AEBM pretreatment. The activities of GSH-dependent enzymes, CAT and SOD in striatum were reduced significantly by lesioning, which were restored significantly and dose dependently by AEBM. This study indicates that the extract of B. monniera might be helpful in attenuating 6-OHDA-induced lesioning in rats.

  19. Effects of single and simultaneous lesions of serotonergic and noradrenergic pathways on open-space and bright-space anxiety-like behavior in two animal models.

    PubMed

    Sziray, Nóra; Kuki, Zsófia; Nagy, Katalin M; Markó, Bernadett; Kompagne, Hajnalka; Lévay, György

    2010-05-01

    The objective of the present study is to investigate the effects of single and simultaneous lesions of the noradrenergic and serotonergic pathways (NA-X, 5-HT-X and XX, respectively) by intracerebroventricular administration of selective neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine-HCl (DSP-4) and 5,7-dihydroxytryptamine (5,7-DHT) on anxiety-like behavior in rats. To evaluate the effects of the various lesions, animals were tested in elevated plus-maze (EPM) and light-dark (LD) paradigms. In EPM, single lesions produced strong, statistically significant increase (p<0.001) of both time spent in the open arms (OT) and number of entries into the open arms (OE) compared to sham-lesioned animals. Simultaneous lesion further strengthened this anxiolytic effect causing an approximate 500% elevation of OT compared to sham-lesioned animals. In LD, 5-HT lesion caused a significant (p<0.05) increase in both light movement time and light horizontal activity parameters compared to intact, sham, and NA-lesioned groups. Neither of the lesions caused any change in the spontaneous locomotor activity of the animals up to 15min as measured in activity meter. These findings suggest that single and simultaneous lesions of 5-HT- and NA-pathways modify anxiety-related state of experimental animals to different extents and these modifications alter the behavior of animals differently in the two models used: NA-X and 5-HT-X reduce open space anxiety-like behavior and XX further strengthens this effect in the EPM, while only 5-HT-X is resulting in reduced bright-space anxiety-like behavior leaving the performance of NA-X and XX animals unchanged.

  20. Sensitivity of the Giant LOop Binary LEsion (GLOBLE) cell survival model on parameters characterising dose rate effects.

    PubMed

    Herr, L; Friedrich, T; Durante, M; Scholz, M

    2015-09-01

    The sensitivity of the Giant LOop Binary LEsion model for cell survival probabilities after arbitrary photon irradiation schedules on its parameters is presented. Since these parameters are closely linked to observable features of cell repair, the modelled influence of the parameters on cell survival gives indications about the relation between cell line-specific repair characteristics and the radiation response. To visualise the general findings about the impact of parameter changes on cell survival probabilities, survival curves for an exemplary cell line are shown. Furthermore, the relative change in the effect of radiation after a change in parameter values is investigated over the range of doses and dose rates usually applied in cell survival experiments.

  1. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection.

    PubMed

    Ufimtseva, Elena

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.

  2. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection.

    PubMed

    Ufimtseva, Elena

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals. PMID:26064970

  3. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection

    PubMed Central

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals. PMID:26064970

  4. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  5. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue.

    PubMed

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-10-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  6. Neuroimaging Analysis of the Dopamine Basis for Apathetic Behaviors in an MPTP-Lesioned Primate Model

    PubMed Central

    Flores, Hubert P.; Campbell, Meghan C.; Moerlein, Stephen M.; Perlmutter, Joel S.

    2015-01-01

    Apathy commonly occurs in Parkinson disease (PD) patients; however, the role of dopamine in the pathophysiology of apathy remains elusive. We previously demonstrated that dopaminergic dysfunction within the ventral tegmental area (VTA)-nucleus accumbens (NAcc) pathway contributes to the manifestation of apathetic behaviors in monkeys treated with the selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We now extend these studies to identify dopaminergic dysfunction in cortical regions that correlate with development of apathetic behaviors. Specifically, we measured the effects of MPTP on monkeys' willingness to attempt goal directed behaviors, which is distinct from their ability to perform tasks. A total of 16 monkeys had baseline magnetic resonance imaging (MRI) and positron emission tomography (PET), using 6-[18F]fluorodopa (FD), [11C]dihydrotetrabenazine (DTBZ), and 2β-[11C]carbomethoxy-3β-(4-fluorophenyl)tropane (CFT). The monkeys received unilateral infusion of different doses of MPTP (0 – 0.31mg/kg) to produce a wide range of severity of motor parkinsonism. Eight weeks after MPTP, PET scans were repeated and animals were euthanized. Apathetic behavior and motor impairments were assessed blindly both pre- and post-MPTP infusion. Apathy scores were compared to in vitro and in vivo dopaminergic measures. Apathy scores increased following MPTP and correlated with PET measures of dopaminergic terminals (DTBZ or CFT) in dorsal lateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), and insular cortex (IC). Among all the cortical regions assessed, forward step-wise regression analyses indicated that only stereologic cell counts in VTA, and not counts in the substantia nigra (SN), predict dopamine transporter changes in IC. Our findings suggest that dopaminergic dysfunction within the VTA–IC pathway plays a role in the manifestation of apathetic behaviors in MPTP-lesioned primates. PMID:26135399

  7. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].

    PubMed

    Šaponjić, Jasna

    2011-01-01

    Many complex behavioral phenomena such as sleep can not be explained without multidisciplinary experimental approach, and complementay approaches in the animal models "in vivo" and human studies. Electrophysiological, pharmacological, anatomical and immunohistochemical techniques, and particularly stereotaxically guided local nanovolume microinjection technique, enable us to selectively stimulate and lesion the brain nuclei or their specific neuronal subpopulation, and to reslove the mechanisms of certain brain structure regulatory role, and its afferent-efferent connectivity within the brain. Local stereotaxically guided nanovolume microinjection technique enable us to investigate in animals the brain nulcei functional topography with a resolution of < or = 10 microM, and at a level of 300 microM of effective radius within the brain tissue "in vivo". The advantage of local glutamate or DL- homocysteic acid microinjection stimulation or local excitotoxic (glutamate, ibotenic acid, IgG saporin) microinjection lesion over electrical stimulation/lesion of the same neuronal population are that they reduces the likelihood of activation/lesion of fibers of passage. Much of our knowledge of the sleep neuronal substrates is based on animal studies primarly in cat and rat. Selective pharmacological stimulation of the pedunculopontine tegmentum (PPT) in freely moving rat, using glutamate microinjection, proved that excitation of its cholinergic part is necessary for induction of wakefulness or REM (Datta S, 2001). Local nanovolume glutamate microinjection into PPT of anesthetized rats (Saponjić et al, 2003a) additionally evidenced P-wave and respiratory regulating neuronal subpopulation within the cholinergic compartment of PPT (apneogenic neuronal zone). Local microinjection of serotonin and noradrenaline into cholinergic PPT apneogenic zone evidenced their opposed impact through PPT on breathing, in contrast to their convergent regulatory role in behavioral state control

  8. Empiric antibiotic treatment of erythema migrans-like skin lesions as a function of geography: a clinical and cost effectiveness modeling study.

    PubMed

    Lantos, Paul M; Brinkerhoff, R Jory; Wormser, Gary P; Clemen, Robert

    2013-12-01

    The skin lesion of early Lyme disease, erythema migrans (EM), is so characteristic that routine practice is to treat all such patients with antibiotics. Because other skin lesions may resemble EM, it is not known whether presumptive treatment of EM is appropriate in regions where Lyme disease is rare. We constructed a decision model to compare the cost and clinical effectiveness of three strategies for the management of EM: Treat All, Observe, and Serology as a function of the probability that an EM-like lesion is Lyme disease. Treat All was found to be the preferred strategy in regions that are endemic for Lyme disease. Where Lyme disease is rare, Observe is the preferred strategy, as presumptive treatment would be expected to produce excessive harm and increased costs. Where Lyme disease is rare, clinicians and public health officials should consider observing patients with EM-like lesions who lack travel to Lyme disease-endemic areas.

  9. A blueprint for staging of murine melanocytic lesions based on the Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) model.

    PubMed

    Wurm, Elisabeth M T; Lin, Lynlee L; Ferguson, Blake; Lambie, Duncan; Prow, Tarl W; Walker, Graeme J; Soyer, H Peter

    2012-09-01

    It has been shown that gene mutations which drive the development of malignant melanoma (MM) in humans also lead to emergence of MM when engineered mice. However, little attention has been paid to the clinical and histopathological features of melanocytic lesions and their natural history in a given mouse model. This knowledge is crucial to enable us to understand how engineered mutations influence the initiation and evolution of melanocytic lesions, and/or for the use of mice as a preclinical model to test specific treatments. We recently reported the development of melanocytic proliferations along the spectrum of naevi to MM in a Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) mouse model. In this study, we followed the development of lesions over time using digital photography and dermoscopy with the aim to correlate the clinical and histopathological features of lesions developing in this model. We identified two types of lesions. The first are slow-growing dermal MMs that emanate from dermal naevi. The second did not emanate from naevi, grew rapidly, and appeared to be solely confined to the subcutaneous fat. We present a simple staging system for the MMs that progress from naevi, based on depth of extension into the dermis and subcutis. This represents a blueprint for documentation and follow-up of MMs in the live animal, which is critical for the proper use of murine melanoma models.

  10. A blueprint for staging of murine melanocytic lesions based on the Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) model.

    PubMed

    Wurm, Elisabeth M T; Lin, Lynlee L; Ferguson, Blake; Lambie, Duncan; Prow, Tarl W; Walker, Graeme J; Soyer, H Peter

    2012-09-01

    It has been shown that gene mutations which drive the development of malignant melanoma (MM) in humans also lead to emergence of MM when engineered mice. However, little attention has been paid to the clinical and histopathological features of melanocytic lesions and their natural history in a given mouse model. This knowledge is crucial to enable us to understand how engineered mutations influence the initiation and evolution of melanocytic lesions, and/or for the use of mice as a preclinical model to test specific treatments. We recently reported the development of melanocytic proliferations along the spectrum of naevi to MM in a Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) mouse model. In this study, we followed the development of lesions over time using digital photography and dermoscopy with the aim to correlate the clinical and histopathological features of lesions developing in this model. We identified two types of lesions. The first are slow-growing dermal MMs that emanate from dermal naevi. The second did not emanate from naevi, grew rapidly, and appeared to be solely confined to the subcutaneous fat. We present a simple staging system for the MMs that progress from naevi, based on depth of extension into the dermis and subcutis. This represents a blueprint for documentation and follow-up of MMs in the live animal, which is critical for the proper use of murine melanoma models. PMID:22742762

  11. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Majaron, Boris

    2011-12-01

    We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of ``escape'' and ``mirror'' boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured values of diffuse reflectance for normal skin. When coupled with a sophisticated model of thermal transport and tissue coagulation kinetics, it also reproduces realistic values of radiant exposure thresholds for epidermal injury and for photocoagulation of port wine stain blood vessels in various skin phototypes, with or without application of cryogen spray cooling.

  12. Analytical modeling of laser pulse heating of embedded biological targets: An application to cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Mirkov, Mirko; Sherr, Evan A.; Sierra, Rafael A.; Lloyd, Jenifer R.; Tanghetti, Emil

    2006-06-01

    Detailed understanding of the thermal processes in biological targets undergoing laser irradiation continues to be a challenging problem. For example, the contemporary pulsed dye laser (PDL) delivers a complex pulse format which presents specific challenges for theoretical understanding and further development. Numerical methods allow for adequate description of the thermal processes, but are lacking for clarifying the effects of the laser parameters. The purpose of this work is to derive a simplified analytical model that can guide the development of future laser designs. A mathematical model of heating and cooling processes in tissue is developed. Exact analytical solutions of the model are found when applied to specific temporal and spatial profiles of heat sources. Solutions are reduced to simple algebraic expressions. An algorithm is presented for approximating realistic cases of laser heating of skin structures by heat sources of the type found to have exact solutions. The simple algebraic expressions are used to provide insight into realistic laser irradiation cases. The model is compared with experiments on purpura threshold radiant exposure for PDL. These include data from four independent groups over a period of 20 years. Two of the data sets are taken from previously published articles. Two more data sets were collected from two groups of patients that were treated with two PDLs (585 and 595 nm) on normal buttocks skin. Laser pulse durations were varied between 0.5 and 40 ms radiant exposures were varied between 3 and 20 J/cm2. Treatment sites were evaluated 0.5, 1, and 24 hours later to determine purpuric threshold. The analytical model is in excellent agreement with a wide range of experimental data for purpura threshold radiant exposure. The data collected by independent research groups over the last 20 years with PDLs with wavelengths ranged from 577 to 595 nm were described accurately by this model. The simple analytical model provides an accurate

  13. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.

    PubMed

    Maske, T T; Brauner, K V; Nakanishi, L; Arthur, R A; van de Sande, F H; Cenci, M S

    2016-01-01

    Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min(-1) salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min(-1), 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies.

  14. Local Cellular Immune Responses and Pathogenesis of Buruli Ulcer Lesions in the Experimental Mycobacterium Ulcerans Pig Infection Model

    PubMed Central

    Bolz, Miriam; Ruggli, Nicolas; Borel, Nicole; Pluschke, Gerd; Ruf, Marie-Thérèse

    2016-01-01

    Background Buruli ulcer is a neglected tropical disease of the skin that is caused by infection with Mycobacterium ulcerans. We recently established an experimental pig (Sus scrofa) infection model for Buruli ulcer to investigate host-pathogen interactions, the efficacy of candidate vaccines and of new treatment options. Methodology/Principal Findings Here we have used the model to study pathogenesis and early host-pathogen interactions in the affected porcine skin upon infection with mycolactone-producing and non-producing M. ulcerans strains. Histopathological analyses of nodular lesions in the porcine skin revealed that six weeks after infection with wild-type M. ulcerans bacteria extracellular acid fast bacilli were surrounded by distinct layers of neutrophils, macrophages and lymphocytes. Upon ulceration, the necrotic tissue containing the major bacterial burden was sloughing off, leading to the loss of most of the mycobacteria. Compared to wild-type M. ulcerans bacteria, toxin-deficient mutants caused an increased granulomatous cellular infiltration without massive tissue necrosis, and only smaller clusters of acid fast bacilli. Conclusions/Significance In summary, the present study shows that the pathogenesis and early immune response to M. ulcerans infection in the pig is very well reflecting BU disease in humans, making the pig infection model an excellent tool for the profiling of new therapeutic and prophylactic interventions. PMID:27128097

  15. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.

    PubMed

    Maske, T T; Brauner, K V; Nakanishi, L; Arthur, R A; van de Sande, F H; Cenci, M S

    2016-01-01

    Some dynamic biofilm models for dental caries development are limited as they require multiple experiments and do not allow independent biofilm growth units, making them expensive and time-consuming. This study aimed to develop and test an in vitro dynamic microcosm biofilm model for caries lesion development and for dose-response to chlorhexidine. Microcosm biofilms were grown under two different protocols from saliva on bovine enamel discs for up to 21 days. The study outcomes were as follows: the percentage of enamel surface hardness change, integrated hardness loss, and the CFU counts from the biofilms formed. The measured outcomes, mineral loss and CFU counts showed dose-response effects as a result of the treatment with chlorhexidine. Overall, the findings suggest that biofilm growth for seven days with 0.06 ml min(-1) salivary flow under exposure to 5% sucrose (3 × daily, 0.25 ml min(-1), 6 min) was suitable as a pre-clinical model for enamel demineralization and antimicrobial studies. PMID:26905384

  16. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  17. Predictive modeling of human perception subjectivity: feasibility study of mammographic lesion similarity

    NASA Astrophysics Data System (ADS)

    Xu, Songhua; Hudson, Kathleen; Bradley, Yong; Daley, Brian J.; Frederick-Dyer, Katherine; Tourassi, Georgia

    2012-02-01

    The majority of clinical content-based image retrieval (CBIR) studies disregard human perception subjectivity, aiming to duplicate the consensus expert assessment of the visual similarity on example cases. The purpose of our study is twofold: i) discern better the extent of human perception subjectivity when assessing the visual similarity of two images with similar semantic content, and (ii) explore the feasibility of personalized predictive modeling of visual similarity. We conducted a human observer study in which five observers of various expertise were shown ninety-nine triplets of mammographic masses with similar BI-RADS descriptors and were asked to select the two masses with the highest visual relevance. Pairwise agreement ranged between poor and fair among the five observers, as assessed by the kappa statistic. The observers' self-consistency rate was remarkably low, based on repeated questions where either the orientation or the presentation order of a mass was changed. Various machine learning algorithms were explored to determine whether they can predict each observer's personalized selection using textural features. Many algorithms performed with accuracy that exceeded each observer's self-consistency rate, as determined using a cross-validation scheme. This accuracy was statistically significantly higher than would be expected by chance alone (two-tailed p-value ranged between 0.001 and 0.01 for all five personalized models). The study confirmed that human perception subjectivity should be taken into account when developing CBIR-based medical applications.

  18. Predictive Modeling of Human Perception Subjectivity: Feasibility Study of Mammographic Lesion Similarity

    SciTech Connect

    Xu, Songhua; Tourassi, Georgia

    2012-01-01

    The majority of clinical content-based image retrieval (CBIR) studies disregard human perception subjectivity, aiming to duplicate the consensus expert assessment of the visual similarity on example cases. The purpose of our study is twofold: (i) discern better the extent of human perception subjectivity when assessing the visual similarity of two images with similar semantic content, and (ii) explore the feasibility of personalized predictive modeling of visual similarity. We conducted a human observer study in which five observers of various expertise were shown ninety-nine triplets of mammographic masses with similar BI-RADS descriptors and were asked to select the two masses with the highest visual relevance. Pairwise agreement ranged between poor and fair among the five observers, as assessed by the kappa statistic. The observers' self-consistency rate was remarkably low, based on repeated questions where either the orientation or the presentation order of a mass was changed. Various machine learning algorithms were explored to determine whether they can predict each observer's personalized selection using textural features. Many algorithms performed with accuracy that exceeded each observer's self-consistency rate, as determined using a cross-validation scheme. This accuracy was statistically significantly higher than would be expected by chance alone (two-tailed p-value ranged between 0.001 and 0.01 for all five personalized models). The study confirmed that human perception subjectivity should be taken into account when developing CBIR-based medical applications.

  19. Photoacoustic imaging of an inflammatory lesion model in the neonatal rat brain

    NASA Astrophysics Data System (ADS)

    Guevara, Edgar; Berti, Romain; Londono, Irène; Xie, Ningshi; Bellec, Pierre; Lesage, Frédéric; Lodygensky, G. A.

    2014-09-01

    Periventricular leukomalacia (PVL) is a condition that may cause significant neurodevelopmental handicap in premature newborns. It is characterized by white matter injury, associated with inflammation. This work aimed to assess the impact of inflammation on cerebral oxygen saturation (sO2) using depth-sensitive photoacoustic tomography (PAT). The aspects of PVL were reproduced in a rodent model by injection of lipopolysaccharide (LPS) into the corpus callosum. The results of this exploratory work reveal lower sO2 values in LPS group, as compared to sham controls; showing decreased values in the corpus callosum and in the left cortex, ipsilateral to the injection site. Interhemispherical connectivity was not affected by LPS injection, as shown by functional connectivity analysis. This study supports the use of PAT as a non-invasive tool to assess oxygenation values in vivo in the newborn brain.

  20. Different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions: Microhardness and polarized light miscroscopy analyses.

    PubMed

    De Campos, Priscila Hernández; Sanabe, Mariane Emi; Rodrigues, Jonas Almeida; Duarte, Danilo Antonio; Santos, Maria Teresa Botti Rodrigues; Guaré, Renata Oliveira; Duque, Cristiane; Lussi, Adrian; Diniz, Michele Baffi

    2015-06-01

    The aim of this study was to compare different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions by microhardness and polarized light microscopy analyses. One hundred blocks of bovine enamel were randomly divided into four groups (n = 25) according to the bacterial model for caries induction: (A) Streptococcus mutans, (B) S. mutans and Lactobacillus acidophilus, (C) S. mutans and L. casei, and (D) S. mutans, L. acidophilus, and L. casei. Within each group, the blocks were randomly divided into five subgroups according to the duration of the period of caries induction (4-20 days). The enamel blocks were immersed in cariogenic solution containing the microorganisms, which was changed every 48 h. Groups C and D presented lower surface hardness values (SMH) and higher area of hardness loss (ΔS) after the cariogenic challenge than groups A and B (P < 0.05). As regards lesion depth, under polarized light microscopy, group A presented significantly lower values, and groups C and D the highest values. Group B showed a higher value than group A (P < 0.05). Groups A and B exhibited subsurface caries lesions after all treatment durations, while groups C and D presented erosion-type lesions with surface softening. The model using S. mutans, whether or not it was associated with L. acidophilus, was less aggressive and may be used for the induction of non-cavitated enamel caries-like lesions. The optimal period for inducing caries-like lesions was 8 days.

  1. Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson’s Disease

    PubMed Central

    Seiler, Stefanie; Di Santo, Stefano; Widmer, Hans Rudolf

    2016-01-01

    Transplantation of fetal human ventral mesencephalic (VM) dopaminergic neurons into the striatum is a promising strategy to compensate for the characteristic dopamine deficit observed in Parkinson’s disease (PD). This therapeutic approach, however, is currently limited by the high number of fetuses needed for transplantation and the poor survival and functional integration of grafted dopaminergic neurons into the host brain. Accumulating evidence indicates that contrasting inhibitory signals endowed in the central nervous system (CNS) might support neuronal regeneration. Hence, in the present study we aimed at improving survival and integration of grafted cells in the host brain by neutralizing Nogo-A, one of the most potent neurite growth inhibitors in the CNS. For that purpose, VM tissue cultures were transplanted into rats with a partial 6-hydroxydopamine (6-OHDA) lesion causing a hemi-PD model and concomitantly treated for 2 weeks with intra-ventricular infusion of neutralizing anti-Nogo-A antibodies. Motor behavior using the cylinder test was assessed prior to and after transplantation as functional outcome. At the end of the experimental period the number of dopaminergic fibers growing into the host brain, the number of surviving dopaminergic neurons in the grafts as well as graft size was examined. We found that anti-Nogo-A antibody infusion significantly improved the asymmetrical forelimb use observed after lesions as compared to controls. Importantly, a significantly three-fold higher dopaminergic fiber outgrowth from the transplants was detected in the Nogo-A antibody treated group as compared to controls. Furthermore, Nogo-A neutralization showed a tendency for increased survival of dopaminergic neurons (by two-fold) in the grafts. No significant differences were observed for graft volume and the number of dopaminergic neurons co-expressing G-protein-coupled inward rectifier potassium channel subunit two between groups. In sum, our findings support the

  2. Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson's Disease.

    PubMed

    Seiler, Stefanie; Di Santo, Stefano; Widmer, Hans Rudolf

    2016-01-01

    Transplantation of fetal human ventral mesencephalic (VM) dopaminergic neurons into the striatum is a promising strategy to compensate for the characteristic dopamine deficit observed in Parkinson's disease (PD). This therapeutic approach, however, is currently limited by the high number of fetuses needed for transplantation and the poor survival and functional integration of grafted dopaminergic neurons into the host brain. Accumulating evidence indicates that contrasting inhibitory signals endowed in the central nervous system (CNS) might support neuronal regeneration. Hence, in the present study we aimed at improving survival and integration of grafted cells in the host brain by neutralizing Nogo-A, one of the most potent neurite growth inhibitors in the CNS. For that purpose, VM tissue cultures were transplanted into rats with a partial 6-hydroxydopamine (6-OHDA) lesion causing a hemi-PD model and concomitantly treated for 2 weeks with intra-ventricular infusion of neutralizing anti-Nogo-A antibodies. Motor behavior using the cylinder test was assessed prior to and after transplantation as functional outcome. At the end of the experimental period the number of dopaminergic fibers growing into the host brain, the number of surviving dopaminergic neurons in the grafts as well as graft size was examined. We found that anti-Nogo-A antibody infusion significantly improved the asymmetrical forelimb use observed after lesions as compared to controls. Importantly, a significantly three-fold higher dopaminergic fiber outgrowth from the transplants was detected in the Nogo-A antibody treated group as compared to controls. Furthermore, Nogo-A neutralization showed a tendency for increased survival of dopaminergic neurons (by two-fold) in the grafts. No significant differences were observed for graft volume and the number of dopaminergic neurons co-expressing G-protein-coupled inward rectifier potassium channel subunit two between groups. In sum, our findings support the

  3. Characterization of acute and long-term pathologies of superficial and deep dermal sulfur mustard skin lesions in the hairless guinea pig model.

    PubMed

    Dachir, Shlomit; Cohen, Maayan; Kamus-Elimeleh, Dikla; Fishbine, Eliezer; Sahar, Rita; Gez, Rellie; Brandeis, Rachel; Horwitz, Vered; Kadar, Tamar

    2012-01-01

    Sulfur mustard induces severe acute and prolonged damage to the skin and only partially effective treatments are available. We have previously validated the use of hairless guinea pigs as an experimental model for skin lesions. The present study aimed to characterize a model of a deep dermal lesion and to compare it with the previously described superficial lesion. Clinical evaluation of the lesions was conducted using reflectance colorimetry, trans-epidermal water loss and wound area measurements. Prostaglandin E(2) content, matrix metalloproteinase-2 and 9 activity, and histopathology were conducted up to 4 weeks post-exposure. Sulfur mustard skin injury, including erythema and edema, impairment of skin barrier and wounds developed in a dose-dependent manner. Prostaglandin E(2) content and matrix metalloproteinase-2 and 9 activities were elevated during the wound development and the healing process. Histological evaluation revealed severe damage to the epidermis and deep dermis and vesications. At 4 weeks postexposure, healing was not completed: significantly impaired stratum corneum, absence of hair follicles, and epidermal hyperplasia were observed. These results confirm the use of the superficial and deep dermal skin injuries in the hairless guinea pigs as suitable models that can be utilized for the investigation of the pathological processes of acute as well as long-term injuries. These models will be further used to develop treatments to improve the healing process and prevent skin damage and long-term effects. PMID:23082902

  4. New diagnosis and therapy model for ischemic-type biliary lesions following liver transplantation--a retrospective cohort study.

    PubMed

    Zhang, Ying-cai; Qu, En-ze; Ren, Jie; Zhang, Qi; Zheng, Rong-qin; Yang, Yang; Chen, Gui-hua

    2014-01-01

    Ischemic-type biliary lesions (ITBLs) are a major cause of graft loss and mortality after orthotopic liver transplantation (OLT). Impaired blood supply to the bile ducts may cause focal or extensive damage, resulting in intra- or extrahepatic bile duct strictures or dilatations that can be detected by ultrasonography, computed tomography, magnetic resonance cholangiopancreatography, and cholangiography. However, the radiographic changes occur at an advanced stage, after the optimal period for therapeutic intervention. Endoscopic retrograde cholangio-pancreatography (ERCP) and percutaneous transhepatic cholangiodrainage (PTCD) are the gold standard methods of detecting ITBLs, but these procedures cannot be used for continuous monitoring. Traditional methods of follow-up and diagnosis result in delayed diagnosis and treatment of ITBLs. Our center has used the early diagnosis and intervention model (EDIM) for the diagnosis and treatment of ITBLs since February 2008. This model mainly involves preventive medication to protect the epithelial cellular membrane of the bile ducts, regular testing of liver function, and weekly monitor of contrast-enhanced ultrasonography (CEUS) to detect ischemic changes to the bile ducts. If the liver enzyme levels become abnormal or CEUS shows low or no enhancement of the wall of the hilar bile duct during the arterial phase, early ERCP and PTCD are performed to confirm the diagnosis and to maintain biliary drainage. Compared with patients treated by the traditional model used prior to February 2008, patients in the EDIM group had a lower incidence of biliary tract infection (28.6% vs. 48.6%, P = 0.04), longer survival time of liver grafts (24±9.6 months vs. 17±12.3 months, P = 0.02), and better outcomes after treatment of ITBLs.

  5. Histological correlates of N40 auditory evoked potentials in adult rats after neonatal ventral hippocampal lesion: animal model of schizophrenia.

    PubMed

    Romero-Pimentel, A L; Vázquez-Roque, R A; Camacho-Abrego, I; Hoffman, K L; Linares, P; Flores, G; Manjarrez, E

    2014-11-01

    The neonatal ventral hippocampal lesion (NVHL) is an established neurodevelopmental rat model of schizophrenia. Rats with NVHL exhibit several behavioral, molecular and physiological abnormalities that are similar to those found in schizophrenics. Schizophrenia is a severe psychiatric illness characterized by profound disturbances of mental functions including neurophysiological deficits in brain information processing. These deficits can be assessed by auditory evoked potentials (AEPs), where schizophrenics exhibit abnormalities in amplitude, duration and latency of such AEPs. The aim of the present study was to compare the density of cells in the temporal cerebral cortex and the N40-AEP of adult NVHL rats versus adult sham rats. We found that rats with NVHL exhibit significant lower amplitude of the N40-AEP and a significant lower number of cells in bilateral regions of the temporal cerebral cortex compared to sham rats. Because the AEP recordings were obtained from anesthetized rats, we suggest that NVHL leads to inappropriate innervation in thalamic-cortical pathways in the adult rat, leading to altered function of cortical networks involved in processing of primary auditory information.

  6. Finite Element Modelling of the Femur Bone of a Subject Suffering from Motor Neuron Lesion Subjected to Electrical Stimulation.

    PubMed

    Gislason, Magnus K; Ingvarsson, Páll; Gargiulo, Paolo; Yngvason, Stefán; Guðmundsdóttir, Vilborg; Knútsdóttir, Sigrún; Helgason, Þórður

    2014-09-23

    Bone loss and a decrease in bone mineral density is frequently seen in patients with motor neuron lesion due to lack of mechanical stimulation. This causes weakening of the bones and a greater risk of fracture. By using functional electrical stimulation it is possible to activate muscles in the body to produce the necessary muscle force to stimulate muscle growth and potentially decrease the rate of bone loss. A longitudinal study was carried out on a single patient undergoing electrical stimulation over a 6 year period. The patient underwent a CT scan each year and a full three dimensional finite element model for each year was created using Mimics (Materialise) and Abaqus (Simulia) to calculate the risk of fracture under physiologically relevant loading conditions. Using empirical formulas connecting the bone mineral density to the stiffness and ultimate tensile stress of the bone, each element was assigned a unique material property, based on its density. The risk of fracture was estimated by calculating the ratio between the predicted stress and the ultimate tensile stress, should it exceed unity, failure was assumed. The results showed that the number of elements that were predicted to be at risk of failure varied between years. PMID:26913140

  7. Co-micronized Palmitoylethanolamide/Polydatin Treatment Causes Endometriotic Lesion Regression in a Rodent Model of Surgically Induced Endometriosis

    PubMed Central

    Di Paola, Rosanna; Fusco, Roberta; Gugliandolo, Enrico; Crupi, Rosalia; Evangelista, Maurizio; Granese, Roberta; Cuzzocrea, Salvatore

    2016-01-01

    Endometriosis is a chronic, painful disease characterized by the presence of endometrial glands and stroma outside the uterine cavity. Palmitoylethanolamide (PEA), an endogenous fatty acid amide, has anti-inflammatory and neuroprotective effects. PEA lacks free radical scavenging activity, unlike polydatin (PLD), a natural precursor of resveratrol. The aim of this study was to investigate the effect of orally administered co-micronized PEA/polydatin [m(PEA/PLD)] in an autologous rat model of surgically induced endometriosis. Endometriosis was induced in female Wistar albino rats by auto-transplantation of uterine squares (implants) into the intestinal mesentery and peritoneal cavity. Rats were distributed into one control group and one treatment group (10 animals each): m(PEA/PLD) 10 mg/kg/day. At 28 days after surgery the relative volume of the endometrioma was determined. Endometrial-like tissue was confirmed by histology: Masson trichrome and toluidine blue were used to detect fibrosis and mast cells, respectively. The treated group displayed a smaller cyst diameter, with improved fibrosis score and mast cell number decrease. m(PEA/PLD) administration decreased angiogenesis (vascular endothelial growth factor), nerve growth factor, intercellular adhesion molecule, matrix metalloproteinase 9 expression, and lymphocyte accumulation. m(PEA/PLD) treatment also reduced peroxynitrite formation, (poly-ADP)ribose polymerase activation, IkBα phosphorylation and nuclear facor-kB traslocation in the nucleus. Our results suggested that m(PEA/PLD) may be of use to inhibit development of endometriotic lesions in rats. PMID:27790149

  8. The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice.

    PubMed

    Kheramin, S; Body, S; Herrera, F Miranda; Bradshaw, C M; Szabadi, E; Deakin, J F W; Anderson, I M

    2005-01-01

    In a previous experiment [Kheramin S, Body S, Mobini S, Ho M-Y, Velazquez-Martinez DN, Bradshaw CM, et al. Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis. Psychopharmacology 2002;165: 9-17], destruction of the orbital prefrontal cortex (OPFC) in rats altered choice between two delayed food reinforcers, enhancing preference for the larger reinforcer. Theoretical analysis based on a quantitative model of inter-temporal choice [Ho M-Y, Mobini S, Chiang T-J, Bradshaw CM, Szabadi E. Theory and method in the quantitative analysis of 'impulsive choice' behaviour: implications for psychopharmacology. Psychopharmacology 1999;146:362-72] indicated that the lesion had increased the relative value of the larger of the two reinforcers due to a general reduction of absolute reinforcer value. The present experiment tested this hypothesis using a reinforcement schedule that did not entail either explicit choice or delayed reinforcement. Ten rats received quinolinic acid-induced lesions of the OPFC, and ten rats received sham lesions. The rats were trained under a progressive-ratio schedule of food reinforcement for 60 daily sessions. Response rates in successive ratios were a bitonic (inverted-U) function of ratio size. Analysis of the data using a three-parameter equation derived from a quantitative model of ratio schedule performance [Killeen PR. Mathematical principles of reinforcement. Behav. Brain Sci. 1994;17:105-72] revealed that the parameter specifying hypothetical reinforcer value was significantly lower in the OPFC-lesioned group than in the sham-lesioned group, consistent with the hypothesis that destruction of the OPFC resulted in devaluation of the food reinforcer.

  9. Chemopreventive effects of pequi oil (Caryocar brasiliense Camb.) on preneoplastic lesions in a mouse model of hepatocarcinogenesis.

    PubMed

    Palmeira, Simone M; Silva, Paula R P; Ferrão, Juliana S P; Ladd, Aliny A B L; Dagli, Maria L Z; Grisolia, Cesar K; Hernandez-Blazquez, Francisco J

    2016-07-01

    Pequi (Caryocar brasiliense Camb.), a fruit from Brazil's central region, was evaluated for its chemopreventive effects on preneoplastic liver lesions induced by the carcinogen diethylnitrosamine (DEN) in mice. BALB/c mice, 14 days of age, received an intraperitoneal injection at 10 µg/g of DEN. The mice received either of two doses of pequi oil (100 or 400 mg/kg) daily from the age of 30 days and were killed at the age of 189 days. Stereological parameters, including the volume density (Vv) and the total volume (Vtot) of the lesions (preneoplastic and adenomas), were measured and the expression of cytokeratins CK8/18 was evaluated. The total volume of lesions and adenomas was reduced by 51% in the group treated with the carcinogen and 400 mg/kg of pequi oil administered daily by an oral gavage for 25 consecutive weeks. In addition, some mice in this group did not develop lesions. Among the remaining preneoplastic lesions in this group, the number of remodelled profiles increased by 2.4-fold in the 400-mg pequi oil-treated mice relative to the 100-mg-treated mice. Our results show that pequi oil exerts a hepatoprotective effect against DEN-induced development of preneoplastic lesions and adenoma in mice and the potential for its use in the prevention of liver cancer. PMID:26287697

  10. PK-PD modeling of individual lesion FDG-PET response to predict overall survival in patients with sunitinib-treated gastrointestinal stromal tumor.

    PubMed

    Schindler, E; Amantea, M A; Karlsson, M O; Friberg, L E

    2016-04-01

    Pharmacometric models were developed to characterize the relationships between lesion-level tumor metabolic activity, as assessed by the maximum standardized uptake value (SUVmax) obtained on [(18)F]-fluorodeoxyglucose (FDG) positron emission tomography (PET), tumor size, and overall survival (OS) in 66 patients with gastrointestinal stromal tumor (GIST) treated with intermittent sunitinib. An indirect response model in which sunitinib stimulates tumor loss best described the typically rapid decrease in SUVmax during on-treatment periods and the recovery during off-treatment periods. Substantial interindividual and interlesion variability were identified in SUVmax baseline and drug sensitivity. A parametric time-to-event model identified the relative change in SUVmax at one week for the lesion with the most pronounced response as a better predictor of OS than tumor size. Based on the proposed modeling framework, early changes in FDG-PET response may serve as predictor for long-term outcome in sunitinib-treated GIST. PMID:27299707

  11. Role of 5-Hydroxytryptamine 1A Receptors in 6-Hydroxydopmaine-induced Catalepsy-like Immobilization in Rats: a Therapeutic Approach for Treating Catalepsy of Parkinson’s Disease

    PubMed Central

    eyhani-rad, Siamak; Mohajjel Nayebi, Alireza; Mahmoudi, Javad; Samini, Morteza; Babapour, Vahab

    2012-01-01

    We have shown that buspirone, a partial agonist of 5-hydroxytryptamine 1A (5-HT1A) receptors, improves motor dysfunctions induced by 6-hydroxydopamine (6-OHDA) and haloperidol in rats. The present work extends these findings by investigating the role of 5-HT1A receptors on catalepsy-like immobilization in rats, a model of Parkinson’s disease. Catalepsy was induced by unilateral infusion of 6-OH-dopamine (8 μg/2μL/rat) into the central region of the substantia nigra, compact part (SNc) and assayed by bar-test method 5, 60, 120 and 180 min after the drugs administration. The involvement of 5-HT1A receptors in 6-OHDA-induced catalepsy was studied through intraperitoneal (0.25, 0.5 and 1mg/Kg IP) and intrasubstantia nigra, compact part (10 μg/rat, intra-SNc) injection of 8-hydroxy-2-[di-n-propylamino] tetralin (8-OHDPAT) as well as administration of 1-(2-methoxyphenyl)-4-[4-(2-pthalimmido) butyl] piperazine hydrobromide (0.1, 0.5 and 1 mg/Kg, NAN-190, IP). NAN-190 (1 mg/Kg, IP) and 8-OHDPAT (1 mg/Kg, IP and 10 μg/rat, intra-SNc) increased and decreased 6-OHDA-induced catalepsy respectively. In normal (non 6-OHDA-lesioned) rats, NAN-190 (1 mg/Kg, IP) increased the elapsed time in bar-test while 8-OHDPAT did not produce any significant effect. The anticataleptic effect of 8-OHDPAT (1 mg/Kg, IP) was reversed markedly by co-injection with NAN-190 (1 mg/Kg, IP). These findings suggest that 5-HT1A receptors are involved in 6-OHDA-induced catalepsy-like immobilization. PMID:24250551

  12. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action.

    PubMed

    Saito, Yoshiro; Nishio, Keiko; Ogawa, Yoko; Kinumi, Tomoya; Yoshida, Yasukazu; Masuo, Yoshinori; Niki, Etsuo

    2007-03-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.

  13. Predictive model for contrast-enhanced ultrasound of the breast: Is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions?

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To build and evaluate predictive models for contrast-enhanced ultrasound (CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system (BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve (ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant (P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BI-RADS classification. PMID:27358688

  14. Conjunctival instillation of plasminogen eliminates ocular lesion in B6.129P2-Plg(tm1Jld) transgenic mice, a model of ligneous conjunctivitis.

    PubMed

    Pignataro, G; Vinciguerra, A; Cuomo, O; Sirabella, R; Di Renzo, G F; Scorziello, A

    2013-08-01

    Ligneous conjunctivitis is a severe and rare chronic "idiopathic membraneous" conjunctivitis, characterized by the formation of pseudomembranes mostly on the palpebral surfaces that progressively replace the normal mucosa. Evidence has been provided that ligneous conjunctivitis is caused by a severe systemic plasminogen deficiency with decreased plasminogen antigen and decreased plasminogen functional activities. Objective of the present study is to verify the hypothesis that a topical eye application of plasminogen is able to ameliorate the consequences of this disease. Here we report the results of pre-clinical studies performed to investigate the therapeutic effectiveness of an eye-drop plasminogen preparation in B6.129P2-Plg(tm1Jld) transgenic mice, a model of ligneous conjunctivitis. The entity of protection mediated by plasminogen was evaluated by measuring the extent of the eye lesion by means of a computerized system and dedicated software. The results of the present study clearly showed that the administration for six times a day of plasminogen eye-drop solution in the lesioned eye of animals knock-out for plasminogen gene and developing ligneous conjunctivitis caused a dose and time related reduction of the extent of the ocular lesion. These findings may pave the road for the pharmacological treatment of the ocular lesion associated to the ligneous conjunctivitis that at the present is surgically treated by removing the pseudomembranes generated on the eye.

  15. Targeting Experimental Autoimmune Encephalomyelitis Lesions to a Predetermined Axonal Tract System Allows for Refined Behavioral Testing in an Animal Model of Multiple Sclerosis

    PubMed Central

    Kerschensteiner, Martin; Stadelmann, Christine; Buddeberg, Bigna S.; Merkler, Doron; Bareyre, Florence M.; Anthony, Daniel C.; Linington, Christopher; Brück, Wolfgang; Schwab, Martin E.

    2004-01-01

    In multiple sclerosis (MS) the structural damage to axons determines the persistent clinical deficit patients acquire during the course of the disease. It is therefore important to test therapeutic strategies that can prevent or reverse this structural damage. The conventional animal model of MS, experimental autoimmune encephalomyelitis (EAE), typically shows disseminated inflammation in the central nervous system, which leads to a clinical deficit that cannot be directly attributed to a defined tract system. For this reason we have developed a localized EAE model, in which large inflammatory lesions are targeted to the dorsal columns of the spinal cord, an area including the corticospinal tract. These lesions show the pathological hallmarks of MS plaques and lead to reproducible and pronounced deficits in hindlimb locomotion. Because of the anatomical specificity of this technique we can now use highly sensitive behavioral tests that assess the functional integrity of specific axonal tracts. We show that these tests are predictive of the site and extent of a given lesion and are more sensitive for assessing the clinical course than the scales commonly used for disseminated EAE models. We believe that this targeted EAE model will become a helpful new tool for the evaluation of therapeutic approaches for MS that attempt to protect axons or support their repair. PMID:15039233

  16. [Elevated gastric lesions].

    PubMed

    de Careaga, B; Villagómez, G; Pabón, J; Calderón, O; Elío, D; Pérez, J; Martínez, M; Patiño, F; Ponce, R; Lora, J

    1986-01-01

    Elevated gastric lesions, represent an important group among gastric pathology. To establish its incidence in our experience, we studied the endoscopic reports of two important hospitals in La Paz city: Instituto de Gastroenterología Boliviano Japonés and Hospital Obrero No. 1. In order to make a good endoscopic diagnosis among different elevated lesions we use some parameters like: location, shape, size, diameter, surface of the lesion and surrounding mucosa and characteristics of the falls. 10.472 endoscopic reports were reviewed, 497 elevated gastric lesions were found, 475 corresponded to mucosal lesions (352 benign lesions and 123 malignant lesions), 11 to submucosal and 11 extragastric lesions.

  17. The efficacy of hydro alcoholic extract of Seidlitzia rosmarinus on experimental zoonotic cutaneous leishmaniasis lesions in murine model

    PubMed Central

    Ahmadi, Maryam; Fata, Abdolmajid; Khamesipour, Ali; Rakhshandeh, Hasan; Miramin Mohammadi, Akram; Salehi, Ghodratollah; Monavari, Hadi

    2014-01-01

    Objective: Leishmaniasis is one of the most important parasitic infectious diseases in the world. Since last century, many efforts have been made to control and treat the disease, but appropriate vaccines, pesticides and medicines are not available or even eligible. The purpose of this study was to evaluate the effect of hydro-alcoholic extract of Seidlitzia rosmarinus on the lesions of experimental Cutaneous Leishmaniasis (CL) in Balb/c mice. Materials and Methods: The population study was 60 Ballb/c mice which divided to 6 groups, all infected with Leishmania major [MRHO/75/IR]. Soon after the ulcer started to appear in the early stage, a dose of provided herbal extract with 5, 10 and 15% concentration applied on each lesion. The surface area of the lesions measured during an interval of 10 days. Direct Giemsa stained smears prepared two and four weeks after treatment. Results: Increasing the mean size of the lesions was statistically significant compared to those in control group (p>0.001). Visceral Leishmaniasis (VL) developed in all of the mice including the control group that received Eucerine alone. Survival rate in group receiving 15% S. rosmarinus extracts showed significantly higher compared to mice in control group (p<0.001). Conclusion: Hydro-alcoholic extracts of S.rosmarinus with concentrations below15% did not show a therapeutic effect on experimental CL ulcers of Balb/c mice. Further studies with higher concentrations or nano particles are recommended. PMID:25386402

  18. Cholinergic and serotonergic neocortical projection lesions given singly or in combination cause only mild impairments on tests of skilled movement in rats: evaluation of a model of dementia.

    PubMed

    Gharbawie, Omar A; Whishaw, Ian Q

    2003-04-25

    The cholinergic (ACh) projections of the nucleus basalis and the serotonergic (5-HT) projections of the raphe nuclei to the neocortex are required for the normal function of the neocortex. Nevertheless, damage to either system alone has little effect on the behavior of rats, but conjoint damage to both systems is reported to produce dementia to the point that animals are described as being unable to engage in intelligent behavior. Because rats with bilateral damage to both systems are so severely impaired, they are not useful for chronic studies. The objective of the present research was to determine whether unilateral depletions produce a functional impairment. Rats received unilateral neurotoxic lesions to either the nucleus basalis (quisqualic acid), or the medial forebrain bundle (5,7-dihydroxytryptamine), or both, which reduced neocortical levels of ACh (55%) and 5-HT (63%). The rats then received a battery of tests sensitive to unilateral neocortical injury. The 5-HT lesion produced no quantitative or qualitative deficits on reaching for food, walking across a horizontal ladder, forelimb placement in a cylinder, sensory detection of adhesive paper applied to the wrists, or forelimb inhibition during swimming. The ACh lesion produced mild qualitative deficits in reaching. Combined lesions produced mild deficits in skilled reaching, ladder walking, and sensory detection. In contrast to the mild impairments produced by the lesions, pharmacological blockade of either ACh with atropine or 5-HT with methiothepin mesylate systemically blocked skilled motor behavior as assessed by skilled reaching. The results are discussed in relation to the problems associated with the development of a unilateral model of dementia. PMID:12706251

  19. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions

    PubMed Central

    ZHANG, JIANFEI; JING, XINYING; NIU, WENWEN; ZHANG, MIN; GE, LIHUA; MIAO, CONGCONG; TANG, XIAOFEI

    2016-01-01

    Peroxiredoxin 1 (Prx1) is important in the protection of cells from oxidative damage and the regulation of cell proliferation and apoptosis. Prx1 is overexpressed in oral precancerous lesions of oral leukoplakia (OLK) and oral cancer; however, the association between Prx1 expression and OLK pathogenesis remains unknown. The present study investigated the role of Prx1 and its molecular mechanisms in oxidative stress-induced apoptosis during the pathogenesis of OLK. Wild-type and Prx1 knockout mice were treated with 50 µg/ml 4-nitroquinoline-1-oxide (4NQO) or 4NQO + H2O2 for 16 weeks to establish mouse models with tongue precancerous lesions. Apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The expression of Prx1, apoptosis signal-regulating kinase 1 (ASK1), phosphor-ASK1, p38 and phosphor-p38 was analyzed using immunohistochemical staining, and their mRNA expression levels were evaluated by reverse transcription quantitative polymerase chain reaction. The present results demonstrated that 4NQO or 4NQO + H2O2 induced the development of tongue precancerous lesions in Prx1 knockout and wild-type mice. Prx1 was overexpressed in tongue precancerous lesions compared with normal tongue mucosa. There was a significant decrease in the degree of moderate or severe epithelial dysplasia, and mild epithelial dysplasia was clearly elevated, in Prx1 knockout mice treated with 4NQO + H2O2 compared with wild-type mice treated with 4NQO + H2O2. Prx1 suppressed apoptosis and upregulated phosphor-ASK1 and phosphor-p38 expression in tongue precancerous lesions. The present results suggest that Prx1 suppresses oxidative stress-induced apoptosis via the ASK1/p38 signalling pathway in mouse tongue precancerous lesions. In conclusion, Prx1 and H2O2 have a coordination role in promoting the progression of tongue precancerous mucosa lesions. The present findings provide novel insight into Prx1 function and the mechanisms of Prx1 in OLK

  20. The potential cost-effectiveness of the Diamondback 360® Coronary Orbital Atherectomy System for treating de novo, severely calcified coronary lesions: an economic modeling approach

    PubMed Central

    Chambers, Jeffrey; Généreux, Philippe; Lee, Arthur; Lewin, Jack; Young, Christopher; Crittendon, Janna; Mann, Marita; Garrison, Louis P.

    2015-01-01

    Background: Patients who undergo percutaneous coronary intervention (PCI) for severely calcified coronary lesions have long been known to have worse clinical and economic outcomes than patients with no or mildly calcified lesions. We sought to assess the likely cost-effectiveness of using the Diamondback 360® Orbital Atherectomy System (OAS) in the treatment of de novo, severely calcified lesions from a health-system perspective. Methods and results: In the absence of a head-to-head trial and long-term follow up, cost-effectiveness was based on a modeled synthesis of clinical and economic data. A cost-effectiveness model was used to project the likely economic impact. To estimate the net cost impact, the cost of using the OAS technology in elderly (⩾ 65 years) Medicare patients with de novo severely calcified lesions was compared with cost offsets. Elderly OAS patients from the ORBIT II trial (Evaluate the Safety and Efficacy of OAS in Treating Severely Calcified Coronary Lesions) [ClinicalTrials.gov identifier: NCT01092426] were indirectly compared with similar patients using observational data. For the index procedure, the comparison was with Medicare data, and for both revascularization and cardiac death in the following year, the comparison was with a pooled analysis of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI)/Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trials. After adjusting for differences in age, gender, and comorbidities, the ORBIT II mean index procedure costs were 17% (p < 0.001) lower, approximately US$2700. Estimated mean revascularization costs were lower by US$1240 in the base case. These cost offsets in the first year, on average, fully cover the cost of the device with an additional 1.2% cost savings. Even in the low-value scenario, the use of the OAS is cost-effective with a cost per life-year gained of US$11,895. Conclusions: Based on economic modeling

  1. Similar L-dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation.

    PubMed

    Li, Li; Sagot, Ben; Zhou, Fu-Ming

    2015-07-30

    The transcription factor Pitx3 null mutant (Pitx3Null) mice have a constitutive perinatal-onset and symmetric bilateral dopamine (DA) loss in the striatum. In these mice l-3,4-dihydroxyphenylalanine (l-dopa) induces apparently normal horizontal movements (walking) but also upward movements consisting of the vertical body trunk and waving paws that are absent in normal animals and in animals with the classic unilateral 6-hydroxydopamine (6-OHDA) lesion-induced DA denervation. Thus, a concern is that the perinatal timing of the DA loss and potential developmental abnormalities in Pitx3Null mice may underlie these upward movements, thus reducing the usefulness as a DA denervation model. Here we show that in normal wild-type (Pitx3WT) mice with adult-onset symmetric, bilateral 6-OHDA-induced DA lesion in the dorsal striatum, l-dopa induces normal horizontal movements and upward movements that are qualitatively identical to those in Pitx3Null mice. Furthermore, after unilateral 6-OHDA lesion of the residual DA innervation in the striatum in Pitx3Null mice, l-dopa induces contraversive rotation that is similar to that in Pitx3WT mice with the classic unilateral 6-OHDA lesion. These results indicate that in Pitx3Null mice, the bilateral symmetric DA denervation in the dorsal striatum is sufficient for expressing the l-dopa-induced motor phenotype and the perinatal timing of their DA loss is not a determining factor, providing further evidence that Pitx3Null mice are a convenient and suitable mouse model to study the consequences of DA loss and dopaminergic replacement therapy in Parkinson's disease.

  2. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models

    PubMed Central

    Sun, Xiaotian; Zareen, Neela; Rao, Apeksha; Berman, Zachary; Volpicelli-Daley, Laura; Bernd, Paulette; Crary, John F.; Levy, Oren A.; Greene, Lloyd A.

    2015-01-01

    Parkinson's disease (PD) is characterized by the progressive loss of select neuronal populations, but the prodeath genes mediating the neurodegenerative processes remain to be fully elucidated. Trib3 (tribbles pseudokinase 3) is a stress-induced gene with proapoptotic activity that was previously described as highly activated at the transcriptional level in a 6-hydroxydopamine (6-OHDA) cellular model of PD. Here, we report that Trib3 immunostaining is elevated in dopaminergic neurons of the substantia nigra pars compacta (SNpc) of human PD patients. Trib3 protein is also upregulated in cellular models of PD, including neuronal PC12 cells and rat dopaminergic ventral midbrain neurons treated with 6-OHDA, 1-methyl-4-phenylpyridinium (MPP+), or α-synuclein fibrils (αSYN). In the toxin models, Trib3 induction is substantially mediated by the transcription factors CHOP and ATF4. Trib3 overexpression is sufficient to promote neuronal death; conversely, Trib3 knockdown protects neuronal PC12 cells as well as ventral midbrain dopaminergic neurons from 6-OHDA, MPP+, or αSYN. Mechanism studies revealed that Trib3 physically interacts with Parkin, a prosurvival protein whose loss of function is associated with PD. Elevated Trib3 reduces Parkin expression in cultured cells; and in the SNpc of PD patients, Parkin levels are reduced in a subset of dopaminergic neurons expressing high levels of Trib3. Loss of Parkin at least partially mediates the prodeath actions of Trib3 in that Parkin knockdown in cellular PD models abolishes the protective effect of Trib3 downregulation. Together, these findings identify Trib3 and its regulatory pathways as potential targets to suppress the progression of neuron death and degeneration in PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Current treatments ameliorate symptoms, but not the underlying neuronal death. Understanding the core neurodegenerative processes in PD is a

  3. Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy.

    PubMed

    Silva-Adaya, Daniela; Pérez-De La Cruz, Verónica; Villeda-Hernández, Juana; Carrillo-Mora, Paul; González-Herrera, Irma Gabriela; García, Esperanza; Colín-Barenque, Laura; Pedraza-Chaverrí, José; Santamaría, Abel

    2011-01-01

    The neuroactive metabolite at the kynunerine pathway, kynurenic acid (KYNA), is a well-known competitive antagonist at the co-agonist glycine site of the N-methyl-D-aspartate receptor (NMDAr), and also decreases the extracellular levels of glutamate by blocking α7-nicotinic acetylcholine receptor (α7-nAchr) located on glutamatergic terminals. KYNA has been often reported to be neuroprotective in different neurotoxic models. The systemic administration of L-kynurenine (L-KYN)--the precursor of KYNA--together with probenecid (PROB)--an inhibitor of organic acids transport--to rodents increases KYNA levels in the brain in a dose-dependent manner. The striatal infusion of the toxin 6-hydroxydopamine (6-OHDA) to rodents is one of the common models used to simulate Parkinson's disease (PD). Different studies have linked PD alterations with excessive glutamatergic transmission in the striatum since NMDAr antagonists exert beneficial effects in PD models. In this work we investigated the effect that a systemic administration of L-KYN+PROB exerted on the toxic model induced by 6-OHDA in rats. PROB (50 mg/kg, i.p.) + L-KYN (75 mg/kg, i.p.) were given to rats for seven consecutive days. On day two of treatment, the animals were infused with a single injection of 6-OHDA (20 μg/2 μl) into the right striatum. Fourteen days post-lesion, rotation behavior was assessed as a marker of motor impairment. The total levels of dopamine (DA) were also estimated in striatal tissue samples of 6-OHDA-treated animals as a neurochemical marker of damage. In addition, twenty eight days post-lesion, the striatal damage was assessed by hematoxylin/eosin staining and immunohistochemistry against glial fibrillary acidic protein (GFAP) in the same animals. Neurodegeneration was also assessed by Fluoro Jade staining. 6-OHDA infusion increased rotation behavior, striatal reactive gliosis and neurodegeneration, while DA levels were decreased. For all markers evaluated, we observed protective

  4. Osteolytica: An automated image analysis software package that rapidly measures cancer-induced osteolytic lesions in in vivo models with greater reproducibility compared to other commonly used methods.

    PubMed

    Evans, H R; Karmakharm, T; Lawson, M A; Walker, R E; Harris, W; Fellows, C; Huggins, I D; Richmond, P; Chantry, A D

    2016-02-01

    Methods currently used to analyse osteolytic lesions caused by malignancies such as multiple myeloma and metastatic breast cancer vary from basic 2-D X-ray analysis to 2-D images of micro-CT datasets analysed with non-specialised image software such as ImageJ. However, these methods have significant limitations. They do not capture 3-D data, they are time-consuming and they often suffer from inter-user variability. We therefore sought to develop a rapid and reproducible method to analyse 3-D osteolytic lesions in mice with cancer-induced bone disease. To this end, we have developed Osteolytica, an image analysis software method featuring an easy to use, step-by-step interface to measure lytic bone lesions. Osteolytica utilises novel graphics card acceleration (parallel computing) and 3-D rendering to provide rapid reconstruction and analysis of osteolytic lesions. To evaluate the use of Osteolytica we analysed tibial micro-CT datasets from murine models of cancer-induced bone disease and compared the results to those obtained using a standard ImageJ analysis method. Firstly, to assess inter-user variability we deployed four independent researchers to analyse tibial datasets from the U266-NSG murine model of myeloma. Using ImageJ, inter-user variability between the bones was substantial (±19.6%), in contrast to using Osteolytica, which demonstrated minimal variability (±0.5%). Secondly, tibial datasets from U266-bearing NSG mice or BALB/c mice injected with the metastatic breast cancer cell line 4T1 were compared to tibial datasets from aged and sex-matched non-tumour control mice. Analyses by both Osteolytica and ImageJ showed significant increases in bone lesion area in tumour-bearing mice compared to control mice. These results confirm that Osteolytica performs as well as the current 2-D ImageJ osteolytic lesion analysis method. However, Osteolytica is advantageous in that it analyses over the entirety of the bone volume (as opposed to selected 2-D images), it

  5. Osteolytica: An automated image analysis software package that rapidly measures cancer-induced osteolytic lesions in in vivo models with greater reproducibility compared to other commonly used methods.

    PubMed

    Evans, H R; Karmakharm, T; Lawson, M A; Walker, R E; Harris, W; Fellows, C; Huggins, I D; Richmond, P; Chantry, A D

    2016-02-01

    Methods currently used to analyse osteolytic lesions caused by malignancies such as multiple myeloma and metastatic breast cancer vary from basic 2-D X-ray analysis to 2-D images of micro-CT datasets analysed with non-specialised image software such as ImageJ. However, these methods have significant limitations. They do not capture 3-D data, they are time-consuming and they often suffer from inter-user variability. We therefore sought to develop a rapid and reproducible method to analyse 3-D osteolytic lesions in mice with cancer-induced bone disease. To this end, we have developed Osteolytica, an image analysis software method featuring an easy to use, step-by-step interface to measure lytic bone lesions. Osteolytica utilises novel graphics card acceleration (parallel computing) and 3-D rendering to provide rapid reconstruction and analysis of osteolytic lesions. To evaluate the use of Osteolytica we analysed tibial micro-CT datasets from murine models of cancer-induced bone disease and compared the results to those obtained using a standard ImageJ analysis method. Firstly, to assess inter-user variability we deployed four independent researchers to analyse tibial datasets from the U266-NSG murine model of myeloma. Using ImageJ, inter-user variability between the bones was substantial (±19.6%), in contrast to using Osteolytica, which demonstrated minimal variability (±0.5%). Secondly, tibial datasets from U266-bearing NSG mice or BALB/c mice injected with the metastatic breast cancer cell line 4T1 were compared to tibial datasets from aged and sex-matched non-tumour control mice. Analyses by both Osteolytica and ImageJ showed significant increases in bone lesion area in tumour-bearing mice compared to control mice. These results confirm that Osteolytica performs as well as the current 2-D ImageJ osteolytic lesion analysis method. However, Osteolytica is advantageous in that it analyses over the entirety of the bone volume (as opposed to selected 2-D images), it

  6. Osteolytica: An automated image analysis software package that rapidly measures cancer-induced osteolytic lesions in in vivo models with greater reproducibility compared to other commonly used methods☆

    PubMed Central

    Evans, H.R.; Karmakharm, T.; Lawson, M.A.; Walker, R.E.; Harris, W.; Fellows, C.; Huggins, I.D.; Richmond, P.; Chantry, A.D.

    2016-01-01

    Methods currently used to analyse osteolytic lesions caused by malignancies such as multiple myeloma and metastatic breast cancer vary from basic 2-D X-ray analysis to 2-D images of micro-CT datasets analysed with non-specialised image software such as ImageJ. However, these methods have significant limitations. They do not capture 3-D data, they are time-consuming and they often suffer from inter-user variability. We therefore sought to develop a rapid and reproducible method to analyse 3-D osteolytic lesions in mice with cancer-induced bone disease. To this end, we have developed Osteolytica, an image analysis software method featuring an easy to use, step-by-step interface to measure lytic bone lesions. Osteolytica utilises novel graphics card acceleration (parallel computing) and 3-D rendering to provide rapid reconstruction and analysis of osteolytic lesions. To evaluate the use of Osteolytica we analysed tibial micro-CT datasets from murine models of cancer-induced bone disease and compared the results to those obtained using a standard ImageJ analysis method. Firstly, to assess inter-user variability we deployed four independent researchers to analyse tibial datasets from the U266-NSG murine model of myeloma. Using ImageJ, inter-user variability between the bones was substantial (± 19.6%), in contrast to using Osteolytica, which demonstrated minimal variability (± 0.5%). Secondly, tibial datasets from U266-bearing NSG mice or BALB/c mice injected with the metastatic breast cancer cell line 4T1 were compared to tibial datasets from aged and sex-matched non-tumour control mice. Analyses by both Osteolytica and ImageJ showed significant increases in bone lesion area in tumour-bearing mice compared to control mice. These results confirm that Osteolytica performs as well as the current 2-D ImageJ osteolytic lesion analysis method. However, Osteolytica is advantageous in that it analyses over the entirety of the bone volume (as opposed to selected 2-D images

  7. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb.

    PubMed

    Lazarini, Françoise; Gabellec, Marie-Madeleine; Moigneu, Carine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lledo, Pierre-Marie

    2014-10-22

    Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing. PMID:25339754

  8. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model.

    PubMed

    Khayati, Rasoul; Vafadust, Mansur; Towhidkhah, Farzad; Nabavi, Massood

    2008-03-01

    In this paper, an approach is proposed for fully automatic segmentation of MS lesions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR) images. The proposed approach, based on a Bayesian classifier, utilizes the adaptive mixtures method (AMM) and Markov random field (MRF) model to obtain and upgrade the class conditional probability density function (CCPDF) and the a priori probability of each class. To compare the performance of the proposed approach with those of previous approaches including manual segmentation, the similarity criteria of different slices related to 20 MS patients were calculated. Also, volumetric comparison of lesions volume between the fully automated segmentation and the gold standard was performed using correlation coefficient (CC). The results showed a better performance for the proposed approach, compared to those of previous works.

  9. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy.

    PubMed

    Gorantla, Vasavi R; Sirigiri, Amulya; Volkova, Yulia A; Millis, Richard M

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  10. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy

    PubMed Central

    Gorantla, Vasavi R.; Sirigiri, Amulya; Volkova, Yulia A.; Millis, Richard M.

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  11. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study.

    PubMed

    Towfighi, J; Mauger, D; Vannucci, R C; Vannucci, S J

    1997-06-18

    The most frequently used model of neonatal cerebral hypoxia-ischemia consists of a 7-day postnatal rat model with combined common carotid artery ligation and hypoxemia. Neuropathologic studies have shown major differences between this 7-day postnatal rat model and a similar adult model in regard to overall cerebral vulnerability, type and distribution of lesions. It is not clear how and when during animals' development these changes in cerebral vulnerability take place. To determine this we studied groups of rats of 2 to 30 postnatal days. The animals underwent unilateral common carotid artery ligation followed by breathing in 8% oxygen for 30, 60, 90, or 120 min and their brains were examined at 24- or 72-h recovery intervals. Due to resistance of 2-3-day-old rats to develop cerebral hypoxic-ischemic damage, 5% O2 was used instead of 8% O2. The results indicate that: (i) There is an overall increase in severity of cerebral lesions on the side of common carotid artery ligation between 2 and 7 postnatal days. There is also an increase in the frequency of cerebral lesions in developing animals with increasing age. (ii) Hippocampus is remarkably resistant to hypoxic-ischemic insult at 2-3 postnatal days but becomes progressively vulnerable, and by age 13 postnatal days hippocampal vulnerability far exceeds that of cortex. (iii) Cortical lesions change from predominantly columnar cell death to laminar selective neuronal death at age 13 postnatal days. (iv) Also significant changes occur in relative vulnerability of various hippocampal regions during development. During the first 5 postnatal days relative vulnerability of hippocampal regions is similar, but as the animals' development proceeds and hippocampal vulnerability increases lesions tend to involve specific regions while sparing others. By age 13 postnatal days CA1 and lateral CA3 develop increased vulnerability while medial CA3 and fascia dentata become relatively resistant and by 21 postnatal days adult

  12. The effect on motor cortical neuronal development of focal lesions to the sub-cortical white matter in the neonatal rat: a model for periventricular leukomalacia.

    PubMed

    Gibson, Claire L; Clowry, Gavin J

    2003-06-01

    Periventricular leukomalacia (PVL) is either a diffuse or cystic lesion of the periventricular white matter that leaves the overlying cortical grey matter largely intact. It is believed to result from hypoxia occurring pre- or perinatally and is a major cause of cerebral palsy. We have modelled PVL in rats comparing the effects of discrete injections of 3-nitropropionic acid (3-NP), a mitochondrial toxin, ibotenic acid (IBA), a glutamate analogue, or saline into the sub-cortical white matter on postnatal day 7 (P7). Following recovery times ranging from 3 days to 4 weeks, forebrain sections were Nissl stained or immunostained for Bax, cJun, calbindin (CB), parvalbumin (PV) or non-phosphorylated neurofilaments (NPNF). Compared to saline injections, ibotenic acid caused large lesions of both grey and white matter not characteristic of periventricular leukomalacia. 3-Nitropropionic acid injections caused small focal lesions restricted to the sub-cortical white matter. 3-Nitropropionic acid treatment initially increased expression of the apoptosis promoting proteins Bax and cJun, as well as non-phosphorylated neurofilaments in cortical layer V overlying the injection site. Non-phosphorylated neurofilament expression distal to the lesion was decreased representing a loss of cortical axons, but persisted and even increased with time within the cortex, demonstrating persistence of the parent cell bodies and local sprouting of neurites. There were significantly fewer calbindin and parvalbumin positive neurones in the motor cortex (MC) side ipsilateral to the 3-nitropropionic acid injection compared to the contralateral side. These persistent differences in expression of activity sensitive calcium binding proteins suggest alterations in local cortical circuitry without substantial loss of grey matter as is characteristic of periventricular leukomalacia. Changes in expression of Bax, cJun and non-phosphorylated neurofilaments during normal development are also described.

  13. DNA lesions: A thermodynamic perspective

    SciTech Connect

    Plum, G.E.; Breslauer, K.J.

    1994-12-31

    The studies described in this paper are part of an overall program project entitled {open_quotes}The Chemistry and Biology of Exocyclic DNA Adducts and Oxidative DNA Damage.{close_quotes}. Initially, all the project leaders discuss and agree on biologically interesting lesions to target for study. Then begins the process of developing the chemistry required to synthesize modified nucleosides that either correspond to or model the damage sites of interest. Such modified nucleotides then are incorporated into oligonucleotides that are hybridized to their complements, thereby forming lesion-containing duplex structures. In any given duplex, the identity of the lesion-opposing nucleoside on the complementary strand is systematically altered, thereby allowing us to evaluate the impact on duplex properties of the identity of the base opposite the lesion. For comparative purposes, the undamaged parent Watson-Crick duplex also is synthesized. Such families of DNA duplexes are then sent for independent physiochemical characterizations. Armed with an extensive body of biophysical data, one then searches for correlations between the physiochemical influences of the lesions on duplex properties and the biological consequences of each lesion. At this stage, our approach is highly empirical. Ultimately, we hope that our studies will reveal correlations between physiochemical properties and biological consequences such that we will develop predictive powers and gain insight into the mechanisms of recognition, repair, and mutagenesis.

  14. Simulation of spiculated breast lesions

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Alrehily, Faisal; Pinto, R. Ferrari; Rashidnasab, Alaleh; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are a promising new approach increasingly used for the evaluation and comparison of breast imaging modalities. A key component in such an assessment paradigm is the use of simulated pathology, in particular, simulation of lesions. Breast mass lesions can be generally classified into two categories based on their appearance; nonspiculated masses and spiculated masses. In our previous work, we have successfully simulated non-spiculated masses using a fractal growth process known as diffusion limited aggregation. In this new work, we have extended the DLA model to simulate spiculated lesions by using features extracted from patient DBT images containing spiculated lesions. The features extracted included spicule length, width, curvature and distribution. This information was used to simulate realistic looking spicules which were attached to the surface of a DLA mass to produce a spiculated mass. A batch of simulated spiculated masses was inserted into normal patient images and presented to an experienced radiologist for review. The study yielded promising results with the radiologist rating 60% of simulated lesions in 2D and 50% of simulated lesions in DBT as realistic.

  15. In vivo analysis of tissue by Raman microprobe: examination of human skin lesions and esophagus Barrett's mucosa on an animal model

    NASA Astrophysics Data System (ADS)

    Tfayli, Ali; Piot, Olivier; Derancourt, Sylvie; Cadiot, Guillaume; Diebold, Marie D.; Bernard, Philippe; Manfait, Michel

    2006-02-01

    In the last few years, Raman spectroscopy has been increasingly used for the characterization of normal and pathological tissues. A new Raman system, constituted of optic fibers bundle coupled to an axial Raman spectrometer (Horiba Jobin Yvon SAS), was developed for in vivo investigations. Here, we present in vivo analysis on two tissues: human skin and esophagus mucosa on a rat model. The skin is a directly accessible organ, representing a high diversity of lesions and cancers. Including malignant melanoma, basal cell carcinoma and the squamous cell carcinoma, skin cancer is the cancer with the highest incidence worldwide. Several Raman investigations were performed to discriminate and classify different types of skin lesions, on thin sections of biopsies. Here, we try to characterize in vivo the different types of skin cancers in order to be able to detect them in their early stages of development and to define precisely the exeresis limits. Barrett's mucosa was also studied by in vivo examination of rat's esophagus. Barrett's mucosa, induced by gastro-esophageal reflux, is a pretumoral state that has to be carefully monitored due to its high risk of evolution in adenocarcinoma. A better knowledge of the histological transformation of esophagus epithelium in a Barrett's type will lead to a more efficient detection of the pathology for its early diagnosis. To study these changes, an animal model (rats developing Barrett's mucosa after duodenum - esophagus anastomosis) was used. Potential of vibrational spectroscopy for Barrett's mucosa identification is assessed on this model.

  16. Benign breast lesions: Ultrasound

    PubMed Central

    Masciadri, N.; Ferranti, C.

    2011-01-01

    Benign breast diseases constitute a heterogeneous group of lesions arising in the mammary epithelium or in other mammary tissues, and they may also be linked to vascular, inflammatory or traumatic pathologies. Most lesions found in women consulting a physician are benign. Ultrasound (US) diagnostic criteria indicating a benign lesion are described as well as US findings in the most frequent benign breast lesions. PMID:23396888

  17. [A model of using magnetic resonance imaging in osteoarticular tumor lesion in case of giant cell tumors].

    PubMed

    Sherman, L A

    2004-01-01

    Fifty-eight patients with giant cell tumors (GCT) underwent a comprehensive radiation diagnosis involving X-ray study and magnetic resonance imaging (MRI). The obtained MR images indicated the high efficiency of this combination of radiation diagnostic techniques in solving the problems in the visualization of osteoarticular tumor lesions. GCT is characterized by well-known primary X-ray semiotics; MR images are also rather pathognomonic of these tumors and they illustrate the process of morphogenesis of these masses. MRI made it possible to solve the specific problems facing a physician (a radiation diagnostician), to determine the site, shape, sizes, volume, and local extent of a tumor, which permitted the planning of surgical treatment policy; to assess its results, to reveal possible inflammatory complications; and to visualize a local recurrence and on-going growth of a tumor, including the signs of GCT malignancy.

  18. Berberine chloride pretreatment exhibits neuroprotective effect against 6-hydroxydopamine-induced neuronal insult in rat

    PubMed Central

    Negahdar, Feraidoon; Mehdizadeh, Mehdi; Joghataei, Mohammad Taghi; Roghani, Mehrdad; Mehraeen, Fereshteh; Poorghayoomi, Ehsan

    2015-01-01

    Parkinson’s disease (PD) is a rather common movement disorder as a result of the degeneration of dopaminergic neurons within the substantianigra. Current treatments for PD afford symptomatic relief with no prevention of disease progression. Due to the neuroprotective and anti-apoptotic potential of the isoquinoline alkaloid berberine (BBR), this study was conducted to assess whether BBR pretreatment could attenuate behavioral and neuronal derangement in 6-hydroxydopamine (6-OHDA)-induced model of PD in the rat. Unilateral intrastriatal 6-OHDA-lesioned rats received BBR at doses of 25 and/or 50 mg/kg (i.p.) three times at an interval of 24 h, started 2 days before the surgery. After 1 week, apomorphine caused significant contralateral rotations and a significant reduction in the number of Nissl-stained and tyrosine-hydroxylase (TH)-positive neurons on the left side of the substantianigra. BBR pretreatment at a dose of 50 mg/kg significantly reduced rotations and prevented loss of TH-positive neurons. These results indicate pre-lesion administration of BBR could protect against 6-OHDA toxicity and this may be of benefit besides other available therapies in PD. PMID:26664381

  19. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis

    PubMed Central

    Goupil, Brad A.; McNulty, Margaret A.; Martin, Matthew J.; McCracken, Michael K.; Christofferson, Rebecca C.; Mores, Christopher N.

    2016-01-01

    Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains. PMID:27182740

  20. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis.

    PubMed

    Goupil, Brad A; McNulty, Margaret A; Martin, Matthew J; McCracken, Michael K; Christofferson, Rebecca C; Mores, Christopher N

    2016-01-01

    Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains.

  1. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    PubMed

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.

  2. A Herbal Formula, Atofreellage, Ameliorates Atopic Dermatitis-Like Skin Lesions in an NC/Nga Mouse Model.

    PubMed

    Kim, Won-Yong; Kim, Hyeong-Geug; Lee, Hye-Won; Lee, Jin-Seok; Im, Hwi-Jin; Kim, Hyo-Seon; Lee, Sung-Bae; Son, Chang-Gue

    2015-01-01

    We evaluated the anti-atopic dermatitis (AD) effect of Atofreellage (AF), a herbal formula composed of 10 medicinal plants. AD was induced on the dorsal skin areas of NC/Nga mice (male, seven weeks old) by daily application of 2,4-dinitrochlorobenzene (DNCB) for five weeks. After three weeks of DNCB application, 200 μL of AF (0, 25, 50 or 100 mg/mL) was applied to the skin lesions. Histological findings, blood cell populations, serum levels of immunoglobulin E (IgE), histamine, pro-inflammatory cytokines, and inflammatory signaling in the skin tissue, and T-helper cell type 2 (Th₂)-related cytokines in splenocytes were analyzed. Histopathological findings showed AF treatment notably attenuated the thickness of dorsal skin, and eosinophil infiltration. AF treatment (especially 100 mg/mL) also demonstrably ameliorated the blood cell population abnormalities, as the notable elevation of serum concentrations of IgE, histamine, TNF-α, IL-6 and IL-1β were remarkably normalized by AF treatment. Western blot analysis evidenced the apparent normalization of inflammatory signals (ERK, p38 MAP kinase, JNK, and NF-κB) in the skin tissue. Additionally, AF treatment notably attenuated the activation of Th₂-dominant cytokines (IL-13, IL-4, and IL-5) in Con A-treated splenocytes in an ex vivo assay. In conclusion, this study provides experimental evidence for the clinical relevance of Atofreellage. PMID:26712731

  3. Response surface models to predict potato tuber infection by Fusarium sambucinum from duration of wetness and temperature, and dry rot lesion expansion from storage time and temperature.

    PubMed

    Lui, L H; Kushalappa, A C

    2002-06-01

    Dry rot (Fusarium sambucinum) of potatoes causes significant yield loss in storage and may also produce mycotoxins. Disease dynamics of dry rot development in potato tubers after harvest was studied and modeled. Potato tubers were surface sterilized, wounded, inoculated with a spore suspension of F. sambucinum and incubated in mist chambers placed in growth chambers at 4, 8, 12, 16 or 20 degrees C. After 0, 3, 6, 12, 24 and 48 h of incubation five tubers from each treatment were removed, dried and stored at 16 degrees C and 95% RH for 15 days. Inoculated tubers were also maintained in mist chambers for 24 h at 16 degrees C for the establishment of initial infections, dried, and stored at 4, 8, 12, or 16 degrees C for up to 90 days at 95% RH. At 15 days intervals, tubers were sliced, diameters and depths of diseased area measured, and data transformed to proportion of maximum volume diseased (PVD). The amount of infection was least at the lowest temperature tested and at the end of a 3-h wet period, but infection increased with an increase in wetness duration and temperature. At a storage temperature of 16 degrees C, lesions expanded rapidly reaching maxima in about 45 days of storage. A cubic regression model to predict infection potential from incubation temperature and duration of wetness explained 94.2% of the variation in PVD. A cubic regression model to predict lesion expansion potential as a function of storage temperature and duration explained 99.7% of the variation in PVD. These models could be used to manage potato dry rot, after validation under commercial conditions.

  4. The Tsukuba hypertensive mouse (transgenic mouse carrying human genes for both renin and angiotensinogen) as a model of human malignant hypertension: development of lesions and morphometric analysis.

    PubMed

    Shimokama, T; Haraoka, S; Horiguchi, H; Sugiyama, F; Murakami, K; Watanabe, T

    1998-02-01

    The renin-angiotensin system has a pivotal role in hypertension. The Tsukuba hypertensive mouse (THM; a transgenic mouse carrying human genes for both renin and angiotensinogen) was generated to allow further examination of the renin-angiotensin system in a variety of pathologic conditions. We evaluated the development of renal lesions in these mice and in controls by morphometric, immunohistochemical and ultrastructural methods. Blood pressure was significantly higher in THM than in control mice; 1 year after birth, it was approximately 40 mmHg higher. The kidney-to-body weight ratio was also higher in THM than in control. Morphometrical analysis revealed that the glomerular sclerosis index was significantly elevated in THM with 10% of the glomeruli sclerotic at 18 months. The grade of vascular lesion and the frequency of fibronoid arteritis of the kidney exhibited the same tendency as the glomerular sclerosis index. Murine renin was located exclusively in the juxtaglomerular apparatus, whereas human renin was expressed not only in the juxtaglomerular apparatus, but also in periarteriolar smooth muscle cells and in mesangial and epithelial cells of the glomeruli. Light and electron microscopy revealed significant fibrinoid arteritis of the kidney in THM and also "onion skinning", both pathognomonic for malignant nephrosclerosis. THM may be an excellent model of human malignant hypertension. PMID:9504863

  5. Spindle cell melanocytic lesions: part II--an approach to intradermal proliferations and horizontally oriented lesions.

    PubMed

    Sade, Shachar; Al Habeeb, Ayman; Ghazarian, Danny

    2010-05-01

    Melanocytic lesions show great morphological diversity in their architecture and the cytomorphological appearance of their composite cells. Whereas functional melanocytes show a dendritic cytomorphology and territorial isolation, lesional nevomelanocytes and melanoma cells typically show epithelioid, spindled or mixed cytomorphologies, and a range of architectural arrangements. Spindling is common to melanocytic lesions, and may either be a characteristic feature or a divergent appearance. The presence of spindle cells may mask the melanocytic nature of a lesion, and is often disconcerting, either due to its infrequent appearance in a particular lesion or its interpretation as a dedifferentiated phenotype. Spindle cell melanocytic lesions follow the full spectrum of potential biological outcomes, and difficulty may be experienced judging the nature of a lesion due to a lack of consistently reliable features to predict biological behaviour. Over time, recognition of numerous histomorphological features that may portend a more aggressive lesion have been identified; however, the translation of these features into a diagnostic entity requires a gestalt approach. Although most spindle cell melanocytic lesions may reliably be resolved through this standard approach, problem areas do exist for the surgical pathologist or dermatopathologist. With this review (part II of II), we complete our discussion of spindle cell melanocytic lesions, in order to: (1) model a systematic approach to such lesions; and (2) provide familiarity with those melanocytic lesions which either typically or occasionally display a spindled cytomorphology.

  6. Krüppel-Like Factor 13 Deficiency in Uterine Endometrial Cells Contributes to Defective Steroid Hormone Receptor Signaling but Not Lesion Establishment in a Mouse Model of Endometriosis.

    PubMed

    Heard, Melissa E; Velarde, Michael C; Giudice, Linda C; Simmen, Frank A; Simmen, Rosalia C M

    2015-06-01

    Krüppel-like Factor (KLF) 13 and the closely related KLF9 are members of the Sp/KLF family of transcription factors that have collectively emerged as essential regulators of tissue development, differentiation, proliferation, and programmed cell death. Steroid hormone-responsive tissues express multiple KLFs that are linked to progesterone receptor (PGR) and estrogen receptor (ESR) actions either as integrators or as coregulators. Endometriosis is a chronic disease characterized by progesterone resistance and dysregulated estradiol signaling; nevertheless, distinct KLF members' contributions to endometriosis remain largely undefined. We previously demonstrated promotion of ectopic lesion establishment by Klf9 null endometrium in a mouse model of endometriosis. Here we evaluated whether KLF13 loss of expression in endometrial cells may equally contribute to lesion formation. KLF13 transcript levels were lower in the eutopic endometria of women with versus women without endometriosis at menstrual midsecretory phase. In wild-type (WT) mouse recipients intraperitoneally administered WT or Klf13 null endometrial fragments, lesion incidence did not differ with donor genotype. No differences were noted for lesion volume, number, proliferation status, and apoptotic index as well. Klf13 null lesions displayed reduced total PGR and ESR1 (RNA and immunoreactive protein) and altered expression of several PGR and ESR1 target genes, relative to WT lesions. Unlike for Klf9 null lesions, changes in transcript levels for PGR-A, ESR1, and Notch/Hedgehog-associated pathway components were not observed for Klf13 null lesions. Results demonstrate lack of a causative relationship between endometrial KLF13 deficiency and lesion establishment in mice, and they support the broader participation of multiple signaling pathways, besides those mediated by steroid receptors, in the pathology of endometriosis. PMID:25904015

  7. Krüppel-Like Factor 13 Deficiency in Uterine Endometrial Cells Contributes to Defective Steroid Hormone Receptor Signaling but Not Lesion Establishment in a Mouse Model of Endometriosis.

    PubMed

    Heard, Melissa E; Velarde, Michael C; Giudice, Linda C; Simmen, Frank A; Simmen, Rosalia C M

    2015-06-01

    Krüppel-like Factor (KLF) 13 and the closely related KLF9 are members of the Sp/KLF family of transcription factors that have collectively emerged as essential regulators of tissue development, differentiation, proliferation, and programmed cell death. Steroid hormone-responsive tissues express multiple KLFs that are linked to progesterone receptor (PGR) and estrogen receptor (ESR) actions either as integrators or as coregulators. Endometriosis is a chronic disease characterized by progesterone resistance and dysregulated estradiol signaling; nevertheless, distinct KLF members' contributions to endometriosis remain largely undefined. We previously demonstrated promotion of ectopic lesion establishment by Klf9 null endometrium in a mouse model of endometriosis. Here we evaluated whether KLF13 loss of expression in endometrial cells may equally contribute to lesion formation. KLF13 transcript levels were lower in the eutopic endometria of women with versus women without endometriosis at menstrual midsecretory phase. In wild-type (WT) mouse recipients intraperitoneally administered WT or Klf13 null endometrial fragments, lesion incidence did not differ with donor genotype. No differences were noted for lesion volume, number, proliferation status, and apoptotic index as well. Klf13 null lesions displayed reduced total PGR and ESR1 (RNA and immunoreactive protein) and altered expression of several PGR and ESR1 target genes, relative to WT lesions. Unlike for Klf9 null lesions, changes in transcript levels for PGR-A, ESR1, and Notch/Hedgehog-associated pathway components were not observed for Klf13 null lesions. Results demonstrate lack of a causative relationship between endometrial KLF13 deficiency and lesion establishment in mice, and they support the broader participation of multiple signaling pathways, besides those mediated by steroid receptors, in the pathology of endometriosis.

  8. Social enrichment attenuates nigrostriatal lesioning and reverses motor impairment in a progressive 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease.

    PubMed

    Goldberg, Natalie R S; Fields, Victoria; Pflibsen, Lacey; Salvatore, Michael F; Meshul, Charles K

    2012-03-01

    Environmental enrichment has been shown to be both neuroprotective and neurorestorative in 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models of Parkinson's disease (PD). However, whether social interaction or novel physical stimulation is responsible for this recovery is controversial. In the current study, we have investigated the effects of only social enrichment (SocE) in progressively MPTP-lesioned mice. After mice were lesioned using a progressively increased dose (4 mg/kg, 8 mg/kg, 16 mg/kg and 32 mg/kg; each dose daily for 5 days), the MPTP-induced behavioral deficits, after the 32 mg/kg dose, were reversed with acute L-DOPA. This acute behavioral recovery suggests that this progressive MPTP-induced neurodegeneration is an appropriate murine model of PD. Mice were housed four per cage for the first 2 weeks of progressive lesioning or vehicle treatment. After the 8 mg/kg MPTP dose (prior to SocE intervention) mice showed a significant decrease in rearing and foot fault behaviors (FF/BB) compared to the vehicle group. Additionally, there was a 38% decrease in mean number of tyrosine hydroxylase immunoreactive (TH-ir) substantia nigra pars compacta (SNpc) neurons/section, and a 50% decrease in the optical density of TH-ir dorsolateral caudate putamen (CPu) terminals compared to the vehicle group. Mice were then housed either two (socially limited environment; SLE) or twelve (SocE) mice per cage during continued MPTP lesioning for the next 2 weeks at 16 mg/kg and 32 mg/kg MPTP. MPTP treatment was then discontinued, while mice remained in the SLE or SocE cages for an additional week. Rearing behavior was further impaired in SLE-MPTP mice following progressive MPTP, accompanied by additional decreases in the mean number of TH-ir SNpc neurons/section and CPu TH-ir terminals. CPu TH and dopamine transporter (DAT) protein expression, as well as dopamine tissue and TH protein levels was significantly decreased compared to either vehicle group. However

  9. Ghost cell lesions

    PubMed Central

    Rajesh, E.; Jimson, Sudha; Masthan, K. M. K.; Balachander, N.

    2015-01-01

    Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms. PMID:26015694

  10. The effects of electrical stimulation or an electrolytic lesion in the mediodorsal thalamus of the rat on survival, body weight, food intake and running activity in the activity-based anorexia model.

    PubMed

    Luyten, Laura; Welkenhuysen, Marleen; van Kuyck, Kris; Fieuws, Steffen; Das, John; Sciot, Raf; Nuttin, Bart

    2009-04-29

    The glucose metabolism in the mediodorsal thalamus (MD) is increased in rats in the activity-based anorexia (ABA) model. In patients, electrical stimulation in hyperactive brain regions reduced symptoms in e.g. major depressive disorder and cluster headache. In two blinded randomised controlled experiments, we therefore examined the effects of high-frequency electrical stimulation and an electrolytic lesion in the MD in a validated rat model for anorexia nervosa. The ABA model was successfully replicated in all our experiments, with a reduction in body weight, food intake, and survival time and an increase in running activity. In a first experiment, we evaluated the effect of electrical stimulation or a curative lesion in the MD on survival, body weight, food intake and locomotor activity in ABA rats. Electrical MD stimulation or an electrolytic MD lesion did not improve the symptoms of rats in the ABA model, compared to control groups. In a second experiment, we investigated the effect of a preventive electrolytic lesion in the MD on rats in the ABA model. Although there was no significant improvement of survival, body weight and food intake, locomotor activity was significantly reduced in the lesion group compared to the control group. Apart from this positive effect on running activity, we found no convincing evidence for the suitability of the MD as a neuromodulation target for anorexia nervosa patients.

  11. Peroxisome-proliferator activator receptor-gamma activation decreases attachment of endometrial cells to peritoneal mesothelial cells in an in vitro model of the early endometriotic lesion.

    PubMed

    Kavoussi, S K; Witz, C A; Binkley, P A; Nair, A S; Lebovic, D I

    2009-10-01

    The aim of this study was to investigate whether peroxisome proliferator-activated receptor (PPAR)-gamma activation has an effect on the attachment of endometrial cells to peritoneal mesothelial cells in a well-established in vitro model of the early endometriotic lesion. The endometrial epithelial cell line EM42 and mesothelial cell line LP9 were used for this study. EM42 cells, LP9 cells or both were treated with the PPAR-gamma agonist ciglitazone (CTZ) at varying concentrations (10, 20 and 40 microM) x 48 h with subsequent co-culture of EM42 and LP9 cells. The rate of EM42 attachment and invasion through LP9 cells was then assessed and compared with control (EM42 and LP9 cells co-cultured without prior treatment with CTZ). Next, attachment of CTZ-treated and untreated EM42 cells to hyaluronic acid (HA), a cell adhesion molecule (CAM) on peritoneal mesothelial cells, were assessed. Although there was no difference in EM42 attachment when LP9 cells alone were treated with CTZ, treatment of EM42 cells with 40 microM CTZ decreased EM42 attachment to LP9 cells by 27% (P < 0.01). Treatment of both EM42 and LP9 cells with 40 microM CTZ decreased EM42 attachment to LP9 by 37% (P < 0.01). Treatment of EM42 cells with 40 microM CTZ decreased attachment to HA by 66% (P = 0.056). CTZ did not decrease invasion of EM42 cells through the LP9 monolayer. CTZ may inhibit EM42 cell proliferation. In conclusion, CTZ significantly decreased EM42 attachment to LP9 cells and HA in an in vitro model of the early endometriotic lesion. PMID:19643817

  12. Preinvasive lesions

    Cancer.gov

    This definition is for allocation of lesions with preinvasive/borderline properties. It is currently aimed at newly identified neoplasms, which may be similar to those described in humans. In mouse pathology, many adenomas may be preinvasive/borderline lesions. However, their inclusion in the preinvasive category can be justified only upon development of better diagnostic criteria.

  13. Finite Element Modeling of Balloon Angioplasty by Considering Overstretch of Remnant Non-diseased Tissues in Lesions

    NASA Astrophysics Data System (ADS)

    Gasser, T. Christian; Holzapfel, Gerhard A.

    2007-06-01

    The paper deals with the modeling of balloon angioplasty by considering the balloon-induced overstretch of remnant non-diseased tissues in atherosclerotic arteries. A stenotic artery is modeled as a heterogenous structure composed of adventitia, media and a model plaque, and residual stresses are considered. The constitutive models are able to capture the anisotropic elastic tissue response in addition to the inelastic phenomena associated with tissue stretches beyond the physiological domain. The inelastic model describes the experimentally-observed changes of the wall during balloon inflation, i.e. non-recoverable deformation, and tissue weakening. The contact of the artery with a balloon catheter is simulated by a point-to-surface strategy. The states of deformations and stresses within the artery before, during and after balloon inflation are computed, compared and discussed. The 3D stress states at physiological loading conditions before and after balloon inflation differ significantly, and even compressive normal stresses may occur in the media after dilation.

  14. Evaluation of two treatment outcome prediction models for restoration of visual fields in patients with postchiasmatic visual pathway lesions.

    PubMed

    Gall, Carolin; Steger, Benedikt; Koehler, Juergen; Sabel, Bernhard A

    2013-09-01

    Visual functions of patients with visual field defects after acquired brain injury affecting the primary visual pathway can be improved by means of vision restoration training. Since the extent of the restored visual field varies between patients, the prediction of treatment outcome and its visualization may help patients to decide for or against participating in therapies aimed at vision restoration. For this purpose, two treatment outcome prediction models were established based on either self-organizing maps (SOMs) or categorical regression (CR) to predict visual field change after intervention by several features that were hypothesized to be associated with vision restoration. Prediction was calculated for visual field changes recorded with High Resolution Perimetry (HRP). Both models revealed a similar predictive quality with the CR model being slightly more beneficial. Predictive quality of the SOM model improved when using only a small number of features that exhibited a higher association with treatment outcome than the remaining features, i.e. neighborhood activity and homogeneity within the surrounding 5° visual field of a given position, together with its residual function and distance to the scotoma border. Although both models serve their purpose, these were not able to outperform a primitive prediction rule that attests the importance of areas of residual vision, i.e. regions with partial visual field function, for vision restoration.

  15. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  16. Extragastric Dieulafoy's lesion

    PubMed Central

    Gauci, James; Galea, Samuel; Galea, Joseph; Schembri, Mark

    2014-01-01

    A 74-year-old man on warfarin for aortic valve replacement presented with recurrent episodes of melaena. An initial oesophagogastroduodenoscopy (OGD) was normal, as were red cell scanning and colonoscopy. It was a third OGD that revealed the cause of the melaena—a vascular lesion in the duodenum, at the junction between D1 and D2. An extragastric Dieulafoy's lesion was diagnosed, and the lesion was injected with epinephrine and tattooed. Over the following months, episodes of bleeding recurred despite further attempts at injection. Percutaneous radiologically assisted embolisation of the gastroduodenal artery, and eventually duodenotomy and oversuturing of the lesion were performed to no avail. The patient has undergone over 10 endoscopies, and has received over 70 units of packed red cells to date, since his initial presentation 6 years ago. Attempts to stop the bleeding permanently have been difficult, highlighting the complexity of managing such a lesion. PMID:25216921

  17. The Small Breathing Amplitude at the Upper Lobes Favors the Attraction of Polymorphonuclear Neutrophils to Mycobacterium tuberculosis Lesions and Helps to Understand the Evolution toward Active Disease in An Individual-Based Model

    PubMed Central

    Cardona, Pere-Joan; Prats, Clara

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) can induce two kinds of lesions, namely proliferative and exudative. The former are based on the presence of macrophages with controlled induction of intragranulomatous necrosis, and are even able to stop its physical progression, thus avoiding the induction of active tuberculosis (TB). In contrast, the most significant characteristic of exudative lesions is their massive infiltration with polymorphonuclear neutrophils (PMNs), which favor enlargement of the lesions and extracellular growth of the bacilli. We have built an individual-based model (IBM) (known as “TBPATCH”) using the NetLogo interface to better understand the progression from Mtb infection to TB. We have tested four main factors previously identified as being able to favor the infiltration of Mtb-infected lesions with PMNs, namely the tolerability of infected macrophages to the bacillary load; the capacity to modulate the Th17 response; the breathing amplitude (BAM) (large or small in the lower and upper lobes respectively), which influences bacillary drainage at the alveoli; and the encapsulation of Mtb-infected lesions by the interlobular septae that structure the pulmonary parenchyma into secondary lobes. Overall, although all the factors analyzed play some role, the small BAM is the major factor determining whether Mtb-infected lesions become exudative, and thus induce TB, thereby helping to understand why this usually takes place in the upper lobes. This information will be very useful for the design of future prophylactic and therapeutic approaches against TB. PMID:27065951

  18. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease.

    PubMed

    Im, Hyung-Jun; Hwang, Do Won; Lee, Han Kyu; Jang, Jaeho; Lee, Song; Youn, Hyewon; Jin, Yeona; Kim, Seung U; Kim, E Edmund; Kim, Yong Sik; Lee, Dong Soo

    2013-06-01

    Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.

  19. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease.

    PubMed

    Saraiva, C; Paiva, J; Santos, T; Ferreira, L; Bernardino, L

    2016-08-10

    Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration.

  20. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats

    PubMed Central

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  1. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats.

    PubMed

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin; Yang, Jian; Jia, Jun; Wang, Xiao-Min

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  2. Temporal and topographic alterations in expression of the α3 isoform of Na+/K+-ATPase in the rat freeze lesion model of microgyria and epileptogenesis

    PubMed Central

    Chu, Yunxiang; Parada, Isabel; Prince, David A.

    2009-01-01

    Na+/K+-ATPase contributes to the asymmetrical distribution of sodium and potassium ions across the plasma membrane and to maintenance of the membrane potential in many types of cells. Alterations in this protein may play a significant role in many human neurological disorders, including epilepsy. We studied expression of the α3 isoform of Na+/K+-ATPase in the freeze lesion (FL) microgyrus model of developmental epileptogenesis to test the hypothesis that it is down-regulated following neonatal cortical injury. FL and sham-operated rat brains were examined at P7, P10, P14, P21–28 and P50–60 after placement of a transcranial freeze lesion at P0 or P1. Immunohistochemistry and in situ hybridization were used to assess the expression of the α3 isoform of Na+/K+-ATPase (termed α3, or α3 subunit below) in neuropil and the perisomatic areas of pyramidal and parvalbumin-containing interneurons. There was a significant decrease (p<0.05) in α3 subunit immunoreactivity (IR) in the neuropil of FL cortical layer V of the P14 and P21–28 groups that extended up to 360 μm from the border of the microgyrus, an area that typically exhibits evoked epileptiform activity. Alpha-3 was decreased in the perisomatic area of pyramidal but not parvalbumin-containing cells in P21–28 FL animals. A reduction in α3 mRNA was observed in the neuropil of FL cortical layer V up to 1610 μm from the microgyral edge. The developmental time course for expression of the α3 subunit between P7-P60 was examined in naïve rat cortices and results showed that there was a significant increase in α3 IR between P7 and P10. The significant decreases in Na+/K+-ATPase in the paramicrogyral cortex may contribute to epileptogenesis. PMID:19362129

  3. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1{sup I4895T/wt} mouse model of core myopathy

    SciTech Connect

    Zvaritch, Elena; MacLennan, David H.

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.

  4. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal☆

    PubMed Central

    Rekik, Islem; Allassonnière, Stéphanie; Carpenter, Trevor K.; Wardlaw, Joanna M.

    2012-01-01

    Over the last 15 years, basic thresholding techniques in combination with standard statistical correlation-based data analysis tools have been widely used to investigate different aspects of evolution of acute or subacute to late stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent issues is still untackled pointing towards the key question: “how does an ischemic stroke evolve?” Paving the way for potential answers to this question, both magnetic resonance (MRI) and CT (computed tomography) images have been used to visualize the lesion extent, either with or without spatial distinction between dead and salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called penumbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and prediction methods, we propose a common categorization pattern. We also emphasize some key aspects of the methods such as the imaging modalities required to build and test the presented approach, the number of patients/animals or synthetic samples, the use of external user interaction and the methods of assessment (clinical or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as swelling or reperfusion, were detected (or not) by each method. In the absence of any imaging-based macroscopic dynamic model

  5. Multifocal vascular lesions.

    PubMed

    Levin, Laura E; Lauren, Christine T

    2016-03-01

    Multifocal vascular lesions are important to recognize and appropriately diagnose. Generally first noticed on the skin, multifocal vascular lesions may have systemic involvement. Distinguishing among the different types of multifocal vascular lesions is often based on clinical features; however, radiological imaging and/or biopsy are frequently needed to identify distinct features and guide treatment. Knowledge of the systemic associations that can occur with different vascular anomalies may reduce life-threatening complications, such as coagulopathy, bleeding, cardiac compromise, and neurologic sequelae. This review provides a synopsis of the epidemiology, pathogenesis, presentation, workup, and treatment of several well-recognized multifocal vascular tumors and malformations. PMID:27607324

  6. Oral Lesions in Neonates

    PubMed Central

    Rao, Roopa S; Majumdar, Barnali; Jafer, Mohammed; Maralingannavar, Mahesh; Sukumaran, Anil

    2016-01-01

    ABSTRACT Oral lesions in neonates represent a wide range of diseases often creating apprehension and anxiety among parents. Early examination and prompt diagnosis can aid in prudent management and serve as baseline against the future course of the disease. The present review aims to enlist and describe the diagnostic features of commonly encountered oral lesions in neonates. How to cite this article: Patil S, Rao RS, Majumdar B, Jafer M, Maralingannavar M, Sukumaran A. Oral Lesions in Neonates. Int J Clin Pediatr Dent 2016;9(2):131-138. PMID:27365934

  7. Retinal lesions in septicemia.

    PubMed

    Neudorfer, M; Barnea, Y; Geyer, O; Siegman-Igra, Y

    1993-12-15

    We explored the association between septicemia and specific retinal lesions in a prospective controlled study. Hemorrhages, cotton-wool spots, or Roth's spots were found in 24 of 101 septicemic patients (24%), compared to four of 99 age- and gender-matched control patients (4%) (P = .0002). There was no significant association between types of organisms or focus of infection and the presence of specific lesions. Histologic examination of affected eyes disclosed cytoid bodies in the nerve fiber layer without inflammation. A definite association between septicemia and retinal lesions was found and indicates the need for routine ophthalmoscopy in septicemic patients. PMID:8250076

  8. Radix Ilicis Pubescentis total flavonoids ameliorates neuronal damage and reduces lesion extent in a mouse model of transient ischemic attack.

    PubMed

    Miao, Ming-San; Guo, Lin; Li, Rui-Qi; Zhang, Xiao-Lei

    2016-03-01

    Flavonoids are a major component in the traditional Chinese medicine Radix Ilicis Pubescentis. Previous studies have shown that the administration of Radix Ilicis Pubescentis total flavonoids is protective in cerebral ischemia. However, to our knowledge, no studies have examined whether the total flavonoids extracted from Radix Ilicis Pubescentis prevent or ameliorate neuronal damage following transient ischemic attacks. Therefore, Radix Ilicis Pubescentis total flavonoids question and the potential underlying mechanisms. Thus, beginning 3 days before the induction of a mouse model of transient ischemic attack using tert-butyl hydroperoxide injections, mice were intragastrically administered 0.3, 0.15, or 0.075 g/kg of Radix Ilicis Pubescentis total flavonoids daily for 10 days. The results of spectrophotometric analyses demonstrated that Radix Ilicis Pubescentis total flavonoids enhanced oxygen free radical scavenging and reduced pathological alterations in the brain. Hematoxylin-eosin staining results showed that Radix Ilicis Pubescentis total flavonoids reduced hippocampal neuronal damage and cerebral vascular injury in this mouse model of transient ischemic attack. These results suggest that the antioxidant effects of Radix Ilicis Pubescentis total flavonoids alleviate the damage to brain tissue caused by transient ischemic attack.

  9. Biofield potential simulation as a novel adjunt modality for continuous monitoring of breast lesions: a 3D numerical model.

    PubMed

    Ng, E Y K; Ng, W K; Acharya, U Rajendra

    2008-01-01

    Breast cancer is a disease characterized by the uncontrolled growth of abnormal cells. Early detection of this disease is the most effective way to reduce mortality. Although several new technologies show promise for improved capability of diagnosis, none have yet proved superior to traditional, X-ray film mammography in screening for breast cancer. More evaluation and development of new imaging tools and of promising skin surface electrical potential techniques is required and warranted. In the present study, we propose a theoretical three-dimensional, simplified and realistic model of the female breast to distinguish the surface biopotential in different types of breast abnormalities. We developed an inhomogeneous female breast model, closer to the actual, by considering the breast as a hemisphere with various layers of unequal thickness in supine condition. In order to determine the potential distribution developed, isotropic homogeneous conductivity was assigned to each of these compartments and the volume conductor problem was solved using finite element method. Richardson extrapolation for grid invariance test was used to ensure the results are of reliable accuracy. The simulation results show that the surface potentials are sensitive to the presence of tumour, location and placement of the electrodes.

  10. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the

  11. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus.

    PubMed

    Eggert, Thomas; Robinson, Farrel R; Straube, Andreas

    2016-06-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN's direct connections to the

  12. Skin lesion of blastomycosis

    MedlinePlus

    ... in: Africa Canada Central and southeastern United States India Israel Saudi Arabia A person gets infected by ... is diagnosed by identifying the fungus in a culture taken from a skin lesion. This usually requires ...

  13. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model

    PubMed Central

    Guo, Chuang; Zhang, Shuai; Li, Jia-Yi; Ding, Chen; Yang, Zhao-Hui; Chai, Rui; Wang, Xu; Wang, Zhan-You

    2016-01-01

    Compelling evidence has indicated that dysregulated glucose metabolism links Alzheimer’s disease (AD) and diabetes mellitus (DM) via glucose metabolic products. Nevertheless, because of the lack of appropriate animal models, whether chronic hyperglycemia worsens AD pathologies in vivo remains to be confirmed. Here, we crossed diabetic mice (Pdx1+/− mice) with Alzheimer mice (APP/PS1 transgenic mice) to generate Pdx1+/−/APP/PS1. We identified robust increases in tau phosphorylation, the loss of the synaptic spine protein, amyloid-β (Aβ) deposition and plaque formation associated with increased microglial and astrocyte activation proliferation, which lead to exacerbated memory and cognition deficits. More importantly, we also observed increased glucose intolerance accompanied by Pdx1 reduction, the formation of advanced glycation end-products (AGEs), and the activation of the receptor for AGEs (RAGE) signaling pathways during AD progression; these changes are thought to contribute to the processing of Aβ precursor proteins and result in increased Aβ generation and decreased Aβ degradation. Protein glycation, increased oxidative stress and inflammation via hyperglycemia are the primary mechanisms involved in the pathophysiology of AD. These results indicate the pathological relationship between these diseases and provide novel insights suggesting that glycemic control may be beneficial for decreasing the incidence of AD in diabetic patients and delaying AD progression. PMID:27406855

  14. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model.

    PubMed

    Guo, Chuang; Zhang, Shuai; Li, Jia-Yi; Ding, Chen; Yang, Zhao-Hui; Chai, Rui; Wang, Xu; Wang, Zhan-You

    2016-01-01

    Compelling evidence has indicated that dysregulated glucose metabolism links Alzheimer's disease (AD) and diabetes mellitus (DM) via glucose metabolic products. Nevertheless, because of the lack of appropriate animal models, whether chronic hyperglycemia worsens AD pathologies in vivo remains to be confirmed. Here, we crossed diabetic mice (Pdx1(+/-) mice) with Alzheimer mice (APP/PS1 transgenic mice) to generate Pdx1(+/-)/APP/PS1. We identified robust increases in tau phosphorylation, the loss of the synaptic spine protein, amyloid-β (Aβ) deposition and plaque formation associated with increased microglial and astrocyte activation proliferation, which lead to exacerbated memory and cognition deficits. More importantly, we also observed increased glucose intolerance accompanied by Pdx1 reduction, the formation of advanced glycation end-products (AGEs), and the activation of the receptor for AGEs (RAGE) signaling pathways during AD progression; these changes are thought to contribute to the processing of Aβ precursor proteins and result in increased Aβ generation and decreased Aβ degradation. Protein glycation, increased oxidative stress and inflammation via hyperglycemia are the primary mechanisms involved in the pathophysiology of AD. These results indicate the pathological relationship between these diseases and provide novel insights suggesting that glycemic control may be beneficial for decreasing the incidence of AD in diabetic patients and delaying AD progression. PMID:27406855

  15. Acute nontraumatic liver lesions.

    PubMed

    Caremani, Marcello; Tacconi, Danilo; Lapini, Laura

    2013-11-26

    The principal conditions requiring emergency/urgent intervention in patients with nontraumatic liver lesions are hemorrhage (with or without tumor rupture), rupture of hydatid cysts (with or without infection), complications arising from liver abscesses or congenital liver cysts, rupture related to peliosis hepatis, and in rare cases spontaneous hemorrhage. This article examines each of these conditions, its appearance on ultrasound (the first-line imaging method of choice for assessing any urgent nontraumatic liver lesion) and indications for additional imaging studies.

  16. [Osteoarticular lesions from parachuting].

    PubMed

    Orso, C A; Valbonesi, L; Calabrese, B F; D'Onofrio, S

    1990-01-01

    Based on personal experience gained in a parachuting centre (Pescara Aero-club) from 1975 up to 1988, the authors report their evaluation on chronic and acute osteoarticular lesions. The review of the cases was not based on the incidence of the lesions nor on their characteristics, normally found in common traumatology, but it was related to the dynamics of the trauma during the landing and to painful syndromes following a prolonged parachuting activity.

  17. A flexible mixed-effect negative binomial regression model for detecting unusual increases in MRI lesion counts in individual multiple sclerosis patients.

    PubMed

    Kondo, Yumi; Zhao, Yinshan; Petkau, John

    2015-06-15

    We develop a new modeling approach to enhance a recently proposed method to detect increases of contrast-enhancing lesions (CELs) on repeated magnetic resonance imaging, which have been used as an indicator for potential adverse events in multiple sclerosis clinical trials. The method signals patients with unusual increases in CEL activity by estimating the probability of observing CEL counts as large as those observed on a patient's recent scans conditional on the patient's CEL counts on previous scans. This conditional probability index (CPI), computed based on a mixed-effect negative binomial regression model, can vary substantially depending on the choice of distribution for the patient-specific random effects. Therefore, we relax this parametric assumption to model the random effects with an infinite mixture of beta distributions, using the Dirichlet process, which effectively allows any form of distribution. To our knowledge, no previous literature considers a mixed-effect regression for longitudinal count variables where the random effect is modeled with a Dirichlet process mixture. As our inference is in the Bayesian framework, we adopt a meta-analytic approach to develop an informative prior based on previous clinical trials. This is particularly helpful at the early stages of trials when less data are available. Our enhanced method is illustrated with CEL data from 10 previous multiple sclerosis clinical trials. Our simulation study shows that our procedure estimates the CPI more accurately than parametric alternatives when the patient-specific random effect distribution is misspecified and that an informative prior improves the accuracy of the CPI estimates. PMID:25784219

  18. Chronic Administration of the Neurotrophic Agent Cerebrolysin Ameliorates the Behavioral and Morphological Changes Induced by Neonatal Ventral Hippocampus Lesion in a Rat Model of Schizophrenia

    PubMed Central

    Vázquez-Roque, Rubén Antonio; Ramos, Brenda; Tecuatl, Carolina; Juárez, Ismael; Adame, Anthony; de la Cruz, Fidel; Zamudio, Sergio; Mena, Raúl; Rockenstein, Edward; Masliah, Eliezer; Flores, Gonzalo

    2012-01-01

    Neonatal ventral hippocampal lesion (nVHL) in rats has been widely used as a neurodevelopmental model to mimic schizophrenia-like behaviors. Recently, we reported that nVHLs result in dendritic retraction and spine loss in prefrontal cortex (PFC) pyramidal neurons and medium spiny neurons of the nucleus accumbens (NAcc). Cerebrolysin (Cbl), a neurotrophic peptide mixture, has been reported to ameliorate the synaptic and dendritic pathology in models of aging and neurodevelopmental disorder such as Rett syndrome. This study sought to determine whether Cbl was capable of reducing behavioral and neuronal alterations in nVHL rats. The behavioral analysis included locomotor activity induced by novel environment and amphetamine, social interaction, and sensoriomotor gating. The morphological evaluation included dendritic analysis by using the Golgi-Cox procedure and stereology to quantify the total cell number in PFC and NAcc. Behavioral data show a reduction in the hyperresponsiveness to novel environment- and amphetamine-induced locomotion, with an increase in the total time spent in social interactions and in prepulse inhibition in Cbl-treated nVHL rats. In addition, neuropathological analysis of the limbic regions also showed amelioration of dendritic retraction and spine loss in Cbl-treated nVHL rats. Cbl treatment also ameliorated dendritic pathology and neuronal loss in the PFC and NAcc in nVHL rats. This study demonstrates that Cbl promotes behavioral improvements and recovery of dendritic neuronal damage in postpubertal nVHL rats and suggests that Cbl may have neurotrophic effects in this neurodevelopmental model of schizophrenia. These findings support the possibility that Cbl has beneficial effects in the management of schizophrenia symptoms. PMID:21932359

  19. Chronic administration of the neurotrophic agent cerebrolysin ameliorates the behavioral and morphological changes induced by neonatal ventral hippocampus lesion in a rat model of schizophrenia.

    PubMed

    Vázquez-Roque, Rubén Antonio; Ramos, Brenda; Tecuatl, Carolina; Juárez, Ismael; Adame, Anthony; de la Cruz, Fidel; Zamudio, Sergio; Mena, Raúl; Rockenstein, Edward; Masliah, Eliezer; Flores, Gonzalo

    2012-01-01

    Neonatal ventral hippocampal lesion (nVHL) in rats has been widely used as a neurodevelopmental model to mimic schizophrenia-like behaviors. Recently, we reported that nVHLs result in dendritic retraction and spine loss in prefrontal cortex (PFC) pyramidal neurons and medium spiny neurons of the nucleus accumbens (NAcc). Cerebrolysin (Cbl), a neurotrophic peptide mixture, has been reported to ameliorate the synaptic and dendritic pathology in models of aging and neurodevelopmental disorder such as Rett syndrome. This study sought to determine whether Cbl was capable of reducing behavioral and neuronal alterations in nVHL rats. The behavioral analysis included locomotor activity induced by novel environment and amphetamine, social interaction, and sensoriomotor gating. The morphological evaluation included dendritic analysis by using the Golgi-Cox procedure and stereology to quantify the total cell number in PFC and NAcc. Behavioral data show a reduction in the hyperresponsiveness to novel environment- and amphetamine-induced locomotion, with an increase in the total time spent in social interactions and in prepulse inhibition in Cbl-treated nVHL rats. In addition, neuropathological analysis of the limbic regions also showed amelioration of dendritic retraction and spine loss in Cbl-treated nVHL rats. Cbl treatment also ameliorated dendritic pathology and neuronal loss in the PFC and NAcc in nVHL rats. This study demonstrates that Cbl promotes behavioral improvements and recovery of dendritic neuronal damage in postpubertal nVHL rats and suggests that Cbl may have neurotrophic effects in this neurodevelopmental model of schizophrenia. These findings support the possibility that Cbl has beneficial effects in the management of schizophrenia symptoms.

  20. Spindle cell melanocytic lesions--part I: an approach to compound naevoidal pattern lesions with spindle cell morphology and Spitzoid pattern lesions.

    PubMed

    Sade, Shachar; Al Habeeb, Ayman; Ghazarian, Danny

    2010-04-01

    Melanocytic lesions show great morphological diversity in their architecture and the cytomorphological appearance of their composite cells. Whereas functional melanocytes reveal a dendritic cytomorphology and territorial isolation, lesional naevomelanocytes and melanoma cells typically show epithelioid, spindled or mixed cytomorphologies and a range of architectural arrangements. Spindling is common to melanocytic lesions, and may be either a characteristic feature or a divergent appearance. The presence of spindle cells may mask the melanocytic nature of a lesion, and is often disconcerting, either because of its infrequent appearance in a particular lesion or its interpretation as a dedifferentiated phenotype. Spindle cell melanocytic lesions follow the full spectrum of potential biological outcomes, and difficulty may be experienced judging the nature of a lesion because of a lack of consistently reliable features to predict biological behaviour. Over time, recognition of numerous histomorphological features that may portend a more aggressive lesion have been identified. However, the translation of these features into a diagnostic entity requires a gestalt approach. Although most spindle cell melanocytic lesions can reliably be resolved with this standard approach, problem areas do exist and cause no end of grief to the surgical pathologist or dermatopathologist. In this review, the authors present their algorithmic approach to spindle cell melanocytic lesions and discuss each entity in turn, in order to (1) model a systematic approach to such lesions, and (2) provide familiarity with those melanocytic lesions that either typically or occasionally display a spindled cytomorphology.

  1. Behavioural profile of Wistar rats with unilateral striatal lesion by quinolinic acid (animal model of Huntington disease) post-injection of apomorphine and exposure to static magnetic field.

    PubMed

    Giorgetto, Carolina; Silva, Elaine Cristina Mazzei; Kitabatake, Takae Tamy; Bertolino, Guilherme; de Araujo, João Eduardo

    2015-05-01

    We analysed the motor behaviour of Wistar rats after 7 days lesion in the left striatum, injected with apomorphine (APO) and stimulated by a continuous magnetic field of 3,200 Gauss. For the behaviour assessment, we utilised the activity cage test and the rotarod test. Sixty-eight male Wistar rats were divided into six groups: control, sham, sham magnetic, lesion, and stimulated South and North Poles. After the experiments, coronal sections of the striatum were taken and stained with Nissl for analysis of the lesion. In the activity cage test for distance (F = 3.19), time of activity (F = 5.46) and crossings (F = 3.31) in all groups, except for the North Pole-stimulated group, we observed a significant increase in these behaviours when compared to the control group. Considering the number of counterclockwise turns, we observed a significant increase in the lesion in the South and North Pole stimulation groups compared with the control group. Highlighting the minor number of counterclockwise turns observed in the North Pole-stimulated group in relation to the South Pole-stimulated and Lesion groups (F = 16.01). The rotarod test revealed a decrease in the time spent in this apparatus for the Lesion group when compared to all other groups (F = 5.46). The morphometric analysis showed a reduction in the number of neurons in the Lesion group in relation to all other groups (F = 5.13). Thus, the results suggest that the static magnetic field north and south promoted a distinct behavioural profile and morphological preservation after 7 days of lesion with quinolinic acid associated with APO. PMID:25665872

  2. Meniscal Ramp Lesions

    PubMed Central

    Chahla, Jorge; Dean, Chase S.; Moatshe, Gilbert; Mitchell, Justin J.; Cram, Tyler R.; Yacuzzi, Carlos; LaPrade, Robert F.

    2016-01-01

    Meniscal ramp lesions are more frequently associated with anterior cruciate ligament (ACL) injuries than previously recognized. Some authors suggest that this entity results from disruption of the meniscotibial ligaments of the posterior horn of the medial meniscus, whereas others support the idea that it is created by a tear of the peripheral attachment of the posterior horn of the medial meniscus. Magnetic resonance imaging (MRI) scans have been reported to have a low sensitivity, and consequently, ramp lesions often go undiagnosed. Therefore, to rule out a ramp lesion, an arthroscopic evaluation with probing of the posterior horn of the medial meniscus should be performed. Several treatment options have been reported, including nonsurgical management, inside-out meniscal repair, or all-inside meniscal repair. In cases of isolated ramp lesions, a standard meniscal repair rehabilitation protocol should be followed. However, when a concomitant ACL reconstruction (ACLR) is performed, the rehabilitation should follow the designated ACLR postoperative protocol. The purpose of this article was to review the current literature regarding meniscal ramp lesions and summarize the pertinent anatomy, biomechanics, diagnostic strategies, recommended treatment options, and postoperative protocol. PMID:27504467

  3. Monitoring pigmented skin lesions

    NASA Astrophysics Data System (ADS)

    Wallace, Vincent P.; Bamber, Jeffery C.; Ott, Robert J.; Crawford, Diane C.; Mortimer, Peter S.

    2002-06-01

    The rising incidence of skin cancer has led to an increase in the number of patients with skin lesions that require diagnosis, mostly using subjective visual examination. Successful treatment depends on early diagnosis. Unfortunately diagnostic accuracy, even by experts, can be as low as 56%; therefore, an accurate, objective diagnostic aid is greatly needed. Reflectance characteristics of pigmented skin lesions were documented to evaluate their diagnostic potential. Reflectance spectra in the wavelength range 320-1100nm were obtained from 260 lesions. Differences between spectra from benign and malignant lesions were utilized by extracting features with the best discriminating power. Discrimination was evaluated using two techniques: multivariate statistical analysis and artificial neural networks, using histology as the standard. Each technique was tested in a blind study and assessed in terms of its ability to diagnose new cases and compared to the clinical diagnosis. The artificial neural network achieved the best diagnostic performance for discriminating between malignant melanoma and benign nevi, having a sensitivity of 100% and a specificity of 65%. Utilization of visible and infrared techniques for monitoring skin lesions has lead to improvements in diagnostic accuracy. We conclude that these techniques are worthy of further development and evaluation in clinical practice as a screening tool.

  4. Intraventricular mass lesions

    SciTech Connect

    Morrison, G.; Sobel, D.F.; Kelley, W.M.; Norman, D.

    1984-11-01

    Determining the precise etiology of an intraventricular mass can be a difficult diagnostic problem. CT and angiographic findings were reviewed in a series of 73 patients who had intraventricular masses. The histologic diagnosis can be suggested preoperatively by an analysis of the frequency of lesions occurring at a given ventricular location, lesion density before and after administration of contrast material, age, and sex of the patient, morphologic appearance of the mass, and presence or absence of hydrocephalus. Angiography is useful when meningioma, choroid plexus papilloma and carcinoma, or arteriovenous malformation are considered.

  5. Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors.

    PubMed

    Valdeolivas, Sara; Satta, Valentina; Pertwee, Roger G; Fernández-Ruiz, Javier; Sagredo, Onintza

    2012-05-16

    We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this

  6. Lameness Prevalence and Risk Factors in Large Dairy Farms in Upstate New York. Model Development for the Prediction of Claw Horn Disruption Lesions

    PubMed Central

    Foditsch, Carla; Oikonomou, Georgios; Machado, Vinícius Silva; Bicalho, Marcela Luccas; Ganda, Erika Korzune; Lima, Svetlana Ferreira; Rossi, Rodolfo; Ribeiro, Bruno Leonardo; Kussler, Arieli; Bicalho, Rodrigo Carvalho

    2016-01-01

    The main objectives of this prospective cohort study were a) to describe lameness prevalence at drying off in large high producing New York State herds based on visual locomotion score (VLS) and identify potential cow and herd level risk factors, and b) to develop a model that will predict the probability of a cow developing claw horn disruption lesions (CHDL) in the subsequent lactation using cow level variables collected at drying off and/or available from farm management software. Data were collected from 23 large commercial dairy farms located in upstate New York. A total of 7,687 dry cows, that were less than 265 days in gestation, were enrolled in the study. Farms were visited between May 2012 and March 2013, and cows were assessed for body condition score (BCS) and VLS. Data on the CHDL events recorded by the farm employees were extracted from the Dairy-Comp 305 database, as well as information regarding the studied cows’ health events, milk production, and reproductive records throughout the previous and subsequent lactation period. Univariable analyses and mixed multivariable logistic regression models were used to analyse the data at the cow level. The overall average prevalence of lameness (VLS > 2) at drying off was 14%. Lactation group, previous CHDL, mature equivalent 305-d milk yield (ME305), season, BCS at drying off and sire PTA for strength were all significantly associated with lameness at the drying off (cow-level). Lameness at drying off was associated with CHDL incidence in the subsequent lactation, as well as lactation group, previous CHDL and ME305. These risk factors for CHDL in the subsequent lactation were included in our predictive model and adjusted predicted probabilities for CHDL were calculated for all studied cows. ROC analysis identified an optimum cut-off point for these probabilities and using this cut-off point we could predict CHDL incidence in the subsequent lactation with an overall specificity of 75% and sensitivity of 59

  7. Lameness Prevalence and Risk Factors in Large Dairy Farms in Upstate New York. Model Development for the Prediction of Claw Horn Disruption Lesions.

    PubMed

    Foditsch, Carla; Oikonomou, Georgios; Machado, Vinícius Silva; Bicalho, Marcela Luccas; Ganda, Erika Korzune; Lima, Svetlana Ferreira; Rossi, Rodolfo; Ribeiro, Bruno Leonardo; Kussler, Arieli; Bicalho, Rodrigo Carvalho

    2016-01-01

    The main objectives of this prospective cohort study were a) to describe lameness prevalence at drying off in large high producing New York State herds based on visual locomotion score (VLS) and identify potential cow and herd level risk factors, and b) to develop a model that will predict the probability of a cow developing claw horn disruption lesions (CHDL) in the subsequent lactation using cow level variables collected at drying off and/or available from farm management software. Data were collected from 23 large commercial dairy farms located in upstate New York. A total of 7,687 dry cows, that were less than 265 days in gestation, were enrolled in the study. Farms were visited between May 2012 and March 2013, and cows were assessed for body condition score (BCS) and VLS. Data on the CHDL events recorded by the farm employees were extracted from the Dairy-Comp 305 database, as well as information regarding the studied cows' health events, milk production, and reproductive records throughout the previous and subsequent lactation period. Univariable analyses and mixed multivariable logistic regression models were used to analyse the data at the cow level. The overall average prevalence of lameness (VLS > 2) at drying off was 14%. Lactation group, previous CHDL, mature equivalent 305-d milk yield (ME305), season, BCS at drying off and sire PTA for strength were all significantly associated with lameness at the drying off (cow-level). Lameness at drying off was associated with CHDL incidence in the subsequent lactation, as well as lactation group, previous CHDL and ME305. These risk factors for CHDL in the subsequent lactation were included in our predictive model and adjusted predicted probabilities for CHDL were calculated for all studied cows. ROC analysis identified an optimum cut-off point for these probabilities and using this cut-off point we could predict CHDL incidence in the subsequent lactation with an overall specificity of 75% and sensitivity of 59

  8. Magnetic resonance imaging of liver lesions: exceptions and atypical lesions.

    PubMed

    van den Bos, Indra C; Hussain, Shahid M; de Man, Robert A; Zondervan, Pieter E; Ijzermans, Jan N M; Preda, A; Krestin, Gabriel P

    2008-01-01

    On state-of-the-art magnetic resonance imaging, most lesions can be detected and characterized with confidence according to well-known criteria. However, atypical characteristics in some common lesions and the incidental encounter with rare lesions may pose diagnostic difficulties. In this article, six challenging hepatic lesions will be discussed and evaluated on the most important magnetic resonance imaging sequences, with histological correlation when available. In addition, the background information concerning these lesions will be described based on the most recent available literature. By reading this article, the reader will be able to (1) categorize the lesion in solid and fluid-containing lesions, based on the T2 signal intensity; and (2) define the benign or malignant nature of the lesion, in relation to the signal intensity and dynamic enhancement pattern, despite the presence of atypical characteristics of some lesions. PMID:18436109

  9. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  10. Ultrastructural confirmation of neuronal protection by melatonin against the neurotoxin 6-hydroxydopamine cell damage.

    PubMed

    Mayo, J C; Sainz, R M; Antolín, I; Rodriguez, C

    1999-02-13

    6-Hydroxydopamine (6-OHDA) is a neurotoxin used in the induction of experimental Parkinson's disease in both animals and cultured neuronal cells. Biochemical and molecular approaches showed previously that low doses of 6-OHDA induced apoptosis in PC12 cells, while high doses of this neurotoxin induced necrosis. Melatonin has been shown to protect against the neuronal programmed cell death induced by 6-OHDA, although it was not able to prevent the massive necrotic cellular death occurring after the addition of high doses of the neurotoxin. In the present work, we demonstrate by ultrastructural analysis that although low doses of 6-OHDA induced apoptosis in PC12 cells, it also damaged the non-apoptotic cells, morphologically corresponding this damage to incipient and reversible necrotic lesions. When the doses of the neurotoxin increase, there are still apoptotic cells, although most of the cells show necrotic irreversible lesions. We also found that melatonin partially prevents the incipient necrotic lesions caused by low doses of 6-OHDA. The fact that melatonin was shown in previous work to prevent apoptosis caused by low doses of 6-OHDA, but not necrosis induced by high doses of the neurotoxin, seemed to indicate that this agent is only able to protect against apoptosis. However, our present results, melatonin preventing also the incipient necrotic neuronal lesions, suggest that this hormone may provide a general protection against cell death, suggesting that higher doses should be tried in order to prevent the necrotic cell death induced by high doses of the neurotoxin.

  11. Complete and Partial Lesions of the Pyramidal Tract in the Rat Affect Qualitative Measures of Skilled Movements: Impairment in Fixations as a Model for Clumsy Behavior

    PubMed Central

    Whishaw, Ian Q.; Piecharka, Dionne M.; Drever, Felicia R.

    2003-01-01

    Little is known about prenatal and perinatal brain injury resulting in subsequent clumsy behavior in children. One candidate motor system is the pyramidal tract. The tract traverses the entire central nervous system and, through direct and indirect connections to the brainstem and spinal cord sensory and motor nuclei, is involved in the learning and execution of skilled movements. Here, rats, either naive or pretrained on a number of motor tasks, were assessed for acute and chronic impairments following complete or incomplete pyramidal tract lesions. Postsurgery rats with complete lesions were impaired on the qualitative measures of limb aiming, supination, and posture. Impaired movements require fixations, complementary movements in different body segments. The impairment in fixations was manifest acutely and underwent no improvement with subsequent training/testing. The finding that complete and partial pyramidal tract lesions produce chronic impairment in fixations provides insight for understanding clumsy behavior in humans and its potential remediation via specific training in making fixations. PMID:14640310

  12. Disruption of Smad-dependent signaling for growth of GST-P-positive lesions from the early stage in a rat two-stage hepatocarcinogenesis model

    SciTech Connect

    Ichimura, Ryohei; Mizukami, Sayaka; Takahashi, Miwa; Taniai, Eriko; Kemmochi, Sayaka; Mitsumori, Kunitoshi; Shibutani, Makoto

    2010-08-01

    To clarify the involvement of signaling of transforming growth factor (TGF)-{beta} during the hepatocarcinogenesis, the immunohistochemical distribution of related molecules was analyzed in relation with liver cell lesions expressing glutathione S-transferase placental form (GST-P) during liver tumor promotion by fenbendazole, phenobarbital, piperonyl butoxide, or thioacetamide, using rats. Our study focused on early-stage promotion (6 weeks after starting promotion) and late-stage promotion (57 weeks after starting promotion). With regard to Smad-dependent signaling, cytoplasmic accumulation of phosphorylated Smad (phospho-Smad)-2/3 - identified as Smad3 by later immunoblot analysis - increased in the subpopulation of GST-P{sup +} foci, while Smad4, a nuclear transporter of Smad2/3, decreased during early-stage promotion. By late-stage promotion, GST-P{sup +} lesions lacking phospho-Smad2/3 had increased in accordance with lesion development from foci to carcinomas, while Smad4 largely disappeared in most proliferative lesions. With regard to Smad-independent mitogen-activated protein kinases, GST-P{sup +} foci that co-expressed phospho-p38 mitogen-activated protein kinase increased during early-stage promotion; however, p38-downstream phospho-activating transcriptional factor (ATF)-2, ATF3, and phospho-c-Myc, were inversely downregulated without relation to promotion. By late-stage promotion, proliferative lesions downregulated phospho-ATF2 and phospho-c-Myc along with lesion development, as with downregulation of phospho-p38 in all lesions. These results suggest that from the early stages, carcinogenic processes were facilitated by disruption of tumor suppressor functions of Smad-dependent signaling, while Smad-independent activation of p38 was an early-stage phenomenon. GST-P{sup -} foci induced by promotion with agonists of peroxisome proliferator-activated receptor-{alpha} did not change Smad expression, suggesting an aberration in the Smad

  13. [Managing focal incidental renal lesions].

    PubMed

    Nicolau, C; Paño, B; Sebastià, C

    2016-01-01

    Incidental renal lesions are relatively common in daily radiological practice. It is important to know the different diagnostic possibilities for incidentally detected lesions, depending on whether they are cystic or solid. The management of cystic lesions is guided by the Bosniak classification. In solid lesions, the goal is to differentiate between renal cancer and benign tumors such as fat-poor angiomyolipoma and oncocytoma. Radiologists need to know the recommendations for the management of these lesions and the usefulness of the different imaging techniques and interventional procedures in function of the characteristics of the incidental lesion and the patient's life expectancy.

  14. Pentadecapeptide BPC 157, cimetidine, ranitidine, bromocriptine, and atropine effect in cysteamine lesions in totally gastrectromized rats: a model for cytoprotective studies.

    PubMed

    Sikirić, P; Mikus, D; Seiwerth, S; Grabarević, Z; Rucman, R; Petek, M; Jagić, V; Turković, B; Rotkvić, I; Mise, S; Zoricić, I; Perić, J; Konjevoda, P; Perović, D; Jurina, L; Hanzevacki, M; Separović, J; Gjurasin, M; Jadrijević, S; Jelovac, N; Miklić, P; Buljat, G; Marović, A

    1997-05-01

    A superior effectiveness in various lesion assays was noted for the novel pentadecapeptide BPC 157, originated from human gastric juice protein (BPC) and claimed to be a cytoprotective agent. From this viewpoint, as a previously untreated experimental improvement to create an acid-free environmental for cytoprotection studies, total gastrectomy was done 24 hr before the ulcerogenic procedure. In the absence of stomach and gastric acid, the damaging effects of cysteamine (400 mg/kg subcutaneously, death 24 hr thereafter), to date thought to be an acid-related duodenal ulcerogen, and the BPC 157 cytoprotective effect (10 microg or 10 ng/kg intraperitoneally) were further challenged. BPC 157 was compared with reference agents [cimetidine (50), ranitidine (10), omeprazole (10), bromocriptine (10) and atropine (10) (mg/kg intraperitoneally, 1 hr before cysteamine] known to be also cytoprotective. In naive rats, with intact stomach, all of them showed a strong beneficial effect. Interestingly, in gastrectomized animals, the application of BPC 157 or the reference agents before cysteamine significantly prevented the otherwise severe duodenal lesion development noted in the control gastrectomized cysteamine rats. In groups without cysteamine, no lesions were noted (laparotomy, gastrectomy only, 24 or 48 hr postsurgical period), nor was lesion potentiation seen in cysteamine-treated laparotomized animals. In summary, these findings--equal damaging effect of cysteamine and equal protection of pentadecapeptide BPC 157 and reference agents in gastrectomized and rats with intact stomach--seem to be particularly relevant for a cytoprotective viewpoint. Without a stomach, the cysteamine damaging effect was convincingly defined as an essential gastric acid-independent injury (analogous to ethanol gastric lesions). Likewise, a high "cytoprotective capacity," apparently acid independent, common for all tested agents (novel pentadecapeptide BPC 157, cimetidine, ranitidine, omeprazole

  15. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer.

    PubMed

    Lanza-Jacoby, Susan; Yan, Guang; Radice, Glenn; LePhong, Christopher; Baliff, Jeffrey; Hess, Rachael

    2013-07-01

    Since pancreatic cancer is a lethal disease, developing prevention strategies is an important goal. We determined whether calorie restriction would prevent the development and delay progression of pancreatic intraepithelial neoplasms to pancreatic ductal adenocarcinoma (PDA) in LSL-KrasG12D/+; Pdx-1/Cre mice that develop all the precursor lesions that progress to PDA. Eight-week-old LSL-KrasG12D; Pdx-1/Cre mice were assigned to three groups: (1) ad libitum (AL) fed the AIN93M diet or (2) intermittently calorie restricted (ICR) a modified AIN93M at 50% of AL intake followed by one week intervals at 100% of AL intake, or (3) chronically calorie restricted (CCR) an AIN93M diet at 75% of AL intake. AL fed mice had a greater percentage of pancreatic ducts with PanIN-2 (13.6%) than did the ICR (1.0%) and CCR groups (1.6%), P < 0.0001. Calorie restriction (ICR [0%] and CCR [0.7%]) reduced the percentage of ducts with PanIN-3 lesions compared to the AL group (7.0%), P < 0.0001. The incidence of PanIN-2 or more lesions was significantly reduced in both ICR (27%; n = 16) and CCR (40%) mice (n = 15; P < 0.001) compared to AL (70%) fed mice (n = 11). The delayed progression of lesions in ICR and CCR mice was associated with reduced proliferation measured by proliferating cell nuclear antigen staining, reduced protein expression of Glut1, increased protein expression of Sirt1, increased serum adiponectin, and decreased serum leptin. CCR resulted in decreased phosphorylated mammalian target of rapamycin and decreased serum insulin-like growth factor-1. In summary, this is the first study to show in LSL-KrasG12D; Pdx-1/Cre mice that ICR and CCR delay the progression of lesions to PDA.

  16. Novel lesion detection aids.

    PubMed

    Neuhaus, K W; Longbottom, C; Ellwood, R; Lussi, A

    2009-01-01

    Several non-invasive and novel aids for the detection of (and in some cases monitoring of) caries lesions have been introduced in the field of 'caries diagnostics' over the last 15 years. This chapter focusses on those available to dentists at the time of writing; continuing research is bound to lead to further developments in the coming years. Laser fluorescence is based on measurements of back-scattered fluorescence of a 655-nm light source. It enhances occlusal and (potentially) approximal lesion detection and enables semi-quantitative caries monitoring. Systematic reviews have identified false-positive results as a limitation. Quantitative light-induced fluorescence is another sensitive method to quantitatively detect and measure mineral loss both in enamel and some dentine lesions; again, the trade-offs with lower specificity when compared with clinical visual detection must be considered. Subtraction radiography is based on the principle of digitally superimposing two radiographs with exactly the same projection geometry. This method is applicable for approximal surfaces and occlusal caries involving dentine but is not yet widely available. Electrical caries measurements gather either site-specific or surface-specific information of teeth and tooth structure. Fixed-frequency devices perform best for occlusal dentine caries but the method has also shown promise for lesions in enamel and other tooth surfaces with multi-frequency approaches. All methods require further research and further validation in well-designed clinical trials. In the future, they could have useful applications in clinical practice as part of a personalized, comprehensive caries management system. PMID:19494675

  17. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model

    SciTech Connect

    Abe, Hajime; Ogawa, Takashi; Wang, Liyun; Kimura, Masayuki; Tanaka, Takeshi; Morita, Reiko; Yoshida, Toshinori; Shibutani, Makoto

    2014-11-01

    Thioacetamide (TAA) has been used to develop a rodent model for hepatocarcinogenesis. To determine the genes with epigenetic modifications in early hepatocarcinogenesis, we did a genome-wide scan for hypermethylated promoter regions using CpG island microarrays in TAA-promoted rat liver tissue. Eight genes were selected based on the microarray profile; of these, Yy1 and Wdr45b were confirmed to be hypermethylated by methylation-specific polymerase chain reaction (PCR) and pyrosequencing and downregulated by real-time reverse transcription PCR. Non-neoplastic liver cells had nuclear Yy1 immunoreactivity, while preneoplastic foci with glutathione S-transferase placental form (GST-P) immunoreactivity had decreased Yy1 immunoreactivity. The incidence of these foci was proportional to the dose of TAA administered. Co-expression analysis of gene products downstream of Yy1 revealed increased nuclear phospho-c-Myc{sup +} foci as well as nuclear and cytoplasmic p21{sup Cip1+} foci in Yy1{sup −} or GST-P{sup +} foci in response to TAA-promotion dose. Although the absolute number of cells was low, the incidence of death receptor 5{sup −} foci was increased in Yy1{sup −} foci in proportion to the TAA dose. Yy1{sup −}/GST-P{sup +} foci revealed a higher number of proliferating cell nuclear antigen (PCNA)-immunoreactive cells than Yy1{sup +}/GST-P{sup +} foci, while cleaved caspase-3{sup +} cells were unchanged between Yy1{sup –}/GST-P{sup +} and Yy1{sup +}/GST-P{sup +} foci. In the case of Wdr45b, most GST-P{sup +} foci were Wdr45b{sup –} and were not increased by TAA promotion. These results suggest involvement of Yy1 in the epigenetic gene regulation at the early stages of TAA promoted cell proliferation and concomitant cell cycle arrest in preneoplastic lesions. - Highlights: • Epigenetically downregulated genes were searched in TAA-promnoted rat livers. • Yy1 and Wdr45b showed promoter-region hypermethylation and mRNA downregulation. • TAA promoted

  18. Penalized maximum-likelihood image reconstruction for lesion detection

    NASA Astrophysics Data System (ADS)

    Qi, Jinyi; Huesman, Ronald H.

    2006-08-01

    Detecting cancerous lesions is one major application in emission tomography. In this paper, we study penalized maximum-likelihood image reconstruction for this important clinical task. Compared to analytical reconstruction methods, statistical approaches can improve the image quality by accurately modelling the photon detection process and measurement noise in imaging systems. To explore the full potential of penalized maximum-likelihood image reconstruction for lesion detection, we derived simplified theoretical expressions that allow fast evaluation of the detectability of a random lesion. The theoretical results are used to design the regularization parameters to improve lesion detectability. We conducted computer-based Monte Carlo simulations to compare the proposed penalty function, conventional penalty function, and a penalty function for isotropic point spread function. The lesion detectability is measured by a channelized Hotelling observer. The results show that the proposed penalty function outperforms the other penalty functions for lesion detection. The relative improvement is dependent on the size of the lesion. However, we found that the penalty function optimized for a 5 mm lesion still outperforms the other two penalty functions for detecting a 14 mm lesion. Therefore, it is feasible to use the penalty function designed for small lesions in image reconstruction, because detection of large lesions is relatively easy.

  19. Relationship between tail lesions and lung health in slaughter pigs.

    PubMed

    van Staaveren, Nienke; Vale, Ana P; Manzanilla, Edgar G; Teixeira, Dayane L; Leonard, Finola C; Hanlon, Alison; Boyle, Laura A

    2016-05-01

    Tail lesions are associated with poor health either because they serve as a point of entry for pathogens or because of shared risk factors. This study investigated the relationship between carcass tail lesion and lung lesion severity scores in slaughter pigs. Carcasses were scored after scalding/dehairing for tail lesion severity (0-4). Lungs were scored according to an adapted version of the BPEX pig health scheme. Severity of enzootic pneumonia (EP-like lesions) was recorded on a scale of 0-50. Severity of pleurisy was scored on a 0-2 scale with score 2 equating to severe pleurisy or those lungs that remained attached to the chest wall ('lungs in chest'). The database for assessing pleurisy lesions contained all pleurisy scores (n=5628). Lungs with a score of 2 for pleurisy were excluded from the analysis of all other lung lesions as such lungs could not be assessed for other lesions (n=4491). Associations between tail lesions and different lung lesion outcomes were analysed using generalized linear mixed models (PROC GLIMMIX) with random effect for batch. Males were more affected by moderate (OR=1.9, 95% CI 1.51-2.34) and severe (OR=5.8, 95% CI 3.45-9.70) tail lesions than females. EP-like lesions and pleurisy were most commonly observed. Pigs with severe tail lesions tended to have more 'lungs in chest' than pigs with moderate tail lesions (P=0.1). No other associations between tail lesions and lung lesions were found. Males had higher odds of having EP-like lesions (OR=1.2, 95% CI 1.05-1.36) than females. Tail lesions on the carcass may not be an accurate predictor of lung health. However, tail lesions are important welfare indicators and respiratory disease is a significant infectious condition affecting pigs. Thus, recording of tail and lung lesions at meat inspection provides valuable information regarding on-farm health and welfare of pigs. PMID:27094136

  20. Green tea polyphenol induces caspase 14 in epidermal keratinocytes via MAPK pathways and reduces psoriasiform lesions in the flaky skin mouse model.

    PubMed

    Hsu, Stephen; Dickinson, Douglas; Borke, James; Walsh, Douglas S; Wood, Joseph; Qin, Haiyan; Winger, Julia; Pearl, Henna; Schuster, George; Bollag, Wendy B

    2007-08-01

    Psoriasiform lesions are characterized by hyperproliferation and aberrant differentiation of epidermal keratinocytes, accompanied by inflammation, leading to a disrupted skin barrier with an abnormal stratum corneum. The expression and proteolytic processing of caspase 14, a member of the caspase family which is associated with epithelial cell differentiation, planned cell death, and barrier formation, is altered in psoriatic epidermis. We recently reported that human psoriatic tissues lack normal expression of caspase 14 [J Dermatol Sci37 (2005) 61], and caspase 14 is induced by EGCG, a green tea polyphenol (GTP), in exponentially growing normal human epidermal keratinocytes (NHEK) [J Pharmacol Exp Ther315 (2005) 805]. This suggests that GTPs may have beneficial effects on psoriasiform lesions. The current study aimed to determine whether MAPK pathways are required for GTP-induced caspase 14 expression in NHEK and if GTPs can modulate the expression of pathological markers in the psoriasiform lesions that develop in the flaky skin mouse. The results indicate that the p38 and JNK MAPK pathways are required for EGCG-induced expression of caspase 14 in NHEK. Importantly, topical application of 0.5% GTPs significantly reduced the symptoms of epidermal pathology in the flaky skin mice, associated with efficient caspase 14 processing and reduction in proliferating cell nuclear antigen levels. This suggests that GTP-activated pathways may be potential targets for novel therapeutic approaches to the treatment of some psoriasiform skin disorders.

  1. Cystic Lesions of the Mediastinum.

    PubMed

    Vargas, Daniel; Suby-Long, Thomas; Restrepo, Carlos S

    2016-06-01

    Cystic lesions are commonly seen in the mediastinum, and they may arise from virtually any organ. The vast majority of these lesions are benign and result in no symptoms. When large, cysts may produce symptoms related to compression of adjacent structures. The most common mediastinal cysts are pericardial and foregut duplication cysts. Both computed tomography and magnetic resonance are routinely used to evaluate these lesions. Although computed tomography offers superior spatial resolution, magnetic resonance is useful in differentiating cysts that contain proteinaceous material from solid lesions. Occasionally, cysts arise from solid lesions, such as thymoma or teratoma. Although cysts are alike in appearance, location helps narrowing the differential diagnoses.

  2. Lesion mimic mutants

    PubMed Central

    Moeder, Wolfgang

    2008-01-01

    Over the last decade a substantial number of lesion mimic mutants (LMM) have been isolated and a growing number of the genes have been cloned. It is now becoming clear that these mutants are valuable tools to dissect various aspects of programmed cell death (PCD) and pathogen resistance pathways in plants. Together with other forward genetics approaches LMMs shed light on the PCD machinery in plant cells and revealed important roles for sphingolipids, Ca2+ and chloroplast-derived porphyrin-metabolites during cell death development. PMID:19513227

  3. Classification of breast lesions presenting as mass and non-mass lesions

    NASA Astrophysics Data System (ADS)

    Gallego-Ortiz, Cristina; Martel, Anne L.

    2014-03-01

    We aim to develop a CAD system for robust and reliable di erential diagnosis of breast lesions, in particular non-mass lesions. A necessary prerequisite for the development of a successful CAD system is the selection of the best subset of lesion descriptors. But an important methodological concern is whether the selected features are in uenced by the model employed rather than by the underlying characteristic distribution of descriptors for positive and negative cases. Another interesting question is how a particular classi er exploits the relationships between descriptors to increase the accuracy of the classi cation. In this work we set to: (1) Characterize kinetic, morphological and textural features among mass and non-mass lesions; (2) Examine feature spaces and compare selection of subset of features based on similarity of feature importance across feature rankings; (3) Compare two classi er performances namely binary Support Vector Machines (SVM) and Random Forest (RF) for the task of di erentiating between positive and negative cases when using binary classi cation for mass and non-mass lesions separately or when employing a multi-class classi cation. Breast MRI datasets consists of 243 (173 mass and 70 non-mass) lesions. Results show that RF variable importance used with RF-binary based classi cation optimized for mass and non-mass lesions separately o ers the best classi cation accuracy.

  4. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats.

    PubMed

    Das, Saroj Kumar; Patel, Bhupesh; Patri, Manorama

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence.

  5. Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats

    PubMed Central

    Das, Saroj Kumar; Patel, Bhupesh

    2016-01-01

    Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence. PMID:27034665

  6. Simulation of spread and control of lesions in brain.

    PubMed

    Thamattoor Raman, Krishna Mohan

    2012-01-01

    A simulation model for the spread and control of lesions in the brain is constructed using a planar network (graph) representation for the central nervous system (CNS). The model is inspired by the lesion structures observed in the case of multiple sclerosis (MS), a chronic disease of the CNS. The initial lesion site is at the center of a unit square and spreads outwards based on the success rate in damaging edges (axons) of the network. The damaged edges send out alarm signals which, at appropriate intensity levels, generate programmed cell death. Depending on the extent and timing of the programmed cell death, the lesion may get controlled or aggravated akin to the control of wild fires by burning of peripheral vegetation. The parameter phase space of the model shows smooth transition from uncontrolled situation to controlled situation. The simulations show that the model is capable of generating a wide variety of lesion growth and arrest scenarios. PMID:22319549

  7. Producing Uniform Lesion Pattern in HIFU Ablation

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Kargl, Steven G.; Hwang, Joo Ha

    2009-04-01

    High intensity focused ultrasound (HIFU) is emerging as a modality for treatment of solid tumors. The temperature at the focus can reach over 65° C denaturing cellular proteins resulting in coagulative necrosis. Typically, HIFU parameters are the same for each treated spot in most HIFU control systems. Because of thermal diffusion from nearby spots, the size of lesions will gradually become larger as the HIFU therapy progresses, which may cause insufficient treatment of initial spots, and over-treatment of later ones. It is found that the produced lesion pattern also depends on the scanning pathway. From the viewpoint of the physician creating uniform lesions and minimizing energy exposure are preferred in tumor ablation. An algorithm has been developed to adaptively determine the treatment parameters for every spot in a theoretical model in order to maintain similar lesion size throughout the HIFU therapy. In addition, the exposure energy needed using the traditional raster scanning is compared with those of two other scanning pathways, spiral scanning from the center to the outside and from the outside to the center. The theoretical prediction and proposed algorithm were further evaluated using transparent gel phantoms as a target. Digital images of the lesions were obtained, quantified, and then compared with each other. Altogether, dynamically changing treatment parameters can improve the efficacy and safety of HIFU ablation.

  8. Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase.

    PubMed

    Iglesias-González, Javier; Sánchez-Iglesias, Sofía; Méndez-Álvarez, Estefanía; Rose, Sarah; Hikima, Atsuko; Jenner, Peter; Soto-Otero, Ramón

    2012-10-01

    Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC(50) = 200 ± 15 nM) and state 3 respiration (IC(50) = 192 ± 17 nM), with no significant effects on state 4(o). An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC(50) = 100 ± 9 μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity. PMID:22821477

  9. Toxin-Induced Experimental Models of Learning and Memory Impairment

    PubMed Central

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson’s disease dementia and Alzheimer’s disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  10. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    PubMed

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  11. Thalamic Lesions: A Radiological Review

    PubMed Central

    Renard, Dimitri; Campello, Chantal; Bouly, Stephane; Le Floch, Anne; Thouvenot, Eric; Waconge, Anne; Taieb, Guillaume

    2014-01-01

    Background. Thalamic lesions are seen in a multitude of disorders including vascular diseases, metabolic disorders, inflammatory diseases, trauma, tumours, and infections. In some diseases, thalamic involvement is typical and sometimes isolated, while in other diseases thalamic lesions are observed only occasionally (often in the presence of other typical extrathalamic lesions). Summary. In this review, we will mainly discuss the MRI characteristics of thalamic lesions. Identification of the origin of the thalamic lesion depends on the exact localisation inside the thalamus, the presence of extrathalamic lesions, the signal changes on different MRI sequences, the evolution of the radiological abnormalities over time, the history and clinical state of the patient, and other radiological and nonradiological examinations. PMID:25100900

  12. Pathogen translocation and histopathological lesions in an experimental model of Salmonella Dublin infection in calves receiving lactic acid bacteria and lactose supplements

    PubMed Central

    Zbrun, María V.; Soto, Lorena P.; Bertozzi, Ezequiel; Sequeira, Gabriel J.; Marti, Luis E.; Signorini, Marcelo L.; Armesto, Roberto Rodríguez; Rosmini, Marcelo R.

    2012-01-01

    The purpose of this study was to evaluate the capacity of a lactic acid bacteria (LAB) inoculum to protect calves with or without lactose supplements against Salmonella Dublin infection by evaluating histopathological lesions and pathogen translocation. Fifteen calves were divided into three groups [control group (C-G), a group inoculated with LAB (LAB-G), and a group inoculated with LAB and given lactose supplements (L-LAB-G)] with five, six, and four animals, respectively. The inoculum, composed of Lactobacillus (L.) casei DSPV 318T, L. salivarius DSPV 315T, and Pediococcus acidilactici DSPV 006T, was administered with milk replacer. The LAB-G and L-LAB-G received a daily dose of 109 CFU/kg body weight of each strain throughout the experiment. Lactose was provided to the L-LAB-G in doses of 100 g/day. Salmonella Dublin (2 × 1010 CFU) was orally administered to all animals on day 11 of the experiment. The microscopic lesion index values in target organs were 83%, 70%, and 64.3% (p < 0.05) for the C-G, LAB-G, and L-LAB-G, respectively. Administration of the probiotic inoculum was not fully effective against infection caused by Salmonella. Although probiotic treatment was unable to delay the arrival of pathogen to target organs, it was evident that the inoculum altered the response of animals against pathogen infection. PMID:23000583

  13. Lateral and Anterior Thalamic Lesions Impair Independent Memory Systems

    ERIC Educational Resources Information Center

    Mitchell, Anna S.; Dalrymple-Alford, John C.

    2006-01-01

    Damage to the medial region of the thalamus, both in clinical cases (e.g., patients with infarcts or the Korsakoff's syndrome) and animal lesion models, is associated with variable amnesic deficits. Some studies suggest that many of these memory deficits rely on the presence of lateral thalamic lesions (LT) that include the intralaminar nuclei,…

  14. Pigmented Lesion of Buccal Mucosa

    PubMed Central

    Bajpai, Manas; Kumar, Malay; Kumar, Manish; Agarwal, Deshant

    2014-01-01

    Pigmented lesions are commonly found in the mouth. Such lesions represent a variety of clinical entities, ranging from physiologic changes to manifestation of systemic illness and malignant neoplasm. Diagnosis of such lesions requires a proper case history, extraoral and intraoral examination, and, in some cases, biopsy, aspiration cytology, and laboratory investigations. Here we present a case of purple lesion on the buccal mucosa of a 34-year-old male patient which was provisionally diagnosed as mucocele but on the basis of histopathological picture it was finally diagnosed as angiofibroma, and we also discuss the clinical and histopathological differential diagnosis. PMID:25161669

  15. Stress-induced cervical lesions.

    PubMed

    Braem, M; Lambrechts, P; Vanherle, G

    1992-05-01

    The increasing occurrence of dental lesions at the cervical surfaces requires more knowledge of the causes of the process. Acidic and abrasive mechanisms have clearly been documented as causes but the stress theory by Lee and Eakle is still controversial. This report describes several incidences of possible stress-induced lesions according to the characteristics described by Lee and Eakle. The occurrences of subgingival lesions lend credence to the stress-induction theory by exclusion of other superimposing etiologic factors. With the current concepts, a perceptive approach to the treatment of cervical lesions can be executed. PMID:1527763

  16. Pathological characterization and morphometric analysis of hepatic lesions in SHRSP5/Dmcr, an experimental non-alcoholic steatohepatitis model, induced by high-fat and high-cholesterol diet.

    PubMed

    Horai, Yasushi; Utsumi, Hiroyuki; Ono, Yuko; Kishimoto, Toshimitsu; Ono, Yuuichi; Fukunari, Atsushi

    2016-02-01

    SHRSP5/Dmcr is a newly established substrain of stroke-prone spontaneously hypertensive rat (SHRSP). Recently, high-fat and high-cholesterol (HFC) diet-fed SHRSP5/Dmcr has been reported as a novel rat model of developing hepatic lesions similar to human non-alcoholic steatohepatitis (NASH). The aim of this study was to investigate the detailed pathological conditions induced by HFC diet in SHRSP5/Dmcr rats using molecular biological methods and morphometric analysis. SHRSP5/Dmcr rats at 6 weeks of age were fed on either HFC diet or stroke-prone (SP) diet for 2, 4, 6, 8 and 16 weeks and histopathological changes in the liver, blood chemistry and mRNA expression levels in the liver were investigated. As evidenced by the histopathological examination of the liver of the SHRSP5/Dmcr rats, hepatic steatosis and lobular inflammation were present, with gradual increasing severity from 2 weeks after the introduction of the HFC diet. Partial hepatic fibrosis was detected at 6 weeks and spread over the entire region of the liver with more severe bridging formation by 16 weeks. The degrees of NASH-like hepatic lesions such as steatosis (the size distribution of lipid droplets), inflammation and fibrosis were quantified by morphometric analysis. Eosinophilic inclusion bodies encountered in the hepatocytes had immunoreactivity with Cox-4 and double-membrane walls, identified as mega-mitochondria. Serum ALT and bilirubins, and the mRNA expression levels related to fibrosis were closely correlated with hepatic histopathological changes. The clear feeding time-dependent progression of NASH-like hepatic lesion in HFC diet-fed SHRSP5/Dmcr rats reinforced the conclusion that this strain might be a useful model of NASH and of inflammatory fibrotic liver disease. PMID:27037502

  17. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion

    PubMed Central

    May, Zacnicte; Fouad, Karim; Shum-Siu, Alice; Magnuson, David S. K.

    2015-01-01

    A rarely explored subject in animal research is the effect of pre-injury variables on behavioural outcome post-SCI. Low reporting of such variables may underlie some discrepancies in findings between laboratories. Particularly, intensive task-specific training before a SCI might be important, considering that sports injuries are one of the leading causes of SCI. Thus, individuals with SCI often underwent rigorous training before their injuries. In the present study, we asked whether training before SCI on a grasping task or a swimming task would influence motor recovery in rats. Swim pre-training impaired recovery of swimming 2 and 4 weeks post-injury. This result fits with the idea of motor learning interference, which posits that learning something new may disrupt learning of a new task; in this case, learning strategies to compensate for functional loss after SCI. In contrast to swimming, grasp pre-training did not influence grasping ability after SCI at any time point. However, grasp pre-trained rats attempted to grasp more times than untrained rats in the first 4 weeks post-injury. Also, lesion volume of grasp pretrained rats was greater than that of untrained rats, a finding which may be related to stress or activity. The increased participation in rehabilitative training of the pre-trained rats in the early weeks post-injury may have potentiated spontaneous plasticity in the spinal cord and counteracted the deleterious effect of interference and bigger lesions. Thus, our findings suggest that pre-training plays a significant role in recovery after CNS damage and needs to be carefully controlled for. PMID:25975172

  18. Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis

    PubMed Central

    Tóth, Ferenc; Nissi, Mikko J.; Wang, Luning; Ellermann, Jutta M.; Carlson, Cathy S

    2014-01-01

    Objective Identify and interrupt the vascular supply to portions of the distal femoral articularepiphyseal cartilage complex (AECC) in goat kids to induce cartilage necrosis, characteristic of early lesions of osteochondrosis; then utilize MRI to identify necrotic areas of cartilage. Design Distal femora were perfused and cleared in goat kids of various ages to visualize the vascular supply to the distal femoral AECC. Vessels located on the axial aspect of the medial femoral condyle and on the abaxial side of the lateral trochlear ridge were transected in eight 4-day-old goats to induce cartilage necrosis. Goats were euthanized 1, 2, 3, 4, 5, 6, 9, and 10 weeks post operatively and operated stifles were harvested. Adiabatic T1ρ relaxation time maps of the harvested distal femora were generated using a 9.4T MR scanner, after which samples were evaluated histologically. Results Interruption of the vascular supply to the medial femoral condyle caused lesions of cartilage necrosis in 6/8 goat kids that were demonstrated histologically. Adiabatic T1ρ relaxation time mapping identified these areas of cartilage necrosis in 5/6 cases. No significant findings were detected after transection of perichondrial vessels supplying the lateral trochlear ridge. Conclusions Cartilage necrosis, characteristic of early osteochondrosis, can be induced by interrupting the vascular supply to the distal femoral AECC in goat kids. The ability of high field MRI to identify these areas of cartilage necrosis in the AECC using the adiabatic T1ρ sequence suggests that this technique may be useful in the future for the early diagnosis of osteochondrosis. PMID:25463443

  19. [The focal renal lesions].

    PubMed

    Tuma, Jan

    2013-06-01

    The focal renal lesions are altogether common. Most frequently are found Columna Bertini hypertrophies (so called pseudotumors) and simple renal cysts. The role of sonography in the practice is to distinguish pseudotumors from real renal tumors, and simple renal cysts from complex cysts. The differentiation of complex renal cysts is possible with the help of the CEUS (= contrast enhanced ultrasound) and other imaging modalities such as CT or MRI. In these cases, the CEUS imaging agent has clear advantages over CT and MRI, because it is composed of gas bubbles, which are only slightly smaller than red blood cells and remains exclusively intravascularly while the CT and MRI contrast agents diffuse into the interstitial space without any real perfusion. The real tumors can be differentiated from certain focal non-tumorous changes based on the ultrasound and clinic. The further differentiation of individual kidney tumors and metastases using ultrasound, MRI, CT and CEUS is only partly possible. In all uncertain or unclear cases, therefore, an open or ultrasound-guided biopsy is useful.

  20. Neuronal effects of 4-t-Butylcatechol: A model for catechol-containing antioxidants

    SciTech Connect

    Lo, Y.-C. Liu Yuxin; Lin, Y.-C.; Shih, Y.-T.; Liu, C.-M.; Burka, Leo T.

    2008-04-15

    Many herbal medicines and dietary supplements sold as aids to improve memory or treat neurodegenerative diseases or have other favorable effects on the CNS contain a catechol or similar 1,2-dihydroxy aromatic moiety in their structure. As an approach to isolate and examine the neuroprotective properties of catechols, a simple catechol 4-t-Butylcatechol (TBC) has been used as a model. In this study, we investigated the effects of TBC on lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity by using the in vitro model of coculture murine microglial-like cell line HAPI with the neuronal-like human neuroblastoma cell line SH-SY5Y. We also examined the effects of TBC on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. TBC at concentrations from 0.1-10 {mu}M had no toxic effect on HAPI cells and SH-SY5Y cells, and it inhibited LPS (100 ng/ml)-induced increases of superoxide, intracellular ROS, gp91{sup Phox}, iNOS and a decrease of HO-1 in HAPI cells. Under coculture condition, TBC significantly reduced LPS-activated microglia-induced dopaminergic SH-SY5Y cells death. Moreover, TBC (0.1-10 {mu}M) inhibited 6-OHDA-induced increases of intracellular ROS, iNOS, nNOS, and a decrease of mitochondria membrane potential, and cell death in SH-SY5Y cells. However, the neurotoxic effects of TBC (100 {mu}M) on SH-SY5Y cells were also observed including the decrease in mitochondria membrane potential and the increase in COX-2 expression and cell death. TBC-induced SH-SY5Y cell death was attenuated by pretreatment with NS-398, a selective COX-2 inhibitor. In conclusion, this study suggests that TBC might possess protective effects on inflammation- and oxidative stress-related neurodegenerative disorders. However, the high concentration of TBC might be toxic, at least in part, for increasing COX-2 expression.

  1. Voxelwise Bayesian Lesion Deficit Analysis

    PubMed Central

    Chen, Rong; Hillis, Argye E.; Pawlak, Mikolaj; Herskovits, Edward H

    2008-01-01

    Relating cognitive deficits to the presence of lesions has been an important means of delineating structure-function associations in the human brain. We propose a voxel-based Bayesian method for lesion-deficit analysis, which identifies complex linear or nonlinear associations among brain-lesion locations, and neurological status. We validated this method using a simulated data set, and we applied this algorithm to data obtained from an acute-stroke study to identify associations among voxels with infarct or hypoperfusion, and impaired word reading. We found that a distributed region involving Brodmann areas (BA) 22, 37, 39, and 40 was implicated in word reading. PMID:18328733

  2. Nerve lesioning with direct current

    NASA Astrophysics Data System (ADS)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  3. No Carious Cervical Lesions: Abfraction

    PubMed Central

    Shetty, Sumanth M; Shetty, Rashmi G; Mattigatti, Sudha; Managoli, Noopur A; Rairam, Surabhi G; Patil, Ashwini M

    2013-01-01

    Abfraction or Theory of Abfraction is a theory explaining the non-carious cervical lesions (NCCL). It suggests that they are caused by flexural forces, usually from cyclic loading; the enamel, especially at the cementoenamel junction (CEJ), undergoes this pattern of destruction by separating the enamel rods. Clinical aspect importance of these ineart lesions are at most important to be detected for early intervention and treatment modalities as options during the progression of the disease. How to cite this article: Shetty SM, Shetty RG, Mattigatti S, Managoli NA, Rairam SG, Patil AM. No Carious Cervical Lesions: Abfraction. J Int Oral Health 2013; 5(5):142-5. PMID:24324319

  4. The Protective Effects of Curcumin on Experimental Acute Liver Lesion Induced by Intestinal Ischemia-Reperfusion through Inhibiting the Pathway of NF-κB in a Rat Model

    PubMed Central

    Fan, Zhe; Jing, Huirong; Yao, Jihong; Li, Yang; Hu, Xiaowei; Shao, Huizhu; Shen, Gang; Pan, Jiyong; Luo, Fuwen; Tian, Xiaofeng

    2014-01-01

    Objective. In this study, we investigated the protective effect and mechanism of curcumin on a rat model of intestinal ischemia/reperfusion (I/R), which induces an acute liver lesion. Methods. Curcumin was injected into rats in the curcumin groups through left femoral vein. The same volume of vehicle (0.9% normal saline) was injected into sham and I/R groups. Blood and liver tissue were gathered for serological and histopathological determination. Results. Intestinal I/R led to severe liver injury manifested as a significant increase in serum AST and ALT levels; all of those were reduced by treatment with curcumin. Simultaneously, the activity of SOD in liver decreased after intestinal I/R, which was increased by curcumin treatment. On the other hand, curcumin reduced MPO activity of liver tissue, as well as serum IL-6 and TNF-α levels observably. This is in parallel with the decreased level of liver intercellular cell adhesion molecule-1 (ICAM-1) and nuclear factor-κB (NF-κB) expression. Conclusion. Our findings suggest that curcumin treatment attenuates liver lesion induced by intestinal I/R, attributable to the antioxidative and anti-inflammatory effect via inhibition of the NF-κB pathway. PMID:25215173

  5. Extensive lesions of monkeypox in a prairie dog (Cynomys sp).

    PubMed

    Langohr, I M; Stevenson, G W; Thacker, H L; Regnery, R L

    2004-11-01

    Monkeypox with extensive lesions was diagnosed in a prairie dog that was involved in a recent human outbreak of monkeypox in the Midwestern United States. Gross lesions included oral ulcers, pulmonary consolidation, enlarged cervical and thoracic lymph nodes, and multifocal, small, white umbilicated plaques in the gastrointestinal wall. Microscopic lesions were extensive in the lungs and consisted of fibrinonecrotic bronchopneumonia with vasculitis and poorly defined eosinophilic intracytoplasmic inclusion bodies in cells thought to be alveolar epithelial cells, histiocytes, and fibroblasts. Multifocal necrotizing lesions, often accompanied by myxedema, were also present in most of the other examined organs. Aggregates of pox viral particles were observed within lesions by transmission electron microscopy. Monkeypox virus infection was confirmed by real-time polymerase chain reaction and virus culture at the Centers for Disease Control and Prevention. This report highlights the difficulties of rapid diagnosis of exotic or emerging diseases and further substantiates the prairie dog as an animal model of monkeypox.

  6. Anti-Ulcerogenic Effect of Methanolic Extracts from Enicosanthellum pulchrum (King) Heusden against Ethanol-Induced Acute Gastric Lesion in Animal Models

    PubMed Central

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2–7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4–7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol. PMID:25379712

  7. Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models.

    PubMed

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.

  8. Electrocautery for Precancerous Anal Lesions

    Cancer.gov

    Results from a randomized clinical trial conducted in Amsterdam suggest that electrocautery is better than topical imiquimod or fluorouracil at treating potentially precancerous anal lesions in HIV-positive men who have sex with men.

  9. Gram stain of skin lesion

    MedlinePlus

    ... may be done along with this test. Other studies are often done on a skin sample to determine if cancer is present. Viral skin lesions like herpes simplex are examined by other tests or a viral culture.

  10. Osteochondral Lesions of Major Joints

    PubMed Central

    Durur-Subasi, Irmak; Durur-Karakaya, Afak; Yildirim, Omer Selim

    2015-01-01

    This paper provides information about osteochondral lesions (OCL) and example cases of OCL occurring in major joints, some of which are rarely seen. This simple tutorial is presented in question and answer format. PMID:26180500

  11. The effects of prenatal methylmercury exposure on trace element and antioxidant levels in rats following 6-hydroxydopamine-induced neuronal insult.

    PubMed

    Mohamed Moosa, Zulfiah; Daniels, Willie M U; Mabandla, Musa V

    2014-06-01

    Methylmercury (MeHg) is a metal toxin found commonly in the environment. Studies have shown severe neurotoxic effects of MeHg poisoning especially during pregnancy where it crosses the foetoplacental and the blood brain barrier of the foetus leading to neurodevelopmental deficits in the offspring. These deficits may predispose offspring to neurodegenerative diseases later in life. In this study we investigated the effects of prenatal methylmercury exposure (2.5 mg/L in drinking water from GND 1-GND 21) on the trace element status in the brain of adolescent offspring (PND 28). Total antioxidant capacity (TAC) was measured in their blood plasma. In a separate group of animals that was also exposed prenatally to MeHg, 6-hydroydopamine (6-OHDA) was administered at PND 60 as a model of neuronal insult. Trace element and TAC levels were compared before and after 6-OHDA exposure. Prenatal MeHg treatment alone resulted in significantly higher concentrations of zinc, copper, manganese and selenium in the brain of offspring at PND 28 (p < 0.05), when compared to controls. In contrast, brain iron levels in MeHg-exposed adolescent offspring were significantly lower than their controls (p < 0.05). Following 6-OHDA exposure, the levels of iron, zinc, copper and manganese were increased compared to sham-lesioned offspring (p < 0.05). Prenatal MeHg exposure further increased these trace element levels thereby promoting toxicity (p < 0.05). Total antioxidant capacity was not significantly different in MeHg and control groups prior to lesion. However, following 6-OHDA administration, MeHg-exposed animals had a significantly lower TAC than that of controls (p < 0.05). Brain TAC levels were higher in adult male rats than in female rats during adolescence however male rats that had been exposed to MeHg in utero failed to show this increase at PND 74. Prenatal MeHg exposure results in trace element dyshomeostasis in the brain of offspring and reduces total

  12. Asterixis in focal brain lesions.

    PubMed

    Degos, J D; Verroust, J; Bouchareine, A; Serdaru, M; Barbizet, J

    1979-11-01

    Asterixis was observed in 20 cases of focal brain lesions. Metabolic or toxic factors were excluded. An electromyogram study of asterixis was carried out in nine cases to establish the diagnosis. The site of the focal lesion was either parietal or mesencephalic and was always contralateral to the asterixis. "Focal asterixis" could result from a dysfunction of the sensorimotor integration in the parietal lobe and the midbrain.

  13. Benign Pediatric Salivary Gland Lesions.

    PubMed

    Carlson, Eric R; Ord, Robert A

    2016-02-01

    Salivary gland lesions are rare in pediatric patients. In addition, the types of salivary gland tumors are different in their distribution in specific sites in the major and minor salivary glands in children compared with adults. This article reviews benign neoplastic and nonneoplastic salivary gland disorders in pediatric patients to help clinicians to develop an orderly differential diagnosis that will lead to expedient treatment of pediatric patients with salivary gland lesions.

  14. Endoscopic Management of Dieulafoy's Lesion

    PubMed Central

    Jeon, Hye Kyung

    2015-01-01

    A Dieulafoy's lesion is a vascular abnormality consisting of a large caliber-persistent tortuous submucosal artery. A small mucosal defect with the eruption of this protruding vessel can cause bleeding. In fact, a Dieulafoy's lesion is a relatively rare but potentially life-threatening condition. It accounts for 1% to 2% of cases of acute gastrointestinal bleeding. Although there is no consensus on the treatment of Dieulafoy's lesions; treatment options depend on the mode of presentation, site of the lesion, and available expertise. Endoscopic therapy is usually successful in achieving primary hemostasis, with hemostasis success rates reaching 75% to 100%. Although various therapeutic endoscopic methods are used to control bleeding in Dieulafoy's lesions, the best method for endoscopic intervention is not clear. Combination endoscopic therapy is known to be superior to monotherapy because of a lower rate of recurrent bleeding. In addition, mechanical therapies including hemostatic clipping and endoscopic band ligation are more effective and successful in controlling bleeding than other endoscopic methods. Advances in endoscopic techniques have reduced mortality in patients with Dieulafoy's lesion-from 80% to 8%-and consequently, the need for surgical intervention has been reduced. Currently, surgical intervention is used for cases that fail therapeutic endoscopic or angiographic interventions. PMID:25844338

  15. Autoimmune control of lesion growth in CNS with minimal damage

    NASA Astrophysics Data System (ADS)

    Mathankumar, R.; Mohan, T. R. Krishna

    2013-07-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.

  16. Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine

    SciTech Connect

    Kavanagh, Edel T.; Loughlin, John P.; Herbert, Kate Reed; Dockery, Peter; Samali, Afshin; Doyle, Karen M.; Gorman, Adrienne M. . E-mail: adrienne.gorman@nuigalway.ie

    2006-12-29

    6-Hydroxydopamine (6-OHDA) is often used in models of Parkinson's disease since it can selectively target and kill dopaminergic cells of the substantia nigra. In this study, pre-treatment of PC12 cells with nerve growth factor (NGF) inhibited apoptosis and necrosis by 6-OHDA, including caspase activity and lactate dehydrogenase release. Notably, cells exposed to 6-OHDA in the presence of NGF were subsequently capable of proliferation (when replated without NGF), or neurite outgrowth (with continued presence of NGF). Following 7 days growth in the presence of NGF, expression of {beta}III tubulin and tyrosine hydroxylase and increased intracellular catecholamines was detectable in PC12 cells, features characteristic of functional dopaminergic neurons. NGF-pre-treated PC12 cells retained expression of {beta}III-tubulin and tyrosine hydroxylase, but not catecholamine content following 6-OHDA exposure. These data indicate that NGF-protected cells maintained some aspects of functionality and were subsequently capable of proliferation or differentiation.

  17. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  18. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons. PMID:26730494

  19. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson's disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.

    PubMed

    Chang, Jui-Chih; Wu, Shey-Lin; Liu, Ko-Hung; Chen, Ya-Hui; Chuang, Chieh-Sen; Cheng, Fu-Chou; Su, Hong-Lin; Wei, Yau-Huei; Kuo, Shou-Jen; Liu, Chin-San

    2016-04-01

    Although restoration of mitochondrial function in mitochondrial diseases through peptide-mediated allogeneic mitochondrial delivery (PMD) has been demonstrated in vitro, the in vivo therapeutic efficacy of PMD in Parkinson's disease (PD) has yet to be determined. In this study, we compared the functionality of mitochondrial transfer with or without Pep-1 conjugation in neurotoxin (6-hydroxydopamine, 6-OHDA)-induced PC12 cells and PD rat models. We injected mitochondria into the medial forebrain bundle (MFB) of the PD rats after subjecting the nigrostriatal pathway to a unilateral 6-OHDA lesion for 21 days, and we verified the effectiveness of the mitochondrial graft in enhancing mitochondrial function in the soma of the substantia nigra (SN) neuron through mitochondrial transport dynamics in the nigrostriatal circuit. The result demonstrated that only PMD with allogeneic and xenogeneic sources significantly sustained mitochondrial function to resist the neurotoxin-induced oxidative stress and apoptotic death in the rat PC12 cells. The remaining cells exhibited a greater capability of neurite outgrowth. Furthermore, allogeneic and xenogeneic transplantation of peptide-labeled mitochondria after 3 months improved the locomotive activity in the PD rats. This increase was accompanied by a marked decrease in dopaminergic neuron loss in the substantia nigra pars compacta (SNc) and consistent enhancement of tyrosine hydroxylase-positive immunoreaction of dopaminergic neurons in the SNc and striatum. We also observed that in the SN dopaminergic neuron in the treated PD rats, mitochondrial complex I protein and mitochondrial dynamics were restored, thus ameliorating the oxidative DNA damage. Moreover, we determined signal translocation of graft allogeneic mitochondria from the MFB to the calbindin-positive SN neuron, which demonstrated the regulatory role of mitochondrial transport in alleviating 6-OHDA-induced degeneration of dopaminergic neurons.

  20. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    PubMed Central

    Kosaraju, Jayasankar; Chinni, Santhivardhan; Roy, Partha Deb; Kannan, Elango; Antony, A. Shanish; Kumar, M. N. Satish

    2014-01-01

    Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). Materials and Methods: T. cordifolia ethanol extract (TCEE) was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 μg). Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg) and two experimental groups (n = 6/group). Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein) and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein) at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18) and 400 mg/kg (1.11 ± 0.15) when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation. PMID:24741189

  1. Antimicrobial Peptide, Lumbricusin, Ameliorates Motor Dysfunction and Dopaminergic Neurodegeneration in a Mouse Model of Parkinson's Disease.

    PubMed

    Kim, Dae Hong; Lee, Ik Hwan; Nam, Seung Taek; Hong, Ji; Zhang, Peng; Lu, Li Fang; Hwang, Jae Sam; Park, Ki Cheol; Kim, Ho

    2015-10-01

    We recently reported that the antimicrobial peptide Lumbricusin (NH2-RNRRWCIDQQA), isolated from the earthworm, increases cell proliferation in neuroblastoma SH-SY5Y cells. Here, we investigated whether Lumbricusin has neurotropic activity in mouse neural stem cells (MNSCs) and a protective effect in a mouse model of Parkinson's disease (PD). In MNSCs isolated from mouse brains, Lumbricusin treatment significantly increased cell proliferation (up to 12%) and reduced the protein expression of p27(Kip1) through proteasomal protein degradation but not transcriptional regulation. Lumbricusin inhibited the 6-OHDA-induced apoptosis of MNSCs, and also showed neuroprotective effects in a mouse PD model, ameliorating the motor impairments seen in the pole, elevated body swing, and rotation tests. These results suggest that the Lumbricusin-induced promotion of neural cell proliferation via p27(Kip1) degradation has a protective effect in an experimental PD model. Thus, the antimicrobial peptide Lumbricusin could possibly be developed as a potential therapeutic agent for the treatment of PD. PMID:26215270

  2. Optical Assessment of Caries Lesion Structure and Activity

    NASA Astrophysics Data System (ADS)

    Lee, Robert Chulsung

    New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. It is not sufficient to simply detect caries lesions, methods are needed to assess the activity of the lesion and determine if chemical or surgical intervention is needed. Previous studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface lesion structure and measure the thickness of the highly mineralized surface zone. Other studies have demonstrated that the rate of dehydration can be correlated with the lesion activity and that the rate can be measured using optical methods. The main objective of this work was to test the hypothesis that optical methods can be used to assess lesion activity on tooth coronal and root surfaces. Simulated caries models were used to develop and validate an algorithm for detecting and measuring the highly mineralized surface layer using PS-OCT. This work confirmed that the algorithm was capable of estimating the thickness of the highly mineralized surface layer with high accuracy. Near-infrared (NIR) reflectance and thermal imaging methods were used to assess activity of caries lesions by measuring the state of lesion hydration. NIR reflectance imaging performed the best for artificial enamel and natural coronal caries lesion samples, particularly at wavelengths coincident with the water absorption band at 1460-nm. However, thermal imaging performed the best for artificial dentin and natural root caries lesion samples. These novel optical methods outperformed the conventional methods (ICDAS II) in accurately assessing lesion activity of natural coronal and root caries lesions. Infrared-based imaging methods have shown potential for in-vivo applications to objectively assess caries lesion activity in a single examination. It is likely that if future clinical trials are a success, this novel imaging

  3. Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis.

    PubMed

    Pustina, Dorian; Coslett, H Branch; Turkeltaub, Peter E; Tustison, Nicholas; Schwartz, Myrna F; Avants, Brian

    2016-04-01

    The gold standard for identifying stroke lesions is manual tracing, a method that is known to be observer dependent and time consuming, thus impractical for big data studies. We propose LINDA (Lesion Identification with Neighborhood Data Analysis), an automated segmentation algorithm capable of learning the relationship between existing manual segmentations and a single T1-weighted MRI. A dataset of 60 left hemispheric chronic stroke patients is used to build the method and test it with k-fold and leave-one-out procedures. With respect to manual tracings, predicted lesion maps showed a mean dice overlap of 0.696 ± 0.16, Hausdorff distance of 17.9 ± 9.8 mm, and average displacement of 2.54 ± 1.38 mm. The manual and predicted lesion volumes correlated at r = 0.961. An additional dataset of 45 patients was utilized to test LINDA with independent data, achieving high accuracy rates and confirming its cross-institutional applicability. To investigate the cost of moving from manual tracings to automated segmentation, we performed comparative lesion-to-symptom mapping (LSM) on five behavioral scores. Predicted and manual lesions produced similar neuro-cognitive maps, albeit with some discussed discrepancies. Of note, region-wise LSM was more robust to the prediction error than voxel-wise LSM. Our results show that, while several limitations exist, our current results compete with or exceed the state-of-the-art, producing consistent predictions, very low failure rates, and transferable knowledge between labs. This work also establishes a new viewpoint on evaluating automated methods not only with segmentation accuracy but also with brain-behavior relationships. LINDA is made available online with trained models from over 100 patients. PMID:26756101

  4. Skin lesions in returning travellers.

    PubMed

    Korzeniewski, Krzysztof; Juszczak, Dariusz; Jerzemowski, Janusz

    2015-01-01

    Skin lesions, apart from diarrhoeas, fever of unknown origin, and respiratory tract infections belong to the most frequent medical problems in travellers returned from tropical and subtropical destinations, accounting more than 10% of reported cases. Most dermatoses have their clinical onset during travel, although some of them can occur after return. Travel-related dermatological problems can have a wide spectrum of clinical picture, from macular, popular or nodular rash, linear and migratory lesions, to plaques, vesicles, bullae, erosions or ulcers. Skin conditions in returning travellers may be of infectious and non-infectious aetiologies. Infectious lesions may be originally tropical (e.g. dengue, chikungunya, schistosomiasis, leishmaniasis, myiasis, tungiasis, loiasis), although the majority are cosmopolitan (arthropod bites, sunburns, allergic rashes). The evaluation of skin lesions depends on many factors, including immune status of patients, use of medicines, exposure on health hazards (fauna, flora, risky behaviours), as well as the time, duration and location of travel. As the number of travellers to tropical and subtropical destinations has been continuously rising, the number of skin illnesses has also been increasing. This means that specialists in travel medicine need to extend their knowledge of epidemiology, clinical features and diagnosis of travel-related health problems including skin lesions in returning travellers. PMID:26394319

  5. Skin lesions in returning travellers.

    PubMed

    Korzeniewski, Krzysztof; Juszczak, Dariusz; Jerzemowski, Janusz

    2015-01-01

    Skin lesions, apart from diarrhoeas, fever of unknown origin, and respiratory tract infections belong to the most frequent medical problems in travellers returned from tropical and subtropical destinations, accounting more than 10% of reported cases. Most dermatoses have their clinical onset during travel, although some of them can occur after return. Travel-related dermatological problems can have a wide spectrum of clinical picture, from macular, popular or nodular rash, linear and migratory lesions, to plaques, vesicles, bullae, erosions or ulcers. Skin conditions in returning travellers may be of infectious and non-infectious aetiologies. Infectious lesions may be originally tropical (e.g. dengue, chikungunya, schistosomiasis, leishmaniasis, myiasis, tungiasis, loiasis), although the majority are cosmopolitan (arthropod bites, sunburns, allergic rashes). The evaluation of skin lesions depends on many factors, including immune status of patients, use of medicines, exposure on health hazards (fauna, flora, risky behaviours), as well as the time, duration and location of travel. As the number of travellers to tropical and subtropical destinations has been continuously rising, the number of skin illnesses has also been increasing. This means that specialists in travel medicine need to extend their knowledge of epidemiology, clinical features and diagnosis of travel-related health problems including skin lesions in returning travellers.

  6. Histochemical identification of malignant and premalignant lesions

    NASA Astrophysics Data System (ADS)

    Liebow, Charles; Maloney, M. J.

    1991-06-01

    Malignant and transforming cells can be identified by biochemical parameters which can be used to localize lesions in situ for laser surgery. These cells express unique proteins, proteins in unusual quantities, or other biochemical alterations which can be utilized to image lesions of such cells. Several methods have been identified, both in vitro and in vivo, to identify such lesions. Several antibodies were examined for their properties of tissue identification, including CEA, F36/22, and AE1/AE3. F36/22, an antibody developed by M. T. Chu against human breast cancer cells, associated with two lines of oral cancer (KB and HCPC), and against two naturally occurring human oral squamous cell cancers. CEA, an antibody developed against human colon cancer, also reacted against both cell lines and both pathological samples. AE1/AE3, developed against normal fibrous components, also reacted against the samples, but in a much less regular manner. F36/22 associated with the histologically identifiably most dedifferentiated cells at the leading edge of the invading cancer. CEA, on the other hand, associated with more quiescent, older, established cancer cells. This demonstrates that antibodies developed against cancers of different organs can be used to identify a wide variety of cancers, and may have prognostic value. F36/22 coupled to fluorescein was used to identify oral cancer cells. Other properties of cancers and developing cancers can also be exploited to identify cancers, including their over-expression of tyrosine kinase and tyrosine kinase stimulating hormones such as Epidermal Growth Factor (EGF). A model of premalignant lesion produced in the hamster buccal cheek pouch with 6 week application of DMBA over-expresses constitutive tyrosine kinase which can be demonstrated biochemically. This initiated lesion can be promoted to frank cancer by growth factors released in response to laser surgery. Preliminary results suggest that these lesions can be identified by

  7. Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells.