Science.gov

Sample records for 6-ohda lesion model

  1. Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson's Disease

    PubMed Central

    Thiele, Sherri L.; Warre, Ruth; Nash, Joanne E.

    2012-01-01

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients1-4. However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise3,5. In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice9,10. However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer11. More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this model has proven

  2. T-Lymphocyte Deficiency Exacerbates Behavioral Deficits in the 6-OHDA Unilateral Lesion Rat Model for Parkinson’s Disease

    PubMed Central

    Wheeler, Christopher J; Seksenyan, Akop; Koronyo, Yosef; Rentsendorj, Altan; Sarayba, Danielle; Wu, Henry; Gragg, Ashley; Siegel, Emily; Thomas, Deborah; Espinosa, Andres; Thompson, Kerry; Black, Keith; Koronyo-Hamaoui, Maya; Pechnick, Robert; Irvin, Dwain K

    2014-01-01

    T-lymphocytes have been previously implicated in protecting dopaminergic neurons in the substantianigra from induced cell death. However, the role of T-cells in neurodegenerative models such as Parkinson’s disease (PD) has not been fully elucidated. To examine the role of T-lymphocytes on motor behavior in the 6-hydroxydopamine (6-OHDA) unilateral striatal partial lesion PD rat model, we assessed progression of hemi-parkinsonian lesions in the substantia nigra, induced by 6-OHDA striatal injections, in athymic rats (RNU−/−, T-lymphocyte-deficient) as compared to RNU−/+ rats (phenotypically normal). Motor skills were determined by the cylinder and D-amphetamine sulfate-induced rotational behavioral tests. Cylinder behavioral test showed no significant difference between unilaterally lesioned RNU−/− and RNU−/+ rats. However both unilaterally lesioned RNU−/− and RNU−/+ rats favored the use of the limb ipsilateral to lesion. Additionally, amphetamine-induced rotational test revealed greater rotational asymmetry in RNU−/− rats compared to RNU−/+ rats at two- and six-week post-lesion. Quantitative immunohistochemistry confirmed loss of striatal TH-immunopositive fibers in RNU−/− and RNU−/+ rat, as well as blood-brain-barrier changes associated with PD that may influence passage of immune cells into the central nervous system in RNU−/− brains. Specifically, GFAP immunopositive cells were decreased, as were astrocytic end-feet (AQP4) contacting blood vessels (laminin) in the lesioned relative to contralateral striatum. Flow cytometric analysis in 6-OHDA lesioned RNU−/+rats revealed increased CD4+ and decreased CD8+ T cells specifically within lesioned brain. These results suggest that both major T cell subpopulations are significantly and reciprocally altered following 6-OHDA-lesioning, and that global T cell deficiency exacerbates motor behavioral defects in this rat model of PD. PMID:25346865

  3. The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions.

    PubMed

    Bagga, V; Dunnett, S B; Fricker, R A

    2015-07-15

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway produce side-biased motor impairments that reflect the motor deficits seen in Parkinson's disease (PD). This toxin-induced model in the rat has been used widely, to evaluate possible therapeutic strategies, but has not been well established in mice. With the advancements in mouse stem cell research we believe the requirement for a mouse model is essential for the therapeutic potential of these and other mouse-derived cells to be efficiently assessed. This aim of this study focused on developing a mouse model of PD using the 129 P2/OLA Hsd mouse strain as this is widely used in the generation of mouse embryonic stem cells. Both unilateral 6-OHDA medial forebrain bundle (MFB) and striatal lesion protocols were compared, with mice analysed for appropriate drug-induced rotational bias. Results demonstrated that lesioned mice responded to d-amphetamine with peak rotation dose at 5mg/kg and 10mg/kg for MFB and striatal lesions respectively. Apomorphine stimulation produced no significant rotational responses, at any dose, in either the MFB or striatal 6-OHDA lesioned mice. Analysis of dopamine neuron loss revealed that the MFB lesion was unreliable with little correlation between dopamine neuron loss and rotational asymmetry. Striatal lesions however were more reliable, with a strong correlation between dopamine neuron loss and rotational asymmetry. Functional recovery of d-amphetamine-induced rotational bias was shown following transplantation of E13 mouse VM tissue into the lesioned striatum; confirming the validity of this mouse model. PMID:25841616

  4. A partial lesion model of Parkinson's disease in mice--characterization of a 6-OHDA-induced medial forebrain bundle lesion.

    PubMed

    Boix, Jordi; Padel, Thomas; Paul, Gesine

    2015-05-01

    The most frequently used animal models for Parkinson's disease (PD) utilize unilateral injection of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB), which results in total denervation of the dopaminergic nigrostriatal pathway. However, neuroprotective interventions in PD require models resembling earlier stages of PD, where some dopaminergic cells and fibres remain. The aim of the present study was therefore to establish a MFB partial lesion model in mice. We tested four different 6-OHDA doses, and our results show a dose-dependent loss of nigral dopaminergic cells and striatal fibres that correlated with behavioural impairment in several behavioural tests. Specifically, doses of 0.7 μg and 1 μg of 6-OHDA induced a partial denervation of the nigrostriatal pathway, associated with a mild but quantifiable behavioural impairment. We identified the amphetamine-induced rotation, stepping, corridor and cylinder test to be sensitive enough to select partial lesion animals. Based on our data, we proposed a range of cut-off values for these different behavioural tests to select partial lesion mice. Using a statistical prediction model we identified two behavioural tests (the stepping test and amphetamine-induced rotation test) that with a high sensitivity and specificity predict the extent of nigral dopaminergic cell loss and select mice with a partial nigrostriatal lesion prior to further interventions. This model can serve as an important tool to study neuroprotective therapies for PD in mouse models, especially when the treatment targets the substantia nigra and/or the striatum. PMID:25698603

  5. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group. PMID:24140562

  6. RGS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease.

    PubMed

    Ko, Wai Kin D; Martin-Negrier, Marie-Laure; Bezard, Erwan; Crossman, Alan R; Ravenscroft, Paula

    2014-10-01

    Regulators of G-protein signalling (RGS) proteins are implicated in striatal G-protein coupled receptor (GPCR) sensitisation in the pathophysiology of l-DOPA-induced abnormal involuntary movements (AIMs), also known as dyskinesia (LID), in Parkinson's disease (PD). In this study, we investigated RGS protein subtype 4 in the expression of AIMs in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID. The effects of RGS4 antisense brain infusion on the behavioural and molecular correlates of l-DOPA priming in 6-OHDA-lesioned rats were assessed. In situ hybridisation revealed that repeated l-DOPA/benserazide treatment caused an elevation of RGS4 mRNA levels in the striatum, predominantly in the lateral regions. The increased expression of RGS4 mRNA in the rostral striatum was found to positively correlate with the behavioural (AIM scores) and molecular (pre-proenkephalin B, PPE-B expression) markers of LID. We found that suppressing the elevation of RGS4 mRNA in the striatum by continuous infusion of RGS4 antisense oligonucleotides, via implanted osmotic mini-pumps, during l-DOPA priming, reduced the induction of AIMs. Moreover, ex vivo analyses of the rostral dorsolateral striatum showed that RGS4 antisense infusion attenuated l-DOPA-induced elevations of PPE-B mRNA and dopamine-stimulated [(35)S]GTPγS binding, a marker used for measuring dopamine receptor super-sensitivity. Taken together, these data suggest that (i) RGS4 proteins play an important pathophysiological role in the development and expression of LID and (ii) suppressing the elevation of RGS4 mRNA levels in l-DOPA priming attenuates the associated pathological changes in LID, dampening its physiological expression. Thus, modulating RGS4 proteins could prove beneficial in the treatment of dyskinesia in PD. PMID:24969021

  7. LPA signaling is required for dopaminergic neuron development and is reduced through low expression of the LPA1 receptor in a 6-OHDA lesion model of Parkinson's disease.

    PubMed

    Yang, Xiao-Yun; Zhao, Ethan Y; Zhuang, Wen-Xin; Sun, Feng-Xiang; Han, Hai-Lin; Han, Hui-Rong; Lin, Zhi-Juan; Pan, Zhi-Fang; Qu, Mei-Hua; Zeng, Xian-Wei; Ding, Yuchuan

    2015-11-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that activates at least five known G-protein-coupled receptors (GPCRs): LPA1-LPA5. The nervous system is a major locus for LPA1 expression. LPA has been shown to regulate neuronal proliferation, migration, and differentiation during central nervous system development as well as neuronal survival. Furthermore, deficient LPA signaling has been implicated in several neurological disorders including neuropathic pain and schizophrenia. Parkinson's disease (PD) is a neurodegenerative movement disorder that results from the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). The specific molecular pathways that lead to DA neuron degeneration, however, are poorly understood. The influence of LPA in the differentiation of mesenchymal stem cells (MSCs) into DA neurons in vitro and LPA1 expression in a 6-hydroxydopamine (6-OHDA) lesion model of PD in vivo were examined in the present study. LPA induced neuronal differentiation in 80.2 % of the MSC population. These MSCs developed characteristic neuronal morphology and expressed the neuronal marker, neuron-specific enolase (NSE), while expression of the glial marker, glial fibrillary acidic protein (GFAP), was absent. Moreover, 27.6 % of differentiated MSCs were positive for tyrosine hydroxylase (TH), a marker for DA neurons. In the 6-OHDA PD rat model, LPA1 expression in the substantia nigra was significantly reduced compared to control. These results suggest LPA signaling via activation of LPA1 may be necessary for DA neuron development and survival. Furthermore, reduced LPA/LPA1 signaling may be involved in DA neuron degeneration thus contributing to the pathogenesis of PD. PMID:26169757

  8. Unprecedented Therapeutic Potential with a Combination of A2A/NR2B Receptor Antagonists as Observed in the 6-OHDA Lesioned Rat Model of Parkinson's Disease

    PubMed Central

    Michel, Anne; Downey, Patrick; Nicolas, Jean-Marie; Scheller, Dieter

    2014-01-01

    In Parkinson's disease, the long-term use of dopamine replacing agents is associated with the development of motor complications; therefore, there is a need for non-dopaminergic drugs. This study evaluated the potential therapeutic impact of six different NR2B and A2A receptor antagonists given either alone or in combination in unilateral 6-OHDA-lesioned rats without (monotherapy) or with (add-on therapy) the co-administration of L-Dopa: Sch-58261+ Merck 22; Sch-58261+Co-101244; Preladenant + Merck 22; Preladenant + Radiprodil; Tozadenant + Radiprodil; Istradefylline + Co-101244. Animals given monotherapy were assessed on distance traveled and rearing, whereas those given add-on therapy were assessed on contralateral rotations. Three-way mixed ANOVA were conducted to assess the main effect of each drug separately and to determine whether any interaction between two drugs was additive or synergistic. Additional post hoc analyses were conducted to compare the effect of the combination with the effect of the drugs alone. Motor activity improved significantly and was sustained for longer when the drugs were given in combination than when administered separately at the same dose. Similarly, when tested as add-on treatment to L-Dopa, the combinations resulted in higher levels of contralateral rotation in comparison to the single drugs. Of special interest, the activity observed with some combinations could not be described by a simplistic additive effect and involved more subtle synergistic pharmacological interactions. The combined administration of A2A/NR2B-receptor antagonists improved motor behaviour in 6-OHDA rats. Given the proven translatability of this model such a combination may be expected to be effective in improving motor symptoms in patients. PMID:25513815

  9. Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson's disease and L-DOPA-induced dyskinesia.

    PubMed

    Kobylecki, Christopher; Crossman, Alan R; Ravenscroft, Paula

    2013-09-01

    Abnormal corticostriatal plasticity is a key mechanism of L-DOPA-induced dyskinesia (LID) in Parkinson's disease (PD). Antagonists at glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, such as IEM 1460, reduce induction and expression of dyskinesia in rat and non-human primate models of PD. AMPA receptor function is regulated by post-transcriptional splicing of subunit mRNA to produce flip and flop isoforms, which may therefore influence corticostriatal plasticity. The aim of this work was to evaluate alterations in alternative splicing of striatal AMPA receptor subunits in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID and PD. Male Sprague-Dawley rats received 12.5 μg 6-OHDA injections into the right medial forebrain bundle. In experiment 1, to assess acute dyskinesia, rats received L-DOPA/benserazide (6/15 mg/kg, i.p.) or vehicle for 21 days. In experiment 2, to assess dyskinesia priming, rats received vehicle, L-DOPA+vehicle or L-DOPA+IEM 1460 (3 mg/kg, i.p.) for 21 days. Animals were humanely killed 1h following final treatment in experiment 1, and 48 h following final treatment in experiment 2. Coronal sections of rostral striatum were processed for in situ hybridisation histochemistry, using oligonucleotide probes specific for the GluR1 and GluR2 subunits and their flip and flop isoforms. L-DOPA treatment increased GluR2-flip mRNA expression in the lesioned striatum of both groups; this was blocked by the Ca(2+)-permeable AMPA receptor antagonist IEM 1460. GluR1-flip expression was increased after 48 h drug washout but not in acute LID. There were no changes in expression of flop isoforms. Alternative splicing of AMPAR subunits contributes to abnormal striatal plasticity in the induction and expression of LID. Increases in GluR2-flip expression depend on activation of Ca(2+)-permeable AMPA receptors, which are a potential target of anti-dyskinetic therapies. PMID:23360800

  10. Interhemispheric modulation of dopamine receptor interactions in unilateral 6-OHDA rodent model.

    PubMed

    Lawler, C P; Gilmore, J H; Watts, V J; Walker, Q D; Southerland, S B; Cook, L L; Mathis, C A; Mailman, R B

    1995-12-01

    A critical assumption in the unilateral 6-hydroxydopamine (6-OHDA) model is that interactions between the intact and denervated hemispheres do not influence the response to insult. The present study examined this issue by assessing the effects of unilateral substantia nigra 6-OHDA lesions in rats that previously had received corpus callosum transections, a treatment designed to minimize interhemispheric influences. Quantitative autoradiography in the caudate-putamen ipsilateral to the lesion revealed that corpus callosum transection did not alter the increase in D2-like receptors ([125I]-epidepride-labeled sites) that is induced by unilateral 6-OHDA lesion. There were no effects of either 6-OHDA lesion or transection on D1 receptor density ([125I]-SCH23982 autoradiography). As a functional endpoint, dopamine-stimulated cAMP efflux was measured in superfused striatal slices. In this paradigm, the net effect of dopamine (DA) represents a combination of D1 receptor-mediated stimulation and D2 receptor-mediated inhibition. 6-OHDA lesion increased cAMP efflux induced by exposure to 100 microM DA alone; corpus callosum transection did not alter this effect. An interaction between 6-OHDA lesion and transection status was revealed, however, by comparison of results obtained with DA alone vs. DA plus the D2 antagonist sulpiride (to block the D2 inhibitory effects of 100 microM DA). This comparison revealed two important effects of 6-OHDA lesion in rats with an intact corpus callosum: 1) a moderate decrease in dopamine D1 receptor-mediated stimulation; and 2) a dramatic decrease in the ability of D2 receptors to inhibit this stimulation. Corpus callosum transection prevented these effects of 6-OHDA. These results provide a biochemical demonstration of D1:D2 receptor uncoupling in unilateral 6-OHDA lesioned rats, and suggest that interhemispheric influences (e.g., contralateral cortico-striatal glutamatergic projections) may contribute to lesion-induced alterations in D1:D2

  11. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats.

    PubMed

    Mu, Xin; Yuan, Xia; Du, Li-Da; He, Guo-Rong; Du, Guan-Hua

    2016-01-01

    Quercetin, a flavonoid present in many plants, is reported to be effective in models of neurodegenerative diseases. The aim of the present study was to evaluate the anti-tremor effects of quercetin in 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. In rats, quercetin had no effect on apomorphine-induced rotations, but it could significantly attenuate muscle tremor of 6-OHDA lesioned rats. Interestingly, quercetin could decrease the burst frequency in a dose- and time-dependent manner. These results suggest that quercetin may have a protective effect on models to mimic muscle tremors of Parkinson's disease. This effect of quercetin may be associated with serotonergic system, but further study is needed. PMID:26217978

  12. ACTIVATION OF PPAR GAMMA RECEPTORS REDUCES LEVODOPA-INDUCED DYSKINESIAS IN 6-OHDA-LESIONED RATS

    PubMed Central

    Martinez, A. A.; Morgese, M. G.; Pisanu, A.; Macheda, T.; Paquette, M. A.; Seillier, A.; Cassano, T.; Carta, A.R.; Giuffrida, A.

    2014-01-01

    Long-term administration of L-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson’s disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb and oro-facial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) [1]. In this study, we showed that stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268 and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa antiparkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID. PMID:25486547

  13. Embryonic MGE Precursor Cells Grafted into Adult Rat Striatum Integrate and Ameliorate Motor Symptoms in 6-OHDA-Lesioned Rats

    PubMed Central

    Martínez-Cerdeño, Verónica; Noctor, Stephen C.; Espinosa, Ana; Ariza, Jeanelle; Parker, Philip; Orasji, Samantha; Daadi, Marcel M.; Bankiewicz, Krystof; Alvarez-Buylla, Arturo; Kriegstein, Arnold R.

    2014-01-01

    SUMMARY We investigated a strategy to ameliorate the motor symptoms of rats that received 6-hydroxydopamine (6-OHDA) lesions, a rodent model of Parkinson’s disease, through transplantation of embryonic medial ganglionic eminence (MGE) cells into the striatum. During brain development, embryonic MGE cells migrate into the striatum and neocortex where they mature into GABAergic interneurons and play a key role in establishing the balance between excitation and inhibition. Unlike most other embryonic neurons, MGE cells retain the capacity for migration and integration when transplanted into the postnatal and adult brain. We performed MGE cell transplantation into the basal ganglia of control and 6-OHDA-lesioned rats. Transplanted MGE cells survived, differentiated into GABA+ neurons, integrated into host circuitry, and modifed motor behavior in both lesioned and control rats. Our data suggest that MGE cell transplantation into the striatum is a promising approach to investigate the potential benefits of remodeling basal ganglia circuitry in neurodegenerative diseases. PMID:20207227

  14. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity. PMID:26707254

  15. Effects of L-Dopa on circadian rhythms of 6-OHDA striatal lesioned rats: a radiotelemetric study.

    PubMed

    Boulamery, Audrey; Simon, Nicolas; Vidal, Johanna; Bruguerolle, Bernard

    2010-01-01

    Temporal variation in the motor function of Parkinson's disease (PD) patients suggests the potential importance of a chronobiological and chronopharmacological approach in its clinical management. We previously documented the effects of striatal injection of 6-OHDA (as an animal model of PD) on the circadian rhythms of temperature (T), heart rate (HR), and locomotor activity (A). The present work assessed the possible influence of L-Dopa on these same rhythms in the 6-OHDA animal model of PD. The study began after a four-week recovery period following surgical implantation of telemetric devices to monitor the study variables and/or anaesthesia. The study was divided into an initial one-week control period (W1) for baseline measurement of T, HR, and A rhythms. Thereafter, stereotaxic 6-OHDA lesioning was done. and a second monitoring for two weeks followed (W2, W3). Rats were then randomly divided into two groups: eight control rats received, via a mini-osmotic pump implanted subcutaneously, the excipient saline; the other eight rats received L-Dopa (100 mg/kg SC/day). After a seven-day period (W4), the pumps were removed and the T, HR, and A rhythms were monitored for two weeks (W5 and W6). To control for 6-OHDA striatal dopamine-induced depletion, 12 other rats were injected by identical methods (eight rats with 6-OHDA and four controls with saline) and sacrificed at W1, W3, and W5 for dopamine striatal content determination. To verify the delivery of levodopa from the osmotic pumps, plasma levels of levodopa and its main metabolites 3-OMD, DOPAC, and HVA were determined on separate group of rats receiving the drug under the same experimental conditions (osmotic pumps delivering continuously 10 microl/h for seven days, 100 mg/kg/subcutaneously). Our results agree with previously reported rhythmic changes induced by 6-OHDA--loss of circadian rhythmicity or changes in the main parameters of the registered rhythms. When circadian rhythmicity was abolished, L

  16. Ontogenetic manganese exposure with perinatal 6-OHDA lesioning alters behavioral responses of rats to dopamine D₁ and D2 agonist treatments.

    PubMed

    Szkilnik, Ryszard; Brus, Ryszard; Malinowska-Borowska, Jolanta; Nowak, Damian; Waliczek, Martyna; Kostrzewa, Richard M; Nowak, Przemyslaw

    2014-01-01

    The effect of neonatal manganese (Mn) exposure in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease was investigated. Pregnant Wistar rats were given drinking water with 10,000 ppm of Manganese (MnCl₂.4H₂O) from the time of conception until weaning on the 21st day after delivery. Control rats consumed tap water. Three days after the birth, other groups of neonatal rat pups were pretreated with desipramine (20 mg/kg ip 1h) prior to bilateral ICV administration of 6-OHDA or its vehicle, saline-ascorbic (0.1%) (control). Two months after the birth, striatal dopamine and homovanilic acid efflux measured by an in vivo microdialysis method were reduced in rats lesioned with 6-OHDA. Co-exposure to perinatal Mn did not modify neurotransmission alterations. However, there were prominent abnormalities in behavioral testing in rats perinatally exposed to Mn and treated neonatally with 6-OHDA. These findings demonstrate that although Mn did not further damage neurotransmitter activity in the neostriatum, ontogenetic exposure to Mn enhances the behavioral toxicity to 6-OHDA. PMID:24295730

  17. Dynamic of neurochemical alterations in striatum, hippocampus and cortex after the 6-OHDA mesostriatal lesion.

    PubMed

    Zhang, Sheng; Gui, Xue-Hong; Xue, Zhong-Feng; Huang, Li-Ping; Fang, Ruo-Ming; Ke, Xue-Hong; Li, Ling; Fang, Yong-Qi

    2014-08-01

    Immediate neurochemical alterations produced by 6-OHDA could explain the general toxic pattern in the central nervous system. However, no evidences describe the effects of 6-OHDA on early changes of neurotransmitters in rats' striatum, cortex and hippocampus. In our study, unilateral 6-OHDA injection into medial forebrain bundle (MFB) was used in rats, then five neurotransmitters were analyzed at 3, 6, 12, 24, 48 and 72 h, respectively. Results showed that 6-OHDA injection caused a sharp decline of striatal dopamine (DA) levels in the first 12h followed by a further reduction between 12 and 48 h. However, striatal levels of homovanillic acid (HVA) were stable in the first 12h and showed a marked reduction between 12 and 24h. Striatal levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) decreased linearly for 72 h, whereas levels of norepinephrine (NE) showed a slight reduction in the first 48 h, and returned back to normal afterwards. Striatal HVA/DA ratio increased significantly in the first 12h, but 5-HIAA/5-HT ratio showed a sharp increase between 12 and 72 h. Besides, neurochemical alterations were also found in hippocampus and cortex, and the correlations of neurotransmitters were analyzed. Our study indicated that NE system had little influence in the early phase of 6-OHDA injection, moreover, early neurochemical alterations were involved with striatum, hippocampus and cortex. PMID:24814667

  18. Behavioural Assessment of the A2a/NR2B Combination in the Unilateral 6-OHDA-Lesioned Rat Model: A New Method to Examine the Therapeutic Potential of Non-Dopaminergic Drugs.

    PubMed

    Michel, Anne; Downey, Patrick; Van Damme, Xavier; De Wolf, Catherine; Schwarting, Rainer; Scheller, Dieter

    2015-01-01

    In Parkinson's disease (PD), dopaminergic therapies are often associated with the development of motor complications. Attention has therefore been focused on the use of non-dopaminergic drugs. This study developed a new behavioural method capable of demonstrating the added value of combining adenosinergic and glutamatergic receptor antagonists in unilateral 6-OHDA lesioned rats. Rats were dosed orally with Tozadenant, a selective A2A receptor antagonist, and three different doses of Radiprodil, an NR2B-selective NMDA receptor antagonist. The drugs were given alone or in combination and rats were placed in an open-field for behavioural monitoring. Video recordings were automatically analysed. Five different behaviours were scored: distance traveled, ipsi- and contraversive turns, body position, and space occupancy. The results show that A2A or NR2B receptor antagonists given alone or in combination did not produce enhanced turning as observed with an active dose of L-Dopa/benserazide. Instead the treated rats maintained a straight body position, were able to shift from one direction to the other and occupied a significantly larger space in the arena. The highest "Tozadenant/Radiprodil" dose combination significantly increased all five behavioural parameters recorded compared to rats treated with vehicle or the same doses of the drugs alone. Our data suggest that the A2A/NR2B antagonist combination may be able to stimulate motor activity to a similar level as that achieved by L-Dopa but in the absence of the side-effects that are associated with dopaminergic hyperstimulation. If these results translate into the clinic, this combination could represent an alternative symptomatic treatment option for PD. PMID:26322641

  19. Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson's Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties.

    PubMed

    Ximenes, José Christian Machado; Neves, Kelly Rose Tavares; Leal, Luzia Kalyne A M; do Carmo, Marta Regina Santos; Brito, Gerly Anne de Castro; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Ésper Abrão; Viana, Glauce Socorro de Barros

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder where the main hallmark is the dopaminergic neuronal loss. Besides motor symptoms, PD also causes cognitive decline. Although current therapies focus on the restoration of dopamine levels in the striatum, prevention or disease-modifying therapies are urgently needed. Valproic acid (VA) is a wide spectrum antiepileptic drug, exerting many biochemical and physiological effects. It has been shown to inhibit histone deacetylase which seems to be associated with the drug neuroprotective action. The objectives were to study the neuroprotective properties of VA in a model of Parkinson's disease, consisting in the unilateral striatal injection of the neurotoxin 6-OHDA. For that, male Wistar rats (250 g) were divided into the groups: sham-operated (SO), untreated 6-OHDA-lesioned, and 6-OHDA-lesioned treated with VA (25 or 50 mg/kg). Oral treatments started 24 h after the stereotaxic surgery and continued daily for 2 weeks, when the animals were subjected to behavioral evaluations (apomorphine-induced rotations and open-field tests). Then, they were sacrificed and had their mesencephalon, striatum, and hippocampus dissected for neurochemical (DA and DOPAC determinations), histological (Fluoro-Jade staining), and immunohistochemistry evaluations (TH, OX-42, GFAP, TNF-alpha, and HDAC). The results showed that VA partly reversed behavioral and neurochemical alterations observed in the untreated 6-OHDA-lesioned rats. Besides, VA also decreased neuron degeneration in the striatum and reversed the TH depletion observed in the mesencephalon of the untreated 6-OHDA groups. This neurotoxin increased the OX-42 and GFAP immunoreactivities in the mesencephalon, indicating increased microglia and astrocyte reactivities, respectively, which were reversed by VA. In addition, the immunostainings for TNF-alpha and HDAC demonstrated in the untreated 6-OHDA-lesioned rats were also decreased after VA treatments. These results were

  20. Valproic Acid Neuroprotection in the 6-OHDA Model of Parkinson's Disease Is Possibly Related to Its Anti-Inflammatory and HDAC Inhibitory Properties

    PubMed Central

    Ximenes, José Christian Machado; Neves, Kelly Rose Tavares; Leal, Luzia Kalyne A. M.; do Carmo, Marta Regina Santos; Brito, Gerly Anne de Castro; Naffah-Mazzacoratti, Maria da Graça; Cavalheiro, Ésper Abrão; Viana, Glauce Socorro de Barros

    2015-01-01

    Parkinson's disease is a neurodegenerative disorder where the main hallmark is the dopaminergic neuronal loss. Besides motor symptoms, PD also causes cognitive decline. Although current therapies focus on the restoration of dopamine levels in the striatum, prevention or disease-modifying therapies are urgently needed. Valproic acid (VA) is a wide spectrum antiepileptic drug, exerting many biochemical and physiological effects. It has been shown to inhibit histone deacetylase which seems to be associated with the drug neuroprotective action. The objectives were to study the neuroprotective properties of VA in a model of Parkinson's disease, consisting in the unilateral striatal injection of the neurotoxin 6-OHDA. For that, male Wistar rats (250 g) were divided into the groups: sham-operated (SO), untreated 6-OHDA-lesioned, and 6-OHDA-lesioned treated with VA (25 or 50 mg/kg). Oral treatments started 24 h after the stereotaxic surgery and continued daily for 2 weeks, when the animals were subjected to behavioral evaluations (apomorphine-induced rotations and open-field tests). Then, they were sacrificed and had their mesencephalon, striatum, and hippocampus dissected for neurochemical (DA and DOPAC determinations), histological (Fluoro-Jade staining), and immunohistochemistry evaluations (TH, OX-42, GFAP, TNF-alpha, and HDAC). The results showed that VA partly reversed behavioral and neurochemical alterations observed in the untreated 6-OHDA-lesioned rats. Besides, VA also decreased neuron degeneration in the striatum and reversed the TH depletion observed in the mesencephalon of the untreated 6-OHDA groups. This neurotoxin increased the OX-42 and GFAP immunoreactivities in the mesencephalon, indicating increased microglia and astrocyte reactivities, respectively, which were reversed by VA. In addition, the immunostainings for TNF-alpha and HDAC demonstrated in the untreated 6-OHDA-lesioned rats were also decreased after VA treatments. These results were

  1. Local Change in Urinary Bladder Contractility Following CNS Dopamine Denervation in the 6-OHDA Rat Model of Parkinson’s Disease

    PubMed Central

    Mitra, Reinika; Aronsson, Patrik; Winder, Michael; Tobin, Gunnar; Bergquist, Filip; Carlsson, Thomas

    2015-01-01

    Abstract Background: Urinary problems, including urinary frequency, urgency, and nocturia are some of the non-motor symptoms that correlate most with poor quality of life in Parkinson’s disease. However, the mechanism behind these symptoms is poorly understood, in particular regarding peripheral bladder pathophysiology following dopamine degeneration. Objective: In this study, we compared the contractile responsiveness of urinary bladder from the 6-OHDA unilateral rat model of Parkinson’s disease with that of normal untreated animals. Methods: The contractility of the urinary detrusor muscle was evaluated in bladder strip preparations using electrical field stimulation, and muscarinic and purinoceptor stimulations in an vitro organ bath setup. Results: Our data show that the overall contractile response following electrical field stimulation was significantly higher (43% at maximum contraction by 20–40 Hz stimulation) in the 6-OHDA-lesioned rats as compared to control animals. This increase was associated with a significant increase in the cholinergic contractile response, where the muscarinic agonist methacholine produced a 44% (at 10 −4 M concentration) higher response in the 6-OHDA-treated rats as compared to controls with a significant left-shift of the dose response. This indicates an altered sensitivity of the muscarinic receptor system following the specific central 6-OHDA-induced dopamine depletion. In addition a 36% larger contraction of strips from the 6-OHDA animals was also observed with purinoceptor activation using the agonist ATP (5×10 −3 M) during atropine treatment. Conclusions: Our data shows that it is not only the central dopamine control of the micturition reflex that is altered in Parkinson’s disease, but also the local contractile function of the urinary bladder. The current study draws attention to a mechanism of urinary dysfunction in Parkinson’s disease that has previously not been described. PMID:25697958

  2. Relationship of dopamine to serotonin in the neonatal 6-OHDA rat model of Lesch-Nyhan syndrome.

    PubMed

    Allen, S M; Davis, W M

    1999-09-01

    Rats were treated as neonates with either 6-hydroxydopamine (6-OHDA) 100 micrograms or vehicle intracisternally. Upon maturation, animals receiving 6-OHDA were assigned to four groups, with two of the four groups receiving intraventricular 5,7-dihydroxytryptamine (5,7-DHT) 75 micrograms bilaterally. At 94 days of age, animals were injected with either SKF-38393 (3.0 mg/kg, intraperitoneally (i.p.)), a dopamine D1 agonist, or m-chlorophenylpiperazine (m-CPP) (3.0 mg/kg, i.p.), a 5-HT2C agonist, in an attempt to evoke behaviors such as stereotypical chewing, head-nodding, self-biting and self-mutilation. Both SKF-38393 and m-CPP induced the target behaviors in animals receiving 6-OHDA alone. Animals receiving additional 5,7-DHT treatment did not show any of the target behaviors in response to SKF-38393, but exhibited a much higher sensitivity to m-CPP. Pre-treatment with SCH-23390 in animals receiving 6-OHDA alone was effective in preventing SKF-38393-induced target behaviors, but not those induced by m-CPP. Pre-treatment with mianserin partially antagonized the effects of both SKF-38393 and m-CPP in these same animals. In groups receiving both neonatal 6-OHDA and adult 5,7-DHT, mianserin was effective in reducing m-CPP-induced behaviors, while SCH-23390 was largely ineffective. These data provide evidence of a serial relationship between the D1 and 5-HT2C receptor systems in the neostriatum of animals receiving neonatal 6-OHDA lesions. PMID:10780253

  3. Nitrosative and cognitive effects of chronic L-DOPA administration in rats with intra-nigral 6-OHDA lesion.

    PubMed

    Ramírez-García, G; Palafox-Sánchez, V; Limón, I D

    2015-04-01

    Besides motor disturbances, other symptoms found in the early stage of Parkinson's disease (PD) are deficits in both learning and memory. The nigro-striatal-cortical pathway is affected in this pathology, with this neuronal circuit involved in cognitive processes such as spatial working memory (SWM). However, cognitive dysfunction appears even when the patients are receiving L-DOPA treatment. There is evidence that the dopamine metabolism formed by L-DOPA generates free radicals such as nitric oxide, which may cause damage through the nitrosative stress (NS). The aim of this study was to evaluate both the effects of chronic L-DOPA administration on SWM and the production of NS in rats using an intra-nigral lesion caused by 6-hydroxydopamine (6-OHDA). Post-lesion, the animals were administered orally with L-DOPA/Carbidopa (100-mg/kg) for 20 days. An SWM task in a Morris water maze was conducted post-treatment. Nitrite levels and immunoreactivity of 3-Nitrotyrosine (3-NT), Inducible Nitric Oxide Synthase (iNOS), Glial Fibrillary Acidic Protein (GFAP), and Tyrosine Hydroxylase (TH) were evaluated in the substantia nigra pars compacta, the dorsal striatum and the medial prefrontal cortex. Our results show that chronic L-DOPA administration in rats with intra-nigral 6-OHDA-lesion caused significant increases in SWM deficit, nitrite levels and the immunoreactivity of 3-NT, iNOS and GFAP in the nigro-striatal-cortical pathway. These facts suggest that as L-DOPA can induce NS in rats with dopaminergic intra-nigral lesion, it could play a key role in the impairment of the SWM, and thus can be considered as a toxic mechanism that induces cognitive deficit in PD patients. PMID:25644418

  4. Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson's Disease.

    PubMed

    Umarao, Preeti; Bose, Samrat; Bhattacharyya, Supti; Kumar, Anil; Jain, Suman

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the dopaminergic neurons of the substantia nigra leading to various motor and non-motor deficits. We explored the neuroprotective potential of superparamagnetic iron oxide nanoparticles (IONPs) along with exposure to EMF in 6-OHDA rat model of PD. IONPs were implanted at the site of lesion and 24 h thereafter the rats were exposed to magnetic fields 2 h/day for one week. Bilateral lesions of the striatum were made with 6-OHDA. The rats in all the intervention groups improved progressively over the days and by post-surgery day 4 they were active and bright. We observed a significant beneficial effect of the IONPs implantation and MF exposure on feeding behavior, gait and postural stability. There was a significant enhancement of mitochondrial function and attenuation of lesion volume in all the intervention groups as compared to PD. The results demonstrate neuroprotective effect of iron oxide nanoparticle implantation and magnetic field exposure in an in vivo 6-OHDA rat model of PD. PMID:27398453

  5. EGCG Protects against 6-OHDA-Induced Neurotoxicity in a Cell Culture Model

    PubMed Central

    Chen, Dan; Kanthasamy, Anumantha G.; Reddy, Manju B.

    2015-01-01

    Background. Parkinson's disease (PD) is a progressive neurodegenerative disease that causes severe brain dopamine depletion. Disruption of iron metabolism may be involved in the PD progression. Objective. To test the protective effect of (−)-epigallocatechin-3-gallate (EGCG) against 6-hydroxydopamine- (6-OHDA-) induced neurotoxicity by regulating iron metabolism in N27 cells. Methods. Protection by EGCG in N27 cells was assessed by SYTOX green assay, MTT, and caspase-3 activity. Iron regulatory gene and protein expression were measured by RT-PCR and Western blotting. Intracellular iron uptake was measured using 55Fe. The EGCG protection was further tested in primary mesencephalic dopaminergic neurons by immunocytochemistry. Results. EGCG protected against 6-OHDA-induced cell toxicity. 6-OHDA treatment significantly (p < 0.05) increased divalent metal transporter-1 (DMT1) and hepcidin and decreased ferroportin 1 (Fpn1) level, whereas pretreatment with EGCG counteracted the effects. The increased 55Fe (by 96%, p < 0.01) cell uptake confirmed the iron burden by 6-OHDA and was reduced by EGCG by 27% (p < 0.05), supporting the DMT1 results. Pretreatment with EGCG and 6-OHDA significantly increased (p < 0.0001) TH+ cell count (~3-fold) and neurite length (~12-fold) compared to 6-OHDA alone in primary mesencephalic neurons. Conclusions. Pretreatment with EGCG protected against 6-OHDA-induced neurotoxicity by regulating genes and proteins involved in brain iron homeostasis, especially modulating hepcidin levels. PMID:26770869

  6. Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson's Disease

    PubMed Central

    Bitu Pinto, Natália; da Silva Alexandre, Bruno; Neves, Kelly Rose Tavares; Silva, Aline Holanda; Leal, Luzia Kalyne A. M.; Viana, Glauce S. B.

    2015-01-01

    Camellia sinensis (green tea) is largely consumed, mainly in Asia. It possesses several biological effects such as antioxidant and anti-inflammatory properties. The objectives were to investigate the neuroprotective actions of the standardized extract (CS), epicatechin (EC) and epigallocatechin gallate (EGCG), on a model of Parkinson's disease. Male Wistar rats were divided into SO (sham-operated controls), untreated 6-OHDA-lesioned and 6-OHDA-lesioned treated for 2 weeks with CS (25, 50, or 100 mg/kg), EC (10 mg/kg), or EGCG (10 mg/kg) groups. One hour after the last administration, animals were submitted to behavioral tests and euthanized and their striata and hippocampi were dissected for neurochemical (DA, DOPAC, and HVA) and antioxidant activity determinations, as well as immunohistochemistry evaluations (TH, COX-2, and iNOS). The results showed that CS and catechins reverted behavioral changes, indicating neuroprotection manifested as decreased rotational behavior, increased locomotor activity, antidepressive effects, and improvement of cognitive dysfunction, as compared to the untreated 6-OHDA-lesioned group. Besides, CS, EP, and EGCG reversed the striatal oxidative stress and immunohistochemistry alterations. These results show that the neuroprotective effects of CS and its catechins are probably and in great part due to its powerful antioxidant and anti-inflammatory properties, pointing out their potential for the prevention and treatment of PD. PMID:26167188

  7. Behavioral and Neurochemical Effects of Alpha-Lipoic Acid in the Model of Parkinson's Disease Induced by Unilateral Stereotaxic Injection of 6-Ohda in Rat

    PubMed Central

    de Araújo, Dayane Pessoa; De Sousa, Caren Nádia Soares; Araújo, Paulo Victor Pontes; Menezes, Carlos Eduardo de Souza; Sousa Rodrigues, Francisca Taciana; Escudeiro, Sarah Souza; Lima, Nicole Brito Cortez; Patrocínio, Manoel Claúdio Azevedo; Aguiar, Lissiana Magna Vasconcelos; Viana, Glauce Socorro de Barros; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This study aimed to investigate behavioral and neurochemical effects of α-lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinson's disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α-Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α-lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α-lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α-lipoic could be a new therapeutic target for Parkinson's disease prevention and treatment. PMID:24023579

  8. The effects of subthalamic deep brain stimulation on mechanical and thermal thresholds in 6OHDA-lesioned rats.

    PubMed

    Gee, Lucy E; Chen, Nita; Ramirez-Zamora, Adolfo; Shin, Damian S; Pilitsis, Julie G

    2015-08-01

    Chronic pain is a major complaint for up to 85% of Parkinson's disease patients; however, it often not identified as a symptom of Parkinson's disease. Adequate treatment of motor symptoms often provides analgesic effects in Parkinson's patients but how this occurs remains unclear. Studies have shown both Parkinson's patients and 6-hydroxydopamine-lesioned rats exhibit decreased sensory thresholds. In humans, some show improvements in these deficits after subthalamic deep brain stimulation, while others report no change. Differing methods of testing and response criteria may explain these varying results. We examined this effect in 6-hydroxydopamine-lesioned rats. Sprague-Dawley rats were unilaterally implanted with subthalamic stimulating electrodes in the lesioned right hemisphere and sensory thresholds were tested using von Frey, tail-flick and hot-plate tests. Tests were done during and off subthalamic stimulation at 50 and 150 Hz to assess its effects on sensory thresholds. The 6-hydroxydopamine-lesioned animals exhibited lower mechanical (left paw, P < 0.01) and thermal thresholds than shams (hot plate, P < 0.05). Both 50 and 150 Hz increased mechanical (left paw; P < 0.01) and thermal thresholds in 6-hydroxydopamine-lesioned rats (hot-plate test: 150 Hz, P < 0.05, 50 Hz, P < 0.01). Interestingly, during von Frey testing, low-frequency stimulation provided a more robust improvement in some 6OHDA lesioned rats, while in others, the magnitude of improvement on high-frequency stimulation was greater. This study shows that subthalamic deep brain stimulation improves mechanical allodynia and thermal hyperalgesia in 6-hydroxydopamine-lesioned animals at both high and low frequencies. Furthermore, we suggest considering using low-frequency stimulation when treating Parkinson's patients where pain remains the predominant complaint. PMID:26082992

  9. Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D

    2016-08-01

    The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD. PMID:26164273

  10. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats

    PubMed Central

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson’s disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy. PMID:25395834

  11. Characterization of long-term motor deficits in the 6-OHDA model of Parkinson's disease in the common marmoset.

    PubMed

    Santana, M; Palmér, T; Simplício, H; Fuentes, R; Petersson, P

    2015-09-01

    Research aimed at developing new therapies for Parkinson's disease (PD) critically depend on valid animal models of the disease that allows for repeated testing of motor disabilities over extended time periods. We here present an extensive characterization of a wide range of motor symptoms in the 6-OHDA marmoset model of PD when tested over several months. The severity of motor deficits was quantified in two ways: (i) through manual scoring protocols appropriately adapted to include species specific motor behavior and (ii) using automated quantitative motion tracking based on image processing of the digital video recordings. We show that the automated methods allow for rapid and reliable characterization of motor dysfunctions, thus complementing the manual scoring procedures, and that robust motor symptoms lasting for several months could be induced when using a two-stage neurotoxic lesioning procedure involving one hemisphere at a time. This non-human primate model of PD should therefore be well suited for long-term evaluation of novel therapies for treatment of PD. PMID:25934488

  12. Neuroprotective effects of aqueous extracts of Uncaria tomentosa: Insights from 6-OHDA induced cell damage and transgenic Caenorhabditis elegans model.

    PubMed

    Shi, Zhenhua; Lu, Zhongbing; Zhao, Yashuo; Wang, Yueqi; Zhao-Wilson, Xi; Guan, Peng; Duan, Xianglin; Chang, Yan-Zhong; Zhao, Baolu

    2013-06-01

    Previous pharmacological studies have indicated that AC11 (a standardized aqueous extract of Uncaria tomentosa) has beneficial effects on DNA repair and immune function. However, its benefits go beyond this. The present study utilized electron spin resonance (ESR) and spin trapping technique, as well as the 6-OHDA-induced cell damage and transgenic Caenorhabditis elegans models, towards exploring the antioxidant and neuroprotective ability of AC11. Our results showed that AC11 could scavenge several types of free radicals, especially hydroxyl radicals (60% of hydroxyl radicals were scavenged by 30 μg/ml of AC11). In SH-SY5Y cells, we found that AC11 could dose dependently protect 6-OHDA induced cell damage by increase cell viability and mitochondrial membrane potential. AC11 pretreatment also significantly decreased the level of lipid peroxidation, intracellular reactive oxygen species and nitric oxide in 6-OHDA treated cells. In NL5901 C. elegans, 10 μg/ml AC11 could reduce the aggregation of α-synuclein by 40%. These findings encourage further investigation on AC11 and its active constituent compounds, as possible therapeutic intervention against Parkinson's disease. PMID:23500604

  13. Intraventricular administration of endoneuraminidase-N facilitates ectopic migration of subventricular zone-derived neural progenitor cells into 6-OHDA lesioned striatum of mice.

    PubMed

    Li, Chen; Zhang, Yong-Xin; Yang, Chun; Hao, Fei; Chen, Sha-Sha; Hao, Qiang; Lu, Tao; Qu, Ting-Yu; Zhao, Li-Ru; Duan, Wei-Ming

    2016-03-01

    Polysialic acid (PSA), a carbohydrate polymer associated with the neural cell adhesion molecule (NCAM), plays an important role in the migration, differentiation and maturation of neuroblasts. Endoneuraminidase-N (Endo-N) can specifically cleave PSA from NCAM. The objective of the present study was to examine: the effect of Endo-N on characteristics of subventricular zone (SVZ)-derived neural progenitor cells (NPCs) in vitro; whether intraventricular administration of Endo-N could increase ectopic migration of SVZ-derived NPCs into 6-hydroxydopamine (6-OHDA)-lesioned striatum, and whether migrated NPCs could differentiate into neuronal and glial cells. In in vitro study, Endo-N was found to inhibit the migration of NPCs, and to enhance the differentiation of NPCs. In in vivo study, mice sequentially received injections of 6-OHDA into the right striatum, Endo-N into the right lateral ventricle, and bromodeoxyuridine (BrdU) intraperitoneally. The data showed that intraventricular injections of Endo-N disorganized the normal structure of the rostral migratory stream (RMS), and drastically increased the number of BrdU-immunoreactive (IR) cells in 6-OHDA-lesioned striatum. In addition, a number of BrdU-IR cells were double labeled for doublecortin (DCX), NeuN or glial fibrillary acidic protein (GFAP). The results suggest that interruption of neuroblast chain pathway with Endo-N facilitates ectopic migration of SVZ-derived NPCs into the lesioned striatum, and migrated NPCs can differentiate into neurons and astrocytes. PMID:26724216

  14. Neurosteroid allopregnanolone attenuates cognitive dysfunctions in 6-OHDA-induced rat model of Parkinson's disease.

    PubMed

    Nezhadi, Akram; Sheibani, Vahid; Esmaeilpour, Khadijeh; Shabani, Mohammad; Esmaeili-Mahani, Saeed

    2016-05-15

    Cognitive deficits have an extensive influence on the quality of life of the Parkinson's disease (PD) patients. Previous studies have shown that lack of steroid hormones have an important role in the development of PD. Therefore, in this study the effects of neurosteroid allopregnanolone (Allo) on the PD-induced cognitive disorders were assessed. To simulate PD, 6-hydroxydopamine (6-OHDA) was injected into the rat's substantia nigra. Allo (5 and 20mg/kg, orally) were administered on the day after the 6-OHDA injection and continued during the entire treatment period (two months). Cognitive behaviors were assessed by Moris water maze (MWM), novel object recognition (NOR) and object location tasks. The data indicated that Allo significantly improved the 6-OHDA-induced cognitive impairment which revealed by the reduction of time spent to find out platform (escape latency) and the increase of retention time in MWM test and also with increase in the exploration index in NOR and object location tasks. Present study strongly supports the pro-cognitive property of allopregnanolone in PD. PMID:26970579

  15. The effect of additional noradrenergic and serotonergic depletion on a lateralised choice reaction time task in rats with nigral 6-OHDA lesions.

    PubMed

    Lindgren, Hanna S; Demirbugen, Merve; Bergqvist, Filip; Lane, Emma L; Dunnett, Stephen B

    2014-03-01

    Parkinson's disease (PD) patients often suffer from visuospatial deficits, which have been considered a disruption of the representation of external space. The lateralised choice reaction time (CRT) task is an operant task for rodents in which similar deficits can be assessed. It has been demonstrated that specific parameters in this task is disrupted after unilateral injections of 6-hydroxydopamine (6-OHDA), which have been associated with the dopamine (DA) depletion that inevitably follows this type of lesion. However, studies have demonstrated that this type of lesion also affects the serotonergic (5HT) and noradrenergic (NA) systems. However, the impact of these systems on parameters in the CRT task had not yet been investigated. To this end, rats were pretrained on the CRT task before receiving selective lesions of the DAergic system, either alone or in combination with depletion of the NA or 5HT system. All rats with a 6-OHDA lesion displayed a gradual decline in the selection, initiation and execution of lateralised movements compared to sham-lesion controls on the side contralateral to the lesion. They also displayed a reduced number of useable trials as well as an increased number of procedural errors. Interestingly, the group with an additional noradrenergic lesion was significantly slower in reacting to lateralised stimuli throughout the testing period compared to the other two groups with a 6-OHDA lesion. There was however no difference between the three different lesion groups in the other parameters assessed in the task. These data confirm previous findings demonstrating that the majority of the parameters assessed in the lateralised CRT task are strongly dependent on DA. However, this study has also shown that the NAergic system may play an important role in contributing to the attentive performance influencing the capacity to react to the presented lateralised stimuli. PMID:24333808

  16. Counteraction by nitric oxide synthase inhibitor of neurochemical alterations of dopaminergic system in 6-OHDA-lesioned rats under L-DOPA treatment.

    PubMed

    Del-Bel, Elaine; Padovan-Neto, Fernando Eduardo; Szawka, Raphael Escorsim; da-Silva, Célia Aparecida; Raisman-Vozari, Rita; Anselmo-Franci, Janete; Romano-Dutra, Angélica Caroline; Guimaraes, Francisco Silveira

    2014-01-01

    Nitric oxide synthase inhibitors reduce L-3, (Del-Bel et al., Cell Mol Neurobiol 25(2):371-392, 2005) 4-dihydroxyphenylalanine (L-DOPA)-induced abnormal motor effects subsequent to depletion of dopaminergic neurons in rodents and non-human primates. The present study used quantitative high-performance liquid chromatography to analyze, for the first time, dopamine metabolism in striatum of rats in order to elucidate the mechanism of action of the nitric oxide synthase inhibitors. Adult male Wistar rats received unilateral microinjection of saline (sham) or 6-hydroxydopamine (6-OHDA-lesioned) in the medial forebrain bundle. Past 3 weeks, rats were treated during 21 days with L-DOPA/benserazide (30 mg/kg/7.5 mg/kg, respectively, daily). On the 22nd day rats received an intraperitoneal (i.p.) injection of either vehicle or 7-nitroindazole, a preferential neuronal nitric oxide synthase inhibitor before L-DOPA. Abnormal involuntary movements and rotarod test were assessed as behavioral correlate of motor responses. Lesion intensity was evaluated through tyrosine hydroxylase immunohystochemical reaction. Dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and an extent of dopamine striatal tissue levels/dopamine metabolism were measured in the striatum. Lesion with 6-OHDA decreased dopamine, DOPAC, and DOPAC/dopamine ratio in the lesioned striatum. L-DOPA treatment induced abnormal involuntary movements and increased DOPAC/dopamine ratio (nearly five times) in the lesioned striatum. L-DOPA-induced dyskinesia was mitigated by 7-nitroindazole, which also decreased dopamine turnover, dopamine and DOPAC levels. Our results revealed an almost two times increase in dopamine content in the non-lesioned striatum of 6-OHDA-lesioned rats. Reduction of striatal DOPAC/dopamine ratio in dyskinetic rats may suggest an increase in the dopamine availability. Our data confirm contribution of nitrergic transmission in the pathogenesis of L-DOPA-induced dyskinesia with potential

  17. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC{delta} in cell culture and animal models of Parkinson's disease

    SciTech Connect

    Latchoumycandane, Calivarathan; Anantharam, Vellareddy; Jin, Huajun; Kanthasamy, Anumantha; Kanthasamy, Arthi

    2011-11-15

    The neurotoxicant 6-hydroxydopamine (6-OHDA) is used to investigate the cellular and molecular mechanisms underlying selective degeneration of dopaminergic neurons in Parkinson's disease (PD). Oxidative stress and caspase activation contribute to the 6-OHDA-induced apoptotic cell death of dopaminergic neurons. In the present study, we sought to systematically characterize the key downstream signaling molecule involved in 6-OHDA-induced dopaminergic degeneration in cell culture and animal models of PD. Treatment of mesencephalic dopaminergic neuronal N27 cells with 6-OHDA (100 {mu}M) for 24 h significantly reduced mitochondrial activity and increased cytosolic cytochrome c, followed by sequential activation of caspase-9 and caspase-3. Co-treatment with the free radical scavenger MnTBAP (10 {mu}M) significantly attenuated 6-OHDA-induced caspase activities. Interestingly, 6-OHDA induced proteolytic cleavage and activation of protein kinase C delta (PKC{delta}) was completely suppressed by treatment with a caspase-3-specific inhibitor, Z-DEVD-FMK (50 {mu}M). Furthermore, expression of caspase-3 cleavage site-resistant mutant PKC{delta}{sup D327A} and kinase dead PKC{delta}{sup K376R} or siRNA-mediated knockdown of PKC{delta} protected against 6-OHDA-induced neuronal cell death, suggesting that caspase-3-dependent PKC{delta} promotes oxidative stress-induced dopaminergic degeneration. Suppression of PKC{delta} expression by siRNA also effectively protected N27 cells from 6-OHDA-induced apoptotic cell death. PKC{delta} cleavage was also observed in the substantia nigra of 6-OHDA-injected C57 black mice but not in control animals. Viral-mediated delivery of PKC{delta}{sup D327A} protein protected against 6-OHDA-induced PKC{delta} activation in mouse substantia nigra. Collectively, these results strongly suggest that proteolytic activation of PKC{delta} is a key downstream event in dopaminergic degeneration, and these results may have important translational value for

  18. Molsidomine, a nitric oxide donor, modulates rotational behavior and monoamine metabolism in 6-OHDA lesioned rats treated chronically with L-DOPA.

    PubMed

    Lorenc-Koci, Elżbieta; Czarnecka, Anna; Lenda, Tomasz; Kamińska, Kinga; Konieczny, Jolanta

    2013-12-01

    Some biochemical and histological studies of Parkinson's disease patients' brains and 6-OHDA-lesioned rats suggest that dopaminergic dennervation of the striatum leads to the nitrergic system hypofunction in this structure. Hence, recently the modulation of nitric oxide (NO)- soluble guanylyl cyclase-cyclic GMP signaling is considered to be a new target for the treatment of Parkinson's disease. The aim of our study was to examine the impact of chronic combined treatment with low doses of the NO donor molsidomine (2 and 4mg/kg) and L-DOPA (12.5 and 25mg/kg) on rotational behavior and monoamine metabolism in the striatum (STR) and substantia nigra (SN) of unilaterally 6-OHDA-lesioned rats. Chronic administration of molsidomine at a dose of 2mg/kg jointly with 25mg/kg of L-DOPA significantly decreased the number of contralateral rotations when compared to L-DOPA alone. Other combinations of the examined drug doses were less effective. The tissue DA levels in the ipsilateral STR and SN after the last chronic doses of molsidomine (2mg/kg) and L-DOPA (12.5 or 25mg/kg), were significantly higher than after L-DOPA alone. Chronic L-DOPA treatment alone or jointly with a lower dose of molsidomine decreased 5-HT levels and accelerated its catabolism in the examined structures. However, combination of a higher dose of molsidomine with L-DOPA (25mg/kg) did not reduce 5-HT content while its catabolism was less intensive. The obtained results show that low doses of molsidomine can modulate rotational behavior and tissue DA and 5-HT concentrations in the STR and SN of 6-OHDA-lesioned rats treated chronically with L-DOPA. PMID:24090640

  19. Pentoxifylline Neuroprotective Effects Are Possibly Related to Its Anti-Inflammatory and TNF-Alpha Inhibitory Properties, in the 6-OHDA Model of Parkinson's Disease

    PubMed Central

    Neves, Kelly Rose Tavares; Nobre, Hélio Vitoriano; Leal, Luzia Kalyne A. M.; de Andrade, Geanne Matos; Brito, Gerly Anne de Castro; Viana, Glauce Socorro de Barros

    2015-01-01

    Pentoxifylline (PTX) is a phosphodiesterase inhibitor with anti-TNF-alpha activity, associated with its anti-inflammatory action. Considering Parkinson's disease (PD) as a neuroinflammatory disorder, the objectives were to evaluate PTX neuroprotective properties, in a model of PD. Male Wistar rats, divided into sham-operated (SO), untreated 6-OHDA, and 6-OHDA treated with PTX (10, 25, and 50 mg/kg) groups, received a unilateral 6-OHDA injection, except the SO group administered with saline. Treatments started 24 h after surgery and continued for 15 days when the animals were submitted to apomorphine-induced rotations, open field, and forced swimming tests. At the next day, they were euthanized and their striata processed for neurochemical (DA and DOPAC determinations), histological, and immunohistochemical (Fluoro-Jade, TH, DAT, OX-42, TNF-alpha, COX-2, and iNOS) studies. PTX reversed the behavioral changes observed in the untreated 6-OHDA animals. Furthermore, PTX partially reversed the decrease in DA contents and improved neuronal viability. In addition, decreases in immunostaining for TH and dopamine transporter (DAT) were reversed. The untreated 6-OHDA group showed intense OX-42, TNF-alpha, COX-2, and iNOS immunoreactivities, which were attenuated by PTX. In conclusion, we demonstrated a neuroprotective effect of PTX, possibly related to its anti-inflammatory and antioxidant actions, indicating its potential as an adjunct treatment for PD. PMID:26491600

  20. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    PubMed

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  1. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease

    PubMed Central

    Xu, Qi; Kanthasamy, Anumantha G.; Jin, Huajun; Reddy, Manju B.

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P < 0.0001) upregulated ferroportin 1 expression and significantly (P < 0.05) decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P < 0.05) and DNA fragmentation by 29% (P = 0.086) and increased cell viability by 22% (P < 0.05). In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P < 0.05) and intracellular iron by 28% (P < 0.01), indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  2. Altered extracellular striatal in vivo biotransformation of the opioid neuropeptide dynorphin A(1-17) in the unilateral 6-OHDA rat model of Parkinson's disease.

    PubMed

    Klintenberg, Rebecka; Andrén, Per E

    2005-02-01

    The in vivo biotransformation of dynorphin A(1-17) (Dyn A) was studied in the striatum of hemiparkinsonian rats by using microdialysis in combination with nanoflow reversed-phase liquid chromatography/electrospray time-of-flight mass spectrometry. The microdialysis probes were implanted into both hemispheres of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats. Dyn A (10 pmol microl(-1)) was infused through the probes at 0.4 microl min(-1) for 2 h. Samples were collected every 30 min and analyzed by mass spectrometry. The results showed for the first time that there was a difference in the Dyn A biotransformation when comparing the two corresponding sides of the brain. Dyn A metabolites 1-8, 1-16, 5-17, 10-17, 7-10 and 8-10 were detected in the dopamine-depleted striatum but not in the untreated striatum. Dyn A biotransformed fragments found in both hemispheres were N-terminal fragments 1-4, 1-5, 1-6, 1-11, 1-12 and 1-13, C-terminal fragments 2-17, 3-17, 4-17, 7-17 and 8-17 and internal fragments 2-5, 2-10, 2-11, 2-12, and 8-15. The relative levels of these fragments were lower in the dopamine-depleted striatum. The results imply that the extracellular in vivo processing of the dynorphin system is being disturbed in the 6-OHDA-lesion animal model of Parkinson's disease. PMID:15706626

  3. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD. PMID:25449120

  4. Neuropathology and behavioral impairments in Wistar rats with a 6-OHDA lesion in the substantia nigra compacta and exposure to a static magnetic field.

    PubMed

    Bertolino, Guilherme; Dutra Souza, Hugo Celso; de Araujo, João Eduardo

    2013-12-01

    Studies have sought to assess various potential neuroprotective therapeutics in Parkinson's disease. The aim of this study was to evaluate the effects of static magnetic field stimulation 14 days after a 6-Hydroxydopamine (6-OHDA) substantia nigra compacta (SNc) lesion on motor behavior, as assessed by the rotarod (RR) test and brain tissue morphology. Forty male Wistar rats were used and were divided into five groups: control group, sham group (SG), lesion group (LG), lesion north pole group (LNPG) and lesion south pole group (LSPG). In groups with magnetic stimulation, a 3200-gauss magnet was fixed to the skull. After the experiments, the animals were anesthetized for brain perfusion. Coronal sections of the SNc were stained with Nissl. The RR test showed a decrease in the time spent on the apparatus in the LG compared with all groups. The LNPG and LSPG had significant increases in the time spent when compared to the LG. A morphometric analysis revealed a significant reduction in the number of neurons in the LG, LNPG and LSPG in relation to the SG. There were a higher number of neurons in the LNPG and LSPG than the LG, and a higher number of neurons in the LSPG than the LNPG. We observed that the LG, LNPG and LSPG showed a higher number of glial cells than the SG, and the LNPG and LSPG showed a lower number of glial cells than the LG. Our results demonstrate a potential therapeutic use of static magnetic fields for the preservation of motor behavior and brain morphology in the SNc after 14 days with 6-OHDA lesion. PMID:23631668

  5. Selective blockade of mGlu5 metabotropic glutamate receptors is protective against hepatic mitochondrial dysfunction in 6-OHDA lesioned Parkinsonian rats.

    PubMed

    Ferrigno, Andrea; Vairetti, Mariapia; Ambrosi, Giulia; Rizzo, Vittoria; Richelmi, Plinio; Blandini, Fabio; Fuzzati-Armentero, Marie-Therese

    2015-06-01

    Non-motor symptoms including those involving the splanchnic district are present in Parkinson's disease (PD). The authors previously reported that PD-like rats, bearing a lesion of the nigrostriatal pathway induced by the injection of 6-hydroxydopamine (6-OHDA), have impaired hepatic mitochondrial function. Glutamate intervenes at multiple levels in PD and liver pathophysiologies. The metabotropic glutamate receptor 5 (mGluR5) is abundantly expressed in brain and liver and may represent a pharmacological target for PD therapy. This study investigated whether and how chronic treatment with 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a well-characterized mGluR5 antagonist, may influence hepatic function with regard to neuronal cell loss in PD-like rats. Chronic treatment with MPEP was started immediately (Early) or 4 weeks after (Delayed) intrastriatal injection of 6-OHDA and lasted 4 weeks. Early MPEP treatment significantly prevented the decrease in adenosine triphosphate (ATP) production/content and counteracted increased reactive oxygen species (ROS) formation in isolated hepatic mitochondria of PD-like animals. Early MPEP administration also reduced the toxin-induced neurodegenerative process; improved survival of nigral dopaminergic neurons correlated with enhanced mitochondrial ATP content and production. ATP content/production, in turn, negatively correlated with ROS formation suggesting that the MPEP-dependent improvement in hepatic function positively influenced neuronal cell survival. Delayed MPEP treatment had no effect on hepatic mitochondrial function and neuronal cell loss. Antagonizing mGluR5 may synergistically act against neuronal cell loss and PD-related hepatic mitochondrial alterations and may represent an interesting alternative to non-dopaminergic therapeutic strategies for the treatment of PD. PMID:25904005

  6. COMPARISON OF THE D1-DOPAMINE AGONIST SKF-38393 AND A-68930 IN NEONATAL 6-OHDA-LESIONED RATS: BEHAVIORAL EFFECTS AND INDUCTION OF C-FOS-LIKE IMMUNOREACTIVITY

    EPA Science Inventory

    Previous studies from this laboratory and others have found that neonatal 6-OHDA-lesioned rats exhibit profound behavioral manifestations, and significant induction of striatal c-fos-like immunoreactivity (FLI), when administered the selective D1-dopamine agonist SKF-38393. ith t...

  7. Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury.

    PubMed

    Liang, Zhigang; Shi, Fang; Wang, Yong; Lu, Li; Zhang, Zhanjun; Wang, Xuan; Wang, Xiaomin

    2011-06-22

    Tenuigenin, an active component of Polygala tenuifolia root extracts, has been shown to provide antioxidative and anti-aging effects in Alzheimer's disease, as well as to promote proliferation and differentiation of neural progenitor cells. However, the effects of tenuigenin on Parkinson's disease remain unclear. In the present study, SH-SY5Y cells were utilized to determine the effects of tenuigenin on 6-hydroxydopamine (6-OHDA)-induced injury. Results showed that 1.0 × 10⁻¹-10 μM tenuigenin significantly promoted cell viability and reduced cell death. In addition, tenuigenin protected mitochondrial membrane potential (MMP) against 6-OHDA damage and significantly increased glutathione and superoxide dismutase expression. At the mRNA level, tenuigenin resulted in down-regulation of caspase-3, but up-regulation of tyrosine hydroxylase expression in 6-OHDA damaged cells. These results suggested that tenuigenin provides neuroprotection to dopaminergic neurons from 6-OHDA-induced damage. The neuroprotective mechanisms might involve antioxidative effects, maintenance of mitochondrial function, and regulation of caspase-3 and tyrosine hydroxylase expression and activity. Tenuigenin could provide a novel antioxidative strategy for Parkinson's disease. PMID:21536104

  8. Salicylic acid protects against chronic L-DOPA-induced 6-OHDA generation in experimental model of parkinsonism.

    PubMed

    Borah, Anupom; Mohanakumar, Kochupurackal P

    2010-07-16

    The present study evaluated the ability of salicylic acid (SA) to attenuate long-term L-DOPA-induced 6-hydroxydopamine (6-OHDA) formation in the striatum of mice, and to protect against the resulting dopaminergic neurotoxicity. The production of 6-OHDA from dopamine in vitro from ferrous-ascorbate-dopamine (FAD) hydroxyl radical ((*)OH) generating system or in vivo in the striatum following prolonged administration of L-DOPA in mice were found to be significantly attenuated by SA. Intra-median forebrain bundle infusion of FAD, but not equivalent dose of ferrous ion or dopamine individually, caused significant striatal dopamine depletion, which was blocked by SA administration. The dose- and time-dependent increase in the formation of 6-OHDA following L-DOPA treatment in the mouse striatum was synergistically enhanced to the systemic administration of the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. SA treatment significantly attenuated the L-DOPA plus the parkinsonian neurotoxin-induced striatal 6-OHDA generation, and protected against striatal dopamine loss. The present study demonstrated a novel mode of dopaminergic neuroprotection by SA and its possible therapeutic implication in the treatment of Parkinson's disease. PMID:20470760

  9. An enteric nervous system progenitor cell implant promotes a behavioral and neurochemical improvement in rats with a 6-OHDA-induced lesion.

    PubMed

    Parra-Cid, Carmen; García-López, Julieta; García, Esperanza; Ibarra, Clemente

    2014-01-01

    The enteric nervous system (ENS) of mammals is derived from neural crest (NC) cells during embryogenesis and at the beginning of postnatal life. However, neural progenitor cells from the ENS (or ENSPC) are also found in the adult intestine and can be used for neuronal regeneration in diseases that lead to a loss of cell population, such as Parkinson's disease (PD), in which there is a decrease of dopaminergic neurons. The objective of this study was to evaluate the capacity of ENSPC to restore damaged nervous tissue and to show that they are functional for a behavioral and neurochemical recovery. We found that animals with ENSPC implants exhibited a motor recovery of 35% vs. the lesion group. In addition, DA levels were partially restored in 34%, while Homovanillic acid (HVA) levels remained at 21% vs. the group with a 6-Hydroxydopamine (6-OHDA)-induced lesion, suggesting that ENSPC represent a possible alternative in the study of cell transplants and the preservation of functional dopaminergic neurons in PD. PMID:24686028

  10. Intranasally applied L-DOPA alleviates parkinsonian symptoms in rats with unilateral nigro-striatal 6-OHDA lesions.

    PubMed

    Chao, Owen Y; Mattern, Claudia; Silva, Angelica M De Souza; Wessler, Janet; Ruocco, Lucia A; Nikolaus, Susanne; Huston, Joseph P; Pum, Martin E

    2012-02-10

    l-3,4-Dihydroxyphenylalanine (L-DOPA) remains the most effective drug for therapy of Parkinson's disease. However, the current clinical route of L-DOPA administration is variable and unreliable because of problems with drug absorption and first-pass metabolism. Administration of drugs via the nasal passage has been proven an effective alternate route for a number of medicinal substances. Here we examined the acute behavioral and neurochemical effects of intranasally (IN) applied L-DOPA in rats bearing unilateral lesions of the medial forebrain bundle, with severe depletion (97%) of striatal dopamine. Turning behavior in an open field, footslips on a horizontal grid and postural motor asymmetry in a cylinder were assessed following IN L-DOPA or vehicle administration with, or without, benserazide pre-treatment. IN L-DOPA without benserazide pre-treatment mildly decreased ipsilateral turnings and increased contralateral turnings 10-20 min after the treatment. IN L-DOPA with saline pre-treatment reduced contralateral forelimb-slips on the grid while no effects were evident in the cylinder test. These results support the hypothesis that L-DOPA can bypass the blood-brain barrier by the IN route and alleviate behavioral impairments in the hemiparkinsonian animal model. PMID:22108632

  11. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    PubMed

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo. PMID:23430275

  12. Two-step grafting significantly enhances the survival of foetal dopaminergic transplants and induces graft-derived vascularisation in a 6-OHDA model of Parkinson's disease.

    PubMed

    Büchele, Fabian; Döbrössy, Máté; Hackl, Christina; Jiang, Wei; Papazoglou, Anna; Nikkhah, Guido

    2014-08-01

    Following transplantation of foetal primary dopamine (DA)-rich tissue for neurorestaurative treatment of Parkinson's disease (PD), only 5-10% of the functionally relevant DAergic cells survive both in experimental models and in clinical studies. The current work tested how a two-step grafting protocol could have a positive impact on graft survival. DAergic tissue is divided in two portions and grafted in two separate sessions into the same target area within a defined time interval. We hypothesized that the first graft creates a "DAergic" microenvironment or "nest" similar to the perinatal substantia nigra that stimulates and protects the second graft. 6-OHDA-lesioned rats were sequentially transplanted with wild-type (GFP-, first graft) and transgenic (GFP+, second graft) DAergic cells in time interims of 2, 5 or 9days. Each group was further divided into two sub-groups receiving either 200k (low cell number groups: 2dL, 5dL, 9dL) or 400k cells (high cell number groups: 2dH, 5dH, 9dH) as first graft. During the second transplantation, all groups received the same amount of 200k GFP+ cells. Controls received either low or high cell numbers in one single session (standard protocol). Drug-induced rotations, at 2 and 6weeks after grafting, showed significant improvement compared to the baseline lesion levels without significant differences between the groups. Rats were sacrificed 8weeks after transplantation for post-mortem histological assessment. Both two-step groups with the time interval of 2days (2dL and 2dH) showed a significantly higher survival of DAergic cells compared to their respective standard control group (2dL, +137%; 2dH, +47%). Interposing longer intervals of 5 or 9days resulted in the loss of statistical significance, neutralising the beneficial two-step grafting effect. Furthermore, the transplants in the 2dL and 2dH groups had higher graft volume and DA-fibre-density values compared to all other two-step groups. They also showed intense growth of

  13. Reduced expression of choline acetyltransferase in vagal motoneurons and gastric motor dysfunction in a 6-OHDA rat model of Parkinson's disease.

    PubMed

    Zheng, Li-Fei; Wang, Zhi-Yong; Li, Xiao-feng; Song, Jin; Hong, Feng; Lian, Hui; Wang, Qian; Feng, Xiao-Yan; Tang, Yuan-yuan; Zhang, Yue; Zhu, Jin-Xia

    2011-10-28

    Parkinson's disease (PD) has been characterized by dopaminergic neuron degeneration in the substantia nigra (SN) accompanied by pathology of the dorsal motor nucleus of the vagus (DMV). PD patients have often experienced gastrointestinal dysfunctions, such as gastroparesis. However, the mechanism underlying these symptoms in PD patients is not clear. In the present study, we investigated alterations of cholinergic and catecholaminergic neurons in the DMV and gastric motor function in rats microinjected with 6-hydroxydopamine (6-OHDA) bilaterally into the SN (referred to as 6-OHDA rats) and explored possible mechanisms. A strain gauge force transducer was used to record gastric motility in vivo. Expression of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) was evaluated by immunofluorescence and western blot analysis. Acetylcholine (Ach) content was measured using ultra-performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS) analysis. After treatment with 6-OHDA for 6weeks, 6-OHDA rats exhibited decreased ChAT and enhanced TH expression in the DMV and decreased Ach content in the gastric muscular layer. Delayed gastric emptying and impaired gastric motility in vivo were observed in 6-OHDA rats. The results of the present study indicated that decreased ChAT and enhanced TH expression in the DMV may be correlated with the development of delayed gastric emptying and impaired gastric motility, which may be partly due to the decreased Ach release from the vagus. PMID:21955729

  14. Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism

    PubMed Central

    Grill, Warren M.

    2014-01-01

    Pathophysiological activity of basal ganglia neurons accompanies the motor symptoms of Parkinson's disease. High-frequency (>90 Hz) deep brain stimulation (DBS) reduces parkinsonian symptoms, but the mechanisms remain unclear. We hypothesize that parkinsonism-associated electrophysiological changes constitute an increase in neuronal firing pattern disorder and a concomitant decrease in information transmission through the ventral basal ganglia, and that effective DBS alleviates symptoms by decreasing neuronal disorder while simultaneously increasing information transfer through the same regions. We tested these hypotheses in the freely behaving, 6-hydroxydopamine-lesioned rat model of hemiparkinsonism. Following the onset of parkinsonism, mean neuronal firing rates were unchanged, despite a significant increase in firing pattern disorder (i.e., neuronal entropy), in both the globus pallidus and substantia nigra pars reticulata. This increase in neuronal entropy was reversed by symptom-alleviating DBS. Whereas increases in signal entropy are most commonly indicative of similar increases in information transmission, directed information through both regions was substantially reduced (>70%) following the onset of parkinsonism. Again, this decrease in information transmission was partially reversed by DBS. Together, these results suggest that the parkinsonian basal ganglia are rife with entropic activity and incapable of functional information transmission. Furthermore, they indicate that symptom-alleviating DBS works by lowering the entropic noise floor, enabling more information-rich signal propagation. In this view, the symptoms of parkinsonism may be more a default mode, normally overridden by healthy basal ganglia information. When that information is abolished by parkinsonian pathophysiology, hypokinetic symptoms emerge. PMID:24554786

  15. Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism.

    PubMed

    Dorval, Alan D; Grill, Warren M

    2014-05-01

    Pathophysiological activity of basal ganglia neurons accompanies the motor symptoms of Parkinson's disease. High-frequency (>90 Hz) deep brain stimulation (DBS) reduces parkinsonian symptoms, but the mechanisms remain unclear. We hypothesize that parkinsonism-associated electrophysiological changes constitute an increase in neuronal firing pattern disorder and a concomitant decrease in information transmission through the ventral basal ganglia, and that effective DBS alleviates symptoms by decreasing neuronal disorder while simultaneously increasing information transfer through the same regions. We tested these hypotheses in the freely behaving, 6-hydroxydopamine-lesioned rat model of hemiparkinsonism. Following the onset of parkinsonism, mean neuronal firing rates were unchanged, despite a significant increase in firing pattern disorder (i.e., neuronal entropy), in both the globus pallidus and substantia nigra pars reticulata. This increase in neuronal entropy was reversed by symptom-alleviating DBS. Whereas increases in signal entropy are most commonly indicative of similar increases in information transmission, directed information through both regions was substantially reduced (>70%) following the onset of parkinsonism. Again, this decrease in information transmission was partially reversed by DBS. Together, these results suggest that the parkinsonian basal ganglia are rife with entropic activity and incapable of functional information transmission. Furthermore, they indicate that symptom-alleviating DBS works by lowering the entropic noise floor, enabling more information-rich signal propagation. In this view, the symptoms of parkinsonism may be more a default mode, normally overridden by healthy basal ganglia information. When that information is abolished by parkinsonian pathophysiology, hypokinetic symptoms emerge. PMID:24554786

  16. Striatal Injury with 6-OHDA Transiently Increases Cerebrospinal GFAP and S100B.

    PubMed

    Batassini, Cristiane; Broetto, Núbia; Tortorelli, Lucas Silva; Borsoi, Milene; Zanotto, Caroline; Galland, Fabiana; Souza, Tadeu Mello; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2015-01-01

    Both glial fibrillary acidic protein (GFAP) and S100B have been used as markers of astroglial plasticity, particularly in brain injury; however, they do not necessarily change in the same time frame or direction. Herein, we induced a Parkinson's disease (PD) model via a 6-OHDA intrastriatal injection in rats and investigated the changes in GFAP and S100B using ELISA in the substantia nigra (SN), striatum, and cerebrospinal fluid on the 1st, 7th, and 21st days following the injection. The model was validated using measurements of rotational behaviour induced by methylphenidate and tyrosine hydroxylase in the dopaminergic pathway. To our knowledge, this is the first measurement of cerebrospinal fluid S100B and GFAP in the 6-OHDA model of PD. Gliosis (based on a GFAP increase) was identified in the striatum, but not in the SN. We identified a transitory increment of cerebrospinal fluid S100B and GFAP on the 1st and 7th days, respectively. This initial change in cerebrospinal fluid S100B was apparently related to the mechanical lesion. However, the 6-OHDA-induced S100B secretion was confirmed in astrocyte cultures. Current data reinforce the idea that glial changes precede neuronal damage in PD; however, these findings also indicate that caution is necessary regarding the interpretation of data in this PD model. PMID:26090233

  17. Striatal Injury with 6-OHDA Transiently Increases Cerebrospinal GFAP and S100B

    PubMed Central

    Batassini, Cristiane; Broetto, Núbia; Tortorelli, Lucas Silva; Borsoi, Milene; Zanotto, Caroline; Galland, Fabiana; Souza, Tadeu Mello; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2015-01-01

    Both glial fibrillary acidic protein (GFAP) and S100B have been used as markers of astroglial plasticity, particularly in brain injury; however, they do not necessarily change in the same time frame or direction. Herein, we induced a Parkinson's disease (PD) model via a 6-OHDA intrastriatal injection in rats and investigated the changes in GFAP and S100B using ELISA in the substantia nigra (SN), striatum, and cerebrospinal fluid on the 1st, 7th, and 21st days following the injection. The model was validated using measurements of rotational behaviour induced by methylphenidate and tyrosine hydroxylase in the dopaminergic pathway. To our knowledge, this is the first measurement of cerebrospinal fluid S100B and GFAP in the 6-OHDA model of PD. Gliosis (based on a GFAP increase) was identified in the striatum, but not in the SN. We identified a transitory increment of cerebrospinal fluid S100B and GFAP on the 1st and 7th days, respectively. This initial change in cerebrospinal fluid S100B was apparently related to the mechanical lesion. However, the 6-OHDA-induced S100B secretion was confirmed in astrocyte cultures. Current data reinforce the idea that glial changes precede neuronal damage in PD; however, these findings also indicate that caution is necessary regarding the interpretation of data in this PD model. PMID:26090233

  18. Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans.

    PubMed

    Shashikumar, S; Pradeep, H; Chinnu, Salim; Rajini, P S; Rajanikant, G K

    2015-11-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the specific and massive loss of dopamine (DA) containing neurons in the substantia nigra pars compacta (SNpc) and aggregation of protein α-synuclein. There are a few animal studies, which indirectly implicate the neuroprotective action of omega-3 polyunsaturated fatty acids in neurodegenerative diseases. In this study, we exposed Caenorhabditis elegans (both wild type N2, and transgenic strain, UA44) to 6-hydroxydopamine (6-OHDA, the model neurotoxicant) and evaluated the extent of protection offered by alpha-linolenic acid (ALA). Larval stage worms (L1/L2) of N2 and transgenic strains were exposed to 6-OHDA (25 mM) with or without ALA (10, 50 and 100 μM) for 48 h at 20 °C. After 48 h, while the N2 worms were assessed for their responses in terms of locomotion, pharyngeal pumping, lifespan and AChE activity, the transgenic worms were monitored for dopaminergic neuronal degeneration. Worms exposed to 6-OHDA exhibited a significant reduction (48%) in the locomotion rate. Interestingly, supplementation with ALA increased the locomotion rate in 6-OHDA treated worms. A marked decrease (45%) in thrashing was evident in worms exposed to 6-OHDA while thrashing was slightly improved in worms co-exposed to 6-OHDA and higher concentrations of ALA. Interestingly, worms co-exposed to 6-OHDA with ALA (100 μM) exhibited a significant increase in thrashing (66 ± 1.80 thrashes/30s). The pharyngeal pumping rate declined significantly in the case of worms exposed to 6-OHDA (35%). However, the worms co-treated with ALA exhibited significant recovery in pharyngeal pumping. The mean survival for the control worms was 26 days, while the worms exposed to 6-OHDA, showed a marked reduction in survival (21 days). Worms co-exposed to 6-OHDA and ALA showed a concentration-dependent increase in lifespan compared to those exposed to 6-OHDA alone (23, 25 and 26 days respectively). Transgenic worms

  19. 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors.

    PubMed

    Tobón-Velasco, Julio C; Limón-Pacheco, Jorge H; Orozco-Ibarra, Marisol; Macías-Silva, Marina; Vázquez-Victorio, Genaro; Cuevas, Elvis; Ali, Syed F; Cuadrado, Antonio; Pedraza-Chaverrí, José; Santamaría, Abel

    2013-02-01

    6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to better understand the cellular events further leading to neurodegeneration. The present work explored how 6-OHDA triggers early downstream signaling pathways that activate neurotoxicity in the rat striatum. Mitochondrial function, caspases-dependent apoptosis, kinases signaling (Akt, ERK 1/2, SAP/JNK and p38) and crosstalk between nuclear factor kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) were evaluated at early times post-lesion. We found that 6-OHDA initiates cell damage via mitochondrial complex I inhibition, cytochrome c and apoptosis-inducing factor (AIF) release, as well as activation of caspases 9 and 3 to induce apoptosis, kinase signaling modulation and NF-κB-mediated inflammatory responses, accompanied by inhibition of antioxidant systems regulated by the Nrf2 pathway. Our results suggest that kinases SAP/JNK and p38 up-regulation may play a role in the early stages of 6-OHDA toxicity to trigger intrinsic pathways for apoptosis and enhanced NF-κB activation. In turn, these cellular events inhibit the activation of cytoprotective mechanisms, thereby leading to a condition of general damage. PMID:23274087

  20. Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease

    PubMed Central

    Boronat-García, Alejandra; Palomero-Rivero, Marcela; Guerra-Crespo, Magdalena; Millán-Aldaco, Diana; Drucker-Colín, René

    2016-01-01

    Cell replacement therapy in Parkinson’s disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts. PMID:27525967

  1. Intrastriatal Grafting of Chromospheres: Survival and Functional Effects in the 6-OHDA Rat Model of Parkinson's Disease.

    PubMed

    Boronat-García, Alejandra; Palomero-Rivero, Marcela; Guerra-Crespo, Magdalena; Millán-Aldaco, Diana; Drucker-Colín, René

    2016-01-01

    Cell replacement therapy in Parkinson's disease (PD) aims at re-establishing dopamine neurotransmission in the striatum by grafting dopamine-releasing cells. Chromaffin cell (CC) grafts produce some transitory improvements of functional motor deficits in PD animal models, and have the advantage of allowing autologous transplantation. However, CC grafts have exhibited low survival, poor functional effects and dopamine release compared to other cell types. Recently, chromaffin progenitor-like cells were isolated from bovine and human adult adrenal medulla. Under low-attachment conditions, these cells aggregate and grow as spheres, named chromospheres. Here, we found that bovine-derived chromosphere-cell cultures exhibit a greater fraction of cells with a dopaminergic phenotype and higher dopamine release than CC. Chromospheres grafted in a rat model of PD survived in 57% of the total grafted animals. Behavioral tests showed that surviving chromosphere cells induce a reduction in motor alterations for at least 3 months after grafting. Finally, we found that compared with CC, chromosphere grafts survive more and produce more robust and consistent motor improvements. However, further experiments would be necessary to determine whether the functional benefits induced by chromosphere grafts can be improved, and also to elucidate the mechanisms underlying the functional effects of the grafts. PMID:27525967

  2. Short-Term Treatment with Silymarin Improved 6-OHDA-Induced Catalepsy and Motor Imbalance in Hemi-Parkisonian Rats

    PubMed Central

    Haddadi, Rasool; Eyvari Brooshghalan, Shahla; Farajniya, Safar; Mohajjel Nayebi, Alireza; Sharifi, Hamdolah

    2015-01-01

    Purpose: Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by disabling motor abnormalities, which include tremor, muscle stiffness, paucity of voluntary movements, and postural instability. Silymarin (SM) or milk thistle extract, is known to own antioxidative, anti-apoptotic, anti-inflammatory and neuroprotective effects. In the present study, we investigated the effect of intraperitoneal (i.p) administration of SM, on 6-OHDA-induced motor-impairments (catalepsy and imbalance) in the rats. Methods: Experimental model of PD was induced by unilateral infusion of 6-hydroxydopamine (6-OHDA; 8 μg/2 μl/rat) into the central region of the substantia nigra pars compacta (SNc). Catalepsy and motor coordination were assessed by using of bar test and rotarod respectively. Results: The results showed a significant (p<0.001) increase in catalepsy of 6-OHDA-lesioned rats whereas; in SM (100, 200 and 300 mg/kg, i.p for 5 days) treated hemi-parkinsonian rats catalepsy was decreased markedly (p<0.001). Furthermore, there was a significant (p<0.001) increase in motor-imbalance of 6-OHDA-lesioned rats. SM improved motor coordination significantly (p<0.001) in a dose dependent manner and increased motor balance. Conclusion: In conclusion, we found that short-term treatment with SM could improve 6-OHDA-induced catalepsy and motor imbalance in rats. We suggest that SM can be used as adjunctive therapy along with commonly used anti-parkinsonian drugs. However, further clinical trial studies should be carried out to prove this hypothesis. PMID:26819917

  3. Cardiac Sympathetic Denervation in 6-OHDA-Treated Nonhuman Primates

    PubMed Central

    Joers, Valerie; Dilley, Kristine; Rahman, Shahrose; Jones, Corinne; Shultz, Jeanette; Simmons, Heather; Emborg, Marina E.

    2014-01-01

    Cardiac sympathetic neurodegeneration and dysautonomia affect patients with sporadic and familial Parkinson's disease (PD) and are currently proposed as prodromal signs of PD. We have recently developed a nonhuman primate model of cardiac dysautonomia by iv 6-hydroxydopamine (6-OHDA). Our in vivo findings included decreased cardiac uptake of a sympathetic radioligand and circulating catecholamines; here we report the postmortem characterization of the model. Ten adult rhesus monkeys (5–17 yrs old) were used in this study. Five animals received 6-OHDA (50 mg/kg iv) and five were age-matched controls. Three months post-neurotoxin the animals were euthanized; hearts and adrenal glands were processed for immunohistochemistry. Quantification of immunoreactivity (ir) of stainings was performed by an investigator blind to the treatment group using NIH ImageJ software (for cardiac bundles and adrenals, area above threshold and optical density) and MBF StereoInvestigator (for cardiac fibers, area fraction fractionator probe). Sympathetic cardiac nerve bundle analysis and fiber area density showed a significant reduction in global cardiac tyrosine hydroxylase-ir (TH; catecholaminergic marker) in 6-OHDA animals compared to controls. Quantification of protein gene protein 9.5 (pan-neuronal marker) positive cardiac fibers showed a significant deficit in 6-OHDA monkeys compared to controls and correlated with TH-ir fiber area. Semi-quantitative evaluation of human leukocyte antigen-ir (inflammatory marker) and nitrotyrosine-ir (oxidative stress marker) did not show significant changes 3 months post-neurotoxin. Cardiac nerve bundle α-synuclein-ir (presynaptic protein) was reduced (trend) in 6-OHDA treated monkeys; insoluble proteinase-K resistant α-synuclein (typical of PD pathology) was not observed. In the adrenal medulla, 6-OHDA monkeys had significantly reduced TH-ir and aminoacid decarboxylase-ir. Our results confirm that systemic 6-OHDA dosing to nonhuman primates

  4. Carbidopa-Based Modulation of the Functional Effect of the AAV2-hAADC Gene Therapy in 6-OHDA Lesioned Rats

    PubMed Central

    Forsayeth, John; Bankiewicz, Krystof

    2015-01-01

    Progressively blunted response to L-DOPA in Parkinson’s disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC). We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC) infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor) administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg) co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the controlling of

  5. Carbidopa-based modulation of the functional effect of the AAV2-hAADC gene therapy in 6-OHDA lesioned rats.

    PubMed

    Ciesielska, Agnieszka; Sharma, Nitasha; Beyer, Janine; Forsayeth, John; Bankiewicz, Krystof

    2015-01-01

    Progressively blunted response to L-DOPA in Parkinson's disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC). We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC) infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor) administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg) co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the controlling of

  6. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson’s Disease Model

    PubMed Central

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R.; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress. PMID:27493838

  7. Inhibition of Endoplasmic Reticulum Stress is Involved in the Neuroprotective Effect of bFGF in the 6-OHDA-Induced Parkinson's Disease Model.

    PubMed

    Cai, Pingtao; Ye, Jingjing; Zhu, Jingjing; Liu, Dan; Chen, Daqing; Wei, Xiaojie; Johnson, Noah R; Wang, Zhouguang; Zhang, Hongyu; Cao, Guodong; Xiao, Jian; Ye, Junming; Lin, Li

    2016-08-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with complicated pathophysiologic mechanisms. Endoplasmic reticulum (ER) stress appears to play a critical role in the progression of PD. We demonstrated that basic fibroblast growth factor (bFGF), as a neurotropic factor, inhibited ER stress-induced neuronal cell apoptosis and that 6-hydroxydopamine (6-OHDA)-induced ER stress was involved in the progression of PD in rats. bFGF administration improved motor function recovery, increased tyrosine hydroxylase (TH)-positive neuron survival, and upregulated the levels of neurotransmitters in PD rats. The 6-OHDA-induced ER stress response proteins were inhibited by bFGF treatment. Meanwhile, bFGF also increased expression of TH. The administration of bFGF activated the downstream signals PI3K/Akt and Erk1/2 in vivo and in vitro. Inhibition of the PI3K/Akt and Erk1/2 pathways by specific inhibitors partially reduced the protective effect of bFGF. This study provides new insight towards bFGF translational drug development for PD involving the regulation of ER stress. PMID:27493838

  8. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats.

    PubMed

    Pang, Y; Lin, S; Wright, C; Shen, J; Carter, K; Bhatt, A; Fan, L-W

    2016-03-24

    Protection of substantia nigra (SN) dopaminergic (DA) neurons by neurotrophic factors (NTFs) is one of the promising strategies in Parkinson's disease (PD) therapy. A major clinical challenge for NTF-based therapy is that NTFs need to be delivered into the brain via invasive means, which often shows limited delivery efficiency. The nose to brain pathway is a non-invasive brain drug delivery approach developed in recent years. Of particular interest is the finding that intranasal insulin improves cognitive functions in Alzheimer's patients. In vitro, insulin has been shown to protect neurons against various insults. Therefore, the current study was designed to test whether intranasal insulin could afford neuroprotection in the 6-hydroxydopamine (6-OHDA)-based rat PD model. 6-OHDA was injected into the right side of striatum to induce a progressive DA neuronal lesion in the ipsilateral SN pars compact (SNc). Recombinant human insulin was applied intranasally to rats starting from 24h post lesion, once per day, for 2 weeks. A battery of motor behavioral tests was conducted on day 8 and 15. The number of DA neurons in the SNc was estimated by stereological counting. Our results showed that 6-OHDA injection led to significant motor deficits and 53% of DA neuron loss in the ipsilateral side of injection. Treatment with insulin significantly ameliorated 6-OHDA-induced motor impairments, as shown by improved locomotor activity, tapered/ledged beam-walking performance, vibrissa-elicited forelimb-placing, initial steps, as well as methamphetamine-induced rotational behavior. Consistent with behavioral improvements, insulin treatment provided a potent protection of DA neurons in the SNc against 6-OHDA neurotoxicity, as shown by a 74.8% increase in tyrosine hydroxylase (TH)-positive neurons compared to the vehicle group. Intranasal insulin treatment did not affect body weight and blood glucose levels. In conclusion, our study showed that intranasal insulin provided strong

  9. RNAi-mediated silencing of HLA A2 suppressed acute rejection against human fibroblast xenografts in the striatum of 6-OHDA lesioned rats.

    PubMed

    Liang, Caixia; Xu, Yunzhi; Zheng, Deyu; Sun, Xiaohong; Xu, Qunyuan; Duan, Deyi

    2016-08-15

    Major histocompatibility complex class l (MHC I) molecules play a role in determining whether transplanted cells will be accepted or rejected, and masking of MHC I on donor cells has been found useful for immunoprotection of neural xenografts. In the present study, primary human embryonic lung fibroblasts (HELF), HELF treated with lentivirus-mediated small interfering RNAs (siRNAs) targeting human leukocyte antigen A2 (HLA A2, MHC I in humans) (siHELF), and rat embryonic lung fibroblasts (RELF) were stereotaxically grafted into the striatum of 6-hydroxydopamine lesioned rats to explore whether knockdown of HLA A2 could reduce host immune responses against xenografts. Before lentiviral infection, the cells were transduced with retroviruses harboring tyrosine hydroxylase cDNA. Knockdown of HLA A2 protein was examined by Western blotting. The immune responses (the number of CD4 and CD8 T-cells in the brain and peripheral blood), glial reaction, and survival of human fibroblasts were quantitatively evaluated by flow cytometry and immunohistochemistry at 4d, 2w, and 6w post-graft. Animal behaviors were assessed by counting apomorphine-induced rotations pre- and post-grafts. It was shown that a lower level of HLA A2 was observed in siHELF grafts than in HELF grafts, and knockdown of HLA A2 decreased rat immune responses, as indicated by less remarkable increases in the number of CD8 and CD4 T-cells in the brain and the ratio of CD4:CD8 T-cells in the peripheral blood in rats grafted with siHELF. Rats grafted with siHELF exhibited a significant improvement in motor asymmetry post-transplantation and a better survival of human fibroblasts at 2w. The increasing number of activated microglia and the decreasing number of astrocytes were found in three groups of rats post-implantation. These data suggested that RNAi-mediated knockdown of HLA A2 could suppress acute rejection against xenogeneic human cell transplants in the rat brain. PMID:27397073

  10. Retigabine, a K(V)7 (KCNQ) potassium channel opener, attenuates L-DOPA-induced dyskinesias in 6-OHDA-lesioned rats.

    PubMed

    Sander, S E; Lemm, C; Lange, N; Hamann, M; Richter, A

    2012-02-01

    L-DOPA-induced dyskinesias (LID) represent a severe complication of long-time pharmacotherapy in Parkinson's disease that necessitates novel therapeutics. The acute and chronic effects of K(V)7.2-7.5 channel openers (retigabine, flupirtine) on the severity of LID and parkinsonian signs were examined in comparison to the glutamate receptor antagonist amantadine (positive control) in a rat model of LID. Acute treatment with retigabine (2.5, 5 mg/kg i.p.) and flupirtine (5, 10 mg/kg i.p.) significantly reduced the severity of abnormal involuntary movements (AIM) to a comparable extent as amantadine (20, 40 mg/kg s.c.), but flupirtine delayed the disappearance of AIM. Chronic treatment with retigabine (daily 5 mg/kg i.p. over 19 days combined with l-DOPA 10 mg i.p.) did not prevent or delay the development of LID, but reduced the severity of AIM, while antidyskinetic effects of amantadine (40 mg/kg i.p.) were restricted to the first day of treatment. Retigabine caused sedation and ataxia which declined during the chronic treatment, but did not reduce the antiparkinsonian effects of l-DOPA in these experiments. Acute co-injections of retigabine (5 mg) together with l-DOPA (10 mg/kg) neither reduced the motor performance in the rotarod test nor exerted negative effects on the antiparkinsonian efficacy of l-DOPA in the block and stepping test. Nevertheless, the sedative effects of retigabine may limit its therapeutic potential for the treatment of LID. The present data indicate that K(V)7 channels deserve attention in the research of the pathophysiology of dyskinesias. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. PMID:22079161

  11. 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents.

    PubMed

    Luo, Dandan; Shi, Ying; Wang, Jun; Lin, Qing; Sun, Yi; Ye, Keqiang; Yan, Qiao; Zhang, Hai

    2016-05-01

    Brain-derived neurotrophic factor (BDNF) is a notably important neurotrophin which regulates neuronal survival and differentiation in the nervous system. However, its clinical usage is particularly limited. 7,8-dihydroxyflavone (7,8-DHF), which acts as a selective agonist of BDNF receptor TrkB, is reported to possess neuroprotective effects both in vitro and in vivo. Here we explored the potent neuroprotective effects of 7,8-DHF in 6-OHDA induced rat and MPTP induced mouse model of Parkinsonism. The results demonstrated that treatment with 7,8-DHF in drinking water for four weeks (two weeks before 6-OHDA+two weeks after 6-OHDA lesion) significantly improved dopamine-mediated behaviors in 6-OHDA rat model, and prevented the loss of dopaminergic neurons in the substantia nigra (SN). Phospho-Y816-TrkB immunostaining showed that TrkB phosphorylation was significantly elevated in the SN in 7,8-DHF pretreated group, indicating 7,8-DHF activated TrkB and likely contributed to its neuroprotective effects. 7,8-DHF also protected acute MPTP neurotoxicity in mice but did not affect the climbing behavior in pole test. Thus our study indicates the neuroprotective properties of 7,8-DHF through the activation of TrkB, which provides a novel therapeutic treatment for Parkinson's disease. PMID:27019033

  12. The preferential nNOS inhibitor 7-nitroindazole and the non-selective one N(G)-nitro-L-arginine methyl ester administered alone or jointly with L-DOPA differentially affect motor behavior and monoamine metabolism in sham-operated and 6-OHDA-lesioned rats.

    PubMed

    Czarnecka, Anna; Konieczny, Jolanta; Lenda, Tomasz; Lorenc-Koci, Elżbieta

    2015-11-01

    Reciprocal interactions between nitrergic and dopaminergic systems play a key role in the control of motor behavior. In the present study, we performed a comparative analysis of motor behavior (locomotor activity, catalepsy, rotational behavior) and monoamine metabolism in the striatum and substantia nigra of unilaterally sham-operated and 6-OHDA-lesioned rats treated with the preferential neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI) or the non-selective one N(G)-nitro-L-arginine methyl ester (L-NAME), alone or in combination with L-DOPA. Each NOS inhibitor given alone (50mg/kg) induced a distinct catalepsy 30 min after injection but only 7-NI impaired spontaneous locomotion after 10 min. In 6-OHDA-lesioned rats, chronic L-DOPA (25mg/kg) induced 2.5-h long contralateral rotations. 7-NI (30 and 50mg/kg) markedly reduced the intensity of L-DOPA-induced contralateral rotations while extending their duration until 4.5h whereas L-NAME (50 and 100mg/kg) only tended to attenuate their intensity without affecting the duration. 7-NI but not L-NAME significantly increased endogenous tissue DA levels in the nigrostriatal system of both sham-operated and 6-OHDA-lesioned rats. In L-DOPA-treated group, 7-NI significantly enhanced the L-DOPA-derived tissue DA content in this system and decreased the level of the intracellular DA metabolite DOPAC produced by monoamine oxidase (MAO). In contrast to 7-NI, L-NAME decreased markedly DA content and did not affect DOPAC level in the ipsilateral striatum. It means that the differences in 7-NI and L-NAME-mediated modulation of L-DOPA-induced behavioral and biochemical effects resulted not only from the inhibition of NOS activity but also from differences in their ability to inhibit MAO. PMID:26319690

  13. Selegiline normalizes, while l-DOPA sustains the increased number of dopamine neurons in the olfactory bulb in a 6-OHDA mouse model of Parkinson's disease.

    PubMed

    Chiu, Wei-Hua; Carlsson, Thomas; Depboylu, Candan; Höglinger, Günter U; Oertel, Wolfgang H; Ries, Vincent

    2014-04-01

    Olfactory dysfunction, often preceding the cardinal motor symptoms, such as bradykinesia, rigidity, tremor at rest and postural instability, is frequently reported in Parkinson's disease. This symptom appears to be related to an increased number of dopamine neurons in the periglomerular layer of the olfactory bulb. In animal models of Parkinson's disease, adult neural progenitor cells migrating from the subventricular zone of the lateral ventricle to the olfactory bulb are evidently altered in their survival and progeny. The modulation of neural progenitor cells contributing to the number of dopamine neurons in the periglomerular layer, however, is still poorly understood. In this study, we have investigated the survival and neuronal differentiation of newly generated cells in the olfactory bulb, following treatment with the dopamine precursor l-DOPA and the monoamine oxidase-B inhibitor selegiline in a unilateral, intranigral 6-hydroxydopamine lesion model in mice. Our data show that the number of neural progenitor cells in the subventricular zone is decreased after an intranigral 6-hydroxydopamine lesion, while there is no difference from control in lesioned mice with selegiline or l-DOPA treatment. Selegiline is able to normalize the number of dopamine neurons in the periglomerular layer, while l-DOPA treatment sustains the increased number observed in 6-hydroxydopamine lesioned animals. We conclude that there is a distinct modulation of newly generated dopamine neurons of the olfactory bulb after l-DOPA and selegiline treatment. The differential effects of the two drugs might also play a role in olfactory dysfunction in Parkinson's disease patients. PMID:24291466

  14. Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats.

    PubMed

    Wen, Peng; Li, Min; Xiao, Hu; Ding, Rui; Chen, Huan; Chang, Jingyu; Zhou, Ming; Yang, Yong; Wang, Jun; Zheng, Weixin; Zhang, Wangming

    2015-07-23

    The pedunculopontine nucleus (PPN) is connected to spinal, cerebellar and cerebral motor control structures and can be activated with external electrodes. Intrinsic cholinergic neuronal degeneration in the PPN is associated with postural instabilities and gait disturbances (PIGD) in advanced Parkinson's disease (PD). Clinical studies have demonstrated that PPN stimulation may improve PIGD. We investigated this claim and the underlying mechanisms using the 6-hydroxydopamine (6-OHDA) hemilesion model of PD. In this study, gait-related parameters, including the base of support (BOS), stride length, and maximum contact area, were analyzed via CatWalk gait analysis following PPN-low frequency stimulation (LFS) of rats with unilateral 6-OHDA lesions. Additionally, neurotransmitter concentrations in the ventrolateral thalamic nucleus (VL) were measured by microdialysis and liquid chromatography-mass spectrometry (LC-MS). Our data revealed that unilateral 6-OHDA lesions of the medial forebrain bundle (MFB) induced significant gait deficits. PPN-LFS significantly improved the BOS (hindlimb) and maximum contact area (impaired forelimb) scores, whereas no other gait parameters were significantly affected. Unilateral 6-OHDA MFB lesions significantly decreased acetylcholine (ACh) and moderately decreased noradrenaline (NA) concentrations in the VL. PPN-LFS mildly reversed the ACh loss in the VL in the lesioned rats but did not alter the NA levels. Taken together, our data indicate that PPN-LFS is useful for treating gait deficits of PD and that these effects are probably mediated by a rebalancing of ACh levels in the PPN-VL pathway. Thus, our findings provide possible insight into the mechanisms underlying PIGD in PD. PMID:26054938

  15. Neurotoxic effects of berberine on long-term L-DOPA administration in 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    PubMed

    Shin, Keon Sung; Choi, Hyun Sook; Zhao, Ting Ting; Suh, Kwang Hoon; Kwon, Ik Hyun; Choi, Soon Ok; Lee, Myung Koo

    2013-06-01

    The effects of berberine on long-term administration of L-DOPA in 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) were investigated. Rat models of PD were prepared by 6-OHDA lesions in the ipsilateral sides, and then were treated with berberine (5 and 15 mg/kg) and/or L-DOPA (10 mg/kg) once daily for 21 days. Treatments with either concentration of berberine (5 and 15 mg/kg) in 6-OHDA-lesioned groups decreased the numbers of tyrosine hydroxylase (TH)-immunopositive neurons in the substantia nigra and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum as compared to 6-OHDA-lesioned groups. In addition, dopaminergic neuronal cell death of the ipsilateral sides in 6-OHDA-lesioned groups was attenuated by L-DOPA administration. However, both concentrations of berberine in 6-OHDA-lesioned groups treated with L-DOPA aggravated the numbers of TH-immunopositive neurons in the substantia nigra and the levels of dopamine, norepinephrine, DOPAC and HVA in the striatum as compared to rats not treated with berberine. These results suggest that berberine leads to the degeneration of dopaminergic neuronal cells in the substantia nigra in the rat model of PD with chronic L-DOPA administration. Long-term L-DOPA therapy that may involve possibly neurotoxic isoquinoline agents including berberine should involve monitoring for adverse symptoms. PMID:23539311

  16. A novel therapeutic approach to 6-OHDA-induced Parkinson's disease in rats via supplementation of PTD-conjugated tyrosine hydroxylase

    SciTech Connect

    Wu Shaoping; Fu Ailing; Wang Yuxia; Yu Leiping; Jia Peiyuan; Li Qian; Jin Guozhang; Sun Manji . E-mail: Sunmj@nic.bmi.ac.cn

    2006-07-21

    The present study aimed to evaluate whether the protein transduction domain (PTD)-conjugated human tyrosine hydroxylase (TH) fusion protein was effective on the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model rats. An expression vector pET-PTD-TH harbouring the PTD-TH gene was constructed and transformed to the Escherichia coli BL21 cells for expression. The expressed recombinant PTD-TH with a molecular weight of 61 kD was successfully transduced (1 {mu}M) into the dopaminergic SH-sy5y human neuroblastoma cells in vitro and visualized by immunohistochemical assay. An in vivo experiment in rats showed that the iv administered PTD-TH protein (8 mg/kg) permeated across the blood-brain barrier, penetrated into the striatum and midbrain, and peaked at 5-8 h after the injection. The behavioral effects of PTD-TH on the apomorphine-induced rotations in the PD model rats 8 weeks after the 6-OHDA lesion showed that a single bolus of PTD-TH (8 mg/kg) iv injection caused a decrement of 60% of the contralateral turns on day 1 and 40% on days 5-17. The results imply that iv delivery of PTD-TH is therapeutically effective on the 6-OHDA-induced PD in rats, the PTD-mediated human TH treatment opening a promising therapeutic direction in treatment of PD.

  17. Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson's disease.

    PubMed

    Andereggen, Lukas; Meyer, Morten; Guzman, Raphael; Ducray, Angélique D; Widmer, Hans Rudolf

    2009-06-18

    Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth- and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopamine-lesioned rats. While all groups of rats showed a significant reduction in d-amphetamine-induced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function. PMID:19389387

  18. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents.

    PubMed

    Nie, Shuke; Xu, Yan; Chen, Guiqin; Ma, Kai; Han, Chao; Guo, Zhenli; Zhang, Zhentao; Ye, Keqiang; Cao, Xuebing

    2015-12-01

    Dopaminergic neurons loss in the substantia nigra (SN) and dopamine (DA) content loss in the striatum correlate well with disease severity in Parkinson's disease (PD). Brain-derived neurotrophic factor (BDNF) is a member of neurotrophin family and is necessary for the survival and development of DA neurons in the SN. Deficits in BDNF/TrkB receptors signaling contribute to the dysfunction of PD. Deoxygedunin, a derivative of gedunin produced from Indian neem tree, binds TrkB receptor and activates TrkB and its downstream signaling cascades in a BDNF-independent manner, and possesses neuroprotective effects in vitro and in vivo. In this study, we tested the neuroprotective effects of deoxygedunin in 6-hydroxydopamine (6-OHDA)-lesioned rat model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of Parkinson's disease. Rats were treated with deoxygedunin 5 mg/kg (i.p.) for one month started two weeks before 6-OHDA lesion (pre-treatment), or for two weeks right after lesion (post-treatment), with isovolumetric vehicle as control and normal. Mice were given deoxygedunin 5 mg/kg (i.p.) for 2 weeks and administrated with MPTP twice at the dose of 20 mg/kg (i.p.) on day 7. The results revealed that pretreatment with deoxygedunin improved PD models' behavioral performance and reduced dopaminergic neurons loss in SN, associated with the activation of TrkB receptors and its two major signaling cascades involving mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K). Thus, our current study indicates that deoxygedunin, as a small molecule TrkB agonist, displays prominent neuroprotective properties, providing a novel therapeutic strategy for treating Parkinson's disease. PMID:26282118

  19. Rho kinase inhibition by fasudil in the striatal 6-hydroxydopamine lesion mouse model of Parkinson disease.

    PubMed

    Tatenhorst, Lars; Tönges, Lars; Saal, Kim-Ann; Koch, Jan C; Szegő, Éva M; Bähr, Mathias; Lingor, Paul

    2014-08-01

    Chronic degeneration of nigrostriatal projections, followed by nigral dopaminergic cell death, is a key feature of Parkinson disease (PD). This study examines the neuroprotective potential of the rho kinase inhibitor fasudil in the 6-hydroxydopamine (6-OHDA) mouse model of PD in vivo. C57Bl/6 mice were lesioned by striatal stereotactic injections with 4 μg of 6-OHDA and treated with fasudil 30 or 100 mg/kg body weight via drinking water. Motor behavior was tested biweekly; histologic and biochemical analyses were performed at 4 and 12 weeks after lesion. Motor behavior was severely impaired after 6-OHDA lesion and was not improved by fasudil treatment. Fasudil 100 mg/kg did not significantly increase the number of dopaminergic cells in the substantia nigra after 12 weeks versus lesion controls. Interestingly, however, high-performance liquid chromatography analysis of dopamine metabolites revealed that striatal levels of 3,4-dihydroxyphenylacetic acid were significantly increased after 12 weeks, suggesting a regenerative response. In contrast to recent findings in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin model, fasudil effects seem limited in this severe 6-OHDA model of PD. Nevertheless, high therapeutic concentrations of fasudil are suggestive of a proregenerative potential for dopaminergic neurons, making further evaluations of rho kinase inhibition as a proregenerative therapeutic strategy in PD promising. PMID:25003236

  20. Chemoreflex and baroreflex alterations in Parkinsonism induced by 6-OHDA in unanesthetized rats.

    PubMed

    Ariza, Deborah; Lopes, Fernanda Novi Cortegoso; Crestani, Carlos Cesar; Martins-Pinge, Marli Cardoso

    2015-10-21

    Parkinson's disease (PD) is mainly characterized by motor signals. However, non-motor signals also affect and decrease the quality of life of PD patients. Among these non-motor signs are cardiovascular disorders as orthostatic hypotension, postprandial hypotension and cardiac arrhythmias, which may be due to the involvement of both central nervous system and peripheral autonomic nervous system. In the present study we investigated the cardiovascular function, evaluating cardiovascular reflexes (chemoreflex and baroreflex), in an animal model of Parkinsonism induced by bilateral infusion of the toxin 6-hydroxydopamine (6-OHDA), in the substantia nigra pars compacta (SNpc). The results showed that the animals induced to Parkinsonism had lower arterial pressure (AP) and heart rate HR) compared to control animals. We showed that after activation of the baroreceptors by phenylephrine (Phe) and sodium nitroprusside (SNP), the baroreflex sensitivity index was not changed between the groups. However, there was a greater increase in the AP when stimulated with Phe and greater tachycardia when stimulated with SNP in 6-OHDA animals. After activation of the peripheral chemoreceptors through KCN injection (cytotoxic hypoxia), there was a higher increase in pressor and bradycardic response in injured animals with bilateral 6-OHDA. These changes in the cardiovascular reflexes may be important adjustments mechanisms to maintain the cerebral blood flow in those animals, and may be a result of denervation supersensitivity to catecholamines in autonomic targets. PMID:26409036

  1. Agmatine Protects Against 6-OHDA-Induced Apoptosis, and ERK and Akt/GSK Disruption in SH-SY5Y Cells.

    PubMed

    Amiri, Esmat; Ghasemi, Rasoul; Moosavi, Maryam

    2016-08-01

    6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson's disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3β (GSK-3β) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3β, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3β activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3β and ERK pathways. PMID:26346882

  2. Duration of drug action of dopamine D2 agonists in mice with 6-hydroxydopamine-induced lesions.

    PubMed

    Tsuchioka, Akihiro; Oana, Fumiki; Suzuki, Takayuki; Yamauchi, Yuji; Ijiro, Tomoyuki; Kaidoh, Kouichi; Hiratochi, Masahiro

    2015-12-16

    Although 6-hydroxydopamine-induced (6-OHDA-induced) rats are a well-known Parkinson's disease model, the effects of dopamine D2 agonists in mice with 6-OHDA-induced lesions are not completely understood. We produced mice with 6-OHDA-induced lesions and measured their total locomotion counts following administration of several dopamine D2 agonists (pramipexole, ropinirole, cabergoline, rotigotine, apomorphine, talipexole, and quinelorane). Cabergoline showed the longest duration of drug action, which was in agreement with its long-lived anti-Parkinson effects in rats and humans. In contrast, pramipexole and ropinirole had notably short durations of drug action. We demonstrated that mice with 6-OHDA-induced lesions accompanied with significant lesions in the striatum may be reasonable models to predict the action duration of anti-Parkinson drug candidates in humans. PMID:26559726

  3. Protein Kinase D1 (PKD1) Phosphorylation Promotes Dopaminergic Neuronal Survival during 6-OHDA-Induced Oxidative Stress

    PubMed Central

    Asaithambi, Arunkumar; Ay, Muhammet; Jin, Huajun; Gosh, Anamitra; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2014-01-01

    Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD. PMID:24806360

  4. Subtle Cardiovascular Dysfunction in the Unilateral 6-Hydroxydopamine-Lesioned Rat

    PubMed Central

    Slack, K.; Billing, R.; Matthews, S.; Allbutt, H. N.; Einstein, R.; Henderson, J. M.

    2010-01-01

    The present study evaluated whether the unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson's disease produces autonomic deficits. Autonomic parameters were assessed by implanting a small radiofrequency telemetry device which measured heart rate variability (HRV), diurnal rhythms of heart rate (HR), core body temperature (cBT) and locomotor activity (LA). Rats then received 6-OHDA lesion or sham surgery. 6-OHDA lesioned rats exhibited head and body axis biases, defective sensorimotor function (“disengage” test), and prominent apomorphine rotation (all P < .05 versus controls). Diurnal rhythm of HR was lower for 6-OHDA lesioned rats (n = 8) versus controls (n = 6; P < .05). Whilst HR decreased similarly in both groups during the day, there was a greater decrease in HR for the 6-OHDA lesioned rats at night (by 38 b.p.m. relative to 17 b.p.m. for controls). LA and cBT did not differ between surgery groups. This study indicates the unilateral 6-OHDA model of PD shows subtle signs of cardiovascular autonomic dysfunction. PMID:20976085

  5. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis

    PubMed Central

    Toti, Luca

    2014-01-01

    Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis. PMID:25277799

  6. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis.

    PubMed

    Toti, Luca; Travagli, R Alberto

    2014-11-15

    Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis. PMID:25277799

  7. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD. PMID:27233809

  8. 6-OHDA-Induced Changes in Parkinson's Disease-Related Gene Expression are not Affected by the Overexpression of PGAM5 in In Vitro Differentiated Embryonic Mesencephalic Cells.

    PubMed

    Stępkowski, Tomasz Maciej; Wasyk, Iwona; Grzelak, Agnieszka; Kruszewski, Marcin

    2015-11-01

    LUHMES cells, a recently established line of immortalized embryonic mesencephalic cells, are the novel in vitro model for studying Parkinson's disease (PD) and dopaminergic neuron biology. Phosphoglyceromutase 5 (PGAM5) is a mitochondrial protein involved in mitophagy, mitochondria dynamics, and other processes important for PD pathogenesis. We tested the impact of lentiviral overexpression of PGAM5 protein in LUHMES cells on their differentiation and expression of 84 PD-related genes. LUHMES cells were transduced with PGAM5 or mock and treated with 100 μM 6-hydroxydopamine (6-OHDA), a model PD neurotoxin. Real-Time PCR analysis revealed that the treatment with 6-OHDA-induced changes in expression of 44 PD-related genes. PGAM5 transduction alone did not cause alternations in PD-related genes expression, nor it affected changes in gene expression mediated by 6-OHDA. The 6-OHDA-induced PD-related gene expression profile of LUHMES cells is presented for the first time and widely discussed. PMID:25986246

  9. HYPERACTIVITY AND HYPOACTIVITY PRODUCED BY LESIONS TO THE MESOLIMBIC DOPAMINE SYSTEM

    EPA Science Inventory

    Spontaneous locomotor activity and the locomotor response to amphetamine and apomorphine were studied in rats subjected to either radiofrequency(RF), 6-hydroxydopamine (6-OHDA) of both RF and 6-OHDA lesions of the mesolimbic dopamine (DA) system. Large 6-OHDA lesions of the ventr...

  10. Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson's disease: a longitudinal in-vivo study.

    PubMed

    Molinet-Dronda, Francisco; Gago, Belén; Quiroga-Varela, Ana; Juri, Carlos; Collantes, María; Delgado, Mercedes; Prieto, Elena; Ecay, Margarita; Iglesias, Elena; Marín, Concepció; Peñuelas, Iván; Obeso, José A

    2015-05-01

    Carbon-11 labeled dihydrotetrabenazine ((11)C-DTBZ) binds to the vesicular monoamine transporter 2 and has been used to assess nigro-striatal integrity in animal models and patients with Parkinson's disease. Here, we applied (11)C-DTBZ positron emission tomography (PET) to obtain longitudinally in-vivo assessment of striatal dopaminergic loss in the classic unilateral and in a novel bilateral 6-hydroxydopamine (6-OHDA) lesion rat model. Forty-four Sprague-Dawley rats were divided into 3 sub-groups: 1. 6-OHDA-induced unilateral lesion in the medial forebrain bundle, 2. bilateral lesion by injection of 6-OHDA in the third ventricle, and 3. vehicle injection in either site. (11)C-DTBZ PET studies were investigated in the same animals successively at baseline, 1, 3 and 6weeks after lesion using an anatomically standardized volumes-of-interest approach. Additionally, 12 rats had PET and Magnetic Resonance Imaging to construct a new (11)C-DTBZ PET template. Behavior was characterized by rotational, catalepsy and limb-use asymmetry tests and dopaminergic striatal denervation was validated post-mortem by immunostaining of the dopamine transporter (DAT). (11)C-DTBZ PET showed a significant decrease of striatal binding (SB) values one week after the unilateral lesion. At this point, there was a 60% reduction in SB in the affected hemisphere compared with baseline values in 6-OHDA unilaterally lesioned animals. A 46% symmetric reduction over baseline SB values was found in bilaterally lesioned rats at the first week after lesion. SB values remained constant in unilaterally lesioned rats whereas animals with bilateral lesions showed a modest (22%) increase in binding values at the 3rd and 6th weeks post-lesion. The degree of striatal dopaminergic denervation was corroborated histologically by DAT immunostaining. Statistical analysis revealed a high correlation between (11)C-DTBZ PET SB and striatal DAT immunostaining values (r=0.95, p<0.001). The data presented here indicate

  11. Murine model for Parkinson's disease: from 6-OH dopamine lesion to behavioral test.

    PubMed

    da Conceição, Fabio S L; Ngo-Abdalla, Stacie; Houzel, Jean-Christophe; Rehen, Stevens K

    2010-01-01

    Parkinson's disease (PD) affects at least 6.5 million people worldwide, irrespective of gender, social, ethnic, economic, or geographic boundaries. Key symptoms, such as tremor, rigidity and bradikinesia, develop when about 3/4 of dopaminergic cells are lost in the substantia nigra, and fail to provide for the smooth, coordinated regulation of striatal motor circuits. Depression and hallucinations are common, and dementia eventually occurs in 20% of patients. At this time, there is no treatment to delay or stop the progression of PD. Rather, the medications currently available aim more towards the alleviation of these symptoms. New surgical strategies may reversibly switch on the functionally damaged circuits through the electrical stimulation of deep brain structures, but although deep brain stimulation is a major advance, it is not suitable for all patients. It remains therefore necessary to test new cell therapy approaches in preclinical models. Selective neurotoxic disruption of dopaminergic pathways can be reproduced by injection of 6-hydroxydopamine (6-OHDA) or MPTP (1-methyl-4-phenyl-1,2,3,6-tertahydropyridine) whereas depleting drugs and oxidative-damaging chemicals may also reproduce specific features of PD in rodents. Unlike MPTP, 6-OHDA lesions cause massive irreversible neuronal loss, and can be uni- or bilateral. The 6-OHDA lesion model is reliable, leads to robust motor deficits, and is the most widely used after 40 years of research in rats. As interactions between grafted cells and host can now be studied more thoroughly in mice rather than in rats, the model has been transposed to mice, where it has been recently characterized. In this video, we demonstrate how to lesion the left nigro-striatal pathway of anesthetized mice by slowly delivering 2.0 microL of 6-OHDA through a stereotaxically inserted micro-syringe needle. The loss of dopaminergic input occurs within days, and the functional impairments can be monitored over post-operative weeks and

  12. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson's disease in vivo, but not enough to restore the lesioned dopaminergic system.

    PubMed

    Kim, Heung Deok; Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2016-02-01

    We recently reported that treatment with naringin, a major flavonoid found in grapefruit and citrus fruits, attenuated neurodegeneration in a rat model of Parkinson's disease (PD) in vivo. In order to investigate whether its effects are universally applied to a different model of PD and whether its treatment induces restorative effects on the lesioned nigrostriatal dopaminergic (DA) projection, we observed the effects of pre-treatment or post-treatment with naringin in a mouse model of PD. For neuroprotective effects, 6-hydroxydopamine (6-OHDA) was unilaterally injected into the striatum of mouse brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. Our results showed that naringin protected the nigrostriatal DA projection from 6-OHDA-induced neurotoxicity. Moreover, similar to the effects in rat brains, this treatment induced the activation of mammalian target of rapamycin complex 1 (mTORC1), which is well known as an important survival factor for DA neurons, and inhibited microglial activation in the substantia nigra (SN) of mouse brains treated with 6-OHDA. However, there was no significant change of DA phenotypes in the SN and striatum post-treated with naringin compared with 6-OHDA-lesioned mice, despite the treatment being continued for 12 weeks. These results suggest that post-treatment with naringin alone may not be enough to restore the nigrostriatal DA projection in a mouse model of PD. However, our results apparently suggest that naringin is a beneficial natural product to prevent DA degeneration, which is involved in PD. PMID:26878791

  13. CCK-8 injected into the nucleus accumbens attenuates the supersensitive locomotor response to apomorphine in 6-OHDA and chronic-neuroleptic treated rats.

    PubMed

    Weiss, F; Ettenberg, A; Koob, G F

    1989-01-01

    Postsynaptic dopamine-cholecystokinin (CCK) interactions in the nucleus accumbens were studied in two behavioral preparations of DA receptor supersensitivity: chronic-neuroleptic treated and 6-hydroxydopamine (6-OHDA) denervated rats. Subcutaneous (SC) injections of apomorphine (APO; 0.15 mg/kg) in experiment 1 produced marked hyperlocomotion in rats following 12 days of pretreatment with cis-[Z]-flupenthixol (2 mg/kg; twice per day). Bilateral intra-accumbens (N.Acc.) microinjections of CCK-8 (2 ng and 2 micrograms) reliably reduced APO-stimulated hyperlocomotion. An intermediate CCK dose (20 ng) was without effect. No change in APO responsivity following chronic vehicle treatment was observed and the baseline APO response was not altered by CCK at any dose. Denervation of mesolimbic dopamine (DA) terminals by intra-N.Acc. injections of 6-hydroxydopamine (6-OHDA; 8 micrograms/side) in experiment 2 similarly resulted in intense locomotor hyperactivity after APO stimulation (0.1 mg/kg; SC). Bilateral intra-N.Acc. injections of CCK-8 (1, 10, 100 ng, and 1 micrograms) significantly attenuated the supersensitive locomotor response to APO. As in experiment 1, CCK produced "biphasic" dose-response effects with strong attenuation that persisted throughout the entire 60-min test at both high (1 microgram) and low (1 ng) doses. Intermediate CCK doses (10 and 100 ng) produced only short-term reductions in activity. Hypomotility induced by APO in SHAM-lesioned rats was not effectively reversed by CCK treatments. CCK had no effect on unstimulated baseline locomotor activity in either 6-OHDA or SHAM-lesioned rats. These results provide further evidence that CCK-8 modulates mesolimbic DA activity by functionally opposing the postsynaptic effects of DA in the region of the nucleus accumbens. PMID:2574480

  14. Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in C. elegans

    PubMed Central

    Masoudi, Neda; Holmes, Alexander; Gartner, Anton

    2014-01-01

    Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling. PMID:25474638

  15. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev; Singh, Sumel

    2015-09-15

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. Recent studies have investigated the involvement of epigenetic modifications in PD. Histone deacetylase (HDAC) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study was designed to investigate the effect of sodium butyrate, a HDAC inhibitor in 6-hydroxydopamine (6-OHDA) - induced experimental PD like symptoms in rats. To produce motor deficit, 6-OHDA was administered unilaterally in the right medial forebrain bundle. Three weeks after 6-OHDA administration, the rats were challenged with apomorphine. Following this, the animals were treated with sodium butyrate (150 and 300 mg/kg i.p.) once daily for 14 days. Movement abnormalities were assessed by battery of behavioral tests. Biochemically, oxidative stress markers, neuroinflammation and dopamine were measured in striatal brain homogenate. Further, to explore the molecular mechanism(s), we measured the level of global H3 histone acetylation and brain derived neurotrophic factor (BDNF). 6-OHDA administration results in significant motor deficit along with reduction in striatal dopamine level. 6-OHDA treated rats showed elevated oxidative stress and neuroinflammatory markers. Treatment with sodium butyrate results in significant attenuation of motor deficits and increased striatal dopamine level. Moreover, sodium butyrate treatment attenuated the oxidative stress and neuroinflammatory markers. These effects occur concurrently with increased global H3 histone acetylation and BDNF levels. Thus, the observed results of the present study are indicative for the therapeutic potential of HDAC inhibitors in PD. PMID:26048426

  16. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions

    PubMed Central

    Bonito-Oliva, Alessandra; Masini, Débora; Fisone, Gilberto

    2014-01-01

    Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson's disease (PD). These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA) in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to revert the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual noradrenergic terminals. PMID

  17. Striatal mRNA expression patterns underlying peak dose l-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat.

    PubMed

    Smith, L M; Parr-Brownlie, L C; Duncan, E J; Black, M A; Gemmell, N J; Dearden, P K; Reynolds, J N J

    2016-06-01

    l-DOPA is the primary pharmacological treatment for relief of the motor symptoms of Parkinson's disease (PD). With prolonged treatment (⩾5years) the majority of patients will develop abnormal involuntary movements as a result of l-DOPA treatment, known as l-DOPA-induced dyskinesia. Understanding the underlying mechanisms of dyskinesia is a crucial step toward developing treatments for this debilitating side effect. We used the 6-hydroxydopamine (6-OHDA) rat model of PD treated with a three-week dosing regimen of l-DOPA plus the dopa decarboxylase inhibitor benserazide (4mg/kg and 7.5mg/kgs.c., respectively) to induce dyskinesia in 50% of individuals. We then used RNA-seq to investigate the differences in mRNA expression in the striatum of dyskinetic animals, non-dyskinetic animals, and untreated parkinsonian controls at the peak of dyskinesia expression, 60min after l-DOPA administration. Overall, 255 genes were differentially expressed; with significant differences in mRNA expression observed between all three groups. In dyskinetic animals 129 genes were more highly expressed and 14 less highly expressed when compared with non-dyskinetic and untreated parkinsonian controls. In l-DOPA treated animals 42 genes were more highly expressed and 95 less highly expressed when compared with untreated parkinsonian controls. Gene set cluster analysis revealed an increase in expression of genes associated with the cytoskeleton and phosphoproteins in dyskinetic animals compared with non-dyskinetic animals, which is consistent with recent studies documenting an increase in synapses in dyskinetic animals. These genes may be potential targets for drugs to ameliorate l-DOPA-induced dyskinesia or as an adjunct treatment to prevent their occurrence. PMID:26968766

  18. Spontaneous locomotor activity and L-DOPA-induced dyskinesia are not linked in 6-OHDA parkinsonian rats

    PubMed Central

    Sgroi, Stefania; Kaelin-Lang, Alain; Capper-Loup, Christine

    2014-01-01

    Bradykinesia (slowness of movement) and other characteristic motor manifestations of Parkinson’s disease (PD) are alleviated by treatment with L-dihydroxyphenylalanine (L-DOPA). Long-term L-DOPA treatment, however, is associated with complications such as motor fluctuations and dyskinesia that severely impair the quality of life. It is unclear whether the effect of L-DOPA on spontaneous motor activity and its dyskinesia-inducing effect share a common mechanism. To investigate the possible connection between these two effects, we analyzed the spontaneous locomotor activity of parkinsonian rats before surgery (unilateral injection of 6-OHDA in the right medial forebrain bundle), before treatment with L-DOPA, during L-DOPA treatment (the “ON” phase), and after the end of L-DOPA treatment (the “OFF” phase). We correlated the severity of dyskinesia (AIM scores) with locomotor responses in the ON/OFF phases of chronic L-DOPA treatment at two different doses. We treated three groups of parkinsonian animals with chronic injections of 8 mg/kg L-DOPA, 6 mg/kg L-DOPA, and saline solution and one group of non-lesioned animals with 8 mg/kg L-DOPA. At the end of the experiment, tyrosine hydroxylase (TH) immunoreactivity was analyzed in the striatum of all parkinsonian rats. We found no correlation between the severity of dyskinesia and spontaneous locomotor activity in the ON or OFF phase of L-DOPA treatment. The only observed correlation was between the pathological rotation induced by L-DOPA at the highest dose and locomotor activity in the ON phase of L-DOPA treatment. In addition, a L-DOPA withdrawal effect was observed, with worse motor performance in the OFF phase than before the start of L-DOPA treatment. These findings suggest that different neural mechanisms underlie the effect of L-DOPA on spontaneous motor activity and its dyskinesia-inducing effect, with a different dose-response relationship for each of these two effects. PMID:25324746

  19. Electroacupuncture Produces the Sustained Motor Improvement in 6-Hydroxydopamine-Lesioned Mice

    PubMed Central

    Deng, Jiahui; Sun, Min; Jia, Jun; Wang, Xiaomin

    2016-01-01

    Clinical and research evidence has shown that electroacupuncture (EA) promotes recovery of motor function in patients with Parkinson’s disease (PD). However, the “efficacy span” of EA treatment, especially the long-term effect of EA that is thought to last after the cessation of EA treatment, has not been investigated. The present study thus investigated and compared the effect of EA during and after chronic EA application on motor activity and dopamine lesions in a 6-hydroxydopamine (6-OHDA)-lesioned mouse model of PD. Chronic EA treatment (30 min a day, 6 days a week for 2 or 4 weeks) significantly attenuated motor deficiency and reduced dopamine neuron degeneration. Remarkably, EA showed a long-lasting effect after the cessation of EA stimulation. At 2 and 4 weeks after the termination of EA, EA continued to improve motor function in 6-OHDA-lesioned mice. Consistent with sustained behavioral effects, EA induced an enduring increase in the dopamine turnover ratio in the striatum 2 weeks after the cessation of EA treatment. Here we demonstrated that the therapeutic effect of EA outlasted the duration of EA application. During a relatively long period of time after the completion of EA treatment, EA is able to continue to improve motor function and enhance dopamine availability in 6-OHDA-lesioned PD mice. PMID:26894437

  20. Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson's disease rat models.

    PubMed

    Park, Hyun Jin; Zhao, Ting Ting; Lee, Kyung Sook; Lee, Seung Ho; Shin, Keon Sung; Park, Keun Hong; Choi, Hyun Sook; Lee, Myung Koo

    2015-01-01

    The present study investigated the effects of (-)-sesamin on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using PC12 cells and dopaminergic neuronal cells of 6-OHDA-lesioned rat model of Parkinson's disease (PD). In PC12 cells, treatment with (-)-sesamin (25 µM) reduced 6-OHDA (100 µM)-induced cell death and induced transient extracellular signal-regulated kinase (ERK1/2) phosphorylation and Bad phosphorylation at Ser112 (BadSer112). In contrast, sustained ERK1/2 phosphorylation, p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK1/2) phosphorylation, and cleaved-caspase-3 activity, all of which were induced by 6-OHDA (100 µM), were inhibited by treatment with (-)-sesamin (25 µM). Furthermore, co-treatment with (-)-sesamin (30 mg/kg, p.o.) once a day for 28 days significantly increased the number of tyrosine hydroxylase-immunopositive neuronal cells and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid in the substantia nigra-striatum of 6-OHDA-lesioned rat model of PD with or without L-DOPA treatment. These results suggest that (-)-sesamin protects 6-OHDA-induced cytotoxicity via the activation of transient ERK1/2-BadSer112 system and the inhibition of sustained ERK-p38MAPK-JNK1/2-caspase-3 system in PC12 cells. (-)-Sesamin also shows protective effects on long-term L-DOPA therapy in dopaminergic neuronal cells of PD rat models. (-)-Sesamin may serve as adjuvant therapeutics in PD. PMID:25747493

  1. Inhibition of Glycogen Synthase Kinase-3β (GSK-3β) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats

    PubMed Central

    Xie, Cheng-long; Lin, Jing-Ya; Wang, Mei-Hua; Zhang, Yu; Zhang, Su-fang; Wang, Xi-Jin; Liu, Zhen-Guo

    2016-01-01

    Levodopa (L-dopa) is the dominating therapy drug for exogenous dopaminergic substitution and can alleviate most of the manifestations of Parkinson’s disease (PD), but long-term therapy is associated with the emergence of L-dopa-induced dyskinesia (LID). Evidence points towards an involvement of Glycogen Synthase Kinase-3β (GSK-3β) in development of LID. In the present study, we found that animals rendered dyskinetic by L-dopa treatment, administration of TDZD8 (2mg/kg) obviously prevented the severity of AIM score, as well as improvement in motor function (P < 0.05). Moreover, the TDZD8-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates of LID. TDZD8 reduced the phosphorylation levels of tau, DARPP32, ERK and PKA protein, which represent molecular markers of LID, as well as reduced L-dopa-induced FosB mRNA and PPEB mRNA levels in the lesioned striatum. In addition, we found that TDZD8 antidyskinetic properties were overcome by D1 receptor, as pretreatment with SKF38393 (5 mg/kg, 10 mg/kg, reapectively), a D1 receptor agonist, blocked TDZD8 antidyskinetic actions. This study supported the hypothesis that GSK-3β played an important role in the development and expression of LID. Inhibition of GSK-3β with TDZD8 reduced the development of ALO AIM score and associated molecular changes in 6-OHDA-lesioned rats. PMID:26997328

  2. β-asarone increases MEF2D and TH levels and reduces α-synuclein level in 6-OHDA-induced rats via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway: Chaperone-mediated autophagy activation, macroautophagy inhibition and HSP70 up-expression.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Liu, Shu; Fang, Yongqi

    2016-10-15

    Inactive myocyte enhancer factor 2D (MEF2D) and alpha-synuclein (α-syn) aggregation will cause neuronal death. MEF2D or α-syn degradation is also associated with macroautophagy, chaperone-mediated autophagy (CMA) and heat-shock protein 70 (HSP70). We found that β-asarone had positive effects on treating 6-hydroxydopamine (6-OHDA)-induced rats, but mechanisms of β-asarone affecting on MEF2D and α-syn via regulating the HSP70/MAPK/MEF2D/Beclin-1 pathway remain unclear. Unilateral 6-OHDA injection into the medial forebrain bundle was used to create PD rats, which were divided into four groups and administered for 30days: 6-OHDA model group, MEF2D inhibitor-treated group (SB203580, 0.5mg/kg, i.p.), MEF2D activator-treated group (LiCl, 100mg/kg, i.p.), β-asarone-treated group (15mg/kg, p.o.). Expressions of tyrosine hydroxylase (TH), α-syn, heat-shock cognate protein 70 (HSC70), lysosome-associated membrane protein type 2a (LAMP-2A), MEF2D, HSP70, Beclin-1, light chain 3B (LC3B) and p62 in the mesencephalon were measured after 30-day administration. α-syn, Beclin-1 and LC3B levels were higher in the 6-OHDA model group, while TH, MEF2D, HSC70, LAMP-2A, p62 levels were lower compared to the sham-operated group. Our results also showed thatβ-asarone treatment reduced protein and mRNA levels of α-syn, Beclin-1 and LC3B, but increased HSP70, TH, MEF2D, HSC70, LAMP-2A and p62 levels compared to the 6-OHDA model group. Additionally, certain correlations among α-syn, TH, Beclin-1, LC3B, p62, HSP70, LAMP-2A and MEF2D were also discovered in this study. These findings suggested that β-asarone treatment could increase MEF2D and TH as well as reduce α-syn to protect against 6-OHDA induced damage in PD rat mesencephalon via modulating the HSP70/MAPK/MEF2D/Beclin-1 pathway. PMID:27444243

  3. β-Asarone Inhibits IRE1/XBP1 Endoplasmic Reticulum Stress Pathway in 6-OHDA-Induced Parkinsonian Rats.

    PubMed

    Ning, Baile; Deng, Minzhen; Zhang, Qinxin; Wang, Nanbu; Fang, Yongqi

    2016-08-01

    Parkinson's disease (PD) is a neurodegenerative disease, with genetics and environment contributing to the disease onset. The limited pathological cognize of the disease restrained the approaches to improve the clinical treatment. Recently, studies showed that endoplasmic reticulum (ER) stress played an important role in the pathogenesis of PD. There was a neuroprotective effect partly mediated by modulating ER stress. β-Asarone is the essential constituent of Acorus tatarinowii Schott volatile oil. Our team observed that β-asarone could improve the behavior of parkinsonian rats; increase the HVA, Dopacl, and 5-HIAA levels; and reduce α-synuclein levels. Here we assumed that the protective role of β-asarone on parkinsonian rats was mediated via ER stress pathway. To prove the hypothesis we investigated the mRNA levels of glucose regulated protein 78 (GRP78) and C/EBP homologous binding protein (CHOP) in 6-hydroxy dopamine (6-OHDA) induced parkinsonian rats after β-asarone treatment. Furthermore, the inositol-requiring enzyme 1/X-Box Binding Protein 1 (IRE1/XBP1) ER stress pathway was also studied. The results showed that β-asarone inhibited the mRNA levels of GRP78 and CHOP, accompanied with the delined expressions of phosphorylated IER1 (p-IRE1) and XBP1. We deduced that β-asarone might have a protective effect on the 6-OHDA induced parkinsonian rats via IRE1/XBP1 Pathway. Collectively, all data indicated that β-asarone might be a potential candidate of medicine for clinical therapy of PD. PMID:27097550

  4. Activin A Protects Midbrain Neurons in the 6-Hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Li, Kong M.; Vissel, Bryce

    2015-01-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain. PMID:25902062

  5. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells.

    PubMed

    Magalingam, Kasthuri Bai; Radhakrishnan, Ammu; Haleagrahara, Nagaraja

    2016-03-01

    There is increasing evidence that free radicals induced oxidative stress is a major causative agent in the pathogenesis of neurodegenerative diseases, particularly Parkinson's disease. Quercetin glycosides, namely rutin and isoquercitrin, are flavonoid polyphenol compounds found ubiquitously in fruits and vegetables and have been known to possess antioxidant effects. This study was designed to compare the neuroprotective effects of quercetin glycosides rutin and isoquercitrin in 6-OHDA-induced rat pheochromocytoma (PC-12) cells. The results showed that both rutin and isoquercitrin significantly increased antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and glutathione level that were attenuated by 6-OHDA in PC-12 cells. There was no significant difference in the activation of glutathione and glutathione peroxidase enzymes between rutin and isoquercitrin. These two glycosides were equally effective in suppressing lipid peroxidation in 6-OHDA-induced PC-12 cells as both compounds suppressed the malondialdehyde generation and prevented cell damage. In conclusion, quercetin glycosides rutin and isoquercetrin are having a significant neuroprotective effect against 6-OHDA toxicity in PC-12 cells. PMID:26542606

  6. In vivo extracellular recording of striatal neurons in the awake rat following unilateral 6-hydroxydopamine lesions.

    PubMed

    Chen, M T; Morales, M; Woodward, D J; Hoffer, B J; Janak, P H

    2001-09-01

    The purpose of this study was to further understand the functional effects of dopaminergic input to the dorsal striatum and to compare the effects of dopaminergic lesions in awake and anesthetized animals. We examined the effects of unilateral 6-hydroxydopamine (6-OHDA) lesions of the ascending dopaminergic bundle on the firing properties of dorsal striatal neurons in the awake freely moving rat using chronically implanted microwire electrode arrays. We recorded extracellular activity of striatal neurons under baseline conditions and following the systemic injection of apomorphine in awake and anesthetized subjects. Firing rates were higher in the hemisphere ipsilateral to the 6-OHDA lesion compared to rates of neurons from the contralateral unlesioned hemisphere. Striatal firing rates from sham and no-surgery control rats were, in general, higher than those from the contralateral unlesioned striatum of experimental subjects. Apomorphine (0.05 mg/kg, sc) normalized the differences in firing rates in lesioned animals by increasing firing of neurons within the contralateral unlesioned side, while simultaneously decreasing firing of neurons within the ipsilateral lesioned side. Mean firing rates were substantially higher in awake animals than in subjects anesthetized with chloral hydrate, perhaps reflecting anesthesia-induced decreases in excitatory input to striatal neurons. Chloral hydrate anesthesia decreased firing rates of neurons in the lesioned, unlesioned, and control striata to a similar degree, although absolute firing rates of neurons from the 6-OHDA-lesioned striata remained elevated over all other groups. Unilateral 6-OHDA lesions also altered the pattern of spike output in the awake animal as indicated by an increase in the number of bursts per minute following dopaminergic deafferentation. This and other burst parameters were altered by apomorphine. Our findings show that effects of dopaminergic deafferentation can be measured in the awake behaving

  7. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression

    PubMed Central

    Gao, J; Kang, X-y; Sun, S; Li, L; Zhang, B-l; Li, Y-q; Gao, D-s

    2016-01-01

    Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons. PMID:27148690

  8. Characterization of a new low-dose 6-hydroxydopamine model of Parkinson's disease in rat.

    PubMed

    Penttinen, Anna-Maija; Suleymanova, Ilida; Albert, Katrina; Anttila, Jenni; Voutilainen, Merja H; Airavaara, Mikko

    2016-04-01

    Intrastriatal administration of 6-hydroxydopamine (6-OHDA) induces partial degeneration of the nigrostriatal pathway, mimicking the pathology of Parkinson's disease (PD). Setting up the partial lesion model can be challenging because a number of experimental settings can be altered. This study compares seven experimental settings in a single study on d-amphetamine-induced rotations, tyrosine hydroxylase (TH)-positive neurites in the striatum, dopamine transporter (DAT)-positive neurites in the striatum, and TH-positive cells in the substantia nigra pars compacta (SNpc) in rats. Moreover, we validate a new algorithm for estimating the number of TH-positive cells. We show that the behavior and immunoreactivity vary greatly depending on the injection settings, and we categorize the lesions as progressive, stable, or regressive based on d-amphetamine-induced rotations. The rotation behavior correlated with the degree of the lesion, analyzed by immunohistochemistry; the largest lesions were in the progressive group, and the smallest lesions were in the regressive group. We establish a new low-dose partial 6-OHDA lesion model in which a total of 6 μg was distributed evenly to three sites in the striatum at a 10° angle. The administration of low-dose 6-OHDA produced stable and reliable rotation behavior and induced partial loss of striatal TH-positive and DAT-positive neurites and TH-positive cells in the SNpc. This model is highly suitable for neurorestoration studies in the search for new therapies for PD, and the new algorithm increases the efficacy for estimating the number of dopamine neurons. This study can be extremely useful for laboratories setting up the partial 6-OHDA model. PMID:26762168

  9. Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats.

    PubMed

    Gołembiowska, Krystyna; Dziubina, Anna

    2012-02-01

    A(2A) adenosine receptor antagonists have been proposed as a new therapy of PD. Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(-3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on hydroxyl radical generation, and glutamate (GLU) and dopamine (DA) extracellular level using a microdialysis in the striatum of 6-OHDA-treated rats. CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly for 14 days decreased the production of hydroxyl radical and extracellular GLU level, both enhanced by prior 6-OHDA treatment in dialysates from the rat striatum. CSC and ZM 241385 did not affect DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) extracellular levels in the striatum of 6-OHDA-treated rats. L-DOPA (6 mg/kg) given twice daily for two weeks in the presence of benserazide (3 mg/kg) decreased striatal hydroxyl radical and glutamate extracellular level in 6-OHDA-treated rats. At the same time, L-DOPA slightly but significantly increased the extracellular levels of DOPAC and HVA. A combined repeated administration of L-DOPA and CSC or ZM 241385 did not change the effect of L-DOPA on hydroxyl radical production and glutamate extracellular level in spite of an enhancement of extracellular DA level by CSC and elevation of extracellular level of DOPAC and HVA by ZM 241385. The data suggest that the 6-OHDA-induced damage of nigrostriatal DA-terminals is related to oxidative stress and excessive release of glutamate. Administration of L-DOPA in combination with CSC or ZM 241385, by restoring striatal DA-glutamate balance, suppressed 6-OHDA-induced overproduction of hydroxyl radical. PMID:21830163

  10. Dramatic differences in susceptibility to l-DOPA-induced dyskinesia between mice that are aged before or after a nigrostriatal dopamine lesion.

    PubMed

    Bez, Francesco; Francardo, Veronica; Cenci, M Angela

    2016-10-01

    Mice with striatal 6-hydroxydopamine (6-OHDA) lesions are widely used as a model to study the effects of neurorestorative, symptomatic, or antidyskinetic treatments for Parkinson's disease (PD). The standard praxis is to utilize young adult mice with relatively acute 6-OHDA lesions. However, long post-lesion intervals may be required for longitudinal studies of treatment interventions, and the long-term stability of the model's behavioral and cellular phenotypes is currently unknown. In this study, C57Bl/6J mice sustained unilateral striatal 6-OHDA lesions at approx. 2months of age, and were allowed to survive for 1, 10 or 22months. Another group of mice sustained the lesion at the age of 23months and survived for one month thereafter. Baseline and drug-induced motor behaviors were examined using a battery of tests (utilizing also a novel video-based methodology). The extent of nigral dopamine cell loss was stable across post-lesion intervals and ages. However, a prominent sprouting of both dopaminergic and serotonergic fibers was detected in the caudate-putamen in animals that survived until 10 and 22months post-lesion. This phenomenon was associated with a recovery of baseline motor deficits, and with a lack of dyskinetic responses upon treatment with either l-DOPA or apomorphine. By contrast, mice sustaining the lesion at 23months of age showed a striking susceptibility to the dyskinetic effects of both l-DOPA and apomorphine, which was associated with a pronounced drug-induced upregulation of ∆FosB in the ventrolateral striatum. The results reveal a remarkable compensatory capacity of a damaged nigrostriatal pathway in ageing mice, and how this impacts on the response to dopaminergic therapies for PD. PMID:27312773

  11. Alterations in the motor cortical and striatal glutamatergic system and D-serine levels in the bilateral 6-hydroxydopamine rat model for Parkinson's disease.

    PubMed

    El Arfani, Anissa; Albertini, Giulia; Bentea, Eduard; Demuyser, Thomas; Van Eeckhaut, Ann; Smolders, Ilse; Massie, Ann

    2015-09-01

    Parkinson's disease (PD) is hallmarked by progressive degeneration of the substantia nigra pars compacta (SNc) neurons and is associated with aberrant glutamatergic activity. However, studies on the glutamatergic system in the motor cortex and striatum, two motor loop-related areas, are lacking in the clinically relevant bilateral SNc 6-hydroxydopamine (6-OHDA) rat model, and therefore led to the rationale behind the present investigations. Using Western blotting, the expression levels of the glial glutamate transporters, GLT-1 and GLAST, as well as xCT, the specific subunit of system xc(-), and the vesicular glutamate transporters, VGLUT1 and 2 were investigated at two different time points (1 week and 2 weeks) post-lesion. In addition, the total content of glutamate was measured. Moreover, the total D-serine levels were, to the best of our knowledge, studied for the first time in these two PD-related areas in the bilateral 6-OHDA rat model. In the motor cortex, no significant changes were observed in the different glutamate transporter expression levels in the bilaterally-lesioned rats. In the striatum, GLAST expression was significantly decreased at both time points whereas VGLUT1 and 2 expressions were significantly decreased 2 weeks after bilateral 6-OHDA lesion. Interestingly, bilateral 6-OHDA SNc lesion resulted in an enhancement of the total d-serine content in both motor cortex and striatum at 1 week post-lesion suggesting its possible involvement in the pathophysiology of PD. In conclusion, this study demonstrates disturbed glutamate and D-serine regulation in the bilateral SNc-lesioned brain which could contribute to the behavioral impairments in PD. PMID:26172319

  12. Ellagic Acid Protects the Brain Against 6-Hydroxydopamine Induced Neuroinflammation in a Rat Model of Parkinson’s Disease

    PubMed Central

    Farbood, Yaghoob; Sarkaki, Alireza; Dolatshahi, Mojtaba; Taqhi Mansouri, Seyed Mohammad; Khodadadi, Ali

    2015-01-01

    Introduction: Neuroinflammation may play as an important risk factor in progressive degeneration of dopaminergic cells. Antioxidants have protective effects against free radicals-induced neural damage in Parkinson’s disease (PD). In the present study, we examined the effects of ellagic acid (EA) on locomotion and neuroinflammatory biomarkers in a rat model of PD induced by 6-hydroxidopamine (6-OHDA). Methods: 6-OHDA (16 μg/2 μl) was injected into the right medial forebrain bundle (MFB) in MFB-lesioned rat’s brain. Sham group received vehicle instead of 6-OHDA. PD-model was confirmed by rotational test using apomorphine injection. EA (50 mg/kg/2 ml, by gavages) was administered in PD+EA group. One group of MFB-lesioned rats received pramipexole (PPX; 2 mg/kg/2 ml, by gavages) as positive control group (PD+PPX group). Motor activity was assessed by stride length and cylinder tests. The levels of TNF-α and IL-1β were measured in both striatum and hippocampus tissues. Results: MFB lesion caused significant reduction of stride-length (P<0.001) and also increased the contralateral rotations (P<0.001) and score of the cylinder test (P<0.001). Use of 6-OHDA to induce the PD significantly increased the levels of TNF-α (P<0.001) and IL-1β (P<0.001) in MFB-lesioned rats. EA significantly restored all of the above parameters. Discussion: EA can improve the motor impairments in the MFB-lesioned rats via reducing the neuroinflammatory biomarkers and protect the brain against free radicals-induced neural damage. The results suggest that EA can be helpful in management of PD treatment. PMID:27307952

  13. BDNF levels are increased by aminoindan and rasagiline in a double lesion model of Parkinson׳s disease.

    PubMed

    Ledreux, Aurélie; Boger, Heather A; Hinson, Vanessa K; Cantwell, Kelsey; Granholm, Ann-Charlotte

    2016-01-15

    The anti-Parkinsonian drug rasagiline is a selective, irreversible inhibitor of monoamine oxidase and is used in the treatment of Parkinson׳s disease (PD). Its postulated neuroprotective effects may be attributed to MAO inhibition, or to its propargylamine moiety. The major metabolite of rasagiline, aminoindan, has shown promising neuroprotective properties in vitro but there is a paucity of studies investigating in vivo effects of this compound. Therefore, we examined neuroprotective effects of rasagiline and its metabolite aminoindan in a double lesion model of PD. Male Fisher 344 rats received i.p. injections of the noradrenergic neurotoxin DSP-4 and intra-striatal stereotaxic microinjections of the dopamine neurotoxin 6-OHDA. Saline, rasagiline or aminoindan (3mg/kg/day s.c.) were delivered via Alzet minipumps for 4 weeks. Rats were then tested for spontaneous locomotion and a novel object recognition task. Following behavioral testing, brain tissue was processed for ELISA measurements of growth factors and immunohistochemistry. Double-lesioned rats treated with rasagiline or aminoindan had reduced behavioral deficits, both in motor and cognitive tasks compared to saline-treated double-lesioned rats. BDNF levels were significantly increased in the hippocampus and striatum of the rasagiline- and aminoindan-lesioned groups compared to the saline-treated lesioned group. Double-lesioned rats treated with rasagiline or aminoindan exhibited a sparing in the mitochondrial marker Hsp60, suggesting mitochondrial involvement in neuroprotection. Tyrosine hydroxylase (TH) immunohistochemistry revealed a sparing of TH-immunoreactive terminals in double-lesioned rats treated with rasagiline or aminoindan in the striatum, hippocampus, and substantia nigra. These data provide evidence of neuroprotection by aminoindan and rasagiline via their ability to enhance BDNF levels. PMID:26607251

  14. Adaptive down-regulation of the serotonin transporter in the 6-hydroxydopamine-induced rat model of preclinical stages of Parkinson's disease and after chronic pramipexole treatment.

    PubMed

    Berghauzen-Maciejewska, K; Wardas, J; Kosmowska, B; Domin, H; Śmiałowska, M; Głowacka, U; Ossowska, K

    2016-02-01

    Our recent study has indicated that a moderate lesion induced by bilateral 6-hydroxydopamine (6-OHDA) injections into the ventrolateral region of the caudate-putamen (CP) in rats, modeling preclinical stages of Parkinson's disease, induces a "depressive-like" behavior which is reversed by chronic treatment with pramipexole (PRA). The aim of the present study was to examine the influence of the above lesion and chronic PRA treatment on binding to the serotonin transporter (SERT) in different brain regions. As before, 6-OHDA (15 μg/2.5 μl) was administered bilaterally into the CP. PRA (1mg/kg) was injected subcutaneously twice a day for 2 weeks. Serotonergic and dopaminergic neurons of the dorsal raphe (DR) were immunostained for tryptophan hydroxylase and tyrosine hydroxylase, respectively, and were counted stereologically. Binding of [(3)H]GBR 12,935 to the dopamine transporter (DAT) and [(3)H]citalopram to SERT was analyzed autoradiographically. Intrastriatal 6-OHDA injections decreased the number of dopaminergic, but not serotonergic neurons in the DR. 6-OHDA reduced the DAT binding in the CP, and SERT binding in the nigrostriatal system (CP, substantia nigra (SN)), limbic system (ventral tegmental area (VTA), nucleus accumbens (NAC), amygdala, prefrontal cortex (PFCX), habenula, hippocampus) and DR. A significant positive correlation was found between DAT and SERT binding in the CP. Chronic PRA did not influence DAT binding but reduced SERT binding in the above structures, and deepened the lesion-induced losses in the core region of the NAC, SN, VTA and PFCX. The present study indicates that both the lesion of dopaminergic neurons and chronic PRA administration induce adaptive down-regulation of SERT binding. Moreover, although involvement of stimulation of dopaminergic transmission by chronic PRA in its "antidepressant" effect seems to be prevalent, additional contribution of SERT inhibition cannot be excluded. PMID:26628402

  15. Intracranial application of near-infrared light in a hemi-parkinsonian rat model: the impact on behavior and cell survival.

    PubMed

    Reinhart, Florian; Massri, Nabil El; Chabrol, Claude; Cretallaz, Celine; Johnstone, Daniel M; Torres, Napoleon; Darlot, Fannie; Costecalde, Thomas; Stone, Jonathan; Mitrofanis, John; Benabid, Alim-Louis; Moro, Cécile

    2016-06-01

    OBJECT The authors of this study used a newly developed intracranial optical fiber device to deliver near-infrared light (NIr) to the midbrain of 6-hydroxydopamine (6-OHDA)-lesioned rats, a model of Parkinson's disease. The authors explored whether NIr had any impact on apomorphine-induced turning behavior and whether it was neuroprotective. METHODS Two NIr powers (333 nW and 0.16 mW), modes of delivery (pulse and continuous), and total doses (634 mJ and 304 J) were tested, together with the feasibility of a midbrain implant site, one considered for later use in primates. Following a striatal 6-OHDA injection, the NIr optical fiber device was implanted surgically into the midline midbrain area of Wistar rats. Animals were tested for apomorphine-induced rotations, and then, 23 days later, their brains were aldehyde fixed for routine immunohistochemical analysis. RESULTS The results showed that there was no evidence of tissue toxicity by NIr in the midbrain. After 6-OHDA lesion, regardless of mode of delivery or total dose, NIr reduced apomorphine-induced rotations at the stronger, but not at the weaker, power. The authors found that neuroprotection, as assessed by tyrosine hydroxylase expression in midbrain dopaminergic cells, could account for some, but not all, of the observed behavioral improvements; the groups that were associated with fewer rotations did not all necessarily have a greater number of surviving cells. There may have been other "symptomatic" elements contributing to behavioral improvements in these rats. CONCLUSIONS In summary, when delivered at the appropriate power, delivery mode, and dosage, NIr treatment provided both improved behavior and neuroprotection in 6-OHDA-lesioned rats. PMID:26613166

  16. Multiple lesion track structure model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1992-01-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.

  17. Hyperactivity and hypoactivity produced by lesions to the mesolimbic dopamine system.

    PubMed

    Koob, G F; Stinus, L; Le Moal, M

    1981-11-01

    Spontaneous locomotor activity and the locomotor response to amphetamine and apomorphine were studied in rats subjected to either radiofrequency (RF), 6-hydroxydopamine (6-OHDA) or both RF and 6-OHDA lesions of the mesolimbic dopamine (DA) system. Large 6-OHDA lesions of the ventral tegmental area (VTA) or of the nucleus accumbens (N.Acc.) produced hypo-activity in the open field, a complete blockade of the locomotor stimulating effects of D-amphetamine and a profound supersensitive response to apomorphine as measured by a significant increase in locomotor activity as compared to sham-operated animals. In contrast, smaller 6-OHDA lesions of the VTA produced significant increases in spontaneous daytime and nocturnal activity with the biggest effect occurring at the lowest dose. RF lesions to the VTA produced even greater hyperactivity which was blocked by the addition of a 6-OHDA lesion to the N.Acc. The rats with RF lesions to VTA alone that were spontaneously hyperactive remained hyperactive after injection of amphetamine, whereas apomorphine produced a significant decrease in this hyperactivity. In contrast, the rats with the combined RF lesion and N.Acc. 6-OHDA lesion showed a blockade of the locomotor stimulating effects of D-amphetamine and a potentiated response to apomorphine identical to that observed with a N.Acc. lesion alone. All lesion groups revealed massive depletion of DA in the N.Acc. and anterior striatum with significantly greater depletions in those groups showing hypoactivity and hypo-responsiveness to amphetamine. All groups except the N.Acc. 6-OHDA alone group showed significant depletions of DA in the posterior striatum. Thus, limited destruction of the mesolimbic DA system can produce hyperactivity, but more extensive destruction of this system in the region of the N.Acc. and anterior striatum can reverse this hyperactivity and produce a hypo-responsiveness to the locomotor stimulating effects of amphetamine. These results suggest an

  18. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson's Disease.

    PubMed

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson's disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  19. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Tarozzi, Andrea; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-11-17

    A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD. PMID:25257035

  20. Neuroprotective Effects of A Standardized Flavonoid Extract of Safflower Against Neurotoxin-Induced Cellular and Animal Models of Parkinson’s Disease

    PubMed Central

    Ren, Rutong; Shi, Chunyan; Cao, Jing; Sun, Yi; Zhao, Xin; Guo, Yongfei; Wang, Chen; Lei, Hui; Jiang, Hanjie; Ablat, Nuramatjan; Xu, Jiamin; Li, Wan; Ma, Yingcong; Qi, Xianrong; Ye, Min; Pu, Xiaoping; Han, Hongbin

    2016-01-01

    Safflower has long been used to treat cerebrovascular diseases in China. We previously reported that kaempferol derivatives of safflower can bind DJ-1, a protein associated with Parkinson’s disease (PD), and flavonoid extract of safflower exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of PD. In this study, a standardized safflower flavonoid extract (SAFE) was isolated from safflower and mainly contained flavonoids. Two marker compounds of SAFE, kaempferol 3-O-rutinoside and anhydrosafflor yellow B, were proven to suppress microtubule destabilization and decreased cell area, respectively. We confirmed that SAFE in dripping pill form could improve behavioural performances in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD, partially via the suppression of α-synuclein overexpression or aggregation, as well as the suppression of reactive astrogliosis. Using an MRI tracer-based method, we found that 6-OHDA could change extracellular space (ECS) diffusion parameters, including a decrease in tortuosity and the rate constant of clearance and an increase in the elimination half-life of the tracer in the 6-OHDA-lesioned substantia nigra. SAFE treatment could partially inhibit the changes in ECS diffusion parameters, which might provide some information about neuronal loss and astrocyte activation. Consequently, our results indicate that SAFE is a potential therapeutic herbal product for treatment of PD. PMID:26906725

  1. Daphnane Diterpenes from Daphne genkwa Activate Nurr1 and Have a Neuroprotective Effect in an Animal Model of Parkinson's Disease.

    PubMed

    Han, Baek-Soo; Kim, Kyoung-Shim; Kim, Yu Jin; Jung, Hoe-Yune; Kang, Young-Mi; Lee, Kyu-Suk; Sohn, Mi-Jin; Kim, Chun-Hyung; Kim, Kwang-Soo; Kim, Won-Gon

    2016-06-24

    Nurr1 is an orphan nuclear receptor that is essential for the differentiation and maintenance of dopaminergic neurons in the brain, and it is a therapeutic target for Parkinson's disease (PD). During the screening for Nurr1 activators from natural sources using cell-based assay systems, a methanol extract of the combined stems and roots of Daphne genkwa was found to activate the transcriptional function of Nurr1 at a concentration of 3 μg/mL. The active components were isolated and identified as genkwanine N (1) and yuanhuacin (2). Both compounds 1 and 2 significantly enhanced the function of Nurr1 at 0.3 μM. Nurr1-specific siRNA abolished the activity of 1 and 2, strongly suggesting that transcriptional activation by 1 and 2 occurred through the modulation of Nurr1 function. Additionally, treatment with 1 and 2 inhibited 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and lipopolysaccharide (LPS)-induced neuroinflammation. Moreover, in a 6-OHDA-lesioned rat model of PD, intraperitoneal administration of 2 (0.5 mg/kg/day) for 2 weeks significantly improved behavioral deficits and reduced tyrosine hydroxylase (TH)-positive dopaminergic neuron death induced by 6-OHDA injection and had a beneficial effect on the inflammatory response in the brain. Accordingly, compounds 1 and 2, the first reported Nurr1 activators of natural origin, are potential lead compounds for the treatment of PD. PMID:27228307

  2. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease.

    PubMed

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2016-08-01

    Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential. PMID:26414358

  3. Neuroprotective Properties of a Standardized Extract from Myracrodruon urundeuva Fr. All. (Aroeira-Do-Sertão), as Evaluated by a Parkinson's Disease Model in Rats

    PubMed Central

    Calou, Iana; Bandeira, Mary Anne; Aguiar-Galvão, Wellida; Cerqueira, Gilberto; Siqueira, Rafaelly; Neves, Kelly Rose; Brito, Gerly Anne; Viana, Glauce

    2014-01-01

    Myracrodruon urundeuva Fr. All. (Anacardiaceae) is a Brazilian medicinal species, which is common to the Northeastern Brazilian semiarid region, whose stem-bark is widely used in folk medicine. It is an endangered species, presenting as main bioactive components tannins and chalcones. In this work, we studied the neuroprotective effects of a standardized extract from cultivated M. urundeuva (SEMU), in a model of Parkinson's disease. Thus, a unilateral injection of 6-OHDA was done into the rat right stratum. The animals were submitted to stereotaxic surgery, then treated with SEMU (5, 10, 20, or 40 mg/kg, p.o.) for 2 weeks, subjected to behavioral tests, and euthanized for striata dissections and neurochemical, histological, and immunohistochemical analyses. We showed, for the first time, that SEMU reverted behavioral alterations seen in the 6-OHDA-lesioned group and partially blocked the decrease in DA and DOPAC contents. The numbers of viable neurons and TH immunopositive cells were increased by SEMU. In addition, the SEMU-treated 6-OHDA groups showed lower numbers of GFAP and OX-42 immunopositive cells. The neuroprotective action of SEMU is possibly related to the antioxidant and anti-inflammatory properties of M. urundeuva, pointing out to its potential use in the prevention or treatment of neurodegenerative conditions, such as Parkinson's disease. PMID:25061534

  4. Left and right 6-hydroxydopamine lesions of the medial prefrontal cortex differentially affect voluntary ethanol consumption.

    PubMed

    Nielsen, D M; Crosley, K J; Keller, R W; Glick, S D; Carlson, J N

    1999-03-27

    Dopaminergic projections to the medial prefrontal cortex (mPFC) were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) to examine how dopamine (DA) asymmetry in the mPFC influences voluntary ethanol consumption. Differences in nucleus accumbens (NAS) DA neurotransmission have been related to individual differences in locomotor activity and in the rewarding efficacy of ethanol. Therefore, differences in locomotor activity were used to further characterize the effects of unilateral mPFC 6-OHDA lesions on ethanol consumption. Male Long Evans rats were assessed for high versus low levels of spontaneous locomotor activity. DA terminals in the left or right mPFC were unilaterally lesioned with 6-OHDA, resulting in an average DA depletion of 54% and 50%, respectively. After a minimum seven-day recovery period, preference for a 10% ethanol solution vs. water was determined in a 24-h 2-bottle home-cage free-choice paradigm. Left mPFC 6-OHDA lesions increased and right lesions decreased ethanol consumption. These differential effects of left and right lesions were primarily attributable to rats exhibiting low locomotor activity prior to surgery. The present data suggest that right greater than left cortical DA asymmetry in combination with low endogenous NAS DA (predicted by low locomotor activity levels) may increase the vulnerability to abuse ethanol. PMID:10095012

  5. Effects of catecholaminergic nerve lesion on endometrial development during early pregnancy in Mice.

    PubMed

    Dong, Yulan; Liu, Guanhui; Wang, Zixu; Li, Jing; Cao, Jing; Chen, Yaoxing

    2016-04-01

    Maternal stress is common during pregnancy and the postnatal period. This stress typically activates the sympathetic nervous system which releases catecholamines. This study explored the influence of sympathectomy by using neurotoxin 6-hydroxydopamine (6-OHDA) on embryo implantation, and investigated the influence mechanism of sympathectomy on reconstruction of endometrial structure during early pregnancy. In the 6-OHDA-treated mice, uterine glands in the endometrium developed poorly, and the gland epithelia were arranged irregularly during early pregnancy. Furthermore, vacuoles, karyopykosis and plasmarrhexis appeared in some gland epithelia. The percentage of uterine glands and the density of proliferating cell nuclear antigen (PCNA) positivity were dramatically decreased, and Fas ligand (FasL) expression was decreased in cells from pregnancy days 5-9 (E5-9) in the treated group. Antioxidant enzyme activity levels in uteri were lower but the malondialdehyde (MDA) levels were higher in the 6-OHDA mice than those in the control mice at E5-9. Similarly, the number of inducible nitric oxide synthase (iNOS) positive cells was significantly increased during early pregnancy following treatment with 6-OHDA. Our results have indicated that peripheral catecholaminergic nerve lesions induced by 6-OHDA cause adverse pregnancy outcomes through disruption of endometrial gland development, which increases oxidative stress and iNOS expression in the endometrium. Thus, catecholaminergic nerves might favourably influence blastocyst implantation, foetal survival and development during early pregnancy by oxidative state regulation and endometrial gland reconstruction. PMID:26554516

  6. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  7. AMPHETAMINE-, SCOPOLAMINE-, AND CAFFEINE-INDUCED LOCOMOTOR ACTIVITY FOLLOWING 6-HYDROXYDOPAMINE LESIONS OF THE MESOLIMBIC DOPAMINE SYSTEM

    EPA Science Inventory

    As previously reported, 6-hydroxydopamine (6-OHDA) lesions to the region of the nucleus accumbens blocked the locomotor activation induced by low doses of d-amphetamine, and produced a supersensitive locomotor response to the dopamine (DA) agonist, apomorphine. This same lesion, ...

  8. Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys

    PubMed Central

    Joers, Valerie; Seneczko, Kailie; Goecks, Nichole C.; Kamp, Timothy J.; Hacker, Timothy A.; Brunner, Kevin G.; Engle, Jonathan W.; Barnhart, Todd E.; Nickles, R. Jerome; Holden, James E.; Emborg, Marina E.

    2012-01-01

    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog 11C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia. PMID:22539969

  9. Nonuniform cardiac denervation observed by 11C-meta-hydroxyephedrine PET in 6-OHDA-treated monkeys.

    PubMed

    Joers, Valerie; Seneczko, Kailie; Goecks, Nichole C; Kamp, Timothy J; Hacker, Timothy A; Brunner, Kevin G; Engle, Jonathan W; Barnhart, Todd E; Nickles, R Jerome; Holden, James E; Emborg, Marina E

    2012-01-01

    Parkinson's disease presents nonmotor complications such as autonomic dysfunction that do not respond to traditional anti-parkinsonian therapies. The lack of established preclinical monkey models of Parkinson's disease with cardiac dysfunction hampers development and testing of new treatments to alleviate or prevent this feature. This study aimed to assess the feasibility of developing a model of cardiac dysautonomia in nonhuman primates and preclinical evaluations tools. Five rhesus monkeys received intravenous injections of 6-hydroxydopamine (total dose: 50 mg/kg). The animals were evaluated before and after with a battery of tests, including positron emission tomography with the norepinephrine analog (11)C-meta-hydroxyephedrine. Imaging 1 week after neurotoxin treatment revealed nearly complete loss of specific radioligand uptake. Partial progressive recovery of cardiac uptake found between 1 and 10 weeks remained stable between 10 and 14 weeks. In all five animals, examination of the pattern of uptake (using Logan plot analysis to create distribution volume maps) revealed a persistent region-specific significant loss in the inferior wall of the left ventricle at 10 (P<0.001) and 14 weeks (P<0.01) relative to the anterior wall. Blood levels of dopamine, norepinephrine (P<0.05), epinephrine, and 3,4-dihydroxyphenylacetic acid (P<0.01) were notably decreased after 6-hydroxydopamine at all time points. These results demonstrate that systemic injection of 6-hydroxydopamine in nonhuman primates creates a nonuniform but reproducible pattern of cardiac denervation as well as a persistent loss of circulating catecholamines, supporting the use of this method to further develop a monkey model of cardiac dysautonomia. PMID:22539969

  10. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model.

    PubMed

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung; Kim, Kyoung-Shim; Kim, Mee Ree

    2016-08-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  11. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model

    PubMed Central

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD. PMID:27574484

  12. Colon Preneoplastic Lesions in Animal Models

    PubMed Central

    Suzui, Masumi; Morioka, Takamitsu; Yoshimi, Naoki

    2013-01-01

    The animal model is a powerful and fundamental tool in the field of biochemical research including toxicology, carcinogenesis, cancer therapeutics and prevention. In the carcinogenesis animal model system, numerous examples of preneoplastic lesions have been isolated and investigated from various perspectives. This may indicate that several options of endpoints to evaluate carcinogenesis effect or therapeutic outcome are presently available; however, classification of preneoplastic lesions has become complicated. For instance, these lesions include aberrant crypt foci (ACF), dysplastic ACF, flat ACF, β-catenin accumulated crypts, and mucin-depleted foci. These lesions have been induced by commonly used chemical carcinogens such as azoxymethane (AOM), 1,2-dimethylhydrazine (DMH), methylnitrosourea (MUN), or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Investigators can choose any procedures or methods to examine colonic preneoplastic lesions according to their interests and the objectives of their experiments. Based on topographical, histopathological, and biological features of colon cancer preneoplastic lesions in the animal model, we summarize and discuss the character and implications of these lesions. PMID:24526805

  13. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    PubMed Central

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  14. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson's Disease.

    PubMed

    Garea-Rodríguez, Enrique; Eesmaa, Ave; Lindholm, Päivi; Schlumbohm, Christina; König, Jessica; Meller, Birgit; Krieglstein, Kerstin; Helms, Gunther; Saarma, Mart; Fuchs, Eberhard

    2016-01-01

    Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson's disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF. PMID:26901822

  15. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum.

    PubMed

    Serratos, Iris N; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Colín-González, Ana Laura; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Sánchez-García, Aurora; Gómez, Isabel; Rangel-López, Edgar; Santamaria, Abel

    2016-04-01

    The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity. PMID:26902637

  16. Calcified lesion modeling for excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Scott, Holly A.; Archuleta, Andrew; Splinter, Robert

    2009-06-01

    Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.

  17. Ether-à-go-go 1 (Eag1) potassium channel expression in dopaminergic neurons of basal ganglia is modulated by 6-hydroxydopamine lesion.

    PubMed

    Ferreira, N R; Mitkovski, M; Stühmer, W; Pardo, L A; Del Bel, E A

    2012-04-01

    The ether à go-go (Eag) gene encodes the voltage-gated potassium (K(+)) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K(+) channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K(+) channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K(+)-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K(+) channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons. PMID:22048886

  18. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson’s Disease

    PubMed Central

    Haas, Stefan Jean-Pierre; Zhou, Xiaolai; Machado, Venissa; Wree, Andreas; Krieglstein, Kerstin; Spittau, Björn

    2016-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by loss of midbrain dopaminergic (mDA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been described as a common hallmark of PD and is believed to further trigger the progression of neurodegenerative events. Injections of 6-hydroxydopamine (6-OHDA) are widely used to induce degeneration of mDA neurons in rodents as an attempt to mimic PD and to study neurodegeneration, neuroinflammation as well as potential therapeutic approaches. In the present study, we addressed microglia and astroglia reactivity in the SN and the caudatoputamen (CPu) after 6-OHDA injections into the medial forebrain bundle (MFB), and further analyzed the temporal and spatial expression patterns of pro-inflammatory and anti-inflammatory markers in this mouse model of PD. We provide evidence that activated microglia as well as neurons in the lesioned SN and CPu express Transforming growth factor β1 (Tgfβ1), which overlaps with the downregulation of pro-inflammatory markers Tnfα, and iNos, and upregulation of anti-inflammatory markers Ym1 and Arg1. Taken together, the data presented in this study suggest an important role for Tgfβ1 as a lesion-associated factor that might be involved in regulating microglia activation states in the 6-OHDA mouse model of PD in order to prevent degeneration of uninjured neurons by microglia-mediated release of neurotoxic factors such as Tnfα and nitric oxide (NO). PMID:26869879

  19. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson’s Disease

    PubMed Central

    Garea-Rodríguez, Enrique; Eesmaa, Ave; Lindholm, Päivi; Schlumbohm, Christina; König, Jessica; Meller, Birgit; Krieglstein, Kerstin; Helms, Gunther; Saarma, Mart; Fuchs, Eberhard

    2016-01-01

    Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF. PMID:26901822

  20. Neuroprotective effect of sulfated polysaccharide isolated from sea cucumber Stichopus japonicus on 6-OHDA-induced death in SH-SY5Y through inhibition of MAPK and NF-κB and activation of PI3K/Akt signaling pathways.

    PubMed

    Cui, Chao; Cui, Ningshan; Wang, Peng; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-02-01

    The purpose of this study is to investigate the protective effect and molecular mechanism of the sulfated polysaccharide (SJP) isolated from the sea cucumber Stichopus japonicus against 6-OHDA-induced toxicity in SH-SY5Y cells. The results showed that SJP could protect SH-SY5Y cells against 6-OHDA-induced cell injury. We found that SJP effectively improves cell viability, decreases LDH leakage, and reverses morphological damage. Moreover, SJP significantly increases SOD activity but decreases MDA levels and ROS generation. Effect of SJP on 6-OHDA-induced cell death in SH-SY5Y cells is associated with an arrest in the G1/S phase of the cell cycle and inhibits the expression of Cyclin D3. 6-OHDA-induced intracellular generation of ROS and mitochondrial dysfunctions, release of cytochrome c, imbalance of Bax/Bcl-2, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3 ratio, and p-p53 activation were strikingly attenuated by SJP pretreatment. Meanwhile, SJP counteracted NF-κB activation, thereby preventing up-regulation of iNOS and intracellular NO release. The data provide the first evidence that SJP protects SH-SY5Y cells against 6-OHDA toxicity possibly by inhibiting MAPK and NF-κB and activating PI3K/Akt signaling pathways. Thus, SJP is a candidate for further evaluation of its protective effects against neurodegeneration in PD. PMID:26773499

  1. Effects of 6-hydroxydopamine lesioning of the medial prefrontal cortex on social interactions in adolescent and adult rats.

    PubMed

    Li, Chun-Rong; Huang, Guang-Biao; Sui, Zhi Yan; Han, Eui-Hyeog; Chung, Young-Chul

    2010-07-30

    Bilateral depletion of dopamine (DA) in the medial prefrontal cortex (mPFC) following local infusions of 6-hydroxydopamine (6-OHDA) was reported to affect mesolimbic DA neurotransmission and augment spontaneous and amphetamine-induced locomotion. However, the effects of 6-OHDA lesioning of the mPFC of adolescent rats have never been investigated. Given that dopaminergic neurons reach the peak of maturation during adolescence, we hypothesized that 6-OHDA lesioning of the mPFC during adolescence would have greater impact on subsequent behavioral parameters than would such lesioning during adulthood. The aim of this study was to investigate the effects of 6-OHDA lesioning of the mPFC on the open-field activities and novel investigative and socially interactive behaviors of adolescent and adult rats. Using a stereotaxic apparatus, 6-OHDA (8.0 microg) was injected bilaterally into the mPFC of adolescent and adult rats. After a 1-week recovery period, rats were placed in an open-field chamber, and spontaneous locomotion and other behaviors were monitored. Next, a novel toy was place in the center and behavioral responses were observed. One day later, socially interactive behaviors were measured by placing the lesioned rats into a cage with four unfamiliar rats matched for age. The tests of locomotor activity and novel investigative behaviors revealed no significant differences between the lesioned and sham groups of adolescent or adult rats. Grooming and socially interactive behaviors were significantly lower in the adolescent and adult lesioned groups than in each sham group. Interestingly, we observed more extensive impairment in socially interactive behaviors among the adolescent lesioned rats compared to the adult lesioned rats. The present study indicates that DA depletion in the mPFC causes significantly reduced grooming and socially interactive behaviors; this phenomenon may be comparable to the negative symptoms observed in schizophrenia. Further research is

  2. Pramipexole- and methamphetamine-induced reward-mediated behavior in a rodent model of Parkinson's disease and controls.

    PubMed

    Riddle, J L; Rokosik, S L; Napier, T C

    2012-07-15

    Pramipexole (PPX) is a dopamine agonist that is FDA-approved for treatment of motor dysfunction in Parkinson's disease and restless leg syndrome. In a subpopulation of treated patients, PPX can lead to impulsive-compulsive disorders including behavioral addictions and dopamine dysregulation syndrome, a phenomenon that mirrors drug addiction. Regardless of this clinical picture, the capacity of PPX to regulate reward-mediated behaviors remains unclear and has not been evaluated in an animal model of Parkinson's disease. To fill this gap, we examined the rewarding potential of PPX in parkinsonian-like rats using conditioned place preference (CPP) and also evaluated associated motor behaviors. Methamphetamine (meth) and saline served as positive and negative controls, respectively. To model Parkinson's disease, the neurotoxin 6-OHDA was injected bilaterally into the dorsolateral striatum. The resulting lesions were verified functionally using a forelimb adjusting step and post mortem immunohistochemical staining of striatal tyrosine hydroxylase. Three pairings of meth (1mg/kg, ip), paired with a unique context, induced CPP in both 6-OHDA-treated and sham-operated rats; saline pairings had no effect. Three pairings of (±)PPX at 2mg/kg ip (equal to 1mg/kg of the active racimer) induced CPP in 6-OHDA-treated rats, but a higher dose (4 mg/kg, ip (±)PPX) was needed to induce CPP in sham rats. In all rats, acute administration of 2mg/kg (±)PPX decreased locomotor activity; the behavior was normalized by the third (±)PPX administration. In summary, these findings reveal that (±)PPX has motor and rewarding effects and suggest the parkinsonian brain state may be more sensitive to the rewarding, but not motoric effects. PMID:22727039

  3. Chronic Amitriptyline Treatment Attenuates Nigrostriatal Degeneration and Significantly Alters Trophic Support in a Rat Model of Parkinsonism

    PubMed Central

    Paumier, Katrina L; Sortwell, Caryl E; Madhavan, Lalitha; Terpstra, Brian; Celano, Stephanie L; Green, Joshua J; Imus, Nastassja M; Marckini, Nathan; Daley, Brian; Steece-Collier, Kathy; Collier, Timothy J

    2015-01-01

    In addition to alleviating depression, long-term adaptive changes induced by antidepressants may regulate neural plasticity in the diseased brain, providing symptomatic and disease-modifying effects in Parkinson's disease. The present study investigated whether chronic treatment with a frequently prescribed tricyclic antidepressant was neuroprotective in a 6-hydroxydopamine (6-OHDA) rat model of parkinsonism. In lesioned animals, chronic amitriptyline (AMI; 5 mg/kg) treatment resulted in a significant sparing of tyrosine hydroxylase-immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) compared with saline treatment. Additionally, striatal fibers were preserved and functional motor deficits were attenuated. Although 6-OHDA lesions did not induce anhedonia in our model, the dose of AMI utilized had antidepressant activity as demonstrated by reduced immobility. Recent in vitro and in vivo data provide evidence that trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. Therefore, we investigated whether AMI mediates changes in these specific trophic factors in the intact and degenerating nigrostriatal system. Chronic AMI treatment mediates an increase in nigral BDNF both before and during ongoing degeneration, suggesting it may contribute to neuroprotection observed in vivo. However, over time, AMI reduced BDNF levels in the striatum, indicating tricyclic therapy differentially regulates trophic factors within the nigrostriatal system. Combined, these results suggest that AMI treatment attenuates dopamine neuron loss and elicits significant trophic changes relevant to dopamine neuron survival. PMID:25267343

  4. Monte Carlo modeling of pigmented lesions

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel; Jacques, Steven; Krueger, James

    2014-03-01

    Colors observed in clinical dermoscopy are critical to diagnosis but the mechanisms that lead to the spectral components of diffuse reflectance are more than meets the eye: combinations of the absorption and scattering spectra of the biomolecules as well as the "structural color" effect of skin anatomy. We modeled diffuse remittance from skin based on histopathology. The optical properties of the tissue types were based on the relevant chromophores and scatterers. The resulting spectral images mimic the appearance of pigmented lesions quite well when the morphology is mathematically derived but limited when based on histopathology, raising interesting questions about the interaction between various wavelengths with various pathological anatomical features.

  5. Lesion Expansion in Experimental Demyelination Animal Models and Multiple Sclerosis Lesions.

    PubMed

    Große-Veldmann, René; Becker, Birte; Amor, Sandra; van der Valk, Paul; Beyer, Cordian; Kipp, Markus

    2016-09-01

    Gray matter pathology is an important aspect of multiple sclerosis (MS) pathogenesis and disease progression. In a recent study, we were able to demonstrate that the higher myelin content in the white matter parts of the brain is an important variable in the neuroinflammatory response during demyelinating events. Whether higher white matter myelination contributes to lesion development and progression is not known. Here, we compared lesion size of intra-cortical vs. white matter MS lesions. Furthermore, dynamics of lesion development was compared in the cuprizone and lysophosphatidylcholine models. We provide clear evidence that in the human brain, white matter lesions are significantly increased in size as compared to intra-cortical gray matter lesions. In addition, studies using the cuprizone mouse model revealed that the autonomous progression of white matter lesions is more severe compared to that in the gray matter. Focal demyelination revealed that the application of equal amounts of lysophosphatidylcholine results in more severe demyelination in the white compared to the gray matter. In summary, lesion progression is most intense in myelin-rich white matter regions, irrespective of the initial lesion trigger mechanism. A better understanding of myelin debris-triggered lesion expansion will pave the way for the development of new protective strategies in the future. PMID:26363796

  6. Long-term treatment with L-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease.

    PubMed

    Chiu, W-H; Depboylu, C; Hermanns, G; Maurer, L; Windolph, A; Oertel, W H; Ries, V; Höglinger, G U

    2015-08-01

    Non-motor symptoms such as hyposmia and depression are often observed in Parkinson's disease (PD) and can precede the onset of motor symptoms for years. The underlying pathological alterations in the brain are not fully understood so far. Dysregulation of adult neurogenesis in the dentate gyrus of the hippocampus and the olfactory bulb has been recently suggested to be implicated in non-motor symptoms of PD. However, there is so far no direct evidence to support the relationship of non-motor symptoms and the modulation of adult neurogenesis following dopamine depletion and/or dopamine replacement. In this study, we investigated the long-term effects of l-DOPA and pramipexole, a dopamine agonist, in a mouse model of bilateral intranigral 6-OHDA lesion, in order to assess the impact of adult neurogenesis on non-motor behavior. We found that l-DOPA and pramipexole can normalize decreased neurogenesis in the hippocampal dentate gyrus and the periglomerular layer of the olfactory bulb caused by a 6-OHDA lesion. Interestingly, pramipexole showed an antidepressant and anxiolytic effect in the forced swim test and social interaction test. However, there was no significant change in learning and memory function after dopamine depletion and dopamine replacement, respectively. PMID:25839898

  7. Assessment of the Protection of Dopaminergic Neurons by an α7 Nicotinic Receptor Agonist, PHA 543613 Using [(18)F]LBT-999 in a Parkinson's Disease Rat Model.

    PubMed

    Sérrière, Sophie; Doméné, Aurélie; Vercouillie, Johnny; Mothes, Céline; Bodard, Sylvie; Rodrigues, Nuno; Guilloteau, Denis; Routier, Sylvain; Page, Guylène; Chalon, Sylvie

    2015-01-01

    The inverse association between nicotine intake and Parkinson's disease (PD) is well established and suggests that this molecule could be neuroprotective through anti-inflammatory action mediated by nicotinic receptors, including the α7-subtype (α7R). The objective of this study was to evaluate the effects of an agonist of α7R, PHA 543613, on striatal dopaminergic neurodegeneration and neuroinflammation in a rat model of PD induced by 6-hydroxydopamine (6-OHDA) lesion. Adult male Wistar rats were lesioned in the right striatum and assigned to either the PHA group (n = 7) or the Sham group (n = 5). PHA 543613 hydrochloride at the concentration of 6 mg/kg (PHA group) or vehicle (Sham group) was intra-peritoneally injected 2 h before 6-OHDA lesioning and then at days 2, 4, and 6 post-lesion. Positron emission tomography (PET) imaging was performed at 7 days post-lesion using [(18)F]LBT-999 to quantify the striatal dopamine transporter (DAT). After PET imaging, neuroinflammation was evaluated in same animals in vitro through the measurement of the microglial activation marker 18 kDa translocator protein (TSPO) by quantitative autoradiography with [(3)H]PK-11195. The DAT density reflecting the integrity of dopaminergic neurons was significantly decreased while the intensity of neuroinflammation measured by TSPO density was significantly increased in the lesioned compared to intact striatum in both groups. However, these both modifications were partially reversed in the PHA group compared to Sham. In addition, a significant positive correlation between the degree of lesion and the intensity of neuroinflammation was evidenced. These findings indicate that PHA 543613 exerts neuroprotective effects on the striatal dopaminergic neurons associated with a reduction in microglial activation in this model of PD. This reinforces the hypothesis that an α7R agonist could provide beneficial effects for the treatment of PD. PMID:26389120

  8. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: A model on the dissociation of bradykinesia from hypokinesia.

    PubMed

    Ribeiro, Renata Pietsch; Santos, Danúbia Bonfanti; Colle, Dirleise; Naime, Aline Aita; Gonçalves, Cinara Ludvig; Ghizoni, Heloisa; Hort, Mariana Appel; Godoi, Marcelo; Dias, Paulo Fernando; Braga, Antonio Luiz; Farina, Marcelo

    2016-05-15

    Bradykinesia and hypokinesia represent well-known motor symptoms of Parkinson's disease (PD). While bradykinesia (slow execution of movements) is present in less affected PD patients and aggravates as the disease severity increases, hypokinesia (reduction of movement) seems to emerge prominently only in the more affected patients. Here we developed a model based on the central infusion of low dose (40μg) 6-hydroxydopamine (6-OHDA) in mice in an attempt to discriminate bradykinesia (accessed through forelimb inability) from hypokinesia (accessed through locomotor and exploratory activities). The potential beneficial effects of succinobucol against 6-OHDA-induced forelimb inability were also evaluated. One week after the beginning of treatment with succinobucol (i.p. injections, 10mg/kg/day), mice received a single i.c.v. infusion of 6-OHDA (40μg/site). One week after 6-OHDA infusion, general locomotor/exploratory activities (open field test), muscle strength (grid test), forelimb skill (single pellet task), as well as striatal biochemical parameters related to oxidative stress and cellular homeostasis (glutathione peroxidase, glutathione reductase and NADH dehydrogenases activities, lipid peroxidation and TH levels), were evaluated. 6-OHDA infusions did not change locomotor/exploratory activities and muscle strength, as well as the evaluated striatal biochemical parameters. However, 6-OHDA infusions caused significant reductions (50%) in the single pellet reaching task performance, which detects forelimb skill inability and can be used to experimentally identify bradykinesia. Succinobucol partially protected against 6-OHDA-induced forelimb inability. The decreased forelimb ability with no changes in locomotor/exploratory behavior indicates that our 6-OHDA-based protocol represents a useful tool to mechanistically study the dissociation of bradykinesia and hypokinesia in PD. PMID:26921691

  9. Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson's disease: involvement of antioxidative enzymes induction.

    PubMed

    Wu, Chi-Rei; Tsai, Chia-Wen; Chang, Shu-Wei; Lin, Chia-Yuan; Huang, Li-Chun; Tsai, Chia-Wen

    2015-01-01

    The neuroprotective effects of carnosic acid (CA), a phenolic diterpene isolated from rosemary (Rosmarinus officinalis), have been widely investigated in recent years, however, its protection in in vivo still unclear. In this study, we investigated the behavioral activity and neuroprotective effects of CA in a rat model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA). Rats were treated with 20mg/kg body weight of CA for 3 weeks before 6-OHDA exposure. Results indicated that CA improved the locomotor activity and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Significant protection against lipid peroxidation and GSH reduction was observed in the 6-OHDA rats pretreated with CA. Pretreatment with CA increased the protein expression of γ-glutamate-cysteine ligase catalytic subunit, γ-glutamate-cysteine ligase modifier subunit, superoxide dismutase, and glutathione reductase compared with 6-OHDA-stimulated rats and SH-SY5Y cells. Immunoblots showed that the reduction of the Bcl-2/Bax ratio, the induction of caspase 3 cleavage, and the induction of poly(ADP-ribose) polymerase (PARP) cleavage by 6-OHDA was reversed in the presence of SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) in SH-SY5Y cells. Rats treated with CA reversed the 6-OHDA-mediated the activation of c-Jun NH2-terminal kinase and p38, the down-regulation of the Bcl-2/Bax ratio, the up-regulation of cleaved caspase 3/caspase 3 and cleaved PARP/PARP ratio, and the down-regulation of tyrosine hydroxylase protein. However, BAM7, an activator of Bax, attenuated the effect of CA on apoptosis in SH-SY5Y cells. These results suggest that CA protected against 6-OHDA-induced neurotoxicity is attributable to its anti-apoptotic and anti-oxidative action. The present findings may help to clarify the possible mechanisms of rosemary in the neuroprotection of PD. PMID:25446857

  10. Noradrenaline neuron degeneration contributes to motor impairments and development of L-DOPA-induced dyskinesia in a rat model of Parkinson's disease.

    PubMed

    Shin, Eunju; Rogers, James T; Devoto, Paola; Björklund, Anders; Carta, Manolo

    2014-07-01

    Parkinson's disease (PD) is characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, studies of post-mortem PD brains have shown that not only DA neurons but also the noradrenergic (NA) neurons in the locus coeruleus degenerate, and that the NA neurodegeneration may be as profound, and also precede degeneration of the midbrain DA neurons. Previous studies in animal models of PD have suggested that loss of forebrain NA will add to the development of motor symptoms in animals with lesions of the nigrostriatal DA neurons, but the results obtained in rodents have been inconclusive due to the shortcomings of the toxin, DSP-4, used to lesion the NA projections. Here, we have developed an alternative double-lesion paradigm using injections of 6-OHDA into striatum in combination with intraventricular injections of a powerful NA immunotoxin, anti-DBH-Saporin, to eliminate the NA neurons in the locus coeruleus, and associated pontine nuclei. Animals with combined DA and NA lesions were more prone to develop L-DOPA-induced dyskinesia, even at low L-DOPA doses, and they performed significantly worse in tests of reflexive and skilled paw use, the stepping and staircase tests, compared to DA-only lesioned rats. Post-mortem analysis revealed that NA depletion did not affect the degree of DA depletion, or the loss of tyrosine hydroxylase-positive innervation in the striatum. Cell loss in the substantia nigra was similar in both single and double lesioned animals, showing that the worsening effect was not due to increased loss of nigral DA neurons. The results show that damage to brainstem NA neurons, contributes to the development of motor impairments and the appearance of L-DOPA-induced dyskinesia in 6-OHDA lesioned rats, and provide support for the view that the development of motor symptoms and dyskinetic side effects in PD patients reflects the combined loss of midbrain DA neurons and NA neurons. PMID:24747357

  11. Transplants of neurosphere cell suspensions from aged mice are functional in the mouse model of Parkinson's.

    PubMed

    Meissner, Kelly K; Kirkham, David L; Doering, Laurie C

    2005-09-28

    Neural stem cell therapy has the potential to treat neurodegenerative disorders. For Parkinson's disease (PD), the goal is to enhance the dopamine system sufficiently to restore the control of movement and motor activities. In consideration of autologous stem cell therapy for PD, it will be necessary to propagate the cells in most cases from aged brain tissue. We isolated cells from the subventricular zone (SVZ) in the brains of 1-year-old enhanced green fluorescent protein (GFP) mice and generated neurospheres in culture. Neurospheres yielding high numbers of neurons and astrocytes "de novo" were selected and cryopreserved before evaluating the efficacy of neurosphere cell suspensions transplanted to the 6-hydroxydopamine (6-OHDA) model of PD. In mice unilaterally lesioned with 6-OHDA, transplants of neurosphere cell suspensions to the striatum yielded astrocytes and tyrosine hydroxylase positive neurons that reduced or reversed the drug-induced behavioral circling response to amphetamine and apomorphine. Control mice without the cell suspensions showed no change in the motor behavior. Our results indicate that the SVZ in the aged mouse brain contains cells that can be expanded in the form of neurospheres, cryopreserved, re-expanded and then transplanted into the damaged dopamine system to generate functional cell progeny that offset the motor disturbances in the nigrostriatal system. PMID:16140285

  12. Naloxone reverses L-dopa induced overstimulation effects in a Parkinson's disease animal model analogue.

    PubMed

    Carey, R J

    1991-01-01

    Chronic L-DOPA treatment of Parkinson's disease frequently leads to the development of motoric overstimulation and hyperkinetic movements. To investigate this problem in the laboratory, rats surgically altered by unilateral 6-hydroxydopamine lesions (6-OHDA) were chronically treated with one L-DOPA (10 mg/kg i.p.) injection per day for 20 days. In this 6-OHDA rotation model, the unilateral dopamine denervation results in a profound contralateral sensory-motor neglect and the animals spontaneously rotate in a direction ipsilateral to the dopamine depleted hemisphere. Initially, the L-DOPA treatment did not alter the response bias but after several weeks, the response bias was reversed and the animals rotated in the formerly akinetic direction, contralaterally, at a significantly higher level. Using this overstimulation effect as an analogue of the clinically observed L-DOPA overstimulation, animals were given naloxone in conjunction with the L-DOPA treatment. Naloxone (0.10, 0.25 and 0.50 mg/kg i.p.) produced a dose related decrease in the L-DOPA induced contralateral rotation. Consistent with an expected selective effect on the L-DOPA induced rotation, a dose related increase in ipsilateral rotation was observed. These results suggest that naloxone can attenuate the overstimulation effect of L-DOPA and that this effect is not attributable to non-specific response suppression effects. PMID:1900558

  13. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    PubMed Central

    Mpofana, Thabisile; Daniels, Willie M. U.; Mabandla, Musa V.

    2016-01-01

    Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA), we measured corticosterone (CORT) in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life. PMID:26881180

  14. Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids.

    PubMed

    Berg, Jürgen; Roch, Manfred; Altschüler, Jennifer; Winter, Christine; Schwerk, Anne; Kurtz, Andreas; Steiner, Barbara

    2015-02-01

    Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson's disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype. PMID:25120226

  15. Heat shock protein 60 affects behavioral improvement in a rat model of Parkinson's disease grafted with human umbilical cord mesenchymal stem cell-derived dopaminergic-like neurons.

    PubMed

    Zhao, Can; Li, Hui; Zhao, Xian-Jing; Liu, Zheng-Xia; Zhou, Ping; Liu, Ying; Feng, Mei-Jiang

    2016-06-01

    Parkinson's disease (PD) is a neurodegenerative disorder that is caused by a loss of dopaminergic (DAergic) neurons in mesencephalic substantia nigra (SN). Human umbilical cord mesenchymal stem cells (hUC-MSCs) are capable of self-renewal and differentiation into multiple cell lineages, including DAergic neurons. Thus, hUC-MSCs could be a promising alternative to compensate for the loss of DAergic neurons in PD. In the current study, hUC-MSCs and hUC-MSCs-derived DAergic-like neurons were transplanted into the striatum and SN of a rat model of PD that is induced by 6-hydroxydopamine (6-OHDA). We evaluated their therapeutic effects on improving rotation behavior in the rat and on modulating the level of heat shock protein 60 (Hsp60) expression in the brain. After transplantation, an amelioration of rotation behavior was observed in rats that underwent cell grafting, and hUC-MSCs-derived DAergic-like neurons were superior to hUC-MSCs at inducing behavioral improvement. Western blot and immunohistochemistry analysis indicated significantly elevated levels of Hsp60 in cell-grafted rats compared to 6-OHDA-lesioned (PD) rats. These results demonstrate that hUC-MSCs-based cell transplantation is potential therapeutic treatment for PD, and hUC-MSCs-derived DAergic-like neurons appear to be favorable candidates for cell replacement therapy in PD. Finally, Hsp60 could be involved in a mechanism of behavioral recovery. PMID:26758268

  16. Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat.

    PubMed

    Yu, Yong-Peng; Ju, Wei-Ping; Li, Zhen-Guang; Wang, Dao-Zhen; Wang, Yuan-Chen; Xie, An-Mu

    2010-06-01

    Increasing evidence suggests the beneficial effects of acupuncture on Parkinson's disease (PD). Although clinical evidence for the acupuncture anti-Parkinson's disease effect has been demonstrated, the precise mechanism still remains elusive. It has been suggested a relationship between PD and reactive oxygen species (ROS) can result in neurodegeneration. The aim of this study was to evaluate the status of oxidative stress, as well as the antioxidant enzyme response, and the role of acupuncture stimulation at GB34 (Yanglingquan), LR3 (Taichong), ST36 (Zusanli) and SP10 (Xuehai) acupoints on regulating oxidative stress in the nigrostriatal system in the 6-hydroxydopamine (6-OHDA) lesioned rat. Two weeks after unilateral injection of 6-OHDA into the left medial forebrain bundle (MFB), an apomorphine induced rotational behavior test was performed. The levels of enzymatic, viz., superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and nonenzymatic, viz., reduced glutathione (GSH), and the levels of malondialdehyde (MDA) in the nigrostriatal system were measured to assess the oxidative stress status. Brain MDA levels significantly increased, while GSH levels were decreased in impaired groups with 6-OHDA injection only, accompanied by a marked reduction in the level of SOD and GSH-Px. The levels of oxidative stress related parameters except CAT, as well as the rotational asymmetry, were reversed by acupuncture stimulation. These results showed that acupuncture treatment displayed antioxidative and/or neuroprotective properties in the 6-OHDA lesioned rat and these protective properties might be mediated, at least in part, by involving regulation of the antioxidant defense system. PMID:20399757

  17. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease.

    PubMed

    Azzouz, Mimoun; Martin-Rendon, Enca; Barber, Robert D; Mitrophanous, Kyriacos A; Carter, Emma E; Rohll, Jonathan B; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D

    2002-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra. This loss leads to complete dopamine depletion in the striatum and severe motor impairment. It has been demonstrated previously that a lentiviral vector system based on equine infectious anemia virus (EIAV) gives rise to highly efficient and sustained transduction of neurons in the rat brain. Therefore, a dopamine replacement strategy using EIAV has been investigated as a treatment in the 6-hydroxydopamine (6-OHDA) animal model of PD. A self-inactivating EIAV minimal lentiviral vector that expresses tyrosine hydroxylase (TH), aromatic amino acid dopa decarboxylase (AADC), and GTP cyclohydrolase 1 (CH1) in a single transcription unit has been generated. In cultured striatal neurons transduced with this vector, TH, AADC, and CH1 proteins can all be detected. After stereotactic delivery into the dopamine-denervated striatum of the 6-OHDA-lesioned rat, sustained expression of each enzyme and effective production of catecholamines were detected, resulting in significant reduction of apomorphine-induced motor asymmetry compared with control animals (p < 0.003). Expression of each enzyme in the striatum was observed for up to 5 months after injection. These data indicate that the delivery of three catecholaminergic synthetic enzymes by a single lentiviral vector can achieve functional improvement and thus open the potential for the use of this vector for gene therapy of late-stage PD patients. PMID:12451130

  18. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector.

    PubMed

    Azzouz, Mimoun; Ralph, Scott; Wong, Liang-Fong; Day, Denise; Askham, Zoe; Barber, Robert D; Mitrophanous, Kyriacos A; Kingsman, Susan M; Mazarakis, Nicholas D

    2004-04-29

    Vectors based on lentiviruses are opening up new approaches for the treatment of neurodegenerative diseases. Currently, the equine infectious anaemia virus (EIAV) vector is one of the most attractive gene delivery systems with respect to neuronal tropism. The aim was to validate EIAV-lentiviral vectors as a gene delivery system for neurotrophic factor genes in an animal model of Parkinson's disease. EIAV carrying the glial cell line-derived neurotrophic factor (GDNF) gene was unilaterally injected into rat striatum and above the substantia nigra (SN). One week later, the rats received a 6-OHDA lesion into the ipsilateral striatum. GDNF delivery led to extensive expression of GDNF protein within the striatum. In addition, near complete protection against dopaminergic cell death was observed in the GDNF-treated group. PMID:15076720

  19. [Ocular fundus lesions in systemic lupus erythematosus model mice].

    PubMed

    Nakamura, A; Yokoyama, T; Kodera, S; Zhang, D; Hirose, S

    1998-01-01

    To evaluate spontaneous development of the ocular fundus abnormalities associated with collagen disease, we investigated the ocular fundus lesions in systemic lupus erythematosus (SLE) models. (NZW x BXSB) F1 mice were employed as SLE models with antiphospholipid syndrome. The abnormal findings in the ocular fundus were recorded with a fundus camera for small animals (KOWA Co., Ltd.), and the chorioretinal lesions were studied histopathologically. As in the systemic symptoms of SLE, the incidence of ocular fundus abnormalities in these (NZW x BXSB) F1 mice was significantly higher in males than in females, suggesting the influence of the Yaa (Y chromosome-linked autoimmune acceleration) gene. Lesions in the fundus appeared in the form of white spots, which increased in number along with the course of the disease. The lesion developed into retinal detachment in some animals. Dilatation of veins and narrowing of arteries were marked. These lesions were very similar to multifocal posterior pigment epitheliopathy (MPPE) in humans in that white spots appear first and then develop into exudative retinal detachment caused by retinal pigment epithelial disorder. Histopathological findings included 1. structural destruction of the photoreceptor cell layer, 2. degeneration and loss of the retinal pigment epithelium, and 3. narrowing and occlusion of the choriocapillaris associated with thrombus formation, cellular infiltration into the surrounding tissues, and wall thickening of the choroidal arterioles. The study of these SLE mouse may contribute to the elucidation of abnormalities in the fundus associated with collagen diseases, including the relationship between thrombus formation and antiphospholipid syndrome. PMID:9489364

  20. Comparison of the SERT-selective [18F]FPBM and VMAT2-selective [18F]AV-133 radiotracers in a rat model of Parkinson’s Disease

    PubMed Central

    Wang, Julie L.; Oya, Shunichi; Parhi, Ajit K.; Lieberman, Brian P.; Ploessl, Karl; Hou, Catherine; Kung, Hank F.

    2010-01-01

    Introduction The utility of [18F]FPBM (2-(2′-((dimethylamino)methyl)-4′-(3-[18F]-fluoropropoxy)phenylthio)benzenamine), a selective serotonin transporter (SERT) tracer, and [18F]AV-133 ((+)-2-Hydroxy-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-1,2,3,4,6,7-hexahydro-11bH-benzo[a]quinolizine), a selective vesicular monoamine transporter 2 (VMAT2) tracer, were tested in the 6-hydroxydopamine (6-OHDA) unilateral lesioned rat model. Methods PET imaging of three 6-OHDA unilateral lesioned male Sprague Dawley rats (rats #1-3) were performed with [18F]FPBM and [18F]AV-133 to examine whether changes in SERT and VMAT2 binding, respectively, could be detected in the brain. The brains of the three rats were then removed and examined by in vitro autoradiography with [18F]FPBM and the dopamine transporter ligand, [125I]IPT, for confirmation. Results PET image analysis showed varying levels of SERT binding reduction (rat #1 = −11%, rat #2 = −4%, rat #3 = −43%; n = 2) and a clear and definitive loss of VMAT2 binding (rat #1 = −87%, rat #2 = −72%, and rat #3 = −91%; n = 1) in the left striatum when compared to the right (non-lesioned side) striatum. The results from PET imaging were corroborated with quantitative in vitro autoradiography. Rats treated with a selective serotonin toxin (PCA, p-chloroamphetamine) showed a significant reduction of uptake in the cortex and hypothalamus regions of the brain. Conclusion The preliminary data suggest that [18F]FPBM and [18F]AV-133 may be useful for the examination of serotonergic and dopaminergic neuron integrity, respectively, in the living brain. PMID:20447560

  1. Effect of serotonin transporter blockade on L-DOPA-induced dyskinesia in animal models of Parkinson's disease.

    PubMed

    Fidalgo, C; Ko, W K D; Tronci, E; Li, Q; Stancampiano, R; Chuan, Q; Bezard, E; Carta, M

    2015-07-01

    Serotonin transporter blockade with selective serotonin reuptake inhibitors (SSRIs) was recently shown to counteract L-DOPA-induced dyskinesia in 6-hydroxydopamine (6-OHDA)-lesioned rats. However, this effect has never been described in Parkinson's disease (PD) patients, despite that they often receive SSRIs for the treatment of depression. In the present study, we investigated the efficacy of the SSRI citalopram against dyskinesia in two experimental models of PD, the 6-OHDA-lesioned rat and 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-treated macaque. First, we studied the acute and chronic effect of citalopram, given at different time points before L-DOPA, in L-DOPA-primed parkinsonian rats. Moreover, the acute effect of citalopram was also evaluated in dyskinetic MPTP-treated macaques. In L-DOPA-primed rats, a significant and long-lasting reduction of L-DOPA-induced dyskinesia (LID) was observed only when citalopram was given 30 min before L-DOPA, suggesting that the time of injection relative to L-DOPA is a key factor for the efficacy of the treatment. Interestingly, an acute challenge with the 5-HT1A/1B receptor agonist eltoprazine, given at the end of the chronic study, was equally effective in reducing LID in rats previously chronically treated with L-DOPA or L-DOPA plus citalopram, suggesting that no auto-receptor desensitization was induced by chronic citalopram treatment. In MPTP-treated macaques, citalopram produced a striking suppression of LID but at the expense of L-DOPA therapeutic efficacy, which represents a concern for possible clinical application. PMID:25907446

  2. Effect of glutamatergic systems on in vivo binding of [(125)I]beta-CIT in the brain of a rat model of Parkinson's disease.

    PubMed

    Kagawa, Shinya; Nakano, Takayuki; Inoue, Osamu; Nishimura, Tsunehiko

    2002-10-01

    The effect of MK-801, a noncompetitive NMDA receptor antagonist, on both in vivo and in vitro binding of [(125)I]beta-CIT (RTI-55) was investigated in a rat model of Parkinson's disease. The binding experiments were performed 2 weeks after unilateral intranigral microinjection of 6-hydroxydopamine (6-OHDA). In the in vitro binding study, no alterations in [(125)I]beta-CIT binding in rat brain sections were observed after addition of MK-801, 0.03 microM or 3 microM, to the incubation medium. However, in vivo [(125)I]beta-CIT binding to the dopamine transporter in both nonlesioned and 6-OHDA-lesioned striatum was significantly increased by pretreatment with MK-801. In vivo [(125)I]beta-CIT binding to the serotonin (5HT) transporter in nonlesioned cerebral cortex, hypothalamus, and thalamus was also significantly increased by MK-801. However, the degree of change in the specific binding of [(125)I]beta-CIT induced by MK-801 was smaller in the lesioned cerebral cortex. Kinetic analysis, by a simplified three-compartment model with the cerebellum as the reference region, revealed that these alterations in the in vivo [(125)I]beta-CIT binding induced by MK-801 were mainly due to changes in the rate constants of in vivo binding, the input rate constant, k(3), and the output rate constant, k(4). These results indicate that the glutamatergic system significantly affects the function of dopamine transporters in the degenerated dopaminergic neurons in Parkinson's disease. PMID:12211097

  3. Modeling realistic breast lesions using diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Rashidnasab, Alaleh; Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Diaz, Oliver; Wells, Kevin

    2012-03-01

    Synthesizing the appearance of malignant masses and inserting these into digital mammograms can be used as part of a wider framework for investigating the radiological detection task in X-ray mammography. However, the randomness associated with cell division within cancerous masses and the associated complex morphology challenges the realism of the modeling process. In this paper, Diffusion Limited Aggregation (DLA), a type of fractal growth process is proposed and utilized for modeling breast lesions. Masses of different sizes, shapes and densities were grown by controlling DLA growth parameters either prior to growth, or dynamically updating these during growth. A validation study was conducted by presenting 30 real and 30 simulated masses in a random order to a team of radiologists. The results from the validation study suggest that the observers found it difficult to differentiate between the real and simulated lesions.

  4. Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats.

    PubMed

    Engber, T M; Susel, Z; Kuo, S; Gerfen, C R; Chase, T N

    1991-06-21

    The effects of striatal dopamine denervation and levodopa replacement therapy on neuronal populations in the rat striatum were assessed by measurement of glutamic acid decarboxylase (GAD) and choline acetyltransferase (CAT) activities in the striatum, dynorphin and substance P concentrations in the substantia nigra, and enkephalin concentration in the globus pallidus. Rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway were treated for 21 days with levodopa (100 mg/kg/day, i.p., with 25 mg/kg benserazide) on either an intermittent (b.i.d.) or continuous (osmotic pump infusion) regimen and sacrificed following a three day drug washout. In saline-treated control rats, striatal GAD activity and globus pallidus enkephalin content were elevated and nigral substance P content was reduced ipsilateral to the 6-OHDA lesion. Intermittent levodopa treatment further increased GAD activity, decreased CAT activity, restored substance P to control levels, markedly increased dynorphin content, and had no effect on enkephalin. In contrast, continuous levodopa elevated globus pallidus enkephalin beyond the levels occurring with denervation, but had no effect on any of the other neurochemical measures. These results indicate that striatal neuronal populations are differentially affected by chronic levodopa therapy and by the continuous or intermittent nature of the treatment regimen. With the exception of substance P, levodopa did not reverse the effects of the 6-OHDA lesion but, rather, either exacerbated the lesion-induced changes (e.g. GAD and enkephalin) or altered neurochemical markers which had been unaffected by the lesion (e.g. CAT and dynorphin).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1717109

  5. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease.

    PubMed

    Jones, Carrie K; Bubser, Michael; Thompson, Analisa D; Dickerson, Jonathan W; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L; Bridges, Thomas M; Morrison, Ryan D; Jadhav, Satyawan; Engers, Darren W; Italiano, Kimberly; Bode, Jacob; Daniels, J Scott; Lindsley, Craig W; Hopkins, Corey R; Conn, P Jeffrey; Niswender, Colleen M

    2012-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu₄), including N-phenyl-7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu₄ PAMsexhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu₄ in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu₄ PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with L-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of L-DOPA, suggesting that mGlu₄ PAMs may provide L-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu₄ PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either L-DOPA or A2A antagonists. PMID:22088953

  6. The D1 receptor-mediated effects of the ergoline derivative LEK-8829 in rats with unilateral 6-hydroxydopamine lesions.

    PubMed Central

    Zivin, M.; Sprah, L.; Sket, D.

    1996-01-01

    1. Previous experiments have suggested a potential atypical antipsychotic activity of the ergoline derivative LEK-8829. In vitro experiments showed a high affinity to 5-HT1A, 5-HT2 and D2 receptors (the ratio of pKi values 5-HT2/D2 = 1.11) and a moderate affinity to D1 receptors. In vivo experiments showed antagonism of dopamine and 5-hydroxytryptamine (5-HT) receptor-linked behaviours. 2. In the present study, the rats with unilateral dopaminergic deafferentation of the striatum, induced by the lesion of the median forebrain bundle with 6-hydroxydopamine (6-OHDA), were used to determine the effects of LEK-8829 on turning behaviour and on striatal c-fos mRNA levels. 3. The administration of LEK-8829 induced a long lasting contralateral turning behaviour that was dose-dependent. It was found that the specific D1 receptor antagonist SCH-23390 but not the D2 receptor antagonist haloperidol or 5-HT1A antagonist pindolol, dose-dependently inhibited the turning behaviour induced by LEK-8829. 4. In an attempt to clarify the D1:D2 receptor interactions involved in the action of LEK-8829 in the 6OHDA model, we used in situ hybridization histochemistry to compare the effect of SCH-23390 pretreatment on striatal c-fos mRNA expression induced either by LEK-8829 or by the typical antipsychotic haloperidol. 5. LEK-8829 induced a bilateral striatal c-fos mRNA expression that was significantly higher in the denervated striatum as compared to the intact striatum and was completely blocked on both sides by pretreatment with SCH-23390. In contrast, haloperidol-induced striatal c-fos mRNA expression was limited to the innervated striatum and was not blocked by SCH-23390. 6. Our data demonstrate an intrinsic activity of LEK-8829 on D1 receptors that is potentiated in the dopamine-depleted striatum. We conclude, therefore, that the putative atypical antipsychotic LEK-8829 may prove useful as an experimental tool for the study of D1:D2 receptor interactions and could have beneficial

  7. Embryonic stem cells derived neuron transplantation recovery in models of parkinsonism in relation to severity of the disorder in rats.

    PubMed

    Haobam, Reena; Tripathy, Debasmita; Kaidery, Navneet A; Mohanakumar, Kochupurackal P

    2015-04-01

    6-Hydroxydopamine (6-OHDA)- and 1-methyl-4-phenylpyridinium (MPP(+))-induced hemi-parkinsonism was investigated in relation to the severity of the disorder in terms of behavioral disability and nigral neuronal loss and recovery regarding the number of stem cell-derived neurons transplanted in the striatum. Intra-median forebrain bundle infusion of the parkinsonian neurotoxins and intra-striatal transplantation of differentiated embryonic stem cells (ESCs) were carried out by rat brain stereotaxic surgery. The severity of the disease was determined using the number of amphetamine- or apomorphine-induced rotations, striatal dopamine levels as estimated by high-performance liquid chromatography (HPLC)-electrochemistry, and the number of surviving tyrosine hydroxylase immunoreactive dopaminergic neurons in the substantia nigra pars compacta. Rats that received unilateral infusion of 6-OHDA or MPP(+) responded with dose-dependent, unilateral bias in turning behavior when amphetamine or apomorphine was administered. Rotational asymmetry in both models correlated significantly well with the loss in the number of nigral dopaminergic neurons and striatal dopamine depletion. Transplantation of 2×10(5) differentiated murine ESCs revealed remarkably similar kinds of recovery in both animal models. The survival of the grafted dopaminergic cells in the striatum was better in animals with low-severity parkinsonism, but poor in the animals with severe parkinsonism. Amphetamine-induced rotational recovery correlated positively with an increasing number of cells transplanted in animals with uniform nigral neuronal lesion. These results suggest that disease severity is an important factor for determining the number of cells to be transplanted in parkinsonian rats for desirable recovery, which may be true in clinical conditions too. PMID:25546608

  8. Intrastriatal GDNF gene transfer by inducible lentivirus vectors protects dopaminergic neurons in a rat model of parkinsonism.

    PubMed

    Chen, Sha-Sha; Yang, Chun; Hao, Fei; Li, Chen; Lu, Tao; Zhao, Li-Ru; Duan, Wei-Ming

    2014-11-01

    Glial cell line-derived neurotrophic factor (GDNF) has neuroprotective effects on dopaminergic (DA) neurons both in vivo and in vitro. However, substantial evidence has shown that a long-term overexpression of GDNF gene is often associated with side effects. We previously improved tetracycline (Tet)-On lentivirus system carrying human GDNF (hGDNF) gene, and demonstrated that hGDNF gene expression was tightly regulated and functional in vitro. Here we further examined the efficiency and neuroprotection of Tet-On lentivirus-mediated hGDNF gene regulation in neural progenitor cells (NPCs) and a rat model of parkinsonism. The results showed that hGDNF gene expression was tightly regulated in transduced NPCs. Doxycycline (Dox)-induced hGDNF protected DA neurons from 6-hydroxydopamine (6-OHDA)-induced toxicity in vitro. Intrastriatal injections of Tet-On lentivirus vectors resulted in dramatically increased levels of hGDNF protein in the striatum of rats with Dox-drinking water, when compared to lentivirus-injected and saline-injected rats with normal drinking water, respectively. In addition, hGDNF protected nigral DA neurons and striatal DA fibers, and attenuated d-amphetamine-induced rotational asymmetry in the 6-OHDA lesioned rats. To the best of our knowledge, this is the first report that hGDNF gene transfer by Tet-On lentivirus vectors is tightly regulated in rat brain, and Dox-induced hGDNF is functional in neuroprotection of nigral DA neurons in a rat model of parkinsonism. PMID:24997241

  9. Embryonic Stem Cells Derived Neuron Transplantation Recovery in Models of Parkinsonism in Relation to Severity of the Disorder in Rats

    PubMed Central

    Haobam, Reena; Tripathy, Debasmita; Kaidery, Navneet A.

    2015-01-01

    Abstract 6-Hydroxydopamine (6-OHDA)- and 1-methyl-4-phenylpyridinium (MPP+)-induced hemi-parkinsonism was investigated in relation to the severity of the disorder in terms of behavioral disability and nigral neuronal loss and recovery regarding the number of stem cell–derived neurons transplanted in the striatum. Intra-median forebrain bundle infusion of the parkinsonian neurotoxins and intra-striatal transplantation of differentiated embryonic stem cells (ESCs) were carried out by rat brain stereotaxic surgery. The severity of the disease was determined using the number of amphetamine- or apomorphine-induced rotations, striatal dopamine levels as estimated by high-performance liquid chromatography (HPLC)-electrochemistry, and the number of surviving tyrosine hydroxylase immunoreactive dopaminergic neurons in the substantia nigra pars compacta. Rats that received unilateral infusion of 6-OHDA or MPP+ responded with dose-dependent, unilateral bias in turning behavior when amphetamine or apomorphine was administered. Rotational asymmetry in both models correlated significantly well with the loss in the number of nigral dopaminergic neurons and striatal dopamine depletion. Transplantation of 2×105 differentiated murine ESCs revealed remarkably similar kinds of recovery in both animal models. The survival of the grafted dopaminergic cells in the striatum was better in animals with low-severity parkinsonism, but poor in the animals with severe parkinsonism. Amphetamine-induced rotational recovery correlated positively with an increasing number of cells transplanted in animals with uniform nigral neuronal lesion. These results suggest that disease severity is an important factor for determining the number of cells to be transplanted in parkinsonian rats for desirable recovery, which may be true in clinical conditions too. PMID:25546608

  10. Preventive effects of soy meal (+/- isoflavone) on spatial cognitive deficiency and body weight in an ovariectomized animal model of Parkinson's disease.

    PubMed

    Sarkaki, A; Badavi, M; Aligholi, H; Moghaddam, A Zand

    2009-10-15

    The aim of the present study was to investigate the preventive effect of 4 weeks soy meal (+/- isoflavone) on post-menopausal cognitive deficiency and body weight alteration in ovariectomized (OVX)-6-hydroxy dopamine (6-OHDA)-induced animal model of Parkinson's Disease (PD) which mimics status in menopause women. Female Wistar rats (250-300 g, 5-6 months old) were divided into 2 main groups. (1) Control; (2) OVX; included 5 subgroups that were pre-treated with 10 or 20 g soy with isoflavone in 30 g daily diet (10 and 20 groups, respectively), 10 or 20 g soy without isoflavone in 30 g daily diet (-10 and -20 groups, respectively) and 0 g soy (sham treated group) during 4 weeks after OVX. To induce animal model ofPD in main second group (OVX rats) the substantia nigra pars compacta (SNpc) was lesioned by 6-hydroxydopamine (6-OHDA) (8 microg kg(-1) 4 microL(-1) normal saline contains 0.1% ascorbate). All animals were trained in Morris water maze for evaluating the spatial learning and memory. The results indicated that pre-treatment of Parkinsonian rats with different doses of dietary soy meal (+/- isoflavone) improved the spatial learning and memory and prevents increasing the body weight after menopause significantly. Our data show that, long-duration dietary soy meal may have the potential neuroprotective effect against post-menopausal cognitive deficiency induced by degeneration of nigrostriatal dopaminergic system and constant body weight during post-menopausal life cycle. PMID:20128500

  11. Alterations of BDNF and trkB mRNA Expression in the 6-Hydroxydopamine-Induced Model of Preclinical Stages of Parkinson’s Disease: An Influence of Chronic Pramipexole in Rats

    PubMed Central

    Berghauzen-Maciejewska, Klemencja; Wardas, Jadwiga; Kosmowska, Barbara; Głowacka, Urszula; Kuter, Katarzyna; Ossowska, Krystyna

    2015-01-01

    Our recent study has indicated that a moderate lesion of the mesostriatal and mesolimbic pathways in rats, modelling preclinical stages of Parkinson’s disease, induces a depressive-like behaviour which is reversed by chronic treatment with pramipexole. The purpose of the present study was to examine the role of brain derived neurotrophic factor (BDNF) signalling in the aforementioned model of depression. Therefore, we investigated the influence of 6-hydoxydopamine (6-OHDA) administration into the ventral region of the caudate-putamen on mRNA levels of BDNF and tropomyosin-related kinase B (trkB) receptor. The BDNF and trkB mRNA levels were determined in the nigrostriatal and limbic structures by in situ hybridization 2 weeks after the operation. Pramipexole (1 mg/kg sc twice a day) and imipramine (10 mg/kg ip once a day) were injected for 2 weeks. The lesion lowered the BDNF and trkB mRNA levels in the hippocampus [CA1, CA3 and dentate gyrus (DG)] and amygdala (basolateral/lateral) as well as the BDNF mRNA content in the habenula (medial/lateral). The lesion did not influence BDNF and trkB expression in the caudate-putamen, substantia nigra, nucleus accumbens (shell and core) and ventral tegmental area (VTA). Chronic imipramine reversed the lesion-induced decreases in BDNF mRNA in the DG. Chronic pramipexole increased BDNF mRNA, but decreased trkB mRNA in the VTA in lesioned rats. Furthermore, it reduced BDNF and trkB mRNA expression in the shell and core of the nucleus accumbens, BDNF mRNA in the amygdala and trkB mRNA in the caudate-putamen in these animals. The present study indicates that both the 6-OHDA-induced dopaminergic lesion and chronic pramipexole influence BDNF signalling in limbic structures, which may be related to their pro-depressive and antidepressant activity in rats, respectively. PMID:25739024

  12. Generation of connectivity-preserving surface models of multiple sclerosis lesions.

    PubMed

    Meruvia-Pastor, Oscar; Xiao, Mei; Soh, Jung; Sensen, Christoph W

    2011-01-01

    Progression of multiple sclerosis (MS) results in brain lesions caused by white matter inflammation. MS lesions have various shapes, sizes and locations, affecting cognitive abilities of patients to different extents. To facilitate the visualization of the brain lesion distribution, we have developed a software tool to build 3D surface models of MS lesions. This tool allows users to create 3D models of lesions quickly and to visualize the lesions and brain tissues using various visual attributes and configurations. The software package is based on breadth-first search based 3D connected component analysis and a 3D flood-fill based region growing algorithm to generate 3D models from binary or non-binary segmented medical image stacks. PMID:21335819

  13. Neuroprotection by scorpion venom heat resistant peptide in 6-hydroxydopamine rat model of early-stage Parkinson's disease.

    PubMed

    Yin, Sheng-Ming; Zhao, Dan; Yu, De-Qin; Li, Sheng-Long; An, Dong; Peng, Yan; Xu, Hong; Sun, Yi-Ping; Wang, Dong-Mei; Zhao, Jie; Zhang, Wan-Qin

    2014-12-25

    Neuroprotective effect of scorpion venom on Parkinson's disease (PD) has already been reported. The present study was aimed to investigate whether scorpion venom heat resistant peptide (SVHRP) could attenuate ultrastructural abnormalities in mitochondria and oxidative stress in midbrain neurons of early-stage PD model. The early-stage PD model was established by injecting 6-hydroxydopamine (6-OHDA) (20 μg/3 μL normal saline with 0.1% ascorbic acid) into the striatum of Sprague Dawley (SD) rats unilaterally. The rats were intraperitoneally administered with SVHRP (0.05 mg/kg per day) or vehicle (saline) for 1 week. Two weeks after 6-OHDA treatment, the rats received behavior tests for validation of model. Three weeks after 6-OHDA injection, the immunoreactivity of dopaminergic neurons were detected by immunohistochemistry staining, and the ultrastructure of neuronal mitochondria in midbrain was observed by electron microscope. In the meantime, the activities of monoamine oxidase-B (MAO-B), superoxide dismutase (SOD) and content of malondialdehyde (MDA) in the mitochondria of the midbrain neurons, as well as the inhibitory ability of hydroxyl free radical and the antioxidant ability in the serum, were measured by corresponding kits. The results showed that 6-OHDA reduced the optical density of dopaminergic neurons, induced damage of mitochondrial ultrastructure of midbrain neurons, decreased SOD activity, increased MAO-B activity and MDA content, and reduced the antioxidant ability of the serum. SVHRP significantly reversed the previous harmful effects of 6-OHDA in early-stage PD model. These findings indicate that SVHRP may contribute to neuroprotection by preventing biochemical and ultrastructure damage changes which occur during early-stage PD. PMID:25516514

  14. Can physical exercise have a protective effect in an animal model of sleep-related movement disorder?

    PubMed

    Esteves, Andrea M; Lopes, Cleide; Frank, Miriam K; Arida, Ricardo M; Frussa-Filho, Roberto; Tufik, Sergio; de Mello, Marco Túlio

    2016-05-15

    The purpose of the present study was to determine whether physical exercise (PE) has a protective effect in an experimental animal model of sleep-related movement disorder (A11 dopaminergic nuclei lesions with 6-OHDA). Rats were divided into four groups (Control PE-CTRL/PE, SHAM/PE, A11 lesion/NPE, A11 lesion/PE). Two experiments were performed: (1) the rats underwent PE before (2 weeks) and after (4 weeks) the A11 lesion; and (2) the rats underwent PE only after (4 weeks) the A11 lesion. Electrode insertion surgery was performed and sleep analyses were conducted over a period of 24h (baseline and after PE) and analyzed in 6 blocks of 4h. The results demonstrated that the A11 lesion produced an increased percentage of wakefulness in the final block of the dark period (3-7am) and a significant enhancement of the number of limb movements (LM) throughout the day. Four weeks of PE was important for reducing the number of LMs in the A11 lesion group in the rats that performed PE before and after the A11 lesion. However, in the analysis of the protective effect of PE on LM, the results showed that the number of LMs was lower at baseline in the group that had performed 2 weeks of PE prior to the A11 lesion than in the group that had not previously performed PE. In conclusion, these findings consistently demonstrate that non-pharmacological manipulations had a beneficial effect on the symptoms of sleep-related movement disorder. PMID:26923163

  15. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    PubMed Central

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; Terashita, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions. PMID:21991489

  16. Neuroprotective Activity of Peripherally Administered Liver Growth Factor in a Rat Model of Parkinson’s Disease

    PubMed Central

    Gonzalo-Gobernado, Rafael; Calatrava-Ferreras, Lucía; Reimers, Diana; Herranz, Antonio Sánchez; Rodríguez-Serrano, Macarena; Miranda, Cristina; Jiménez-Escrig, Adriano; Díaz-Gil, Juan José; Bazán, Eulalia

    2013-01-01

    Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease. PMID:23861803

  17. Image-based modeling and characterization of RF ablation lesions in cardiac arrhythmia therapy

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Camp, Jon J.; Rettmann, Maryam E.; Holmes, David R.; Robb, Richard A.

    2013-03-01

    In spite of significant efforts to enhance guidance for catheter navigation, limited research has been conducted to consider the changes that occur in the tissue during ablation as means to provide useful feedback on the progression of therapy delivery. We propose a technique to visualize lesion progression and monitor the effects of the RF energy delivery using a surrogate thermal ablation model. The model incorporates both physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution in the tissue and geometry of the generated lesion in near real time. The ablation model has been calibrated and evaluated using ex vivo beef muscle tissue in a clinically relevant ablation protocol. To validate the model, the predicted temperature distribution was assessed against that measured directly using fiberoptic temperature probes inserted in the tissue. Moreover, the model-predicted lesions were compared to the lesions observed in the post-ablation digital images. Results showed an agreement within 5°C between the model-predicted and experimentally measured tissue temperatures, as well as comparable predicted and observed lesion characteristics and geometry. These results suggest that the proposed technique is capable of providing reasonably accurate and sufficiently fast representations of the created RF ablation lesions, to generate lesion maps in near real time. These maps can be used to guide the placement of successive lesions to ensure continuous and enduring suppression of the arrhythmic pathway.

  18. Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson's disease with combined noradrenergic and serotonergic lesions.

    PubMed

    Rampersaud, N; Harkavyi, A; Giordano, G; Lever, R; Whitton, J; Whitton, P S

    2012-10-01

    Research on Parkinson's disease (PD) has mainly focused on the degeneration of the dopaminergic neurons of nigro-striatal pathway; however, post-mortem studies have demonstrated that other brain regions such as the locus coeruleus (LC) and raphe nuclei (RN) are significantly affected as well. Degeneration of these crucial neuronal cell bodies may be responsible for depressive behavior and cognitive decline present in the pre-motor stage of PD. We have thus set out to create a pre-motor rodent model of PD which mimics the early stages of the condition. N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), a selective noradrenergic neurotoxin, and parachloroampetamine (pCA), a selective serotonergic neurotoxin, were utilized concomitantly with bilateral 6-hydroxydopamine (6-OHDA) injections into the striatum to produce a pre-motor rodent model of PD with partial deficits in the dopaminergic, noradrenergic, and serotonergic systems. Our model exhibited a depressive/anhedonic condition as assessed using sucrose preference testing and the forced swim test. Our model also demonstrated deficits in object memory. These behavioral impairments were accompanied by a decline in both tissue and extracellular levels of all three neurotransmitters in both the frontal cortex and striatum. Immunohistochemistry also revealed a decrease in TH+ cells in the LC and substantia nigra. Exendin-4 (EX-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, promoted recovery of both the biochemical and behavioral dysfunction exhibited by our model. EX-4 was able to preserve the functional integrity of the dopaminergic, noradrenergic, and serotonergic systems. In conclusion, we have generated a novel animal model of PD that recapitulates certain pre-motor symptomology. These symptoms and causative physiology are ameliorated upon treatment with EX-4 and thus it could be used as a possible therapy for the non-motor symptoms prominent in the early stages of PD. PMID:22921965

  19. A Model of Population and Subject (MOPS) Intensities with Application to Multiple Sclerosis Lesion Segmentation

    PubMed Central

    Tomas-Fernandez, Xavier; Warfield, Simon K.

    2015-01-01

    White matter (WM) lesions are thought to play an important role in multiple sclerosis (MS) disease burden. Recent work in the automated segmentation of white matter lesions from MRI has utilized a model in which lesions are outliers in the distribution of tissue signal intensities across the entire brain of each patient. However, the sensitivity and specificity of lesion detection and segmentation with these approaches have been inadequate. In our analysis, we determined this is due to the substantial overlap between the whole brain signal intensity distribution of lesions and normal tissue. Inspired by the ability of experts to detect lesions based on their local signal intensity characteristics, we propose a new algorithm that achieves lesion and brain tissue segmentation through simultaneous estimation of a spatially global within-the-subject intensity distribution and a spatially local intensity distribution derived from a healthy reference population. We demonstrate that MS lesions can be segmented as outliers from this intensity model of population and subject (MOPS). We carried out extensive experiments with both synthetic and clinical data, and compared the performance of our new algorithm to those of state-of-the art techniques. We found this new approach leads to a substantial improvement in the sensitivity and specificity of lesion detection and segmentation. PMID:25616008

  20. Protective efficacy of P7C3-S243 in the 6-hydroxydopamine model of Parkinson’s disease

    PubMed Central

    De Jesús-Cortés, Héctor; Miller, Adam D; Britt, Jeremiah K; DeMarco, Anthony J; De Jesús-Cortés, Mayralis; Stuebing, Emily; Naidoo, Jacinth; Vázquez-Rosa, Edwin; Morlock, Lorraine; Williams, Noelle S; Ready, Joseph M; Narayanan, Nandakumar S; Pieper, Andrew A

    2016-01-01

    BACKGROUND There are currently no therapeutic options for patients with Parkinson’s disease that prevent or slow the death of dopaminergic neurons. We have recently identified the novel P7C3 class of neuroprotective molecules that blocks neuron cell death. AIMS The aim of this study was to determine whether treatment with highly active members of the P7C3 series blocks dopaminergic neuron cell death and associated behavioral and neurochemical deficits in the rat 6-hydroxydopamine (6-OHDA) model of Parkinson’s disease. METHODS After unilateral injection of 6-OHDA into the median forebrain bundle, rats were assessed for behavioral function in the open field, cylinder test, and amphetamine-induced circling test. Thereafter, their brains were subjected to neurochemical and immunohistochemical analysis of dopaminergic neuron survival. Analysis was conducted as a function of treatment with P7C3 compounds, with administration initiated either before or after 6-OHDA exposure. RESULTS Animals administered P7C3-A20 or P7C3-S243, two of the most advanced agents in the P7C3 series of neuroprotective compounds, both before and after 6-OHDA exposure showed evidence of protective efficacy in all measures. When P7C3-S243 administration was initiated after 6-OHDA exposure, rats also showed protective efficacy in all measures, which included blocking dopaminergic neuron cell death in ipsilateral substantia nigra pars compacta, preservation of dopamine and its metabolites in ipsilateral striatum, and preservation of normal motor behavior. CONCLUSIONS The P7C3 series of compounds may form the basis for developing new therapeutic agents for slowing or preventing progression of Parkinson’s disease. PMID:27158662

  1. The P2X7 receptor antagonist Brilliant Blue G attenuates contralateral rotations in a rat model of Parkinsonism through a combined control of synaptotoxicity, neurotoxicity and gliosis.

    PubMed

    Carmo, Marta R S; Menezes, Ana Paula F; Nunes, Ana Carla L; Pliássova, Anna; Rolo, Anabela P; Palmeira, Carlos M; Cunha, Rodrigo A; Canas, Paula M; Andrade, Geanne M

    2014-06-01

    Parkinson's disease (PD) involves an initial loss of striatal dopaminergic terminals evolving into a degeneration of dopaminergic neurons in the substantia nigra (SN), which can be modeled by 6-hydroxydopamine (6-OHDA) administration. Since ATP is a danger signal acting through its P2X7 receptors (P2X7R), we now tested if a blood-brain barrier-permeable P2X7R antagonist, Brilliant Blue G (BBG), controlled the 6-OHDA-induced PD-like features in rats. BBG (45 mg/kg) attenuated the 6-OHDA-induced: 1) increase of contralateral rotations in the apomorphine test, an effect mimicked by another P2X7R antagonist A438079 applied intra-cerebroventricularly; 2) short-term memory impairment in the passive avoidance and cued version of the Morris Water maze; 3) reduction of dopamine content in the striatum and SN; 4) microgliosis and astrogliosis in the striatum. To grasp the mechanism of action of BBG, we used in vitro models exploring synaptotoxicity (striatal synaptosomes) and neurotoxicity (dopamine-differentiated neuroblastoma SH-SY5Y cells). P2X7R were present in striatal dopaminergic terminals, and BBG (100 nM) prevented the 6-OHDA-induced synaptosomal dysfunction. P2X7R were also co-localized with tyrosine hydroxylase in SH-SY5Y cells, where BBG (100 nM) attenuated the 6-OHDA-induced neurotoxicity. This suggests that P2X7R contribute to PD pathogenesis through a triple impact on synaptotoxicity, gliosis and neurotoxicity, highlighting the therapeutic potential of P2X7R antagonists in PD. PMID:24508709

  2. Spatial Modeling of Colonic Lesions With Geographic Information Systems

    PubMed Central

    Imanieh, Mohammad Hadi; Goli, Ali; Imanieh, Mohammad Hossein; Geramizadeh, Bita

    2014-01-01

    Background: Geographic information system (GIS) software has been used in health care systems to display and analyze spatial pattern of diseases and health services. Objectives: This study was performed to assess spatial patterns of colon’s pathologic lesions based on the pathologic reports and assess whether it is possible to use GIS software in health services. Patients and Methods: Archives of pathology of Namazi and Faghihi hospitals, two main referral centers of south-west of Iran, were obtained and reviewed between January 2009 and September 2011 for biopsy reports of patients who underwent colonoscopy. Abnormal biopsies were categorized into five different subgroups according to the type of pathologic specimens. By GIS, spatial patterns of colon biopsies were plotted in different maps and spatial auto-correlation of colon biopsies was calculated using the Moran’s Index. Results: A total of 4815 biopsies from 2663 different patients were reviewed, 53.8% of which were men. Abnormal biopsies were 2781 of all specimens (57.8%). Neoplastic lesions, inflammatory bowel diseases and polyps were 9.3%, 19.3% and 29.2% of total biopsies, respectively. Pathologic biopsies were more common in the distal colon. Maps of all biopsies and maps of specific pathologies were manifested in GIS. Conclusions: Our study showed that left-sided lesions are still more common in the Iranian population. On the other hand, surveying the right side of colon is as important as the distal part, which necessitates total colonoscopy. PMID:25763265

  3. Impact of Lesion Location on the Progression of Osteoarthritis in a Rat Knee Model

    PubMed Central

    Knapik, Derrick M.; Harrison, Ryan K.; Siston, Robert A.; Agarwal, Sudha; Flanigan, David C.

    2016-01-01

    To investigate how surgically created acute full-thickness cartilage defects of similar size and location created on the medial versus lateral femoral condyle influence progression of spontaneous cartilage lesions in a rat model. Full-thickness cartilage defects of 1 mm were surgically created on the medial or lateral femoral condyles on the right leg of 20 rats (n =10/group). Ten rats served as controls. Spontaneous lesion progression on the ipsilateral and contralateral surfaces was examined using a high-resolution digital camera along with H&E and Safranin-O staining. Chondral defects were scored grossly and histologically. Control femur displayed no cartilage disruption. Surgically treated knees exhibited created and spontaneous cartilage defects with no evidence of healing unless subchondral bone was penetrated. Ipsilateral spontaneous lesions on the lateral condyle were significantly more severe on average (p =0.009) compared to medial lesions on gross examination. Histological examination found contralateral lesions on the lateral surface following surgically created medial lesions to be more severe (p =0.057) compared to contralateral lesions. A trend toward more susceptible chondral damage to the lateral condyle was observed following acute lesion creation on either medial or lateral condyles. Mechanisms behind this pattern of spontaneous lesion development are unclear, requring further investigation. PMID:25376614

  4. Enhanced Neuroprotective Effects of Coadministration of Tetrandrine with Glutathione in Preclinical Model of Parkinson's Disease

    PubMed Central

    Li, Xiang-Yun; Mei, Guang-Hai; Dong, Qiang; Zhang, Yu; Guo, Zhuang-Li; Su, Jing-Jing; Tang, Yu-Ping; Jin, Xue-Hong; Zhou, Hou-Guang; Huang, Yan-Yan

    2015-01-01

    Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment. PMID:26664824

  5. Enhanced Neuroprotective Effects of Coadministration of Tetrandrine with Glutathione in Preclinical Model of Parkinson's Disease.

    PubMed

    Li, Xiang-Yun; Mei, Guang-Hai; Dong, Qiang; Zhang, Yu; Guo, Zhuang-Li; Su, Jing-Jing; Tang, Yu-Ping; Jin, Xue-Hong; Zhou, Hou-Guang; Huang, Yan-Yan

    2015-01-01

    Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment. PMID:26664824

  6. a Computational Model for Lesion Dynamics in Multiple Sclerosis of the Brain

    NASA Astrophysics Data System (ADS)

    Mohan, T. R. Krishna; Sen, Surajit; Ramanathan, Murali

    Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system (CNS) that is characterized by lesions with inflammatory cells, axons with the insulating myelin sheath damaged, and axonal loss. The causes of MS are not known and there is as yet no cure. The purpose of this research was to evaluate a physically motivated network model for lesion formation in the brain. The parsimonious network model contained two elements: (i) a spatially spreading pathological process causing cell damage and death leading to neuro-degeneration and, (ii) generation of alarm signals by the damaged cells that lead to activation of programmed death of cells surrounding the lesions in an attempt to contain the spatial spread of the pathologic process. Simulation results with a range of network geometries indicated that the model was capable of describing lesion progression and arrest. The modeling results also demonstrated dynamical complexity with sensitivity to initial conditions.

  7. Fish biomarkers for environmental monitoring: An integrated model supporting enzyme activity and histopathological lesions

    NASA Astrophysics Data System (ADS)

    Neta, Raimunda Nonata Fortes Carvalho; Torres Junior, Audalio Rebelo

    2014-10-01

    We present a mathematical model describing the association between glutathione-S-transferase activity and brachial lesions in the catfish, Sciades herzbergii (Ariidae) from a polluted port. The catfish were sampled from a port known to be contaminated with heavy metals and organic compounds and from a natural reserve in São Marcos Bay, Brazil. Two biomarkers, hepatic glutathione S-transferase (GST) activity and histopathological lesions, in gills tissue were measured. The values for GST activity were modeled with the occurrence of branchial lesions by fitting a third order polynomial. Results from the mathematical model indicate that GST activity has a strong polynomial relationship with the occurrence of branchial lesions in both the wet and the dry seasons, but only at the polluted port site. The model developed in this study indicates that branchial and hepatic lesions are initiated when GST activity reaches 2.15 μmol min-1 mg protein-1. Beyond this limit, GST activity decreased to very low levels and irreversible histopathological lesions occurred. This mathematical model provides a realistic approach to analyze predictive biomarkers of environmental health status.

  8. Lesions of dopamine neurons in the medial prefrontal cortex: effects on self-administration of amphetamine and dopamine synthesis in the brain of the rat.

    PubMed

    Leccese, A P; Lyness, W H

    1987-09-01

    It has been suggested that dopamine (DA)-containing neurons within the medial prefrontal cortex subserve a role in the positive reinforcing effects of psychomotor stimulants. Injections of 6-hydroxydopamine (6-OHDA) into this region, which destroyed a major portion of the DA innervation, but maintained the integrity of noradrenergic and serotonergic neurons, failed to alter either the acquisition or maintenance of the intravenous self-administration of d-amphetamine in rats. Compared to vehicle-injected controls (sham lesions), the animals treated with 6-OHDA acquired the drug-abuse behaviour and maintained comparable, stable rates of self-injection. The lesions increased concentrations of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens septi but not in the striatum. The increased synthesis of DA in the nucleus accumbens septi [demonstrated by increased accumulation of dihydroxyphenylalanine (DOPA)] was abolished by the intravenous administration of d-amphetamine, in patterns mimicking those of animals trained in self-administration. PMID:3118232

  9. Perivenular Brain Lesions in a Primate Multiple Sclerosis Model at 7T-MRI

    PubMed Central

    Gaitán, María I.; Maggi, Pietro; Wohler, Jillian; Leibovitch, Emily; Sati, Pascal; Calandri, Ismael L.; Merkle, Hellmut; Massacesi, Luca; Silva, Afonso C.; Jacobson, Steven; Reich, Daniel S.

    2016-01-01

    Background Magnetic resonance imaging (MRI) can provide in vivo assessment of tissue damage, allowing evaluation of multiple sclerosis (MS) lesion evolution over time – a perspective not obtainable with postmortem histopathology. Relapsing-remitting experimental autoimmune encephalomyelitis (EAE) is an experimental model of MS that can be induced in the common marmoset, a small new world primate, and that causes perivenular white matter lesions similar to those observed in MS. Methods Brain lesion development and evolution were studied in vivo and postmortem in 4 marmosets with EAE through serial T2- and T2*-weighted scans at 7 tesla. Supratentorial white matter lesions were identified and characterized. Results Of 97 lesions observed, 86 (88%) were clearly perivenular, and 62 (72%) developed around veins that were visible even prior to EAE induction. The perivenular configuration was confirmed by postmortem histopathology. Most affected veins, and their related perivascular Virchow-Robin spaces, passed into the subarachnoid space rather than the ventricles. Conclusion As in human MS, the intimate association between small veins and EAE lesions in the marmoset can be studied with serial in vivo MRI. This further strengthens the usefulness of this model for understanding the process of perivenular lesion development and accompanying tissue destruction in MS. PMID:23773983

  10. Dendritic Cells Cause Bone Lesions in a New Mouse Model of Histiocytosis

    PubMed Central

    Grosjean, Frédéric; Nasi, Sonia; Schneider, Pascal; Chobaz, Véronique; Liu, Alexandra; Mordasini, Vanessa; Moullec, Kristell; Vezzoni, Paolo; Lavanchy, Christine; Busso, Nathalie; Acha-Orbea, Hans; Ehirchiou, Driss

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8α conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 1–2 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions. PMID:26247358

  11. Atlas-based segmentation of pathological MR brain images using a model of lesion growth.

    PubMed

    Cuadra, Meritxell Bach; Pollo, Claudio; Bardera, Anton; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2004-10-01

    We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy. PMID:15493697

  12. Chronic Spinal Cord Electrical Stimulation Protects Against 6-hydroxydopamine Lesions

    NASA Astrophysics Data System (ADS)

    Yadav, Amol P.; Fuentes, Romulo; Zhang, Hao; Vinholo, Thais; Wang, Chi-Han; Freire, Marco Aurelio M.; Nicolelis, Miguel A. L.

    2014-01-01

    Although L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD. To date, the long-term effects of DCS in animal models have not been quantified. Here, we report that DCS applied twice a week in rats treated with bilateral 6-OHDA striatal infusions led to a significant improvement in symptoms. DCS-treated rats exhibited a higher density of dopaminergic innervation in the striatum and higher neuronal cell count in the substantia nigra pars compacta compared to a control group. These results suggest that DCS has a chronic therapeutical and neuroprotective effect, increasing its potential as a new clinical option for treating PD patients.

  13. Striatal Pleiotrophin Overexpression Provides Functional and Morphological Neuroprotection in the 6-Hydroxydopamine Model

    PubMed Central

    Gombash, Sara E; Lipton, Jack W; Collier, Timothy J; Madhavan, Lalitha; Steece-Collier, Kathy; Cole-Strauss, Allyson; Terpstra, Brian T; Spieles-Engemann, Anne L; Daley, Brian F; Wohlgenant, Susan L; Thompson, Valerie B; Manfredsson, Fredric P; Mandel, Ronald J; Sortwell, Caryl E

    2012-01-01

    Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult. PMID:22008908

  14. Topical Treatment of Dermatophytic Lesion on Mice (Mus musculus) Model.

    PubMed

    Sharma, Bindu; Kumar, Padma; Joshi, Suresh Chandra

    2011-06-01

    Antidermatophytic potential of three weed plants viz. Tridax procumbens L., Capparis decidua (forsk) Edgew and Lantana camara L. were explored and experimentally induced dermatophytic lesion was topically treated in mice. Microbroth dilution method was carried out for determination of MIC and MFC of different extracts of selected plants. In animal studies, mice were experimentally inoculated with Trichophyton mentagrophytes and infected animals were topically treated with 5 mg/g terbinafine and two concentrations, i.e., 5 and 10 mg/g of test extract ointment. Complete recovery from the infection was observed on 12th day of treatment for reference drug terbinafine (5 mg/g) and 10 mg/g concentration of test extract ointment whereas 5 mg/g concentration of test extract ointment showed complete cure on 16th day of treatment. Fungal burden was also calculated by culturing skin scrapings from infected animals of different groups. Test extract ointment successfully treated induced dermatophytosis in mice without any disease recurrence incidences, thereby indicating efficacy of test extract as an excellent topical antifungal agent for the cure of dermatophytosis. PMID:22654168

  15. Modeling HMI measurement of HIFU lesion formation with temperature-dependent tissue properties

    NASA Astrophysics Data System (ADS)

    Draudt, Andrew B.; Cleveland, Robin O.

    2012-10-01

    Monitoring tissue stiffness changes during HIFU lesion formation may be possible by measuring the motion induced by the amplitude-modulation of the HIFU beam. As a lesion forms both the stiffness and the acoustic absorption increase. Nominally the increase in tissue stiffness results in less motion, whilst the increase in acoustic absorption results in more forcing and hence more displacement. To investigate whether these two effects cancel out, a finite element model was developed which allowed the temperature dependence of absorption and shear modulus to affect the simultaneous evolution of the acoustic, thermal, and displacement fields. For the displacement the tissue surface was assumed to be in contact with water and was therefore free to move. Measurements of bovine liver and chicken breast indicated that after lesion formation attenuation increased by 200-500% and stiffness increased by 230% for chicken, and by a factor of 40 for liver. The model results showed that, until the lesion grew well outside of the focal region, the increase in attenuation dominated and the displacement increased by 30% after lesion formation. Experimental measurement of displacement vs depth in excised bovine liver and chicken breast subject to 1.1 MHz HIFU were consistent with the predictions of the model. However, sample-to-sample variation in displacement was greater than the predicted change due to lesion formation, suggesting that changes may be difficult to detect in practice. [Work supported in part by NSF through award EEC-9986821

  16. Modeling and Simulation of the Effects of Cyclic Loading on Articular Cartilage Lesion Formation

    PubMed Central

    Wang, Xiayi; Ayati, Bruce P.; Brouillete, Marc J.; Graham, Jason M.; Ramakrishnan, Prem S.; Martin, James A.

    2015-01-01

    We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. This model extends and modifies the reaction-diffusion-delay model by Graham et al. [20] for the spread of a lesion formed though a single traumatic event. Our model represents “implicitly” the effects of loading, meaning through a cyclic sink term in the equations for live cells. Our model forms the basis for in silico studies of cartilage damage relevant to questions in osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies. Computational results are presented that indicate the impact of differing levels of EPO on articular cartilage lesion abatement. PMID:24753483

  17. detecting multiple sclerosis lesions with a fully bioinspired visual attention model

    NASA Astrophysics Data System (ADS)

    Villalon-Reina, Julio; Gutierrez-Carvajal, Ricardo; Thompson, Paul M.; Romero-Castro, Eduardo

    2013-11-01

    The detection, segmentation and quantification of multiple sclerosis (MS) lesions on magnetic resonance images (MRI) has been a very active field for the last two decades because of the urge to correlate these measures with the effectiveness of pharmacological treatment. A myriad of methods has been developed and most of these are non specific for the type of lesions and segment the lesions in their acute and chronic phases together. On the other hand, radiologists are able to distinguish between several stages of the disease on different types of MRI images. The main motivation of the work presented here is to computationally emulate the visual perception of the radiologist by using modeling principles of the neuronal centers along the visual system. By using this approach we are able to detect the lesions in the majority of the images in our population sample. This type of approach also allows us to study and improve the analysis of brain networks by introducing a priori information.

  18. White Matter MS-Lesion Segmentation Using a Geometric Brain Model.

    PubMed

    Strumia, Maddalena; Schmidt, Frank R; Anastasopoulos, Constantinos; Granziera, Cristina; Krueger, Gunnar; Brox, Thomas

    2016-07-01

    Brain magnetic resonance imaging (MRI) in patients with Multiple Sclerosis (MS) shows regions of signal abnormalities, named plaques or lesions. The spatial lesion distribution plays a major role for MS diagnosis. In this paper we present a 3D MS-lesion segmentation method based on an adaptive geometric brain model. We model the topological properties of the lesions and brain tissues in order to constrain the lesion segmentation to the white matter. As a result, the method is independent of an MRI atlas. We tested our method on the MICCAI MS grand challenge proposed in 2008 and achieved competitive results. In addition, we used an in-house dataset of 15 MS patients, for which we achieved best results in most distances in comparison to atlas based methods. Besides classical segmentation distances, we motivate and formulate a new distance to evaluate the quality of the lesion segmentation, while being robust with respect to minor inconsistencies at the boundary level of the ground truth annotation. PMID:26829786

  19. Location- and lesion-dependent estimation of background tissue complexity for anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali R. N.; Espig, Kathryn; Knippel, Eddie; Kimpe, Tom R. L.; Xthona, Albert; Maidment, Andrew D. A.

    2016-03-01

    In this paper, we specify a notion of background tissue complexity (BTC) as perceived by a human observer that is suited for use with model observers. This notion of BTC is a function of image location and lesion shape and size. We propose four unsupervised BTC estimators based on: (i) perceived pre- and post-lesion similarity of images, (ii) lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), (iii) tissue anomaly detection, and (iv) mammogram density measurement. The latter two are existing methods we adapt for location- and lesion-dependent BTC estimation. To validate the BTC estimators, we ask human observers to measure BTC as the visibility threshold amplitude of an inserted lesion at specified locations in a mammogram. Both human-measured and computationally estimated BTC varied with lesion shape (from circular to oval), size (from small circular to larger circular), and location (different points across a mammogram). BTCs measured by different human observers are correlated (ρ=0.67). BTC estimators are highly correlated to each other (0.84lesion shape or size, estimated BTC by LBA changes in the same direction as human-measured BTC. A generalization of proposed methods for viewing breast tomosynthesis sequences in cine mode is outlined. The proposed estimators, as-is or customized to a specific human observer, may be used to construct a BTC-aware model observer, with applications such as optimization of contrast-enhanced medical imaging systems, and creation of a diversified image dataset with characteristics of a desired population.

  20. Cause and prevention of demyelination in a model multiple sclerosis lesion

    PubMed Central

    Davies, Andrew L.; Tachrount, Mohamed; Kasti, Marianne; Laulund, Frida; Golay, Xavier; Smith, Kenneth J.

    2016-01-01

    Objective Demyelination is a cardinal feature of multiple sclerosis, but it remains unclear why new lesions form, and whether they can be prevented. Neuropathological evidence suggests that demyelination can occur in the relative absence of lymphocytes, and with distinctive characteristics suggestive of a tissue energy deficit. The objective was to examine an experimental model of the early multiple sclerosis lesion and identify pathogenic mechanisms and opportunities for therapy. Methods Demyelinating lesions were induced in the rat spinal dorsal column by microinjection of lipopolysaccharide, and examined immunohistochemically at different stages of development. The efficacy of treatment with inspired oxygen for 2 days following lesion induction was evaluated. Results Demyelinating lesions were not centered on the injection site, but rather formed 1 week later at the white–gray matter border, preferentially including the ventral dorsal column watershed. Lesion formation was preceded by a transient early period of hypoxia and increased production of superoxide and nitric oxide. Oligodendrocyte numbers decreased at the site shortly afterward, prior to demyelination. Lesions formed at a site of inherent susceptibility to hypoxia, as revealed by exposure of naive animals to a hypoxic environment. Notably, raising the inspired oxygen (80%, normobaric) during the hypoxic period significantly reduced or prevented the demyelination. Interpretation Demyelination characteristic of at least some early multiple sclerosis lesions can arise at a vascular watershed following activation of innate immune mechanisms that provoke hypoxia, and superoxide and nitric oxide formation, all of which can compromise cellular energy sufficiency. Demyelination can be reduced or eliminated by increasing inspired oxygen to alleviate the transient hypoxia. Ann Neurol 2016;79:591–604 PMID:26814844

  1. Differential pattern of motor impairments in neurotoxic, environmental and inflammation-driven rat models of Parkinson's disease.

    PubMed

    Naughton, Carol; Moriarty, Niamh; Feehan, Jennifer; O'Toole, Daniel; Dowd, Eilís

    2016-01-01

    One of the reasons proposed for the paucity of drug discovery for Parkinson's disease is the lack of relevant animal models of the condition. Parkinson's disease has been modelled extensively using the selective neurotoxin, 6-hydroxydopamine (6-OHDA). However, as this model bears little etiological resemblance to the human condition, there has been a drive to develop models with improved etiological validity. Two such models are those induced by the pesticide, rotenone, and the inflammagen, lipopolysaccharide (LPS). However, to date, these models have been poorly characterised in terms of their motor profiles and have never been directly compared to the more established models. Thus, the aim of this study was to characterise the behavioural profile of the rotenone and LPS models, and to compare them with the 6-OHDA model. Animals underwent baseline testing on the Stepping, Whisker, Corridor and Cylinder Tests of motor function. They were then grouped for unilateral intra-striatal infusion of 6-OHDA, rotenone or LPS. Motor testing continued for ten weeks after which the rats were processed for immunohistochemical analysis of nigrostriatal integrity. We found that, although all neurotoxins induced a similar level of nigrostriatal neurodegeneration, neither the rotenone nor LPS models were associated with amphetamine-induced rotation, and they were associated with significantly less pronounced and stable impairments in the spontaneous tasks than the 6-OHDA model. In conclusion, this study demonstrates key differences in the pattern of motor dysfunction induced by Parkinsonian neurotoxins which should be taken into consideration when selecting the most appropriate model for Parkinson's disease preclinical studies. PMID:26393432

  2. PET Imaging of Serotonin Transporters With 4-[(18)F]-ADAM in a Parkinsonian Rat Model With Porcine Neural Xenografts.

    PubMed

    Chiu, Chuang-Hsin; Li, I-Hsun; Weng, Shao-Ju; Huang, Yuahn-Sieh; Wu, Shinn-Chih; Chou, Ta-Kai; Huang, Wen-Sheng; Liao, Mei-Hsiu; Shiue, Chyng-Yann; Cheng, Cheng-Yi; Ma, Kuo-Hsing

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by a loss of dopaminergic neurons in the nigrostriatal pathway. Apart from effective strategies to halt the underlying neuronal degeneration, cell replacement now offers novel prospects for PD therapy. Porcine embryonic neural tissue has been considered an alternative source to human fetal grafts in neurodegenerative disorders because its use avoids major practical and ethical issues. This study was undertaken to evaluate the effects of embryonic day 27 (E27) porcine mesencephalic tissue transplantation in a PD rat model using animal positron emission tomography (PET) coupled with 4-[(18)F]-ADAM, a serotonin transporter (SERT) imaging agent. The parkinsonian rat was induced by injecting 6-hydroxydopamine into the medial forebrain bundle (MFB) of the right nigrostriatal pathway. The apomorphine-induced rotation behavioral test and 4-[(18)F]-ADAM/animal PET scanning were carried out following 6-OHDA lesioning. At the second week following 6-OHDA lesioning, the parkinsonian rat rotates substantially on apomorphine-induced contralateral turning. In addition, the mean striatal-specific uptake ratio (SUR) of 4-[(18)F]-ADAM decreased by 44%. After transplantation, the number of drug-induced rotations decreased markedly, and the mean SUR of 4-[(18)F]-ADAM and the level of SERT immunoreactivity (SERT-ir) in striatum were partially restored. The mean SUR level was restored to 71% compared to that for the contralateral intact side, which together with the abundant survival of tyrosine hydroxylase (TH) neurons accounted for functional recovery at the fourth week postgraft. In regard to the extent of donor-derived cells, we found the neurons of the xenografts from E27 transgenic pigs harboring red fluorescent protein (RFP) localized with TH-ir cells and SERT-ir in the grafted area. Thus, transplanted E27 porcine mesencephalic tissue may restore dopaminergic and serotonergic systems in the parkinsonian rat

  3. Immunohistological study of lesions induced by Porphyromonas gingivalis in a murine model.

    PubMed

    Gemmell, E; Bird, P S; Bowman, J J; Xu, L; Polak, B; Walsh, L J; Seymour, G J

    1997-10-01

    A previous study used a mouse model to demonstrate protection after challenge with Porphyromonas gingivalis ATCC 33277. In the present study, this same model was used to determine the phenotype of cells recruited into the lesions during the course of the protective immune response after immunization with this periodontal pathogen. BALB/c mice were immunized with 100 micrograms of P. gingivalis outer membrane antigens per mouse weekly for 3 weeks followed by challenge with live organisms 3 weeks after the final immunization. Hematoxylin and eosin-stained sections showed inflammatory infiltrates in all lesions from control (immunized with adjuvant only) and immunized mice. The lesions developed central necrotic cores surrounded by neutrophils, phagocytic macrophages and lymphocytes. Neutrophils were the predominant cells in the lesions 1 day after challenge with significantly more in immunized than control mice. Acid phosphatase and nonspecific esterase-positive macrophages were detected at day 4 and became the predominant cells in the healing lesions. CD4- and CD8-positive T-cells were present from day 1, and while numbers increased over time, there were no significant differences in control or immunized mice. When mice were depleted of CD4 or CD8 cells prior to immunization with P. gingivalis, fewer neutrophils were found in the lesions 1 day after challenge compared with undepleted immunized mice. Acid phosphatase and nonspecific esterase-positive macrophages were not affected by T-cell depletion. The results suggest that the P. gingivalis-induced lesion in immunized BALB/c mice is consistent with a strong innate immune response involving the recruitment of neutrophils in the first instance which may be under the control of T cells. This is followed by the infiltration of phagocytic macrophages which are involved in the healing process and do not appear to be regulated by T cells. PMID:9467382

  4. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model

    SciTech Connect

    Haines, D.E.; Watson, D.D.; Verow, A.F. )

    1990-07-01

    Myocardial heating by transcatheter delivery of radiofrequency (RF) energy has been proposed as an effective means of arrhythmia ablation. A thermodynamic model describing the radial temperature gradient at steady state during RF-induced heating is proposed. If one assumes that RF power output is adjusted to maintain a constant electrode-tissue interface temperature at all times, then this thermodynamic model predicts that the radius of the RF-induced lesion will be directly proportional to the electrode radius. A total of 76 RF-induced lesions were created in a model of isolated canine right ventricular free wall perfused and superfused with oxygenated Krebs-Henseleit buffer. Electrode radius was varied between 0.75 and 2.25 mm. RF energy (500 kHz) was delivered for 90 seconds, and the power output was adjusted to maintain a constant electrode-tissue interface temperature of 60 degrees C. A strong linear correlation was observed between electrode radius and lesion radius in two dimensions: transverse (p = 0.0001, r = 0.85) and transmural (p = 0.0001, r = 0.89). With these data, the temperature correlation with irreversible myocardial injury in this model was calculated at 46.6-48.8 degrees C. Therefore, the proposed thermodynamic model closely predicts the observed relation between electrode radius and lesion size during RF myocardial heating.

  5. Bentamapimod (JNK Inhibitor AS602801) Induces Regression of Endometriotic Lesions in Animal Models.

    PubMed

    Palmer, Stephen S; Altan, Melis; Denis, Deborah; Tos, Enrico Gillio; Gotteland, Jean-Pierre; Osteen, Kevin G; Bruner-Tran, Kaylon L; Nataraja, Selvaraj G

    2016-01-01

    Endometriosis is an estrogen (ER)-dependent gynecological disease caused by the growth of endometrial tissue at extrauterine sites. Current endocrine therapies address the estrogenic aspect of disease and offer some relief from pain but are associated with significant side effects. Immune dysfunction is also widely believed to be an underlying contributor to the pathogenesis of this disease. This study evaluated an inhibitor of c-Jun N-terminal kinase, bentamapimod (AS602801), which interrupts immune pathways, in 2 rodent endometriosis models. Treatment of nude mice bearing xenografts biopsied from women with endometriosis (BWE) with 30 mg/kg AS602801 caused 29% regression of lesion. Medroxyprogesterone acetate (MPA) or progesterone (PR) alone did not cause regression of BWE lesions, but combining 10 mg/kg AS602801 with MPA caused 38% lesion regression. In human endometrial organ cultures (from healthy women), treatment with AS602801 or MPA reduced matrix metalloproteinase-3 (MMP-3) release into culture medium. In organ cultures established with BWE, PR or MPA failed to inhibit MMP-3 secretion, whereas AS602801 alone or MPA + AS602801 suppressed MMP-3 production. In an autologous rat endometriosis model, AS602801 caused 48% regression of lesions compared to GnRH antagonist Antide (84%). AS602801 reduced inflammatory cytokines in endometriotic lesions, while levels of cytokines in ipsilateral horns were unaffected. Furthermore, AS602801 enhanced natural killer cell activity, without apparent negative effects on uterus. These results indicate that bentamapimod induced regression of endometriotic lesions in endometriosis rodent animal models without suppressing ER action. c-Jun N-terminal kinase inhibition mediated a comprehensive reduction in cytokine secretion and moreover was able to overcome PR resistance. PMID:26335175

  6. Brain MRI segmentation and lesion detection using generalized Gaussian and Rician modeling

    NASA Astrophysics Data System (ADS)

    Wu, Xuqiang; Bricq, Stéphanie; Collet, Christophe

    2011-03-01

    In this paper we propose a mixed noise modeling so as to segment the brain and to detect lesion. Indeed, accurate segmentation of multimodal (T1, T2 and Flair) brain MR images is of great interest for many brain disorders but requires to efficiently manage multivariate correlated noise between available modalities. We addressed this problem in1 by proposing an entirely unsupervised segmentation scheme, taking into account multivariate Gaussian noise, imaging artifacts,intrinsic tissue variation and partial volume effects in a Bayesian framework. Nevertheless, tissue classification remains a challenging task especially when one addresses the lesion detection during segmentation process2 as we did. In order to improve brain segmentation into White and Gray Matter (resp. WM and GM) and cerebro-spinal fluid (CSF), we propose to fit a Rician (RC) density distribution for CSF whereas Generalized Gaussian (GG) models are used to fit the likelihood between model and data corresponding to WM and GM. In this way, we present in this paper promising results showing that in a multimodal segmentation-detection scheme, this model fits better with the data and increases lesion detection rate. One of the main challenges consists in being able to take into account various pdf (Gaussian and non- Gaussian) for correlated noise between modalities and to show that lesion-detection is then clearly improved, probably because non-Gaussian noise better fits to the physic of MRI image acquisition.

  7. Hyaluronic acid reagent suppressed endometriotic lesion formation in a mouse model.

    PubMed

    Hasegawa, Akiko; Yoshino, Osamu; Osuga, Yutaka; Kodama, Ako; Takamura, Masashi; Nishii, Osamu; Taketani, Yuji

    2010-05-15

    In an animal endometriosis model, the administration of hyaluronic acid (HA) reagent significantly suppressed the formation of endometriotic lesions in both number and weight. This effect was found when HA treatment was conducted at the time of endometrial fragment inoculation. PMID:20356589

  8. Restoring Behavior via Inverse Neurocontroller in a Lesioned Cortical Spiking Model Driving a Virtual Arm

    PubMed Central

    Dura-Bernal, Salvador; Li, Kan; Neymotin, Samuel A.; Francis, Joseph T.; Principe, Jose C.; Lytton, William W.

    2016-01-01

    Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors. PMID:26903796

  9. Exercise exerts neuroprotective effects on Parkinson's disease model of rats.

    PubMed

    Tajiri, Naoki; Yasuhara, Takao; Shingo, Tetsuro; Kondo, Akihiko; Yuan, Wenji; Kadota, Tomohito; Wang, Feifei; Baba, Tanefumi; Tayra, Judith Thomas; Morimoto, Takamasa; Jing, Meng; Kikuchi, Yoichiro; Kuramoto, Satoshi; Agari, Takashi; Miyoshi, Yasuyuki; Fujino, Hidemi; Obata, Futoshi; Takeda, Isao; Furuta, Tomohisa; Date, Isao

    2010-01-15

    Recent studies demonstrate that rehabilitation ameliorates physical and cognitive impairments of patients with stroke, spinal cord injury, and other neurological diseases and that rehabilitation also has potencies to modulate brain plasticity. Here we examined the effects of compulsive exercise on Parkinson's disease model of rats. Before 6-hydroxydopamine (6-OHDA, 20 microg) lesion into the right striatum of female SD rats, bromodeoxyuridine (BrdU) was injected to label the proliferating cells. Subsequently, at 24 h after the lesion, the rats were forced to run on the treadmill (5 days/week, 30 min/day, 11 m/min). As behavioral evaluations, cylinder test was performed at 1, 2, 3, and 4 weeks and amphetamine-induced rotational test was performed at 2 and 4 weeks with consequent euthanasia for immunohistochemical investigations. The exercise group showed better behavioral recovery in cylinder test and significant decrease in the number of amphetamine-induced rotations, compared to the non-exercise group. Correspondingly, significant preservation of tyrosine hydroxylase (TH)-positive fibers in the striatum and TH-positive neurons in the substantia nigra pars compacta (SNc) was demonstrated, compared to the non-exercise group. Additionally, the number of migrated BrdU- and Doublecortin-positive cells toward the lesioned striatum was increased in the exercise group. Furthermore, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor increased in the striatum by exercise. The results suggest that exercise exerts neuroprotective effects or enhances the neuronal differentiation in Parkinson's disease model of rats with subsequent improvement in deteriorated motor function. PMID:19900418

  10. Application of radiosurgical techniques to produce a primate model of brain lesions

    PubMed Central

    Kunimatsu, Jun; Miyamoto, Naoki; Ishikawa, Masayori; Shirato, Hiroki; Tanaka, Masaki

    2015-01-01

    Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130–150 Gy at ISO center) to the frontal eye field (FEF) of macaque monkeys using a clinical linear accelerator (LINAC). The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR) images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans. PMID:25964746

  11. Evaluation of aortic cannula jet lesions in a porcine cardiopulmonary bypass (CPB) model.

    PubMed

    Schnürer, C; Hager, M; Györi, G; Velik-Salchner, C; Moser, P L; Laufer, G; Lorenz, I H; Kolbitsch, C

    2011-02-01

    In cardiosurgery patients atherosclerotic debris displaced from the cannulation site but also from the opposite aortic wall by the "sandblast-like" effect of the high-pressure jet emanating from the cannula is a potential source of intraoperative arterial embolization and consequently postoperative neurologic dysfunction. The present study examined the extent to which shear stress exerted on the intact aortic intima by an aortic cannula jet stream can cause endothelial lesions that promote thrombogenesis and consequently thrombembolism. A single-stream, straight-tip aortic cannula was used in a porcine cardiopulmonary bypass (CPB) model. Following a 120-minute CPB pump run, a 60-minute stabilization period was allowed before sacrificing the pigs (N.=40) for histological evaluation of the ascending aorta and the brain. Opposite the cannulation site endothelial lesions (diameter: 3.81±1.3 mm; depth: 0.017±0.003 mm) were present in 22.5% (9/40) of aortic specimens. Cerebral thrombembolic lesions were not found. The present study showed that single-stream, straight-tip aortic cannulas caused jet lesions of the formerly intact aortic endothelium opposite the cannulation site in 22.5% of cases in a porcine CPB model. PMID:21224818

  12. Monitoring the remineralization of early simulated lesions using a pH cycling model with CP-OCT

    NASA Astrophysics Data System (ADS)

    Kang, Hobin; Chan, Kenneth; Darling, Cynthia L.; Fried, Daniel

    If caries lesions are detected early enough they can be arrested by chemical intervention and dietary changes without the need for chemical intervention. Optical coherence tomography is ideally suited to monitor the changes that occur in caries lesions as a result of nonsurgical intervention, since OCT can nondestructively image the internal structure of the lesion. One of the most important changes that occurs in a lesion is preferential deposition of mineral in the outer surface zone. The deposition creates a highly mineralized and weakly scattering surface zone that is clearly visible in OCT images. Since this zone is near the highly reflective surface it is necessary to use cross-polarization OCT imaging to resolve this zone. Several CP-OCT studies have been conducted employing different remineralization models that produce lesions with varying mineral gradients. Previous studies have also demonstrated that automated algorithms can be used to assess the lesion depth and severity even with the presence of the weakly reflective surface zone. In this study we investigated the remineralization of lesions of varying severity using a pH cycling remineralization model and the change of the lesion was monitored using CP-OCT. Although the lesion depth and severity decreased after remineralization, there was still incomplete remineralization of the body of the lesion.

  13. Differential Dopamine Receptor Occupancy Underlies L-DOPA-Induced Dyskinesia in a Rat Model of Parkinson's Disease

    PubMed Central

    Sahin, Gurdal; Thompson, Lachlan H.; Lavisse, Sonia; Ozgur, Merve; Rbah-Vidal, Latifa; Dollé, Frédéric

    2014-01-01

    Dyskinesia is a major side effect of an otherwise effective L-DOPA treatment in Parkinson's patients. The prevailing view for the underlying presynaptic mechanism of L-DOPA-induced dyskinesia (LID) suggests that surges in dopamine (DA) via uncontrolled release from serotonergic terminals results in abnormally high level of extracellular striatal dopamine. Here we used high-sensitivity online microdialysis and PET imaging techniques to directly investigate DA release properties from serotonergic terminals both in the parkinsonian striatum and after neuronal transplantation in 6-OHDA lesioned rats. Although L-DOPA administration resulted in a drift in extracellular DA levels, we found no evidence for abnormally high striatal DA release from serotonin neurons. The extracellular concentration of DA remained at or below levels detected in the intact striatum. Instead, our results showed that an inefficient release pool of DA associated with low D2 receptor binding remained unchanged. Taken together, these findings suggest that differential DA receptor activation rather than excessive release could be the underlying mechanism explaining LID seen in this model. Our data have important implications for development of drugs targeting the serotonergic system to reduce DA release to manage dyskinesia in patients with Parkinson's disease. PMID:24614598

  14. Reduced vocal variability in a zebra finch model of dopamine depletion: implications for Parkinson disease.

    PubMed

    Miller, Julie E; Hafzalla, George W; Burkett, Zachary D; Fox, Cynthia M; White, Stephanie A

    2015-11-01

    Midbrain dopamine (DA) modulates the activity of basal ganglia circuitry important for motor control in a variety of species. In songbirds, DA underlies motivational behavior including reproductive drive and is implicated as a gatekeeper for neural activity governing vocal variability. In the zebra finch, Taeniopygia guttata, DA levels increase in Area X, a song-dedicated subregion of the basal ganglia, when a male bird sings his courtship song to a female (female-directed; FD). Levels remain stable when he sings a less stereotyped version that is not directed toward a conspecific (undirected; UD). Here, we used a mild dose of the neurotoxin 6-hydroxydopamine (6-OHDA) to reduce presynaptic DA input to Area X and characterized the effects on FD and UD behaviors. Immunoblots were used to quantify levels of tyrosine hydroxylase (TH) as a biomarker for DA afferent loss in vehicle- and 6-OHDA-injected birds. Following 6-OHDA administration, TH signals were lower in Area X but not in an adjacent subregion, ventral striatal-pallidum (VSP). A postsynaptic marker of DA signaling was unchanged in both regions. These observations suggest that effects were specific to presynaptic afferents of vocal basal ganglia. Concurrently, vocal variability was reduced during UD but not FD song. Similar decreases in vocal variability are observed in patients with Parkinson disease (PD), but the link to DA loss is not well-understood. The 6-OHDA songbird model offers a unique opportunity to further examine how DA loss in cortico-basal ganglia pathways affects vocal control. PMID:26564062

  15. Reduced vocal variability in a zebra finch model of dopamine depletion: implications for Parkinson disease

    PubMed Central

    Miller, Julie E; Hafzalla, George W; Burkett, Zachary D; Fox, Cynthia M; White, Stephanie A

    2015-01-01

    Midbrain dopamine (DA) modulates the activity of basal ganglia circuitry important for motor control in a variety of species. In songbirds, DA underlies motivational behavior including reproductive drive and is implicated as a gatekeeper for neural activity governing vocal variability. In the zebra finch, Taeniopygia guttata, DA levels increase in Area X, a song-dedicated subregion of the basal ganglia, when a male bird sings his courtship song to a female (female-directed; FD). Levels remain stable when he sings a less stereotyped version that is not directed toward a conspecific (undirected; UD). Here, we used a mild dose of the neurotoxin 6-hydroxydopamine (6-OHDA) to reduce presynaptic DA input to Area X and characterized the effects on FD and UD behaviors. Immunoblots were used to quantify levels of tyrosine hydroxylase (TH) as a biomarker for DA afferent loss in vehicle- and 6-OHDA-injected birds. Following 6-OHDA administration, TH signals were lower in Area X but not in an adjacent subregion, ventral striatal-pallidum (VSP). A postsynaptic marker of DA signaling was unchanged in both regions. These observations suggest that effects were specific to presynaptic afferents of vocal basal ganglia. Concurrently, vocal variability was reduced during UD but not FD song. Similar decreases in vocal variability are observed in patients with Parkinson disease (PD), but the link to DA loss is not well-understood. The 6-OHDA songbird model offers a unique opportunity to further examine how DA loss in cortico-basal ganglia pathways affects vocal control. PMID:26564062

  16. A Human Ex Vivo Atherosclerotic Plaque Model to Study Lesion Biology

    PubMed Central

    Akhavanpoor, Mohammadreza; Zhao, Li; Wangler, Susanne; Hakimi, Maani; Doesch, Andreas; Dengler, Thomas J.; Katus, Hugo A.; Gleissner, Christian A.

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease of the vasculature. There are various methods to study the inflammatory compound in atherosclerotic lesions. Mouse models are an important tool to investigate inflammatory processes in atherogenesis, but these models suffer from the phenotypic and functional differences between the murine and human immune system. In vitro cell experiments are used to specifically evaluate cell type-dependent changes caused by a substance of interest, but culture-dependent variations and the inability to analyze the influence of specific molecules in the context of the inflammatory compound in atherosclerotic lesions limit the impact of the results. In addition, measuring levels of a molecule of interest in human blood helps to further investigate its clinical relevance, but this represents systemic and not local inflammation. Therefore, we here describe a plaque culture model to study human atherosclerotic lesion biology ex vivo. In short, fresh plaques are obtained from patients undergoing endarterectomy or coronary artery bypass grafting and stored in RPMI medium on ice until usage. The specimens are cut into small pieces followed by random distribution into a 48-well plate, containing RPMI medium in addition to a substance of interest such as cytokines or chemokines alone or in combination for defined periods of time. After incubation, the plaque pieces can be shock frozen for mRNA isolation, embedded in Paraffin or OCT for immunohistochemistry staining or smashed and lysed for western blotting. Furthermore, cells may be isolated from the plaque for flow cytometry analysis. In addition, supernatants can be collected for protein measurement by ELISA. In conclusion, the presented ex vivo model opens the possibility to further study inflammatory lesional biology, which may result in identification of novel disease mechanisms and therapeutic targets. PMID:24836700

  17. A human ex vivo atherosclerotic plaque model to study lesion biology.

    PubMed

    Erbel, Christian; Okuyucu, Deniz; Akhavanpoor, Mohammadreza; Zhao, Li; Wangler, Susanne; Hakimi, Maani; Doesch, Andreas; Dengler, Thomas J; Katus, Hugo A; Gleissner, Christian A

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease of the vasculature. There are various methods to study the inflammatory compound in atherosclerotic lesions. Mouse models are an important tool to investigate inflammatory processes in atherogenesis, but these models suffer from the phenotypic and functional differences between the murine and human immune system. In vitro cell experiments are used to specifically evaluate cell type-dependent changes caused by a substance of interest, but culture-dependent variations and the inability to analyze the influence of specific molecules in the context of the inflammatory compound in atherosclerotic lesions limit the impact of the results. In addition, measuring levels of a molecule of interest in human blood helps to further investigate its clinical relevance, but this represents systemic and not local inflammation. Therefore, we here describe a plaque culture model to study human atherosclerotic lesion biology ex vivo. In short, fresh plaques are obtained from patients undergoing endarterectomy or coronary artery bypass grafting and stored in RPMI medium on ice until usage. The specimens are cut into small pieces followed by random distribution into a 48-well plate, containing RPMI medium in addition to a substance of interest such as cytokines or chemokines alone or in combination for defined periods of time. After incubation, the plaque pieces can be shock frozen for mRNA isolation, embedded in Paraffin or OCT for immunohistochemistry staining or smashed and lysed for western blotting. Furthermore, cells may be isolated from the plaque for flow cytometry analysis. In addition, supernatants can be collected for protein measurement by ELISA. In conclusion, the presented ex vivo model opens the possibility to further study inflammatory lesional biology, which may result in identification of novel disease mechanisms and therapeutic targets. PMID:24836700

  18. Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model.

    PubMed

    Prats, Clara; Vilaplana, Cristina; Valls, Joaquim; Marzo, Elena; Cardona, Pere-Joan; López, Daniel

    2016-01-01

    The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of

  19. Local Inflammation, Dissemination and Coalescence of Lesions Are Key for the Progression toward Active Tuberculosis: The Bubble Model

    PubMed Central

    Prats, Clara; Vilaplana, Cristina; Valls, Joaquim; Marzo, Elena; Cardona, Pere-Joan; López, Daniel

    2016-01-01

    The evolution of a tuberculosis (TB) infection toward active disease is driven by a combination of factors mostly related to the host response. The equilibrium between control of the bacillary load and the pathology generated is crucial as regards preventing the growth and proliferation of TB lesions. In addition, some experimental evidence suggests an important role of both local endogenous reinfection and the coalescence of neighboring lesions. Herein we propose a mathematical model that captures the essence of these factors by defining three hypotheses: (i) lesions grow logistically due to the inflammatory reaction; (ii) new lesions can appear as a result of extracellular bacilli or infected macrophages that escape from older lesions; and (iii) lesions can merge when they are close enough. This model was implemented in Matlab to simulate the dynamics of several lesions in a 3D space. It was also fitted to available microscopy data from infected C3HeB/FeJ mice, an animal model of active TB that reacts against Mycobacterium tuberculosis with an exaggerated inflammatory response. The results of the simulations show the dynamics observed experimentally, namely an initial increase in the number of lesions followed by fluctuations, and an exponential increase in the mean area of the lesions. In addition, further analysis of experimental and simulation results show a strong coincidence of the area distributions of lesions at day 21, thereby highlighting the consistency of the model. Three simulation series removing each one of the hypothesis corroborate their essential role in the dynamics observed. These results demonstrate that three local factors, namely an exaggerated inflammatory response, an endogenous reinfection, and a coalescence of lesions, are needed in order to progress toward active TB. The failure of one of these factors stops induction of the disease. This mathematical model may be used as a basis for developing strategies to stop the progression of

  20. Efficient therapy of ischaemic lesions with VEGF121-fibrin in an animal model of systemic sclerosis

    PubMed Central

    Allipour Birgani, Shadab; Mailänder, Marion; Wasle, Ines; Dietrich, Hermann; Gruber, Johann; Distler, Oliver; Sgonc, Roswitha

    2016-01-01

    Background In systemic sclerosis (SSc), chronic and uncontrolled overexpression of vascular endothelial growth factor (VEGF) results in chaotic vessels, and intractable fingertip ulcers. Vice versa, VEGF is a potent mediator of angiogenesis if temporally and spatially controlled. We have addressed this therapeutic dilemma in SSc by a novel approach using a VEGF121 variant that covalently binds to fibrin and gets released on demand by cellular enzymatic activity. Using University of California at Davis (UCD)-206 chickens, we tested the hypothesis that cell-demanded release of fibrin-bound VEGF121 leads to the formation of stable blood vessels, and clinical improvement of ischaemic lesions. Methods Ninety-one early and late ischaemic comb and neck skin lesions of UCD-206 chickens were treated locally with VEGF121-fibrin, fibrin alone, or left untreated. After 1 week of treatment the clinical outcome was assessed. Angiogenesis was studied by immunofluorescence staining of vascular markers quantitatively analysed using TissueQuest. Results Overall, 79.3% of the lesions treated with VEGF121-fibrin showed clinical improvement, whereas 71.0% of fibrin treated controls, and 93.1% of untreated lesions deteriorated. This was accompanied by significantly increased growth of stable microvessels, upregulation of the proangiogenic VEGFR-2 and its regulator TAL-1, and increase of endogenous endothelial VEGF expression. Conclusions Our findings in the avian model of SSc suggest that cell-demanded release of VEGF121 from fibrin matrix induces controlled angiogenesis by differential regulation of VEGFR-1 and VEGFR-2 expression, shifting the balance towards the proangiogenic VEGFR-2. The study shows the potential of covalently conjugated VEGF-fibrin matrices for the therapy of ischaemic lesions such as fingertip ulcers. PMID:26362758

  1. A finite element model for simulating acoustic streaming in cystic breast lesions with experimental validation.

    PubMed

    Nightingale, K R; Trahey, G E

    2000-01-01

    Streaming detection is an ultrasonic technique that can be used to distinguish fluid-filled lesions, or cysts, from solid lesions. With this technique, high intensity ultrasound pulses are used to induce acoustic streaming in cyst fluid, and this motion is detected using Doppler flow estimation methods. Results from a pilot clinical study were recently published in which acoustic streaming was successfully induced and detected in 14 of 15 simple breast cysts and four of 14 sonographically indeterminate breast lesions in vivo. In the study, the detected velocities were found to vary considerably among cysts and for different pulsing regimes. A finite element model of streaming detection is presented. This model is utilized to investigate methods of increasing induced acoustic streaming velocity while minimizing patient exposure to high intensity ultrasound during streaming detection. Parameters studied include intensity, frequency, acoustic beam shape, cyst-diameter, cyst fluid protein concentration, and cyst fluid viscosity. The model, which provides both transient and steady-state solutions, is shown to predict trends in streaming velocity accurately. Experimental results from studies investigating the potential for nonlinear streaming enhancement in cysts are also provided. PMID:18238532

  2. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion

    PubMed Central

    Montalbano, Mauro; Curcurù, Giuseppe; Shirafkan, Ali; Vento, Renza; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Isolation of hepatocytes from cirrhotic human livers and subsequent primary culture are important new tools for laboratory research and cell-based therapeutics in the study of hepatocellular carcinoma (HCC). Using such techniques, we have previously identified different subpopulations of human hepatocytes and among them one is showing a progressive transformation of hepatocytes in HCC-like cells. We have hypothesized that increasing the distance from the neoplastic lesion might affect hepatocyte function and transformation capacity. However, limited information is available in comparing the growth and proliferation of human hepatocytes obtained from different areas of the same cirrhotic liver in relation to their distance from the HCC lesion. In this study, hepatocytes from 10 patients with cirrhosis and HCC undergoing surgical resections from specimens obtained at a proximal (CP) and distal (CD) distance from the HCC lesion were isolated and placed in primary culture. CP hepatocytes (CP-Hep) were isolated between 1 to 3 cm (leaving at least 1cm margin to avoid cancer cells and/or satellite lesions), while CD hepatocytes (CD-Hep) were isolated from more than 5 cm or from the contralateral-lobe. A statistical model was built to analyze the proliferation rates of these cells and we evaluated expression of HCC markers (Glypican-3 (GPC3), αSmooth Muscle Actin (α-SMA) and PCNA). We observed a significant difference in proliferation and in-vitro growth showing that CP-Hep had a proliferation pattern and rate significantly different than CD-Hep. Based on these data, this model can provide information to predict growth of human hepatocytes in primary culture in relation to their pre-cancerous state with significant differences in the HCC markers expression. This model provides an important innovative tool for in-vitro analysis of HCC. PMID:27074018

  3. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    SciTech Connect

    Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Besnard, S.

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  4. Neuroprotection and Functional Recovery Associated with Decreased Microglial Activation Following Selective Activation of mGluR2/3 Receptors in a Rodent Model of Parkinson's Disease

    PubMed Central

    Chan, Hugh; Paur, Helen; Vernon, Anthony C.; Zabarsky, Virginia; Datla, Krishna P.; Croucher, Martin J.; Dexter, David T.

    2010-01-01

    Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3) agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD). However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA) model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol), results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+)-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug. PMID:20948891

  5. Detection of questionable occlusal carious lesions using an electrical bioimpedance method with fractional electrical model.

    PubMed

    Morais, A P; Pino, A V; Souza, M N

    2016-08-01

    This in vitro study evaluated the diagnostic performance of an alternative electric bioimpedance spectroscopy technique (BIS-STEP) detect questionable occlusal carious lesions. Six specialists carried out the visual (V), radiography (R), and combined (VR) exams of 57 sound or non-cavitated occlusal carious lesion teeth classifying the occlusal surfaces in sound surface (H), enamel caries (EC), and dentinal caries (DC). Measurements were based on the current response to a step voltage excitation (BIS-STEP). A fractional electrical model was used to predict the current response in the time domain and to estimate the model parameters: Rs and Rp (resistive parameters), and C and α (fractional parameters). Histological analysis showed caries prevalence of 33.3% being 15.8% hidden caries. Combined examination obtained the best traditional diagnostic results with specificity = 59.0%, sensitivity = 70.9%, and accuracy = 60.8%. There were statistically significant differences in bioimpedance parameters between the H and EC groups (p = 0.016) and between the H and DC groups (Rs, p = 0.006; Rp, p = 0.022, and α, p = 0.041). Using a suitable threshold for the Rs, we obtained specificity = 60.7%, sensitivity = 77.9%, accuracy = 73.2%, and 100% of detection for deep lesions. It can be concluded that BIS-STEP method could be an important tool to improve the detection and management of occlusal non-cavitated primary caries and pigmented sites. PMID:27587136

  6. Three-dimensional finite element model for lesion correspondence in breast imaging

    NASA Astrophysics Data System (ADS)

    Qiu, Yan; Li, Lihua; Goldgof, Dmitry; Sarkar, Sudeep; Anton, Sorin; Clark, Robert A.

    2004-05-01

    Predicting breast tissue deformation is of great significance in several medical applications such as biopsy, diagnosis, and surgery. In breast surgery, surgeons are often concerned with a specific portion of the breast, e.g., tumor, which must be located accurately beforehand. Also clinically it is important for combining the information provided by images from several modalities or at different times, for the detection/diagnosis, treatment planning and guidance of interventions. Multi-modality imaging of the breast obtained by X-ray mammography, MRI is thought to be best achieved through some form of data fusion technique. However, images taken by these various techniques are often obtained under entirely different tissue configurations, compression, orientation or body position. In these cases some form of spatial transformation of image data from one geometry to another is required such that the tissues are represented in an equivalent configuration. We propose to use a 3D finite element model for lesion correspondence in breast imaging. The novelty of the approach lies in the following facts: (1) Finite element is the most accurate technique for modeling deformable objects such as breast. The physical soundness and mathematical rigor of finite element method ensure the accuracy and reliability of breast modeling that is essential for lesion correspondence. (2) When both MR and mammographic images are available, a subject-specific 3D breast model will be built from MRIs. If only mammography is available, a generic breast model will be used for two-view mammography reading. (3) Incremental contact simulation of breast compression allows accurate capture of breast deformation and ensures the quality of lesion correspondence. (4) Balance between efficiency and accuracy is achieved through adaptive meshing. We have done intensive research based on phantom and patient data.

  7. A New Murine Model of Osteoblastic/Osteolytic Lesions from Human Androgen-Resistant Prostate Cancer

    PubMed Central

    Depalle, Baptiste; Serre, Claire Marie; Farlay, Delphine; Turtoi, Andrei; Bellahcene, Akeila; Follet, Hélène; Castronovo, Vincent; Clézardin, Philippe; Bonnelye, Edith

    2013-01-01

    Background Up to 80% of patients dying from prostate carcinoma have developed bone metastases that are incurable. Castration is commonly used to treat prostate cancer. Although the disease initially responds to androgen blockade strategies, it often becomes castration-resistant (CRPC for Castration Resistant Prostate Cancer). Most of the murine models of mixed lesions derived from prostate cancer cells are androgen sensitive. Thus, we established a new model of CRPC (androgen receptor (AR) negative) that causes mixed lesions in bone. Methods PC3 and its derived new cell clone PC3c cells were directly injected into the tibiae of SCID male mice. Tumor growth was analyzed by radiography and histology. Direct effects of conditioned medium of both cell lines were tested on osteoclasts, osteoblasts and osteocytes. Results We found that PC3c cells induced mixed lesions 10 weeks after intratibial injection. In vitro, PC3c conditioned medium was able to stimulate tartrate resistant acid phosphatase (TRAP)-positive osteoclasts. Osteoprotegerin (OPG) and endothelin-1 (ET1) were highly expressed by PC3c while dikkopf-1 (DKK1) expression was decreased. Finally, PC3c highly expressed bone associated markers osteopontin (OPN), Runx2, alkaline phosphatase (ALP), bone sialoprotein (BSP) and produced mineralized matrix in vitro in osteogenic conditions. Conclusions We have established a new CRPC cell line as a useful system for modeling human metastatic prostate cancer which presents the mixed phenotype of bone metastases that is commonly observed in prostate cancer patients with advanced disease. This model will help to understand androgen-independent mechanisms involved in the progression of prostate cancer in bone and provides a preclinical model for testing the effects of new treatments for bone metastases. PMID:24069383

  8. PPARβ/δ and γ in a rat model of Parkinson's disease: possible involvement in PD symptoms.

    PubMed

    Falcone, Roberta; Florio, Tiziana Marilena; Di Giacomo, Erica; Benedetti, Elisabetta; Cristiano, Loredana; Antonosante, Andrea; Fidoamore, Alessia; Massimi, Mara; Alecci, Marcello; Ippoliti, Rodolfo; Giordano, Antonio; Cimini, Annamaria

    2015-05-01

    Parkinson's disease is one of the most common neurologic disorder, affecting about 1-4% of persons older than 60 years. Among the proposed mechanisms of PD generation, free radical damage is believed to play a pivotal role in the development and/or progression of the disease. Recently, PPARs, a class of transcription factors involved in several pathways both in physiological and pathological conditions, have been linked by us and others to neurodegeneration. Particularly, PPARγ and its ligands have been indicated as potential therapeutic targets for the treatment of several pathological conditions associated with neuroinflammation within the CNS. The anti-inflammatory function of PPARγ has attracted attention since agonists exert a broad spectrum of protective effects in several animal models of neurological diseases, including psychiatric diseases. On the other hand a detrimental role for PPARβ/δ has been proposed in Alzheimer, being closely related to the decrease of BDNF and Trkfl. On these bases, in this work we used a 6-OHDA hemi-lesioned rat model, inducing loss of dopaminergic neurons, to study the effects of the lesion at three time points from the lesion (1, 2, and 3 weeks), in relevant areas of PD motor symptoms, such as substantia nigra and globus pallidus and in the area of reward and mood control, the nucleus accumbens. In particular, it was studied: (i) the expression of BDNF and its downstream signals; (ii) the modulation of PPARs levels. The results obtained indicate the possible use of a dual PPARβ/δ antagonist/PPARγ agonist to counteract primary and secondary signs of PD neurodegeneration. PMID:25530507

  9. A Probiotic Preparation Alleviates Atopic Dermatitis-Like Skin Lesions in Murine Models.

    PubMed

    Kim, Min-Soo; Kim, Jin-Eung; Yoon, Yeo-Sang; Seo, Jae-Gu; Chung, Myung-Jun; Yum, Do-Young

    2016-04-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that encompasses immunologic responses. AD is frequently associated with elevated immunoglobulin (Ig) E levels, and common environmental factors contribute to its pathogenesis. Several recent studies have documented the role of specific lactic acid bacteria in the treatment and prevention of AD in humans and mice. In this study, the efficacy of Duolac ATP, a probiotic preparation, was determined in a mouse model with AD-like skin lesions. Alterations in the cytokine levels and histological staining suggested the alleviation of AD. The in vivo test showed that T helper (Th)2 cytokines, IgE, interleukin (IL)-4, and IL-5, were significantly downregulated, whereas Th1 cytokines, IL-12p40 and interferon (IFN)-γ, were upregulated in all groups of mice treated with Duolac ATP compared to that observed in the group of mice treated with 1-chloro-2,4-dinitrobenzene (DNCB) alone. Moreover, the scratch score decreased in all mice treated with Duolac ATP. Staining of the dorsal area of the mice in each group with hematoxylin and eosin and toluidine blue further confirmed the alleviation of AD in mice orally treated with Duolac ATP. These results suggest that Duolac ATP inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell response. Thus, Duolac ATP is beneficial and effective for the treatment of AD-like skin lesions. PMID:27123166

  10. A Probiotic Preparation Alleviates Atopic Dermatitis-Like Skin Lesions in Murine Models

    PubMed Central

    Kim, Min-Soo; Kim, Jin-Eung; Yoon, Yeo-Sang; Seo, Jae-Gu; Chung, Myung-Jun; Yum, Do-Young

    2016-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that encompasses immunologic responses. AD is frequently associated with elevated immunoglobulin (Ig) E levels, and common environmental factors contribute to its pathogenesis. Several recent studies have documented the role of specific lactic acid bacteria in the treatment and prevention of AD in humans and mice. In this study, the efficacy of Duolac ATP, a probiotic preparation, was determined in a mouse model with AD-like skin lesions. Alterations in the cytokine levels and histological staining suggested the alleviation of AD. The in vivo test showed that T helper (Th)2 cytokines, IgE, interleukin (IL)-4, and IL-5, were significantly downregulated, whereas Th1 cytokines, IL-12p40 and interferon (IFN)-γ, were upregulated in all groups of mice treated with Duolac ATP compared to that observed in the group of mice treated with 1-chloro-2,4-dinitrobenzene (DNCB) alone. Moreover, the scratch score decreased in all mice treated with Duolac ATP. Staining of the dorsal area of the mice in each group with hematoxylin and eosin and toluidine blue further confirmed the alleviation of AD in mice orally treated with Duolac ATP. These results suggest that Duolac ATP inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell response. Thus, Duolac ATP is beneficial and effective for the treatment of AD-like skin lesions. PMID:27123166

  11. Chronic L-DOPA administration increases the firing rate but does not reverse enhanced slow frequency oscillatory activity and synchronization in substantia nigra pars reticulata neurons from 6-hydroxydopamine-lesioned rats.

    PubMed

    Aristieta, A; Ruiz-Ortega, J A; Miguelez, C; Morera-Herreras, T; Ugedo, L

    2016-05-01

    The pathophysiology of Parkinson's disease (PD) and of L-DOPA-induced dyskinesia (LID) is associated with dysfunctional neuronal activity in several nuclei of the basal ganglia. Moreover, high levels of oscillatory activity and synchronization have also been described in both intra- and inter-basal ganglia nuclei and the cerebral cortex. However, the relevance of these alterations in the motor symptomatology related to Parkinsonism and LID is not fully understood. Recently, we have shown that subthalamic neuronal activity correlates with axial abnormal movements and that a subthalamic nucleus (STN) lesion partially reduces LID severity as well as the expression of some striatal molecular modifications. The aim of the present study was to assess, through single-unit extracellular recording techniques under urethane anaesthesia, neuronal activity of the substantia nigra pars reticulata (SNr) and its relationship with LID and STN hyperactivity together with oscillatory and synchronization between these nuclei and the cerebral cortex in 6-OHDA-lesioned and dyskinetic rats. Twenty-four hours after the last injection of L-DOPA the firing rate and the inhibitory response to an acute challenge of L-DOPA of SNr neurons from dyskinetic animals were increased with respect to those found in intact and 6-OHDA-lesioned rats. Moreover, there was a significant correlation between the mean firing rate of SNr neurons and the severity of the abnormal movements (limb and orolingual subtypes). There was also a significant correlation between the firing activity of SNr and STN neurons recorded from dyskinetic rats. In addition, low frequency band oscillatory activity and synchronization both within the SNr or STN and with the cerebral cortex were enhanced in 6-OHDA-lesioned animals and not or slightly affected by chronic treatment with L-DOPA. Altogether, these results indicate that neuronal SNr firing activity is relevant in dyskinesia and may be driven by STN hyperactivity. Conversely

  12. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    SciTech Connect

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang; Zhao, Zuowei; Zhang, Lina

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  13. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson’s disease

    PubMed Central

    Madhavan, Lalitha; Daley, Brian F; Paumier, Katrina L; Collier, Timothy J

    2009-01-01

    Realistically, future stem cell therapies for neurological conditions including Parkinson’s disease (PD) will most probably entail combination treatment strategies, involving both the stimulation of endogenous cells and transplantation. Therefore, this study investigates these two modes of neural precursor cell (NPC) therapy in concert in order to determine their interrelationships in a rat PD model. Human placental alkaline phosphatase (hPAP) labeled NPCs were transplanted unilaterally into host rats which were subsequently infused ipsilaterally with 6-hydroxydopamine (6-OHDA). The reaction of host NPCs to the transplantation and 6-OHDA was tracked by bromodeoxyuridine labeling. Two weeks after transplantation, in animals transplanted with NPCs, we found evidence of elevated host subventricular zone NPC proliferation, neurogenesis, and migration to the graft site. In these animals, we also observed a significant preservation of striatal tyrosine hydroxylase (TH) expression and substantia nigra TH cell number. We have seen no evidence that neuroprotection is a product of DA neuron replacement by NPC-derived cells. Rather, the NPCs expressed glial cell line-derived neurotrophic factor (GDNF), sonic hedgehog (Shh) and stromal cell derived factor 1 alpha (SDF1α) providing a molecular basis for the observed neuroprotection and endogenous NPC response to transplantation. In summary, our data suggests plausible synergy between exogenous and endogenous NPC actions, and that NPC implantation before the 6-OHDA insult can create a host microenvironment conducive to stimulation of endogenous NPCs, and protection of mature nigral neurons. PMID:19399899

  14. ALCAR Exerts Neuroprotective and Pro-Neurogenic Effects by Inhibition of Glial Activation and Oxidative Stress via Activation of the Wnt/β-Catenin Signaling in Parkinsonian Rats.

    PubMed

    Singh, Sonu; Mishra, Akanksha; Shukla, Shubha

    2016-09-01

    Oxidative stress and neuroinflammation are known causative factors in progressive degeneration of dopaminergic (DAergic) neurons in Parkinson's disease (PD). Neural stem cells (NSCs) contribute in maintaining brain plasticity; therefore, survival of NSCs and neuroblasts during neurodegenerative process becomes important in replenishing the pool of mature neuronal population. Acetyl-L-carnitine (ALCAR), present in almost all body cells, increases endogenous antioxidants and regulates bioenergetics. Currently, no information is available about the putative mechanism and neuroprotective effects of ALCAR in 6-hydroxydopamine (6-OHDA)-induced rat model of PD-like phenotypes. Herein, we investigated the effect of ALCAR on death/survival of DAergic neurons, neuroblasts and NSCs and associates mechanism of neuroprotection in 6-OHDA-induced rat model of PD-like phenotypes. ALCAR (100 mg/kg/day, intraperitoneal (i.p.)) treatment started 3 days prior to 6-OHDA lesioning and continued for another 14 day post-lesioning. We found that ALCAR pretreatment in 6-OHDA-lesioned rats increased expression of neurogenic and the Wnt pathway genes in the striatum and substantia nigra pars compacta (SNpc) region. It suppressed the glial cell activation, improved antioxidant status, increased NSC/neuroblast population and rescued the DAergic neurons in nigrostriatal pathway. ALCAR pretreatment in 6-OHDA-lesioned rats decreased GSK-3β activation and increased nuclear translocation of β-catenin. Functional deficits were restored following ALCAR pretreatment in 6-OHDA-lesioned rats as demonstrated by improved motor coordination and rotational behaviour, confirming protection of DAergic innervations in lesioned striatum. These results indicate that ALCAR exerts neuroprotective effects through the activation of Wnt/β-catenin pathway, suggesting its therapeutic use to treat neurodegenerative diseases by enhancing regenerative capacity. PMID:26223802

  15. Spontaneous Healing of Mycobacterium ulcerans Lesions in the Guinea Pig Model

    PubMed Central

    Silva-Gomes, Rita; Marcq, Elly; Trigo, Gabriela; Gonçalves, Carine M.; Longatto-Filho, Adhemar; Castro, António G.; Pedrosa, Jorge; Fraga, Alexandra G.

    2015-01-01

    Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies. PMID:26625302

  16. Spontaneous Healing of Mycobacterium ulcerans Lesions in the Guinea Pig Model.

    PubMed

    Silva-Gomes, Rita; Marcq, Elly; Trigo, Gabriela; Gonçalves, Carine M; Longatto-Filho, Adhemar; Castro, António G; Pedrosa, Jorge; Fraga, Alexandra G

    2015-12-01

    Buruli Ulcer (BU) is a necrotizing skin disease caused by Mycobacterium ulcerans infection. BU is characterized by a wide range of clinical forms, including non-ulcerative cutaneous lesions that can evolve into severe ulcers if left untreated. Nevertheless, spontaneous healing has been reported to occur, although knowledge on this process is scarce both in naturally infected humans and experimental models of infection. Animal models are useful since they mimic different spectrums of human BU disease and have the potential to elucidate the pathogenic/protective pathway(s) involved in disease/healing. In this time-lapsed study, we characterized the guinea pig, an animal model of resistance to M. ulcerans, focusing on the macroscopic, microbiological and histological evolution throughout the entire experimental infectious process. Subcutaneous infection of guinea pigs with a virulent strain of M. ulcerans led to early localized swelling, which evolved into small well defined ulcers. These macroscopic observations correlated with the presence of necrosis, acute inflammatory infiltrate and an abundant bacterial load. By the end of the infectious process when ulcerative lesions healed, M. ulcerans viability decreased and the subcutaneous tissue organization returned to its normal state after a process of continuous healing characterized by tissue granulation and reepethelialization. In conclusion, we show that the experimental M. ulcerans infection of the guinea pig mimics the process of spontaneous healing described in BU patients, displaying the potential to uncover correlates of protection against BU, which can ultimately contribute to the development of new prophylactic and therapeutic strategies. PMID:26625302

  17. Altered neuronal activity in the pedunculopontine nucleus: An electrophysiological study in a rat model of Parkinson's disease.

    PubMed

    Geng, Xiwen; Xie, Jinlu; Wang, Xuenan; Wang, Xiusong; Zhang, Xiao; Hou, Yabing; Lei, Chengdong; Li, Min; Qu, Qingyang; He, Tingting; Han, Hongyu; Yao, Xiaomeng; Wang, Min

    2016-05-15

    The pedunculopontine nucleus (PPN) is a new deep brain stimulation target for treating Parkinson's disease (PD). But the alterations of the PPN electrophysiological activities in PD are still debated. To investigate these potential alterations, extracellular single unit and local field potential (LFP) activities in the PPN were recorded in unilateral hemispheric 6-hydroxydopamine (6-OHDA) lesioned rats and in control rats, respectively. The spike activity results revealed two types of neurons (Type I and Type II) with distinct electrophysiological characteristics in the PPN. Both types of neurons had increased firing rate and changed firing pattern in lesioned rats when compared to control rats. Specifically, Type II neurons showed an increased firing rate when the rat state was switched from rest to locomotion. The LFP results demonstrated that lesioned rats had lower LFP power at 0.7-12Hz and higher power at 12-30Hz than did control animals in either resting or locomotor state. These findings provide a better understanding of the effects of 6-OHDA lesion on neuronal activities in the PPN and also provide a proof of the link between this structure and locomotion, which contributes to better understanding the mechanisms of the PPN functioning in the pathophysiology of PD. PMID:26924016

  18. Dendrimers Target the Ischemic Lesion in Rodent and Primate Models of Nonarteritic Anterior Ischemic Optic Neuropathy

    PubMed Central

    Guo, Yan; Johnson, Mary A.; Mehrabian, Zara; Mishra, Manoj K.; Kannan, Rangaramanujam; Miller, Neil R.; Bernstein, Steven L.

    2016-01-01

    Introduction Polyamidoamine dendrimer nanoparticles (~ 4 nanometers) are inert polymers that can be linked to biologically active compounds. These dendrimers selectively target and accumulate in inflammatory cells upon systemic administration. Dendrimer-linked compounds enable sustained release of therapeutic compounds directly at the site of damage. The purpose of this study was to determine if dendrimers can be used to target the optic nerve (ON) ischemic lesion in our rodent and nonhuman primate models of nonarteritic anterior ischemic optic neuropathy (NAION), a disease affecting >10,000 individuals in the US annually, and for which there currently is no effective treatment. Methods NAION was induced in male Long-Evans rats (rNAION) and in one adult male rhesus monkey (pNAION) using previously described procedures. Dendrimers were covalently linked to near-infrared cyanine-5 fluorescent dye (D-Cy5) and injected both intravitreally and systemically (in the rats) or just systemically (in the monkey) to evaluate D-Cy5 tissue accumulation in the eye and optic nerve following induction of NAION. Results Following NAION induction, Cy-5 dendrimers selectively accumulated in astrocytes and circulating macrophages. Systemic dendrimer administration provided the best penetration of the ON lesion site when injected shortly after induction. Systemic administration 1 day post-induction in the pNAION model gave localization similar to that seen in the rats. Conclusions Dendrimers selectively target the ischemic ON lesion after induction of both rNAION and pNAION. Systemic nanoparticle-linked therapeutics thus may provide a powerful, targeted and safe approach to NAION treatment by providing sustained and focused treatment of the cells directly affected by ischemia. PMID:27128315

  19. Comparison of two models of hemispheric specialization with unilaterally lesioned patients: material-specific impairment vs response-bias distortion.

    PubMed

    Guimond, Anik; Braun, Claude M J; Daigneault, Sylvie; Farmer, Jean-Pierre

    2013-10-01

    Validity of two models of hemispheric specialization was compared. The "material-specific impairment" model was radicalized as postulating that left hemisphere (LH) lesions impair processing of verbal material and that right hemisphere (RH) lesions impair processing of visuospatial material, independently of response-bias distortions. The "response-bias distortion" model was radicalized as postulating that LH lesions distort response style toward omissiveness and that RH lesions distort response style toward commissiveness, regardless of material-specific impairments. Participants had comparable left (N=27) or right (N=24) hemisphere cortical lesions having occurred between birth and early adolescence. Four cognitive neuropsychological tests were adjusted to optimize applicability and comparability of the two theoretical models: Rey Complex Figure, Kimura's Recurring Figures, the Story Recall subtest of the Children's Memory Scale, and the California Verbal Learning Test. Both models significantly, independently, and equally distinguished the LH from the RH patients. Both these forms of hemispheric specialization seemed to be implemented very early in life and very rigidly. Intrahemispheric lesion sites, e.g., frontal vs nonfrontal, held no significant relation to the effects described above. PMID:23933913

  20. Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation.

    PubMed

    Sudre, Carole H; Cardoso, M Jorge; Bouvy, Willem H; Biessels, Geert Jan; Barnes, Josephine; Ourselin, Sebastien

    2015-10-01

    In neuroimaging studies, pathologies can present themselves as abnormal intensity patterns. Thus, solutions for detecting abnormal intensities are currently under investigation. As each patient is unique, an unbiased and biologically plausible model of pathological data would have to be able to adapt to the subject's individual presentation. Such a model would provide the means for a better understanding of the underlying biological processes and improve one's ability to define pathologically meaningful imaging biomarkers. With this aim in mind, this work proposes a hierarchical fully unsupervised model selection framework for neuroimaging data which enables the distinction between different types of abnormal image patterns without pathological a priori knowledge. Its application on simulated and clinical data demonstrated the ability to detect abnormal intensity clusters, resulting in a competitive to improved behavior in white matter lesion segmentation when compared to three other freely-available automated methods. PMID:25850086

  1. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions

    PubMed Central

    Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2013-01-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081

  2. Automatic coronary lumen segmentation with partial volume modeling improves lesions' hemodynamic significance assessment

    NASA Astrophysics Data System (ADS)

    Freiman, M.; Lamash, Y.; Gilboa, G.; Nickisch, H.; Prevrhal, S.; Schmitt, H.; Vembar, M.; Goshen, L.

    2016-03-01

    The determination of hemodynamic significance of coronary artery lesions from cardiac computed tomography angiography (CCTA) based on blood flow simulations has the potential to improve CCTA's specificity, thus resulting in improved clinical decision making. Accurate coronary lumen segmentation required for flow simulation is challenging due to several factors. Specifically, the partial-volume effect (PVE) in small-diameter lumina may result in overestimation of the lumen diameter that can lead to an erroneous hemodynamic significance assessment. In this work, we present a coronary artery segmentation algorithm tailored specifically for flow simulations by accounting for the PVE. Our algorithm detects lumen regions that may be subject to the PVE by analyzing the intensity values along the coronary centerline and integrates this information into a machine-learning based graph min-cut segmentation framework to obtain accurate coronary lumen segmentations. We demonstrate the improvement in hemodynamic significance assessment achieved by accounting for the PVE in the automatic segmentation of 91 coronary artery lesions from 85 patients. We compare hemodynamic significance assessments by means of fractional flow reserve (FFR) resulting from simulations on 3D models generated by our segmentation algorithm with and without accounting for the PVE. By accounting for the PVE we improved the area under the ROC curve for detecting hemodynamically significant CAD by 29% (N=91, 0.85 vs. 0.66, p<0.05, Delong's test) with invasive FFR threshold of 0.8 as the reference standard. Our algorithm has the potential to facilitate non-invasive hemodynamic significance assessment of coronary lesions.

  3. Ex vivo Raman spectroscopic study of breast metastatic lesions in lungs in animal models.

    PubMed

    Bhattacharjee, Tanmoy; Tawde, Sneha; Hudlikar, Rasika; Mahimkar, Manoj; Maru, Girish; Ingle, Arvind; Murali Krishna, C

    2015-08-01

    The lung is one of the most common sites of metastases, with approximately 50% of patients with extrathoracic cancer exhibiting pulmonary metastases. Correct identification of the metastatic status of a lung lesion is vital to therapeutic planning and better prognosis. However, currently available diagnostic techniques, such as conventional radiography and low dose computed tomography (LDCT), may fail to identify metastatic lesions. Alternative techniques such as Raman spectroscopy (RS) are hence being extensively explored for correct diagnosis of metastasis. The current ex vivo study aims to evaluate the ability of a fiber optic-based Raman system to distinguish breast cancer metastasis in lung from primary breast and lung tumor in animal models. In this study, spectra were acquired from normal breast, primary breast tumor, normal lung, primary lung tumor, and breast cancer metastasis in lung tissues and analyzed using principal component analysis and principal component-linear discriminant analysis. Breast cancer metastasis in lung could be classified with 71% classification efficiency. Approximately 6% breast metastasis spectra were misclassified with breast tumor, probably due to the presence of breast cancer cells in metastasized lungs. Test prediction results show 64% correct prediction of breast metastasis, while 13% breast metastasis spectra were wrongly predicted as breast tumor, suggesting the possible influence of breast cancer cells. Thus, findings of this study, the first of such explorations, demonstrate the potential of RS in classifying breast metastasis in lungs from primary lung and primary breast tumor. Prospective evaluation on a larger cohort with better multivariate analysis, combined with LDCT and recently developed real-time in vivo probes, RS can play a significant role in nonsurgical screening of lesions, which can lead to individualized therapeutic regimes and improved prognoses. PMID:26295177

  4. A longitudinal model for magnetic resonance imaging lesion count data in multiple sclerosis patients.

    PubMed

    MacKay Altman, Rachel; Petkau, A John; Vrecko, Dean; Smith, Alex

    2012-02-28

    Magnetic resonance imaging (MRI) data are routinely collected at multiple time points during phase 2 clinical trials in multiple sclerosis. However, these data are typically summarized into a single response for each patient before analysis. Models based on these summary statistics do not allow the exploration of the trade-off between numbers of patients and numbers of scans per patient or the development of optimal schedules for MRI scanning. To address these limitations, in this paper, we develop a longitudinal model to describe one MRI outcome: the number of lesions observed on an individual MRI scan. We motivate our choice of a mixed hidden Markov model based both on novel graphical diagnostic methods applied to five real data sets and on conceptual considerations. Using this model, we compare the performance of a number of different tests of treatment effect. These include standard parametric and nonparametric tests, as well as tests based on the new model. We conduct an extensive simulation study using data generated from the longitudinal model to investigate the parameters that affect test performance and to assess size and power. We determine that the parameters of the hidden Markov chain do not substantially affect the performance of the tests. Furthermore, we describe conditions under which likelihood ratio tests based on the longitudinal model appreciably outperform the standard tests based on summary statistics. These results establish that the new model is a valuable practical tool for designing and analyzing multiple sclerosis clinical trials. PMID:21964585

  5. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    PubMed

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  6. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson’s Disease

    PubMed Central

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson’s disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease. PMID:26571268

  7. Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images.

    PubMed

    Freire, Paulo G L; Ferrari, Ricardo J

    2016-06-01

    Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. PMID:27058437

  8. Impact of Prostate Inflammation on Lesion Development in the POET3+Pten+/− Mouse Model of Prostate Carcinogenesis

    PubMed Central

    Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.

    2015-01-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686

  9. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  10. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Balog, E. M.; Fitts, R. H.; Riley, D. A.

    1999-01-01

    Sarcomere disruptions are observed in the adductor longus (AL) muscles following voluntary reloading of spaceflown and hindlimb suspension unloaded (HSU) rat, which resemble lesions in eccentrically challenged muscle. We devised and tested an eccentric contraction (ECCON) test system for the 14-day HSU rat AL. Six to 7 hours following ECCON, ALs were fixed to allow immunostaining and electron microscopy (EM). Toluidine blue-stained histology semithin sections were screened for lesion density (#/mm2). Serial semithin sections from the ECCON group were characterized for myosin immunointensity of lesions. Five myofibrillar lesion types were identified in histological semithin sections: focal contractions; wide A-bands; opaque areas; missing A-bands; and hyperstretched sarcomeres. Lesion density by type was greater for ECCON than NonECCON ALs (P< or =0.05; focal contractions and opaque regions). Lesion density (#-of-all-five-types/mm2) was significantly different (ECCON: 23.91+/-10.58 vs. NonECCON: 5.48+/-1.28, P< or =0.05; ECCON vs. SHAM: 0.00+/-0.00; P< or = 0.025). PostECCON optimal tension decreased (Poi-drop, 17.84+/-4.22%) and was correlated to lesion density (R2=0.596), but prestretch tension demonstrated the highest correlation with lesion density (R2=0.994). In lesions, the darkly staining A-band lost the normally organized thick filament alignment to differing degrees across the different lesion types. Ranking the five lesion types by a measure of lesion length deformation (hypercontracted to hyperstretched) at the light microscopy level, related to the severity of thick filament registry loss across the lesion types at the electron microscopic level. This ranking suggested that the five lesion types seen in semithin sections at the light level represented a lesion progression sequence and paralleled myosin immunostaining loss as the distorted A-band filaments spread across the hyperlengthening lesion types. Lesion ultrastructure indicated damage involved

  11. CT Lesion Model-Based Structural Allografts: Custom Fabrication and Clinical Experience

    PubMed Central

    Brune, Jan Claas; Hesselbarth, Uwe; Seifert, Philipp; Nowack, Dimitri; von Versen, Rüdiger; Smith, Mark David; Seifert, Dirk

    2012-01-01

    Summary Background Patients requiring knee and hip revision arthroplasty often present with difficult anatomical situations that limit options for surgery. Customised mega-implants may be one of few remaining treatment options. However, extensive damage to residual bone stock may also be present, and in such cases even customised prosthetics may be difficult to implant. Small quantities of lost bone can be replaced with standard allografts or autologous bone. Larger defects may require structural macro-allografts, sometimes in combination with implants (allograft-prosthesis composites). Methods Herein, we describe a process for manufacturing lesion-specific large structural allografts according to a 3D, full-scale, lithographically generated defect model. These macro-allografts deliver the volume and the mechanical stability necessary for certain complex revisions. They are patient-and implant-matched, negate some requirements for additional implants and biomaterials and save time in the operating theatre by eliminating the requirement for intra-operative sizing and shaping of standard allografts. Conclusion While a robust data set from long-term follow-up of patients receiving customised macro-allografts is not yet available, initial clinical experience and results suggest that lesion-matched macro-allografts can be an important component of revision joint surgery. PMID:23800856

  12. Effect of carbon dioxide laser treatment on lesion progression in an intraoral model

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Fried, Daniel; Gansky, Stuart A.; Stookey, George K.; Dunipace, Ann J.

    2001-04-01

    Previous studies have shown that pretreatment of dental enamel by specific carbon dioxide laser conditions inhibited subsequent progression of caries-like lesions in vitro. The aim of the present study was to use an intra-oral model to determine whether similar inhibition is observed in the human mouth. A cross over study with 23 subjects and three regimens was used. Pre-formed varies-like lesions were made in extracted human enamel and exposed intra-orally in partial dentures in each subject to A) placebo dentifrice and no laser treatment, B) placebo dentifrice following laser pretreatment, or C) sodium fluoride dentifrice and no laser treatment during each of three study periods. Samples were assessed by micro radiography to compare the mineral loss before and after each treatment and drive a net change in mineral value. Overall P was not significantly different form L but both P and L were different from F. For those subjects who demineralized in P, L and F were significantly better than P, with L showing an 84 percent inhibition of further demineralization, but no enhancement of demineralization.

  13. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  14. Autoradiographic localization of dopamine D1 and D2 receptors in rat cerebral cortex following unilateral neurotoxic lesions.

    PubMed

    al-Tikriti, M S; Roth, R H; Kessler, R M; Innis, R B

    1992-03-13

    Relative to dopaminergic innervation of cortex, dopamine D1 and D2 receptors may be located on presynaptic terminals and/or postsynaptically on cortical neurons. To assess the relative distribution of these sites, quantitative in vitro receptor autoradiography was performed following injection of 6-hydroxydopamine (6-OHDA) into the median forebrain bundle (MFB; which lesions presynaptic DA terminals) and ibotenic acid into the prefrontal and anterior cingulate cortices (which lesions neurons whose cell bodies are intrinsic to cortex). Receptor autoradiography was performed ten days after injection of neurotoxins with [3H]SCH 23390 (a D1 probe) and [125I]epidepride (a D2 probe). Both DA receptor subtypes were found in all layers of anterior cingulate and prefrontal cortices but were concentrated in deeper layers V and VI. Ibotenic acid lesion of cortex reduced D1 and D2 receptors by 55-80%, although the concentrations of DA and its major metabolite dihydroxyphenylacetic acid (DOPAC) were unchanged. Lesion of MFB produced no significant change in D1 and D2 receptors, but was associated with a 49-52% decrease in DA and DOPAC levels relative to the contralateral side. These results suggest that the majority of D1 and D2 receptors in prefrontal and anterior cingulate cortices are located postsynaptically on neurons intrinsic to the cortex. PMID:1387031

  15. Example based lesion segmentation

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2014-03-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer's disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  16. Interleukin-6 receptor alpha blockade improves skin lesions in a murine model of systemic lupus erythematosus.

    PubMed

    Birner, Peter; Heider, Susanne; Petzelbauer, Peter; Wolf, Peter; Kornauth, Christoph; Kuroll, Madeleine; Merkel, Olaf; Steiner, Günter; Kishimoto, Tadamitsu; Rose-John, Stefan; Soleiman, Afschin; Moriggl, Richard; Kenner, Lukas

    2016-04-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by antinuclear autoantibodies (ANA) and immunocomplexes, commonly affecting kidneys, skin, heart, lung or even the brain. We have shown that JunB(Δep) mice develop a SLE phenotype linked to increased epidermal Interleukin (IL)-6 secretion. Blocking of IL-6 receptor alpha (IL-6Rα) is considered as therapeutic strategy for the treatment of SLE. JunB(Δep) and wild-type mice were treated for short (5 weeks) or long term (21 weeks) with the IL-6Rα-blocking antibody MR16-1. Skin and kidney of mice were investigated by histology and immunofluorescence, and in addition, kidneys were analysed by electron microscopy. Furthermore, soluble IL-6R (sIL-6R), antihistone and antinucleosome antibodies levels were measured and associated with disease parameters. Treatment with MR16-1 resulted in significant improvement of SLE-like skin lesions in JunB(Δep) mice, compared to untreated mice. The sIL-6R amount upon long-term treatment with MR16-1 was significantly higher in JunB(Δep) versus untreated JunB(Δep) (P = 0.034) or wild-type mice (P = 0.034). MR16-1 treatment over these time spans did not significantly improve kidney pathology of immunoglobulin deposits causing impaired function. Significantly higher antihistone (P = 0.028) and antinucleosome antibody levels (P = 0.028) were measured in MR16-1-treated JunB(Δep) mice after treatment compared to levels before therapy. In conclusion, blockade of IL-6Rα improves skin lesions in a murine SLE model, but does not have a beneficial effect on autoimmune-mediated kidney pathology. Inhibition of IL-6R signalling might be helpful in lupus cases with predominant skin involvement, but combinatorial treatment might be required to restrain autoantibodies. PMID:26739431

  17. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study

    NASA Astrophysics Data System (ADS)

    Petibon, Y.; Ouyang, J.; Zhu, X.; Huang, C.; Reese, T. G.; Chun, S. Y.; Li, Q.; El Fakhri, G.

    2013-04-01

    Cardiac motion and partial volume effects (PVE) are two of the main causes of image degradation in cardiac PET. Motion generates artifacts and blurring while PVE lead to erroneous myocardial activity measurements. Newly available simultaneous PET-MR scanners offer new possibilities in cardiac imaging as MRI can assess wall contractility while collecting PET perfusion data. In this perspective, we develop a list-mode iterative reconstruction framework incorporating both tagged-MR derived non-rigid myocardial wall motion and position dependent detector point spread function (PSF) directly into the PET system matrix. In this manner, our algorithm performs both motion ‘deblurring’ and PSF deconvolution while reconstructing images with all available PET counts. The proposed methods are evaluated in a beating non-rigid cardiac phantom whose hot myocardial compartment contains small transmural and non-transmural cold defects. In order to accelerate imaging time, we investigate collecting full and half k-space tagged MR data to obtain tagged volumes that are registered using non-rigid B-spline registration to yield wall motion information. Our experimental results show that tagged-MR based motion correction yielded an improvement in defect/myocardium contrast recovery of 34-206% as compared to motion uncorrected studies. Likewise, lesion detectability improved by respectively 115-136% and 62-235% with MR-based motion compensation as compared to gating and no motion correction and made it possible to distinguish non-transmural from transmural defects, which has clinical significance given the inherent limitations of current single modality imaging in identifying the amount of residual ischemia. The incorporation of PSF modeling within the framework of MR-based motion compensation significantly improved defect/myocardium contrast recovery (5.1-8.5%, p < 0.01) and defect detectability (39-56%, p < 0.01). No statistical difference was found in PET contrast and lesion

  18. A Validated Model of the Pro- and Anti-Inflammatory Cytokine Balancing Act in Articular Cartilage Lesion Formation

    PubMed Central

    Wang, Xiayi; Brouillette, Marc J.; Ayati, Bruce P.; Martin, James A.

    2015-01-01

    Traumatic injuries of articular cartilage result in the formation of a cartilage lesion and contribute to cartilage degeneration and the risk of osteoarthritis (OA). A better understanding of the framework for the formation of a cartilage lesion formation would be helpful in therapy development. Toward this end, we present an age and space-structured model of articular cartilage lesion formation after a single blunt impact. This model modifies the reaction-diffusion-delay models in Graham et al. (2012) (single impact) and Wang et al. (2014) (cyclic loading), focusing on the “balancing act” between pro- and anti-inflammatory cytokines. Age structure is introduced to replace the delay terms for cell transitions used in these earlier models; we find age structured models to be more flexible in representing the underlying biological system and more tractable computationally. Numerical results show a successful capture of chondrocyte behavior and chemical activities associated with the cartilage lesion after the initial injury; experimental validation of our computational results is presented. We anticipate that our in silico model of cartilage damage from a single blunt impact can be used to provide information that may not be easily obtained through in in vivo or in vitro studies. PMID:25806365

  19. A validated model of the pro- and anti-inflammatory cytokine balancing act in articular cartilage lesion formation.

    PubMed

    Wang, Xiayi; Brouillette, Marc J; Ayati, Bruce P; Martin, James A

    2015-01-01

    Traumatic injuries of articular cartilage result in the formation of a cartilage lesion and contribute to cartilage degeneration and the risk of osteoarthritis (OA). A better understanding of the framework for the formation of a cartilage lesion formation would be helpful in therapy development. Toward this end, we present an age and space-structured model of articular cartilage lesion formation after a single blunt impact. This model modifies the reaction-diffusion-delay models in Graham et al. (2012) (single impact) and Wang et al. (2014) (cyclic loading), focusing on the "balancing act" between pro- and anti-inflammatory cytokines. Age structure is introduced to replace the delay terms for cell transitions used in these earlier models; we find age structured models to be more flexible in representing the underlying biological system and more tractable computationally. Numerical results show a successful capture of chondrocyte behavior and chemical activities associated with the cartilage lesion after the initial injury; experimental validation of our computational results is presented. We anticipate that our in silico model of cartilage damage from a single blunt impact can be used to provide information that may not be easily obtained through in in vivo or in vitro studies. PMID:25806365

  20. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI.

    PubMed

    Subbanna, Nagesh; Precup, Doina; Arnold, Douglas; Arbel, Tal

    2015-01-01

    In this paper, we present IMaGe, a new, iterative two-stage probabilistic graphical model for detection and segmentation of Multiple Sclerosis (MS) lesions. Our model includes two levels of Markov Random Fields (MRFs). At the bottom level, a regular grid voxel-based MRF identifies potential lesion voxels, as well as other tissue classes, using local and neighbourhood intensities and class priors. Contiguous voxels of a particular tissue type are grouped into regions. A higher, non-lattice MRF is then constructed, in which each node corresponds to a region, and edges are defined based on neighbourhood relationships between regions. The goal of this MRF is to evaluate the probability of candidate lesions, based on group intensity, texture and neighbouring regions. The inferred information is then propagated to the voxel-level MRF. This process of iterative inference between the two levels repeats as long as desired. The iterations suppress false positives and refine lesion boundaries. The framework is trained on 660 MRI volumes of MS patients enrolled in clinical trials from 174 different centres, and tested on a separate multi-centre clinical trial data set with 535 MRI volumes. All data consists of T1, T2, PD and FLAIR contrasts. In comparison to other MRF methods, such as, and a traditional MRF, IMaGe is much more sensitive (with slightly better PPV). It outperforms its nearest competitor by around 20% when detecting very small lesions (3-10 voxels). This is a significant result, as such lesions constitute around 40% of the total number of lesions. PMID:26221699

  1. Recognizing Focal Liver Lesions in CEUS With Dynamically Trained Latent Structured Models.

    PubMed

    Liang, Xiaodan; Lin, Liang; Cao, Qingxing; Huang, Rui; Wang, Yongtian

    2016-03-01

    This work investigates how to automatically classify Focal Liver Lesions (FLLs) into three specific benign or malignant types in Contrast-Enhanced Ultrasound (CEUS) videos, and aims at providing a computational framework to assist clinicians in FLL diagnosis. The main challenge for this task is that FLLs in CEUS videos often show diverse enhancement patterns at different temporal phases. To handle these diverse patterns, we propose a novel structured model, which detects a number of discriminative Regions of Interest (ROIs) for the FLL and recognize the FLL based on these ROIs. Our model incorporates an ensemble of local classifiers in the attempt to identify different enhancement patterns of ROIs, and in particular, we make the model reconfigurable by introducing switch variables to adaptively select appropriate classifiers during inference. We formulate the model learning as a non-convex optimization problem, and present a principled optimization method to solve it in a dynamic manner: the latent structures (e.g. the selections of local classifiers, and the sizes and locations of ROIs) are iteratively determined along with the parameter learning. Given the updated model parameters in each step, the data-driven inference is also proposed to efficiently determine the latent structures by using the sequential pruning and dynamic programming method. In the experiments, we demonstrate superior performances over the state-of-the-art approaches. We also release hundreds of CEUS FLLs videos used to quantitatively evaluate this work, which to the best of our knowledge forms the largest dataset in the literature. Please find more information at "http://vision.sysu.edu.cn/projects/fllrecog/". PMID:26513779

  2. Modeling tumor/polyp/lesion structure in 3D for computer-aided diagnosis in colonoscopy

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Sargent, Dusty; Wang, Yuan-Fang

    2010-02-01

    We describe a software system for building three-dimensional (3D) models from colonoscopic videos. The system is end-to-end in the sense that it takes as input raw image frames-shot during a colon exam-and produces the 3D structure of objects of interest (OOI), such as tumors, polyps, and lesions. We use the structure-from-motion (SfM) approach in computer vision which analyzes an image sequence in which camera's position and aim vary relative to the OOI. The varying pose of the camera relative to the OOI induces the motion-parallax effect which allows 3D depth of the OOI to be inferred. Unlike the traditional SfM system pipeline, our software system contains many check-and-balance mechanisms to ensure robustness, and the analysis from earlier stages of the pipeline is used to guide the later processing stages to better handle challenging medical data. The constructed 3D models allow the pathology (growth and change in both structure and appearance) to be monitored over time.

  3. Effect of WR-1065 on 6-hydroxydopamine-induced catalepsy and IL-6 level in rats

    PubMed Central

    Kheradmand, Afshin; Nayebi, Alireza Mohajjel; Jorjani, Masoumeh; Haddadi, Rasool

    2016-01-01

    Objective(s): Neuroinflammation and oxidative stress play a key role in pathogenesis of Parkinson’s disease (PD). In the present study we investigated the effect of reactive oxygen species (ROS) scavenger WR-1065 on catalepsy and cerebrospinal fluid (CSF) level of interleukin 6(IL-6) and striatum superoxide dismutase (SOD) activity in 6-hydroxydopamine (6-OHDA) induced experimental model of PD. Materials and Methods: Seventy two male Wistar rats were divided into 9 equal groups and 6-OHDA (8 μg/2 μl/rat) was infused unilaterally into substantia nigra pars copmacta (SNc) to induce PD. Catalepsy was measured by standard bar test, CSF level of IL-6 was assessed by enzyme-linked immunosorbent assay (ELISA) method and SOD activity measured by spectrophotometric method. In pre-treatment groups WR-1065 (20, 40 and 80 μg/2 μl/rat/day, for 3 days) was infused into the SNc before 6-OHDA administration and 21 days later, as a recovery period, behavioral and molecular assay tests were done. Results: Our results showed that pre-treatment with WR-1065 improved (P<0.001) 6-OHDA-induced catalepsy in a dose dependent manner. In 6-OHDA-lesioned animals SOD activity in SNc and CSF level of IL-6 was decreased markedly (P<0.001) when compared with non-lesioned group, while pre-treatment with WR-1065(P<0.001) restored their levels up to the normal range. Conclusion: Our study indicated that pre-treatment with WR-1065 could modulate catalepsy and IL-6 level in 6-OHDA-lesioned rats. Also WR1065 could increase SOD activity up to normal range. It can be regarded as an anti-oxidative drug in prevention or adjunctive therapy of PD. PMID:27403255

  4. Real-time sonoelastography of hepatic thermal lesions in a swine model

    PubMed Central

    Zhang, Man; Castaneda, Benjamin; Christensen, Jared; Saad, Wael; Bylund, Kevin; Hoyt, Kenneth; Strang, John G.; Rubens, Deborah J.; Parker, Kevin J.

    2008-01-01

    Sonoelastography has been developed as an ultrasound-based elasticity imaging technique. In this technique, external vibration is induced into the target tissue. In general, tissue stiffness is inversely proportional to the amplitude of tissue vibration. Imaging tissue vibration will provide the elasticity distribution in the target region. This study investigated the feasibility of using real-time sonoelastography to detect and estimate the volume of thermal lesions in porcine livers in vivo. A total of 32 thermal lesions with volumes ranging from 0.2 to 5.3 cm3 were created using radiofrequency ablation (RFA) or high-intensity focused ultrasound (HIFU) technique. Lesions were imaged using sonoelastography and coregistered B-mode ultrasound. Volumes were reconstructed from a sequence of two-dimensional scans. The comparison of sonoelastographic measurements and pathology findings showed good correlation with respect to the area of the lesions (r2=0.8823 for RFA lesions, r2=0.9543 for HIFU lesions). In addition, good correspondence was found between three-dimensional sonoelastography and gross pathology (3.6% underestimate), demonstrating the feasibility of sonoelastography for volume estimation of thermal lesions. These results support that sonoelastography outperforms conventional B-mode ultrasound and could potentially be used for assessment of thermal therapies. PMID:18841866

  5. Graft-mediated functional recovery on a skilled forelimb use paradigm in a rodent model of Parkinson's disease is dependent on reward contingency.

    PubMed

    Cordeiro, Karina Kohn; Jiang, Wei; Papazoglou, Anna; Tenório, Sérgio Bernardo; Döbrössy, Máté; Nikkhah, Guido

    2010-10-15

    The Staircase test measures lateralised deficits in skilled paw reaching in rodents, and there is a long-standing discrepancy in the literature on whether the paradigm is sensitive to graft-mediated functional recovery in the rodent model of Parkinson's disease. The aim of the current study was to evaluate the critical influence of test conditions like pellet density on dopamine-dependent graft-mediated functional recovery. Rats were pre-trained on the Staircase test with a configuration of 8 pellets in each of the 6 wells bilaterally prior to receiving unilateral 6-OHDA lesions of the medial forebrain bundle. Later, the lesioned animals received E14 VM grafts into the striatum, and were tested on the Staircase test under one of two test configurations: bilaterally, either with 10 (HIGH) or with 2 (LOW) pellets per well. Subsequent sessions included unilateral forced-choice testing under the same pellet configuration, and second bilateral and forced-choice sessions with the pellet density configurations switched around between the groups (Cross-over). Animals were also tested on the Corridor and the Cylinder test, and subjected to drug-induced rotation. Graft-mediated functional recovery was observed in the pellets taken criteria only under the HIGH pellet configuration during the bilateral and the forced choice condition. When tested under the LOW configuration, the graft provided no measurable benefit. The presence of VM grafts reduced lateralised motor deficits in the Cylinder test, the adjacent version of the Corridor test, and drug-induced rotation. Our results confirm that VM transplants can partially restore skilled forelimb sensorimotor deficits under specific testing configuration. PMID:20394782

  6. Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease.

    PubMed

    Sun, Yi-Na; Wang, Tao; Wang, Yong; Han, Ling-Na; Li, Li-Bo; Zhang, Yu-Ming; Liu, Jian

    2015-08-01

    Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions. PMID:25797491

  7. Modeling effects of cerebellar and basal ganglia lesions on adaptation and anticipation during sensorimotor synchronization.

    PubMed

    van der Steen, M C Marieke; Schwartze, Michael; Kotz, Sonja A; Keller, Peter E

    2015-03-01

    This study addressed the role of subcortical brain structures in temporal adaptation and anticipation during sensorimotor synchronization. The performance of patients with cerebellar or basal ganglia lesions was compared with that of healthy control participants on tasks requiring the synchronization of drum strokes with adaptive and tempo-changing auditory pacing sequences. The precision of sensorimotor synchronization was generally lower in patients relative to controls (i.e., variability of asynchronies was higher in patients), although synchronization accuracy (mean asynchrony) was commensurate. A computational model of adaptation and anticipation (ADAM) was used to examine potential sources of individual differences in precision by estimating participants' use of error correction, temporal prediction, and the amount of variability associated with central timekeeping and peripheral motor processes. Parameter estimates based on ADAM indicate that impaired precision was attributable to increased variability of timekeeper and motor processes as well as to reduced temporal prediction in both patient groups. Adaptive processes related to continuously applied error correction were, by contrast, intact in patients. These findings highlight the importance of investigating how subcortical structures, including the cerebellum and basal ganglia, interact with a broader network of cortical regions to support temporal adaptation and anticipation during sensorimotor synchronization. PMID:25773623

  8. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: a cardiac lesion detection study

    PubMed Central

    Petibon, Y; Ouyang, J; Zhu, X; Huang, C; Reese, T G; Chun, S Y; Li, Q; El Fakhri, G

    2013-01-01

    Cardiac motion and Partial Volume Effects (PVE) are two of the main causes of image degradation in cardiac PET. Motion generates artifacts and blurring while PVE lead to erroneous myocardial activity measurements. Newly available simultaneous PET-MR scanners offer new possibilities in cardiac imaging as MRI can assess wall contractility while collecting PET perfusion data. In this perspective, we develop a list-mode iterative reconstruction framework incorporating both tagged-MR derived non-rigid myocardial wall motion and position dependent detector Point Spread Function (PSF) directly into the PET system matrix. In this manner, our algorithm performs both motion “deblurring” and PSF deconvolution while reconstructing images with all available PET counts. The proposed methods are evaluated in a beating non-rigid cardiac phantom whose hot myocardial compartment contains small transmural and non-transmural cold defects. In order to accelerate imaging time, we investigate collecting full and half k-space tagged MR data to obtain tagged volumes that are registered using non-rigid B-spline registration to yield wall motion information. Our experimental results show that tagged-MR based motion correction yielded an improvement in defect/myocardium contrast recovery of 34-206% as compared to motion uncorrected studies. Likewise, lesion detectability improved by respectively 115-136% and 62-235% with MR-based motion compensation as compared to gating and no motion correction and made it possible to distinguish non-transmural from transmural defects, which has clinical significance given inherent limitations of current single modality imaging in identifying the amount of residual ischemia. The incorporation of PSF modeling within the framework of MR-based motion compensation significantly improved defect/myocardium contrast recovery (5.1-8.5%, p<0.01) and defect detectability (39-56%, p<0.01). No statistical difference was found in PET contrast and lesion detectability

  9. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease

    PubMed Central

    Duty, Susan; Jenner, Peter

    2011-01-01

    Animal models of Parkinson's disease (PD) have proved highly effective in the discovery of novel treatments for motor symptoms of PD and in the search for clues to the underlying cause of the illness. Models based on specific pathogenic mechanisms may subsequently lead to the development of neuroprotective agents for PD that stop or slow disease progression. The array of available rodent models is large and ranges from acute pharmacological models, such as the reserpine- or haloperidol-treated rats that display one or more parkinsonian signs, to models exhibiting destruction of the dopaminergic nigro-striatal pathway, such as the classical 6-hydroxydopamine (6-OHDA) rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse models. All of these have provided test beds in which new molecules for treating the motor symptoms of PD can be assessed. In addition, the emergence of abnormal involuntary movements (AIMs) with repeated treatment of 6-OHDA-lesioned rats with L-DOPA has allowed for examination of the mechanisms responsible for treatment-related dyskinesia in PD, and the detection of molecules able to prevent or reverse their appearance. Other toxin-based models of nigro-striatal tract degeneration include the systemic administration of the pesticides rotenone and paraquat, but whilst providing clues to disease pathogenesis, these are not so commonly used for drug development. The MPTP-treated primate model of PD, which closely mimics the clinical features of PD and in which all currently used anti-parkinsonian medications have been shown to be effective, is undoubtedly the most clinically-relevant of all available models. The MPTP-treated primate develops clear dyskinesia when repeatedly exposed to L-DOPA, and these parkinsonian animals have shown responses to novel dopaminergic agents that are highly predictive of their effect in man. Whether non-dopaminergic drugs show the same degree of predictability of response is a matter of debate. As our

  10. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization – sensitive optical coherence tomography

    PubMed Central

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2011-01-01

    Objectives It is difficult to completely remineralize carious lesions because diffusion into the interior of the lesion is inhibited as new mineral is deposited in the outermost layers. In previous remineralization studies employing polarization sensitive optical coherence tomography (PS-OCT), two models of remineralization were employed and in both models there was preferential deposition of mineral in the outer most layer. In this study we attempted to remineralize the entire lesion using an acidic remineralization model and demonstrate that this remineralization can be monitored using PS-OCT. Methods Artificial lesions approximately 100–150 µm in-depth were exposed to an acidic remineralization regimen and the integrated reflectivity from the lesions was measured before and after remineralization using PS-OCT. Results Automated integration routines worked well for assessing the integrated reflectivity for the lesion areas after remineralization. Although there was a high degree of remineralization, there was still incomplete remineralization of the body of the lesion. Conclusion This study demonstrated that PS-OCT can be used to non-destructively measure changes in lesion structure and severity upon exposure to an acidic remineralization model. This study also demonstrated that automated algorithms can be used to assess the lesion severity even with the presence of a weakly reflective surface zone. PMID:22204914

  11. R-apomorphine protects against 6-hydroxydopamine-induced nigrostriatal damage in rat.

    PubMed

    Yuan, Hong; Liang, Li-Wu; Chen, Zheng-Jing; Ji, Hui-Ru; Wang, Mei-Kang; Zhang, Hai-Ying; Li, Cao; Xu, Jian-Yang

    2006-11-01

    Objective The aim of the present study was not only to assess the retrograde degenerative changes in the dopaminergic neurons of the substantia nigra (SN) and ventral tegmental area (VTA) after injection of 6-hydroxydopamine (6-OHDA) into the striatum, but also to use this 6-OHDA model of Parkinson's disease to explore the possible neuroprotective effect of R-apomorphine (R-APO). Methods The partial lesion was obtained by intrastriatal administration of 6-OHDA. R-APO administration (10 mg/kg, s.c.) started 15 min prior to lesioning and continued daily for another 22 days post surgery. Testing was carried out 5 weeks after lesioning. We investigated the histology and associated behavior and neurochemical changes. Structural and functional deficits were quantified by tyrosine hydroxylase (TH) / Nissl-staining cell number counting, striatal dopamine (DA) content determination and amphetamine-induced rotation analysis. Results R-APO-treatment attenuated the amphetamine-induced ipsiversive rotation 5 weeks after the lesion induction. R-APO administration for 22 days significantly reduced the size of the lesion at the level of the SN from 50% (control group) to 69%. Moreover, the cell shape resembled that observed in the intact animals. R-APO treatment significantly increased the number of cells in both the lesion and the intact sides of VTA by 60%, suggesting selective neurotrophic effect of R-APO in this area. Finally, R-APO-treatment significantly attenuated the 6-OHDA-induced striatal DA depletion and normalized dihydroxyphenylacetic acid (DOPAC)/DA ratios. Conclusion We conclude that R-APO has neuroprotective and possible neurotrophic effect on a striatal lesion with 6-OHDA, suggesting that this drug may have rescuing properties in patients with early stage Parkinson's disease. These effects are more pronounced in VTA and enhance with duration of treatment. PMID:17690718

  12. Percutaneous interdigital injection of Mycobacterium bovis as a model for tuberculous lesion development in wild brushtail possums (Trichosurus vulpecula).

    PubMed

    Nugent, G; Whitford, E J; Yockney, I; Perry, M; Tompkins, D M; Holtslag, N; Cross, M L

    2013-01-01

    Brushtail possums (Trichosurus vulpecula) are the major wildlife reservoir of Mycobacterium bovis, the causative agent of bovine tuberculosis (BTB), in New Zealand. Primary diagnosis of BTB in wild possums is by palpation to detect peripheral lymphadenomegaly followed by necropsy examination, which frequently identifies gross tuberculous lesions in the peripheral lymph nodes and lungs. Experimental infection studies were conducted with wild possums in an attempt to emulate field BTB, focussing on percutaneous administration of virulent M. bovis in the paws. In a preliminary study, viable M. bovis bacilli were recovered from lymph nodes draining fore- or hindlimbs 12 days after percutaneous injection. Subsequently, 21 wild possums were injected interdigitally with 500 colony forming units (cfu) of M. bovis, radio-collared and released; 17/18 possums recaptured 8 weeks later had an established M. bovis lymphatic infection, with 16 having culture-positive gross lesions in the superficial and/or deep axillary lymph nodes. A dual-site infection model was established, involving simultaneous interdigital injection of 100 cfu of M. bovis into front and rear paws of 19 wild possums; this identified that the average degree of lymphadenitis involved 30-fold enlargement of the draining lymph node by 7-8 weeks post injection (wpi). A time-course study demonstrated establishment of M. bovis infection in peripheral lymph nodes of 9/11 possums at 3-5 wpi of doses ranging from 60 to 190 cfu, but with no development of gross lesions; by 7 weeks, 8/8 animals injected similarly had both an established infection and gross lesions of peripheral lymph nodes. The incidence and progression of peripheral lesion development, together with indications of sequential infection of the lungs, liver and mesenteric lymph nodes(MLNs), indicates that a low-dose percutaneous M. bovis infection model is likely to emulate natural disease in possums. PMID:22749650

  13. Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model.

    PubMed

    Brozoski, Thomas Jeffrey; Wisner, Kurt W; Sybert, Lauren T; Bauer, Carol A

    2012-02-01

    Animal experiments suggest that chronic tinnitus ("ringing in the ears") may result from processes that overcompensate for lost afferent input. Abnormally elevated spontaneous neural activity has been found in the dorsal cochlear nucleus (DCN) of animals with psychophysical evidence of tinnitus. However, it has also been reported that DCN ablation fails to reduce established tinnitus. Since other auditory areas have been implicated in tinnitus, the role of the DCN is unresolved. The apparently conflicting electrophysiological and lesion data can be reconciled if the DCN serves as a necessary trigger zone rather than a chronic generator of tinnitus. The present experiment used lesion procedures identical to those that failed to decrease pre-existing tinnitus. The exception was that lesions were done prior to tinnitus induction. Young adult rats were trained and tested using a psychophysical procedure shown to detect tinnitus. Tinnitus was induced by a single unilateral high-level noise exposure. Consistent with the trigger hypothesis, bilateral dorsal DCN lesions made before high-level noise exposure prevented the development of tinnitus. A protective effect stemming from disruption of the afferent pathway could not explain the outcome because unilateral lesions ipsilateral to the noise exposure did not prevent tinnitus and unilateral lesions contralateral to the noise exposure actually exacerbated the tinnitus. The DCN trigger mechanism may involve plastic circuits that, through loss of inhibition, or upregulation of excitation, increase spontaneous neural output to rostral areas such as the inferior colliculus. The increased drive could produce persistent pathological changes in the rostral areas, such as high-frequency bursting and decreased interspike variance, that comprise the chronic tinnitus signal. PMID:21969021

  14. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-01

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  15. Time course of lewisite-induced skin lesions and inflammatory response in the SKH-1 hairless mouse model.

    PubMed

    Nguon, Nina; Cléry-Barraud, Cécile; Vallet, Virginie; Elbakdouri, Nacéra; Wartelle, Julien; Mouret, Stéphane; Bertoni, Marine; Dorandeu, Frédéric; Boudry, Isabelle

    2014-01-01

    Data on the toxicity of lewisite (L), a vesicant chemical warfare agent, are scarce and conflicting, and the use of the specific antidote is not without drawbacks. This study was designed to evaluate if the SKH-1 hairless mouse model was suitable to study the L-induced skin injuries. We studied the progression of lesions following exposure to L vapors for 21 days using paraclinical parameters (color, transepidermal water loss (TEWL), and biomechanical measurements), histological assessments, and biochemical indexes of inflammation. Some data were also obtained over 27 weeks. The development of lesions was similar to that reported in other models. The TEWL parameter appeared to be the most appropriate index to follow their progression. Histological analysis showed inflammatory cell infiltration and microvesications at day 1 and a complete wound closure by day 21. Biochemical studies indicated a deregulation of the levels of several cytokines and receptors involved in inflammation. An increase in the quantity of pro-matrix metalloproteinases 2 and 9 was shown as observed in other models. This suggests that the SKH-1 mouse model is relevant for the investigation of the physiopathological process of skin lesions induced by L and to screen new treatment candidates. PMID:24635178

  16. Role of Toll-like receptors in diabetic renal lesions in a miniature pig model.

    PubMed

    Feng, Yuanyuan; Yang, Shulin; Ma, Yuxiang; Bai, Xue-Yuan; Chen, Xiangmei

    2015-06-01

    The mechanisms of diabetic renal injury remain unclear. Recent studies have shown that immunological and inflammatory elements play important roles in the initiation and development of diabetic nephropathy (DN). Toll-like receptors (TLRs) comprise a superfamily of innate immune system receptors. The roles and mechanisms of TLRs in the pathogenesis of diabetic renal lesions are mostly unknown. Compared with rodents, miniature pigs are more similar to humans with respect to metabolism, kidney structure, and immune system, and therefore represent an ideal large-animal model for DN mechanistic studies. A diabetes model was established by feeding miniature pigs with high-sugar and high-fat diets. Functional and pathological markers, expression and activation of endogenous TLR ligands [HSP70 (heat shock protein 70) and HMGB1], TLR1 to TLR11 and their downstream signaling pathway molecules (MyD88, IRAK-1, and IRF-3), nuclear factor κB (NF-κB) signaling pathway molecules (IKKβ, IκBα, and NF-κBp65), inflammatory cytokines [IL-6 (interleukin-6), MIP-2, MCP-1, CCL5, and VCAM-1 (vascular cell adhesion molecule-1)], and infiltration of inflammatory cells were systematically evaluated. The expression of HSP70 was significantly increased in diabetic pig kidneys. The expression of MyD88-dependent TLR2, TLR4, TLR5, TLR7, TLR8, and TLR11 and their downstream signaling molecules MyD88 and phospho-IRAK-1 (activated IRAK-1), as well as that of MyD88-independent TLR3 and TLR4 and their downstream signaling molecule phospho-IRF-3 (activated IRF-3), was significantly up-regulated. The expression and activation of NF-κB pathway molecules phospho-IKKβ, phospho-IκBα, NF-κBp65, and phospho-NF-κBp65 were significantly increased. Levels of IL-6, MIP-2, MCP-1, CCL5, VCAM-1, and macrophage marker CD68 were significantly increased in diabetic pig kidneys. These results suggested that the metabolic inflammation activated by TLRs might play an important role in diabetic renal injuries

  17. The Chemical Molecule B355252 is Neuroprotective in an In Vitro Model of Parkinson's Disease.

    PubMed

    Gliyazova, Nailya S; Ibeanu, Gordon C

    2016-10-01

    6-Hydroxydopamine (6-OHDA) is a neurotoxin frequently used to create in vitro and in vivo experimental models of Parkinson's disease (PD), a chronic neurodegenerative disorder largely resulting from damage to the nigrostriatal dopaminergic pathway. No effective drugs or therapies have been developed for this devastating disorder, and current regimens of symptomatic therapeutics only alleviate symptoms temporarily. Therefore, effective treatments that reverse or cure this disorder are urgently needed. The aim of the study described in this report was to investigate the therapeutic impact of B355252, an aryl thiophene sulfonamide chemical entity, in the widely recognized in vitro model of PD, and to characterize the molecular signaling pathways. We show here that 6-OHDA-induced cell death in HT22, a murine neuronal cell model, through a pathway that involves the mitochondria by increasing the levels of reactive oxygen species (ROS), raising intracellular calcium ([Ca(2+)]i), enhancing the release of cytochrome c to the cytosol, and promoting activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) signaling pathway. More importantly, we found that B355252 protected HT22 neurons against 6-OHDA toxin-induced neuronal cell death by significant attenuation of ROS production, blocking of mitochondrial depolarization, inhibition of cytochrome c release, sequestration of [Ca(2+)]i, modulation of JNK cascade, and strong inhibition of caspase 3/7 cleavage. Overall, this study demonstrates that death of neurons under toxic conditions characteristic of PD can be efficiently halted by B355252 and suggests that further development of the molecule could be potentially beneficial as a therapeutic prevention or treatment option for PD. PMID:26649727

  18. Simulation and assessment of realistic breast lesions using fractal growth models.

    PubMed

    Rashidnasab, A; Elangovan, P; Yip, M; Diaz, O; Dance, D R; Young, K C; Wells, K

    2013-08-21

    A new method of generating realistic three dimensional simulated breast lesions known as diffusion limited aggregation (DLA) is presented, and compared with the random walk (RW) method. Both methods of lesion simulation utilize a physics-based method for inserting these simulated lesions into 2D clinical mammogram images that takes into account the polychromatic x-ray spectrum, local glandularity and scatter. DLA and RW masses were assessed for realism via a receiver operating characteristic (ROC) study with nine observers. The study comprised 150 images of which 50 were real pathology proven mammograms, 50 were normal mammograms with RW inserted masses and 50 were normal mammograms with DLA inserted masses. The average area under the ROC curve for the DLA method was 0.55 (95% confidence interval 0.51-0.59) compared to 0.60 (95% confidence interval 0.56-0.63) for the RW method. The observer study results suggest that the DLA method produced more realistic masses with more variability in shape compared to the RW method. DLA generated lesions can overcome the lack of complexity in structure and shape in many current methods of mass simulation. PMID:23892735

  19. Simulation and assessment of realistic breast lesions using fractal growth models

    NASA Astrophysics Data System (ADS)

    Rashidnasab, A.; Elangovan, P.; Yip, M.; Diaz, O.; Dance, D. R.; Young, K. C.; Wells, K.

    2013-08-01

    A new method of generating realistic three dimensional simulated breast lesions known as diffusion limited aggregation (DLA) is presented, and compared with the random walk (RW) method. Both methods of lesion simulation utilize a physics-based method for inserting these simulated lesions into 2D clinical mammogram images that takes into account the polychromatic x-ray spectrum, local glandularity and scatter. DLA and RW masses were assessed for realism via a receiver operating characteristic (ROC) study with nine observers. The study comprised 150 images of which 50 were real pathology proven mammograms, 50 were normal mammograms with RW inserted masses and 50 were normal mammograms with DLA inserted masses. The average area under the ROC curve for the DLA method was 0.55 (95% confidence interval 0.51-0.59) compared to 0.60 (95% confidence interval 0.56-0.63) for the RW method. The observer study results suggest that the DLA method produced more realistic masses with more variability in shape compared to the RW method. DLA generated lesions can overcome the lack of complexity in structure and shape in many current methods of mass simulation.

  20. IN VITRO MAMMALIAN MUTAGENESIS AS A MODEL FOR GENETIC LESIONS IN HUMAN CANCER

    EPA Science Inventory

    Recently, in vitro mammalian cell assays of mutagenesis have been criticized as being poorly predictive of long-term in vivo rodent assays of carcinogenicity. Yet in vitro as says using mammalian cells might be expected to register types of genetic lesions thought to be important...

  1. A modeling-based assessment of acousto-optic sensing for monitoring high-intensity focused ultrasound lesion formation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew Tyler

    Real-time acousto-optic (AO) sensing---a dual-wave modality that combines ultrasound with diffuse light to probe the optical properties of turbid media---has been demonstrated to non-invasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposure. The AO signal indicates the onset of lesion formation and predicts resulting lesion volumes. Although proof-of-concept experiments have been successful, many of the underlying parameters and mechanisms affecting thermally induced optical property changes and the AO detectability of HIFU lesion formation are not well understood. In thesis, a numerical simulation was developed to model the AO sensing process and capture the relevant acoustic, thermal, and optical transport processes. The simulation required data that described how optical properties changed with heating. Experiments were carried out where excised chicken breast was exposed to thermal bath heating and changes in the optical absorption and scattering spectra (500 nm--1100 nm) were measured using a scanning spectrophotometer and an integrating sphere assembly. Results showed that the standard thermal dose model currently used for guiding HIFU treatments needs to be adjusted to describe thermally induced optical property changes. To model the entire AO process, coupled models were used for ultrasound propagation, tissue heating, and diffusive light transport. The angular spectrum method was used to model the acoustic field from the HIFU source. Spatial-temporal temperature elevations induced by the absorption of ultrasound were modeled using a finite-difference time-domain solution to the Pennes bioheat equation. The thermal dose model was then used to determine optical properties based on the temperature history. The diffuse optical field in the tissue was then calculated using a GPU-accelerated Monte Carlo algorithm, which accounted for light-sound interactions and AO signal detection. The simulation was

  2. Long-term survival and integration of porcine expanded neural precursor cell grafts in a rat model of Parkinson's disease.

    PubMed

    Harrower, T P; Tyers, P; Hooks, Y; Barker, R A

    2006-01-01

    Porcine fetal neural tissue has been considered as an alternative source to human allografts for transplantation in neurodegenerative disorders by virtue of the fact that it can overcome the ethical and practical difficulties using human fetal neural tissue. However, primary porcine neural xenografts are rejected while porcine expanded neural precursor neural cells (PNPCs) seem to be less immunogenic and thus survive better [Armstrong, R.J., Harrower, T.P., Hurelbrink, C.B., McLaughin, M., Ratcliffe, E.L., Tyers, P., Richards, A., Dunnett, S.B., Rosser, A.E., Barker, R.A., 2001a. Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Neuroscience 106, 201-216]. In this study, we extended these observations to investigate the long-term survival of such transplants in immunosuppressed rats. Unilateral 6 OHDA lesioned rats received grafts into the dopamine denervated striatum of either primary porcine fetal neural tissue dissected from the E26 cortex or cortically derived neural stem cells which had been derived from the same source but expanded in vitro for 21 days. All cortically derived neural stem cell grafts survived up to 5 months in contrast to the poor survival of primary porcine xenografts. Histological analysis demonstrated good graft integration with fibers extending into the surrounding host tissue including white matter with synapse formation, and in addition there was evidence of host vascularization and myelinated fibers within the graft area. This study has therefore shown for the first time the reliable long-term survival of grafts derived from porcine expanded neural precursors in a rat model of PD, with maturation and integration into the host brain. This demonstrates that such xenografted cells may be able to recreate the damaged circuitry in PD although strategies for dopaminergic differentiation of the porcine neural precursor cell remain to be refined. PMID:16246328

  3. Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson's Disease.

    PubMed

    Bortolanza, Mariza; Bariotto-Dos-Santos, Keila D; Dos-Santos-Pereira, Maurício; da-Silva, Célia Aparecida; Del-Bel, Elaine

    2016-07-01

    Amantadine is the noncompetitive antagonist of N-methyl-D-aspartate, receptor activated by the excitatory neurotransmitter glutamate. It is the only effective medication used to alleviate dyskinesia induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease patients. Unfortunately, adverse effects as abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia limit its clinical utility. Combined effective symptomatic treatment modalities may lessen the liability to undesirable events. Likewise drugs known to interfere with nitrergic system reduce AIMs in animal models of Parkinson's disease. We aimed to analyze an interaction between amantadine, neuronal nitric oxide synthase inhibitor (7-nitroindazole, 7NI), and nitric oxide donor (sodium nitroprusside, SNP) in 6-hydroxydopamine-(6-OHDA)-lesioned rats (microinjection in the medial forebrain bundle) presenting L-DOPA-induced dyskinesia (20 mg/kg, gavage, during 21 days). We confirm that 7NI-30 mg/kg, SNP-2/4 mg/kg and amantadine-40 mg/kg, individually reduced AIMs. Our results revealed that co-administration of sub-effective dose of amantadine (10 mg/kg) plus sub-effective dose of 7NI (20 mg/kg) potentiates the effect of reducing AIMs scores when compared to the effect of the drugs individually. No superior benefit on L-DOPA-induced AIMs was observed with the combination of amantadine and SNP. The results revealed that combination of ineffective doses of amantadine and 7NI represents a new strategy to increase antidyskinetic effect in L-DOPA-induced AIMs. It may provide additional therapeutic benefits to Parkinson's disease patients from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone. To close, we discuss the paradox of both nitric oxide synthase inhibitor and/or donor produced AIMs reduction by targeting nitric oxide synthase. PMID:27053252

  4. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents.

    PubMed

    Fernandes, Hélio B; Silva, Francilene V; Passos, Flávia Franceli B; Bezerra, Roosevelt D S; Chaves, Mariana H; Oliveira, Francisco A; Oliveira, Rita C Meneses

    2010-01-01

    Parkia platycephala Benth. (Leguminosae--Mimosoideae), popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH), as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52%, respectively), but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder. PMID:21526272

  5. A finite element model of remote palpation of breast lesions using radiation force: factors affecting tissue displacement.

    PubMed

    Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E

    2000-01-01

    The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated. PMID:10823496

  6. CRM1-dependent p53 nuclear accumulation in lung lesions of a bitransgenic mouse lung tumor model.

    PubMed

    Chen, Lixia; Moore, Joseph E; Samathanam, Christina; Shao, Changxia; Cobos, Everardo; Miller, Mark Steven; Gao, Weimin

    2011-07-01

    The p53 tumor suppressor gene plays an essential role in tumorigenesis, and the chromosomal region maintenance 1 (CRM1) has been suggested to export p53 protein from the nucleus to the cytoplasm. The objectives of the present study were to evaluate p53 expression and subcellular localization as well as CRM1 expression using immunohistochemistry in our established bitransgenic mouse lung tumor model. In this model, expression of the mutant human Ki-rasG12C allele was regulated in a doxycycline (DOX)-inducible, lung-specific manner. Following treatment with curcumin, we found that although overall p53 expression levels were not significantly changed among the three groups, lung lesions in mice treated with DOX alone had the highest proportion of N>C (nucleus predominant) p53 staining (46±7%), followed by lung lesions in mice co-treated with DOX and curcumin (31±12%) and controls (17±4%). CRM1 expression was dramatically inhibited in lung lesions in mice treated with DOX (0±0) as compared to controls (90±17, P=0.001), and could be partially reversed after curcumin treatment (47±21, P=0.028, DOX vs. DOX+curcumin). Collectively, the results from this study demonstrated that p53 accumulated in the nucleus in lung lesions in mice expressing the mutant Ki-rasG12C transgene as a result of down-regulation of CRM1. Furthermore, these alterations could be partially reversed by curcumin treatment. p53 subcellular localization resulting from CRM1 alterations may play an important role in lung tumorigenesis. PMID:21519798

  7. Model-Free Visualization of Suspicious Lesions in Breast MRI Based on Supervised and Unsupervised Learning.

    PubMed

    Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W

    2008-03-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616

  8. Transplanted Neural Stem Cells: Playing a Neuroprotective Role by Ceruloplasmin in the Substantia Nigra of PD Model Rats?

    PubMed Central

    Xiao, Jia-Jia; Yin, Ming; Wang, Ze-Jian; Wang, Xiao-Ping

    2015-01-01

    Although mounting evidence suggests that ceruloplasmin (CP) deficiency and iron deposition are pivotal factors responsible for exacerbating demise of dopaminergic neurons in the substantia nigra (SN) of the Parkinsonism and neural stem cells (NSCs) are believed to be excellent candidates for compensating the lost dopaminergic neurons, there are few researches to explore the change of CP expression and of iron deposition in the pathological microenvironment of SN after NSCs transplantation and the ability of grafted NSCs to differentiate directionally into dopaminergic neurons under the changed homeostasis. With substantia nigral stereotaxic technique and NSCs transplantation, we found that tyrosine hydroxylase and CP expression decreased and iron deposition increased in the lesioned SN after 6-OHDA administration compared with control, while tyrosine hydroxylase and CP expression increased and iron deposition decreased after NSCs transplantation compared to 6-OHDA administration alone. Only a small number of embedding NSCs are able to differentiate into dopaminergic neurons. These results suggest that grafted NSCs have an influence on improving the content of CP expression, which may play a neuroprotective role by decreasing iron deposition and ameliorating damage of dopaminergic neurons and possibly underline the iron-related common mechanism of Parkinson's disease and Wilson's disease. PMID:26146528

  9. Hypericum Perforatum Hydroalcoholic Extract Mitigates Motor Dysfunction and is Neuroprotective in Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson's Disease.

    PubMed

    Kiasalari, Zahra; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad

    2016-05-01

    Parkinson's disease is the second most common neurodegenerative disorder with selective and progressive decline of nigral dopaminergic neurons. Hypericum perforatum L. (H. perforatum, St. John's wort) has been traditionally used for management of different disorders, especially mild-to-moderate depression. This study was conducted to evaluate the effect of H. perforatum extract against unilateral striatal 6-hydroxydopamine (6-OHDA) toxicity and to unmask some involved mechanisms. Intrastriatal 6-OHDA-lesioned rats were treated with H. perforatum hydroalcoholic extract at a dose of 200 mg/kg/day started 1 week pre-surgery for 1 week post-surgery. The extract attenuated apomorphine-induced rotational behavior, decreased the latency to initiate and the total time on the narrow beam task, lowered striatal level of malondialdehyde and enhanced striatal catalase activity and reduced glutathione content, normalized striatal expression of glial fibrillary acidic protein, tumor necrosis factor α with no significant effect on mitogen-activated protein kinase, lowered nigral DNA fragmentation, and prevented damage of nigral dopaminergic neurons with a higher striatal tyrosine hydroxylase immunoreactivity. These findings reveal the beneficial effect of H. perforatum via attenuation of DNA fragmentation, astrogliosis, inflammation, and oxidative stress. PMID:26119304

  10. Prevention of preneoplastic lesions by dietary vitamin D in a mouse model of colorectal carcinogenesis.

    PubMed

    Hummel, Doris Maria; Thiem, Ursula; Höbaus, Julia; Mesteri, Ildiko; Gober, Lukas; Stremnitzer, Caroline; Graça, João; Obermayer-Pietsch, Barbara; Kallay, Enikö

    2013-07-01

    Colorectal cancer (CRC) is one of the leading causes of cancer morbidity and mortality in Western countries. One of the risk factors for colorectal tumorigenesis is vitamin D insufficiency. The aim of this study was to establish whether increasing dietary vitamin D intake can prevent or delay development of chemically induced preneoplastic lesions in the colon of mice. We fed six weeks old female C57BL/6J mice (n=28) with increasing vitamin D3 concentrations (100, 400, 1000, 2500, 5000IU/kg diet). To induce dysplasia, a preneoplastic lesion, we injected mice with the carcinogen azoxymethane (10mg/kg) intraperitoneally, followed by three cycles of 2% dextran sodium sulfate salt, a tumor promoter, in the drinking water. To test our hypothesis that high vitamin D intake prevents formation of preneoplastic lesions, we have investigated the effect of increasing dietary vitamin D on development of premalignant colorectal lesions, serum 25-hydroxyvitamin D3 (25-D3) levels, and expression of renal vitamin D system genes. Dietary vitamin D concentration correlated inversely with dysplasia score (Spearman's correlation coefficient, ρ: -0.579, p=0.002) and positively with serum 25-D3 levels (ρ: 0.752, p=0.001). Increasing dietary vitamin D concentration beyond 1000IU/kg led to no further increase in circulating 25-D3 levels, while the dysplasia score leveled out at ≥2500IU/kg vitamin D. High dietary vitamin D intake led to increased renal mRNA expression of the vitamin D catabolizing enzyme cyp24a1 (ρ: 0.518, p=0.005) and decreased expression of the vitamin D activating enzyme cyp27b1 (ρ: -0.452, p=0.016), protecting the body from toxic serum levels of the active vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25-D3). Our data showed that increasing dietary vitamin D intake is able to prevent chemically induced preneoplastic lesions. The maximum impact was achieved when the mice consumed more than 2500IU vitamin D/kg diet. This article is part of a Special Issue

  11. Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson´s disease.

    PubMed

    González-Aparicio, Ramiro; Moratalla, Rosario

    2014-02-01

    The long-term use of levodopa (L-DOPA) in Parkinson's disease (PD) results in the development of abnormal involuntary movements called L-DOPA-induced dyskinesias. Increasing evidences suggest that the endocannabinoid system may play a role in the modulation of dyskinesias. In this work, we assessed the antidyskinetic effect of the endocannabinoid analog oleoylethanolamide (OEA), an agonist of PPARα and antagonist of TRPV1 receptors. We used a hemiparkinsonian model of PD in mice with 6-OHDA striatal lesion. The chronic L-DOPA treatment developed intense axial, forelimb and orolingual dyskinetic symptoms, as well as contralateral rotations. Treatment with OEA reduced all these symptoms without reducing motor activity or the therapeutic motor effects of L-DOPA. Moreover, the OEA-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates of dyskinesia. OEA reduced FosB striatal overexpression and phosphoacetylation of histone 3, both molecular markers of L-DOPA-induced dyskinesias. We found that OEA antidyskinetic properties were mediated by TRPV1 receptor, as pretreatment with capsaicin, a TRPV1 agonist, blocked OEA antidyskinetic actions, as well as the reduction in FosB- and pAcH3-overexpression induced by L-DOPA. This study supports the hypothesis that the endocannabinoid system plays an important role in the development and expression of dyskinesias and might be an effective target for the treatment of L-DOPA-induced dyskinesias. Importantly, there was no development of tolerance to OEA in any of the parameters we examined, which has important implications for the therapeutic potential of drugs targeting the endocannabinoid system. PMID:24140894

  12. Analysis of the pathological lesions of the lung in a mouse model of cutaneous infection with Streptococcus pyogenes.

    PubMed

    Minami, Masaaki; Sobue, Sayaka; Ichihara, Masatoshi; Hasegawa, Tadao

    2012-02-01

    Invasive diseases such as toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) are re-emerging infectious diseases. The mechanism of pathogenesis is not completely understood although the virulence of this organism has been analyzed using animal model systems, particularly using mice. The analysis of the progression of infection, however, is difficult. Computed tomography (CT) scanning is an extremely powerful technique that we applied to the mouse model of cutaneous infection with S. pyogenes. Two or three days after subcutaneous administration of bacteria, high density reticular areas were detected in the lung by CT. Histopathological examination of the lung was performed to examine the results of CT. Increased numbers of cytokeratin-positive epithelial cells, probably alveolar type II epithelial cells, were detected but no remarkable increase of inflammatory cell infiltrates was observed. Our results show that the pathological lesions of the lung in this model, wherein relatively few numbers of neutrophils were in the alveoli, are well correlated with the lung of a part of streptococcal toxic shock syndrome patients. Therefore, CT may be useful in assessing the progression of S. pyogenes infection, particularly in the pathological lesions of the lung in this model. PMID:22243779

  13. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].

    PubMed

    Šaponjić, Jasna

    2011-01-01

    Many complex behavioral phenomena such as sleep can not be explained without multidisciplinary experimental approach, and complementay approaches in the animal models "in vivo" and human studies. Electrophysiological, pharmacological, anatomical and immunohistochemical techniques, and particularly stereotaxically guided local nanovolume microinjection technique, enable us to selectively stimulate and lesion the brain nuclei or their specific neuronal subpopulation, and to reslove the mechanisms of certain brain structure regulatory role, and its afferent-efferent connectivity within the brain. Local stereotaxically guided nanovolume microinjection technique enable us to investigate in animals the brain nulcei functional topography with a resolution of < or = 10 microM, and at a level of 300 microM of effective radius within the brain tissue "in vivo". The advantage of local glutamate or DL- homocysteic acid microinjection stimulation or local excitotoxic (glutamate, ibotenic acid, IgG saporin) microinjection lesion over electrical stimulation/lesion of the same neuronal population are that they reduces the likelihood of activation/lesion of fibers of passage. Much of our knowledge of the sleep neuronal substrates is based on animal studies primarly in cat and rat. Selective pharmacological stimulation of the pedunculopontine tegmentum (PPT) in freely moving rat, using glutamate microinjection, proved that excitation of its cholinergic part is necessary for induction of wakefulness or REM (Datta S, 2001). Local nanovolume glutamate microinjection into PPT of anesthetized rats (Saponjić et al, 2003a) additionally evidenced P-wave and respiratory regulating neuronal subpopulation within the cholinergic compartment of PPT (apneogenic neuronal zone). Local microinjection of serotonin and noradrenaline into cholinergic PPT apneogenic zone evidenced their opposed impact through PPT on breathing, in contrast to their convergent regulatory role in behavioral state control

  14. Voxel-based lesion-parameter mapping: Identifying the neural correlates of a computational model of word production

    PubMed Central

    Dell, Gary S.; Schwartz, Myrna F.; Nozari, Nazbanou; Faseyitan, Olufunsho; Coslett, H. Branch

    2013-01-01

    The dual-route interactive two-step model explains the variation in the error patterns of aphasic speakers in picture naming, and word and nonword repetition tasks. The model has three parameters that can vary across individuals: the efficiency of the connections between semantic and lexical representations (s-weight), between lexical and phonological representations (p-weight), and between representations of auditory input and phonological representations (nl-weight). We determined these parameter values in 103 participants with chronic aphasia from left hemisphere stroke whose lesion locations had been determined. Then, using voxel-based lesion-parameter mapping, we mapped the parameters onto the brain, thus determining the neural correlates of the model’s mechanisms. The maps and the behavioral findings supported the model’s central claim that word repetition is affected by both the p and nl parameters. We propose that these two parameters constitute the model’s analogue of the “dorsal stream” component of neurocognitive models of language processing. PMID:23765000

  15. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse)

    PubMed Central

    Takahashi, Tetsuyuki; Nishida, Takeshi; Baba, Hayato; Hatta, Hideki; Imura, Johji; Sutoh, Mitsuko; Toyohara, Syunji; Hokao, Ryoji; Watanabe, Syunsuke; Ogawa, Hirohisa; Uehara, Hisanori; Tsuneyama, Koichi

    2016-01-01

    We previously reported that Tsumura-Suzuki obese diabetic (TSOD) mice, a polygenic model of spontaneous type 2 diabetes, is a valuable model of hepatic carcinogenesis via non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). One of the characteristics of tumors in these mice is the diffuse expression of glutamine synthetase (GS), which is a diagnostic marker for hepatocellular carcinoma (HCC). In this study, we performed detailed histopathological examinations and found that GS expression was diffusely positive in >70% of the hepatic tumors from 15-month-old male TSOD mice. Translocation of β-catenin into nuclei with enhanced membranous expression also occurred in GS-positive tumors. Small lesions (<1 mm) in GS-positive cases exhibited dysplastic nodules, with severe nuclear atypia, whereas large lesions (>3 mm) bore the characteristics of human HCC, exhibiting nuclear and structural atypia with invasive growth. By contrast, the majority of GS-negative tumors were hepatocellular adenomas with advanced fatty change and low nuclear grade. In GS-negative tumors, loss of liver fatty acid-binding protein expression was observed. These results suggest that the histological characteristics of GS-positive hepatic tumors in TSOD mice resemble human HCC; thus, this model may be a useful tool in translational research targeting the NAFLD/NASH-HCC sequence. PMID:27446562

  16. Vitamin D Repletion Reduces the Progression of Premalignant Squamous Lesions in the NTCU Lung Squamous Cell Carcinoma Mouse Model.

    PubMed

    Mazzilli, Sarah A; Hershberger, Pamela A; Reid, Mary E; Bogner, Paul N; Atwood, Kristopher; Trump, Donald L; Johnson, Candace S

    2015-10-01

    The chemopreventive actions of vitamin D were examined in the N-nitroso-tris-chloroethylurea (NTCU) mouse model, a progressive model of lung squamous cell carcinoma (SCC). SWR/J mice were fed a deficient diet (D) containing no vitamin D3, a sufficient diet (S) containing 2,000 IU/kg vitamin D3, or the same diets in combination with the active metabolite of vitamin D, calcitriol (C; 80 μg/kg, weekly). The percentage (%) of the mucosal surface of large airways occupied by dysplastic lesions was determined in mice after treatment with a total dose of 15 or 25 μmol NTCU (N). After treatment with 15 μmol NTCU, the percentages of the surface of large airways containing high-grade dysplastic (HGD) lesions were vitamin D-deficient + NTCU (DN), 22.7% [P < 0.05 compared with vitamin D-sufficient +NTCU (SN)]; DN + C, 12.3%; SN, 8.7%; and SN + C, 6.6%. The extent of HGD increased with NTCU dose in the DN group. Proliferation, assessed by Ki-67 labeling, increased upon NTCU treatment. The highest Ki-67 labeling index was seen in the DN group. As compared with SN mice, DN mice exhibited a three-fold increase (P < 0.005) in circulating white blood cells (WBC), a 20% (P < 0.05) increase in IL6 levels, and a four-fold (P < 0.005) increase in WBC in bronchial lavages. Thus, vitamin D repletion reduces the progression of premalignant lesions, proliferation, and inflammation, and may thereby suppress development of lung SCC. Further investigations of the chemopreventive effects of vitamin D in lung SCC are warranted. PMID:26276745

  17. TROPHIC CONTROL OF THE ORNITHINE DECARBOXYLASE/POLYAMINE SYSTEM IN NEONATAL RAT CEREBELLUM: REGIONALLY-SELECTIVE EFFECTS OF NEONATAL LESIONS CAUSED BY 6-HYDROXYDOPAMINE

    EPA Science Inventory

    Norepinephrine has been hypothesized as a trophic factor influencing postnatal development of the cerebellum. n the current study, neonatal rats were given 6-hydroxydopanine (6-OHDA) to destroy noradrenergic projections and the effects on the ornithine decarboxylase (ODC)/polyami...

  18. Vascular Lesions.

    PubMed

    Jahnke, Marla N

    2016-08-01

    Vascular lesions in childhood are comprised of vascular tumors and vascular malformations. Vascular tumors encompass neoplasms of the vascular system, of which infantile hemangiomas (IHs) are the most common. Vascular malformations, on the other hand, consist of lesions due to anomalous development of the vascular system, including the capillary, venous, arterial, and lymphatic systems. Capillary malformations represent the most frequent type of vascular malformation. IHs and vascular malformations tend to follow relatively predictable growth patterns in that IHs grow then involute during early childhood, whereas vascular malformations tend to exhibit little change. Both vascular tumors and vascular malformations can demonstrate a wide range of severity and potential associated complications necessitating specialist intervention when appropriate. Evaluation and treatment of the most common types of vascular lesions are discussed in this article. [Pediatr Ann. 2016;45(8):e299-e305.]. PMID:27517358

  19. Clinical Impact of Time-of-Flight and Point Response Modeling in PET Reconstructions: A Lesion Detection Study

    PubMed Central

    Schaefferkoetter, Joshua; Casey, Michael; Townsend, David; Fakhri, Georges El

    2013-01-01

    Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF+PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic (LROC). Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF+PSF. These findings suggest a large potential benefit of TOF+PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients. PMID:23403399

  20. Porcine skin visible lesion thresholds for near-infrared lasers including modeling at two pulse durations and spot sizes

    NASA Astrophysics Data System (ADS)

    Cain, Clarence P.; Polhamus, Garrett D.; Roach, William P.; Stolarski, David J.; Schuster, Kurt J.; Stockton, Kevin; Rockwell, Benjamin A.; Chen, Bo; Welch, Ashley J.

    2006-07-01

    With the advent of such systems as the airborne laser and advanced tactical laser, high-energy lasers that use 1315-nm wavelengths in the near-infrared band will soon present a new laser safety challenge to armed forces and civilian populations. Experiments in nonhuman primates using this wavelength have demonstrated a range of ocular injuries, including corneal, lenticular, and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser safety standards have traditionally been based on experimental data, and there is scant data for this wavelength. We are reporting minimum visible lesion (MVL) threshold measurements using a porcine skin model for two different pulse durations and spot sizes for this wavelength. We also compare our measurements to results from our model based on the heat transfer equation and rate process equation, together with actual temperature measurements on the skin surface using a high-speed infrared camera. Our MVL-ED50 thresholds for long pulses (350 µs) at 24-h postexposure are measured to be 99 and 83 Jcm-2 for spot sizes of 0.7 and 1.3 mm diam, respectively. Q-switched laser pulses of 50 ns have a lower threshold of 11 Jcm-2 for a 5-mm-diam top-hat laser pulse.

  1. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats.

    PubMed

    Yelkenli, İbrahim Halil; Ulupinar, Emel; Korkmaz, Orhan Tansel; Şener, Erol; Kuş, Gökhan; Filiz, Zeynep; Tunçel, Neşe

    2016-06-01

    The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used in animal models of Parkinson's disease. In various neurodegenerative diseases, astrocytes play direct, active, and critical roles in mediating neuronal survival and functions. Vasoactive intestinal peptide (VIP) has neurotrophic actions and modulates a number of astrocytic activities. In this study, the effects of VIP on the striatal neurochemistry were investigated in parkinsonian rats. Adult Sprague-Dawley rats were divided into sham-operated, unilaterally 6-OHDA-lesioned, and lesioned + VIP-administered (25 ng/kg i.p.) groups. VIP was first injected 1 h after the intrastriatal 6-OHDA microinjection and then every 2 days throughout 15 days. Extracellular striatal concentration of glutathione (GSH), gamma-aminobutyric acid (GABA), glutamate (GLU), and lactate were measured in microdialysates by high-performance liquid chromatography (HPLC). Quantification of GABA and activity dependent neuroprotective protein (ADNP)-expressing cells were determined by glutamic acid decarboxylase (GAD)/ADNP + glial fibrillary acidic protein (GFAP) double immunohistochemistry. Our results demonstrated that a 6-OHDA lesion significantly increased the density of astrocytes in the striatum and VIP treatment slightly reduced the gliosis. Extracellular concentration of GABA, GLU, and lactate levels did not change, but GSH level significantly increased in the striatum of parkinsonian rats. VIP treatment reduced GSH level comparable to sham-operated groups, but enhanced GABA and GLU levels. Our double labeling results showed that VIP primarily acts on neurons to increase ADNP and GAD expression for protection. These results suggest that, in the 6-OHDA-induced neurodegeneration model, astrocytes were possibly activated for forefront defensiveness by modulating striatal neurochemistry. PMID:27115671

  2. Regional, kinetic [18F]FDG PET imaging of a unilateral Parkinsonian animal model

    PubMed Central

    Silva, Matthew D; Glaus, Charles; Hesterman, Jacob Y; Hoppin, Jack; Puppa, Geraldine Hill della; Kazules, Timothy; Orcutt, Kelly M; Germino, Mary; Immke, David; Miller, Silke

    2013-01-01

    Positron emission tomography (PET) imaging with the glucose analog 2-deoxy-2-[18F]fluoro-D-glucose ([18F] FDG) has demonstrated clinical utility for the monitoring of brain glucose metabolism alteration in progressive neurodegenerative diseases. We examined dynamic [18F]FDG PET imaging and kinetic modeling of atlas-based regions to evaluate regional changes in the cerebral metabolic rate of glucose in the widely-used 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Following a bolus injection of 18.5 ± 1 MBq [18F]FDG and a 60-minute PET scan, image-derived input functions from the vena cava and left ventricle were used with three models, including Patlak graphical analysis, to estimate the influx constant and the metabolic rate in ten brain regions. We observed statistically significant changes in [18F]FDG uptake ipsilateral to the 6-OHDA injection in the basal ganglia, olfactory bulb, and amygdala regions; and these changes are of biological relevance to the disease. These experiments provide further validation for the use of [18F]FDG PET imaging in this model for drug discovery and development. PMID:23526185

  3. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection.

    PubMed

    Ufimtseva, Elena

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals. PMID:26064970

  4. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue.

    PubMed

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-10-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  5. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  6. Detection of oral squamous-cell cancer and precancerous lesions by fluorescence imaging in a hamster cheek-pouch model

    NASA Astrophysics Data System (ADS)

    Lam, Stephen; Kluftinger, A. M.; Hung, J.; Davis, N. L.; Quenville, N. F.; Palcic, Branko

    1993-03-01

    The role of non-skin phototoxic dose of Photofrin in the detection of dysplasia and carcinoma in situ was assessed in a small animal model of oral squamous cell cancer (SCC). Nine,10-dimethyl 1,2-benzanthracene (DMBA) impregnated cotton sutures, covered with a silicone sheath, were sewn into the hamster cheek pouch to produce dysplasia, carcinoma in situ, and invasive cancer. The yield of SCC was 83% by 20 weeks. Fluorescence imaging was performed using a specially designed device that exploits differences of fluorescence properties of normal, precancerous, and cancerous tissues with and without Photofrin. The fluorescence was induced by a helium-cadmium laser (442 nm) and then measured at two different wavelengths by an image intensified camera. Computed images using a mathematical transformation of fluorescence data were then displayed on a video monitor. Areas with dysplasia and both in situ and invasive cancers could be clearly delineated from the adjacent normal tissues. Lesions as small as 2 mm in diameter could be identified. Because of the presence of endogenous porphyrins, the addition of a non-skin phototoxic dose of Photofrin (0.25 mg/kg iv) did not enhance the signal to noise ratio. Our results suggest that fluorescence imaging can accurately detect both precancerous and cancerous lesions in the oral mucosa without exogenous porphyrins. It may have an important role as a non-invasive, clinical diagnostic tool in oropharyngeal cancer.

  7. [Studying of hepatoprotective properties of dry extract from apricot leaves on the model of liver lesion by tetrachloromethane].

    PubMed

    Shtroblia, A L; Fira, L S; Likhatskiĭ, P G; Pyla, V P; Vashkeba, E M; Medvid', I I

    2013-01-01

    The results of the pharmacological investigation of the properties of apricot leaves dry extract are indicated in the article. It is proved that the extract belongs to the group of "relatively harmless" substances, exclusion of the ulcerogenic effect on the stomach, local irritating and allergenic effect on animals. It is found minimal reacting dose of the extract, which is 70 mg/kg of body weight. On the model of liver lesion by tetrachlormethane it is proved the antioxidant properties of the extract, which is manifested by the decreasing of the activity of oxidative processes and the resumption of the activity of the endogenous antioxidant system. At the studying of the bile formation and bile secretion functions in the conditions of the toxic tetrachlormethane lesion the hepatoprotective effect of the dosage form was confirmed, which was realized by the increasing of the speed of bile secretion and its volume. It is proved a positive effect of the extract on the detoxification function of the liver, that is confirmed by the reducing of the hexenal sleep in rats after toxicant exposure. PMID:23808273

  8. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements.

    PubMed

    van Zelm, Menno C; Geertsema, Corinne; Nieuwenhuis, Nicole; de Ridder, Dick; Conley, Mary Ellen; Schiff, Claudine; Tezcan, Ilhan; Bernatowska, Ewa; Hartwig, Nico G; Sanders, Elisabeth A M; Litzman, Jiri; Kondratenko, Irina; van Dongen, Jacques J M; van der Burg, Mirjam

    2008-02-01

    Most genetic disruptions underlying human disease are microlesions, whereas gross lesions are rare with gross deletions being most frequently found (6%). Similar observations have been made in primary immunodeficiency genes, such as BTK, but for unknown reasons the IGHM and DCLRE1C (Artemis) gene defects frequently represent gross deletions ( approximately 60%). We characterized the gross deletion breakpoints in IGHM-, BTK-, and Artemis-deficient patients. The IGHM deletion breakpoints did not show involvement of recombination signal sequences or immunoglobulin switch regions. Instead, five IGHM, eight BTK, and five unique Artemis breakpoints were located in or near sequences derived from transposable elements (TE). The breakpoints of four out of five disrupted Artemis alleles were located in highly homologous regions, similar to Ig subclass deficiencies and Vh deletion polymorphisms. Nevertheless, these observations suggest a role for TEs in mediating gross deletions. The identified gross deletion breakpoints were mostly located in TE subclasses that were specifically overrepresented in the involved gene as compared to the average in the human genome. This concerned both long (LINE1) and short (Alu, MIR) interspersed elements, as well as LTR retrotransposons (ERV). Furthermore, a high total TE content (>40%) was associated with an increased frequency of gross deletions. Both findings were further investigated and confirmed in a total set of 20 genes disrupted in human disease. Thus, to our knowledge for the first time, we provide evidence that a high TE content, irrespective of the type of element, results in the increased incidence of gross deletions as gene disruption underlying human disease. PMID:18252213

  9. Gross Deletions Involving IGHM, BTK, or Artemis: A Model for Genomic Lesions Mediated by Transposable Elements

    PubMed Central

    van Zelm, Menno C.; Geertsema, Corinne; Nieuwenhuis, Nicole; de Ridder, Dick; Conley, Mary Ellen; Schiff, Claudine; Tezcan, Ilhan; Bernatowska, Ewa; Hartwig, Nico G.; Sanders, Elisabeth A.M.; Litzman, Jiri; Kondratenko, Irina; van Dongen, Jacques J.M.; van der Burg, Mirjam

    2008-01-01

    Most genetic disruptions underlying human disease are microlesions, whereas gross lesions are rare with gross deletions being most frequently found (6%). Similar observations have been made in primary immunodeficiency genes, such as BTK, but for unknown reasons the IGHM and DCLRE1C (Artemis) gene defects frequently represent gross deletions (∼60%). We characterized the gross deletion breakpoints in IGHM-, BTK-, and Artemis-deficient patients. The IGHM deletion breakpoints did not show involvement of recombination signal sequences or immunoglobulin switch regions. Instead, five IGHM, eight BTK, and five unique Artemis breakpoints were located in or near sequences derived from transposable elements (TE). The breakpoints of four out of five disrupted Artemis alleles were located in highly homologous regions, similar to Ig subclass deficiencies and Vh deletion polymorphisms. Nevertheless, these observations suggest a role for TEs in mediating gross deletions. The identified gross deletion breakpoints were mostly located in TE subclasses that were specifically overrepresented in the involved gene as compared to the average in the human genome. This concerned both long (LINE1) and short (Alu, MIR) interspersed elements, as well as LTR retrotransposons (ERV). Furthermore, a high total TE content (>40%) was associated with an increased frequency of gross deletions. Both findings were further investigated and confirmed in a total set of 20 genes disrupted in human disease. Thus, to our knowledge for the first time, we provide evidence that a high TE content, irrespective of the type of element, results in the increased incidence of gross deletions as gene disruption underlying human disease. PMID:18252213

  10. Neuroimaging Analysis of the Dopamine Basis for Apathetic Behaviors in an MPTP-Lesioned Primate Model

    PubMed Central

    Flores, Hubert P.; Campbell, Meghan C.; Moerlein, Stephen M.; Perlmutter, Joel S.

    2015-01-01

    Apathy commonly occurs in Parkinson disease (PD) patients; however, the role of dopamine in the pathophysiology of apathy remains elusive. We previously demonstrated that dopaminergic dysfunction within the ventral tegmental area (VTA)-nucleus accumbens (NAcc) pathway contributes to the manifestation of apathetic behaviors in monkeys treated with the selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We now extend these studies to identify dopaminergic dysfunction in cortical regions that correlate with development of apathetic behaviors. Specifically, we measured the effects of MPTP on monkeys' willingness to attempt goal directed behaviors, which is distinct from their ability to perform tasks. A total of 16 monkeys had baseline magnetic resonance imaging (MRI) and positron emission tomography (PET), using 6-[18F]fluorodopa (FD), [11C]dihydrotetrabenazine (DTBZ), and 2β-[11C]carbomethoxy-3β-(4-fluorophenyl)tropane (CFT). The monkeys received unilateral infusion of different doses of MPTP (0 – 0.31mg/kg) to produce a wide range of severity of motor parkinsonism. Eight weeks after MPTP, PET scans were repeated and animals were euthanized. Apathetic behavior and motor impairments were assessed blindly both pre- and post-MPTP infusion. Apathy scores were compared to in vitro and in vivo dopaminergic measures. Apathy scores increased following MPTP and correlated with PET measures of dopaminergic terminals (DTBZ or CFT) in dorsal lateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), and insular cortex (IC). Among all the cortical regions assessed, forward step-wise regression analyses indicated that only stereologic cell counts in VTA, and not counts in the substantia nigra (SN), predict dopamine transporter changes in IC. Our findings suggest that dopaminergic dysfunction within the VTA–IC pathway plays a role in the manifestation of apathetic behaviors in MPTP-lesioned primates. PMID:26135399

  11. Neuroimaging Analysis of the Dopamine Basis for Apathetic Behaviors in an MPTP-Lesioned Primate Model.

    PubMed

    Tian, LinLin; Xia, Yuanxuan; Flores, Hubert P; Campbell, Meghan C; Moerlein, Stephen M; Perlmutter, Joel S

    2015-01-01

    Apathy commonly occurs in Parkinson disease (PD) patients; however, the role of dopamine in the pathophysiology of apathy remains elusive. We previously demonstrated that dopaminergic dysfunction within the ventral tegmental area (VTA)-nucleus accumbens (NAcc) pathway contributes to the manifestation of apathetic behaviors in monkeys treated with the selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We now extend these studies to identify dopaminergic dysfunction in cortical regions that correlate with development of apathetic behaviors. Specifically, we measured the effects of MPTP on monkeys' willingness to attempt goal directed behaviors, which is distinct from their ability to perform tasks. A total of 16 monkeys had baseline magnetic resonance imaging (MRI) and positron emission tomography (PET), using 6-[18F]fluorodopa (FD), [11C]dihydrotetrabenazine (DTBZ), and 2β-[11C]carbomethoxy-3β-(4-fluorophenyl)tropane (CFT). The monkeys received unilateral infusion of different doses of MPTP (0 - 0.31mg/kg) to produce a wide range of severity of motor parkinsonism. Eight weeks after MPTP, PET scans were repeated and animals were euthanized. Apathetic behavior and motor impairments were assessed blindly both pre- and post-MPTP infusion. Apathy scores were compared to in vitro and in vivo dopaminergic measures. Apathy scores increased following MPTP and correlated with PET measures of dopaminergic terminals (DTBZ or CFT) in dorsal lateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), and insular cortex (IC). Among all the cortical regions assessed, forward step-wise regression analyses indicated that only stereologic cell counts in VTA, and not counts in the substantia nigra (SN), predict dopamine transporter changes in IC. Our findings suggest that dopaminergic dysfunction within the VTA-IC pathway plays a role in the manifestation of apathetic behaviors in MPTP-lesioned primates. PMID:26135399

  12. Empiric Antibiotic Treatment of Erythema Migrans-Like Skin Lesions As a Function of Geography: A Clinical and Cost Effectiveness Modeling Study

    PubMed Central

    Brinkerhoff, R. Jory; Wormser, Gary P.; Clemen, Robert

    2013-01-01

    Abstract The skin lesion of early Lyme disease, erythema migrans (EM), is so characteristic that routine practice is to treat all such patients with antibiotics. Because other skin lesions may resemble EM, it is not known whether presumptive treatment of EM is appropriate in regions where Lyme disease is rare. We constructed a decision model to compare the cost and clinical effectiveness of three strategies for the management of EM: Treat All, Observe, and Serology as a function of the probability that an EM-like lesion is Lyme disease. Treat All was found to be the preferred strategy in regions that are endemic for Lyme disease. Where Lyme disease is rare, Observe is the preferred strategy, as presumptive treatment would be expected to produce excessive harm and increased costs. Where Lyme disease is rare, clinicians and public health officials should consider observing patients with EM-like lesions who lack travel to Lyme disease-endemic areas. PMID:24107201

  13. Empiric antibiotic treatment of erythema migrans-like skin lesions as a function of geography: a clinical and cost effectiveness modeling study.

    PubMed

    Lantos, Paul M; Brinkerhoff, R Jory; Wormser, Gary P; Clemen, Robert

    2013-12-01

    The skin lesion of early Lyme disease, erythema migrans (EM), is so characteristic that routine practice is to treat all such patients with antibiotics. Because other skin lesions may resemble EM, it is not known whether presumptive treatment of EM is appropriate in regions where Lyme disease is rare. We constructed a decision model to compare the cost and clinical effectiveness of three strategies for the management of EM: Treat All, Observe, and Serology as a function of the probability that an EM-like lesion is Lyme disease. Treat All was found to be the preferred strategy in regions that are endemic for Lyme disease. Where Lyme disease is rare, Observe is the preferred strategy, as presumptive treatment would be expected to produce excessive harm and increased costs. Where Lyme disease is rare, clinicians and public health officials should consider observing patients with EM-like lesions who lack travel to Lyme disease-endemic areas. PMID:24107201

  14. A blueprint for staging of murine melanocytic lesions based on the Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) model.

    PubMed

    Wurm, Elisabeth M T; Lin, Lynlee L; Ferguson, Blake; Lambie, Duncan; Prow, Tarl W; Walker, Graeme J; Soyer, H Peter

    2012-09-01

    It has been shown that gene mutations which drive the development of malignant melanoma (MM) in humans also lead to emergence of MM when engineered mice. However, little attention has been paid to the clinical and histopathological features of melanocytic lesions and their natural history in a given mouse model. This knowledge is crucial to enable us to understand how engineered mutations influence the initiation and evolution of melanocytic lesions, and/or for the use of mice as a preclinical model to test specific treatments. We recently reported the development of melanocytic proliferations along the spectrum of naevi to MM in a Cdk4 ( R24C/R24C ) ::Tyr- NRAS ( Q ) ( 61K ) mouse model. In this study, we followed the development of lesions over time using digital photography and dermoscopy with the aim to correlate the clinical and histopathological features of lesions developing in this model. We identified two types of lesions. The first are slow-growing dermal MMs that emanate from dermal naevi. The second did not emanate from naevi, grew rapidly, and appeared to be solely confined to the subcutaneous fat. We present a simple staging system for the MMs that progress from naevi, based on depth of extension into the dermis and subcutis. This represents a blueprint for documentation and follow-up of MMs in the live animal, which is critical for the proper use of murine melanoma models. PMID:22742762

  15. Exploring Damage Recognition Models in Prokaryotic Nucleotide Excision Repair with a Benzo[a]pyrene-Derived Lesion in UvrB

    PubMed Central

    Jia, Lei; Kropachev, Konstantin; Ding, Shuang; Van Houten, Bennett; Geacintov, Nicholas E.; Broyde, Suse

    2009-01-01

    The UvrB protein is a central unit for damage recognition in the prokaryotic nucleotide excision repair system, which excises bulky DNA lesions. We have utilized molecular modeling and MD simulations based on crystal structures, mutagenesis, and fluorescence data, to model the 10R-(+)-cis-anti-B[a]P-N2-dG lesion, derived from the tumorigenic (+) anti-B[a]PDE metabolite of benzo[a]pyrene, at different locations on the inner and outer strand in UvrB. Our results suggest that this lesion is accommodated on the inner strand where it might translocate through the tunnel created by the β-hairpin and the UvrB domain 1B, and ultimately could be housed in the pocket behind the β-hairpin prior to excision by UvrC. Lesions that vary in size and shape may be stopped at the gate to the tunnel, within the tunnel or in the pocket when UvrC initiates excision. Common features of β-hairpin intrusion between the two DNA strands and nucleotide flipping manifested in structures of prokaryotic and eukaryotic NER lesion recognition proteins are consistent with common recognition mechanisms, based on lesion-induced local thermodynamic distortion/destabilization and nucleotide flipping. PMID:19681599

  16. [Foot lesions].

    PubMed

    Stelzner, C; Schellong, S; Wollina, U; Machetanz, J; Unger, L

    2013-11-01

    The foot is the target organ of a variety of internal diseases. Of upmost importance is the diabetic foot syndrome (DFS). Its complex pathophysiology is driven by the diabetic neuropathy, a vastly worsening effect is contributed by infection and ischemia. Seemingly localised lesions have the potential for phlegmone and septicaemia if not diagnosed and drained early. The acral lesions of peripheral artery occlusive disease (PAOD) have unique features as well. However, their life-threatening potential is lower than that of DFS even if the limb is critical. Notably, isolated foot lesions with a mere venous cause may arise from insufficient perforator veins; the accompanying areas of haemosiderosis will lead the diagnostic path. Cholesterol embolization (blue toe syndrome, trash foot) elicits a unique clinical picture and will become more frequent with increasing numbers of catheter-based procedures. Finally, descriptions are given of podagra and of foot mycosis as disease entities not linked to perfusion. The present review focuses on the depiction of disease and its diagnosis, leaving therapeutic considerations untouched. PMID:24114468

  17. Lifespan and lesions in genetically heterogeneous (four-way cross) mice: a new model for aging research.

    PubMed

    Chrisp, C E; Turke, P; Luciano, A; Swalwell, S; Peterson, J; Miller, R A

    1996-11-01

    Genetically heterogeneous animal models provide many advantages for research on aging but have been used infrequently. We present here lifespan and lesion data from a study of mice bred as a cross between (AKR/J x DBA/2J)F1 females and (C57BL/6J x SJL/J)F1 males. In such a four-way cross population, each mouse is genetically unique, but replicate populations of essentially similar genetic structure can be generated quickly, at low cost, and of arbitrary size from commercially available, genetically stable hybrid parents. We employed a protocol in which mice judged to be severely ill were euthanatized to obtain tissue in optimal condition for necropsy, and we were able to infer a likely cause of illness in 42 of 44 animals. Malignant lymphoma, including at least four histopathologically distinct subtypes, was the most common cause and was also a frequent incidental finding in mice dying of other causes. Neoplastic disease, benign or malignant, was the sole or a contributing cause of illness in 90% of the mice for which a cause could plausibly be assigned. A wide range of lethal and nonlethal degenerative lesions was also noted. The coefficient of variation for lifespan in these genetically heterogeneous mice was 26%, similar to that seen in analyses of recombinant inbred mouse lines. Baseline lifespan and pathology data on four-way cross mice is a useful prelude to the exploitation of this rodent model in tests of genetic and mechanistic hypotheses about aging. PMID:8952040

  18. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Majaron, Boris

    2011-12-01

    We present a three-dimensional Monte Carlo model of optical transport in skin with a novel approach to treatment of side boundaries of the volume of interest. This represents an effective way to overcome the inherent limitations of ``escape'' and ``mirror'' boundary conditions and enables high-resolution modeling of skin inclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured values of diffuse reflectance for normal skin. When coupled with a sophisticated model of thermal transport and tissue coagulation kinetics, it also reproduces realistic values of radiant exposure thresholds for epidermal injury and for photocoagulation of port wine stain blood vessels in various skin phototypes, with or without application of cryogen spray cooling.

  19. Neuroprotective effects of vinpocetine and its major metabolite cis-apovincaminic acid on NMDA-induced neurotoxicity in a rat entorhinal cortex lesion model.

    PubMed

    Nyakas, Csaba; Felszeghy, Klára; Szabó, Róbert; Keijser, Jan N; Luiten, Paul G M; Szombathelyi, Zsolt; Tihanyi, Károly

    2009-01-01

    Vinpocetine (ethyl-apovincaminate, Cavinton), a synthetic derivative of the Vinca minor alkaloid vincamine, has been used now for decades for prevention and treatment of cerebrovascular diseases predisposing to development of dementia. Both vinpocetine and its main metabolite cis-apovincaminic acid (cAVA) exert a neuroprotective type of action. Bilateral N-methyl-D-aspartate (NMDA)-induced neurodegeneration in the entorhinal cortex of rat was used as a dementia model to confirm the neuroprotective action of these compounds in vivo. NMDA-lesioned rats were treated 60 min before lesion and throughout 3 postoperative days with a 10 mg/kg intraperitoneal dose of vinpocetine or cAVA. Behavioral tests started after termination of drug treatment and consisted of novel object recognition, social discrimination, and spontaneous alternation in a Y-maze, and spatial learning in the Morris water maze. At the end of behavioral testing brains were perfused with fixative and the size of the excitotoxic neuronal lesion and that of microglial activation around the lesion were assayed quantitatively on brain sections immunostained for neuron-specific nuclear protein (NeuN) and integrin CD11b, respectively. Entorhinal NMDA lesions impaired recognition of novel objects and the new social partner, and suppressed spontaneous alternation and spatial learning performance in the Morris maze. Both vinpocetine and cAVA effectively attenuated the behavioral deficits, and significantly decreased lesion size and the region of microglia activation. Both lesion-induced attention deficit and learning disabilities were markedly alleviated by vinpocetine and cAVA. The morphological findings corroborated the behavioral observations and indicated reduced lesion size and microglia activation especially after vinpocetine treatment which supports an in vivo neuroprotective mode of action of vinpocitine and a less potent action of cAVA. PMID:19492990

  20. Analytical modeling of laser pulse heating of embedded biological targets: An application to cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Mirkov, Mirko; Sherr, Evan A.; Sierra, Rafael A.; Lloyd, Jenifer R.; Tanghetti, Emil

    2006-06-01

    Detailed understanding of the thermal processes in biological targets undergoing laser irradiation continues to be a challenging problem. For example, the contemporary pulsed dye laser (PDL) delivers a complex pulse format which presents specific challenges for theoretical understanding and further development. Numerical methods allow for adequate description of the thermal processes, but are lacking for clarifying the effects of the laser parameters. The purpose of this work is to derive a simplified analytical model that can guide the development of future laser designs. A mathematical model of heating and cooling processes in tissue is developed. Exact analytical solutions of the model are found when applied to specific temporal and spatial profiles of heat sources. Solutions are reduced to simple algebraic expressions. An algorithm is presented for approximating realistic cases of laser heating of skin structures by heat sources of the type found to have exact solutions. The simple algebraic expressions are used to provide insight into realistic laser irradiation cases. The model is compared with experiments on purpura threshold radiant exposure for PDL. These include data from four independent groups over a period of 20 years. Two of the data sets are taken from previously published articles. Two more data sets were collected from two groups of patients that were treated with two PDLs (585 and 595 nm) on normal buttocks skin. Laser pulse durations were varied between 0.5 and 40 ms radiant exposures were varied between 3 and 20 J/cm2. Treatment sites were evaluated 0.5, 1, and 24 hours later to determine purpuric threshold. The analytical model is in excellent agreement with a wide range of experimental data for purpura threshold radiant exposure. The data collected by independent research groups over the last 20 years with PDLs with wavelengths ranged from 577 to 595 nm were described accurately by this model. The simple analytical model provides an accurate

  1. Local Cellular Immune Responses and Pathogenesis of Buruli Ulcer Lesions in the Experimental Mycobacterium Ulcerans Pig Infection Model

    PubMed Central

    Bolz, Miriam; Ruggli, Nicolas; Borel, Nicole; Pluschke, Gerd; Ruf, Marie-Thérèse

    2016-01-01

    Background Buruli ulcer is a neglected tropical disease of the skin that is caused by infection with Mycobacterium ulcerans. We recently established an experimental pig (Sus scrofa) infection model for Buruli ulcer to investigate host-pathogen interactions, the efficacy of candidate vaccines and of new treatment options. Methodology/Principal Findings Here we have used the model to study pathogenesis and early host-pathogen interactions in the affected porcine skin upon infection with mycolactone-producing and non-producing M. ulcerans strains. Histopathological analyses of nodular lesions in the porcine skin revealed that six weeks after infection with wild-type M. ulcerans bacteria extracellular acid fast bacilli were surrounded by distinct layers of neutrophils, macrophages and lymphocytes. Upon ulceration, the necrotic tissue containing the major bacterial burden was sloughing off, leading to the loss of most of the mycobacteria. Compared to wild-type M. ulcerans bacteria, toxin-deficient mutants caused an increased granulomatous cellular infiltration without massive tissue necrosis, and only smaller clusters of acid fast bacilli. Conclusions/Significance In summary, the present study shows that the pathogenesis and early immune response to M. ulcerans infection in the pig is very well reflecting BU disease in humans, making the pig infection model an excellent tool for the profiling of new therapeutic and prophylactic interventions. PMID:27128097

  2. A Model of Post-Traumatic Epilepsy After Penetrating Brain Injuries: Effect of Lesion Size and Metal Fragments

    PubMed Central

    Kendirli, M. Tansel; Rose, Dominique T.; Bertram, Edward H.

    2014-01-01

    Objective Penetrating brain injury (PBI) has the highest risk for inducing post-traumatic epilepsy and retained foreign materials such as bullet fragments carry the greatest risk. This study examines the potential contribution of copper, a major component of bullets, to the development of epilepsy following PBI. Methods Anesthetized adult male rats received a penetrating injury from the dorsal cortex to the ventral hippocampus from a high speed small bit drill. In one group of animals, copper wire was inserted into the lesion. Control animals had only the lesion or the lesion plus stainless steel wire (biologically inert foreign body). From 6 to up to 11 months following the injury the rats were monitored intermittently for the development of epilepsy with video-EEG. A separate set of animals was examined for possible acute seizures in the week following the injury. Results 22 of the 23 animals with copper wire developed chronic epilepsy compared to 3 of the 20 control rats (lesion and lesion with stainless steel). Copper was associated with more extensive injury. The control rats with epilepsy had larger lesions. In the acute injury group, there was no difference in the incidence of seizures (83% lesion plus stainless steel, 70% lesion plus copper). Conclusions Copper increases the risk for epilepsy and may increase damage over time, but there were no differences between the groups in the incidence of acute post-injury seizures. Lesion size may contribute to epilepsy development in lesion only animals. Copper maybe an independent risk factor for the development of epilepsy and possible secondary injury, but lesion size also contributes to the development of epilepsy. The consequences of prolonged exposure of the brain to copper observed in these animals may have clinical implications that require further evaluation. PMID:25470332

  3. lesion development in a new intestinal loop model indicates the involvement of a shared Clostridium perfringens virulence factor in haemorrhagic enteritis in calves.

    PubMed

    Valgaeren, B; Pardon, B; Goossens, E; Verherstraeten, S; Schauvliege, S; Timbermont, L; Ducatelle, R; Deprez, P; Van Immerseel, F

    2013-07-01

    Clostridium perfringens-associated enterotoxaemia is a fatal disease in fast growing suckler and veal calves. An intestinal loop model was developed to study the pathogenesis of the disease. Loops were injected with stationary and logarithmic C. perfringens cultures with or without, a milk protein-based commercial milk replacer for calves. Isolates tested were from cases of bovine enterotoxaemia and from calves without signs of enterotoxaemia, in addition to netB-positive and -negative isolates from poultry, a type C isolate from piglets and the human isolate JIR325. All isolates induced necrohaemorrhagic lesions in combination with milk replacer, while all control loops (i.e. medium plus milk replacer) remained histologically normal. In addition, time-course experiments were conducted using an isolate from an outbreak of bovine enterotoxaemia. Histological examination showed that the earliest lesion was congestion of the capillaries, starting within 30 min of inoculation. Haemorrhage and mucosal necrosis began at the tips of the villi 3-4 h after bacterial inoculation. These lesions are similar to those observed in natural cases of bovine enterotoxaemia. Therefore, in this model, necrohaemorrhagic lesions can be induced by C. perfringens isolates from diverse origins, suggesting that the lesions may be caused by one or more virulence factors that are shared by these isolates. PMID:23351504

  4. Predictive Modeling of Human Perception Subjectivity: Feasibility Study of Mammographic Lesion Similarity

    SciTech Connect

    Xu, Songhua; Tourassi, Georgia

    2012-01-01

    The majority of clinical content-based image retrieval (CBIR) studies disregard human perception subjectivity, aiming to duplicate the consensus expert assessment of the visual similarity on example cases. The purpose of our study is twofold: (i) discern better the extent of human perception subjectivity when assessing the visual similarity of two images with similar semantic content, and (ii) explore the feasibility of personalized predictive modeling of visual similarity. We conducted a human observer study in which five observers of various expertise were shown ninety-nine triplets of mammographic masses with similar BI-RADS descriptors and were asked to select the two masses with the highest visual relevance. Pairwise agreement ranged between poor and fair among the five observers, as assessed by the kappa statistic. The observers' self-consistency rate was remarkably low, based on repeated questions where either the orientation or the presentation order of a mass was changed. Various machine learning algorithms were explored to determine whether they can predict each observer's personalized selection using textural features. Many algorithms performed with accuracy that exceeded each observer's self-consistency rate, as determined using a cross-validation scheme. This accuracy was statistically significantly higher than would be expected by chance alone (two-tailed p-value ranged between 0.001 and 0.01 for all five personalized models). The study confirmed that human perception subjectivity should be taken into account when developing CBIR-based medical applications.

  5. The MEG topography and the source model of abnormal neural activities associated with brain lesions

    SciTech Connect

    Ueno, S.; Iramina, K.; Ozaki, H.; Harada, K.

    1986-09-01

    A source model is proposed to simulate spatial distributions of abnormal MEG and EEG activities generated by abnormal neural activities such as the delta activity associated with brain tumors. Brain tumor itself is electrically silent and the spherical shell around the tumor might generate abnormal neural activities. The sources of these neural activities are represented by combinations of multiple current dipoles. The head is assumed to be a spherical volume conductor. Electrical potentials and magnetic fields over the surface of the spheres are calculated. The computer simulation shows that the MEG topography and EEG topography vary variously with combinations of location and orientation of the dipoles. In a special case, however, that the dipoles orient in the same direction or orient radially, the spatial patterns of the MEGs and EEGs generated by numerous dipoles are analogous to those generated by single dipoles.

  6. Photoacoustic imaging of an inflammatory lesion model in the neonatal rat brain

    NASA Astrophysics Data System (ADS)

    Guevara, Edgar; Berti, Romain; Londono, Irène; Xie, Ningshi; Bellec, Pierre; Lesage, Frédéric; Lodygensky, G. A.

    2014-09-01

    Periventricular leukomalacia (PVL) is a condition that may cause significant neurodevelopmental handicap in premature newborns. It is characterized by white matter injury, associated with inflammation. This work aimed to assess the impact of inflammation on cerebral oxygen saturation (sO2) using depth-sensitive photoacoustic tomography (PAT). The aspects of PVL were reproduced in a rodent model by injection of lipopolysaccharide (LPS) into the corpus callosum. The results of this exploratory work reveal lower sO2 values in LPS group, as compared to sham controls; showing decreased values in the corpus callosum and in the left cortex, ipsilateral to the injection site. Interhemispherical connectivity was not affected by LPS injection, as shown by functional connectivity analysis. This study supports the use of PAT as a non-invasive tool to assess oxygenation values in vivo in the newborn brain.

  7. Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson's Disease.

    PubMed

    Seiler, Stefanie; Di Santo, Stefano; Widmer, Hans Rudolf

    2016-01-01

    Transplantation of fetal human ventral mesencephalic (VM) dopaminergic neurons into the striatum is a promising strategy to compensate for the characteristic dopamine deficit observed in Parkinson's disease (PD). This therapeutic approach, however, is currently limited by the high number of fetuses needed for transplantation and the poor survival and functional integration of grafted dopaminergic neurons into the host brain. Accumulating evidence indicates that contrasting inhibitory signals endowed in the central nervous system (CNS) might support neuronal regeneration. Hence, in the present study we aimed at improving survival and integration of grafted cells in the host brain by neutralizing Nogo-A, one of the most potent neurite growth inhibitors in the CNS. For that purpose, VM tissue cultures were transplanted into rats with a partial 6-hydroxydopamine (6-OHDA) lesion causing a hemi-PD model and concomitantly treated for 2 weeks with intra-ventricular infusion of neutralizing anti-Nogo-A antibodies. Motor behavior using the cylinder test was assessed prior to and after transplantation as functional outcome. At the end of the experimental period the number of dopaminergic fibers growing into the host brain, the number of surviving dopaminergic neurons in the grafts as well as graft size was examined. We found that anti-Nogo-A antibody infusion significantly improved the asymmetrical forelimb use observed after lesions as compared to controls. Importantly, a significantly three-fold higher dopaminergic fiber outgrowth from the transplants was detected in the Nogo-A antibody treated group as compared to controls. Furthermore, Nogo-A neutralization showed a tendency for increased survival of dopaminergic neurons (by two-fold) in the grafts. No significant differences were observed for graft volume and the number of dopaminergic neurons co-expressing G-protein-coupled inward rectifier potassium channel subunit two between groups. In sum, our findings support the

  8. Nogo-A Neutralization Improves Graft Function in a Rat Model of Parkinson’s Disease

    PubMed Central

    Seiler, Stefanie; Di Santo, Stefano; Widmer, Hans Rudolf

    2016-01-01

    Transplantation of fetal human ventral mesencephalic (VM) dopaminergic neurons into the striatum is a promising strategy to compensate for the characteristic dopamine deficit observed in Parkinson’s disease (PD). This therapeutic approach, however, is currently limited by the high number of fetuses needed for transplantation and the poor survival and functional integration of grafted dopaminergic neurons into the host brain. Accumulating evidence indicates that contrasting inhibitory signals endowed in the central nervous system (CNS) might support neuronal regeneration. Hence, in the present study we aimed at improving survival and integration of grafted cells in the host brain by neutralizing Nogo-A, one of the most potent neurite growth inhibitors in the CNS. For that purpose, VM tissue cultures were transplanted into rats with a partial 6-hydroxydopamine (6-OHDA) lesion causing a hemi-PD model and concomitantly treated for 2 weeks with intra-ventricular infusion of neutralizing anti-Nogo-A antibodies. Motor behavior using the cylinder test was assessed prior to and after transplantation as functional outcome. At the end of the experimental period the number of dopaminergic fibers growing into the host brain, the number of surviving dopaminergic neurons in the grafts as well as graft size was examined. We found that anti-Nogo-A antibody infusion significantly improved the asymmetrical forelimb use observed after lesions as compared to controls. Importantly, a significantly three-fold higher dopaminergic fiber outgrowth from the transplants was detected in the Nogo-A antibody treated group as compared to controls. Furthermore, Nogo-A neutralization showed a tendency for increased survival of dopaminergic neurons (by two-fold) in the grafts. No significant differences were observed for graft volume and the number of dopaminergic neurons co-expressing G-protein-coupled inward rectifier potassium channel subunit two between groups. In sum, our findings support the

  9. A Model for Predicting Gastrostomy Tube Placement in Patients Undergoing Surgery for Upper Aerodigestive Tract Lesions

    PubMed Central

    Mays, Ashley C.; Moustafa, Farah; Worley, Mitch; Waltonen, Joshua D.; D'Agostino, Ralph

    2015-01-01

    IMPORTANCE Identifying high-risk patients in the preoperative period can allow physicians to optimize nutritional status early for better outcomes after head and neck cancer resections. OBJECTIVE To develop a model to predict preoperatively the need for gastrostomy tube (G-tube) placement in patients undergoing surgery of the upper aerodigestive tract. DESIGN, SETTING, AND PARTICIPANTS This retrospective medical record review included all adult patients diagnosed with head and neck cancers who underwent tumor resection from 2007 through 2012 at Wake Forest Baptist Health, a level 1 tertiary care center. Records were screened for patient demographics, tumor characteristics, surgical treatment type, and postoperative placement of G-tube. A total of 743 patients underwent resection of head and neck tumors. Of these, 203 were excluded for prior G-tube placement, prior head and neck resection, G-tube placement for chemoradiotherapy, and resection for solely nodal disease, leaving 540 patients for analysis. MAIN OUTCOMES AND MEASURES Placement of postoperative G-tube. RESULTS Of the 540 included patients, 23% required G-tube placement. The following variables were significant and independent predictors of G-tube placement: preoperative irradiation (odds ratio [OR], 4.1; 95% CI, 2.4–6.9; P < .001), supracricoid laryngectomy (OR, 26.0; 95% CI, 4.9–142.9; P < .001), tracheostomy tube placement (OR, 2.6; 95% CI, 1.5–4.4; P < .001), clinical node stage N0 vs N2 (OR, 2.4; 95% CI, 1.4–4.2; P = .01), clinical node stage N1 vs N2 (OR, 1.6; 95% CI, 0.8–3.3; P = .01), preoperative weight loss (OR, 2.0; 95% CI, 1.2–3.2; P = .004), dysphagia (OR, 2.0; 95% CI, 1.2–3.2; P = .005), reconstruction type (OR, 1.9; 95% CI, 1.1–2.9; P = .02), and tumor stage (OR, 1.8; 95% CI, 1.1–2.9; P = .03). A predictive model was developed based on these variables. In the validation analysis, we found that the average predicted score for patients who received G-tubes was statistically

  10. Characterization of acute and long-term pathologies of superficial and deep dermal sulfur mustard skin lesions in the hairless guinea pig model.

    PubMed

    Dachir, Shlomit; Cohen, Maayan; Kamus-Elimeleh, Dikla; Fishbine, Eliezer; Sahar, Rita; Gez, Rellie; Brandeis, Rachel; Horwitz, Vered; Kadar, Tamar

    2012-01-01

    Sulfur mustard induces severe acute and prolonged damage to the skin and only partially effective treatments are available. We have previously validated the use of hairless guinea pigs as an experimental model for skin lesions. The present study aimed to characterize a model of a deep dermal lesion and to compare it with the previously described superficial lesion. Clinical evaluation of the lesions was conducted using reflectance colorimetry, trans-epidermal water loss and wound area measurements. Prostaglandin E(2) content, matrix metalloproteinase-2 and 9 activity, and histopathology were conducted up to 4 weeks post-exposure. Sulfur mustard skin injury, including erythema and edema, impairment of skin barrier and wounds developed in a dose-dependent manner. Prostaglandin E(2) content and matrix metalloproteinase-2 and 9 activities were elevated during the wound development and the healing process. Histological evaluation revealed severe damage to the epidermis and deep dermis and vesications. At 4 weeks postexposure, healing was not completed: significantly impaired stratum corneum, absence of hair follicles, and epidermal hyperplasia were observed. These results confirm the use of the superficial and deep dermal skin injuries in the hairless guinea pigs as suitable models that can be utilized for the investigation of the pathological processes of acute as well as long-term injuries. These models will be further used to develop treatments to improve the healing process and prevent skin damage and long-term effects. PMID:23082902

  11. Imperfect DNA lesion repair in the semiconservative quasispecies model: Derivation of the Hamming class equations and solution of the single-fitness peak landscape

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2004-12-01

    This paper develops a Hamming class formalism for the semiconservative quasispecies equations with imperfect lesion repair, first presented and analytically solved in Y. Brumer and E.I. Shakhnovich (q-bio.GN/0403018, 2004). Starting from the quasispecies dynamics over the space of genomes, we derive an equivalent dynamics over the space of ordered sequence pairs. From this set of equations, we are able to derive the infinite sequence length form of the dynamics for a class of fitness landscapes defined by a master genome. We use these equations to solve for a generalized single-fitness-peak landscape, where the master genome can sustain a maximum number of lesions and remain viable. We determine the mean equilibrium fitness and error threshold for this class of landscapes, and show that when lesion repair is imperfect, semiconservative replication displays characteristics from both conservative replication and semiconservative replication with perfect lesion repair. The work presented here provides a formulation of the model which greatly facilitates the analysis of a relatively broad class of fitness landscapes, and thus serves as a convenient springboard into biological applications of imperfect lesion repair.

  12. Computational Modeling Predicts Interleukin-10 Control of Lesion Sterilization By Balancing Early Host-Immunity-Mediated Antimicrobial Responses With Caseation During Mycobacterium tuberculosis Infection

    PubMed Central

    Cilfone, Nicholas A.; Ford, Christopher B.; Marino, Simeone; Mattila, Joshua T.; Gideon, Hannah P.; Flynn, JoAnne L.; Kirschner, Denise E.; Linderman, Jennifer J.

    2014-01-01

    Although almost a third of the world’s population is infected with the bacterial pathogen Mycobacterium tuberculosis (Mtb), our understanding of the functions of many immune factors involved in fighting infection is limited. Determining the role of the immunosuppressive cytokine interleukin-10 (IL-10) at the level of the granuloma has proven difficult due to lesional heterogeneity and the limitations of animal models. Here we take an in silico approach and, through a series of virtual experiments, we predict several novel roles for IL-10 in TB granulomas: (1) decreased levels of IL-10 lead to increased numbers of sterile lesions, but at the cost of early increased caseation, (2) small increases in early antimicrobial activity cause this increased lesion sterility, (3) IL-10 produced by activated macrophages is a major mediator of early antimicrobial activity and early host-induced caseation and (4) increasing levels of infected macrophage derived IL-10 promotes bacterial persistence by limiting the early antimicrobial response and preventing lesion sterilization. Our findings, currently only accessible using an in silico approach, suggest that IL-10 at the individual granuloma scale is a critical regulator of lesion outcome. These predictions suggest IL-10 related mechanisms that could be used as adjunctive therapies during TB. PMID:25512604

  13. Handling changes in MRI acquisition parameters in modeling whole brain lesion volume and atrophy data in multiple sclerosis subjects: Comparison of linear mixed-effect models

    PubMed Central

    Chua, Alicia S.; Egorova, Svetlana; Anderson, Mark C.; Polgar-Turcsanyi, Mariann; Chitnis, Tanuja; Weiner, Howard L.; Guttmann, Charles R.G.; Bakshi, Rohit; Healy, Brian C.

    2015-01-01

    Magnetic resonance imaging (MRI) of the brain provides important outcome measures in the longitudinal evaluation of disease activity and progression in MS subjects. Two common measures derived from brain MRI scans are the brain parenchymal fraction (BPF) and T2 hyperintense lesion volume (T2LV), and these measures are routinely assessed longitudinally in clinical trials and observational studies. When measuring each outcome longitudinally, observed changes may be potentially confounded by variability in MRI acquisition parameters between scans. In order to accurately model longitudinal change, the acquisition parameters should thus be considered in statistical models. In this paper, several models for including protocol as well as individual MRI acquisition parameters in linear mixed models were compared using a large dataset of 3453 longitudinal MRI scans from 1341 subjects enrolled in the CLIMB study, and model fit indices were compared across the models. The model that best explained the variance in BPF data was a random intercept and random slope with protocol specific residual variance along with the following fixed-effects: baseline age, baseline disease duration, protocol and study time. The model that best explained the variance in T2LV was a random intercept and random slope along with the following fixed-effects: baseline age, baseline disease duration, protocol and study time. In light of these findings, future studies pertaining to BPF and T2LV outcomes should carefully account for the protocol factors within longitudinal models to ensure that the disease trajectory of MS subjects can be assessed more accurately. PMID:26199872

  14. High Milk Consumption Does Not Affect Prostate Tumor Progression in Two Mouse Models of Benign and Neoplastic Lesions

    PubMed Central

    Boutillon, Florence; Verkarre, Virginie; Camparo, Philippe; Viltard, Mélanie; Méjean, Arnaud; Oudard, Stéphane; Souberbielle, Jean-Claude; Friedlander, Gérard; Goffin, Vincent

    2015-01-01

    Epidemiological studies that have investigated whether dairy (mainly milk) diets are associated with prostate cancer risk have led to controversial conclusions. In addition, no existing study clearly evaluated the effects of dairy/milk diets on prostate tumor progression, which is clinically highly relevant in view of the millions of men presenting with prostate pathologies worldwide, including benign prostate hyperplasia (BPH) or high-grade prostatic intraepithelial neoplasia (HGPIN). We report here a unique interventional animal study to address this issue. We used two mouse models of fully penetrant genetically-induced prostate tumorigenesis that were investigated at the stages of benign hyperplasia (probasin-Prl mice, Pb-Prl) or pre-cancerous PIN lesions (KIMAP mice). Mice were fed high milk diets (skim or whole) for 15 to 27 weeks of time depending on the kinetics of prostate tumor development in each model. Prostate tumor progression was assessed by tissue histopathology examination, epithelial proliferation, stromal inflammation and fibrosis, tumor invasiveness potency and expression of various tumor markers relevant for each model (c-Fes, Gprc6a, activated Stat5 and p63). Our results show that high milk consumption (either skim or whole) did not promote progression of existing prostate tumors when assessed at early stages of tumorigenesis (hyperplasia and neoplasia). For some parameters, and depending on milk type, milk regimen could even exhibit slight protective effects towards prostate tumor progression by decreasing the expression of tumor-related markers like Ki-67 and Gprc6a. In conclusion, our study suggests that regular milk consumption should not be considered detrimental for patients presenting with early-stage prostate tumors. PMID:25938513

  15. Celastrol, an NF-κB inhibitor, ameliorates hypercalciuria and articular cartilage lesions in a mouse model of secondary osteoporosis.

    PubMed

    Liu, Xiaodong; Cai, Feng; Zhang, Yan; Yang, Anli; Liu, Liang

    2016-04-01

    Notwithstanding compelling contribution of NF-κB to the progression of osteoporosis has been reported, little is known regarding direct inhibition of NF-κB benefiting osteoporosis. In this study, therefore, we evaluated the role of celastrol, an NF-κB inhibitor, in a mouse model of secondary osteoporosis. Animals were divided into three groups as Sham (control), SO (secondary osteoporosis) and SO + CA (secondary osteoporosis treated with celastrol). Significant decreases in body weight and body fat were observed following celastrol treatment in SO group, but leptin levels were much higher. Celastrol also exhibited a significant decrease in urinary calcium excretion. Moreover, other important events were observed after celastrol treatment, covering substantial decrements in serum concentrations of PTH, TRAP-5b, CTX and DPD, improved structure of articular cartilage and cancellous bone (revealed by H&E and safranin-O staining), and significant decline in levels of NF-κB (P65), MMP-1, and MMP-9. These findings demonstrated that celastrol treatment not only improved abnormal lipid metabolism and hypercalciuria in mice subjected to secondary osteoporosis, but also ameliorated articular cartilage lesions. Our results provided evidence of targeted therapy for NF-κB in the clinical treatment of secondary osteoporosis. PMID:26980429

  16. Effect of fluoride mouthrinsing on caries lesion development in shark enamel: an in situ caries model study.

    PubMed

    Ogaard, B; Rölla, G; Dijkman, T; Ruben, J; Arends, J

    1991-10-01

    Shark enamel consists of nearly pure fluorapatite and has been shown to demineralize in an in situ caries model. The present study was conducted to investigate whether additional fluoride supplementation in the form of mouthrinsing would inhibit lesion development in shark enamel. The study slabs of shark enamel were mounted in dental appliances. Six individuals wore the appliances while rinsing daily with a neutral 0.2% NaF solution for 4 wk. The specimens were analyzed by means of quantitative microradiography, and the data compared with a previous study using untreated shark enamel and the same participants. It was found that fluoride rinsing did not measurably inhibit enamel demineralization in 4 wk. Scanning electron microradiographs showed that calcium fluoride-like material was not formed on shark enamel after neutral fluoride treatment, supporting a previous study. The present study indicates, therefore, that formation of a calcium fluoride-like material on the enamel surface may be essential for the cariostatic effect of topical agents. PMID:1754838

  17. Chemopreventive effects of pequi oil (Caryocar brasiliense Camb.) on preneoplastic lesions in a mouse model of hepatocarcinogenesis.

    PubMed

    Palmeira, Simone M; Silva, Paula R P; Ferrão, Juliana S P; Ladd, Aliny A B L; Dagli, Maria L Z; Grisolia, Cesar K; Hernandez-Blazquez, Francisco J

    2016-07-01

    Pequi (Caryocar brasiliense Camb.), a fruit from Brazil's central region, was evaluated for its chemopreventive effects on preneoplastic liver lesions induced by the carcinogen diethylnitrosamine (DEN) in mice. BALB/c mice, 14 days of age, received an intraperitoneal injection at 10 µg/g of DEN. The mice received either of two doses of pequi oil (100 or 400 mg/kg) daily from the age of 30 days and were killed at the age of 189 days. Stereological parameters, including the volume density (Vv) and the total volume (Vtot) of the lesions (preneoplastic and adenomas), were measured and the expression of cytokeratins CK8/18 was evaluated. The total volume of lesions and adenomas was reduced by 51% in the group treated with the carcinogen and 400 mg/kg of pequi oil administered daily by an oral gavage for 25 consecutive weeks. In addition, some mice in this group did not develop lesions. Among the remaining preneoplastic lesions in this group, the number of remodelled profiles increased by 2.4-fold in the 400-mg pequi oil-treated mice relative to the 100-mg-treated mice. Our results show that pequi oil exerts a hepatoprotective effect against DEN-induced development of preneoplastic lesions and adenoma in mice and the potential for its use in the prevention of liver cancer. PMID:26287697

  18. PK-PD modeling of individual lesion FDG-PET response to predict overall survival in patients with sunitinib-treated gastrointestinal stromal tumor.

    PubMed

    Schindler, E; Amantea, M A; Karlsson, M O; Friberg, L E

    2016-04-01

    Pharmacometric models were developed to characterize the relationships between lesion-level tumor metabolic activity, as assessed by the maximum standardized uptake value (SUVmax) obtained on [(18)F]-fluorodeoxyglucose (FDG) positron emission tomography (PET), tumor size, and overall survival (OS) in 66 patients with gastrointestinal stromal tumor (GIST) treated with intermittent sunitinib. An indirect response model in which sunitinib stimulates tumor loss best described the typically rapid decrease in SUVmax during on-treatment periods and the recovery during off-treatment periods. Substantial interindividual and interlesion variability were identified in SUVmax baseline and drug sensitivity. A parametric time-to-event model identified the relative change in SUVmax at one week for the lesion with the most pronounced response as a better predictor of OS than tumor size. Based on the proposed modeling framework, early changes in FDG-PET response may serve as predictor for long-term outcome in sunitinib-treated GIST. PMID:27299707

  19. 7-nitroindazole attenuates 6-hydroxydopamine-induced spatial learning deficits and dopamine neuron loss in a presymptomatic animal model of Parkinson's disease.

    PubMed

    Haik, Kristi L; Shear, Deborah A; Hargrove, Chad; Patton, Jared; Mazei-Robison, Michelle; Sandstrom, Michael I; Dunbar, Gary L

    2008-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder in which loss of dopaminergic (DA) neurons (>50%) in the substantia nigra (SN) precedes most of the overt motor symptoms, making early diagnosis and treatment interventions difficult. Because PD has been associated with free radicals generated by nitric oxide, this study tested whether treatments of 7-nitroindazole (7NI), a nitric-oxide-synthase inhibitor, could reduce cognitive deficits that often emerge before overt motor symptoms in a presymptomatic rat model of PD. Rats were given intraperitoneal injections of 50 mg/kg 7NI (or vehicle) just before receiving bilateral, intrastriatal injections of the DA-toxin, 6-hydroxydopamine (6-OHDA). The rats were then given a battery of motor tasks, and their learning ability was assessed using a spatial reversal task in a water-T maze. Results indicate that 7NI treatments attenuate 6-OHDA-induced spatial learning deficits and protect against DA cell loss in the SN, suggesting that 7NI may have potential as an early, presymptomatic pharmacotherapy for PD. PMID:18489022

  20. Detection of Precursor Lesions of Pancreatic Adenocarcinoma in PET-CT in a Genetically Engineered Mouse Model of Pancreatic Cancer1

    PubMed Central

    Fendrich, Volker; Schneider, Ralph; Maitra, Anirban; Jacobsen, Ilse D; Opfermann, Thomas; Bartsch, Detlef K

    2011-01-01

    Background Pancreatic cancer is among the most dismal of human malignancies. The 5-year survival rate is lower than 5%. The identification of precursor lesions would be the main step to improve this fatal outcome. One precursor lesions are called pancreatic intraepithelial neoplasia (PanIN) and are graduated in grade 1 to 3, whereas grade 3 is classified as carcinoma in situ. Currently, no reliable, noninvasive imaging technique (e.g., ultrasound, computed tomography, magnet resonance imaging) exists to verify PanINs. Methods Recently, a transgenic mouse model of pancreatic cancer was established in which the tumor progression of human pancreatic carcinoma is reproduced. These so-called Pdx-1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+mice develop PanINs, which transform to invasive growing pancreatic carcinoma. The pancreata of mice of different ages were immunohistochemically stained using α-GLUT-2 antibodies. Furthermore, mice underwent positron emission tomography (PET)-computed tomography (CT) with 18F-fluorodeoxyglucose (FDG) to evaluate early detection of PanIN lesions. Results An expression of GLUT-2 in murine PanINs was found in PanINs of grade 1B and higher. This finding is associated with an elevated glucose metabolism, leading to the detection of precursor lesions of pancreatic cancer in the FDG PET-CT scan. In addition, immunohistochemical staining of GLUT-2 was detectable in 45 (75%) of 60 human PanINs, whereas PanINs of grade 1B and higher showed a very extensive expression. Conclusions In conclusion, we demonstrate for the first time that an elevated glucose metabolism occurs already in precursor lesions of murine and human pancreatic carcinoma. These findings are the basis for the detection of precursor lesions by PET-CT, thereby helping improving the prognosis of this devastating disease. PMID:21403843

  1. Allopregnanolone Reinstates Tyrosine Hydroxylase Immunoreactive Neurons and Motor Performance in an MPTP-Lesioned Mouse Model of Parkinson's Disease

    PubMed Central

    Adeosun, Samuel O.; Hou, Xu; Jiao, Yun; Zheng, Baoying; Henry, Sherry; Hill, Rosanne; He, Zhi; Pani, Amar; Kyle, Patrick; Ou, Xiaoming; Mosley, Thomas; Farley, Jerry M.; Stockmeier, Craig; Paul, Ian; Bigler, Steven; Brinton, Roberta Diaz; Smeyne, Richard; Wang, Jun Ming

    2012-01-01

    Restorative/protective therapies to restore dopamine neurons in the substantia nigra pars compacta (SNpc) are greatly needed to effectively change the debilitating course of Parkinson's disease. In this study, we tested the therapeutic potential of a neurogenic neurosteroid, allopregnanolone, in the restoration of the components of the nigrostriatal pathway in MPTP-lesioned mice by measuring striatal dopamine levels, total and tyrosine hydroxylase immunoreactive neuron numbers and BrdU-positive cells in the SNpc. An acute treatment (once/week for two weeks) with allopregnanolone restored the number of tyrosine hydroxylase-positive and total cell numbers in the SNpc of MPTP-lesioned mice, even though this did not increase striatal dopamine. It was also noted that MPTP treated mice to which allopregnanolone was administered had an increase in BrdU-positive cells in the SNpc. The effects of allopregnanolone in MPTP-lesioned mice were more apparent in mice that underwent behavioral tests. Interestingly, mice treated with allopregnanolone after MPTP lesion were able to perform at levels similar to that of non-lesioned control mice in a rotarod test. These data demonstrate that allopregnanolone promotes the restoration of tyrosine hydroxylase immunoreactive neurons and total cells in the nigrostriatal tract, improves the motor performance in MPTP-treated mice, and may serve as a therapeutic strategy for Parkinson's disease. PMID:23209637

  2. Predictive model for contrast-enhanced ultrasound of the breast: Is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions?

    PubMed Central

    Luo, Jun; Chen, Ji-Dong; Chen, Qing; Yue, Lin-Xian; Zhou, Guo; Lan, Cheng; Li, Yi; Wu, Chi-Hua; Lu, Jing-Qiao

    2016-01-01

    AIM: To build and evaluate predictive models for contrast-enhanced ultrasound (CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system (BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve (ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant (P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BI-RADS classification. PMID:27358688

  3. The efficacy of hydro alcoholic extract of Seidlitzia rosmarinus on experimental zoonotic cutaneous leishmaniasis lesions in murine model

    PubMed Central

    Ahmadi, Maryam; Fata, Abdolmajid; Khamesipour, Ali; Rakhshandeh, Hasan; Miramin Mohammadi, Akram; Salehi, Ghodratollah; Monavari, Hadi

    2014-01-01

    Objective: Leishmaniasis is one of the most important parasitic infectious diseases in the world. Since last century, many efforts have been made to control and treat the disease, but appropriate vaccines, pesticides and medicines are not available or even eligible. The purpose of this study was to evaluate the effect of hydro-alcoholic extract of Seidlitzia rosmarinus on the lesions of experimental Cutaneous Leishmaniasis (CL) in Balb/c mice. Materials and Methods: The population study was 60 Ballb/c mice which divided to 6 groups, all infected with Leishmania major [MRHO/75/IR]. Soon after the ulcer started to appear in the early stage, a dose of provided herbal extract with 5, 10 and 15% concentration applied on each lesion. The surface area of the lesions measured during an interval of 10 days. Direct Giemsa stained smears prepared two and four weeks after treatment. Results: Increasing the mean size of the lesions was statistically significant compared to those in control group (p>0.001). Visceral Leishmaniasis (VL) developed in all of the mice including the control group that received Eucerine alone. Survival rate in group receiving 15% S. rosmarinus extracts showed significantly higher compared to mice in control group (p<0.001). Conclusion: Hydro-alcoholic extracts of S.rosmarinus with concentrations below15% did not show a therapeutic effect on experimental CL ulcers of Balb/c mice. Further studies with higher concentrations or nano particles are recommended. PMID:25386402

  4. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions

    PubMed Central

    ZHANG, JIANFEI; JING, XINYING; NIU, WENWEN; ZHANG, MIN; GE, LIHUA; MIAO, CONGCONG; TANG, XIAOFEI

    2016-01-01

    Peroxiredoxin 1 (Prx1) is important in the protection of cells from oxidative damage and the regulation of cell proliferation and apoptosis. Prx1 is overexpressed in oral precancerous lesions of oral leukoplakia (OLK) and oral cancer; however, the association between Prx1 expression and OLK pathogenesis remains unknown. The present study investigated the role of Prx1 and its molecular mechanisms in oxidative stress-induced apoptosis during the pathogenesis of OLK. Wild-type and Prx1 knockout mice were treated with 50 µg/ml 4-nitroquinoline-1-oxide (4NQO) or 4NQO + H2O2 for 16 weeks to establish mouse models with tongue precancerous lesions. Apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The expression of Prx1, apoptosis signal-regulating kinase 1 (ASK1), phosphor-ASK1, p38 and phosphor-p38 was analyzed using immunohistochemical staining, and their mRNA expression levels were evaluated by reverse transcription quantitative polymerase chain reaction. The present results demonstrated that 4NQO or 4NQO + H2O2 induced the development of tongue precancerous lesions in Prx1 knockout and wild-type mice. Prx1 was overexpressed in tongue precancerous lesions compared with normal tongue mucosa. There was a significant decrease in the degree of moderate or severe epithelial dysplasia, and mild epithelial dysplasia was clearly elevated, in Prx1 knockout mice treated with 4NQO + H2O2 compared with wild-type mice treated with 4NQO + H2O2. Prx1 suppressed apoptosis and upregulated phosphor-ASK1 and phosphor-p38 expression in tongue precancerous lesions. The present results suggest that Prx1 suppresses oxidative stress-induced apoptosis via the ASK1/p38 signalling pathway in mouse tongue precancerous lesions. In conclusion, Prx1 and H2O2 have a coordination role in promoting the progression of tongue precancerous mucosa lesions. The present findings provide novel insight into Prx1 function and the mechanisms of Prx1 in OLK

  5. Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy.

    PubMed

    Silva-Adaya, Daniela; Pérez-De La Cruz, Verónica; Villeda-Hernández, Juana; Carrillo-Mora, Paul; González-Herrera, Irma Gabriela; García, Esperanza; Colín-Barenque, Laura; Pedraza-Chaverrí, José; Santamaría, Abel

    2011-01-01

    The neuroactive metabolite at the kynunerine pathway, kynurenic acid (KYNA), is a well-known competitive antagonist at the co-agonist glycine site of the N-methyl-D-aspartate receptor (NMDAr), and also decreases the extracellular levels of glutamate by blocking α7-nicotinic acetylcholine receptor (α7-nAchr) located on glutamatergic terminals. KYNA has been often reported to be neuroprotective in different neurotoxic models. The systemic administration of L-kynurenine (L-KYN)--the precursor of KYNA--together with probenecid (PROB)--an inhibitor of organic acids transport--to rodents increases KYNA levels in the brain in a dose-dependent manner. The striatal infusion of the toxin 6-hydroxydopamine (6-OHDA) to rodents is one of the common models used to simulate Parkinson's disease (PD). Different studies have linked PD alterations with excessive glutamatergic transmission in the striatum since NMDAr antagonists exert beneficial effects in PD models. In this work we investigated the effect that a systemic administration of L-KYN+PROB exerted on the toxic model induced by 6-OHDA in rats. PROB (50 mg/kg, i.p.) + L-KYN (75 mg/kg, i.p.) were given to rats for seven consecutive days. On day two of treatment, the animals were infused with a single injection of 6-OHDA (20 μg/2 μl) into the right striatum. Fourteen days post-lesion, rotation behavior was assessed as a marker of motor impairment. The total levels of dopamine (DA) were also estimated in striatal tissue samples of 6-OHDA-treated animals as a neurochemical marker of damage. In addition, twenty eight days post-lesion, the striatal damage was assessed by hematoxylin/eosin staining and immunohistochemistry against glial fibrillary acidic protein (GFAP) in the same animals. Neurodegeneration was also assessed by Fluoro Jade staining. 6-OHDA infusion increased rotation behavior, striatal reactive gliosis and neurodegeneration, while DA levels were decreased. For all markers evaluated, we observed protective

  6. The potential cost-effectiveness of the Diamondback 360® Coronary Orbital Atherectomy System for treating de novo, severely calcified coronary lesions: an economic modeling approach

    PubMed Central

    Chambers, Jeffrey; Généreux, Philippe; Lee, Arthur; Lewin, Jack; Young, Christopher; Crittendon, Janna; Mann, Marita; Garrison, Louis P.

    2015-01-01

    Background: Patients who undergo percutaneous coronary intervention (PCI) for severely calcified coronary lesions have long been known to have worse clinical and economic outcomes than patients with no or mildly calcified lesions. We sought to assess the likely cost-effectiveness of using the Diamondback 360® Orbital Atherectomy System (OAS) in the treatment of de novo, severely calcified lesions from a health-system perspective. Methods and results: In the absence of a head-to-head trial and long-term follow up, cost-effectiveness was based on a modeled synthesis of clinical and economic data. A cost-effectiveness model was used to project the likely economic impact. To estimate the net cost impact, the cost of using the OAS technology in elderly (⩾ 65 years) Medicare patients with de novo severely calcified lesions was compared with cost offsets. Elderly OAS patients from the ORBIT II trial (Evaluate the Safety and Efficacy of OAS in Treating Severely Calcified Coronary Lesions) [ClinicalTrials.gov identifier: NCT01092426] were indirectly compared with similar patients using observational data. For the index procedure, the comparison was with Medicare data, and for both revascularization and cardiac death in the following year, the comparison was with a pooled analysis of the Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI)/Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trials. After adjusting for differences in age, gender, and comorbidities, the ORBIT II mean index procedure costs were 17% (p < 0.001) lower, approximately US$2700. Estimated mean revascularization costs were lower by US$1240 in the base case. These cost offsets in the first year, on average, fully cover the cost of the device with an additional 1.2% cost savings. Even in the low-value scenario, the use of the OAS is cost-effective with a cost per life-year gained of US$11,895. Conclusions: Based on economic modeling

  7. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models

    PubMed Central

    Sun, Xiaotian; Zareen, Neela; Rao, Apeksha; Berman, Zachary; Volpicelli-Daley, Laura; Bernd, Paulette; Crary, John F.; Levy, Oren A.; Greene, Lloyd A.

    2015-01-01

    Parkinson's disease (PD) is characterized by the progressive loss of select neuronal populations, but the prodeath genes mediating the neurodegenerative processes remain to be fully elucidated. Trib3 (tribbles pseudokinase 3) is a stress-induced gene with proapoptotic activity that was previously described as highly activated at the transcriptional level in a 6-hydroxydopamine (6-OHDA) cellular model of PD. Here, we report that Trib3 immunostaining is elevated in dopaminergic neurons of the substantia nigra pars compacta (SNpc) of human PD patients. Trib3 protein is also upregulated in cellular models of PD, including neuronal PC12 cells and rat dopaminergic ventral midbrain neurons treated with 6-OHDA, 1-methyl-4-phenylpyridinium (MPP+), or α-synuclein fibrils (αSYN). In the toxin models, Trib3 induction is substantially mediated by the transcription factors CHOP and ATF4. Trib3 overexpression is sufficient to promote neuronal death; conversely, Trib3 knockdown protects neuronal PC12 cells as well as ventral midbrain dopaminergic neurons from 6-OHDA, MPP+, or αSYN. Mechanism studies revealed that Trib3 physically interacts with Parkin, a prosurvival protein whose loss of function is associated with PD. Elevated Trib3 reduces Parkin expression in cultured cells; and in the SNpc of PD patients, Parkin levels are reduced in a subset of dopaminergic neurons expressing high levels of Trib3. Loss of Parkin at least partially mediates the prodeath actions of Trib3 in that Parkin knockdown in cellular PD models abolishes the protective effect of Trib3 downregulation. Together, these findings identify Trib3 and its regulatory pathways as potential targets to suppress the progression of neuron death and degeneration in PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Current treatments ameliorate symptoms, but not the underlying neuronal death. Understanding the core neurodegenerative processes in PD is a

  8. Deuterium-substituted L-DOPA displays increased behavioral potency and dopamine output in an animal model of Parkinson's disease: comparison with the effects produced by L-DOPA and an MAO-B inhibitor.

    PubMed

    Malmlöf, Torun; Feltmann, Kristin; Konradsson-Geuken, Åsa; Schneider, Frank; Alken, Rudolf-Giesbert; Svensson, Torgny H; Schilström, Björn

    2015-02-01

    The most effective treatment of Parkinson's disease (PD) L-DOPA is associated with major side effects, in particular L-DOPA-induced dyskinesia, which motivates development of new treatment strategies. We have previously shown that chronic treatment with a substantially lower dose of deuterium-substituted L-DOPA (D3-L-DOPA), compared with L-DOPA, produced equal anti-parkinsonian effect and reduced dyskinesia in 6-OHDA-lesioned rats. The advantageous effects of D3-L-DOPA are in all probability related to a reduced metabolism of deuterium dopamine by the enzyme monoamine oxidase (MAO). Therefore, a comparative neurochemical analysis was here performed studying the effects of D3-L-DOPA and L-DOPA on dopamine output and metabolism in 6-OHDA-lesioned animals using in vivo microdialysis. The effects produced by D3-L-DOPA and L-DOPA alone were additionally compared with those elicited when the drugs were combined with the MAO-B inhibitor selegiline, used in PD treatment. The different treatment combinations were first evaluated for motor activation; here the increased potency of D3-L-DOPA, as compared to that of L-DOPA, was confirmed and shown to be of equal magnitude as the effect produced by the combination of selegiline/L-DOPA. The extracellular levels of dopamine were also increased following both D3-L-DOPA and selegiline/L-DOPA administration compared with L-DOPA administration. The enhanced behavioral and neurochemical effects produced by D3-L-DOPA and the combination of selegiline/L-DOPA are attributed to decreased metabolism of released dopamine by MAO-B. The similar effect produced by D3-L-DOPA and selegiline/L-DOPA, respectively, is of considerable clinical interest since D3-L-DOPA, previously shown to exhibit a wider therapeutic window, in addition may reduce the need for adjuvant MAO-B inhibitor treatment. PMID:24906468

  9. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb.

    PubMed

    Lazarini, Françoise; Gabellec, Marie-Madeleine; Moigneu, Carine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lledo, Pierre-Marie

    2014-10-22

    Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing. PMID:25339754

  10. Osteolytica: An automated image analysis software package that rapidly measures cancer-induced osteolytic lesions in in vivo models with greater reproducibility compared to other commonly used methods☆

    PubMed Central

    Evans, H.R.; Karmakharm, T.; Lawson, M.A.; Walker, R.E.; Harris, W.; Fellows, C.; Huggins, I.D.; Richmond, P.; Chantry, A.D.

    2016-01-01

    Methods currently used to analyse osteolytic lesions caused by malignancies such as multiple myeloma and metastatic breast cancer vary from basic 2-D X-ray analysis to 2-D images of micro-CT datasets analysed with non-specialised image software such as ImageJ. However, these methods have significant limitations. They do not capture 3-D data, they are time-consuming and they often suffer from inter-user variability. We therefore sought to develop a rapid and reproducible method to analyse 3-D osteolytic lesions in mice with cancer-induced bone disease. To this end, we have developed Osteolytica, an image analysis software method featuring an easy to use, step-by-step interface to measure lytic bone lesions. Osteolytica utilises novel graphics card acceleration (parallel computing) and 3-D rendering to provide rapid reconstruction and analysis of osteolytic lesions. To evaluate the use of Osteolytica we analysed tibial micro-CT datasets from murine models of cancer-induced bone disease and compared the results to those obtained using a standard ImageJ analysis method. Firstly, to assess inter-user variability we deployed four independent researchers to analyse tibial datasets from the U266-NSG murine model of myeloma. Using ImageJ, inter-user variability between the bones was substantial (± 19.6%), in contrast to using Osteolytica, which demonstrated minimal variability (± 0.5%). Secondly, tibial datasets from U266-bearing NSG mice or BALB/c mice injected with the metastatic breast cancer cell line 4T1 were compared to tibial datasets from aged and sex-matched non-tumour control mice. Analyses by both Osteolytica and ImageJ showed significant increases in bone lesion area in tumour-bearing mice compared to control mice. These results confirm that Osteolytica performs as well as the current 2-D ImageJ osteolytic lesion analysis method. However, Osteolytica is advantageous in that it analyses over the entirety of the bone volume (as opposed to selected 2-D images

  11. Osteolytica: An automated image analysis software package that rapidly measures cancer-induced osteolytic lesions in in vivo models with greater reproducibility compared to other commonly used methods.

    PubMed

    Evans, H R; Karmakharm, T; Lawson, M A; Walker, R E; Harris, W; Fellows, C; Huggins, I D; Richmond, P; Chantry, A D

    2016-02-01

    Methods currently used to analyse osteolytic lesions caused by malignancies such as multiple myeloma and metastatic breast cancer vary from basic 2-D X-ray analysis to 2-D images of micro-CT datasets analysed with non-specialised image software such as ImageJ. However, these methods have significant limitations. They do not capture 3-D data, they are time-consuming and they often suffer from inter-user variability. We therefore sought to develop a rapid and reproducible method to analyse 3-D osteolytic lesions in mice with cancer-induced bone disease. To this end, we have developed Osteolytica, an image analysis software method featuring an easy to use, step-by-step interface to measure lytic bone lesions. Osteolytica utilises novel graphics card acceleration (parallel computing) and 3-D rendering to provide rapid reconstruction and analysis of osteolytic lesions. To evaluate the use of Osteolytica we analysed tibial micro-CT datasets from murine models of cancer-induced bone disease and compared the results to those obtained using a standard ImageJ analysis method. Firstly, to assess inter-user variability we deployed four independent researchers to analyse tibial datasets from the U266-NSG murine model of myeloma. Using ImageJ, inter-user variability between the bones was substantial (±19.6%), in contrast to using Osteolytica, which demonstrated minimal variability (±0.5%). Secondly, tibial datasets from U266-bearing NSG mice or BALB/c mice injected with the metastatic breast cancer cell line 4T1 were compared to tibial datasets from aged and sex-matched non-tumour control mice. Analyses by both Osteolytica and ImageJ showed significant increases in bone lesion area in tumour-bearing mice compared to control mice. These results confirm that Osteolytica performs as well as the current 2-D ImageJ osteolytic lesion analysis method. However, Osteolytica is advantageous in that it analyses over the entirety of the bone volume (as opposed to selected 2-D images), it

  12. Differential rescue of the renal and hepatic disease in an autosomal recessive polycystic kidney disease mouse mutant. A new model to study the liver lesion.

    PubMed Central

    Yoder, B. K.; Richards, W. G.; Sommardahl, C.; Sweeney, W. E.; Michaud, E. J.; Wilkinson, J. E.; Avner, E. D.; Woychik, R. P.

    1997-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) is characterized by biliary and renal lesions that produce significant morbidity and mortality. The biliary ductual ectasia and hepatic portal fibrosis associated with ARPKD have not been well studied even though such lesions markedly affect the clinical course of patients after renal replacement therapy such as dialysis or transplantation. Here we describe the generation of a new mouse model to study the hepatic lesions associated with polycystic kidney disease. This model was generated by differentially rescuing the renal pathology in the orpk mutant mouse that displays a hepatorenal pathology that is similar to that seen in human patients with ARPKD. This was accomplished by expressing, as a transgene in the mutant animals, the cloned wild-type version of the gene associated with the mutant locus in this line of mice. Although renal function in the rescue animals is normal, the liver still exhibits biliary and ductular hyperplasia along with varying degrees of hepatic portal fibrosis that is indistinguishable from that in the mutant animals. Most important, the rescue animals survive significantly longer than mutants and will permit a more detailed analysis of the clinical and cellular pathophysiology of the hepatic defect associated with this disease. Images Figure 1 Figure 3 Figure 5 PMID:9176412

  13. Intranigral administration of substance P receptor antagonist attenuated levodopa-induced dyskinesia in a rat model of Parkinson's disease.

    PubMed

    Yang, Xinxin; Zhao, Hui; Shi, Hongjuan; Wang, Xiaoying; Zhang, Shenyang; Zhang, Zunsheng; Zu, Jie; Zhang, Wei; Shen, Xia; Cui, Guiyun; Hua, Fang

    2015-09-01

    Levodopa (L-dopa) remains the most effective drug in the treatment of Parkinson's disease (PD). However, L-dopa-induced dyskinesia (LID) has hindered its use for PD patients. The mechanisms of LID are not fully understood. Substance P (SP) receptor antagonist has been shown to reduce parkinsonism in animal models of PD, and ameliorate LID in PD rats. But the concrete mechanism is not fully understood. To address this issue, we produced a rat model of PD using 6-hydroxydompamine (6-OHDA) injections, and valid PD rats were intranigrally administrated with different doses of SP receptor antagonist LY303870 (5 nmol/day, 10 nmol/day and 20 nmol/day) following L-dopa (6 mg/kg/day, i.p.) plus benserazide (12 mg/kg/day, i.p.) for 23 days. We found that nigral SP levels were increased on days 3, 7 and 14 and decreased on day 21 after 6-hydroxydompamine lesions. But nigral SP levels kept increasing after repeated L-dopa administration in PD rats. Intranigral administration of low and moderate LY303870 reduced abnormal involuntary movements (AIMs) while improving motor deficits in PD rats treated with L-dopa plus benserazide. Microdialysis revealed that LY303870 (10 nmol/day) treatment attenuated the increase of striatal dopamine and the reduction of γ-aminobutyric acid in ventromedial thalamus of PD rats primed with L-dopa. Additionally, LY303870 (10 nmol/day) treatment prior to L-dopa administration reduced the phosphorylated levels of dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa at Thr 34 and extracellular signal-regulated kinases 1/2 as well as the levels of activity-regulated cytoskeleton-associated protein and Penk in L-dopa-primed PD rats. Taken together, these data showed that low and moderate SP receptor antagonists LY303870 could ameliorate LID via neurokinin 1 receptor without affecting therapeutic effect of L-dopa. PMID:26001615

  14. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy.

    PubMed

    Gorantla, Vasavi R; Sirigiri, Amulya; Volkova, Yulia A; Millis, Richard M

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  15. Effects of Swimming Exercise on Limbic and Motor Cortex Neurogenesis in the Kainate-Lesion Model of Temporal Lobe Epilepsy

    PubMed Central

    Gorantla, Vasavi R.; Sirigiri, Amulya; Volkova, Yulia A.; Millis, Richard M.

    2016-01-01

    Temporal lobe epilepsy (TLE) is a common neurological disease and antiseizure medication is often inadequate for preventing apoptotic cell death. Aerobic swimming exercise (EX) augments neurogenesis in rats when initiated immediately in the postictal period. This study tests the hypothesis that aerobic exercise also augments neurogenesis over the long term. Male Wistar rats (age of 4 months) were subjected to chemical lesioning using KA and to an EX intervention consisting of a 30 d period of daily swimming for 15 min, in one experiment immediately after KA lesioning (immediate exposure) and in a second experiment after a 60 d period of normal activity (delayed exposure). Morphometric counting of neuron numbers (NN) and dendritic branch points and intersections (DDBPI) was performed in the CA1, CA3, and dentate regions of hippocampus, in basolateral nucleus of amygdala, and in several areas of motor cortex. EX increased NN and DDBPI in the normal control and the KA-lesioned rats in all four limbic and motor cortex areas studied, after both immediate and 60 d delayed exposures to exercise. These findings suggest that, after temporal lobe epileptic seizures in rats, swimming exercise may improve neural plasticity in areas of the brain involved with emotional regulation and motor coordination, even if the exercise treatment is delayed. PMID:27313873

  16. DEVELOPMENT OF SEROTONERGIC AND ADRENERGIC RECEPTORS IN THE RAT SPINAL CORD: EFFECTS OF NEONATAL CHEMICAL LESIONS AND HYPERTHYROIDISM

    EPA Science Inventory

    The ontogeny of serotonergic receptors and alpha- and beta-adrenergic receptors in thoracolumbar spinal cord of rats given neurotoxins which destroy serotonergic (5,7-dihydroxytryptamine (5,7-DHT) or noradrenergic (6-hydroxydopamine (6-OHDA)) nerve terminals was examined. Intraci...

  17. Effect of particle size on their accumulation in an inflammatory lesion in a dextran sulfate sodium (DSS)-induced colitis model.

    PubMed

    Watanabe, Ayaka; Tanaka, Hiroki; Sakurai, Yu; Tange, Kota; Nakai, Yuta; Ohkawara, Tatsuya; Takeda, Hiroshi; Harashima, Hideyoshi; Akita, Hidetaka

    2016-07-25

    Taking advantage of the enhanced permeation and retention (EPR) effect is a promising approach for delivering macromolecules or nanoparticles to tumors. Recent studies revealed that this strategy is also applicable for targeting other pathological lesions (i.e. inflammatory disease). In the present study, we report the optimal size of a nanoparticle for allowing the higher accumulation of a particle in an inflammatory lesion using a dextran sulfate sodium (DSS)-induced colitis model. As a nanoparticle platform, we utilized a SS-cleavable and pH-activated lipid-like material (ssPalm), that can be used to produce particles in a variety of sizes ranging from 50nm to 180nm while using the same lipid composition. In healthy mice, particle accumulation remained low regardless of size. In contrast, the accumulation in inflammatory colon tissue was enhanced depending on the progress of the inflammation. In this situation, the apparent uptake clearance accumulation of a mid-sized particle (113nm on average) was higher than that for smaller and larger (54nm and 183nm in average, respectively) ones. Therefore, controlling particle size is an important parameter for the extensive targeting of inflammatory lesion. PMID:27231121

  18. High-Fat Diet Promotion of Endometriosis in an Immunocompetent Mouse Model is Associated With Altered Peripheral and Ectopic Lesion Redox and Inflammatory Status.

    PubMed

    Heard, Melissa E; Melnyk, Stepan B; Simmen, Frank A; Yang, Yanqing; Pabona, John Mark P; Simmen, Rosalia C M

    2016-07-01

    Endometriosis is a benign gynecological condition that causes considerable morbidity due to associated infertility, debilitating pelvic pain and inflammatory dysfunctions. Diet is a highly modifiable risk factor for many chronic diseases, but its contribution to endometriosis has not been extensively investigated, due partly to the paradoxical inverse association between obesity and disease incidence. Nevertheless, chronic exposure to dietary high-fat intake has been linked to greater systemic inflammation and oxidative stress, both features of women with endometriosis. Here, we evaluated the effects of a high-fat diet (HFD) (45% fat kcal) on endometriosis progression using an immunocompetent mouse model where ectopic lesion incidence was induced in wild-type recipients by ip administration of endometrial fragments from transcription factor Krüppel-like factor 9-null donor mice. We show that HFD significantly increased ectopic lesion numbers in recipient mice with no significant weight gain and modifications in systemic ovarian steroid hormone and insulin levels, relative to control diet-fed (17% fat kcal) mice. HFD promotion of lesion establishment was associated with reductions in stromal estrogen receptor 1 isoform and progesterone receptor expression, increased F4/80-positive macrophage infiltration, higher stromal but not glandular epithelial proliferation, and enhanced expression of proinflammatory and prooxidative stress pathway genes. Lesion-bearing HFD-fed mice also displayed higher peritoneal fluid TNFα and elevated local and systemic redox status than control diet-fed counterparts. Our results suggest that HFD intake exacerbates endometriosis outcome in the absence of ovarian dysfunction and insulin resistance in mice and warrants further consideration with respect to clinical management of endometriosis progression and recurrence in nonobese patients. PMID:27175969

  19. Are dinucleoside monophosphates relevant models for the study of DNA intrastrand cross-link lesions? The example of g[8-5m]T.

    PubMed

    Garrec, Julian; Dumont, Elise

    2014-07-21

    Oxidatively generated tandem lesions such as G[8-5m]T pose a potent threat to genome integrity. Direct experimental studies of the kinetics and thermodynamics of a specific lesion within DNA are very challenging, mostly due to the variety of products that can be formed in oxidative conditions. Dinucleoside monophosphates (DM) involving only the reactive nucleobases in water represent appealing alternative models on which most physical chemistry and structural techniques can be applied. However, it is not yet clear how relevant these models are. Here, we present QM/MM MD simulations of the cyclization step involved in the formation of G[8-5m]T from the guanine-thymine (GpT) DM in water, with the aim of comparing our results to our previous investigation of the same reaction in DNA ( Garrec , J. , Patel , C. , Rothlisberger , U. , and Dumont , E. ( 2012 ) J. Am. Chem. Soc. 134 , 2111 - 2119 ). We show that, despite the different levels of preorganization of the two systems, the corresponding reactions share many energetic and structural characteristics. The main difference lies in the angle between the G and T bases, which is slightly higher in the transition state (TS) and product of the reaction in water than in the reaction in DNA. This effect is due to the Watson-Crick H-bonds, which are absent in the {GpT+water} system and restrain the relative positioning of the reactive nucleobases in DNA. However, since the lesion is accommodated easily in the DNA macromolecule, the induced energetic penalty is relatively small. The high similarity between the two reactions strongly supports the use of GpT in water as a model of the corresponding reaction in DNA. PMID:24911289

  20. Simulation of spiculated breast lesions

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Alrehily, Faisal; Pinto, R. Ferrari; Rashidnasab, Alaleh; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2016-03-01

    Virtual clinical trials are a promising new approach increasingly used for the evaluation and comparison of breast imaging modalities. A key component in such an assessment paradigm is the use of simulated pathology, in particular, simulation of lesions. Breast mass lesions can be generally classified into two categories based on their appearance; nonspiculated masses and spiculated masses. In our previous work, we have successfully simulated non-spiculated masses using a fractal growth process known as diffusion limited aggregation. In this new work, we have extended the DLA model to simulate spiculated lesions by using features extracted from patient DBT images containing spiculated lesions. The features extracted included spicule length, width, curvature and distribution. This information was used to simulate realistic looking spicules which were attached to the surface of a DLA mass to produce a spiculated mass. A batch of simulated spiculated masses was inserted into normal patient images and presented to an experienced radiologist for review. The study yielded promising results with the radiologist rating 60% of simulated lesions in 2D and 50% of simulated lesions in DBT as realistic.

  1. DNA lesions: A thermodynamic perspective

    SciTech Connect

    Plum, G.E.; Breslauer, K.J.

    1994-12-31

    The studies described in this paper are part of an overall program project entitled {open_quotes}The Chemistry and Biology of Exocyclic DNA Adducts and Oxidative DNA Damage.{close_quotes}. Initially, all the project leaders discuss and agree on biologically interesting lesions to target for study. Then begins the process of developing the chemistry required to synthesize modified nucleosides that either correspond to or model the damage sites of interest. Such modified nucleotides then are incorporated into oligonucleotides that are hybridized to their complements, thereby forming lesion-containing duplex structures. In any given duplex, the identity of the lesion-opposing nucleoside on the complementary strand is systematically altered, thereby allowing us to evaluate the impact on duplex properties of the identity of the base opposite the lesion. For comparative purposes, the undamaged parent Watson-Crick duplex also is synthesized. Such families of DNA duplexes are then sent for independent physiochemical characterizations. Armed with an extensive body of biophysical data, one then searches for correlations between the physiochemical influences of the lesions on duplex properties and the biological consequences of each lesion. At this stage, our approach is highly empirical. Ultimately, we hope that our studies will reveal correlations between physiochemical properties and biological consequences such that we will develop predictive powers and gain insight into the mechanisms of recognition, repair, and mutagenesis.

  2. In vivo analysis of tissue by Raman microprobe: examination of human skin lesions and esophagus Barrett's mucosa on an animal model

    NASA Astrophysics Data System (ADS)

    Tfayli, Ali; Piot, Olivier; Derancourt, Sylvie; Cadiot, Guillaume; Diebold, Marie D.; Bernard, Philippe; Manfait, Michel

    2006-02-01

    In the last few years, Raman spectroscopy has been increasingly used for the characterization of normal and pathological tissues. A new Raman system, constituted of optic fibers bundle coupled to an axial Raman spectrometer (Horiba Jobin Yvon SAS), was developed for in vivo investigations. Here, we present in vivo analysis on two tissues: human skin and esophagus mucosa on a rat model. The skin is a directly accessible organ, representing a high diversity of lesions and cancers. Including malignant melanoma, basal cell carcinoma and the squamous cell carcinoma, skin cancer is the cancer with the highest incidence worldwide. Several Raman investigations were performed to discriminate and classify different types of skin lesions, on thin sections of biopsies. Here, we try to characterize in vivo the different types of skin cancers in order to be able to detect them in their early stages of development and to define precisely the exeresis limits. Barrett's mucosa was also studied by in vivo examination of rat's esophagus. Barrett's mucosa, induced by gastro-esophageal reflux, is a pretumoral state that has to be carefully monitored due to its high risk of evolution in adenocarcinoma. A better knowledge of the histological transformation of esophagus epithelium in a Barrett's type will lead to a more efficient detection of the pathology for its early diagnosis. To study these changes, an animal model (rats developing Barrett's mucosa after duodenum - esophagus anastomosis) was used. Potential of vibrational spectroscopy for Barrett's mucosa identification is assessed on this model.

  3. Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra.

    PubMed

    Harkavyi, A; Rampersaud, N; Whitton, P S

    2013-01-01

    Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson's disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen. PMID:26316987

  4. Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra

    PubMed Central

    Harkavyi, A.; Rampersaud, N.; Whitton, P. S.

    2013-01-01

    Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson's disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen. PMID:26316987

  5. Deep brain stimulation exacerbates hypokinetic dysarthria in a rat model of Parkinson's disease.

    PubMed

    King, Nathaniel O; Anderson, Collin J; Dorval, Alan D

    2016-02-01

    Motor symptoms of Parkinson's disease (PD) follow the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Deep brain stimulation (DBS) treats some parkinsonian symptoms, such as tremor, rigidity, and bradykinesia, but may worsen certain medial motor symptoms, including hypokinetic dysarthria. The mechanisms by which DBS exacerbates dysarthria while improving other symptoms are unclear and difficult to study in human patients. This study proposes an animal model of DBS-exacerbated dysarthria. We use the unilateral, 6-hydroxydopamine (6-OHDA) rat model of PD to test the hypothesis that DBS exacerbates quantifiable aspects of vocalization. Mating calls were recorded from sexually experienced male rats under healthy and parkinsonian conditions and during DBS of the subthalamic nucleus. Relative to healthy rats, parkinsonian animals made fewer calls with shorter and less complex vocalizations. In the parkinsonian rats, putatively therapeutic DBS further reduced call frequency, duration, and complexity. The individual utterances of parkinsonian rats spanned a greater bandwidth than those of healthy rats, potentially reducing the effectiveness of the vocal signal. This utterance bandwidth was further increased by DBS. We propose that the parkinsonism-associated changes in call frequency, duration, complexity, and dynamic range combine to constitute a rat analog of parkinsonian dysarthria. Because DBS exacerbates the parkinsonism-associated changes in each of these metrics, the subthalamic stimulated 6-OHDA rat is a good model of DBS-induced hypokinetic dysarthria in PD. This model will help researchers examine how DBS alleviates many motor symptoms of PD while exacerbating parkinsonian speech deficits that can greatly diminish patient quality of life. PMID:26498277

  6. [Medicamentous strategy for improving the quality of life in the senescence].

    PubMed

    Knoll, J

    1986-01-01

    The striatum, in which the nigrostriatal dopaminergic neurons terminate, contains the highest amount of dopamine DA) in the brain. DA, released in the striatum, plays the rate limiting role in the control of motor functions by continuously inhibiting the release of acetylcholine (ACh) from the cholinergic interneurons of the caudate nucleus. DA content of the human caudate nucleus decreases by 13% per decade over the age of 45. Parkinson's disease seems to be a kind of selective, highly accelerated 'premature aging' of the nigrostriatal dopaminergic system, and the DA content of this neuron system shrinks within a short time to less than 10% of the normal level in the premorbid state. Clinical symptoms occur when the striatum loses more than 70% of its DA content. The chemical lesioning of the nigrostriatal dopaminergic neuron in the rat by 6-OH-dopamine (6-OHDA) leads to an increase of cholinergic activity in the striatum. The striatum taken from a rat pretreated with 6-OH dopamine is a useful experimental model for the rapid screening of compounds with potential therapeutic benefit in Parkinson's disease. A more specific neurotoxin than 6-OHDA is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) which kills the cells in the substantia nigra with high specificity and induces rapidly parkinsonian-like condition in men and monkeys. (-)Deprenyl, the selective inhibitor of B-type MAO protects the striatum from the neurotoxic effects of 6-OHDA and MPTP. The amount of ACh released from the striatum of the rat increases from 372.8 +/- 31.4 to 746.5 +/- 44.0 pmol/g/min in 6-OHDA treated rats, it remains normal (371.1 +/- 34.7) if (-)deprenyl is given 30 minutes before 6-OHDA administration, hut is further increased (956.3 +/- 79.3 pmol/g/min), if clorgyline os injected 30 minutes before 6-OHDA. (-)Deprenyl prevents in a similar manner the neurotoxicity of MPTP in monkeys, whereas clorgyline, the selective inhibitor of MAO-A, is ineffective. The most important effect of

  7. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis

    PubMed Central

    Goupil, Brad A.; McNulty, Margaret A.; Martin, Matthew J.; McCracken, Michael K.; Christofferson, Rebecca C.; Mores, Christopher N.

    2016-01-01

    Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains. PMID:27182740

  8. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis.

    PubMed

    Goupil, Brad A; McNulty, Margaret A; Martin, Matthew J; McCracken, Michael K; Christofferson, Rebecca C; Mores, Christopher N

    2016-01-01

    Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains. PMID:27182740

  9. A Herbal Formula, Atofreellage, Ameliorates Atopic Dermatitis-Like Skin Lesions in an NC/Nga Mouse Model.

    PubMed

    Kim, Won-Yong; Kim, Hyeong-Geug; Lee, Hye-Won; Lee, Jin-Seok; Im, Hwi-Jin; Kim, Hyo-Seon; Lee, Sung-Bae; Son, Chang-Gue

    2015-01-01

    We evaluated the anti-atopic dermatitis (AD) effect of Atofreellage (AF), a herbal formula composed of 10 medicinal plants. AD was induced on the dorsal skin areas of NC/Nga mice (male, seven weeks old) by daily application of 2,4-dinitrochlorobenzene (DNCB) for five weeks. After three weeks of DNCB application, 200 μL of AF (0, 25, 50 or 100 mg/mL) was applied to the skin lesions. Histological findings, blood cell populations, serum levels of immunoglobulin E (IgE), histamine, pro-inflammatory cytokines, and inflammatory signaling in the skin tissue, and T-helper cell type 2 (Th₂)-related cytokines in splenocytes were analyzed. Histopathological findings showed AF treatment notably attenuated the thickness of dorsal skin, and eosinophil infiltration. AF treatment (especially 100 mg/mL) also demonstrably ameliorated the blood cell population abnormalities, as the notable elevation of serum concentrations of IgE, histamine, TNF-α, IL-6 and IL-1β were remarkably normalized by AF treatment. Western blot analysis evidenced the apparent normalization of inflammatory signals (ERK, p38 MAP kinase, JNK, and NF-κB) in the skin tissue. Additionally, AF treatment notably attenuated the activation of Th₂-dominant cytokines (IL-13, IL-4, and IL-5) in Con A-treated splenocytes in an ex vivo assay. In conclusion, this study provides experimental evidence for the clinical relevance of Atofreellage. PMID:26712731

  10. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson's disease.

    PubMed

    Padel, Thomas; Özen, Ilknur; Boix, Jordi; Barbariga, Marco; Gaceb, Abderahim; Roth, Michaela; Paul, Gesine

    2016-10-01

    Parkinson's disease (PD) is a neurodegenerative disease where the degeneration of the nigrostriatal pathway leads to specific motor deficits. There is an unmet medical need for regenerative treatments that stop or reverse disease progression. Several growth factors have been investigated in clinical trials to restore the dopaminergic nigrostriatal pathway damaged in PD. Platelet-derived growth factor-BB (PDGF-BB), a molecule that recruits pericytes to stabilize microvessels, was recently investigated in a phase-1 clinical trial, showing a dose-dependent increase in dopamine transporter binding in the putamen of PD patients. Interestingly, evidence is accumulating that PD is paralleled by microvascular changes, however, whether PDGF-BB modifies pericytes in PD is not known. Using a pericyte reporter mouse strain, we investigate the functional and restorative effect of PDGF-BB in a partial 6-hydroxydopamine medial forebrain bundle lesion mouse model of PD, and whether this restorative effect is accompanied by changes in pericyte features. We demonstrate that a 2-week treatment with PDGF-BB leads to behavioural recovery using several behavioural tests, and partially restores the nigrostriatal pathway. Interestingly, we find that pericytes are activated in the striatum of PD lesioned mice and that these changes are reversed by PDGF-BB treatment. The modulation of brain pericytes may contribute to the PDGF-BB-induced neurorestorative effects, PDGF-BB allowing for vascular stabilization in PD. Pericytes might be a new cell target of interest for future regenerative therapies. PMID:27288154

  11. Krüppel-Like Factor 13 Deficiency in Uterine Endometrial Cells Contributes to Defective Steroid Hormone Receptor Signaling but Not Lesion Establishment in a Mouse Model of Endometriosis.

    PubMed

    Heard, Melissa E; Velarde, Michael C; Giudice, Linda C; Simmen, Frank A; Simmen, Rosalia C M

    2015-06-01

    Krüppel-like Factor (KLF) 13 and the closely related KLF9 are members of the Sp/KLF family of transcription factors that have collectively emerged as essential regulators of tissue development, differentiation, proliferation, and programmed cell death. Steroid hormone-responsive tissues express multiple KLFs that are linked to progesterone receptor (PGR) and estrogen receptor (ESR) actions either as integrators or as coregulators. Endometriosis is a chronic disease characterized by progesterone resistance and dysregulated estradiol signaling; nevertheless, distinct KLF members' contributions to endometriosis remain largely undefined. We previously demonstrated promotion of ectopic lesion establishment by Klf9 null endometrium in a mouse model of endometriosis. Here we evaluated whether KLF13 loss of expression in endometrial cells may equally contribute to lesion formation. KLF13 transcript levels were lower in the eutopic endometria of women with versus women without endometriosis at menstrual midsecretory phase. In wild-type (WT) mouse recipients intraperitoneally administered WT or Klf13 null endometrial fragments, lesion incidence did not differ with donor genotype. No differences were noted for lesion volume, number, proliferation status, and apoptotic index as well. Klf13 null lesions displayed reduced total PGR and ESR1 (RNA and immunoreactive protein) and altered expression of several PGR and ESR1 target genes, relative to WT lesions. Unlike for Klf9 null lesions, changes in transcript levels for PGR-A, ESR1, and Notch/Hedgehog-associated pathway components were not observed for Klf13 null lesions. Results demonstrate lack of a causative relationship between endometrial KLF13 deficiency and lesion establishment in mice, and they support the broader participation of multiple signaling pathways, besides those mediated by steroid receptors, in the pathology of endometriosis. PMID:25904015

  12. Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers-Danlos syndrome.

    PubMed

    Briest, Wilfried; Cooper, Timothy K; Tae, Hyun-Jin; Krawczyk, Melissa; McDonnell, Nazli B; Talan, Mark I

    2011-06-01

    The vascular form of Ehlers-Danlos syndrome (vEDS), a rare disease with grave complications resulting from rupture of major arteries, is caused by mutations of collagen type III [α1 chain of collagen type III (COL3A1)]. The only, recently proven, preventive strategy consists of the reduction of arterial wall stress by β-adrenergic blockers. The heterozygous (HT) Col3a1 knockout mouse has reduced expression of collagen III and recapitulates features of a mild presentation of the disease. The objective of this study was to determine whether changing the balance between synthesis and degradation of collagen by chronic treatment with doxycycline, a nonspecific matrix metalloproteinase (MMP) inhibitor, could prevent the development of vascular pathology in HT mice. After 3 months of treatment with doxycycline or placebo, 9-month-old HT or wild-type (WT) mice were subjected to surgical stressing of the aorta. A 3-fold increase in stress-induced aortic lesions found in untreated HT mice 1 week after intervention (cumulative score 4.5 ± 0.87 versus 1.3 ± 0.34 in WT, p < 0.001) was fully prevented in the doxycycline-treated group (1.1 ± 0.56, p < 0.001). Untreated HT mice showed increased MMP-9 activity in the carotid artery and decreased collagen content in the aorta; however, in doxycycline-treated animals there was normalization to the levels observed in WT mice. Doxycycline treatment inhibits the activity of tissue MMP and attenuates the decrease in the collagen content in aortas of mice haploinsufficient for collagen III, as well as prevents the development of stress-induced vessel pathology. The results suggest that doxycycline merits clinical testing as a treatment for vEDS. PMID:21363928

  13. Bronchial lesions of mouse model of asthma are preceded by immune complex vasculitis and induced bronchial associated lymphoid tissue (iBALT).

    PubMed

    Guest, Ian C; Sell, Stewart

    2015-08-01

    We systematically examined by immune histology the lungs of some widely used mouse models of asthma. These models include sensitization by multiple intraperitoneal injections of soluble ovalbumin (OVA) or of OVA with alum, followed by three intranasal or aerosol challenges 3 days apart. Within 24 h after a single challenge there is fibrinoid necrosis of arterial walls with deposition of immunoglobulin (Ig) and OVA and infiltration of eosinophilic polymorphonuclear cells that lasts for about 3 days followed by peribronchial B-cell infiltration and slight reversible goblet cell hypertrophy (GCHT). After two challenges, severe eosinophilic vasculitis is present at 6 h, increases by 72 h, and then declines; B-cell proliferation and significant GCHT and hyperplasia (GCHTH) and bronchial smooth muscle hypertrophy recur more prominently. After three challenges, there is significantly increased induced bronchus-associated lymphoid tissue (iBALT) formation, GCHTH, and smooth muscle hypertrophy. Elevated levels of Th2 cytokines, IL-4, IL-5, and IL-13, are present in bronchial lavage fluids. Sensitized mice have precipitating antibody and positive Arthus skin reactions but also develop significant levels of IgE antibody to OVA but only 1 week after challenge. We conclude that the asthma like lung lesions induced in these models is preceded by immune complex-mediated eosinophilic vasculitis and iBALT formation. There are elevations of Th2 cytokines that most likely produce bronchial lesions that resemble human asthma. However, it is unlikely that mast cell-activated atopic mechanisms are responsible as we found only a few presumed mast cells by toluidine blue and metachromatic staining limited to the most proximal part of the main stem bronchus, and none in the remaining main stem bronchus or in the lung periphery. PMID:26006019

  14. Ghost cell lesions

    PubMed Central

    Rajesh, E.; Jimson, Sudha; Masthan, K. M. K.; Balachander, N.

    2015-01-01

    Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms. PMID:26015694

  15. [Surprising white lesions].

    PubMed

    Nolte, J W; van der Waal, I

    2011-09-01

    A 46-year-old man appeared with white lesions of the oral cavity. A previously taken biopsy revealed no classifying diagnosis and treatment with mouth rinse produced no improvement. A new biopsy was taken, on which the pathologist performed additional tests. This resulted in the diagnosis 'syphilis'. The patient was treated with benzylpenicillin and the oral white lesions disappeared. Although nowadays syphilis is rare, special attention is required when noticing these kinds of lesions of the oral cavity. PMID:21957637

  16. Neuroprotective effects of (E)-3,4-diacetoxystyryl sulfone and sulfoxide derivatives in vitro models of Parkinson's disease.

    PubMed

    Ning, Xianling; Yuan, Mengmeng; Guo, Ying; Tian, Chao; Wang, Xiaowei; Zhang, Zhili; Liu, Junyi

    2016-06-01

    (E)-3,4-dihydroxystyryl aralkyl sulfones and sulfoxides have been reported as novel multifunctional neuroprotective agents in previous studies, which as phenolic compounds display antioxidative and antineuroinflammatory properties. To further enhance the neuroprotective effects and study structure-activity relationship of the derivatives, we synthesized their acetylated derivatives, (E)-3,4-diacetoxystyryl sulfones and sulfoxides, and examined their neuroprotective effects in vitro models of Parkinson's disease. The results indicate that (E)-3,4-diacetoxystyryl sulfones and sulfoxides can significantly inhibit kinds of neuron cell injury induced by toxicities, including 6-OHDA, NO, and H2O2. More important, they show higher antineuroinflammatory properties and similar antioxidative properties to corresponding un-acetylated compounds. Thus, we suggest that (E)-3,4-diacetoxystyryl sulfones and sulfoxides may have potential for the treatment of neurodegenerative disorders, especially Parkinson's disease. PMID:26176683

  17. Peroxisome-proliferator activator receptor-gamma activation decreases attachment of endometrial cells to peritoneal mesothelial cells in an in vitro model of the early endometriotic lesion.

    PubMed

    Kavoussi, S K; Witz, C A; Binkley, P A; Nair, A S; Lebovic, D I

    2009-10-01

    The aim of this study was to investigate whether peroxisome proliferator-activated receptor (PPAR)-gamma activation has an effect on the attachment of endometrial cells to peritoneal mesothelial cells in a well-established in vitro model of the early endometriotic lesion. The endometrial epithelial cell line EM42 and mesothelial cell line LP9 were used for this study. EM42 cells, LP9 cells or both were treated with the PPAR-gamma agonist ciglitazone (CTZ) at varying concentrations (10, 20 and 40 microM) x 48 h with subsequent co-culture of EM42 and LP9 cells. The rate of EM42 attachment and invasion through LP9 cells was then assessed and compared with control (EM42 and LP9 cells co-cultured without prior treatment with CTZ). Next, attachment of CTZ-treated and untreated EM42 cells to hyaluronic acid (HA), a cell adhesion molecule (CAM) on peritoneal mesothelial cells, were assessed. Although there was no difference in EM42 attachment when LP9 cells alone were treated with CTZ, treatment of EM42 cells with 40 microM CTZ decreased EM42 attachment to LP9 cells by 27% (P < 0.01). Treatment of both EM42 and LP9 cells with 40 microM CTZ decreased EM42 attachment to LP9 by 37% (P < 0.01). Treatment of EM42 cells with 40 microM CTZ decreased attachment to HA by 66% (P = 0.056). CTZ did not decrease invasion of EM42 cells through the LP9 monolayer. CTZ may inhibit EM42 cell proliferation. In conclusion, CTZ significantly decreased EM42 attachment to LP9 cells and HA in an in vitro model of the early endometriotic lesion. PMID:19643817

  18. The “Buruli Score”: Development of a Multivariable Prediction Model for Diagnosis of Mycobacterium ulcerans Infection in Individuals with Ulcerative Skin Lesions, Akonolinga, Cameroon

    PubMed Central

    Mueller, Yolanda K.; Bastard, Mathieu; Nkemenang, Patrick; Comte, Eric; Ehounou, Geneviève; Eyangoh, Sara; Rusch, Barbara; Tabah, Earnest Njih; Trellu, Laurence Toutous; Etard, Jean-Francois

    2016-01-01

    Background Access to laboratory diagnosis can be a challenge for individuals suspected of Buruli Ulcer (BU). Our objective was to develop a clinical score to assist clinicians working in resource-limited settings for BU diagnosis. Methododology/Principal Findings Between 2011 and 2013, individuals presenting at Akonolinga District Hospital, Cameroon, were enrolled consecutively. Clinical data were collected prospectively. Based on a latent class model using laboratory test results (ZN, PCR, culture), patients were categorized into high, or low BU likelihood. Variables associated with a high BU likelihood in a multivariate logistic model were included in the Buruli score. Score cut-offs were chosen based on calculated predictive values. Of 325 patients with an ulcerative lesion, 51 (15.7%) had a high BU likelihood. The variables identified for the Buruli score were: characteristic smell (+3 points), yellow color (+2), female gender (+2), undermining (+1), green color (+1), lesion hyposensitivity (+1), pain at rest (-1), size >5cm (-1), locoregional adenopathy (-2), age above 20 up to 40 years (-3), or above 40 (-5). This score had AUC of 0.86 (95%CI 0.82–0.89), indicating good discrimination between infected and non-infected individuals. The cut-off to reasonably exclude BU was set at scores <0 (NPV 96.5%; 95%CI 93.0–98.6). The treatment threshold was set at a cut-off ≥4 (PPV 69.0%; 95%CI 49.2–84.7). Patients with intermediate BU probability needed to be tested by PCR. Conclusions/Significance We developed a decisional algorithm based on a clinical score assessing BU probability. The Buruli score still requires further validation before it can be recommended for wide use. PMID:27045293

  19. CX3CR1 Disruption Differentially Influences Dopaminergic Neuron Degeneration in Parkinsonian Mice Depending on the Neurotoxin and Route of Administration.

    PubMed

    Tristão, Fabrine Sales Massafera; Lazzarini, Márcio; Martin, Sabine; Amar, Majid; Stühmer, Walter; Kirchhoff, Frank; Gomes, Lucas Araújo Caldi; Lanfumey, Laurance; Prediger, Rui D; Sepulveda, Julia E; Del-Bel, Elaine A; Raisman-Vozari, Rita

    2016-04-01

    Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons accompanied by an inflammatory reaction. The neuron-derived chemokine fractalkine (CX3CL1) is an exclusive ligand for the receptor CX3CR1 expressed on microglia. The CX3CL1/CX3CR1 signaling is important for sustaining microglial activity. Using a recently developed PD model, in which the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin is delivered intranasally, we hypothesized that CX3CR1 could play a role in neurotoxicity and glial activation. For this, we used CX3CR1 knock-in mice and compared results with those obtained using the classical PD models through intraperitonal MPTP or intrastriatal 6-hydroxydopamine (6-OHDA). The striatum from all genotypes (CX3CR1(+/+), CX3CR1(+/GFP) and CX3CR1-deficient mice) showed a significant dopaminergic depletion after intranasal MPTP inoculation. In contrast to that, we could not see differences in the number of dopaminergic neurons in the substantia nigra of CX3CR1-deficient animals. Similarly, after 6-OHDA infusion, the CX3CR1 deletion decreased the amphetamine-induced turning behavior observed in CX3CR1(+/GFP) mice. After the 6-OHDA inoculation, a minor dopaminergic neuronal loss was observed in the substantia nigra from CX3CR1-deficient mice. Distinctly, a more extensive neuronal cell loss was observed in the substantia nigra after the intraperitoneal MPTP injection in CX3CR1 disrupted animals, corroborating previous results. Intranasal and intraperitoneal MPTP inoculation induced a similar microgliosis in CX3CR1-deficient mice but a dissimilar change in the astrocyte proliferation in the substantia nigra. Nigral astrocyte proliferation was observed only after intraperitoneal MPTP inoculation. In conclusion, intranasal MPTP and 6-OHDA lesion in CX3CR1-deficient mice yield no nigral dopaminergic neuron loss, linked to the absence of astroglial proliferation. PMID:26403659

  20. The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism.

    PubMed

    Witholt, R; Gwiazda, R H; Smith, D R

    2000-01-01

    Recent studies have implicated chronic elevated exposures to environmental agents, such as metals (e.g., manganese, Mn) and pesticides, as contributors to neurological disease. In particular, there is a concern that sensitive subpopulations such as the aged may be at increased risk for the onset of neurologic disorders because elevated exposures to Mn is associated with increased incidence of parkinsonism. Here, we utilized a rat model of pre-parkinsonism to investigate the effects of Mn exposure on neurotoxicity and the exacerbation of parkinsonism. A pre-parkinsonism state was induced using a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA), followed 4 weeks later by Mn exposure (4.8 mg Mn/kgx3 intraperitoneal injections/week) for 5 weeks. Female Sprague-Dawley rats (n=44) were divided among the following treatments: (A) control, saline/vehicle; (B) Mn only; (C) 6-OHDA only; and (D) 6-OHDA+Mn. Brain Mn levels were measured by ICP-MS. Neurobehavioral function was assessed following Mn exposure using a functional observational battery (FOB) consisting of 10 neurobehavioral tests. Unilateral 6-OHDA lesions produced significant ipsilateral vs. contralateral striatal dopamine depletions (60-70%), but no measurable impairment of neurobehavioral function, thereby substantiating this pre-parkinsonism (i.e., subthreshold) model. In contrast, Mn exposure resulted in significant impairment of neurobehavioral function for eight of the 10 FOB tests. No effects of Mn exposure on striatal dopamine depletion were detected, despite the 3.4-fold increase in brain Mn levels over controls. Notably, Mn exposure in the presence of a pre-parkinsonism state significantly exacerbated the neurobehavioral impairment in the reactivity to handling (P<.049) and hopping contralateral rear limb (P<.033) FOB tests. While the persistence and Mn dose-response relationship of these neurobehavioral effects were not evaluated here, these results nonetheless suggest that chronic Mn

  1. Preinvasive lesions

    Cancer.gov

    This definition is for allocation of lesions with preinvasive/borderline properties. It is currently aimed at newly identified neoplasms, which may be similar to those described in humans. In mouse pathology, many adenomas may be preinvasive/borderline lesions. However, their inclusion in the preinvasive category can be justified only upon development of better diagnostic criteria.

  2. Noninfectious penile lesions.

    PubMed

    Teichman, Joel M H; Sea, Jason; Thompson, Ian M; Elston, Dirk M

    2010-01-15

    Family physicians commonly diagnose and manage penile cutaneous lesions. Noninfectious lesions may be classified as inflammatory and papulosquamous (e.g., psoriasis, lichen sclerosus, angiokeratomas, lichen nitidus, lichen planus), or as neoplastic (e.g., carcinoma in situ, invasive squamous cell carcinoma). The clinical presentation and appearance of the lesions guide the diagnosis. Psoriasis presents as red or salmon-colored plaques with overlying scales, often with systemic lesions. Lichen sclerosus presents as a phimotic, hypopigmented prepuce or glans penis with a cellophane-like texture. Angiokeratomas are typically asymptomatic, well-circumscribed, red or blue papules, whereas lichen nitidus usually produces asymptomatic pinhead-sized, hypopigmented papules. The lesions of lichen planus are pruritic, violaceous, polygonal papules that are typically systemic. Carcinoma in situ should be suspected if the patient has velvety red or keratotic plaques of the glans penis or prepuce, whereas invasive squamous cell carcinoma presents as a painless lump, ulcer, or fungating irregular mass. Some benign lesions, such as psoriasis and lichen planus, can mimic carcinoma in situ or squamous cell carcinoma. Biopsy is indicated if the diagnosis is in doubt or neoplasm cannot be excluded. The management of benign penile lesions usually involves observation or topical corticosteroids; however, neoplastic lesions generally require surgery. PMID:20082512

  3. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease.

    PubMed

    Saraiva, C; Paiva, J; Santos, T; Ferreira, L; Bernardino, L

    2016-08-10

    Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration. PMID:27269730

  4. Electroacupuncture Alleviates Depressive-Like Symptoms and Modulates BDNF Signaling in 6-Hydroxydopamine Rats

    PubMed Central

    Sun, Min; Wang, Ke; Yu, Yan; Su, Wen-Ting; Jiang, Xin-Xin

    2016-01-01

    Previous studies have identified the beneficial effects of electroacupuncture (EA) on motor behaviors in Parkinson's disease (PD). However, the role and potential mechanisms of EA in PD-associated depression remain unclear. In the present study, a rat model of PD with unilateral 6-hydroxydopamine (6-OHDA) lesions in the medial forebrain bundle was treated using EA for 4 weeks. We found that 100 Hz EA improved several motor phenotypes. In addition, tyrosine hydroxylase (TH) immunohistochemical analysis showed that EA had a minimal impact on the TH-positive profiles of the ipsilateral ventral tegmental area. Compared with the 6-OHDA group, long-term EA stimulation significantly increased sucrose solution consumption and decreased immobility time in the forced swim test. EA treatment did not alter dopamine, norepinephrine, and serotonin levels in the striatum and hippocampus. Noticeably, EA treatment reversed the 6-OHDA-induced abnormal expression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) in the midbrain and hippocampus. These results demonstrate that EA at 100-Hz possesses the ability to improve depressive-like symptoms in PD rats, which is, at least in part, due to the distinct effect of EA on the mesostriatal and mesocorticolimbic dopaminergic pathways. Moreover, BDNF seems to participate in the effect of EA in PD. PMID:27525025

  5. New ghrelin agonist, HM01 alleviates constipation and L-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease

    PubMed Central

    Karasawa, H.; Pietra, C.; Giuliano, C.; Garcia-Rubio, S.; Xu, X.; Yakabi, S.; Taché, Y.; Wang, L.

    2015-01-01

    Background Constipation and L-dopa-induced gastric dysmotility are common gastrointestinal (GI) symptoms in Parkinson’s disease (PD). We investigate the novel ghrelin agonist, HM01 influence on GI motor dysfunctions in 6-hydroxydopamine (6-OHDA) rats. Methods HM01 pharmacological profiles were determined in vitro and in vivo in rats. We assessed changes in fecal output and water content, and gastric emptying (GE) in 6-OHDA rats treated or not with orogastric (og) HM01 and L-dopa/carbidopa (LD/CD, 20/2 mg kg−1). Fos immunoreactivity (ir) cells in specific brain and lumbosacral spinal cord were quantified. Key results HM01 displayed a high binding affinity to ghrelin receptor (Ki: 1.42 ± 0.36 nM), 4.3±1.0 h half-life and high brain/plasma ratio. 6-OHDA rats had reduced daily fecal output (22%) and water intake (23%) compared to controls. HM01 (3 and 10 mg kg−1) similarly reversed the decreased 4-h fecal weight and water content in 6-OHDA rats. Basal GE was not modified in 6-OHDA rats, however, LD/CD (once or daily for 8 days) delayed GE in 6-OHDA and control rats that was prevented by HM01 (3 mg kg−1 acute or daily before LD/CD). HM01 increased Fos-ir cell number in the area postrema, arcuate nucleus, nucleus tractus solitarius and lumbosacral intermediolateral column of 6-OHDA rats where 6-OHDA had a lowering effect compared to controls. Conclusions & Inferences 6-OHDA rats display constipation- and adipsia-like features of PD and L-dopa-inhibited GE. The new orally active ghrelin agonist, HM01 crosses the blood brain barrier and alleviates these alterations suggesting a potential benefit for PD with GI disorders. PMID:25327342

  6. Upregulation of β1-adrenoceptors is involved in the formation of gastric dysmotility in the 6-hydroxydopamine rat model of Parkinson's disease.

    PubMed

    Song, Jin; Zheng, Lifei; Zhang, Xiaoli; Feng, Xiaoyan; Fan, Ruifang; Sun, Lu; Hong, Feng; Zhang, Yue; Zhu, Jinxia

    2014-07-01

    Gastrointestinal dysmotility is one of the nonmotor symptoms of Parkinson's disease (PD). Gastroparesis and upregulated β-adrenoceptors (β-ARs) have been reported in rats with bilateral microinjection of 6-hydroxydopamine (6-OHDA) in the substantia nigra, but the underlying mechanism is unclear. The aim of the current study is to investigate the role of β-ARs in gastroparesis in 6-OHDA rats. Gastric motility was studied through strain gauge measurement. Immunofluorescence, real-time reverse transcription-polymerase chain reaction and Western blotting were performed to examine the expression of β-ARs. Norepinephrine (NE) inhibited gastric motility in a dose-dependent fashion in both control and 6-OHDA rats, but much stronger adrenergic reactivity was observed in the 6-OHDA rats. The inhibition of gastric motility by NE in both control and 6-OHDA rats was not affected by tetrodotoxin, a neural sodium channel blocker. Blocking β1-AR or β2-AR did not affect the inhibition of strip contraction by NE in control rats, but β1-AR blockage obviously enhanced the half maximal inhibitory concentration value of NE in 6-OHDA rats. Selective inhibition of β3-AR blocked the effect of NE significantly in both control and 6-OHDA rats. The protein expression of β1-AR, but not β2-AR and β3-AR in gastric muscularis externa was increased significantly in 6-OHDA rats. In conclusion, β3-AR involves the regulation of gastric motility in control rats, whereas the upregulation of β1-AR is responsible for enhanced NE reactivity in 6-OHDA rats and therefore is involved in the formation of gastroparesis. The effect of both β1-AR and β3-AR on gastric motility is independent of the enteric nervous system. PMID:24467967

  7. Dopamine agonists increase perseverative instrumental responses but do not restore habit formation in a rat model of Parkinsonism.

    PubMed

    Faure, A; Leblanc-Veyrac, P; El Massioui, N

    2010-06-30

    Dopamine (DA) deafferentation of the dorsolateral striatum has been shown to prevent habit development, leaving instrumental behavior under action-outcome control that is persistently sensitive to modification of the motivational value of the reward. The present experiment further explored the basis of this dysfunction by examining the ability of intrastriatal DA agonist injections (D1 SKF 38393 or D2/D3 Quinpirole) during overtraining of a signaled instrumental task to restore habit formation in rats subjected to bilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal dopaminergic pathway. Overtraining was followed by a test of goal sensitivity by satiety-specific devaluation of the reward. The results confirmed the impaired shift in performance from action to habit in control lesioned rats. However, lesioned rats repeatedly injected with quinpirole D2/D3 agonist showed an increase in non-rewarded instrumental responses (intertrials periods) during overtraining, suggesting the development of perseverative behavior. Following the procedure of devaluation, quinpirole D2/D3 agonist treatment, and to a lesser extent SKF 38393 D1 agonist, caused the persistence of sensitivity to reward devaluation, indicating clear goal-directed behavior despite extended training. This absence of restoration of habit formation by DA agonist treatment is discussed in the light of DA agonist effects in Parkinson patients. PMID:20362642

  8. Imaging Pediatric Vascular Lesions.

    PubMed

    Nguyen, Tuyet A; Krakowski, Andrew C; Naheedy, John H; Kruk, Peter G; Friedlander, Sheila Fallon

    2015-12-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  9. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  10. Extragastric Dieulafoy's lesion

    PubMed Central

    Gauci, James; Galea, Samuel; Galea, Joseph; Schembri, Mark

    2014-01-01

    A 74-year-old man on warfarin for aortic valve replacement presented with recurrent episodes of melaena. An initial oesophagogastroduodenoscopy (OGD) was normal, as were red cell scanning and colonoscopy. It was a third OGD that revealed the cause of the melaena—a vascular lesion in the duodenum, at the junction between D1 and D2. An extragastric Dieulafoy's lesion was diagnosed, and the lesion was injected with epinephrine and tattooed. Over the following months, episodes of bleeding recurred despite further attempts at injection. Percutaneous radiologically assisted embolisation of the gastroduodenal artery, and eventually duodenotomy and oversuturing of the lesion were performed to no avail. The patient has undergone over 10 endoscopies, and has received over 70 units of packed red cells to date, since his initial presentation 6 years ago. Attempts to stop the bleeding permanently have been difficult, highlighting the complexity of managing such a lesion. PMID:25216921

  11. The Small Breathing Amplitude at the Upper Lobes Favors the Attraction of Polymorphonuclear Neutrophils to Mycobacterium tuberculosis Lesions and Helps to Understand the Evolution toward Active Disease in An Individual-Based Model

    PubMed Central

    Cardona, Pere-Joan; Prats, Clara

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) can induce two kinds of lesions, namely proliferative and exudative. The former are based on the presence of macrophages with controlled induction of intragranulomatous necrosis, and are even able to stop its physical progression, thus avoiding the induction of active tuberculosis (TB). In contrast, the most significant characteristic of exudative lesions is their massive infiltration with polymorphonuclear neutrophils (PMNs), which favor enlargement of the lesions and extracellular growth of the bacilli. We have built an individual-based model (IBM) (known as “TBPATCH”) using the NetLogo interface to better understand the progression from Mtb infection to TB. We have tested four main factors previously identified as being able to favor the infiltration of Mtb-infected lesions with PMNs, namely the tolerability of infected macrophages to the bacillary load; the capacity to modulate the Th17 response; the breathing amplitude (BAM) (large or small in the lower and upper lobes respectively), which influences bacillary drainage at the alveoli; and the encapsulation of Mtb-infected lesions by the interlobular septae that structure the pulmonary parenchyma into secondary lobes. Overall, although all the factors analyzed play some role, the small BAM is the major factor determining whether Mtb-infected lesions become exudative, and thus induce TB, thereby helping to understand why this usually takes place in the upper lobes. This information will be very useful for the design of future prophylactic and therapeutic approaches against TB. PMID:27065951

  12. Cathepsin Protease Inhibition Reduces Endometriosis Lesion Establishment.

    PubMed

    Porter, Kristi M; Wieser, Friedrich A; Wilder, Catera L; Sidell, Neil; Platt, Manu O

    2016-05-01

    Endometriosis is a gynecologic disease characterized by the ectopic presence of endometrial tissue on organs within the peritoneal cavity, causing debilitating abdominal pain and infertility. Current treatments alleviate moderate pain symptoms associated with the disorder but exhibit limited ability to prevent new or recurring lesion establishment and growth. Retrograde menstruation has been implicated for introducing endometrial tissue into the peritoneal cavity, but molecular mechanisms underlying attachment and invasion are not fully understood. We hypothesize that cysteine cathepsins, a group of powerful extracellular matrix proteases, facilitate endometrial tissue invasion and endometriosis lesion establishment in the peritoneal wall and inhibiting this activity would decrease endometriosis lesion implantation. To test this, we used an immunocompetent endometriosis mouse model and found that endometriotic lesions exhibited a greater than 5-fold increase in active cathepsins compared to tissue from peritoneal wall or eutopic endometrium, with cathepsins L and K specifically implicated. Human endometriosis lesions also exhibited greater cathepsin activity than adjacent peritoneum tissue, supporting the mouse results. Finally, we tested the hypothesis that inhibiting cathepsin activity could block endometriosis lesion attachment and implantation in vivo. Intraperitoneal injection of the broad cysteine cathepsin inhibitor, E-64, significantly reduced the number of attached endometriosis lesions in our murine model compared to vehicle-treated controls demonstrating that cathepsin proteases contribute to endometriosis lesion establishment, and their inhibition may provide a novel, nonhormonal therapy for endometriosis. PMID:26482207

  13. Prospective randomized comparison of endoscopic submucosal tunnel dissection and conventional submucosal dissection in the resection of superficial esophageal/gastric lesions in a living porcine model

    PubMed Central

    Gomercic, Cécile; Vanbiervliet, Geoffroy; Gonzalez, Jean-Michel; Saint-Paul, Marie-Christine; Garcès-Duran, Rodrigo; Garnier, Emmanuelle; Hébuterne, Xavier; Berdah, Stéphane; Barthet, Marc

    2015-01-01

    Background and study aims: To assess experimentally endoscopic submucosal tunnel dissection (ESTD) as an alternative technique of endoscopic submucosal resection. Patients and methods: This was a prospective, randomized, comparative experimental animal study carried out over a period of 9 months at the surgical research and teaching center of Aix-Marseille University, France. Virtual esophageal and gastric lesions measuring 3 cm in diameter were resected in pigs weighing 25 to 30 kg. The primary aim was to evaluate ESTD’s efficacy compared with endoscopic submucosal dissection (ESD). The secondary aims were to determine complication rates as well as to assess procedure time and procedure speed, histologic quality of the resected specimen, and procedure cost. Results: Eighteen procedures (9 ESD and 9 ESTD) were performed in nine pigs. The technical success rate was 88.9 % for both techniques, with one single failure in each. The en bloc resection rate was 100 % for ESTD and 88.9 % for ESD (one failure). The complication rate (22 %) and median procedure time were similar but dissection speed was quicker with ESTD in the esophagus (P = 0.03). Median procedure cost (728 Euros for ESD and ESTD) did not differ. On histologic examination, the lateral margins were healthy in 100 % of ESTD and in 88.9 % of ESD (P = 0.49). Deep resection margins were of better quality in ESTD (median submucosal thickness: 1307.1 µm vs. 884.7 µm; P = 0.039). Conclusions: ESTD is feasible and safe but not superior in the treatment of superficial esophageal/gastric lesions in porcine models compared with ESD. Nevertheless it provides a better quality histologic specimen. PMID:26716116

  14. Molecular imaging of cerebrovascular lesions.

    PubMed

    Chalouhi, Nohra; Jabbour, Pascal; Magnotta, Vincent; Hasan, David

    2014-04-01

    Inflammation is a key component in the pathogenesis of cerebrovascular lesions. Two agents have emerged as promising possibilities for imaging cerebrovascular lesions. These agents are ferumoxytol and myeloperoxidase (MPO)-specific paramagnetic magnetic resonance (MR) contrast agent. Ferumoxytol is an iron oxide nanoparticle coated by a carbohydrate shell that is used in MRI studies as an inflammatory marker as it is cleared by macrophages. Ferumoxytol-enhanced MRI allows noninvasive assessment of the inflammatory status of cerebral aneurysms and arteriovenous malformations and, possibly, may differentiate "unstable" lesions that require early intervention from "stable" lesions that can be safely observed. Several pilot studies have also suggested that MPO-specific paramagnetic MR contrast agent, di-5-hydroxytryptamide of gadopentetate dimeglumine, may allow imaging of inflammation in the wall of saccular aneurysms in animal models. However, studies in human subjects have yet to be performed. In this paper, we review current data regarding ferumoxytol-enhanced MRI and MPO-specific paramagnetic MR contrast agent and discuss current and future applications. PMID:24323714

  15. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal☆

    PubMed Central

    Rekik, Islem; Allassonnière, Stéphanie; Carpenter, Trevor K.; Wardlaw, Joanna M.

    2012-01-01

    Over the last 15 years, basic thresholding techniques in combination with standard statistical correlation-based data analysis tools have been widely used to investigate different aspects of evolution of acute or subacute to late stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent issues is still untackled pointing towards the key question: “how does an ischemic stroke evolve?” Paving the way for potential answers to this question, both magnetic resonance (MRI) and CT (computed tomography) images have been used to visualize the lesion extent, either with or without spatial distinction between dead and salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called penumbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and prediction methods, we propose a common categorization pattern. We also emphasize some key aspects of the methods such as the imaging modalities required to build and test the presented approach, the number of patients/animals or synthetic samples, the use of external user interaction and the methods of assessment (clinical or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as swelling or reperfusion, were detected (or not) by each method. In the absence of any imaging-based macroscopic dynamic model

  16. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1{sup I4895T/wt} mouse model of core myopathy

    SciTech Connect

    Zvaritch, Elena; MacLennan, David H.

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.

  17. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease

    PubMed Central

    Joutel, Anne; Monet-Leprêtre, Marie; Gosele, Claudia; Baron-Menguy, Céline; Hammes, Annette; Schmidt, Sabine; Lemaire-Carrette, Barbara; Domenga, Valérie; Schedl, Andreas; Lacombe, Pierre; Hubner, Norbert

    2010-01-01

    Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the development of a mouse model for CADASIL via the introduction of a CADASIL-causing Notch3 point mutation into a large P1-derived artificial chromosome (PAC). In vivo expression of the mutated PAC transgene in the mouse reproduced the endogenous Notch3 expression pattern and main pathological features of CADASIL, including Notch3 extracellular domain aggregates and granular osmiophilic material (GOM) deposits in brain vessels, progressive white matter damage, and reduced cerebral blood flow. Mutant mice displayed attenuated myogenic responses and reduced caliber of brain arteries as well as impaired cerebrovascular autoregulation and functional hyperemia. Further, we identified a substantial reduction of white matter capillary density. These neuropathological changes occurred in the absence of either histologically detectable alterations in cerebral artery structure or blood-brain barrier breakdown. These studies provide in vivo evidence for cerebrovascular dysfunction and microcirculatory failure as key contributors to hypoperfusion and white matter damage in this genetic model of ischemic SVD. PMID:20071773

  18. Oral Lesions in Neonates

    PubMed Central

    Rao, Roopa S; Majumdar, Barnali; Jafer, Mohammed; Maralingannavar, Mahesh; Sukumaran, Anil

    2016-01-01

    ABSTRACT Oral lesions in neonates represent a wide range of diseases often creating apprehension and anxiety among parents. Early examination and prompt diagnosis can aid in prudent management and serve as baseline against the future course of the disease. The present review aims to enlist and describe the diagnostic features of commonly encountered oral lesions in neonates. How to cite this article: Patil S, Rao RS, Majumdar B, Jafer M, Maralingannavar M, Sukumaran A. Oral Lesions in Neonates. Int J Clin Pediatr Dent 2016;9(2):131-138. PMID:27365934

  19. Oral Lesions in Neonates.

    PubMed

    Patil, Shankargouda; Rao, Roopa S; Majumdar, Barnali; Jafer, Mohammed; Maralingannavar, Mahesh; Sukumaran, Anil

    2016-01-01

    Oral lesions in neonates represent a wide range of diseases often creating apprehension and anxiety among parents. Early examination and prompt diagnosis can aid in prudent management and serve as baseline against the future course of the disease. The present review aims to enlist and describe the diagnostic features of commonly encountered oral lesions in neonates. How to cite this article: Patil S, Rao RS, Majumdar B, Jafer M, Maralingannavar M, Sukumaran A. Oral Lesions in Neonates. Int J Clin Pediatr Dent 2016;9(2):131-138. PMID:27365934

  20. Retinal lesions in septicemia.

    PubMed

    Neudorfer, M; Barnea, Y; Geyer, O; Siegman-Igra, Y

    1993-12-15

    We explored the association between septicemia and specific retinal lesions in a prospective controlled study. Hemorrhages, cotton-wool spots, or Roth's spots were found in 24 of 101 septicemic patients (24%), compared to four of 99 age- and gender-matched control patients (4%) (P = .0002). There was no significant association between types of organisms or focus of infection and the presence of specific lesions. Histologic examination of affected eyes disclosed cytoid bodies in the nerve fiber layer without inflammation. A definite association between septicemia and retinal lesions was found and indicates the need for routine ophthalmoscopy in septicemic patients. PMID:8250076

  1. Examining the Relationship between Pre-Malignant Breast Lesions, Carcinogenesis and Tumor Evolution in the Mammary Epithelium Using an Agent-Based Model

    PubMed Central

    Chapa, Joaquin; An, Gary; Kulkarni, Swati A.

    2016-01-01

    Introduction Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. Methods The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. Results Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes

  2. Radix Ilicis Pubescentis total flavonoids ameliorates neuronal damage and reduces lesion extent in a mouse model of transient ischemic attack

    PubMed Central

    Miao, Ming-san; Guo, Lin; Li, Rui-qi; Zhang, Xiao-lei

    2016-01-01

    Flavonoids are a major component in the traditional Chinese medicine Radix Ilicis Pubescentis. Previous studies have shown that the administration of Radix Ilicis Pubescentis total flavonoids is protective in cerebral ischemia. However, to our knowledge, no studies have examined whether the total flavonoids extracted from Radix Ilicis Pubescentis prevent or ameliorate neuronal damage following transient ischemic attacks. Therefore, Radix Ilicis Pubescentis total flavonoids question and the potential underlying mechanisms. Thus, beginning 3 days before the induction of a mouse model of transient ischemic attack using tert-butyl hydroperoxide injections, mice were intragastrically administered 0.3, 0.15, or 0.075 g/kg of Radix Ilicis Pubescentis total flavonoids daily for 10 days. The results of spectrophotometric analyses demonstrated that Radix Ilicis Pubescentis total flavonoids enhanced oxygen free radical scavenging and reduced pathological alterations in the brain. Hematoxylin-eosin staining results showed that Radix Ilicis Pubescentis total flavonoids reduced hippocampal neuronal damage and cerebral vascular injury in this mouse model of transient ischemic attack. These results suggest that the antioxidant effects of Radix Ilicis Pubescentis total flavonoids alleviate the damage to brain tissue caused by transient ischemic attack. PMID:27127483

  3. Biofield potential simulation as a novel adjunt modality for continuous monitoring of breast lesions: a 3D numerical model.

    PubMed

    Ng, E Y K; Ng, W K; Acharya, U Rajendra

    2008-01-01

    Breast cancer is a disease characterized by the uncontrolled growth of abnormal cells. Early detection of this disease is the most effective way to reduce mortality. Although several new technologies show promise for improved capability of diagnosis, none have yet proved superior to traditional, X-ray film mammography in screening for breast cancer. More evaluation and development of new imaging tools and of promising skin surface electrical potential techniques is required and warranted. In the present study, we propose a theoretical three-dimensional, simplified and realistic model of the female breast to distinguish the surface biopotential in different types of breast abnormalities. We developed an inhomogeneous female breast model, closer to the actual, by considering the breast as a hemisphere with various layers of unequal thickness in supine condition. In order to determine the potential distribution developed, isotropic homogeneous conductivity was assigned to each of these compartments and the volume conductor problem was solved using finite element method. Richardson extrapolation for grid invariance test was used to ensure the results are of reliable accuracy. The simulation results show that the surface potentials are sensitive to the presence of tumour, location and placement of the electrodes. PMID:18183519

  4. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus.

    PubMed

    Eggert, Thomas; Robinson, Farrel R; Straube, Andreas

    2016-06-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN's direct connections to the

  5. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the

  6. Anti-Ulcerogenic Properties of Lycium chinense Mill Extracts against Ethanol-Induced Acute Gastric Lesion in Animal Models and Its Active Constituents.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2015-01-01

    The objective of this study was to explore the gastroprotective properties of the aerial part of Lycium chinense Mill (LCA) against ethanol-induced gastric mucosa lesions in mice models. Administration of LCA at doses of 50, 100, 200 and 400 mg/kg body weight prior to ethanol consumption dose dependently inhibited gastric ulcers. The gastric mucosal injury was analyzed by gastric juice acidity, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO) activities. Furthermore, the levels of the inflammatory mediators, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in serum were also analyzed using ELISA. Pathological changes were also observed with the aid of hematoxylin-eosin (HE) staining. Our results indicated that LCA significantly reduced the levels of MPO, MDA and increased SOD and GSH activities. Furthermore, LCA also significantly inhibited the levels of TNF-α, IL-6, and IL-1β in the serum of ulcerated mice in a dose dependent manner. Immunohistological analysis indicated that LCA also significantly attenuated the overexpression of nuclear factor-κB in pretreated mice models. This findings suggests Lycium chinense Mill possesses gastroprotective properties against ethanol-induced gastric injury and could be a possible therapeutic intervention in the treatment and management of gastric ulcers. PMID:26694339

  7. Anti-parkinsonian effects of fluvoxamine maleate in maternally separated rats.

    PubMed

    Dallé, Ernest; Daniels, Willie M U; Mabandla, Musa V

    2016-10-01

    Exposure to early life stress has been shown to result in anxiety-like symptoms and exacerbates degeneration of dopaminergic neurons in a rat model of Parkinson's disease (PD). First line treatment for anxiety disorders includes the use of Fluvoxamine maleate (FM). In this study, we investigated whether treating anxiety-like symptoms with FM has an effect in alleviating the neurotoxic effects of 6-OHDA in a parkinsonian rat model. Early maternal separation was used to create a rat model that depicts anxiety-like symptoms. Maternally separated adult Sprague-Dawley rats were treated with FM prior to and following lesion with 6-hydroxydopamine (6-OHDA). The elevated plus-maze (EPM) and the forelimb akinesia tests were used to evaluate anxiety-like symptoms and motor impairment respectively. Blood plasma was used to measure corticosterone concentration, and striatal tissue was collected for dopamine (DA) and serotonin (5-HT) analysis. Our results show that animals exposed to early life stress displayed increased anxiety-like symptoms and elevated basal plasma corticosterone concentration which were attenuated by treatment with FM. A 6-OHDA lesion effect was evidenced by impairment in the forelimb akinesia test as well as decreased DA and 5-HT concentrations in the lesioned striatum. These effects were attenuated on DA neurons by FM treatment in the pre-lesion treated as opposed to the post-lesion treated rats. This study suggests that early treatment of anxiety-like behavior decreases the vulnerability of DA neurons to neurotoxic insults later in life thus slowing down DA degeneration in PD. PMID:27338206

  8. Talar Dome Lesion

    MedlinePlus

    ... be helpful in reducing the pain and inflammation. Physical therapy . Range-of-motion and strengthening exercises are beneficial once the lesion is adequately healed. Physical therapy may also include techniques to reduce pain and ...

  9. Hypervascular liver lesions.

    PubMed

    Kamaya, Aya; Maturen, Katherine E; Tye, Grace A; Liu, Yueyi I; Parti, Naveen N; Desser, Terry S

    2009-10-01

    Hypervascular hepatocellular lesions include both benign and malignant etiologies. In the benign category, focal nodular hyperplasia and adenoma are typically hypervascular. In addition, some regenerative nodules in cirrhosis may be hypervascular. Malignant hypervascular primary hepatocellular lesions include hepatocellular carcinoma, fibrolamellar carcinoma, and peripheral cholangiocarcinoma. Vascular liver lesions often appear hypervascular because they tend to follow the enhancement of the blood pool; these include hemangiomas, arteriovenous malformations, angiosarcomas, and peliosis. While most gastrointestinal malignancies that metastasize to the liver will appear hypovascular on arterial and portal-venous phase imaging, certain cancers such as metastatic neuroendocrine tumors (including pancreatic neuroendocrine tumors, carcinoid, and gastrointestinal stromal tumors) tend to produce hypervascular metastases due to the greater recruitment of arterial blood supply. Finally, rare hepatic lesions such as glomus tumor and inflammatory pseudotumor may have a hypervascular appearance. PMID:19842564

  10. Uterine Vascular Lesions

    PubMed Central

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  11. Evaluation of Parotid Lesions.

    PubMed

    Kuan, Edward C; Mallen-St Clair, Jon; St John, Maie A

    2016-04-01

    The differential diagnosis of a parotid lesion is broad, and the otolaryngologist must consider inflammatory, neoplastic, autoimmune, traumatic, infectious, or congenital causes. A comprehensive history and physical examination, in conjunction with judicious use of radiographic imaging (MRI, computed tomography, ultrasonography, nuclear medicine studies), laboratory studies, and pathologic analysis (fine-needle aspiration, core biopsy, incisional biopsy), facilitates making an accurate diagnosis. This article reviews the key history and physical elements and adjunctive diagnostic tools available for working up parotid lesions. PMID:26902978

  12. Multiple Osteolytic Lesions

    PubMed Central

    Vinayachandran, Divya; Sankarapandian, Sathasivasubramanian

    2013-01-01

    Several systemic diseases initially present with various oral manifestations. Investigation of these oral symptoms may at times lead to the diagnosis of grave underlying life-threatening conditions. We present one such case, where the patient manifested with gross enlargement of the mandible, along with lesions in the lower limbs. These lesions were the initial manifestation and on further investigations the patient was diagnosed with multiple myeloma. PMID:24516769

  13. Petrous Apex Lesions

    PubMed Central

    Amedee, Ronald G.; Gianoli, Gerard J.; Mann, Wolf J.

    1994-01-01

    The purpose of this article is to detail our experience in treating 69 patients over the past 6 years with pathologic processes involving the petrous apex. These included 25 (36%) primary petrous apex lesions, 40 (58%) lesions that involved the petrous apex by direct invasion from an adjacent region, and four (6%) lesions that were the result of metastatic spread from a distant site. Although lesions of the petrous apex are uncommon, they may present significant morbidity to the patient. The symptoms elicited by these lesions are usually vague and nonlocalizing in the early stages but may progress to include multiple cranial neuropathies. Successful results are contingent on early diagnosis, which requires a high index of suspicion and use of appropriate imaging modalities. Thorough preoperative assessment with use of computed tomography, magnetic resonance imaging, and carotid arteriography is essential to plan the surgical approach. We present this collection of patients in order to aid in the further preoperative characterization of the differences in primary and secondary lesions of the petrous apex. PMID:17170919

  14. Colorectal Subepithelial Lesions

    PubMed Central

    2015-01-01

    Most of subepithelial lesion (SEL) being identified was accidentally discovered as small bulging lesion covered with normal mucosa from endoscopic screening. The type of treatment and prognosis vary depending on the type of tumor, it would be crucial to perform an accurate differential diagnosis. Since the differentiation of SEL relied on the indirect findings observed from the mucosal surface using an endoscopy only in the past, it was able to confirm the presence of lesion only but difficult to identify complex detailed nature of the lesion. However, after the endoscopic ultrasonography (EUS) was introduced, it became possible to identify extrinsic compression, and size of intramural tumors, internal properties and contour so that it gets possible to have differential diagnosis of lesions and prediction on the lesion whether it is malignant or benign. In addition, the use of EUS-guided fine needle aspiration and EUS-guided core biopsy made it possible to make histological differential diagnosis. This study intended to investigate endoscopic and EUS findings, histological diagnosis, treatment regimen and impression of colorectal SELs. PMID:26240803

  15. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model.

    PubMed

    Guo, Chuang; Zhang, Shuai; Li, Jia-Yi; Ding, Chen; Yang, Zhao-Hui; Chai, Rui; Wang, Xu; Wang, Zhan-You

    2016-01-01

    Compelling evidence has indicated that dysregulated glucose metabolism links Alzheimer's disease (AD) and diabetes mellitus (DM) via glucose metabolic products. Nevertheless, because of the lack of appropriate animal models, whether chronic hyperglycemia worsens AD pathologies in vivo remains to be confirmed. Here, we crossed diabetic mice (Pdx1(+/-) mice) with Alzheimer mice (APP/PS1 transgenic mice) to generate Pdx1(+/-)/APP/PS1. We identified robust increases in tau phosphorylation, the loss of the synaptic spine protein, amyloid-β (Aβ) deposition and