Science.gov

Sample records for 6-oxo camphor hydrolase

  1. Camphor overdose

    MedlinePlus

    ... treated as appropriate. The person may receive: Activated charcoal (used if other substances were taken along with the camphor, since activated charcoal does not adsorb camphor very well) Airway support, ...

  2. One step synthesis of 6-oxo-cholestan-3β,5α-diol

    SciTech Connect

    Voisin, Maud; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-04-11

    Highlights: • Cholesterol-5,6-epoxides are metabolized into cholestane-3β,5α,6β-triol (CT) in cancer cells. • 6-Oxo-cholestan-3β,5α-diol (OCDO) is a putative metabolite of CT. • The one step syntheses of CT and OCDO from cholesterol are reported. • The one step syntheses of labelled CT and OCDO are reported. - Abstract: Cholesterol metabolism has been recently linked to cancer, highlighting the importance of the characterization of new metabolic pathways in the sterol series. One of these pathways is centered on cholesterol-5,6-epoxides (5,6-ECs). 5,6-ECs can either generate dendrogenin A, a tumor suppressor present in healthy mammalian tissues, or the carcinogenic cholestane-3β,5α,6β-triol (CT) and its putative metabolite 6-oxo-cholestan-3β,5α-diol (OCDO) in tumor cells. We are currently investigating the identification of the enzyme involved in OCDO biosynthesis, which would be highly facilitated by the use of commercially unavailable [{sup 14}C]-cholestane-3β,5α,6β-triol and [{sup 14}C]-6-oxo-cholestan-3β,5α-diol. In the present study we report the one-step synthesis of [{sup 14}C]-cholestane-3β,5α,6β-triol and [{sup 14}C]-6-oxo-cholestan-3β,5α-diol by oxidation of [{sup 14}C]-cholesterol with iodide metaperiodate (HIO{sub 4})

  3. Synthesis and biological activity of furostanic analogues of brassinosteroids bearing the 5alpha-hydroxy-6-oxo moiety.

    PubMed

    Romero-Avila, Margarita; de Dios-Bravo, Guadalupe; Mendez-Stivalet, Jóse M; Rodríguez-Sotres, Rogelio; Iglesias-Arteaga, Martin A

    2007-12-01

    Two furostanic analogues of brassinosteroids bearing the 5alpha-hydroxy-6-oxo moiety were synthesized and their biological activity studied using the bean second internode elongation test. One of the compounds produced significant stimulation at doses of 2.5 and 5ng/plant. PMID:17905389

  4. Heteroadamantanes and their derivatives. V. Synthesis of 5-monosubstituted 6-oxo- and 6-hydroxy-1,3-diazaadamantanes

    SciTech Connect

    Kuznetsov, A.I.; Basargin, E.B.; Mamadu Hadi Ba; Yakushev, P.F.; Unkovskii, B.V.

    1986-05-20

    The difficulty obtainable 5-methyl- and 5-phenyl-6-oxo-1,3-diazaadamantanes are formed when methyl ethyl ketone and methyl benzyl ketone are heated with hexamethylenetetraamine and glacial acetic acid in 1-butanol by a modified Mannich reaction. Their reduction gave 5-methyl- and 5-phenyl-6-hydroxy-1,3-diazaadamantanes.

  5. [Raspail, Don Quixote of camphor!].

    PubMed

    Hutin, Jean-François

    2015-01-01

    François Vincent Raspail (1794-1878) was a chemist and a politician who practised medicine illegally : for him, all pathologies were almost exclusively caused by "parasites" and he treated them all thanks to the beneficial effects of camphor. Raspail did not invent nor discover that substance, which was broadly used in the 18th century, but he codified the use of its various pharmaceutical forms thanks to what would be later called "Raspail's method": camphor to eat (lumps), to snuff (powder), to smoke (cigarettes), brandy and 32° camphored alcohol, camphored oil and sedative water... Since Raspail lavished his patients with many hygiene pieces of advice and moral principles, this method--that was actually a prolongation of his political action in favour of the very poor--was a complete success among the population. But this success was also due to the simplicity of the remedy, its relative harmlessness and, above all, to an incredibly efficient advertising since he enjoyed the support of many important people and also published a very successful book, his Manuel annuaire de Santé, that was re-edited 77 times. PMID:26492672

  6. Identification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase.

    PubMed

    Dragovich, Peter S; Fauber, Benjamin P; Corson, Laura B; Ding, Charles Z; Eigenbrot, Charles; Ge, HongXiu; Giannetti, Anthony M; Hunsaker, Thomas; Labadie, Sharada; Liu, Yichin; Malek, Shiva; Pan, Borlan; Peterson, David; Pitts, Keith; Purkey, Hans E; Sideris, Steve; Ultsch, Mark; VanderPorten, Erica; Wei, BinQing; Xu, Qing; Yen, Ivana; Yue, Qin; Zhang, Huihui; Zhang, Xuying

    2013-06-01

    A novel 2-thio-6-oxo-1,6-dihydropyrimidine-containing inhibitor of human lactate dehydrogenase (LDH) was identified by high-throughput screening (IC50=8.1 μM). Biochemical, surface plasmon resonance, and saturation transfer difference NMR experiments indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of the screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.48 μM). A crystal structure of an optimized compound bound to human LDHA was obtained and explained many of the observed structure-activity relationships. PMID:23628333

  7. Kinetic and X-ray crystallographic investigations of substituted 2-thio-6-oxo-1,6-dihydropyrimidine-benzenesulfonamides acting as carbonic anhydrase inhibitors.

    PubMed

    Vullo, Daniela; Supuran, Claudiu T; Scozzafava, Andrea; De Simone, Giuseppina; Monti, Simona Maria; Alterio, Vincenzo; Carta, Fabrizio

    2016-08-15

    Herein we report an in vitro kinetic evaluation against the most relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms (I, II, IX and XII) of a small series of lactate dehydrogenase (LDH, EC 1.1.1.27) inhibitors. All compounds contain a primary sulfonamide zinc-binding group (ZBG) substituted with the 2-thio-6-oxo-1,6-dihydropyrimidine scaffold. By means of X-ray crystallographic experiments we explored the ligand-enzyme binding modes, thus highlighting the contribution of the 2-thio-6-oxo-1,6-dihydropyrimidine moiety to the stabilization of the complex. PMID:27316543

  8. Seizures due to high dose camphor ingestion

    PubMed Central

    Tekin, Hande Gazeteci; Gökben, Sarenur; Serdaroğlu, Gül

    2015-01-01

    Camphor is a cyclic ketone of the hydro aromatic terpene group. Today it is frequently used as a prescription or non-prescription topical antitussive, analgesic, anesthetic and antipruritic agent. Camphor which is considered an innocent drug by parents and physicians is a common household item which can lead to severe poisoning in children even when taken in small amounts. Neurotoxicity in the form of seizures can ocur soon after ingestion. A two-year old female patient who presented with a complaint of generalized tonic-clonic seizures after oral ingestion of camphor is presented. PMID:26884696

  9. Spontaneous motion of an elliptic camphor particle

    NASA Astrophysics Data System (ADS)

    Kitahata, Hiroyuki; Iida, Keita; Nagayama, Masaharu

    2013-01-01

    The coupling between deformation and motion in a self-propelled system has attracted broader interest. In the present study, we consider an elliptic camphor particle for investigating the effect of particle shape on spontaneous motion. It is concluded that the symmetric spatial distribution of camphor molecules at the water surface becomes unstable first in the direction of a short axis, which induces the camphor disk motion in this direction. Experimental results also support the theoretical analysis. From the present results, we suggest that when an elliptic particle supplies surface-active molecules to the water surface, the particle can exhibit translational motion only in the short-axis direction.

  10. Seizures due to high dose camphor ingestion.

    PubMed

    Tekin, Hande Gazeteci; Gökben, Sarenur; Serdaroğlu, Gül

    2015-12-01

    Camphor is a cyclic ketone of the hydro aromatic terpene group. Today it is frequently used as a prescription or non-prescription topical antitussive, analgesic, anesthetic and antipruritic agent. Camphor which is considered an innocent drug by parents and physicians is a common household item which can lead to severe poisoning in children even when taken in small amounts. Neurotoxicity in the form of seizures can ocur soon after ingestion. A two-year old female patient who presented with a complaint of generalized tonic-clonic seizures after oral ingestion of camphor is presented. PMID:26884696

  11. Crosslinking reactions of 4-amino-6-oxo-2-vinylpyrimidine with guanine derivatives and structural analysis of the adducts

    PubMed Central

    Kusano, Shuhei; Ishiyama, Shogo; Lam, Sik Lok; Mashima, Tsukasa; Katahira, Masato; Miyamoto, Kengo; Aida, Misako; Nagatsugi, Fumi

    2015-01-01

    DNA interstrand crosslinks (ICLs) are the primary mechanism for the cytotoxic activity of many clinical anticancer drugs, and numerous strategies for forming ICLs have been developed. One such method is using crosslink-forming oligonucleotides (CFOs). In this study, we designed a 4-amino-6-oxo-2-vinylpyrimidine (AOVP) derivative with an acyclic spacer to react selectively with guanine. The AOVP CFO exhibited selective crosslinking reactivity with guanine and thymine in DNA, and with guanine in RNA. These crosslinking reactions with guanine were accelerated in the presence of CoCl2, NiCl2, ZnCl2 and MnCl2. In addition, we demonstrated that the AOVP CFO was reactive toward 8-oxoguanine opposite AOVP in the duplex DNA. The structural analysis of each guanine and 8-oxoguanine adduct in the duplex DNA was investigated by high-resolution NMR. The results suggested that AOVP reacts at the N2 amine in guanine and at the N1 or N2 amines in 8-oxoguanine in the duplex DNA. This study demonstrated the first direct determination of the adduct structure in duplex DNA without enzyme digestion. PMID:26245348

  12. Heteroadamantanes and their derivatives. 6. Synthesis and mass-spectrometric investigation of 5-mono- and 5,6-disubstituted 6-oxo-1,3-diazaadamantanes

    SciTech Connect

    Kuznetsov, A.I.; Basargin, E.B.; Moskovkin, A.S.; Ba, M.Kh.; Miroshnichenko, I.V.; Botnikov, M.Ya.; Unkovskii, B.V.

    1986-06-01

    The corresponding 5-mono- and 5,7-disubstituted 6-oxo-1,3-diazaadamantanes were obtained with high yields by the condensation of mono- and ..cap alpha..,..cap alpha..'-disubstituted acetones with hexamethylenetetramine in the presence of glacial acetic acid, and their structures were confirmed by IR and PMR spectra. The behavior of the compounds under electron impact was studied, and the main fragmentation paths of their molecules were determined.

  13. A new cytotoxic coumarin, 7-[(E)-3',7'-dimethyl-6'-oxo-2',7'-octadienyl] oxy coumarin, from the leaves of Zanthoxylum schinifolium.

    PubMed

    Min, Bo Kyung; Hyun, Dong Geol; Jeong, Su Yang; Kim, Young Ho; Ma, Eun Sook; Woo, Mi Hee

    2011-05-01

    A new coumarin, 7-[(E)-3',7'-dimethyl-6'-oxo-2',7'-octadienyl]oxy coumarin (1), together with three known compounds, schinilenol (2), schinindiol (3) and 7-[(E)-7'-hydroxy-3',7'-dimethylocta-2',5'-dienyloxy]-coumarin (4) were isolated from the methylene chloride fraction of Z. schinifolium by normal and reverse phase column chromatographies. Their structures were determined on the basis of physical and spectroscopic evidences. Compound 1 (IC(50) 8.10 μM) showed potent cytotoxicity compared to auraptene (IC(50) 55.36 μM) against Jurkat T cells. The other isolated compounds 2 and 4 exhibited weak cytotoxicities. PMID:21656356

  14. Chiral chemistry of metal-camphorate frameworks.

    PubMed

    Gu, Zhi-Gang; Zhan, Caihong; Zhang, Jian; Bu, Xianhui

    2016-06-01

    This critical review presents the various synthetic approaches and chiral chemistry of metal-camphorate frameworks (MCamFs), which are homochiral metal-organic frameworks (MOFs) constructed from a camphorate ligand. The interest in this unique subset of homochiral MOFs is derived from the many interesting chiral features for both materials and life sciences, such as asymmetrical synthesis or crystallization, homochiral structural design, chiral induction, absolute helical control and ligand handedness. Additionally, we discuss the potential applications of homochiral MCamFs. This review will be of interest to researchers attempting to design other homochiral MOFs and those engaged in the extension of MOFs for applications such as chiral recognition, enantiomer separation, asymmetric catalysis, nonlinear sensors and devices. PMID:27021070

  15. Nondipole Photoemission from Chiral Enantiomers of Camphor

    NASA Astrophysics Data System (ADS)

    Bowen, K. P.; Stolte, W. C.; Young, J. A.; Demchenko, I. N.; Guillemin, R.; Hemmers, O.; Piancastelli, M. N.; Lindle, D. W.

    2010-03-01

    K-shell photoemission from the carbonyl carbon in the chiral molecule camphor has been studied in the region just above the core-shell ionization threshold. Differences between angular distributions of emitted photoelectrons from the two enantiomers are attributed to the influence of chirality combined with nondipole effects in the photoemission process, despite the fact the measurements were taken using linearly polarized x-rays. The results suggest the possibility of a new form of linear dichroism.

  16. Crystal structure of disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate

    PubMed Central

    Gur, Dvir; Shimon, Linda J. W.

    2015-01-01

    In the title compound, disodium 2-amino-6-oxo-6,7-di­hydro-1H-purine-1,7-diide hepta­hydrate, 2Na+·C5H3N5O2−·7H2O, the structure is composed of alternating (100) layers of guanine mol­ecules and hydrated Na+ ions. Within the guanine layer, the mol­ecules are arranged in centrosymmetric pairs, with a partial overlap between the guanine rings. In this compound, guanine exists as the amino–keto tautomer from which deprotonation from N1 and N7 has occurred (purine numbering). There are no direct inter­actions between the Na+ cations and the guanine anions. Guanine mol­ecules are linked to neighboring water mol­ecules by O—H⋯N and O—H⋯O hydrogen bonds into a network structure. PMID:25844188

  17. Levels of eicosanoids (6-oxo-PGF1 alpha and 8-epi-PGF2 alpha) in human and porcine lymphatics and lymph.

    PubMed

    Oguogho, A; Kaliman, J; Sinzinger, H

    1998-12-01

    Prostaglandin (PG)I2 is the primary eicosanoid synthesized by human lymphatics and 8-epi-PGF2 alpha, an isoprostane formed during free radical catalyzed peroxidation, is the most potent stimulator of lymphatic contraction tested thus far. We now examine the respective concentrations in the lymphatic wall of both human and porcine lymphatics and lymph fluid using specific immunoassays. Although both compounds are detectable in the lymphatic wall and lymph fluid, PGI2- (via its main metabolite 6-oxo-PGF1 alpha) is greater in the lymphatic wall whereas 8-epi-PGF2 alpha dominates in lymph fluid. Because inflammation is associated with oxidative injury, which in turn stimulates release of isoprostane, eicosanoid derivatives may modulate lymphatic tone during acute tissue reaction. PMID:9949390

  18. Biotransformations of 2-methylisoborneol by camphor-degrading bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many camphor-degrading bacteria that are able to transform 2-methylisoborneol (MIB) have been identified. Three strains representative of these, have been examined in detail. Rhodococcus ruber T1 metabolizes camphor through 6-hydroxycamphor, but converts MIB to 2,3-dihydroxy-2-methylbornane. Pseu...

  19. Swarming of self-propelled camphor boats

    NASA Astrophysics Data System (ADS)

    Heisler, Eric; Suematsu, Nobuhiko J.; Awazu, Akinori; Nishimori, Hiraku

    2012-05-01

    When an ensemble of self-propelled camphor boats move in a one-dimensional channel, they exhibit a variety of collective behaviors. Under certain conditions, the boats tend to cluster together and move in a relatively tight formation. This type of behavior, referred to as clustering or swarming here, is one of three types recently observed in experiment. Similar clustering behavior is also reproduced in simulations based on a simple theoretical model. Here we examine this model to determine the clustering mechanism and the conditions under which clustering occurs. We also propose a method of quantifying the behavior that may be used in future experimental work.

  20. The Effect of Camphor on Sex Hormones Levels in Rats

    PubMed Central

    Shahabi, Sima; Jorsaraei, Seyed Gholam Ali; Akbar Moghadamnia, Ali; Barghi, Effat; Zabihi, Ebrahim; Golsorkhtabar Amiri, Masoumeh; Maliji, Ghorban; Sohan Faraji, Alieh; Abdi Boora, Maryam; Ghazinejad, Neda; Shamsai, Hajar

    2014-01-01

    In some traditional therapies, it has been claimed that camphor (a crystalline ketone obtained from cinnamomum camphora) would be a suppressor of sexual behaviors and sex hormones. This study evaluated the effects of camphor on sex hormones, like luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone. In this experimental study, 56 male rats were divided into 5 groups, including control (n=12), sham (n=11) and three treatment groups (n=11) in three different doses. The sham groups received daily intra peritoneal (IP) injections of the vehicle (ethanol 10%) for 30 days. Three treatment groups received different daily IP injections of the camphor (1, 2 and 5 mg/Kg) for 30 days and the control groups didn’t received anything. Serums were used for assaying LH, FSH and testosterone. The level of LH significantly increased in all doses of camphor among the treatment groups as compared to the control (p<0.05), but camphor in doses 2 and 5 mg/Kg significantly reduced the FSH level as compared to control group (p<0.05). No significant changes were seen in testosterone levels. Camphor increased level of LH, decreased level of FSH, whereas it failed to change level of testosterone. The claim of inhibitory effect of camphor on sexual activity could not be confirmed by this study. More investigations in this field are suggested. PMID:24567939

  1. The effect of camphor on sex hormones levels in rats.

    PubMed

    Shahabi, Sima; Jorsaraei, Seyed Gholam Ali; Akbar Moghadamnia, Ali; Barghi, Effat; Zabihi, Ebrahim; Golsorkhtabar Amiri, Masoumeh; Maliji, Ghorban; Sohan Faraji, Alieh; Abdi Boora, Maryam; Ghazinejad, Neda; Shamsai, Hajar

    2014-01-01

    In some traditional therapies, it has been claimed that camphor (a crystalline ketone obtained from cinnamomum camphora) would be a suppressor of sexual behaviors and sex hormones. This study evaluated the effects of camphor on sex hormones, like luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone. In this experimental study, 56 male rats were divided into 5 groups, including control (n=12), sham (n=11) and three treatment groups (n=11) in three different doses. The sham groups received daily intra peritoneal (IP) injections of the vehicle (ethanol 10%) for 30 days. Three treatment groups received different daily IP injections of the camphor (1, 2 and 5 mg/Kg) for 30 days and the control groups didn't received anything. Serums were used for assaying LH, FSH and testosterone. The level of LH significantly increased in all doses of camphor among the treatment groups as compared to the control (p<0.05), but camphor in doses 2 and 5 mg/Kg significantly reduced the FSH level as compared to control group (p<0.05). No significant changes were seen in testosterone levels. Camphor increased level of LH, decreased level of FSH, whereas it failed to change level of testosterone. The claim of inhibitory effect of camphor on sexual activity could not be confirmed by this study. More investigations in this field are suggested. PMID:24567939

  2. Improving photoprotection: 4-methylbenzylidene camphor microspheres.

    PubMed

    Centini, Marisanna; Miraglia, Giovanna; Quaranta, Valeria; Buonocore, Anna; Anselmi, Cecilia

    2014-05-22

    Abstract We propose a new approach for photoprotection. 4-Methylbenzylidene camphor (4-MBC), one of the most widely used UV filters, was encapsulated in microspheres, with a view to overcoming problems (percutaneous absorption, photodegradation and lack of lasting effect) arising with organic sunscreens, and to achieve safe photoprotection. We focused on this filter in the light of the Cosmetics Europe opinion concerning its possible effects on the thyroid gland. Microspheres were prepared by emulsification-solvent evaporation, using different amounts of 4-MBC and characterized for morphology, encapsulation efficiency and particle size. The particles were then mixed in O/W emulsions. The in vitro sun protection factors, in vitro release and photostability were investigated and compared with emulsions containing the free sunscreen. The new microspheres offer good morphology and loading (up to 40%), and the same photoprotection as the free filter while at the same time protecting it from photodegradation. The systems also give a slower release from the emulsions. PMID:24854342

  3. Camphor: an herbal medicine causing grand mal seizures.

    PubMed

    MacKinney, Theodore G; Soti, Kamal Raj; Shrestha, Poojan; Basnyat, Buddha

    2015-01-01

    Camphor is usually used in the USA to repel insects, but it is widely used in other countries as an herb. We report the case of a 52-year-old previously healthy Nepali man who ingested approximately 10 g of pure camphor with therapeutic intention. He developed grand mal seizures, and was evaluated in an emergency room. He failed to recall the camphor ingestion initially, and was treated with phenytoin for new-onset idiopathic seizures. Examining physicians only later found out about his camphor ingestion. Finding the cause of new-onset seizures is often challenging for emergency room physicians, internists and neurologists. In addition to other well-reported causes of secondary seizures, herbal medications and supplements must also be explored. PMID:26065546

  4. Camphor poisoning: An unusual cause of seizure in children

    PubMed Central

    Patra, Chaitali; Sarkar, Shatanik; Dasgupta, Malay Kumar; Das, Amit

    2015-01-01

    Camphor is a pleasant-smelling cyclic ketone with propensity to cause neurologic side-effect, especially seizures. We report a case of 1½-year-old child who after inadvertent consumption of camphor, experienced an episode of generalized tonic clonic seizure. This case highlights the importance of enquiring any intake of material (medicinal or otherwise) in every patient presenting with seizure and notifying presence of typical smell, if any. PMID:25878755

  5. Variants of glycoside hydrolases

    SciTech Connect

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2013-02-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  6. Variants of glycoside hydrolases

    DOEpatents

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  7. Soluble Epoxide Hydrolase Dimerization Is Required for Hydrolase Activity*

    PubMed Central

    Nelson, Jonathan W.; Subrahmanyan, Rishi M.; Summers, Sol A.; Xiao, Xiangshu; Alkayed, Nabil J.

    2013-01-01

    Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity. PMID:23362272

  8. Soluble epoxide hydrolase dimerization is required for hydrolase activity.

    PubMed

    Nelson, Jonathan W; Subrahmanyan, Rishi M; Summers, Sol A; Xiao, Xiangshu; Alkayed, Nabil J

    2013-03-15

    Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity. PMID:23362272

  9. In vitro metabolism of (-)-camphor using human liver microsomes and CYP2A6.

    PubMed

    Gyoubu, Kunihiko; Miyazawa, Mitsuo

    2007-02-01

    The in vitro metabolism of (-)-camphor was examined in human liver microsomes and recombinant enzymes. Biotransformation of (-)-camphor was investigated by gas chromatography-mass spectrometry (GC-MS). (-)-Camphor was oxidized to 5-exo-hydroxyfenchone by human liver microsomal cytochrome (P450) enzymes. The formation of metabolites of (-)-camphor was determined by the relative abundance of mass fragments and retention time on gas chromatography (GC). CYP2A6 was the major enzyme involved in the hydroxylation of (-)-camphor by human liver microsomes, based on the following lines of evidence. First, of eleven recombinant human P450 enzymes tested, CYP2A6 catalyzed the oxidation of (-)-camphor. Second, oxidation of (-)-camphor was inhibited by (+)-menthofuran and anti-CYP2A6 antibody. Finally, there was a good correlation between CYP2A6 contents and (-)-camphor hydroxylation activities in liver microsomes of 9 human samples. PMID:17268056

  10. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshii, M.; Matsuda, Y.; Suematsu, N. J.

    2015-06-01

    A self-propelled camphor boat on water was investigated from the viewpoint of characteristic features of motion and mode-bifurcation depending on the diffusion length of camphor molecules. When a camphor disk was connected to the bottom of a larger plastic plate and then was placed on water, either oscillatory motion (repetition between rest and motion) or continuous motion was observed. In this paper, we report the novel features of this motion and mode-bifurcation as a function of the diffusion length of camphor molecules, e.g., multiple accelerations during oscillation, period-2 or irregular oscillatory motion, and reciprocating oscillation. These characteristic motion and mode-bifurcation are discussed in relation to the diffusion length of camphor molecules under the camphor boat and the development of camphor molecules from the camphor boat on water.

  11. Microwave effect on camphor binding to rat olfactory epithelium

    SciTech Connect

    Philippova, T.M.; Novoselov, V.I.; Bystrova, M.F.; Alekseev, S.I.

    1988-01-01

    Microwave radiation decreased specific camphor binding to a membrane fraction of rat epithelium but not to a Triton X-100 extract of this fraction. Inhibition of the ligand binding did not depend on the modulation frequency of the microwave field in the region 1-100 Hz and was not a linear function of specific absorption rate (SAR). The decreased ligand binding was due to a shedding or release of the specific camphor-binding protein from the membrane into solution. It is highly probable that several other membrane proteins may be shed into solution during microwave exposure.

  12. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  13. Hydrodynamics of a fixed camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  14. Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors of Trypanosoma brucei FolD and Testing for Antiparasitic Activity

    PubMed Central

    2015-01-01

    The bifunctional enzyme N5,N10-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2 μM, against TbFolD and displayed antiparasitic activity against T. brucei (IC50 49 μM). Using compound 2, we were able to obtain the first X-ray structure of TbFolD in the presence of NADP+ and the inhibitor, which then guided the rational design of a new series of potent TbFolD inhibitors. PMID:26322631

  15. The lid domain of the MCP hydrolase DxnB2 contributes to the reactivity towards recalcitrant PCB metabolites

    PubMed Central

    Yam, Katherine C.; Ghosh, Subhangi; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-01-01

    DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically-shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ESred, an intermediate possessing a bathochromically-shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first α-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the α/β-hydrolase core domain, as a determinant in oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme’s ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in α/β-hydrolases. PMID:23879719

  16. A Substrate-Assisted Mechanism of Nucleophile Activation in a Ser-His-Asp Containing C-C Bond Hydrolase

    SciTech Connect

    Ruzzini, Antonio C.; Bhowmik, Shiva; Ghosh, Subhangi; Yam, Katherine C.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2013-11-12

    The meta-cleavage product (MCP) hydrolases utilize a Ser–His–Asp triad to hydrolyze a carbon–carbon bond. Hydrolysis of the MCP substrate has been proposed to proceed via an enol-to-keto tautomerization followed by a nucleophilic mechanism of catalysis. Ketonization involves an intermediate, ESred, which possesses a remarkable bathochromically shifted absorption spectrum. We investigated the catalytic mechanism of the MCP hydrolases using DxnB2 from Sphingomonas wittichii RW1. Pre-steady-state kinetic and LC ESI/MS evaluation of the DxnB2-mediated hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid to 2-hydroxy-2,4-pentadienoic acid and benzoate support a nucleophilic mechanism catalysis. In DxnB2, the rate of ESred decay and product formation showed a solvent kinetic isotope effect of 2.5, indicating that a proton transfer reaction, assigned here to substrate ketonization, limits the rate of acylation. For a series of substituted MCPs, this rate was linearly dependent on MCP pKa2nuc ~ 1). Structural characterization of DxnB2 S105A:MCP complexes revealed that the catalytic histidine is displaced upon substrate-binding. The results provide evidence for enzyme-catalyzed ketonization in which the catalytic His–Asp pair does not play an essential role. The data further suggest that ESred represents a dianionic intermediate that acts as a general base to activate the serine nucleophile. This substrate-assisted mechanism of nucleophilic catalysis distinguishes MCP hydrolases from other serine hydrolases.

  17. Regioselective synthesis of pyrimido[1,2-a][1,3,5]triazin-6-ones via reaction of 1-(6-oxo-1,6-dihydropyrimidin-2-yl)guanidines with triethylorthoacetate: observation of an unexpected rearrangement.

    PubMed

    Sachdeva, Nikhil; Dolzhenko, Anton V; Chui, Wai Keung

    2012-06-21

    A novel thermal rearrangement, involving pyrimidine ring opening and subsequent ring closure leading to recyclization of the system, was identified in the reaction of (6-oxo-1,6-dihydropyrimidin-2-yl)guanidines 3 (where NR(1)R(2) = NH(2), NH alkyl, NH aralkyl, NHCH(2)Ph(R)) with triethyl orthoacetate, affording 4-substituted-2-methyl-6H-pyrimido[1,2-a][1,3,5]triazin-6-ones 6 and their ring opened products. However, no such rearrangement was observed with (6-oxo-1,6-dihydropyrimidin-2-yl)guanidines 3 bearing a tertiary amino or anilino substituent (i.e. where NR(1)R(2) = N(CH(3))(2), indoline, morpholino, NHAr). As expected, 2-substituted-4-methyl-6H-pyrimido[1,2-a][1,3,5]triazin-6-ones 4 were obtained as the final products. Experimental structural determination and theoretical studies were carried out to get an understanding of the observed thermal rearrangement. In addition, an attempt to obtain similar pyrimido[1,2-a][1,3,5]triazin-6-ones using N,N-dimethylacetamide dimethyl acetal (DMA-DMA) as one carbon inserting synthon had furnished triazine ring annulated product 14 bearing N,N-dimethyl enamino substituent at position 4 as a result of further reaction with a second molecule of DMA-DMA. PMID:22581349

  18. Polyglycine hydrolases secreted by pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogens are known to produce proteases that target host defense proteins. Here we describe polyglycine hydrolases, fungal proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine interdomain linker of targeted plant defense chitinases. Polyglycine hydrolases were puri...

  19. Treatment of human Demodex folliculorum by camphor oil and metronidazole.

    PubMed

    El-Shazly, Atef M; Hassan, Ashraf A; Soliman, Mohamed; Morsy, Gaza H; Morsy, Tosson A

    2004-04-01

    A total of 15 females suffering from erythematotelangiectatic rosacea and 12 females free from other dermatological lesions were selected. Demodex folliculorum infestation density in both patients and control were evaluated by non-invasive skin surface biopsies. Five facial sites were selected. The daily topical application of 1/3 diluted camphor oil with glycerol and 500 mg metronidazole orally were given for fifteen days. The results were very successful with no clinical side effects. PMID:15125520

  20. Searching for monooxygenases and hydrolases in bacteria from an extreme environment.

    PubMed

    da Cruz, Georgiana F; Angolini, Célio F F; de Oliveira, Luciana G; Lopes, Patrícia F; de Vasconcellos, Suzan P; Crespim, Elaine; de Oliveira, Valéria M; dos Santos Neto, Eugênio V; Marsaioli, Anita J

    2010-06-01

    Microbial oxidation potentials of extremophiles recovered from Pampo Sul oil field, Campos Basin, Brazil, in pure culture or in consortia, were investigated using high-throughput screening (HTS) and multibioreactions. Camphor (1), cis-jasmone (2), 2-methyl-cyclohexanone (3), 1,2-epoxyoctane (4), phenylethyl acetate (5), phenylethyl propionate (6), and phenylethyl octanoate (7) were used to perform multibioreaction assays. Eighty-two bacterial isolates were recovered from oil and formation water samples and those presenting outstanding activities in HTS assays were identified by sequencing their 16S rRNA genes. These results revealed that most microorganisms belonged to the genus Bacillus and presented alcohol dehydrogenase, monooxygenase, epoxide hydrolase, esterase, and lipase activities. PMID:20204614

  1. Transdermal permeation of drugs with differing lipophilicity: Effect of penetration enhancer camphor.

    PubMed

    Xie, Feng; Chai, Jia-Ke; Hu, Quan; Yu, Yong-Hui; Ma, Li; Liu, Ling-Ying; Zhang, Xu-Long; Li, Bai-Ling; Zhang, Dong-Hai

    2016-06-30

    The aim of the present study was to investigate the potential application of (+)-camphor as a penetration enhancer for the transdermal delivery of drugs with differing lipophilicity. The skin irritation of camphor was evaluated by in vitro cytotoxicity assays and in vivo transdermal water loss (TEWL) measurements. A series of model drugs with a wide span of lipophilicity (logP value ranging from 3.80 to -0.95), namely indometacin, lidocaine, aspirin, antipyrine, tegafur and 5-fluorouracil, were tested using in vitro transdermal permeation experiments to assess the penetration-enhancing profile of camphor. Meanwhile, the in vivo skin microdialysis was carried out to further investigate the enhancing effect of camphor on the lipophilic and hydrophilic model drugs (i.e. lidocaine and tegafur). SC (stratum corneum)/vehicle partition coefficient and Fourier transform infrared spectroscopy (FTIR) were performed to probe the regulation action of camphor in the skin permeability barrier. It was found that camphor produced a relatively low skin irritation, compared with the frequently-used and standard penetration enhancer laurocapram. In vitro skin permeation studies showed that camphor could significantly facilitate the transdermal absorption of model drugs with differing lipophilicity, and the penetration-enhancing activities were in a parabola curve going downwards with the drug logP values, which displayed the optimal penetration-enhancing efficiency for the weak lipophilic or hydrophilic drugs (an estimated logP value of 0). In vivo skin microdialysis showed that camphor had a similar penetration behavior on transdermal absorption of model drugs. Meanwhile, the partition of lipophilic drugs into SC was increased after treatment with camphor, and camphor also produced a shift of CH2 vibration of SC lipid to higher wavenumbers and decreased the peak area of the CH2 vibration, probably resulting in the alteration of the skin permeability barrier. This suggests that

  2. Structural studies of an eukaryotic cambialistic superoxide dismutase purified from the mature seeds of camphor tree.

    PubMed

    Chen, Huai-Yang; Hu, Rong-Gui; Wang, Bao-Zhong; Chen, Wen-Feng; Liu, Wang-Yi; Schröder, Werner; Frank, Peter; Ulbrich, Norbert

    2002-08-15

    An iron-superoxide dismutase (SOD) was purified and characterized from the mature seeds of camphor tree (Cinnamomum camphora). The ultraviolet and visible absorption spectra of camphor Fe-SOD showed patterns typical of cambialistic Fe-SODs. The inductively coupled plasma assay indicated that there was 0.5-1 atom of Fe(2+) per camphor Fe-SOD subunit. The cDNA of camphor Fe-SOD, including the coding region and the 3' noncoding region, was obtained by reverse transcription polymerase chain reaction using the total RNA from immature seeds of C. camphora as template and then sequenced. The complete amino acid sequence of camphor Fe-SOD was deduced from the cDNA sequence. The correctness of the amino acid sequence was confirmed by directly sequencing five peptide fragments of the enzyme. The molecular mass calculated for the camphor Fe-SOD subunit from its 204 amino acid residues was 22,930.6 Da, The cDNA of camphor Fe-SOD was cloned into the expression vector PMFT7-5 and then expressed in Escherichia coli strain BL21. The reconstructed Fe- or Mn-SOD was purified to homogeneity through column chromatography. Activity of the Fe- or Mn-SOD was found to be almost equal to that of natural camphor Fe-SOD, which is the first cambialistic SOD isolated from eukaryotic cells. PMID:12147259

  3. Synchronized Intermittent Motion Induced by the Interaction between Camphor Disks

    NASA Astrophysics Data System (ADS)

    Suematsu, Nobuhiko J.; Tateno, Kurina; Nakata, Satoshi; Nishimori, Hiraku

    2015-03-01

    A new mode of collective motion was discovered in a system of camphor disks floating on the water surface in a circular chamber. The mode was induced by tuning the number of the disks. A single or few disks are known to continuously move on the water surface. Conversely, when many disks are present, motion comes to a stop and the disks form ordered spatial patterns by repulsive interaction. Here we found the third mode that emerged at an intermediate disk number, in which inactive and active motion phases alternated non-periodically. This new mode exhibited synchronization as the disk number increased.

  4. Hierarchical classification of glycoside hydrolases.

    PubMed

    Naumoff, D G

    2011-06-01

    This review deals with structural and functional features of glycoside hydrolases, a widespread group of enzymes present in almost all living organisms. Their catalytic domains are grouped into 120 amino acid sequence-based families in the international classification of the carbohydrate-active enzymes (CAZy database). At a higher hierarchical level some of these families are combined in 14 clans. Enzymes of the same clan have common evolutionary origin of their genes and share the most important functional characteristics such as composition of the active center, anomeric configuration of cleaved glycosidic bonds, and molecular mechanism of the catalyzed reaction (either inverting, or retaining). There are now extensive data in the literature concerning the relationship between glycoside hydrolase families belonging to different clans and/or included in none of them, as well as information on phylogenetic protein relationship within particular families. Summarizing these data allows us to propose a multilevel hierarchical classification of glycoside hydrolases and their homologs. It is shown that almost the whole variety of the enzyme catalytic domains can be brought into six main folds, large groups of proteins having the same three-dimensional structure and the supposed common evolutionary origin. PMID:21639842

  5. Identification of an Acyl-Enzyme Intermediate in a meta-Cleavage Product Hydrolase Reveals the Versatility of the Catalytic Triad

    SciTech Connect

    Ruzzini, Antonio C.; Ghosh, Subhangi; Horsman, Geoff P.; Foster, Leonard J.; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2012-03-14

    Meta-cleavage product (MCP) hydrolases are members of the {alpha}/{beta}-hydrolase superfamily that utilize a Ser-His-Asp triad to catalyze the hydrolysis of a C-C bond. BphD, the MCP hydrolase from the biphenyl degradation pathway, hydrolyzes 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. A 1.6 {angstrom} resolution crystal structure of BphD H265Q incubated with HOPDA revealed that the enzyme's catalytic serine was benzoylated. The acyl-enzyme is stabilized by hydrogen bonding from the amide backbone of 'oxyanion hole' residues, consistent with formation of a tetrahedral oxyanion during nucleophilic attack by Ser112. Chemical quench and mass spectrometry studies substantiated the formation and decay of a Ser112-benzoyl species in wild-type BphD on a time scale consistent with turnover and incorporation of a single equivalent of {sup 18}O into the benzoate produced during hydrolysis in H{sub 2}{sup 18}O. Rapid-scanning kinetic studies indicated that the catalytic histidine contributes to the rate of acylation by only an order of magnitude, but affects the rate of deacylation by over 5 orders of magnitude. The orange-colored catalytic intermediate, ES{sup red}, previously detected in the wild-type enzyme and proposed herein to be a carbanion, was not observed during hydrolysis by H265Q. In the newly proposed mechanism, the carbanion abstracts a proton from Ser112, thereby completing tautomerization and generating a serinate for nucleophilic attack on the C6-carbonyl. Finally, quantification of an observed pre-steady-state kinetic burst suggests that BphD is a half-site reactive enzyme. While the updated catalytic mechanism shares features with the serine proteases, MCP hydrolase-specific chemistry highlights the versatility of the Ser-His-Asp triad.

  6. Lamellar coupled growth in the neopentylglycol-(D)camphor eutectic

    NASA Astrophysics Data System (ADS)

    Witusiewicz, V. T.; Sturz, L.; Hecht, U.; Rex, S.

    2014-01-01

    Lamellar eutectic growth was investigated in the transparent organic alloy neopentylglycol-(D)camphor of eutectic composition (NPG-45.3 wt% DC) using bulk (3D) and thin (2D) samples. Two types of eutectic grains were observed in the polycrystalline samples, either with lamellae well aligned to the direction of solidification or inclined at an angle of 21.5±1.5°. The well aligned grains were used for determining lamellar spacing as function of growth velocity V and temperature gradient G. Based on these data the Jackson-Hunt constant was evaluated to be KJH=1.60±0.15 μm3 s-1. For low growth velocity experiments the contact angles for (DC) and (NPG) lamellae at eutectic triple junctions were also evaluated, being θ(DC)=50.9±4.1° and θ(NPG)=41.8±4.7°, respectively. Using these values, as well as phase diagram data and the Gibbs-Thomson coefficients, the chemical coefficient of diffusion of (D)camphor in the eutectic liquid at eutectic temperature 53 °C was estimated to be DL=97±15 μm2 s-1.

  7. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  8. The biomolecule, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: FT-IR, Laser-Raman spectra and DFT

    NASA Astrophysics Data System (ADS)

    Sert, Yusuf; El-Emam, Ali A.; Al-Deeb, Omar A.; Al-Turkistani, Abdulghafoor A.; Ucun, Fatih; Çırak, Çağrı

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 2-[(2-methoxyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  9. The crystal structure of a new polymorph of hexa­aqua­nickel(II) bis­(6-oxo-1,6-di­hydro­pyridine-3-carboxyl­ate)

    PubMed Central

    Pérez-Aguirre, Rubén; Pérez-Yáñez, Sonia; Beobide, Garikoitz; Castillo, Oscar; Gutiérrez-Zorrilla, Juan Manuel; Luque, Antonio

    2015-01-01

    In a new polymorph of the title salt, [Ni(H2O)6](C6H4NO3)2, the metal atom of the cationic complex lies on a symmetry centre and is coordinated by six water mol­ecules to provide a quite regular octa­hedral coordination environment. These cations inter­act with 6-oxo-1,6-di­hydro­pyridine-3-carboxyl­ate anions through electrostatic inter­actions and by means of O—H⋯O and N—H⋯O hydrogen bonds involving the carboxyl­ate, keto and protonated imine groups of the anion, and the coordinating water mol­ecules from the cationic complex entity to generate a supra­molecular three-dimensional architecture. The previously reported polymorph of this compound presents a network of hydrogen bonds, in which the organic anions establish mutual hydrogen-bonding inter­actions involving their keto and protonated imine groups. PMID:26870443

  10. [Historical study of the moth repellent, "Fujisawa Camphor" (5) - quality assurance and consumers].

    PubMed

    Hattori, Akira

    2004-01-01

    In the Meiji Era, the concepts of consumers did not exist; however, customers were certainly valued at that time based on the policy that "the customer is always right". Customers were always considered as guests, and there were no conflicting matters with manufacturers. The sales agency for Fujisawa camphor, Fujisawa Company, took up a positive attitude towards customer services. First, the company excluded imitation products in order to protect customers from poor quality, and second, the company released data regarding camphor comparisons and effects with other insecticides. At that time, they seemed to fear being talked about in terms of the mistaken use of camphor. The company commissioned a public research laboratory to study the interaction of camphor and precious metals, and made an appeal to customers for the truth. PMID:16025654

  11. A simple method of producing aligned carbon nanotubes from an unconventional precursor Camphor

    NASA Astrophysics Data System (ADS)

    Kumar, Mukul; Ando, Yoshinori

    2003-06-01

    Vertically aligned multi-wall carbon nanotubes of diameter 20-40 nm and length ˜200 μm were grown on quartz substrate by pyrolyzing camphor with ferrocene catalyst at 900 °C in argon atmosphere at ambient pressure. Catalyst requirement with camphor was found to be low by a factor of 10 as compared to available reports of aligned nanotubes from conventional precursors. Because of the low catalyst requirement with camphor, as-grown nanotubes are least contaminated with metal particles, whereas the oxygen atom present in camphor helps in oxidizing amorphous carbon in-situ, eliminating the need of post-deposition purification. Good graphitization of the tube layers was observed by TEM, whereas high purity was confirmed by EDX analysis. The estimated yield of as-grown nanotubes is ˜90%.

  12. Relationship of Camphor Biosynthesis to Leaf Development in Sage (Salvia officinalis) 12

    PubMed Central

    Croteau, Rodney; Felton, Mark; Karp, Frank; Kjonaas, Robert

    1981-01-01

    The camphor content of sage (Salvia officinalis L.) leaves increases as the leaves expand, and the increase is roughly proportional to the number of filled peltate oil glands which appear on the leaf surface during the expansion process. 14CO2 is more rapidly incorporated into camphor and its direct progenitors in expanding leaves than in mature leaves, and direct in vitro measurement of the key enzymes involved in the conversion of geranyl pyrophosphate to camphor indicates that these enzymes, including the probable rate-limiting cyclization step, are at the highest levels during the period of maximum leaf expansion. These results clearly demonstrate that immature sage leaves synthesize and accumulate camphor most rapidly. Images PMID:16661761

  13. Prunus serotina Amygdalin Hydrolase and Prunasin Hydrolase 1

    PubMed Central

    Li, Chun Ping; Swain, Elisabeth; Poulton, Jonathan E.

    1992-01-01

    In black cherry (Prunus serotina Ehrh.) seed homogenates, amygdalin hydrolase (AH) participates with prunasin hydrolase (PH) and mandelonitrile lyase in the sequential degradation of (R)-amygdalin to HCN, benzaldehyde, and glucose. Four isozymes of AH (designated AH I, I′, II, II′) were purified from mature cherry seeds by concanavalin A-Sepharose 4B chromatography, ion-exchange chromatography, and chromatofocusing. All isozymes were monomeric glycoproteins with native molecular masses of 52 kD. They showed similar kinetic properties (pH optima, Km, Vmax) but differed in their isoelectric points and N-terminal amino acid sequences. Analytical isoelectric focusing revealed the presence of subisozymes of each isozyme. The relative abundance of these isozymes and/or subisozymes varied from seed to seed. Three isozymes of PH (designated PH I, IIa, and IIb) were purified to apparent homogeneity by affinity, ion-exchange, and hydroxyapatite chromatography and by nondenaturing polyacrylamide gel electrophoresis. PH I and PH IIb are 68-kD monomeric glycoproteins, whereas PH IIa is dimeric (140 kD). The N-terminal sequences of all PH and AH isozymes showed considerable similarity. Polyclonal antisera raised in rabbits against deglycosylated AH I or a mixture of the three deglycosylated PH isozymes were not monospecific as judged by immunoblotting analysis, but also cross-reacted with the opposing glucosidase. Monospecific antisera deemed suitable for immunocytochemistry and screening of expression libraries were obtained by affinity chromatography. Each antiserum recognized all known isozymes of the specific glucosidase used as antigen. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 PMID:16652959

  14. Central effects of camphor on GnRH and sexual hormones in male rat.

    PubMed

    Shahabi, Sima; Jorsaraei, Seyed Gholam Ali; Moghadamnia, Ali Akbar; Zabihi, Ebrahim; Aghajanpour, Seyed Mohsen; Mousavi Kani, Seyedeh Narges; Pourbagher, Roghieh; Hosseini, Seyed Ahmad; Esmaili, Mohsen; Yoonesi, Ali Asghar; Zarghami, Amin; Alinezhad, Farid

    2012-01-01

    In Persian traditional medicine is believed that camphor (a crystalline ketone obtained from cinnamomum camphora) is a suppressor of sexual behaviors. This study examined the central effects of camphor on sexual hormones (LH, FSH and testosterone) and GnRH plasma levels in male rat. Male Wistar rats weighing 250-260gr were selected and divided into control (no treatment), sham (ICV injection of EtOH 10%) and treatment (ICV injection of camphor in three doses 4, 20, 40 µg/ 10µl in alcohol) groups. The serum samples were used for assaying of GnRH, LH, FSH and testosterone. There were no significant differences in the levels of hormones between the groups of study. Despite the central administration of camphor in hypothalamus - pituitary - gonad (HPG) axis, no significant differences were seen in sex hormone`s levels compared to the control. With this finding, it can be concluded that camphor may not effectively handle the axis via central pathway. These data recommend further studies of camphor on the HPG axis. PMID:24551777

  15. Acute toxicity assessment of camphor in biopesticides by using Daphnia magna and Danio rerio

    PubMed Central

    Yim, Eun-Chae; Kim, Hyeon-Joe; Kim, Seong-Jun

    2014-01-01

    Objectives An ecofriendly alternative to chemical pesticides is bio-pesticides, which are derived from natural sources. The interest in bio-pesticides is based on the disadvantages associated with chemical pesticides. Methods We conducted acute toxicity assessments of camphor, a major component of bio-pesticides, by using Daphnia magna (D. magna) as well as assessed the morphological abnormalities that occurred in Danio rerio (D. rerio) embryos. Results The median effective concentration of camphor on D. magna after 48 hours was 395.0 μM, and the median lethal concentration on D. rerio embryos after 96 hours was 838.6 μM. The no observed effect concentration and predicted no effect concentration of camphor on D. magna, which was more sensitive than D. rerio, were calculated as 55.2 μM and 3.95 μM, respectively. Morphological abnormalities in D. rerio embryos exposed to camphor increased over time. Coagulation, delayed hatching, yolk sac edema, pericardial edema, and pigmentation of embryos mainly appeared between 24 and 48 hours. Further, symptoms of scoliosis and head edema occurred after 72 hours. In addition, bent tails, ocular defects and collapsed symptoms of fertilized embryonic tissue were observed after 96 hours. Conclusions The camphor toxicity results suggest that continuous observations on the ecosystem are necessary to monitor toxicity in areas where biological pesticides containing camphor are sprayed. PMID:25234414

  16. Central Effects of Camphor on GnRH and Sexual Hormones in Male Rat

    PubMed Central

    Shahabi, Sima; Jorsaraei, Seyed Gholam Ali; Moghadamnia, Ali Akbar; Zabihi, Ebrahim; Aghajanpour, Seyed Mohsen; Mousavi Kani, Seyedeh Narges; Pourbagher, Roghieh; Hosseini, Seyed Ahmad; Esmaili, Mohsen; Yoonesi, Ali Asghar; Zarghami, Amin; Alinezhad, Farid

    2012-01-01

    In Persian traditional medicine is believed that camphor (a crystalline ketone obtained from cinnamomum camphora) is a suppressor of sexual behaviors. This study examined the central effects of camphor on sexual hormones (LH, FSH and testosterone) and GnRH plasma levels in male rat. Male Wistar rats weighing 250-260gr were selected and divided into control (no treatment), sham (ICV injection of EtOH 10%) and treatment (ICV injection of camphor in three doses 4, 20, 40 µg/ 10µl in alcohol) groups. The serum samples were used for assaying of GnRH, LH, FSH and testosterone. There were no significant differences in the levels of hormones between the groups of study. Despite the central administration of camphor in hypothalamus - pituitary - gonad (HPG) axis, no significant differences were seen in sex hormone`s levels compared to the control. With this finding, it can be concluded that camphor may not effectively handle the axis via central pathway. These data recommend further studies of camphor on the HPG axis. PMID:24551777

  17. Assays for the classification of two types of esterases: carboxylic ester hydrolases and phosphoric triester hydrolases.

    PubMed

    Anspaugh, Douglas D; Roe, R Michael

    2002-11-01

    Assays for the Classification of Two Types of Esterases: Carboxylic Ester Hydrolase and Phosphoric Triester Hydrolase (Douglas D. Anspaugh and Michael Roe, North Carolina State University, Raleigh, North Carolina). This unit describes assays that quantitate two types of esterase the carboxylic ester hydrolases and the phosphoric triester hydrolases. Carboxylic ester hydrolases include the B-esterases, which are inhibited by organophosphorus compounds. Among the phosphoric triester hydrolases is aryldialkylphosphatase, which has been called A-esterase or paraoxonase due to its ability to oxidize paraoxon and other organophosphates. These assays are colorimetric and miniaturized for rapid simultaneous testing of multiple, small-volume samples in a microtiter plate format. There is also a discussion of the history of esterase nomenclature and the reasons why this large group of enzymes is so difficult to classify. PMID:20945297

  18. Ag (I)-based 2D metal frameworks with helical structures decorated by the homochiral camphor-10-sulfonic acid

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Wang, Jing; Wang, Jun; Pan, Daocheng; Xu, Guohai

    2010-12-01

    Two two-dimension homochiral Ag (I) metal frameworks constructed from enantiopure camphor-10-sulfonic acid and hexamethylenetetramine have been synthesized at the room temperature. These two complexes with (6, 3) topology decorated by the homochiral camphor-10-sulfonic acid possess the unique helical structures. The result of Circular Dichroism (CD) spectroscopy confirms that the bulk materials are homochiral and also indicates the handedness of the single crystals can be controlled by the chirality of the camphor-10-sulfonic acid.

  19. Collective motion of symmetric camphor papers in an annular water channel

    NASA Astrophysics Data System (ADS)

    Ikura, Yumihiko S.; Heisler, Eric; Awazu, Akinori; Nishimori, Hiraku; Nakata, Satoshi

    2013-07-01

    We investigate the collective motion of symmetric self-propelled objects that are driven by a difference in the surface tension. The objects move around an annular water channel spontaneously and interact through the camphor layer that develops on the water surface. We found that two collective motion modes, discrete and continuous density waves, are generated depending on the number of self-propelled objects. The two modes are characterized by examining the local and global dynamics, and the collective motion mechanism is discussed in relation to the distribution of camphor concentration in the annular water channel. We conclude that the difference between these two modes originates from that of the driving mechanism that pushes a camphor paper away from a cluster, through which mechanism density waves are generated and maintained.

  20. The dynamics of camphor in the cytochrome P450 CYP101D2

    PubMed Central

    Vohra, Shabana; Musgaard, Maria; Bell, Stephen G; Wong, Luet-Lok; Zhou, Weihong; Biggin, Philip C

    2013-01-01

    The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate-free) and camphor-soaked forms have open conformations. Furthermore, two other potential camphor-binding sites were also identified from electron densities in the camphor-soaked structure, one being located in the access channel and the other in a cavity on the surface near the F-helix side of the F-G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor-bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor-bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit. PMID:23832606

  1. Distribution of the UV filter 3-benzylidene camphor in rat following topical application.

    PubMed

    Søeborg, Tue; Ganderup, Niels-Christian; Kristensen, Jakob Højer; Bjerregaard, Poul; Pedersen, Knud Ladegaard; Bollen, Peter; Hansen, Steen Honoré; Halling-Sørensen, Bent

    2006-04-13

    A straightforward analytical method for determination of 3-benzylidene camphor (3-BC) in rat adipose tissue, brain, liver, muscle, plasma and testis following topical application was developed and validated. Three exposure levels (60, 180 and 540 mg kg(-1) day(-1)) were tested for 65 days in male Sprague-Dawley rats (24 days postnatal). Sample preparation involving homogenization and n-heptane or methanol extraction of the tissue was applied before injection into the LC-ESI-MS-MS system. The response was linear from 2 to 100 microg l(-1) for the qualifier and the quantifier MRM transitions (R(2) (quantifier) > 0.994). Detection limit of the method corresponded to 0.005 microg g(-1) tissue and 12.5 microg l(-1) plasma, respectively. Recovery was determined for all tissues (adipose tissue: 40%; all other tissues: 80-100%) at three individual levels. 3-(4-Methyl benzylidene camphor) (4-MBC) was used throughout the study as internal standard. 3-Benzylidene camphor was detected in all tissues at all exposure levels at concentrations between 0.05 microg g(-1) (liver) and 36 microg g(-1) (adipose tissue) and in plasma at 16-89 microg l(-1). The method allowed for the quantification of 3-benzylidene camphor in all tested tissues following topical application. Furthermore, it was shown that 3-benzylidene camphor can be found in various tissues in the rat following topical application. These findings may suggest that following use of 3-benzylidene camphor containing sunscreen, similar disposition and distribution may occur in humans. PMID:16517225

  2. Hydrolase-catalyzed biotransformations in deep eutectic solvents.

    PubMed

    Gorke, Johnathan T; Srienc, Friedrich; Kazlauskas, Romas J

    2008-03-14

    Hydrolases show good catalytic activity in deep eutectic solvents, despite the presence of urea, which can denature enzymes, or alcohols, which can interfere with hydrolase-catalyzed reactions. PMID:18309428

  3. Synthesis and structures of four homochiral metal camphorates with auxiliary bipyridine ligands

    NASA Astrophysics Data System (ADS)

    Yang, E.; Lian, Ting-Ting; Lin, Shen; Chen, Shu-Mei

    2011-12-01

    Four homochiral metal camphorates with auxiliary bipyridine ligands are hydrothermally synthesized and structurally characterized. The structure of compound [Cd( D-Hcam) 2(bpa)(H 2O)] n ( 1; D-H 2cam = D-(+)-camphoric acid, bpa = 1,2-bis(4-pyridyl)-ethane) presents a rare case where the D-Hcam is not a bridging ligand, but a dangling unit attached to the infinite [Cd(bpa)] chain. Compounds [M 2( D-cam) 2(4,4'-bipy)(H 2O) 4] n (M = Co, 2; M = Cd, 3; 4,4'-bipy = 4,4'-bipyridine) are isostructural and have homochiral [M( D-cam)] n chains linked by the 4,4'-bipy ligands into a honeycomb-like 6 3 layer. Compound [Zn 2( D-cam) 2(PPE) 2] n ( 4, PPE = 1-(4-pyridyl)-2-(2-pyridyl)-ethylene) consists of the grid-like 4 4 layers with the dinuclear Zn 2(COO) 4 units and D-cam ligands, where the PPE ligands are only monodentately coordinated to the dinuclear units and act as the separators between two homochiral layers. The results demonstrate the rich coordination chemistry of the enantiopure D-camphorate ligand and the structural diversity of metal-camphorate compounds.

  4. Structural diversity of homochiral cadmium-camphorates with 2,2'-bipyridine

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Mei; Lian, Ting-Ting

    2012-08-01

    Homochiral framework materials are of current interest due to their potential applications in asymmetric catalysis and enantioselective separation. Four new Cd(II) camphorates (1-4) with 2,2'-bipyridine ligand (= 2,2'-bipy) are successfully synthesized and show distinct structural features. Such rich Cd-cam-2,2'-bipy system is composed of four compounds, [Cd(D-cam)(2,2'-bipy)(DMF)]n (1), [Cd(D-cam)(2,2'-bipy)(H2O)]n (2), [Cd2(D-cam)2(2,2'-bipy)2]n (3) and [Cd2Cu2(D-cam)4(2,2'-bipy)2]n·4nH2O (4), which are obtained under different conditions. Both compounds 1 and 2 show infinite homochiral Cd-camphorate chain, while compounds 3 and 4 exhibit homochiral layered structures based on different dinuclear units. The results demonstrate the rich coordination chemistry of the enantiopure D-camphorate ligand and the structural diversity of metal-camphorate compounds.

  5. Theoretical study on the translation and rotation of an elliptic camphor particle

    NASA Astrophysics Data System (ADS)

    Iida, Keita; Kitahata, Hiroyuki; Nagayama, Masaharu

    2014-04-01

    The spontaneous motion of an elliptic camphor particle floating on water is studied theoretically and experimentally. Considering a mathematical model for the motion of an elliptic camphor particle in a two-dimensional space, we first investigate the asymptotic solutions with numerical computation. We then introduce a small parameter ε into the definition of the particle shape, which represents an elliptic deformation from a circular shape and, by means of perturbation theory, we analytically calculate the travelling solution to within O(ε). The results show that short-axis-directed travelling solutions primarily bifurcate from stationary solutions and that long-axis-directed ones are secondary which means that elliptic camphor particles are easier to move in the short-axis direction. Furthermore, we show that rotating solutions bifurcate from stationary solutions and that the bifurcation point changes with O(ε2), which suggests that elliptic camphor disks easily exhibit translational motion, rather than rotational, within the small deformation. Finally, our theoretical suggestions are confirmed by an experiment.

  6. Induction and characterization of a cytochrome P-450-dependent camphor hydroxylase in tissue cultures of common sage (Salvia officinalis)

    SciTech Connect

    Funk, C.; Croteau, R. )

    1993-04-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O[sub 2]-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl[sub 2], camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn[sup 2+]-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. 44 refs., 6 figs., 2 tabs.

  7. Identification of camphor oxidation and reduction products in Pseudomonas putida: new activity of the cytochrome P450cam system.

    PubMed

    Prasad, Brinda; Rojubally, Adina; Plettner, Erika

    2011-06-01

    P450 enzymes are known for catalyzing hydroxylation reactions of non-activated C-H bonds. For example, P450(cam) from Pseudomonas putida oxidizes (1R)-(+)-camphor to 5-exo-hydroxy camphor and further to 5-ketocamphor. This hydroxylation reaction proceeds via a catalytic cycle in which the reduction of dioxygen (O(2)) is coupled to the oxidation of the substrate. We have observed that under conditions of low oxygen, P. putida and isolated P450(cam) reduce camphor to borneol. We characterized the formation of borneol under conditions of low oxygen or when the catalytic cycle is shunted by artificial oxidants like m-chloro perbenzoic acid, cumene hydroperoxide, etc. We also tested the toxicity of camphor and borneol with P. putida and Escherichia coli. We have found that in P. putida borneol is less toxic than camphor, whereas in E. coli borneol is more toxic than camphor. We discuss a potental ecological advantage of the camphor reduction reaction for P. putida. PMID:21562741

  8. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).

    PubMed Central

    Funk, C.; Croteau, R.

    1993-01-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. PMID:12231778

  9. Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration

    SciTech Connect

    Voelkel, Wolfgang; Colnot, Thomas; Schauer, Ute M.D.; Broschard, Thomas H.; Dekant, Wolfgang . E-mail: dekant@toxi.uni-wuerzburg.de

    2006-10-15

    3-(4-Methylbenzylidene)camphor (4-MBC) is an UV-filter frequently used in sunscreens and cosmetics. Equivocal findings in some screening tests for hormonal activity initiated a discussion on a possible weak estrogenicity of 4-MBC. In this study, the toxicokinetics and biotransformation of 4-MBC were characterized in rats after oral administration. Male and female Sprague-Dawley rats (n = 3 per group) were administered single oral doses of 25 or 250 mg/kg bw of 4-MBC in corn oil. Metabolites formed were characterized and the kinetics of elimination for 4-MBC and its metabolites from blood and with urine were determined. Metabolites of 4-MBC were characterized by {sup 1}H NMR and LC-MS/MS as 3-(4-carboxybenzylidene)camphor and as four isomers of 3-(4-carboxybenzylidene)hydroxycamphor containing the hydroxyl group located in the camphor ring system with 3-(4-carboxybenzylidene)-6-hydroxycamphor as the major metabolite. After oral administration of 4-MBC, only very low concentrations of 4-MBC were present in blood and the peak concentrations of 3-(4-carboxybenzylidene)camphor were approximately 500-fold above those of 4-MBC; blood concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were below the limit of detection. Blood concentration of 4-MBC and 3-(4-carboxybenzylidene)camphor peaked within 10 h after 4-MBC administration and then decreased with half-lives of approximately 15 h. No major differences in peak blood levels between male and female rats were seen. In urine, one isomer of 3-(4-carboxybenzylidene)hydroxycamphor was the predominant metabolite [3-(4-carboxybenzylidene)-6-hydroxycamphor], the other isomers and 3-(4-carboxybenzylidene)camphor were only minor metabolites excreted with urine. However, urinary excretion of 4-MBC-metabolites represents only a minor pathway of elimination for 4-MBC, since most of the applied dose was recovered in feces as 3-(4-carboxybenzylidene)camphor and, to a smaller extent, as 3-(4-carboxybenzylidene)-6-hydroxycamphor

  10. Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration.

    PubMed

    Völkel, Wolfgang; Colnot, Thomas; Schauer, Ute M D; Broschard, Thomas H; Dekant, Wolfgang

    2006-10-15

    3-(4-Methylbenzylidene)camphor (4-MBC) is an UV-filter frequently used in sunscreens and cosmetics. Equivocal findings in some screening tests for hormonal activity initiated a discussion on a possible weak estrogenicity of 4-MBC. In this study, the toxicokinetics and biotransformation of 4-MBC were characterized in rats after oral administration. Male and female Sprague-Dawley rats (n = 3 per group) were administered single oral doses of 25 or 250 mg/kg bw of 4-MBC in corn oil. Metabolites formed were characterized and the kinetics of elimination for 4-MBC and its metabolites from blood and with urine were determined. Metabolites of 4-MBC were characterized by (1)H NMR and LC-MS/MS as 3-(4-carboxybenzylidene)camphor and as four isomers of 3-(4-carboxybenzylidene)hydroxycamphor containing the hydroxyl group located in the camphor ring system with 3-(4-carboxybenzylidene)-6-hydroxycamphor as the major metabolite. After oral administration of 4-MBC, only very low concentrations of 4-MBC were present in blood and the peak concentrations of 3-(4-carboxybenzylidene)camphor were approximately 500-fold above those of 4-MBC; blood concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were below the limit of detection. Blood concentration of 4-MBC and 3-(4-carboxybenzylidene)camphor peaked within 10 h after 4-MBC administration and then decreased with half-lives of approximately 15 h. No major differences in peak blood levels between male and female rats were seen. In urine, one isomer of 3-(4-carboxybenzylidene)hydroxycamphor was the predominant metabolite [3-(4-carboxybenzylidene)-6-hydroxycamphor], the other isomers and 3-(4-carboxybenzylidene)camphor were only minor metabolites excreted with urine. However, urinary excretion of 4-MBC-metabolites represents only a minor pathway of elimination for 4-MBC, since most of the applied dose was recovered in feces as 3-(4-carboxybenzylidene)camphor and, to a smaller extent, as 3-(4-carboxybenzylidene)-6-hydroxycamphor

  11. Twisting of glycosidic bonds by hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  12. Structure and function of polyglycine hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave polyglycine linkers of targeted plant defense chitinases. Unlike typical endoproteases that cleave a specific peptide bond, these 640 amino acid glycoproteins selectively cleave one of multiple peptide bonds within polyglyci...

  13. PLANT FATTY ACID (ETHANOL) AMIDE HYDROLASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amide hydrolase (FAAH) plays a central role in modulating endogenous N-acylethanolamine (NAE) levels in vertebrates, and, in part, constitutes an “endocannabinoid” signaling pathway that regulates diverse physiological and behavioral processes in animals. Recently, an Arabidopsis FAAH hom...

  14. Release properties on gelatin-gum arabic microcapsules containing camphor oil with added polystyrene.

    PubMed

    Chang, Chih-Pong; Leung, Ting-Kai; Lin, Shang-Ming; Hsu, Che-Chang

    2006-07-01

    In this study, gelatin blended with arabic gum microcapsules containing camphor oil with added polystyrene were fabricated by a compound coacervation method. The parameters of oil/wall volume ratio, emulsification stirring speed, concentration of cross-linking agent, treated time and oil release properties were investigated. In order to improve the constant release effect of camphor oil, oil-soluble polystyrene (PS) was used as a sustained release agent. The camphor oil release curves were expressed by the exponential equation: psi(t)=C(eq)(1-e(-t/tau)), where psi(t) represent the variant of camphor oil concentration in the operation environment, C(eq) as the equilibrium state, t as the release time and tau as time constant. C(eq) and tau are significant factors pertaining to the camphor oil release properties. The results indicated that, for the microcapsules, the optimal oil/wall volume ratio was 0.75 to achieve the encapsulation efficiency of 99.6 wt.%. The average particle size were 294.7+/-14.2 microm, 167.2+/-11.2 microm, 85.7+/-8.7 microm at the homogenization stirring speed of 500, 1000, and 2000 rpm, respectively. The effect of sustained oil release will increase whereas the stirring speed decreases and the concentration of glutaraldehyde (GA) and treated time increases. Along with the increasing of quantity of polystyrene added, C(eq) decreased and tau increased, indicating that the sustained oil release amount and the release rate depend on the quantity of PS considerably. PMID:16797942

  15. Psychometric performance of the CAMPHOR and SF-36 in pulmonary hypertension

    PubMed Central

    2013-01-01

    Background The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) and the Medical Outcomes Study Short Form 36 (SF-36) are widely used to assess patient-reported outcome in individuals with pulmonary hypertension (PH). The aim of the study was to compare the psychometric properties of the two measures. Methods Participants were recruited from specialist PH centres in Australia and New Zealand. Participants completed the CAMPHOR and SF-36 at two time points two weeks apart. The SF-36 is a generic health status questionnaire consisting of 36 items split into 8 sections. The CAMPHOR is a PH-specific measure consisting of 3 scales; symptoms, activity limitations and needs-based QoL. The questionnaires were assessed for distributional properties (floor and ceiling effects), internal consistency (Cronbach's alpha), test-retest reliability and construct validity (scores by World Health Organisation functional classification). Results The sample comprised 65 participants (mean (SD) age = 57.2 (14.5) years; n(%) male = 14 (21.5%)). Most of the patients were in WHO class 2 (27.7%) and 3 (61.5%). High ceiling effects were observed for the SF-36 bodily pain, social functioning and role emotional domains. Test-retest reliability was poor for six of the eight SF-36 domains, indicating high levels of random measurement error. Three of the SF-36 domains did not distinguish between WHO classes. In contrast, all CAMPHOR scales exhibited good distributional properties, test retest reliability and distinguished between WHO functional classes. Conclusions The CAMPHOR exhibited superior psychometric properties, compared with the SF-36, in the assessment of PH patient-reported outcome. PMID:23844640

  16. Development of a Tightly Controlled Off Switch for Saccharomyces cerevisiae Regulated by Camphor, a Low-Cost Natural Product

    PubMed Central

    Ikushima, Shigehito; Zhao, Yu; Boeke, Jef D.

    2015-01-01

    Here we describe the engineering of a distant homolog of the Tet repressor, CamR, isolated from Pseudomonas putida, that is regulated by camphor, a very inexpensive small molecule (at micromolar concentrations) for use in Saccharomyces cerevisiae. The repressor was engineered by expression from a constitutive yeast promoter, fusion to a viral activator protein cassette, and codon optimization. A suitable promoter responsive to the CamR fusion protein was engineered by embedding a P. putida operator binding sequence within an upstream activating sequence (UAS)-less CYC1 promoter from S. cerevisiae. The switch, named the Camphor-Off switch, activates expression of a reporter gene in camphor-free media and represses it with micromolar concentrations of camphor. PMID:26206350

  17. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  18. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  19. Selection of the Rotation Direction for a Camphor Disk Resulting from Chiral Asymmetry of a Water Chamber.

    PubMed

    Nakata, Satoshi; Yamamoto, Hiroya; Koyano, Yuki; Yamanaka, Osamu; Sumino, Yutaka; Suematsu, Nobuhiko J; Kitahata, Hiroyuki; Skrobanska, Paulina; Gorecki, Jerzy

    2016-09-01

    Self-motion of a camphor disk rotating inside a water chamber composed of two half-disks was investigated. The half-disks were joined along their diameter segments, and the distance between their midpoints (ds) was considered as the control parameter. Various types of camphor disk motions were observed depending on ds. When ds = 0, the chamber had a circular shape, so it was symmetric. A camphor disk showed either a clockwise (CW) or counterclockwise (CCW) rotation with the direction determined by its initial state. The symmetry of the chamber was broken for ds > 0. For moderate distances between the midpoints, a unidirectional orbital motion of the disk was observed. The preferred rotation direction was determined by the shape of the chamber, and it did not depend on the initial rotation direction. For yet larger ds, the unidirectional circular motion was no longer observed and the trajectory became irregular. A mathematical model coupling the camphor disk motion with the dynamics of the developed camphor molecular layer on water was constructed, and the numerical results were compared with the experimental results. The selection of motion type can be explained by considering the influence of camphor concentration on the disk trajectory through the surface tension gradient. PMID:27500909

  20. Structures and Mechanisms of Nudix Hydrolases

    SciTech Connect

    Mildvan,A.; Xia, Z.; Azurmendi, H.; saraswat, V.; Legler, P.; Massiah, M.; Gabelli, S.; Bianchet, M.; Kang, L.; Amzel, L.

    2005-01-01

    Nudix hydrolases are a family of proteins that contain the characteristic sequence GX(5)EX(7)REUXEEXG(I/L/V), the Nudix box. They catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives such as ADP-ribose, Ap(n)A (3 hydrolases from several species, ranging from bacteria to humans, have been characterized, including, in some cases, the determination of their three-dimensional structures. The product of the Rv1700 gene of M. tuberculosis is a Nudix hydrolase specific for ADP-ribose (ADPR). We have determined the crystal structures of MT-ADPRase alone, and in complex with substrate, with substrate and the nonactivating metal ion Gd(3+), and in complex with a nonhydrolyzable ADPR analog and the activating metal ion Mn(2+). These structures, refined with data extending to resolutions between 2.0 and 2.3 A, showed that there are sequence differences in binding site residues between MT-ADPRase and a human homolog that may be exploited for antituberculosis drug development.

  1. Size-selective crystallization of homochiral camphorate metal-organic frameworks for lanthanide separation.

    PubMed

    Zhao, Xiang; Wong, Matthew; Mao, Chengyu; Trieu, Thuong Xinh; Zhang, Jian; Feng, Pingyun; Bu, Xianhui

    2014-09-10

    Lanthanides (Ln) are a group of important elements usually found in nature as mixtures. Their separation is essential for technological applications but is made challenging by their subtly different properties. Here we report that crystallization of homochiral camphorate metal-organic frameworks (MOFs) is highly sensitive to ionic radii of lanthanides and can be used to selectively crystallize a lanthanide element into predesigned MOFs. Two series of camphorate MOFs were synthesized with acetate (Type 1 with early lanthanides La-Dy) or formate (Type 2 with late lanthanides Tb-Lu and Y) as the auxiliary ligand, respectively. The Ln coordination environment in each type exhibits selectivity for Ln(3+) of different sizes, which could form the basis for a new cost-effective method for Ln separation. PMID:25164942

  2. Quantitative determination of the solidus line in the dilute limit of succinonitrile-camphor alloys

    NASA Astrophysics Data System (ADS)

    Mota, F. L.; Fabietti, L. M.; Bergeon, N.; Strutzenberg, L. L.; Karma, A.; Billia, B.; Trivedi, R.

    2016-08-01

    Different phase diagram measurements for succinonitrile-camphor alloys to date have yielded different values of the solute partition coefficient and the freezing range of the alloy. These parameters are critical to model solidification microstructure evolution. New measurements are made to precisely characterize the dilute limit of the succinonitrile-camphor phase diagram using thin-sample directional solidification experiments where convection is negligible, so that solute transport in the melt is purely diffusive, and the temperature gradient is constant in time. These results are confirmed through complementary measurements by differential scanning calorimetry and isothermal annealing. Possible measurement uncertainties in previously measured solidus lines are discussed. Experimental results were further confirmed using a boundary layer model of transient planar interface dynamics.

  3. Supramolecular arrangement in mono and bi-camphor acyl hydrazones: A structural study

    NASA Astrophysics Data System (ADS)

    Galvão, Adelino M.; Carvalho, M. Fernanda N. N.; Ferreira, Ana S. D.

    2016-03-01

    New acyl hydrazones were synthesized by condensation with camphorquinone aiming at extending the range of applications of the biologically active camphor compounds and structural studies by XRD, 1H-NMR and IR were used in conjunction with advanced computational methodologies to understand the new structural chemistry enabled by the conjugation of the camphor ketone group to the hydrazone Ndbnd C double bond. In particular, were analysed supramolecular arrangements either by hydrogen bonding to water molecules or electrostatic interactions with non protic solvents. The relative stability of all conformers (E/Z) prompted by the hydrazone bond was addressed by state of the art methods such as CR-CCSD(T) and their inter-conversion in both S0 and S1 by CR-EOM-CCSD(T).

  4. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  5. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    SciTech Connect

    Azira, A. A.; Rusop, M.

    2010-03-11

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  6. Central to Axial Transfer of Chirality in Menthone or Camphor-Derived 2,2'-Biphenols.

    PubMed

    Fabris, Fabrizio; De Lucchi, Ottorino; Lucchini, Vittorio

    1997-10-17

    A study aimed at defining a molecular arrangement where a chiral fragment derived from menthone or camphor transfers its central chirality to a 2,2'-biphenol residue, inducing an axial chirality, is reported. The menthol or isoborneol groups are attached at the two benzylic positions at 3,3' in order to maximize efficiency in practical applications. A reliable and high-yielding procedure for the synthesis of such C(2)-symmetric molecules substituted at the 3,3'-positions has been developed. The procedure entails Mannich condensation with paraformaldehyde and morpholine, protection of the hydroxylic functions, chlorination, metalation, and addition to (-)-menthone and (+)-camphor. The use of samarium diiodide is essential in the latter step for optimum selectivity and efficiency. The tetrols exhibit intramolecular hydrogen bonding between phenolic and alcoholic hydroxy functions within each monomeric unity, so that they retain their rotational freedom. NOEDS and COSY experiments show that the tetrols are present in more than one rotamer. The tetrols react with tetrachlorosilane to afford siloxanes as pure diastereoisomers, showing that the metal is able to induce preferential helicity at the biphenyl residue; i.e., the central chirality of menthol or isoborneol auxiliary is totally transfered to the axial chirality of the biphenyl. The configurations could be determined by NOEDS and heterocorrelated HMQC experiments. Remarkably, while the menthol derivative induces total M helicity, the camphor induces complementary P helicity. These results suggest that these tetrols may be useful as ligands in catalysts for asymmetric synthesis. PMID:11671820

  7. [Polybrominated diphenyl ethers in camphor bark from speedy developing urban in Jiangsu Province].

    PubMed

    Shi, Shuang-Xin; Zeng, Liang-Zi; Zhou, Li; Zhang, Li-Fei; Zhang, Ting; Dong, Liang; Huang, Ye-Ru

    2011-09-01

    Polybrominated Diphenyl Ethers (PBDEs) were measured in camphor bark samples from 40 locations in Suzhou, Nantong and Wuxi, Jiangsu Province. The samples were extracted by accelerated solvent extraction (ASE) and analyzed using gas chromatography/mass spectrometry (GC-MS). The 8 PBDEs were detected in all samples and the average concentrations of total PBDEs (BDE28, 47, 100, 99, 153, 154, 183, 209) was 835 microg/kg lipid weight (ranged from 112 to 7 460 microg/kg lipid weight). The BDE209 was the main homologues and accounted for 65.7% -99.6% of sigma 8 PBDEs. The predominant commercial products source for PBDEs in bark was Deca-BDE commercial products. Concentration of sigma 8 PBDEs detected in central district of Nantong were significantly higher than those in industrial park, suggesting the discharge of industrial point source might be the main source of PBDEs in this city. No significant difference was found between the levels of sigma 8 PBDEs in camphor bark collected from Suzhou and Wuxi. It can be concluded that the two cities are contaminated interactionally by PBDEs through atmospheric dispersion. The homologue and congener profiles of penta-BDEs for camphor bark were not consistent with commercial products, atmosphere and dust soil, which related with adsorption effect of tree bark and degradation effect of PBDEs. PMID:22165235

  8. Surface Study of Carbon Nanotubes Prepared by Thermal-CVD of Camphor Precursor

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Surface morphology study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature, which indirectly maybe cost effective. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HR-TEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs. The camphoric hydrocarbons not only found acts as the precursors but also enhances the production rate and the quality of CNTs.

  9. Thermodynamic description and unidirectional solidification of eutectic organic alloys: III. Binary systems neopentylglycol-(D)camphor and amino-methyl-propanediol-(D)camphor

    SciTech Connect

    Witusiewicz, V.T. . E-mail: victor@access.rwth-aachen.de; Sturz, L.; Hecht, U.; Rex, S.

    2004-11-08

    The temperature and enthalpy of transformation of organic alloys from the binary systems neopentylglycol-(D)camphor (NPG-DC) and 2-amino-2-methyl-1,3-propanediol-(D)camphor (AMPD-DC) were measured by means of differential scanning calorimetry (DSC). The phase diagrams of these binary systems were assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data measured in the present work. Proper agreements between the experimental and calculated data for the phase diagrams as well as for the thermochemical properties were achieved. Experiments and calculations show that both the NPG-DC and the AMPD-DC system exhibit a nonvariant eutectic reaction with the eutectic point at 36.2 mol% DC and 326.0 K and at 9.3 mol% DC and 362.0 K, respectively. In each system the temperature of the eutectic reaction is higher than the temperature of the transformation from the ordered crystals to the orientationally disordered (plastic) crystals. Unidirectional solidification experiments were performed with several alloys in order to verify the nature of eutectic growth: We find that in both systems eutectic growth occurs with both solid phases being non-facetted and with a lamellar or rod-like eutectic structure. Due to the optical activity of DC its distribution in the solid samples is well detectible in polarised light.

  10. Camphor--a fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon--a review.

    PubMed

    Chen, Weiyang; Vermaak, Ilze; Viljoen, Alvaro

    2013-01-01

    The fragrant camphor tree (Cinnamomum camphora) and its products, such as camphor oil, have been coveted since ancient times. Having a rich history of traditional use, it was particularly used as a fumigant during the era of the Black Death and considered as a valuable ingredient in both perfume and embalming fluid. Camphor has been widely used as a fragrance in cosmetics, as a food flavourant, as a common ingredient in household cleaners, as well as in topically applied analgesics and rubefacients for the treatment of minor muscle aches and pains. Camphor, traditionally obtained through the distillation of the wood of the camphor tree, is a major essential oil component of many aromatic plant species, as it is biosynthetically synthesised; it can also be chemically synthesised using mainly turpentine as a starting material. Camphor exhibits a number of biological properties such as insecticidal, antimicrobial, antiviral, anticoccidial, anti-nociceptive, anticancer and antitussive activities, in addition to its use as a skin penetration enhancer. However, camphor is a very toxic substance and numerous cases of camphor poisoning have been documented. This review briefly summarises the uses and synthesis of camphor and discusses the biological properties and toxicity of this valuable molecule. PMID:23666009

  11. Thermostable Cyanuric Acid Hydrolase from Moorella thermoacetica ATCC 39073▿

    PubMed Central

    Li, Qingyan; Seffernick, Jennifer L.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2009-01-01

    Cyanuric acid, a metabolic intermediate in the degradation of many s-triazine compounds, is further metabolized by cyanuric acid hydrolase. Cyanuric acid also accumulates in swimming pools due to the breakdown of the sanitizing agents di- and trichloroisocyanuric acid. Structurally stable cyanuric acid hydrolases are being considered for usage in pool water remediation. In this study, cyanuric acid hydrolase from the thermophile Moorella thermoacetica ATCC 39073 was cloned, expressed in Escherichia coli, and purified to homogeneity. The recombinant enzyme was found to have a broader temperature range and greater stability, at both elevated and low temperatures, than previously described cyanuric acid hydrolases. The enzyme had a narrow substrate specificity, acting only on cyanuric acid and N-methylisocyanuric acid. The M. thermoacetica enzyme did not require metals or other discernible cofactors for activity. Cyanuric acid hydrolase from M. thermoacetica is the most promising enzyme to use for cyanuric acid remediation applications. PMID:19767460

  12. Camphor Induces Proliferative and Anti-senescence Activities in Human Primary Dermal Fibroblasts and Inhibits UV-Induced Wrinkle Formation in Mouse Skin.

    PubMed

    Tran, Thao Anh; Ho, Manh Tin; Song, Yeon Woo; Cho, Moonjae; Cho, Somi Kim

    2015-12-01

    Camphor ((1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one), a bicyclic monoterpene, is one of the major constituents of essential oils from various herbs such as rosemary, lavender, and sage. In this study, we investigated the beneficial effects of camphor as a botanical ingredient in cosmetics. Camphor induced the proliferation of human primary dermal fibroblasts in a dose-dependent manner via the PI3K/AKT and ERK signaling pathways. Camphor attenuated the elevation of senescence associated with β-galactosidase (SA-β-gal) activity. Elastase activity decreased, while the total amount of collagen increased, in a dose- and time-dependent manner in human primary dermal fibroblasts treated with camphor. Camphor induced the expression of collagen IA, collagen IIIA, collagen IVA, and elastin in human primary dermal fibroblasts. In addition, posttreatment with 26 and 52 mM camphor for 2 weeks led to a significant reduction in the expression of MMP1 but increases in the expression of collagen IA, IIIA, and elastin in mouse skin exposed to UV for 4 weeks. These posttreatments also reduced the depths of the epidermis and subcutaneous fat layer in UV-exposed mouse skin. Taken together, these findings suggest camphor to be a potent wound healing and antiwrinkle agent with considerable potential for use in cosmeceuticals. PMID:26458283

  13. Camphor burns of the palm and non-suicidal self-injury: An uncommonly reported, but socially relevant issue

    PubMed Central

    Chittoria, Ravi Kumar; Mohapatra, Devi Prasad; Friji, Meethale Thiruvoth; Kumar, S. Dinesh; Asokan, Arjun; Pandey, Sandhya

    2014-01-01

    Camphor is a waxy white sublimating chemical derived from natural as well as synthetic sources and widely used in various communities worldwide for a number of medicinal, culinary, and religious reasons. Camphor is burnt as an offering to God in many religious communities. We report three incidences of self inflicted injury from burning camphor on the palm resulting in full thickness burns. Non-suicidal self-injury is socially unacceptable destruction or alteration of body tissue when there is no suicidal intent or pervasive developmental disorder and we have explored an association between this and burn injury. This report also highlights the unique social and cultural pattern of this burn injury and the importance of psycho-therapeautic help for these victims. PMID:25190924

  14. Evaluation of the antibacterial activities of calcium hydroxide, chlorhexidine, and camphorated paramonochlorophenol as intracanal medicament. A clinical and laboratory study.

    PubMed

    Barbosa, C A; Gonçalves, R B; Siqueira, J F; De Uzeda, M

    1997-05-01

    The antibacterial activities of camphorated paramonochlorophenol, chlorhexidine, and calcium hydroxide were compared using a clinical and laboratory evaluation. In the clinical experiment, root canals that yielded positive cultures a week after complete chemomechanical preparation and camphorated paramonochlorophenol dressing were medicated with one of the three substances tested. Postmedication samples were taken from the canal 1 week later. In the laboratory experiment, the agar diffusion test was used to evaluate the inhibitory activity of the medicaments against bacteria commonly found in endodontic infections. The results of the clinical evaluation showed that all medicaments were effective in reducing or eliminating the endodontic microbiota, as demonstrated by the incidence of negative cultures. There was no statistically significant difference among the medicaments tested. In the laboratory evaluation, camphorated paramonochlorophenol showed the largest zones of bacterial inhibition against all bacterial strains tested. PMID:9545931

  15. Camphor burns of the palm and non-suicidal self-injury: An uncommonly reported, but socially relevant issue.

    PubMed

    Chittoria, Ravi Kumar; Mohapatra, Devi Prasad; Friji, Meethale Thiruvoth; Kumar, S Dinesh; Asokan, Arjun; Pandey, Sandhya

    2014-05-01

    Camphor is a waxy white sublimating chemical derived from natural as well as synthetic sources and widely used in various communities worldwide for a number of medicinal, culinary, and religious reasons. Camphor is burnt as an offering to God in many religious communities. We report three incidences of self inflicted injury from burning camphor on the palm resulting in full thickness burns. Non-suicidal self-injury is socially unacceptable destruction or alteration of body tissue when there is no suicidal intent or pervasive developmental disorder and we have explored an association between this and burn injury. This report also highlights the unique social and cultural pattern of this burn injury and the importance of psycho-therapeautic help for these victims. PMID:25190924

  16. Phase effects in the radiation chemistry of dl-camphor. [Gamma radiation

    SciTech Connect

    Klingen, T.J.; Sherman, L.R.; McCormick, D.G.

    1980-12-11

    The effect of mesomorphism on the radiation chemistry of the solid state is examined for the system dl-camphor, which has only a small entropy difference between the ..cap alpha.. and ..beta.. mesophases. The results of the radiolysis of these phases gave rise to the same products in both mesophases but with differences in the product G values in the two mesophases. These results are discussed in terms of the effect of phase on the overall mechanism for the formation of the observed products, which can be attributed to efficient abstraction reactions operative in the ..beta.. phase but not the ..cap alpha.. phase.

  17. Solvent effects on the electronic absorption spectrum of camphor using continuum, discrete or explicit approaches

    NASA Astrophysics Data System (ADS)

    Kongsted, Jacob; Mennucci, Benedetta; Coutinho, Kaline; Canuto, Sylvio

    2010-01-01

    We address the effect of solvation on the lowest electronic excitation energy of camphor. The solvents considered represent a large variation in-solvent polarity. We consider three conceptually different ways of accounting for the solvent using either an implicit, a discrete or an explicit solvation model. The solvatochromic shifts in polar solvents are found to be in good agreement with the experimental data for all three solvent models. However, both the implicit and discrete solvation models are less successful in predicting solvatochromic shifts for solvents of low polarity. The results presented suggest the importance of using explicit solvent molecules in the case of nonpolar solvents.

  18. Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family.

    PubMed

    Iwata, Makoto; Imaoka, Takuya; Nishiyama, Takashi; Fujii, Takao

    2016-08-01

    A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes. PMID:26868518

  19. Aspergillus niger DLFCC-90 rhamnoside hydrolase, a new type of flavonoid glycoside hydrolase.

    PubMed

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira; Jin, Fengxie

    2012-07-01

    A novel rutin-α-L-rhamnosidase hydrolyzing α-L-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13. PMID:22544243

  20. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    PubMed Central

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  1. Bacterial Expression and HTS Assessment of Soluble Epoxide Hydrolase Phosphatase.

    PubMed

    Klingler, Franca-Maria; Wolf, Markus; Wittmann, Sandra; Gribbon, Philip; Proschak, Ewgenij

    2016-08-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that possesses an epoxide hydrolase and lipid phosphatase activity (sEH-P) at two distinct catalytic domains. While the physiological role of the epoxide hydrolase domain is well understood, the consequences of the phosphatase activity remain unclear. Herein we describe the bacterial expression of the recombinant N-terminal domain of sEH-P and the development of a high-throughput screening protocol using a sensitive and commercially available substrate fluorescein diphosphate. The usability of the assay system was demonstrated and novel inhibitors of sEH-P were identified. PMID:27009944

  2. Miniaturization of hydrolase assays in thermocyclers.

    PubMed

    Lucena, Severino A; Moraes, Caroline S; Costa, Samara G; de Souza, Wanderley; Azambuja, Patrícia; Garcia, Eloi S; Genta, Fernando A

    2013-03-01

    We adapted the protocols of reducing sugar measurements with dinitrosalicylic acid and bicinchoninic acid for thermocyclers and their use in enzymatic assays for hydrolases such as amylase and β-1,3-glucanase. The use of thermocyclers for these enzymatic assays resulted in a 10 times reduction in the amount of reagent and volume of the sample needed when compared with conventional microplate protocols. We standardized absorbance readings from the polymerase chain reaction plates, which allowed us to make direct readings of the techniques above, and a β-glycosidase assay was also established under the same conditions. Standardization of the enzymatic reaction in thermocyclers resulted in less time-consuming temperature calibrations and without loss of volume through leakage or evaporation from the microplate. Kinetic parameters were successfully obtained, and the use of the thermocycler allowed the measurement of enzymatic activities in biological samples from the field with a limited amount of protein. PMID:23123426

  3. Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors

    PubMed Central

    Hwang, Sung Hee; Tsai, Hsing-Ju; Liu, Jun-Yan; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    A series of N,N′-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models. PMID:17616115

  4. A simplified electrostatic model for hydrolase catalysis.

    PubMed

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH. PMID:25881958

  5. Thermodynamic description and unidirectional solidification of eutectic organic alloys: I. Succinonitrile-(D)camphor system

    SciTech Connect

    Witusiewicz, V.T.; Sturz, L.; Hecht, U.; Rex, S

    2004-09-06

    The temperature and enthalpy of transformations of organic alloys from the binary system succinonitrile-(D)camphor were measured by means of differential scanning calorimetry (DSC) within the entire composition range. The analytical description of the Gibbs energies of pure succinonitrile (SCN) and pure (D)camphor (DC) were derived utilizing the data on temperature and enthalpy of transformations, and temperature dependencies of heat capacity available in the literature. The phase diagram for the binary SCN-DC system was assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data available in the literature and measured in the present work. A good agreement between the experimental and calculated data for the phase diagram as well as for the thermochemical properties was achieved. Experiments and calculations show that the binary system SCN-DC has an eutectic reaction with the eutectic point at 311.5 K and 13.9 mol% DC. The enthalpy of mixing derived in the optimisation proves weak attractive interaction between dissimilar molecules. Unidirectional solidification of the eutectic alloy was performed in order to verify the nature of the eutectic: we find that eutectic growth occurs with both solid phases being nonfacetted and with a rod-like eutectic structure consisting of 23 vol% (DC) and 77 vol% (SCN). Due to the optical activity of DC its distribution in the solid sample is well detectible in polarised light.

  6. Effectiveness and mechanisms of hydrogen sulfide adsorption by camphor-derived biochar.

    PubMed

    Shang, Guofeng; Shen, Guoqing; Wang, Tingting; Chen, Qin

    2012-08-01

    The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on a biochar through pyrolysis at various temperatures (100 to 500 degrees C) were investigated. The biochar used in the current study was derived from the camphor tree (Cinnamomum camphora). The samples were ground and sieved to produceparticle sizes of 0.4 mm to 1.25 mm, 0.3 mm to 0.4 mm, and <0.3 mm. The H2S breakthrough capacity was measured using a laboratory-designed test. The surface properties of the biochar were characterized using pH and Fourier-transform infrared spectroscopy (FTIR) analysis. The results obtained demonstrate that all camphor-derived biochars were effective in H2S sorption. Certain threshold ranges ofthepyrolysis temperature and surfacepH were observed, which, when exceeded, have dramatic effects on the H2S adsorption capacity. The sorption capacity ranged from 1.2 mg/g to 121.4 mg/g. The biochar with 0.3 mm to 0.4 mm particle size possesses a maximum sorption capacity at 400 degrees C. The pH and FTIR analysis results showed that carboxylic and hydroxide radical groups were responsible for H2S sorption. These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S. PMID:22916434

  7. The pharmacological landscape and therapeutic potential of serine hydrolases.

    PubMed

    Bachovchin, Daniel A; Cravatt, Benjamin F

    2012-01-01

    Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation. PMID:22212679

  8. The Pharmacological Landscape and Therapeutic Potential of Serine Hydrolases

    PubMed Central

    Bachovchin, Daniel A.; Cravatt, Benjamin F.

    2013-01-01

    Serine hydrolases play critical roles in many biological processes, and several are targets of approved drugs for indications such as type 2 diabetes, Alzheimer’s disease, and infectious disease. Despite this, most of the 200+ human serine hydrolases remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds under clinical investigation, and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation. PMID:22212679

  9. Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by Chiral O,N,O-tridentate Phenol Ligands Derived From Camphor.

    PubMed

    Lee, Dong-Sheng; Chang, Shu-Ming; Ho, Chun-Ying; Lu, Ta-Jung

    2016-01-01

    Chiral O,N,O-tridentate phenol ligands bearing a camphor backbone were found to be effective chiral catalysts for the enantioselective addition of diethylzinc to aromatic aldehydes, resulting in high enantioselectivities (80-95% ee) at room temperature. PMID:26487505

  10. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  11. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase.

    PubMed

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  12. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase

    PubMed Central

    Sharma, Arvind; Yogavel, Manickam; Sharma, Amit

    2016-01-01

    Malaria symptoms are driven by periodic multiplication cycles of Plasmodium parasites in human red blood corpuscles (RBCs). Malaria infection still accounts for ~600,000 annual deaths, and hence discovery of both new drug targets and drugs remains vital. In the present study, we have investigated the malaria parasite enzyme diadenosine tetraphosphate (Ap4A) hydrolase that regulates levels of signalling molecules like Ap4A by hydrolyzing them to ATP and AMP. We have tracked the spatial distribution of parasitic Ap4A hydrolase in infected RBCs, and reveal its unusual localization on the infected RBC membrane in subpopulation of infected cells. Interestingly, enzyme activity assays reveal an interaction between Ap4A hydrolase and the parasite growth inhibitor suramin. We also present a high resolution crystal structure of Ap4A hydrolase in apo- and sulphate- bound state, where the sulphate resides in the enzyme active site by mimicking the phosphate of substrates like Ap4A. The unexpected infected erythrocyte localization of the parasitic Ap4A hydrolase hints at a possible role of this enzyme in purinerigic signaling. In addition, atomic structure of Ap4A hydrolase provides insights for selective drug targeting. PMID:26829485

  13. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25. PMID:17944430

  14. Pro-apoptotic effect of new quinolone 7- ethyl 9-ethyl-6-oxo-6,9-dihydro[1,2,5]selenadiazolo [3,4-h]quinoline-7-carboxylate on cervical cancer cell line HeLa alone/with UVA irradiation.

    PubMed

    Jantová, Soňa; Mrvová, Nataša; Hudec, Roman; Sedlák, Ján; Pánik, Miroslav; Milata, Viktor

    2016-06-01

    7- ethyl 9-ethyl-6-oxo-6,9-dihydro[1,2,5]selenadiazolo [3,4-h]quinoline-7-carboxylate (E2h) is a new synthetically prepared quinolone derivative, which in our primary study showed cytotoxic effects towards tumor cells. The aim of the present study was to examine the antiproliferative and apoptosis inducing activities of E2h towards human cervical cancer cell line HeLa with/without the presence of UVA irradiation. Further, the molecular mechanism involved in E2h-induced apoptosis in HeLa cells was investigated. Our results showed that both non-photoactivated and photoactivated E2h caused morphological changes and inhibited the cell growth of HeLa cells in a time- and dose-dependent manner. Irradiation increased the sensitivity of HeLa cells to E2h. Quinolone induced S and G2/M arrest and apoptosis in HeLa cells, as characterized by DNA fragmentation and flow cytometry. In addition, E2h elevated the level of reactive oxygen species and activated caspases 3. In conclusions, E2h alone/in combination with UVA irradiation induced apoptosis in HeLa cells through the ROS-mitochondrial/caspase 3-dependent pathway. PMID:26916084

  15. Fumigant Toxicity and Repellence Activity of Camphor Essential Oil from Cinnamonum camphora Siebold Against Solenopsis invicta Workers (Hymenoptera:Formicidae).

    PubMed

    Fu, J T; Tang, L; Li, W S; Wang, K; Cheng, D M; Zhang, Z X

    2015-01-01

    The red imported fire ant (RIFA) Solenopsis invicta Buren causes severe damage to humans and animals as well as the environment. Chemical treatment is the main strategy of RIFA management, which also is potentially toxic to the environment. Plant essential oils (EOs) are considered as potential substance that can be used to control insects. This study aimed to identify the chemical composition of camphor EO and investigate the insecticidal activity on RIFAs. The chemical composition of the EO was analyzed by gas chromatography/mass spectrometry and gas chromatography with flame ionization detection. Results revealed that 36.61% camphor and 30.05% cineole were the major components. The insecticidal activity of camphor EO was assessed against RIFA workers by conducting two different bioassays: fumigant toxicity and repellence. Fumigant toxicity assay results showed that the lethal dose (LC50) of the EO at 24 h was 1.67 and 4.28 μg/ml for minor and major workers, respectively; knockdown time (KT50) was 10.82 and 14.73 h. At 2.55 μg/ml, the highest average mortality of the ants was 84.89% after 72 h. Camphor EO exhibited fumigant toxicity against minor and major workers as indicated by the effects on attacking, feeding, and climbing behaviors. This EO was also strongly repellent to the two size workers of the colony as observed in their behavior against Tenebrio molitor treated with 5 µl EO. The fumigant toxicity and repellence of camphor EO against RIFA indicated that this substance could be a potential alternative for the development of eco-friendly products used to control pests. PMID:26392574

  16. Fumigant Toxicity and Repellence Activity of Camphor Essential Oil from Cinnamonum camphora Siebold Against Solenopsis invicta Workers (Hymenoptera:Formicidae)

    PubMed Central

    Fu, J. T.; Tang, L.; Li, W. S.; Wang, K.; Cheng, D. M.; Zhang, Z. X.

    2015-01-01

    The red imported fire ant (RIFA) Solenopsis invicta Buren causes severe damage to humans and animals as well as the environment. Chemical treatment is the main strategy of RIFA management, which also is potentially toxic to the environment. Plant essential oils (EOs) are considered as potential substance that can be used to control insects. This study aimed to identify the chemical composition of camphor EO and investigate the insecticidal activity on RIFAs. The chemical composition of the EO was analyzed by gas chromatography/mass spectrometry and gas chromatography with flame ionization detection. Results revealed that 36.61% camphor and 30.05% cineole were the major components. The insecticidal activity of camphor EO was assessed against RIFA workers by conducting two different bioassays: fumigant toxicity and repellence. Fumigant toxicity assay results showed that the lethal dose (LC50) of the EO at 24 h was 1.67 and 4.28 μg/ml for minor and major workers, respectively; knockdown time (KT50) was 10.82 and 14.73 h. At 2.55 μg/ml, the highest average mortality of the ants was 84.89% after 72 h. Camphor EO exhibited fumigant toxicity against minor and major workers as indicated by the effects on attacking, feeding, and climbing behaviors. This EO was also strongly repellent to the two size workers of the colony as observed in their behavior against Tenebrio molitor treated with 5 µl EO. The fumigant toxicity and repellence of camphor EO against RIFA indicated that this substance could be a potential alternative for the development of eco-friendly products used to control pests. PMID:26392574

  17. Investigation of the mechanism of phosphonoacetaldehyde hydrolase

    SciTech Connect

    Hepburn, T.W.; Olsen, D.B.; Dunaway-Mariano, D.; Mariano, P.S.

    1986-05-01

    The authors are presently studying enzymes which catalyze the formation and cleavage of carbon phosphorous bonds. In 1970 LaNauze et. al. reported the isolation of one enzyme of interest - phosphonoacetaldehyde hydrolase from a mutant of Bacillus cereus. This enzyme catalyzes the hydrolysis of phosphonoaldehyde to acetaldehyde and inorganic phosphate. They have isolated phosphonatase from wild type B. cereus (grown on 2-aminoethylphosphonate as the P/sub i/ source) and have used /sup 1/H-NMR and /sup 31/P-NMR techniques to determine the products of the enzyme reaction as phosphate and acetaldehyde. The mechanism of the enzyme could involve the formation of a Schiff base between phosphonoacetaldehyde and lysine or it might only require Mg/sup + +/, an essential cofactor for activity. To distinguish between these possibilities they have begun to look at the Schiff base formation in more detail. NaBH/sub 4/ was found to inactivate the enzyme in the presence of substrate but not in its absence. This is consistent with results obtained for the enzyme isolated from the mutant bacteria. In addition treatment of the wild type enzyme with tritiated NaBH/sub 4/ resulted in significant incorporation of radiolabel into the protein as compared to the control. These results tentatively suggest that hydrolysis proceeds via a covalent imine intermediate.

  18. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    PubMed Central

    Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    Summary A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  19. On the question of phase equilibria in the succinonitrile-(D)camphor system

    NASA Astrophysics Data System (ADS)

    Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2013-07-01

    Alloys from the succinonitrile-(D)camphor (SCN-DC) system are widely used as model alloys for the in situ investigation of solidification using light optical microscopy, but literature on the binary phase diagram is contradictory with respect to the solubility limit of DC in (SCN). Phase equilibria of the system were therefore revisited experimentally and critically assessed in the present work. The results prove that the maximum solubility of DC in the succinonitrile solid solution (SCN) is far less 1 wt% and the volume fraction of the (DC) phase in the eutectic solid is 23.3%. On this basis and on recently reported experimental data the CALPHAD description of the SCN-DC system was re-optimized.

  20. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide.

    PubMed

    Carvalho, M Fernanda N N; Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a -N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  1. Metabolism of monoterpanes: metabolic fate of (+)-camphor in sage (Salvia officinalis). [Salvia officinalis

    SciTech Connect

    Croteau, R.; El-Bialy, H.; Dehal, S.S.

    1987-07-01

    The bicyclic monoterpene ketone (+)-camphor undergoes lactonization to 1,2-campholide in mature sage (Salvia officinalis L.) leaves followed by conversion to the ..beta..-D-glucoside-6-O-glucose ester of the corresponding hydroxy acid (1-carboxymethyl-3-hydroxy-2,2,3-trimethyl cyclopentane). Analysis of the disposition of (+)-(G-/sup 3/H)camphor applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis of the bis-glucose derivative and its transport from leaf to root to be determined, and gave strong indication that the transport derivative was subsequently metabolized in the root. Root extracts were shown to possess ..beta..-glucosidase and acyl glucose esterase activities, and studies with (+)-1,2(U-/sup 14/C)campholide as substrate, using excised root segments, revealed that the terpenoid was converted to lipid materials. Localization studies confirmed the radiolabeled lipids to reside in the membranous fractions of root extracts, and analysis of this material indicated the presence of labeled phytosterols and labeled fatty acids (C/sub 14/ to C/sub 20/) of acyl lipids. Although it was not possible to detail the metabolic steps between 1,2-campholide and the acyl lipids and phytosterols derived therefrom because of the lack of readily detectable intermediates, it seemed likely that the monoterpene lactone was degraded to acetyl CoA which was reincorporated into root membrane components via standard acyl lipid and isoprenoid biosynthetic pathways. Monoterpene catabolism thus appears to represent a salvage mechanism for recycling mobile carbon from senescing oil glands on the leaves to the roots.

  2. Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase.

    PubMed

    Marsillach, Judit; Suzuki, Stephanie M; Richter, Rebecca J; McDonald, Matthew G; Rademacher, Peter M; MacCoss, Michael J; Hsieh, Edward J; Rettie, Allan E; Furlong, Clement E

    2014-01-01

    Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 10(4) M(-1)s(-1), orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL. PMID:25333274

  3. Human Valacyclovir Hydrolase/Biphenyl Hydrolase-Like Protein Is a Highly Efficient Homocysteine Thiolactonase

    PubMed Central

    McDonald, Matthew G.; Rademacher, Peter M.; MacCoss, Michael J.; Hsieh, Edward J.; Rettie, Allan E.; Furlong, Clement E.

    2014-01-01

    Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 104 M−1s−1, orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL. PMID:25333274

  4. Simultaneous determination of the UV-filters benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in human placental tissue by LC-MS/MS. Assessment of their in vitro endocrine activity.

    PubMed

    Jiménez-Díaz, I; Molina-Molina, J M; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Real, M; Sáenz, J M; Fernández, M F; Olea, N

    2013-10-01

    UV-filters are widely used in many personal care products and cosmetics. Recent studies indicate that some organic UV-filters can accumulate in biota and act as endocrine disruptors, but there are few studies on the occurrence and fate of these compounds in humans. In the present work, a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to assess the presence of six UV-filters in current use (benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor, and 3-benzylidene camphor) in human placental tissue is proposed. The method involves the extraction of the analytes from the samples using ethyl acetate, followed by a clean-up step using centrifugation prior to their quantification by LC-MS/MS using an atmospheric pressure chemical ionization (APCI) interface. Bisphenol A-d16 was used as surrogate for the determination of benzyl salicylate, phenyl salicylate, octyl salicylate and homosalate in negative mode and benzophenone-d10, was used as surrogate for the determination of 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in positive mode. The found limits of detection ranged from 0.4 to 0.6ngg(-1) and the limits of quantification ranged from 1.3 to 2.0ngg(-1), while variability was under 13.7%. Recovery rates for spiked samples ranged from 97% to 104%. Moreover, the interactions of these compounds with the human estrogen receptor alpha (hERα) and androgen receptor (hAR), using two in vitro bioassays based on reporter gene expression and cell proliferation assessment, were also investigated. All tested compounds, except benzyl salicylate and octyl salicylate, showed estrogenic activity in the E-Screen bioassay whereas only homosalate and 3-(4-methylbenzylidene) camphor were potent hAR antagonists. Although free salicylate derivatives and free camphor derivatives were not detected in the human placenta samples analyzed, the observed estrogenic and anti-androgenic activities of some of these

  5. TECHNOLOGY DEMONSTRATION UNDERWATER HYDROLASING PHASE 0 & 1 & 2 TECHNICAL REPORT

    SciTech Connect

    CHRONISTER, G.B.

    2005-06-08

    From September 10 through December 17th, 2003, S.A.Robotics executed Phases 0, I, and II of the Technology Demonstration - Underwater Hydrolasing. Phase 0 was performed at the S.A.Robotics facility in Loveland, Colorado, while Phases I and II were performed at the Hanford K-Basin East Site. The purpose of the demonstrations was to show (1) underwater hydrolasing is a feasible method of removing contaminated concrete underwater to a required depth, (2) the hydrolasing head could be controlled during operation, (3) the depth of contamination in the concrete structure could be accurately measured, and (4) a characterization of the waste stream during hydrolasing activities could be recorded. Video monitoring was also used during all demonstrations. All phases of the demonstration were completed and deemed a success by both the observers and the demonstration team. Single and multiple passes were made using variable cutting rates, different stand-off distances were tested, and stationary cuts were executed. Hot and cold hyrdolasing was performed with radiological and depth scans of the affected surfaces. Specially designed equipment was installed and operated within the contaminated environment of 100-K East Basin. Separate results are documented below by phase. The Phase II radiological demonstration was performed to determine the feasibility of underwater hydrolasing technology for decontamination of the DOE spent fuel basins at Hanford 100-K area. This project demonstration was conducted at 105 KE Basin with the expectation that, once proven, this technology can be implemented at Hanford and other DOE sites.

  6. Studies to investigate the in vivo therapeutic window of the gamma-secretase inhibitor N2-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide (LY411,575) in the CRND8 mouse.

    PubMed

    Hyde, Lynn A; McHugh, Nansie A; Chen, Joseph; Zhang, Qi; Manfra, Denise; Nomeir, Amin A; Josien, Hubert; Bara, Thomas; Clader, John W; Zhang, Lili; Parker, Eric M; Higgins, Guy A

    2006-12-01

    Accumulation of amyloid beta-peptide (Abeta) is considered a key step in the etiology of Alzheimer's disease. Abeta is produced by sequential cleavage of the amyloid precursor protein by beta- and gamma-secretase enzymes. Consequently, inhibition of gamma-secretase provides a promising therapeutic approach to treat Alzheimer's disease. Preclinically, several gamma-secretase inhibitors have been shown to reduce plasma and brain Abeta, although they also produce mechanism-based side effects, including thymus atrophy and intestinal goblet cell hyperplasia. The present studies sought to establish an efficient screen for determining the therapeutic window of gamma-secretase inhibitors and to test various means of maximizing this window. Six-day oral administration of the gamma-secretase inhibitor N(2)-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N(1)-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-l-alaninamide (LY411,575) reduced cortical Abeta(40) in young (preplaque) transgenic CRND8 mice (ED(50) approximately 0.6 mg/kg) and produced significant thymus atrophy and intestinal goblet cell hyperplasia at higher doses (>3 mg/kg). The therapeutic window was similar after oral and subcutaneous administration and in young and aged CRND8 mice. Both the thymus and intestinal side effects were reversible after a 2-week washout period. Three-week treatment with 1 mg/kg LY411,575 reduced cortical Abeta(40) by 69% without inducing intestinal effects, although a previously unreported change in coat color was observed. These studies demonstrate that the 3- to 5-fold therapeutic window for LY411,575 can be exploited to obtain reduction in Abeta levels without induction of intestinal side effects, that intermittent treatment could be used to mitigate side effects, and that a 6-day dosing paradigm can be used to rapidly determine the therapeutic window of novel gamma-secretase inhibitors. PMID:16946102

  7. A theoretical study of the UV absorption of 4-methylbenzylidene camphor: from the UVB to the UVA region.

    PubMed

    da Silva, Luís Pinto; Ferreira, Paulo J O; Miranda, Margarida S; Esteves da Silva, Joaquim C G

    2015-02-01

    In this study, a theoretical approach was used to study the UV absorption of the UVB filter, 4-methylbenzylidene camphor. The main objective of this work was to design new UVA filters based on this rather photo-stable compound, so that photo-degradation in this UV region can be avoided without the use of other molecules. This objective was achieved by the simultaneous addition of two appropriate substituents, which led to red-shifts of up to 0.69 eV while maintaining appreciable oscillator strength. Also, useful structure-energy relationships were derived, which allow for the development of more UVA filters based on 4-methylbenzylidene camphor. PMID:25521601

  8. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    PubMed Central

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-01-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737

  9. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging.

    PubMed

    Oza, Goldie; Ravichandran, M; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S; Sharon, Madhuri; Sharon, Maheshwar

    2016-01-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737

  10. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    NASA Astrophysics Data System (ADS)

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-02-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent.

  11. Expression of key hydrolases for soy sauce fermentation in Zygosaccharomyces rouxii.

    PubMed

    Yuzuki, Masanobu; Matsushima, Kenichiro; Koyama, Yasuji

    2015-01-01

    Several key hydrolases in soy sauce fermentation such as proteases, peptidases, and glutaminases are supplied by Aspergillus sojae or Aspergillus oryzae. The genes encoding these hydrolases were successfully expressed in salt-tolerant yeast Zygosaccharomyces rouxii. These transformants are expected to supply extra hydrolases during soy sauce fermentation process. PMID:25073685

  12. Identification of oxidized protein hydrolase of human erythrocytes as acylpeptide hydrolase.

    PubMed

    Fujino, T; Watanabe, K; Beppu, M; Kikugawa, K; Yasuda, H

    2000-03-16

    Partial amino acid sequence of 80 kDa oxidized protein hydrolase (OPH), a serine protease present in human erythrocyte cytosol (Fujino et al., J. Biochem. 124 (1998) 1077-1085) that is adherent to oxidized erythrocyte membranes and preferentially degrades oxidatively damaged proteins (Beppu et al., Biochim. Biophys. Acta 1196 (1994) 81-87; Fujino et al., Biochim. Biophys. Acta 1374 (1998) 47-55) was determined. The N-terminal amino acid of diisopropyl fluorophosphate (DFP)-labeled OPH was suggested to be masked. Six peptide fragments of OPH obtained by digestion of DFP-labeled OPH with lysyl endopeptidase were isolated by use of reverse-phase high-performance liquid chromatography, and the sequence of more than eight amino acids from the N-terminal position of each peptide was determined. Results of homology search of amino acid sequence of each peptide strongly suggested that the protein was identical with human liver acylpeptide hydrolase (ACPH). OPH showed ACPH activity when N-acetyl-L-alanine p-nitroanilide and N-acetylmethionyl L-alanine were used as substrates. Glutathione S-transferase (GST)-tagged recombinant ACPH (rACPH) was prepared by use of baculovirus expression system as a 107-kDa protein from cDNA of human erythroleukemic cell line K-562. rACPH reacted with anti-OPH antiserum from rabbit. rACPH showed OPH activity when hydrogen peroxide-oxidized or glycated bovine serum albumin was used as substrates. As well as the enzyme activities of OPH, those of rACPH were inhibited by DFP. The results clearly demonstrate that ACPH, whose physiological function has not yet been well characterized, can play an important role as OPH in destroying oxidatively damaged proteins in living cells. PMID:10719179

  13. Mode-selection and mode-switching of an autonomous motor composed of a camphor rotor and a mobile loop

    NASA Astrophysics Data System (ADS)

    Nakata, Satoshi; Tenno, Ryoichi; Ikura, Yumihiko S.

    2011-09-01

    Mode-selection and mode-switching of self-motion were investigated for a loop driven by the movement of a camphor rotor on water, as a simple autonomous system. Three modes of self-motion (caterpillar motion, translation, and alternating mode-switching between them) were selectively generated depending on the state of a knot of the loop. The experimental results were numerically reproduced and categorized by using a differential equation of rotation with a fold bifurcation.

  14. Bifurcation phenomena of two self-propelled camphor disks on an annular field depending on system length

    NASA Astrophysics Data System (ADS)

    Nishi, Kei; Wakai, Ken; Ueda, Tomoaki; Yoshii, Miyu; Ikura, Yumihiko S.; Nishimori, Hiraku; Nakata, Satoshi; Nagayama, Masaharu

    2015-08-01

    Mode selection and bifurcation of a synchronized motion involving two symmetric self-propelled objects in a periodic one-dimensional domain were investigated numerically and experimentally by using camphor disks placed on an annular water channel. Newton's equation of motion for each camphor disk, whose driving force was the difference in surface tension, and a reaction-diffusion equation for camphor molecules on water were used in the numerical calculations. Among various dynamical behaviors found numerically, four kinds of synchronized motions (reversal oscillation, stop-and-move rotation, equally spaced rotation, and clustered rotation) were also observed in experiments by changing the diameter of the water channel. The mode bifurcation of these motions, including their coexistence, were clarified numerically and analytically in terms of the number density of the disk. These results suggest that the present mathematical model and the analysis of the equations can be worthwhile in understanding the characteristic features of motion, e.g., synchronization, collective motion, and their mode bifurcation.

  15. Kinetics of 3-(4-methylbenzylidene)camphor in rats and humans after dermal application

    SciTech Connect

    Schauer, Ute M.D.; Voelkel, Wolfgang; Heusener, Alexander; Colnot, Thomas; Broschard, Thomas H.; Landenberg, Friedrich von; Dekant, Wolfgang . E-mail: dekant@toxi.uni-wuerzburg.de

    2006-10-15

    The toxicokinetics of 4-MBC after dermal administration were investigated in human subjects and in rats. Humans (3 male and 3 female subjects) were exposed to 4-MBC by topical application of a commercial sunscreen formulation containing 4% 4-MBC (w/w), covering 90% of the body surface and resulting in a mean dermal 4-MBC dose of 22 mg/kg bw. In rats, dermal 4-MBC doses of 400 and 2000 mg/kg bw were applied in a formulation using an occlusive patch for 24 h. Concentrations of 4-MBC and its metabolites were monitored over 96 h in plasma (rats and humans) and urine (humans). In human subjects, plasma levels of 4-MBC peaked at 200 pmol/ml in males and 100 pmol/ml in females 6 h after application and then decreased to reach the limit of detection after 24 h (females), respectively, 36 h (males). After dermal application of 4-MBC, peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 50-80 pmol/ml at 12 h and of 3-(4-carboxybenzylidene)camphor were 100-200 pmol/ml at 24 h. In male and female rats, peak plasma levels of 4-MBC were 200 (dose of 400 mg/kg bw) and 1 200 pmol/ml (dose of 2000 mg/kg bw). These levels remained constant for up to 24-48 h after dermal application. Peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 18,000 pmol/ml (males) and of 3-(4-carboxybenzylidene)camphor were 55,000 pmol/ml (females) between 48 and 72 h after application of the high dose of 4-MBC. In human subjects, only a small percentage of the dermally applied dose of 4-MBC was recovered in the form of metabolites in urine, partly as glucuronides. The obtained results suggest a more intensive biotransformation of 4-MBC in rats as compared to humans after dermal application and a poor absorption of 4-MBC through human skin.

  16. Kinetics of 3-(4-methylbenzylidene)camphor in rats and humans after dermal application.

    PubMed

    Schauer, Ute M D; Völkel, Wolfgang; Heusener, Alexander; Colnot, Thomas; Broschard, Thomas H; von Landenberg, Friedrich; Dekant, Wolfgang

    2006-10-15

    The toxicokinetics of 4-MBC after dermal administration were investigated in human subjects and in rats. Humans (3 male and 3 female subjects) were exposed to 4-MBC by topical application of a commercial sunscreen formulation containing 4% 4-MBC (w/w), covering 90% of the body surface and resulting in a mean dermal 4-MBC dose of 22 mg/kg bw. In rats, dermal 4-MBC doses of 400 and 2000 mg/kg bw were applied in a formulation using an occlusive patch for 24 h. Concentrations of 4-MBC and its metabolites were monitored over 96 h in plasma (rats and humans) and urine (humans). In human subjects, plasma levels of 4-MBC peaked at 200 pmol/ml in males and 100 pmol/ml in females 6 h after application and then decreased to reach the limit of detection after 24 h (females), respectively, 36 h (males). After dermal application of 4-MBC, peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 50-80 pmol/ml at 12 h and of 3-(4-carboxybenzylidene)camphor were 100-200 pmol/ml at 24 h. In male and female rats, peak plasma levels of 4-MBC were 200 (dose of 400 mg/kg bw) and 1 200 pmol/ml (dose of 2000 mg/kg bw). These levels remained constant for up to 24-48 h after dermal application. Peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 18,000 pmol/ml (males) and of 3-(4-carboxybenzylidene)camphor were 55,000 pmol/ml (females) between 48 and 72 h after application of the high dose of 4-MBC. In human subjects, only a small percentage of the dermally applied dose of 4-MBC was recovered in the form of metabolites in urine, partly as glucuronides. The obtained results suggest a more intensive biotransformation of 4-MBC in rats as compared to humans after dermal application and a poor absorption of 4-MBC through human skin. PMID:16814339

  17. The use of deuterated camphor as a substrate in (1)H ENDOR studies of hydroxylation by cryoreduced oxy P450cam provides new evidence of the involvement of compound I.

    PubMed

    Davydov, Roman; Dawson, John H; Perera, Roshan; Hoffman, Brian M

    2013-01-29

    Electron paramagnetic resonance and (1)H electron nuclear double resonance (ENDOR) spectroscopies have been used to analyze intermediate states formed during the hydroxylation of (1R)-camphor (H(2)-camphor) and (1R)-5,5-dideuterocamphor (D(2)-camphor) as induced by cryoreduction (77 K) and annealing of the ternary ferrous cytochrome P450cam-O(2)-substrate complex. Hydroxylation of H(2)-camphor produced a primary product state in which 5-exo-hydroxycamphor is coordinated with Fe(III). ENDOR spectra contained signals derived from two protons [Fe(III)-bound C5-OH(exo) and C5-H(endo)] from camphor. When D(2)-camphor was hydroxylated under the same condition in H(2)O or D(2)O buffer, both ENDOR H(exo) and H(endo) signals are absent. For D(2)-camphor in H(2)O buffer, H/D exchange causes the C5-OH(exo) signal to reappear during relaxation upon annealing to 230 K; for H(2)-camphor in D(2)O, the magnitude of the C5-OH(exo) signal decreases via H/D exchange. These observations clearly show that Compound I is the reactive species in the hydroxylation of camphor in P450cam. PMID:23215047

  18. Determination of the biologically active flavour substances thujone and camphor in foods and medicines containing sage (Salvia officinalis L.)

    PubMed Central

    2011-01-01

    Background The sage plant Salvia officinalis L. is used as ingredient in foods and beverages as well as in herbal medicinal products. A major use is in the form of aqueous infusions as sage tea, which is legal to be sold as either food or medicine. Sage may contain two health relevant substances, thujone and camphor. The aim of this study was to develop and validate an analytical methodology to determine these active principles of sage and give a first overview of their concentrations in a wide variety of sage foods and medicines. Results A GC/MS procedure was applied for the analysis of α- and β-thujone and camphor with cyclodecanone as internal standard. The precision was between 0.8 and 12.6%, linearity was obtained from 0.1 - 80 mg/L. The recoveries of spiked samples were between 93.7 and 104.0% (average 99.1%). The time of infusion had a considerable influence on the content of analytes found in the teas. During the brewing time, thujone and camphor show an increase up to about 5 min, after which saturation is reached. No effect was found for preparation with or without a lid on the pot used for brewing the infusion. Compared to extracts with ethanol (60% vol), which provide a maximum yield, an average of 30% thujone are recovered in the aqueous tea preparations. The average thujone and camphor contents were 4.4 mg/L and 16.7 mg/L in food tea infusions and 11.3 mg/L and 25.4 mg/L in medicinal tea infusions. Conclusions The developed methodology allows the efficient determination of thujone and camphor in a wide variety of sage food and medicine matrices and can be applied to conduct surveys for exposure assessment. The current results suggest that on average between 3 and 6 cups of sage tea could be daily consumed without reaching toxicological thresholds. PMID:21777420

  19. Curation of characterized glycoside hydrolases of fungal origin.

    PubMed

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/. PMID:21622642

  20. DEVELOPMENT OF METABOLICALLY STABLE INHIBITORS OF MAMMALIAN MICROSOMAL EPOXIDE HYDROLASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of xenobiotics such as polyaromatic toxicants. Additionally, polymorphism studies have underlined a potential role of this enzyme in relation to a number of diseases, such as emphysema, spontaneous abortion, eclampsia ...

  1. Peptidyl-urea based inhibitors of soluble epoxide hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We prepared a series of amino acid derived cyclohexyl and adamantyl ureas and tested them as inhibitors of the human soluble epoxide hydrolase, and obtained very potent compounds (K(I)=15nM) that are >10-fold more soluble than previously described sEH inhibitors. While our lead compound 2 showed low...

  2. Carbocyclic pyrimidine nucleosides as inhibitors of S-adenosylhomocysteine hydrolase.

    PubMed

    Mosley, Sylvester L; Bakke, Brian A; Sadler, Joshua M; Sunkara, Naresh K; Dorgan, Kathleen M; Zhou, Zhaohui Sunny; Seley-Radtke, Katherine L

    2006-12-01

    The design, synthesis, and unexpected inhibitory activity against S-adenosyl-homocysteine (SAH) hydrolase (SAHase, EC 3.3.1.1) for a series of truncated carbocyclic pyrimidine nucleoside analogues is presented. Of the four nucleosides obtained, 10 was found to be active with a Ki value of 5.0 microM against SAHase. PMID:16904326

  3. Curation of characterized glycoside hydrolases of Fungal origin

    PubMed Central

    Murphy, Caitlin; Powlowski, Justin; Wu, Min; Butler, Greg; Tsang, Adrian

    2011-01-01

    Fungi produce a wide range of extracellular enzymes to break down plant cell walls, which are composed mainly of cellulose, lignin and hemicellulose. Among them are the glycoside hydrolases (GH), the largest and most diverse family of enzymes active on these substrates. To facilitate research and development of enzymes for the conversion of cell-wall polysaccharides into fermentable sugars, we have manually curated a comprehensive set of characterized fungal glycoside hydrolases. Characterized glycoside hydrolases were retrieved from protein and enzyme databases, as well as literature repositories. A total of 453 characterized glycoside hydrolases have been cataloged. They come from 131 different fungal species, most of which belong to the phylum Ascomycota. These enzymes represent 46 different GH activities and cover 44 of the 115 CAZy GH families. In addition to enzyme source and enzyme family, available biochemical properties such as temperature and pH optima, specific activity, kinetic parameters and substrate specificities were recorded. To simplify comparative studies, enzyme and species abbreviations have been standardized, Gene Ontology terms assigned and reference to supporting evidence provided. The annotated genes have been organized in a searchable, online database called mycoCLAP (Characterized Lignocellulose-Active Proteins of fungal origin). It is anticipated that this manually curated collection of biochemically characterized fungal proteins will be used to enhance functional annotation of novel GH genes. Database URL: http://mycoCLAP.fungalgenomics.ca/ PMID:21622642

  4. ORGANOPHOSPHORUS HYDROLASE-BASED ASSAY FOR ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    We report a rapid and versatile Organophosphorus hydrolase (OPH)-based method for measurement of organophosphates. This assay is based on a substrate-dependent change in pH at the local vicinity of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC), ...

  5. ENGINEERING OF PEPTIDOGLYCAN HYDROLASES FOR CONTROL OF PATHOGENIC BACTERIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophages are viruses exclusively infecting bacteria and therefore offer suitable tools for their detection and control. At the end of their multiplication cycle, most phages lyse their hosts from within by means of an endolysin (peptidoglycan hydrolase), thereby enabling release of the phage p...

  6. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virion-associated peptidoglycan hydrolases (VAPGH) are phage-encoded lytic enzymes that locally degrade the peptidoglycan (PG) of the bacterial cell wall during infection. Their action usually generates a small hole through which the phage tail crosses the cell envelope to inject the phage genetic m...

  7. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities.

    PubMed

    Gala, Urvi; Chuong, Monica C; Varanasi, Ravi; Chauhan, Harsh

    2015-06-01

    Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n = 3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM). PMID:25370024

  8. Circular dichroism in valence photoelectron spectroscopy of free unoriented chiral molecules: Camphor and bromocamphor

    SciTech Connect

    Lischke, T.; Boewering, N.; Schmidtke, B.; Mueller, N.; Khalil, T.; Heinzmann, U.

    2004-08-01

    The circular dichroism in the photoelectron angular distribution was investigated for valence photoionization of randomly oriented pure enantiomers of camphor and bromocamphor molecules using circularly polarized light in the vacuum ultraviolet. The forward-backward electron emission spectra were recorded simultaneously with two spectrometers at several opposite angles relative to the propagation direction of the photon beam and compared for each of the two substances. Measurements were also carried out for reversed light helicity and opposite molecular handedness. For the left- and right-handed enantiomers of both molecules we observed asymmetries of comparable magnitude up to several percent. The measured asymmetry parameters vary strongly for different orbital binding energies and also for the selected photon energies in the valence region. The results for both molecules are compared. They suggest a strong influence of the final states on the asymmetry, depending on the chiral geometry of the molecular electronic structure, as well as a significant dependence on the initial states involved. They also confirm theoretical predictions describing the effect in pure electric-dipole approximation.

  9. Resolving Issues of Content Uniformity and Low Permeability Using Eutectic Blend of Camphor and Menthol

    PubMed Central

    Gohel, M. C.; Nagori, S. A.

    2009-01-01

    The aim of present study were to arrest the problem of content uniformity without the use of harmful organic solvent and to improve ex vivo permeability of captopril, a low dose class III drug as per biological classification system. Eutectic mixture of camphor and menthol was innovatively used in the work. Captopril solution in eutectic mixture was blended with Avicel PH 102 and then the mixture was blended with mannitol in different ratios. Formulated batches were characterized for angle of repose and Carr's index. A selected batch was filled in hard gelatin capsule. Tablet dosage form was also developed. Capsules and tablets were characterized for in vitro drug release in 0.1N HCl. Additionally, the captopril tablets were analyzed for content uniformity and ex vivo drug permeation study using rat ileum in modified apparatus. The measurement of angle of repose and Carr's index revealed that the powder blend exhibited good flow property and compressibility. The captopril capsules and tablets exhibited immediate drug release in 0.1 N HCl. The captopril tablets passed content uniformity test as per IP 1996. Ex vivo permeation of captopril, formulated with eutectic mixture, was faster than control. The permeation was increased by 15% at the end of 3 h. Tablets and capsule exhibited reasonable short term stability with no considerable change in performance characteristics. PMID:20376214

  10. Resolving issues of content uniformity and low permeability using eutectic blend of camphor and menthol.

    PubMed

    Gohel, M C; Nagori, S A

    2009-11-01

    The aim of present study were to arrest the problem of content uniformity without the use of harmful organic solvent and to improve ex vivo permeability of captopril, a low dose class III drug as per biological classification system. Eutectic mixture of camphor and menthol was innovatively used in the work. Captopril solution in eutectic mixture was blended with Avicel PH 102 and then the mixture was blended with mannitol in different ratios. Formulated batches were characterized for angle of repose and Carr's index. A selected batch was filled in hard gelatin capsule. Tablet dosage form was also developed. Capsules and tablets were characterized for in vitro drug release in 0.1N HCl. Additionally, the captopril tablets were analyzed for content uniformity and ex vivo drug permeation study using rat ileum in modified apparatus. The measurement of angle of repose and Carr's index revealed that the powder blend exhibited good flow property and compressibility. The captopril capsules and tablets exhibited immediate drug release in 0.1 N HCl. The captopril tablets passed content uniformity test as per IP 1996. Ex vivo permeation of captopril, formulated with eutectic mixture, was faster than control. The permeation was increased by 15% at the end of 3 h. Tablets and capsule exhibited reasonable short term stability with no considerable change in performance characteristics. PMID:20376214

  11. Calcium hydroxide mixed with camphoric p-monochlorophenol or chlorhexidine in delayed tooth replantation.

    PubMed

    Trevisan, Carolina Lunardelli; Panzarini, Sônia Regina; Brandini, Daniela Atili; Poi, Wilson Roberto; Luvizuto, Eloá Rodrigues; Dos Santos, Cláudia Letícia Vendrame; Saito, Célia Tomiko Hamada Matida

    2011-11-01

    This study evaluated the repair process after delayed replantation of rat teeth, using calcium hydroxide (Ca(OH)2) mixed with camphorated p-monochlorophenol (CMCP), chlorhexidine 2% (CHX), or saline as temporary root canal dressing to prevent and/or control inflammatory radicular resorption. Thirty Wistar rats (Rattus norvegicus albinos) had their right upper incisor extracted, which was bench-dried for 60 minutes. The dental papilla, the enamel organ, the dental pulp, and the periodontal ligament were removed. The teeth were immersed in 2% acidulated-phosphate sodium fluoride solution for 10 minutes. The root canals were dried with absorbent paper cones and divided into 3 groups of 10 animals according to root canal dressing used: group 1: Ca(OH)2 + saline, group 2: Ca(OH)2 + CMCP, and group 3: Ca(OH)2 + CHX 2%. Before replanting, the teeth sockets were irrigated with saline. Histological analysis revealed the presence of inflammatory resorption, replacement resorption, and ankylosis in all 3 groups. Statistical analysis showed a significant difference between group 3 and the other groups. The use of Ca(OH)2 mixed with CMCP or CHX did not show an advantage over the use of Ca(OH)2 mixed with saline in preventing and/or controlling inflammatory resorption in delayed replantation of rat teeth. PMID:22067873

  12. Crows break off live camphor twigs: an avian disturbance effect on plants.

    PubMed

    Yamazaki, K

    2009-11-01

    Birds are usually considered beneficial partners for plants, acting as predators on herbivorous insects, pollinators and seed dispersal agents. However, in an urban area of central Japan, birds break off large quantities of live camphor tree (Cinnamomum camphora) twigs in winter. This loss of vegetative parts was examined quantitatively to estimate the impact on the trees. I also observed bird foraging behaviour to determine the species involved and the possible reasons underlying this destructive activity. Broken twigs on the forest floor were found to have numerous leaves and spring buds. The densities of leaves and buds in the litter were 288.5 and 54.4 m(-2), respectively. The jungle crow (Corvus macrorhynchos) may have broken off the twigs either to peck the fruits while perching on stable branches, or possibly to remove twigs obstructing access to fruit. In contrast, brown-eared bulbuls (Hypsipetes amaurotis), oriental turtle doves (Streptopelia orientalis) and rove doves (Columba livia) ate fruits without breaking twigs. The interaction between C. camphora and C. macrorhynchos only extends back for about 20 years in urban Japan, indicating that this is unlikely to be a stable, co-evolved relationship. PMID:19796368

  13. Wetting Camphor: Multi-Isotopic Substitution Identifies the Complementary Roles of Hydrogen Bonding and Dispersive Forces.

    PubMed

    Pérez, Cristóbal; Krin, Anna; Steber, Amanda L; López, Juan C; Kisiel, Zbigniew; Schnell, Melanie

    2016-01-01

    Using broadband rotational spectroscopy, we report here on the delicate interplay between hydrogen bonds and dispersive forces when an unprecedentedly large organic molecule (camphor, C10H16O) is microsolvated with up to three molecules of water. Unambiguous assignment was achieved by performing multi H2(18)O isotopic substitution of clustered water molecules. The observation of all possible mono- and multi-H2(18)O insertions in the cluster structure yielded accurate structural information that is not otherwise achievable with single-substitution experiments. The observed clusters exhibit water chains starting with a strong hydrogen bond to the C═O group and terminated by a mainly van der Waals (dispersive) contact to one of the available sites at the monomer moiety. The effect of hydrogen bond cooperativity is noticeable, and the O···O distances between the clustered water subunits decrease with the number of attached water molecules. The results reported here will further contribute to reveal the hydrophobic and hydrophilic interactions in systems of increasing size. PMID:26689110

  14. László Meduna's pilot studies with camphor inductions of seizures: the first 11 patients.

    PubMed

    Gazdag, Gábor; Bitter, István; Ungvari, Gabor S; Baran, Brigitta; Fink, Max

    2009-03-01

    In his autobiography, László Meduna described the first session of convulsive therapy using intramuscular camphor as occurring on January 23, 1934 at Royal National Hungarian Institute of Psychiatric and Neurology at Budapest-Lipótmezo in Hungary. Unearthed records of the patients treated at this institution reveal that Meduna's dose-finding experiments began on January 2, 1934. The symptomatology and history of illness, diagnosis, socio-demographic data, the seizure characteristics, and immediate and long term outcomes of the first 11 patients are described. These first trials elicited seizures in less than half the injections. Seizures of various durations (including missed seizures) and double (tardive) seizures were recorded. Mutism, refusal to eat requiring tube feeding, and other signs of catatonia dominated the psychopathology of 7 of the first 11 patients. Two improved sufficiently to be discharged from the hospital and third patient became fit for occupational therapy. These records exhibit the meticulous systematic nature of the first human trials with induced seizures and the fortuitous nature of the first human trials with induced seizures and the fortuitous nature in patient selection of catatonic patients--an illness that is most responsive to induced seizures. PMID:19209069

  15. Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats.

    PubMed

    Fu, Jing; Wang, Baogui; Gong, Deming; Zeng, Cheng; Jiang, Yihao; Zeng, Zheling

    2015-08-01

    The total and positional fatty acid composition in camphor tree (Cinnamomum camphora) seed kernel oil (CKO) were analyzed, and for the first time, the effect of CKO on body fat deposition and blood lipids in rats was studied. The major fatty acids in CKO were determined to be decanoic acid (C10:0, 51.49%) and dodecanoic acid (C12:0, 40.08%), and uniformly distributed at Sn-1, 3, and Sn-2 positions in triglyceride (TG). Rats were randomly divided into control, CKO, lard, and soybean oil groups. At the end of the experiment, levels of blood lipids and the fats of abdomen in the rats were measured. The main organ were weighted and used for the histological examination. The results showed that body weight and fat deposition in CKO group were significantly lower than the lard and soybean groups. Moderate consumption of CKO was found to improve the levels of blood TG and low density lipoprotein cholesterol. PMID:26130050

  16. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus.

    PubMed

    Lin, Jun; Negga, Rekek; Zeng, Ximin; Smith, Katie

    2014-01-01

    Bile salt hydrolase (BSH), a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP) for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals. PMID:25526498

  17. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    PubMed

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2. PMID:26695157

  18. Stereoisomer composition of the chiral UV filter 4-methylbenzylidene camphor in environmental samples.

    PubMed

    Buser, Hans-Rudolf; Müller, Markus D; Balmer, Marianne E; Poiger, Thomas; Buerge, Ignaz J

    2005-05-01

    4-Methylbenzylidene camphor (4-MBC) is an important organic UV filter used in many personal care products such as sunscreens and cosmetics. After use, 4-MBC may enter the aquatic environment due to its release from skin during recreational activities (swimming, bathing) and from personal hygiene measures (washing, laundering of cloths) via wastewater treatment plants (WWTPs). In fact, 4-MBC has been detected in wastewater, in surface waters, and even in fish. 4-MBC can exist as distinct cis-(Z)- and trans-(E)-isomers, both of which are chiral. Despite the fact that stereoisomers often show a different biological behavior, the stereochemistry of 4-MBC has hardly ever been considered in environmental or biological studies. In this study, enantioselective gas chromatography-mass spectrometry (GC-MS) was used to determine the stereoisomer composition of 4-MBC. For stereoisomer assignment, the pure enantiomers of (E)-4-MBC were synthesized from (+)- and (-)-camphor. The photochemical isomerization (sunlight) of these (E)-isomers to the corresponding (Z)-isomers eventually allowed the configurational assignment of all four stereoisomers of 4-MBC. In a technical material and in a major brand sun lotion, 4-MBC was shown to consist entirely (>99%) of (E)-isomers and to be racemic (R/S, 1.00 +/- 0.02). Wastewater showed the presence of both (E)- and (Z)-4-MBC with a clear excess of (E)-isomers (E > Z). Untreated wastewater showed a nearly racemic composition (R/S= 0.95-1.09), suggesting that most if not all commercial 4-MBC is racemic. Treated wastewater indicated some excess of (R)- or (S)-stereoisomers (R/S, 0.89-1.17), likely as a result of some enantioselective (bio)degradation in WWTPs. Residues of 4-MBC in lakes and in a river with inputs from WWTPs and/or recreational activities consisted mainly of (E)-4-MBC and, with exception of one lake (Greifensee), showed a small enantiomer excess (R/S, 1.04-1.16). In Greifensee, 4-MBC showed a higher enantiomer excess (R/S, 1

  19. Influence of solid lipid microparticle carriers on skin penetration of the sunscreen agent, 4-methylbenzylidene camphor.

    PubMed

    Scalia, Santo; Mezzena, Matteo; Iannuccelli, Valentina

    2007-12-01

    The objective of this study was to prepare lipid microparticles (LMs) loaded with the sunscreen agent, 4-methylbenzylidene camphor (4-MBC), to achieve decreased skin penetration of this UV filter. The microparticles were produced by the melt dispersion technique using tristearin as lipidic material and hydrogenated phosphatidylcholine as the surfactant. The obtained microparticles were characterized by scanning electron microscopy and differential scanning calorimetry. Release of 4-MBC from the LMs was found to be slower than its dissolution rate. The influence of the LMs' carrier system on percutaneous penetration was evaluated after their introduction in a model topical formulation (emulsion). In-vitro measurements were performed with cellulose acetate membranes in Franz diffusion cells. The 4-MBC release and diffusion was decreased by 66.7-77.3% with the LM formulation, indicating that the retention capacity of the microparticles was maintained after incorporation into the emulsion. In-vivo human skin penetration of 4-MBC was investigated by tape stripping, a technique for selectively removing the upper cutaneous layers. The amount of sunscreen penetrating into the stratum corneum was greater for the emulsion containing non-encapsulated 4-MBC (36.55% of the applied dose) compared with the formulation with the sunscreen-loaded microparticles (24.57% of the applied dose). The differences between the two formulations were statistically significant in the first (2-4) horny layer strips. Moreover, the LMs' effect measured in-vivo was less pronounced than in-vitro. The increased 4-MBC retention on the skin surface achieved by its incorporation in the LMs should enhance its efficacy and reduce the potential toxicological risk associated with skin penetration. PMID:18053323

  20. The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Wen; Aziz, Azizan; Chai, Siang-Piao; Mohamed, Abdul Rahman; Tye, Ching-Thian

    2011-06-01

    The effect of carbon precursors on carbon nanotube (CNT) formation was studied. The catalyst used was Fe 3O 4/MgO without prior reduction by hydrogen. Methane, benzene and camphor were used to produce CNTs at 600, 700, 800, 900 and 1000 °C. The results show that the types of carbon precursors greatly affect the quality of CNTs produced. The CNTs obtained from the decomposition of methane had the lowest intensity of D band to G band ratio ( ID/ IG) compared to the ID/ IG ratios of CNTs produced using benzene and camphor at 900 and 1000 °C, respectively. This low ID/ IG ratio is due to the difference in the molecule structures between methane, benzene and camphor, which resulted in different CNT growth mechanism. Raman analysis showed that single-walled carbon nanotubes of high quality were formed at 900 °C using methane as carbon precursor.

  1. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases

    NASA Astrophysics Data System (ADS)

    Morisseau, Christophe; Goodrow, Marvin H.; Dowdy, Deanna; Zheng, Jiang; Greene, Jessica F.; Sanborn, James R.; Hammock, Bruce D.

    1999-08-01

    The soluble epoxide hydrolase (sEH) plays a significant role in the biosynthesis of inflammation mediators as well as xenobiotic transformations. Herein, we report the discovery of substituted ureas and carbamates as potent inhibitors of sEH. Some of these selective, competitive tightbinding inhibitors with nanomolar Ki values interacted stoichiometrically with the homogenous recombinant murine and human sEHs. These inhibitors enhance cytotoxicity of trans-stilbene oxide, which is active as the epoxide, but reduce cytotoxicity of leukotoxin, which is activated by epoxide hydrolase to its toxic diol. They also reduce toxicity of leukotoxin in vivo in mice and prevent symptoms suggestive of acute respiratory distress syndrome. These potent inhibitors may be valuable tools for testing hypotheses of involvement of diol and epoxide lipids in chemical mediation in vitro or in vivo systems.

  2. [GH10 Family of Glycoside Hydrolases: Structure and Evolutionary Connections].

    PubMed

    Naumoff, D G

    2016-01-01

    Evolutionary connections were analyzed for endo-β-xylanases, which possess the GH10 family catalytic domains. A homology search yielded thrice as many proteins as are available from the Carbohydrate-Active Enzymes (CAZy) database. Lateral gene transfer was shown to play an important role in evolution of bacterial proteins of the family, especially in the phyla Acidobacteria, Cyanobacteria, Planctomycetes, Spirochaetes, and Verrucomicrobia. In the case of Verrucomicrobia, 23 lateral transfers from organisms of other phyla were detected. Evolutionary relationships were observed between the GH10 family domains and domains with the TIM-barrel tertiary structure from several other glycosidase families. The GH39 family of glycoside hydrolases showed the closest relationship. Unclassified homologs were grouped into 12 novel families of putative glycoside hydrolases (GHL51-GHL62). PMID:27028821

  3. Few layers isolated graphene domains grown on copper foils by microwave surface wave plasma CVD using camphor as a precursor

    NASA Astrophysics Data System (ADS)

    Ram Aryal, Hare; Adhikari, Sudip; Uchida, Hideo; Wakita, Koichi; Umeno, Masayoshi

    2016-03-01

    Few layers isolated graphene domains were grown by microwave surface wave plasma CVD technique using camphor at low temperature. Graphene nucleation centers were suppressed on pre-annealed copper foils by supplying low dissociation energy. Scanning electron microscopy study of time dependent growth reveals that graphene nucleation centers were preciously suppressed, which indicates the possibility of controlled growth of large area single crystal graphene domains by plasma processing. Raman spectroscopy revealed that the graphene domains are few layered which consist of relatively low defects.

  4. Isolation and characterization of Xenopus soluble epoxide hydrolase.

    PubMed

    Purba, Endang R; Oguro, Ami; Imaoka, Susumu

    2014-07-01

    Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes. PMID:24681163

  5. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    SciTech Connect

    Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie; Yang, Xiaohan; Tuskan, Gerald A; Vogel, John

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  6. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors.

    PubMed

    Adibekian, Alexander; Martin, Brent R; Wang, Chu; Hsu, Ku-Lung; Bachovchin, Daniel A; Niessen, Sherry; Hoover, Heather; Cravatt, Benjamin F

    2011-07-01

    Serine hydrolases are a diverse enzyme class representing ∼1% of all human proteins. The biological functions of most serine hydrolases remain poorly characterized owing to a lack of selective inhibitors to probe their activity in living systems. Here we show that a substantial number of serine hydrolases can be irreversibly inactivated by 1,2,3-triazole ureas, which show negligible cross-reactivity with other protein classes. Rapid lead optimization by click chemistry-enabled synthesis and competitive activity-based profiling identified 1,2,3-triazole ureas that selectively inhibit enzymes from diverse branches of the serine hydrolase class, including peptidases (acyl-peptide hydrolase, or APEH), lipases (platelet-activating factor acetylhydrolase-2, or PAFAH2) and uncharacterized hydrolases (α,β-hydrolase-11, or ABHD11), with exceptional potency in cells (sub-nanomolar) and mice (<1 mg kg(-1)). We show that APEH inhibition leads to accumulation of N-acetylated proteins and promotes proliferation in T cells. These data indicate 1,2,3-triazole ureas are a pharmacologically privileged chemotype for serine hydrolase inhibition, combining broad activity across the serine hydrolase class with tunable selectivity for individual enzymes. PMID:21572424

  7. Tip Growth Of Carbon Nanotubes Obtained By Pyrolyzation Of Camphor Oil With Zeolite Embedded With Fe/Ni/Mn Catalyst

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Highly efficient synthesis of carbon nanotubes (CNTs) have been synthesized by thermal decomposition of camphor oil, on a zeolite support impregnated with Fe/Ni/Mn (molar ratio of Fe:Ni:Mn = 1:1:1) catalyst in the temperature range from 550-950° C by the thermal CVD method. Besides the surface fluidization of the catalyst nanoparticles themselves, assistance of the metal oxides embedded in zeolite supports is supposed to be responsible for high activity and selectivity of the Fe/Ni/Mn catalyst over which carbon source (camphor oil) successfully decomposes. The CNT yield was higher at 850° C and can be considered as the optimum deposition temperature. This result demonstrates that zeolite impregnated with the catalyst Fe/Ni/Mn is a suitable support for effective formation of CNTs. The morphological studies support `tip growth mechanism' for the growth of the CNT's in our case. The as-grown CNTs were characterized by FESEM and FTIR spectroscopy.

  8. Solid-liquid interfacial energy of neopentylglycol solid solution in equilibrium with neopentylglycol-(D) camphor eutectic liquid

    NASA Astrophysics Data System (ADS)

    Bayram, Ü.; Aksöz, S.; Maraşlı, N.

    2012-01-01

    The grain boundary groove shapes for equilibrated solid neopentylglycol (NPG) solution (NPG-3 mol% D-camphor) in equilibrium with the NPG-DC eutectic liquid (NPG-36.1 mol% D-camphor) have been directly observed using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient ( Г), solid-liquid interfacial energy ( σSL) of NPG solid solution have been determined to be (7.5±0.7)×10 -8 K m and (8.1±1.2)×10 -3 J m -2, respectively. The Gibbs-Thomson coefficient versus TmΩ1/3, where Ω is the volume per atom was also plotted by linear regression for some organic transparent materials and the average value of coefficient ( τ) for nonmetallic materials was obtained to be 0.32 from graph of the Gibbs-Thomson coefficient versus TmΩ1/3. The grain boundary energy of solid NPG solution phase has been determined to be (14.6±2.3)×10 -3 J m -2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated eutectic liquid to thermal conductivity of solid NPG solution was also measured to be 0.80.

  9. Crystal structure of tetra-methyl-tetra-thia-fulvalenium (1S)-camphor-10-sulfonate dihydrate.

    PubMed

    Sommer, Mathieu; Allain, Magali; Mézière, Cécile; Pop, Flavia; Giffard, Michel

    2015-07-01

    Electro-oxidation of tetra-methyl-tetra-thia-fulvalene (TMTTF) in the presence of the chiral anion (1S)-camphor-10-sulfonate (S-camphSO3 (-)) in tetra-hydro-furan/water medium afforded a 1/1 salt formulated as TMTTF·S-camphSO3·2H2O or 2-(4,5-dimethyl-1,3-di-thiol-2-yl-idene)-4,5-dimethyl-1,3-di-thiole radical ion (1+) [(1S)-7,7-dimethyl-2-oxobi-cyclo-[2.2.1]heptan-1-yl]methane-sulfonate dihydrate, C10H12S4 (+)·C10H15O4S(-)·2H2O. In this salt, two independent TMTTF units are present but, in both cases, the observed bond lengths and especially the central C=C distance [1.392 (6) and 1.378 (6) Å] are in agreement with a complete oxidation of TMTTF which is thus present as TMTTF (.) (+) radical cations. These cations form one-dimensional stacks in which they are associated two by two, forming dimers with short [3.472 (1) to 3.554 (2) Å] S⋯S contacts. The two S-camphSO3 anions present also form stacks and are connected with each other via the water mol-ecules with many O-H⋯O hydrogen bonds ranging from 1.86 (3) to 2.15 (4) Å; the O-H⋯O hydrogen-bonding network can be described as being constituted of C 2 (2)(6) chains bearing R 3 (3)(11) lateral rings. On the other hand, the columns of cations and anions are connected through C-H⋯O hydrogen bonds, forming a system expanding in three directions; finally, the result is a three-dimensional network of O-H⋯O and C-H⋯O hydrogen bonds. PMID:26279858

  10. Successful application of the DBLOC method to the hydroxylation of camphor by cytochrome p450.

    PubMed

    Jerome, Steven V; Hughes, Thomas F; Friesner, Richard A

    2016-01-01

    The activation barrier for the hydroxylation of camphor by cytochrome P450 was computed using a mixed quantum mechanics/molecular mechanics (QM/MM) model of the full protein-ligand system and a fully QM calculation using a cluster model of the active site at the B3LYP/LACVP*/LACV3P** level of theory, which consisted of B3LYP/LACV3P** single point energies computed at B3LYP/LACVP* optimized geometries. From the QM/MM calculation, a barrier height of 17.5 kcal/mol was obtained, while the experimental value was known to be less than or equal to 10 kcal/mol. This process was repeated using the D3 correction for hybrid DFT in order to investigate whether the inadequate treatment of dispersion interaction was responsible for the overestimation of the barrier. While the D3 correction does reduce the computed barrier to 13.3 kcal/mol, it was still in disagreement with experiment. After application of a series of transition metal optimized localized orbital corrections (DBLOC) and without any refitting of parameters, the barrier was further reduced to 10.0 kcal/mol, which was consistent with the experimental results. The DBLOC method to CH bond activation in methane monooxygenase (MMO) was also applied, as a second, independent test. The barrier in MMO was known, by experiment, to be 15.4 kcal/mol. After application of the DBLOC corrections to the MMO barrier compute by B3LYP, in a previous study, and accounting for dispersion with Grimme's D3 method, the unsigned deviation from experiment was improved from 3.2 to 2.3 kcal/mol. These results suggested that the combination of dispersion plus localized orbital corrections could yield significant quantitative improvements in modeling the catalytic chemistry of transition-metal containing enzymes, within the limitations of the statistical errors of the model, which appear to be on the order of approximately 2 kcal/mole. PMID:26441133

  11. Impact of 4-methylbenzylidene camphor, daidzein, and estrogen on intact and osteotomized bone in osteopenic rats.

    PubMed

    Komrakova, Marina; Sehmisch, Stephan; Tezval, Mohammad; Schmelz, Ulrich; Frauendorf, Holm; Grueger, Thomas; Wessling, Thomas; Klein, Carolin; Birth, Miriam; Stuermer, Klaus M; Stuermer, Ewa K

    2011-11-01

    The study investigated the influence of 4-methylbenzylidene camphor (4-MBC), daidzein, and estradiol-17β-benzoate (E(2)) on either intact or osteotomized cancellous bone in ovariectomized (Ovx) rats. Three-month old Ovx rats were fed with soy-free (SF) diet over 8 weeks; thereafter, bilateral transverse metaphyseal osteotomy of tibia was performed and rats were divided into groups: rats fed with SF diet and SF diet supplemented with 4-MBC (200 mg), daidzein (50 mg), or E(2) (0.4 mg) per kilogram body weight. After 5 or 10 weeks, computed tomographical, biomechanical, histological, and ashing analyses were performed in lumbar spine and tibia of 12 rats from each group. 4-MBC and E(2) improved bone parameters in lumbar spine and tibia, were not favorable for osteotomy healing, and decreased serum osteocalcin level. However, daidzein improved bone parameters to a lesser extent and facilitated osteotomy healing. For lumbar spine, the bone mineral density was 338±9, 346±5, 361±6, and 360±5 mg/cm(3) in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. For tibia, the yield load was 98±5, 114±3, 90±2, and 52±4 N in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. Serum daidzein was 54±6 ng/ml in daidzein group and equol was not detected. Alp and Igf1 genes were down-regulated in callus after daidzein and E(2) compared with 4-MBC (week 5). The response of bone tissue and serum markers of bone metabolism could be ordered: daidzein<4-MBC

  12. The Responses of Rat Intestinal Brush Border and Cytosol Peptide Hydrolase Activities to Variation in Dietary Protein Content DIETARY REGULATION OF INTESTINAL PEPTIDE HYDROLASES

    PubMed Central

    Nicholson, J. Alex; McCarthy, Denis M.; Kim, Young S.

    1974-01-01

    The effects of variation in dietary protein content on small intestinal brush border and cytosol peptide hydrolase activities have been investigated. One group of rats was fed a high protein diet (55% casein) and another group was fed a low protein diet (10% casein). After 1 wk, brush border peptide hydrolase activity (L-leucyl-β-naphthylamide as substrate) and cytosol peptide hydrolase activity (L-prolyl-L-leucine as substrate) were determined in mucosae taken from the proximal, middle, and distal small intestine. As judged by several parameters, brush border peptide hydrolase activity was significantly greater in rats fed the high protein diet when data for corresponding segments were compared. In contrast, no significant difference was seen in cytosol peptide hydrolase activity. In a second study, brush border and cytosol peptide hydrolase activities were determined in the proximal intestine by utilizing an additional three peptide substrates: L-leucyl-L-alanine, L-phenylalanylglycine, and glycyl-L-phenylalanine. Sucrase, maltase, and alkaline phosphatase activities were also determined. As before, brush border peptide hydrolase activities were significantly greater in rats fed the high protein diet. However, activities of the nonproteolytic brush border enzymes did not vary significantly with diet. In contrast to the results obtained with L-prolyl-L-leucine as substrate for the cytosol enzymes, cytosol activity against the three additional peptide substrates was greater in rats fed the high protein diet. It is suggested that the brush border peptide hydrolase response to variation in dietary protein content represents a functional adaptation analogous to the regulation of intestinal disaccharidases by dietary carbohydrates. The implication of the differential responses of the cytosol peptide hydrolases is uncertain, since little is known of the functional role of these nonorgan-specific enzymes. PMID:4430719

  13. Active Site and Laminarin Binding in Glycoside Hydrolase Family 55*

    PubMed Central

    Bianchetti, Christopher M.; Takasuka, Taichi E.; Deutsch, Sam; Udell, Hannah S.; Yik, Eric J.; Bergeman, Lai F.; Fox, Brian G.

    2015-01-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100–10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  14. Active site and laminarin binding in glycoside hydrolase family 55.

    PubMed

    Bianchetti, Christopher M; Takasuka, Taichi E; Deutsch, Sam; Udell, Hannah S; Yik, Eric J; Bergeman, Lai F; Fox, Brian G

    2015-05-01

    The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S., Kawai, R., Kitaoka, M., Igarashi, K., and Samejima, M. (2009) Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem. 284, 10100-10109). Here, we present high resolution crystal structures of bacterial SacteLam55A from the highly cellulolytic Streptomyces sp. SirexAA-E with bound substrates and product. These structures, along with mutagenesis and kinetic studies, implicate Glu-502 as the catalytic acid (as proposed earlier for Glu-663 in PcLam55A) and a proton relay network of four residues in activating water as the nucleophile. Further, a set of conserved aromatic residues that define the active site apparently enforce an exo-glucanase reactivity as demonstrated by exhaustive hydrolysis reactions with purified laminarioligosaccharides. Two additional aromatic residues that line the substrate-binding channel show substrate-dependent conformational flexibility that may promote processive reactivity of the bound oligosaccharide in the bacterial enzymes. Gene synthesis carried out on ∼30% of the GH55 family gave 34 active enzymes (19% functional coverage of the nonredundant members of GH55). These active enzymes reacted with only laminarin from a panel of 10 different soluble and insoluble polysaccharides and displayed a broad range of specific activities and optima for pH and temperature. Application of this experimental method provides a new, systematic way to annotate glycoside hydrolase phylogenetic space for functional properties. PMID:25752603

  15. CREST - a large and diverse superfamily of putative transmembrane hydrolases

    PubMed Central

    2011-01-01

    Background A number of membrane-spanning proteins possess enzymatic activity and catalyze important reactions involving proteins, lipids or other substrates located within or near lipid bilayers. Alkaline ceramidases are seven-transmembrane proteins that hydrolyze the amide bond in ceramide to form sphingosine. Recently, a group of putative transmembrane receptors called progestin and adipoQ receptors (PAQRs) were found to be distantly related to alkaline ceramidases, raising the possibility that they may also function as membrane enzymes. Results Using sensitive similarity search methods, we identified statistically significant sequence similarities among several transmembrane protein families including alkaline ceramidases and PAQRs. They were unified into a large and diverse superfamily of putative membrane-bound hydrolases called CREST (alkaline ceramidase, PAQR receptor, Per1, SID-1 and TMEM8). The CREST superfamily embraces a plethora of cellular functions and biochemical activities, including putative lipid-modifying enzymes such as ceramidases and the Per1 family of putative phospholipases involved in lipid remodeling of GPI-anchored proteins, putative hormone receptors, bacterial hemolysins, the TMEM8 family of putative tumor suppressors, and the SID-1 family of putative double-stranded RNA transporters involved in RNA interference. Extensive similarity searches and clustering analysis also revealed several groups of proteins with unknown function in the CREST superfamily. Members of the CREST superfamily share seven predicted core transmembrane segments with several conserved sequence motifs. Conclusions Universal conservation of a set of histidine and aspartate residues across all groups in the CREST superfamily, coupled with independent discoveries of hydrolase activities in alkaline ceramidases and the Per1 family as well as results from previous mutational studies of Per1, suggests that the majority of CREST members are metal-dependent hydrolases

  16. Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism.

    PubMed

    Cheng, Gang; Shapir, Nir; Sadowsky, Michael J; Wackett, Lawrence P

    2005-08-01

    Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease. PMID:16085834

  17. Inverting hydrolases and their use in enantioconvergent biotransformations

    PubMed Central

    Schober, Markus; Faber, Kurt

    2013-01-01

    Owing to the more abundant occurrence of racemic compounds compared to prochiral or meso forms, most enantiomerically pure products are obtained via racemate resolution. This review summarizes (chemo)enzymatic enantioconvergent processes based on the use of hydrolytic enzymes, which are able to invert a stereocenter during catalysis that can overcome the 50%-yield limitation of kinetic resolution. Recent developments are presented in the fields of inverting or retaining sulfatases, epoxide hydrolases and dehalogenases, which allow the production of secondary alcohols or vicinal diols at a 100% theoretical yield from a racemate via enantioconvergent processes. PMID:23809848

  18. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we ann...

  19. Gulosibacter molinativorax ON4T Molinate Hydrolase, a Novel Cobalt-Dependent Amidohydrolase ▿ ‡

    PubMed Central

    Duarte, Márcia; Ferreira-da-Silva, Frederico; Lünsdorf, Heinrich; Junca, Howard; Gales, Luís; Pieper, Dietmar H.; Nunes, Olga C.

    2011-01-01

    A new pathway of molinate mineralization has recently been described. Among the five members of the mixed culture able to promote such a process, Gulosibacter molinativorax ON4T has been observed to promote the initial breakdown of the herbicide into ethanethiol and azepane-1-carboxylate. In the current study, the gene encoding the enzyme responsible for molinate hydrolysis was identified and heterologously expressed, and the resultant active protein was purified and characterized. Nucleotide sequence analysis revealed that the gene encodes a 465-amino-acid protein of the metal-dependent hydrolase A subfamily of the amidohydrolase superfamily with a predicted molecular mass of 50.9 kDa. Molinate hydrolase shares the highest amino acid sequence identity (48 to 50%) with phenylurea hydrolases of Arthrobacter globiformis and Mycobacterium brisbanense. However, in contrast to previously described members of the metal-dependent hydrolase A subfamily, molinate hydrolase contains cobalt as the only active-site metal. PMID:21840982

  20. Structure of unsaturated rhamnogalacturonyl hydrolase complexed with substrate

    SciTech Connect

    Itoh, Takafumi; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku . E-mail: kmurata@kais.kyoto-u.ac.jp

    2006-09-08

    Bacillus subtilis strain 168 YteR has been identified as a novel enzyme 'unsaturated rhamnogalacturonyl hydrolase' classified in glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) produced from plant cell wall RG type-I treated with RG lyases, releasing unsaturated galacturonic acid ({delta}GalA) from the substrate. The most likely candidate catalytic residue is Asp-143. Here, we show the structure of D143N in complex with unsaturated RG disaccharide (substrate) determined at 1.9 A resolution by X-ray crystallography. This structural feature directly contributes to the postulation of the enzyme reaction mechanism. YteR triggers the hydration of vinyl ether group in {delta}GalA, but not of glycoside bond, by using Asp-143 as a general acid and base catalyst. Asp-143 donates proton to the double bond of {delta}GalA as an acid catalyst and also deprotonates a water molecule as a base catalyst. Deprotonated water molecule attacks the C5 atom of {delta}GalA.

  1. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase.

    PubMed

    Zimny, Jaroslaw; Sikora, Marta; Guranowski, Andrzej; Jakubowski, Hieronim

    2006-08-11

    Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease. In addition to being cleared from the circulation by urinary excretion, Hcy-thiolactone is detoxified by the serum Hcy-thiolactonase/paraoxonase carried on high density lipoprotein. Whether Hcy-thiolactone is detoxified inside cells was unknown. Here we show that Hcy-thiolactone is hydrolyzed by an intracellular enzyme, which we have purified to homogeneity from human placenta and identified by proteomic analyses as human bleomycin hydrolase (hBLH). We have also purified an Hcy-thiolactonase from the yeast Saccharomyces cerevisiae and identified it as yeast bleomycin hydrolase (yBLH). BLH belongs to a family of evolutionarily conserved cysteine aminopeptidases, and its only known biologically relevant function was deamidation of the anticancer drug bleomycin. Recombinant hBLH or yBLH, expressed in Escherichia coli, exhibits Hcy-thiolactonase activity similar to that of the native enzymes. Active site mutations, C73A for hBLH and H369A for yBLH, inactivate Hcy-thiolactonase activities. Yeast blh1 mutants are deficient in Hcy-thiolactonase activity in vitro and in vivo, produce more Hcy-thiolactone, and exhibit greater sensitivity to Hcy toxicity than wild type yeast cells. Our data suggest that BLH protects cells against Hcy toxicity by hydrolyzing intracellular Hcy-thiolactone. PMID:16769724

  2. Marine extremophiles: a source of hydrolases for biotechnological applications.

    PubMed

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-04-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643

  3. Mechanistic Investigations of Unsaturated Glucuronyl Hydrolase from Clostridium perfringens*

    PubMed Central

    Jongkees, Seino A. K.; Yoo, Hayoung; Withers, Stephen G.

    2014-01-01

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct 1H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  4. Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens.

    PubMed

    Jongkees, Seino A K; Yoo, Hayoung; Withers, Stephen G

    2014-04-18

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct (1)H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  5. Catalysis of potato epoxide hydrolase, StEH1

    PubMed Central

    Elfström, Lisa T.; Widersten, Mikael

    2005-01-01

    The kinetic mechanism of epoxide hydrolase (EC 3.3.2.3) from potato, StEH1 (Solanum tuberosum epoxide hydrolase 1), was studied by presteady-state and steady-state kinetics as well as by pH dependence of activity. The specific activities towards the different enantiomers of TSO (trans-stilbene oxide) as substrate were 43 and 3 μmol·min−1·mg−1 with the R,R- or S,S-isomers respectively. The enzyme was, however, enantioselective in favour of the S,S enantiomer due to a lower Km value. The pH dependences of kcat with R,R or S,S-TSO were also distinct and supposedly reflecting the pH dependences of the individual kinetic rates during substrate conversion. The rate-limiting step for TSO and cis- and trans-epoxystearate was shown by rapid kinetic measurements to be the hydrolysis of the alkylenzyme intermediate. Functional characterization of point mutants verified residues Asp105, Tyr154, Tyr235 and His300 as crucial for catalytic activity. All mutants displayed drastically decreased enzymatic activities during steady state. Presteady-state measurements revealed the base-deficient H300N (His300→Asn) mutant to possess greatly reduced efficiencies in catalysis of both chemical steps (alkylation and hydrolysis). PMID:15882148

  6. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    PubMed Central

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-01-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643

  7. Spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Camphor (Cinnamomum camphora) tree bark from Southern Jiangsu, China.

    PubMed

    Zhou, Li; Dong, Liang; Huang, Yeru; Shi, Shuangxin; Zhang, Lifei; Zhang, Xiulan; Yang, Wenlong; Li, Lingling

    2014-07-01

    The concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in Camphor tree bark from Southern Jiangsu, China. Tree bark samples were collected in August 2012. The Σ15PAHs concentrations were ranged from 6.18 to 1560 ng g(-1)dry weight (dw), with an average value of 407 ng g(-1)dw. Generally, the concentrations of PAHs in the suburban areas were the highest, followed by urban and rural areas. Principal component analysis and diagnostic ratios results showed that vehicle emission, biomass and coal combustion and industrial emission were the major sources of PAHs in tree bark from Southern Jiangsu. Good correlation was found between tree bark and polyurethane foam (PUF) samplers, indicating that both of them respond well to the gas-phase PAHs monitoring. PMID:24480428

  8. Benchmark experiments and numerical modelling of the columnar-equiaxed dendritic growth in the transparent alloy Neopentylglycol-(d)Camphor

    NASA Astrophysics Data System (ADS)

    Sturz, L.; Wu, M.; Zimmermann, G.; Ludwig, A.; Ahmadein, M.

    2015-06-01

    Solidification benchmark experiments on columnar and equiaxed dendritic growth, as well as the columnar-equiaxed transition have been carried out under diffusion-dominated conditions for heat and mass transfer in a low-gravity environment. The system under investigation is the transparent organic alloy system Neopentylglycol-37.5wt.-%(d)Camphor, processed aboard a TEXUS sounding rocket flight. Solidifications was observed by standard optical methods in addition to measurements of the thermal fields within the sheet like experimental cells of 1 mm thickness. The dendrite tip kinetic, primary dendrite arm spacing, temporal and spatial temperature evolution, columnar tip velocity and the critical parameters at the CET have been analysed. Here we focus on a detailed comparison of the experiment “TRACE” with a 5-phase volume averaging model to validate the numerical model and to give insight into the corresponding physical mechanisms and parameters leading to CET. The results are discussed in terms of sensitivity versus numerical parameters.

  9. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing

    NASA Astrophysics Data System (ADS)

    Antunes, E. F.; de Resende, V. G.; Mengui, U. A.; Cunha, J. B. M.; Corat, E. J.; Massi, M.

    2011-07-01

    A detailed analysis of iron-containing phases in multiwall carbon nanotube (MWCNT) powder was carried out. The MWCNTs were produced by camphor/ferrocene and purified by high temperature annealing in an oxygen-free atmosphere (N2 or VC). Thermogravimetric analysis, Mössbauer spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy enabled the evaluation of the residual iron in MWCNTs after purification. The VC treatments provided MWCNTs with a purity degree higher than 99%. Moreover, Raman spectroscopy revealed a significant improvement in graphitic ordering after thermal annealing. A brief description of the mechanism of iron removal was included. We highlight the mobility of iron atoms through graphitic sheets and the large contact angle of iron clusters formed on MWCNT surfaces at high temperatures.

  10. Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the ultraviolet filter 4-methylbenzylidene camphor.

    PubMed

    Durrer, Stefan; Maerkel, Kirsten; Schlumpf, Margret; Lichtensteiger, Walter

    2005-05-01

    Because the estrogen receptor (ER) ligand type influences transactivation, it is important to obtain information on molecular actions of nonclassical ER agonists. UV filters from cosmetics represent new classes of endocrine active chemicals, including the preferential ER beta ligands 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor. We studied estrogen target gene expression in uterus of Long Evans rats after developmental exposure to 4-MBC (0.7, 7, 24, and 47 mg/kg x d) administered in feed to the parent generation before mating, during pregnancy and lactation, and to the offspring until adulthood. 4-MBC altered steady-state levels of mRNAs encoding for ER alpha, ER beta, progesterone receptor (PR), IGF-I, androgen receptor, determined by real-time RT-PCR in uterus of 12-wk-old offspring. Western-blot analyses of the same tissue homogenates indicated changes in ER alpha and PR but not ER beta proteins. To assess sensitivity to estradiol (E2), offspring were ovariectomized on d 70, injected with E2 (10 or 50 microg/kg sc) on d 84, and killed 6 h later. Acute up-regulation of PR and IGF-I and down-regulation of ER alpha and androgen receptor by E2 were dose-dependently reduced in 4-MBC-exposed rats. The reduced response to E2 was accompanied by reduced coactivator SRC-1 mRNA and protein levels. Our data indicate that developmental exposure to 4-MBC affects the regulation of estrogen target genes and the expression of nuclear receptor coregulators in uterus at mRNA and protein levels. PMID:15705771

  11. Effect of Calcium Hydroxide, Chlorhexidine Digluconate and Camphorated Monochlorophenol on the Sealing Ability of Biodentine Apical Plug

    PubMed Central

    Srivastava, Harshit; Prasad, Ashwini B; Raisingani, Deepak; Soni, Dileep

    2016-01-01

    Introduction Teeth with immature apex are managed by establishing an apical plug using various materials and techniques. However, the use of previously placed intracanal medicament may affect the sealing ability of permanent filling material used as an apical plug. Aim To evaluate the effect of removal of previously placed Calcium Hydroxide, Chlorhexidine Digluconate and Camphorated Monochlorophenol as an intracanal medicament on the sealing ability of the Biodentine as an apical plug. Materials and Methods A total of 72 recently extracted human permanent teeth with single root were selected and stored in saline at room temperature. The crown portion of each tooth was removed at the level of cemento enamel junction; 14mm root length was taken as standard length. All the roots were submerged in 20% sulphuric acid up to 3 mm from the apex, for four days for root resorption. One sample was cut longitudinally to look for root resorption under stereo microscope. The canal preparation was done; the roots were kept in moist gauze after instrumentation. A total of 71 roots were randomly divided into three groups. GROUP 1:Calcium hydroxide paste, GROUP 2: Chlorhexidine digluconate, GROUP 3: Camphorated Monochlorophenol (CMCP). The medicaments were removed with stainless steel hand files and 0.5% sodium hypochlorite irrigation. After removal of medicament Biodentine was placed in apical third of resorbed roots and the remaining portion of the canals was filled with gutta-percha. All the 71 roots were analysed with fluid filtration method for evaluating microleakage. Results Comparing all the three groups statistically there was no significant difference. The mean values were found more for group 1 followed by group 2 & 3. Conclusion All the groups showed microleakage. Calcium hydroxide showed the maximum microleakage followed by Chlorhexidine digluconate and least with CMCP. PMID:27504409

  12. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES.

    PubMed

    Zeng, Jianrong; Zhang, Guilin; Bao, Liangman; Long, Shilei; Tan, Mingguang; Li, Yan; Ma, Chenyan; Zhao, Yidong

    2013-03-01

    Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology. A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs), which were sampled from 5 local fields in Shanghai, China. Annual SO2 concentration, SO4(2-) concentration in atmospheric particulate, SO4(2-) and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs. Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg. The mainly detected sulfur states and their corresponding compounds were +6 (sulfate, include inorganic sulfate and organic sulfate), +5.2 (sulfonate), +2.2 (suloxides), +0.6 (thiols and thiothers), +0.2 (organic sulfides). Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977, which suggested that sulfur accumulated in CTLs as sulfate form. Reduced sulfur compounds (organic sulfides, thiols, thioethers, sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg. The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination. From urban to suburb place, sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced, but a dramatic increase presented near the seashore, where the marine sulfate emission and maritime activity pollution were significant. The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment. PMID:23923435

  13. Determination of accurate electron chiral asymmetries in fenchone and camphor in the VUV range: sensitivity to isomerism and enantiomeric purity.

    PubMed

    Nahon, Laurent; Nag, Lipsa; Garcia, Gustavo A; Myrgorodska, Iuliia; Meierhenrich, Uwe; Beaulieu, Samuel; Wanie, Vincent; Blanchet, Valérie; Géneaux, Romain; Powis, Ivan

    2016-05-14

    Photoelectron circular dichroism (PECD) manifests itself as an intense forward/backward asymmetry in the angular distribution of photoelectrons produced from randomly-oriented enantiomers by photoionization with circularly-polarized light (CPL). As a sensitive probe of both photoionization dynamics and of the chiral molecular potential, PECD attracts much interest especially with the recent performance of related experiments with visible and VUV laser sources. Here we report, by use of quasi-perfect CPL VUV synchrotron radiation and using a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer, new and very accurate values of the corresponding asymmetries on showcase chiral isomers: camphor and fenchone. These data have additionally been normalized to the absolute enantiopurity of the sample as measured by a chromatographic technique. They can therefore be used as benchmarking data for new PECD experiments, as well as for theoretical models. In particular we found, especially for the outermost orbital of both molecules, a good agreement with CMS-Xα PECD modeling over the whole VUV range. We also report a spectacular sensitivity of PECD to isomerism for slow electrons, showing large and opposite asymmetries when comparing R-camphor to R-fenchone (respectively -10% and +16% around 10 eV). In the course of this study, we could also assess the analytical potential of PECD. Indeed, the accuracy of the data we provide are such that limited departure from perfect enantiopurity in the sample we purchased could be detected and estimated in excellent agreement with the analysis performed in parallel via a chromatographic technique, establishing a new standard of accuracy, in the ±1% range, for enantiomeric excess measurement via PECD. The i(2)PEPICO technique allows correlating PECD measurements to specific parent ion masses, which would allow its application to analysis of complex mixtures. PMID:27095534

  14. A Proton Wire and Water Channel Revealed in the Crystal Structure of Isatin Hydrolase

    PubMed Central

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan K.; Jochimsen, Bjarne; Etzerodt, Michael; Morth, J. Preben

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora. PMID:24917679

  15. Development of the aza-crown ether metal complexes as artificial hydrolase.

    PubMed

    Yu, Lan; Li, Fang-zhen; Wu, Jiao-yi; Xie, Jia-qing; Li, Shuo

    2016-01-01

    Hydrolases play a crucial role in the biochemical process, which can catalyze the hydrolysis of various compounds like carboxylic esters, phosphoesters, amides, nucleic acids, peptides, and so on. The design of artificial hydrolases has attracted extensive attention due to their scientific significance and potential applications in the field of gene medicine and molecular biology. Numerous macrocyclic metal complexes have been used as artificial hydrolase in the catalytic hydrolysis of the organic substrate. Aza-crown ether for this comment is a special class of the macrocyclic ligand containing both the nitrogen atoms and oxygen atoms in the ring. The studies showed that the aza-crown complexes exhibited high activity of hydrolytic enzyme. However, the aza-crown ether metal complex as artificial hydrolase is still very limited because of its difficulty in synthesis. This review summarizes the development of the aza-crown ether metal complexes as the artificial hydrolase, including the synthesis and catalysis of the transition metal complexes and lanthanide metal complexes of aza-crown ethers. The purpose of this review is to highlight: (1) the relationship between the structure and hydrolytic activity of synthetic hydrolase; (2) the synergistic effect of metal sites and ligands in the course of organic compound hydrolysis; and (3) the design strategies of the aza-crown ethers as hydrolase. PMID:26460062

  16. Cloning and characterization of two rhamnogalacturonan hydrolase genes from Aspergillus niger.

    PubMed Central

    Suykerbuyk, M E; Kester, H C; Schaap, P J; Stam, H; Musters, W; Visser, J

    1997-01-01

    A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed. PMID:9212401

  17. Inhibition of peptidoglycan hydrolase activity in vivo and in vitro by energy uncouplers in Escherichia coli.

    PubMed

    Rodionov, D G; Ishiguro, E E

    1996-01-01

    The effects of energy uncouplers on in vivo and in vitro peptidoglycan hydrolase activities in Escherichia coli were determined. Sodium azide, potassium cyanide, and carbonyl cyanide m-chlorophenylhydrazone all inhibited ampicillin-induced lysis of exponential phase cultures, even when they were added to lysis-committed cultures. These energy uncouplers also inhibited the solubilization of radiolabeled peptidoglycan by bacterial suspensions that had been treated with 5% trichloroacetic acid by the method of Hartmann et al.3 to activate the peptidoglycan hydrolases. Therefore, the in vivo and in vitro activities of peptidoglycan hydrolases in E. coli are dependent on membrane energization. PMID:9158735

  18. Rapid development of a potent photo-triggered inhibitor of the serine hydrolase RBBP9.

    PubMed

    Liu, Xiaodan; Dix, Melissa; Speers, Anna E; Bachovchin, Daniel A; Zuhl, Andrea M; Cravatt, Benjamin F; Kodadek, Thomas J

    2012-09-24

    The serine hydrolases constitute a large class of enzymes that play important roles in physiology. There is great interest in the development of potent and selective pharmacological inhibitors of these proteins. Traditional active-site inhibitors often have limited selectivity within this superfamily and are tedious and expensive to discover. Using the serine hydrolase RBBP9 as a model target, we designed a rapid and relatively inexpensive route to highly selective peptoid-based inhibitors that can be activated by visible light. This technology provides rapid access to photo-activated tool compounds capable of selectively blocking the function of particular serine hydrolases. PMID:22907802

  19. Rapid Development of a Potent Photo-Triggered Inhibitor of the Serine Hydrolase RBBP9

    PubMed Central

    Liu, Xiaodan; Dix, Melissa; Speers, Anna E.; Bachovchin, Daniel A.; Zuhl, Andrea M.

    2013-01-01

    The serine hydrolases constitute a large class of enzymes that play important roles in physiology. There is great interest in the development of potent and selective pharmacological inhibitors to these proteins. Traditional active site inhibitors often have limited selectivity within this superfamily and are tedious and expensive to discover. Using the serine hydrolase RBBP9 as a model target, we report here a rapid and relatively inexpensive route to highly selective peptoid-based inhibitors that can be activated with visible light. This technology provides rapid access to photo-activated tool compounds capable of selectively blocking the function of particular serine hydrolases. PMID:22907802

  20. Retinyl ester hydrolases and their roles in vitamin A homeostasis☆

    PubMed Central

    Schreiber, Renate; Taschler, Ulrike; Preiss-Landl, Karina; Wongsiriroj, Nuttaporn; Zimmermann, Robert; Lass, Achim

    2012-01-01

    In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine, the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism. Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism. PMID:21586336

  1. Glycerol Ester Hydrolase Activity of Lactic Acid Bacteria

    PubMed Central

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1968-01-01

    Seventeen strains of lactic acid bacteria were assayed for their glycerol ester hydrolase activity by using an improved agar-well technique, and eight strains by determining the activity in cell-free extracts using a pH-stat procedure. All cultures tested showed activity and hydrolyzed tributyrin more actively than they did tricaproin. The cell extract studies demonstrated that the cells contained intracellular esterases and lipases. The culture supernatant fluid was without activity. The lipase and the esterase differed in their relative activity to each other in the different extracts and in the ease by which they could be freed from the cellular debris. It is suggested that the lipase of these organisms is an endoenzyme and the esterase an ectoenzyme. PMID:5649866

  2. Sulfonyl fluoride inhibitors of fatty acid amide hydrolase.

    PubMed

    Alapafuja, Shakiru O; Nikas, Spyros P; Bharathan, Indu T; Shukla, Vidyanand G; Nasr, Mahmoud L; Bowman, Anna L; Zvonok, Nikolai; Li, Jing; Shi, Xiaomeng; Engen, John R; Makriyannis, Alexandros

    2012-11-26

    Sulfonyl fluorides are known to inhibit esterases. Early work from our laboratory has identified hexadecyl sulfonylfluoride (AM374) as a potent in vitro and in vivo inhibitor of fatty acid amide hydrolase (FAAH). We now report on later generation sulfonyl fluoride analogs that exhibit potent and selective inhibition of FAAH. Using recombinant rat and human FAAH, we show that 5-(4-hydroxyphenyl)pentanesulfonyl fluoride (AM3506) has similar inhibitory activity for both the rat and the human enzyme, while rapid dilution assays and mass spectrometry analysis suggest that the compound is a covalent modifier for FAAH and inhibits its action in an irreversible manner. Our SAR results are highlighted by molecular docking of key analogs. PMID:23083016

  3. Soluble epoxide hydrolase: Gene structure, expression and deletion

    PubMed Central

    Harris, Todd R.; Hammock, Bruce D.

    2013-01-01

    Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model. PMID:23701967

  4. Crystal structure of bile salt hydrolase from Lactobacillus salivarius.

    PubMed

    Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun

    2016-05-01

    Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity. PMID:27139829

  5. Expanding the Catalytic Triad in Epoxide Hydrolases and Related Enzymes

    PubMed Central

    2015-01-01

    Potato epoxide hydrolase 1 exhibits rich enantio- and regioselectivity in the hydrolysis of a broad range of substrates. The enzyme can be engineered to increase the yield of optically pure products as a result of changes in both enantio- and regioselectivity. It is thus highly attractive in biocatalysis, particularly for the generation of enantiopure fine chemicals and pharmaceuticals. The present work aims to establish the principles underlying the activity and selectivity of the enzyme through a combined computational, structural, and kinetic study using the substrate trans-stilbene oxide as a model system. Extensive empirical valence bond simulations have been performed on the wild-type enzyme together with several experimentally characterized mutants. We are able to computationally reproduce the differences between the activities of different stereoisomers of the substrate and the effects of mutations of several active-site residues. In addition, our results indicate the involvement of a previously neglected residue, H104, which is electrostatically linked to the general base H300. We find that this residue, which is highly conserved in epoxide hydrolases and related hydrolytic enzymes, needs to be in its protonated form in order to provide charge balance in an otherwise negatively charged active site. Our data show that unless the active-site charge balance is correctly treated in simulations, it is not possible to generate a physically meaningful model for the enzyme that can accurately reproduce activity and selectivity trends. We also expand our understanding of other catalytic residues, demonstrating in particular the role of a noncanonical residue, E35, as a “backup base” in the absence of H300. Our results provide a detailed view of the main factors driving catalysis and regioselectivity in this enzyme and identify targets for subsequent enzyme design efforts. PMID:26527505

  6. Part I. An investigation of the substrate and ligand binding sites of the cytochrome P-450-CAM using nuclear magnetic resonance spectroscopy. Part II. A nuclear magnetic resonance study of (1R)-(+)-camphor and twenty-five camphor derivatives using one- and two-dimensional methods

    SciTech Connect

    Crull, G.B.

    1987-01-01

    The distance between the heme iron of ferrous cytochrome P-450-CAM and a fluorine label attached to the 9-methyl group of its substrate, (1R)-(+)-camphor, has been determined using /sup 19/F NMR. This investigation is the first use of the Solomon-Bloembergen equation to determine the distance from a substrate-bound fluorine that is not in fast exchange to a paramagnetic heme iron. The paramagnetic relaxation rate data and the correlation time have been used to calculate a distance of 3.8 A between the heme iron and the C-9 fluorine. The interaction of fluoride ion with the ferric high-spin heme iron of cytochrome P-450-CAM and of myoglobin has also been investigated using /sup 19/F NMR relaxation measurements. The carbon, proton, and deuterium NMR properties of (1R)-(+)-camphor have been thoroughly investigated by both one- and two-dimensional procedures. This has allowed the first definitive assignments of the resonances of all of the carbons and protons in camphor to be made. The NMR spectra of twenty-five camphor derivatives have been examined by one- and two-dimensional methods and the resonances assigned.

  7. The Tautomeric Half-reaction of BphD, a C-C Bond Hydrolase Kinetic and Structural Evidence Supporting a Key Role for Histidine 265 of the Catalytic triad

    SciTech Connect

    Horsman, Geoff P.; Bhowmik, Shiva; Seah, Stephen Y.K.; Kumar, Pravindra; Bolin, Jeffrey T.; Eltis, Lindsay D.

    2010-01-07

    BphD of Burkholderia xenovorans LB400 catalyzes an unusual C-C bond hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to afford benzoic acid and 2-hydroxy-2,4-pentadienoic acid (HPD). An enol-keto tautomerization has been proposed to precede hydrolysis via a gem-diol intermediate. The role of the canonical catalytic triad (Ser-112, His-265, Asp-237) in mediating these two half-reactions remains unclear. We previously reported that the BphD-catalyzed hydrolysis of HOPDA ({lambda}{sub max} is 434 nm for the free enolate) proceeds via an unidentified intermediate with a red-shifted absorption spectrum ({lambda}{sub max} is 492 nm) (Horsman, G. P., Ke, J., Dai, S., Seah, S. Y. K., Bolin, J. T., and Eltis, L. D. (2006) Biochemistry 45, 11071-11086). Here we demonstrate that the S112A variant generates and traps a similar intermediate ({lambda}{sub max} is 506 nm) with a similar rate, 1/{tau} {approx} 500 s{sup -1}. The crystal structure of the S112A:HOPDA complex at 1.8-{angstrom} resolution identified this intermediate as the keto tautomer, (E)-2,6-dioxo-6-phenyl-hex-3-enoate. This keto tautomer did not accumulate in either the H265A or the S112A/H265A double variants, indicating that His-265 catalyzes tautomerization. Consistent with this role, the wild type and S112A enzymes catalyzed tautomerization of the product HPD, whereas H265A variants did not. This study thus identifies a keto intermediate, and demonstrates that the catalytic triad histidine catalyzes the tautomerization half-reaction, expanding the role of this residue from its purely hydrolytic function in other serine hydrolases. Finally, the S112A:HOPDA crystal structure is more consistent with hydrolysis occurring via an acyl-enzyme intermediate than a gem-diol intermediate as solvent molecules have poor access to C6, and the closest ordered water is 7{angstrom} away.

  8. Camphor sulfonic acid-doped polyaniline nanofiber-based 64o YX LiNbO3 SAW hydrogen gas sensor

    NASA Astrophysics Data System (ADS)

    Wlodarski, W.; Sadek, Abu Z.; Baker, C.; Kalantar-zadeh, K.; Kaner, R. B.; Mulcahy, Dennis

    2007-01-01

    A template-free, rapidly-mixed reaction was employed to synthesize polyaniline nanofibers using chemical oxidative polymerization of aniline. Camphor sulfonic acid (CSA) was used in the synthesis to obtain 50 nm average diameter polyaniline nanofibers. The nanofibers were deposited onto a 64 ° YX LiNbO 3 SAW transducer. The sensor was tested towards hydrogen (H II) gas while operating at room temperature. A fast response and recovery with high sensitivity and good repeatability were observed.

  9. Nitrogen isotope variations in camphor (Cinnamomum Camphora) leaves of different ages in upper and lower canopies as an indicator of atmospheric nitrogen sources.

    PubMed

    Xiao, Hua-Yun; Wu, Liang-Hong; Zhu, Ren-Guo; Wang, Yan-Li; Liu, Cong-Qiang

    2011-02-01

    Nitrogen isotopic composition of new, middle-aged and old camphor leaves in upper and lower canopies has been determined in a living area, near a motorway and near an industrial area (Jiangan Chemical Fertilizer Plant). We found that at sites near roads, more positive δ(15)N values were observed in the camphor leaves, especially in old leaves of upper canopies, and ∆δ(15)N=δ(15)N(upper)-δ(15)N(lower)>0, while those near the industrial area had more negative δ(15)N values and ∆δ(15)N<0. These could be explained by two isotopically different atmospheric N sources: greater uptake from isotopically heavy pools of atmospheric NO(x) by old leaves in upper canopies at sites adjacent to roads, and greater uptake of (15)N-depleted NH(y) in atmospheric deposition by leaves at sites near the industrial area. This study presents novel evidence that (15)N natural abundance of camphor leaves can be used as a robust indicator of atmospheric N sources. PMID:21130551

  10. DETOXIFICATION OF ORGANOPHOSPHATE PESTICIDES BY IMMOBILIZED ESCHERICHIA COLI EXPRESSING ORGANOPHOSPHORUS HYDROLASE ON CELL SURFACE. (R823663)

    EPA Science Inventory

    An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...

  11. Structural and Enzymatic Characterization of a Nucleoside Diphosphate Sugar Hydrolase from Bdellovibrio bacteriovorus

    PubMed Central

    Duong-ly, Krisna C.; Schoeffield, Andrew J.; Pizarro-Dupuy, Mario A.; Zarr, Melissa; Pineiro, Silvia A.; Amzel, L. Mario; Gabelli, Sandra B.

    2015-01-01

    Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 –- a Nudix hydrolase from Bdellovibrio bacteriovorus–that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases. PMID:26524597

  12. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    PubMed Central

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  13. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    PubMed

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  14. A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor.

    PubMed

    Fent, Karl; Kunz, Petra Y; Zenker, Armin; Rapp, Maja

    2010-01-01

    UV-filters are increasingly used in cosmetics and in the protection of materials against UV-irradiation. The widespread occurrence of UV-filter residues in aquatic systems has been reported, but still little is known about their environmental effects. Some of these compounds negatively interact with the hormone system of fish, resulting in decreased fecundity and reproduction. Here we report on acute and chronic effects of UV-filters 3-(4-methylbenzylidene-camphor) (4MBC), 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC), benzophenone-3 (BP3) and benzophenone-4 (BP4) on Daphnia magna. The acute toxicity increased with log Pow of the compound. The LC50 values (48h) of 4MBC, EHMC, BP3 and BP4 were 0.56, 0.29, 1.9 and 50mg/L, respectively. A tentative preliminary environmental risk assessment (ERA) based on a limited set of data indicates that individual UV-filters should undergo further ecotoxicological analysis, as an environmental risk cannot be ruled out. Consequently new data on the environmental occurrence and the effects of UV-filters are needed for a more accurate ERA. When regarded as a mixture occurring in surface waters they may pose a risk for sensitive aquatic organisms. PMID:19910045

  15. SARS coronavirus protein 7a interacts with human Ap4A-hydrolase

    PubMed Central

    2010-01-01

    The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm. PMID:20144233

  16. Expression of Nudix hydrolase genes in barley under UV irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  17. Characterization and functional analysis of Trichinella spiralis Nudix hydrolase.

    PubMed

    Long, Shao Rong; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Qi, Xin; Liu, Pei; Ren, Hui Jun; Shi, Hai Ning; Cui, Jing

    2015-12-01

    Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM min(-1) μg(-1), 370 μM, and 144 s(-1) M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host. PMID:26545353

  18. Camphor-3-thioxo-2-oxime as an analytical reagent for extractive spectrophotometric determination and separation of lead

    NASA Astrophysics Data System (ADS)

    Ninan, S.; Varadarajan, A.; Jadhav, S. B.; Kulkarni, A. J.; Malve, S. P.

    1999-04-01

    Camphor-3-thioxo-2-oxime (HCTO) is proposed as a new sensitive analytical reagent for the extractive spectrophotometric determination of trace amounts of lead. The method is based on the instantaneous formation of a stable yellow-orange colored 1:2 chelate with lead at room temperature in the pH range 9.3-9.6 selectively extracted in carbon tetrachloride. The extracted species exhibits an absorption maximum at 400 nm with a molar absorptivity of 4.14×10 4 mol -1 cm -1, complying with Beer's law over the concentration range 0.1-0.5 μg ml -1 of lead with an optimum concentration range 0.18-0.37 μg ml -1. The effects of pH, concentration of reagent and salting-out agents, time of equilibration, order of addition of diluents and the tolerance limit of the method towards various cations and anions usually associated with lead are reported. The developed method is successfully used for the determination of traces of lead in synthetic mixtures, alloys and ore samples.

  19. Comparison of effects of estradiol with those of octylmethoxycinnamate and 4-methylbenzylidene camphor on fat tissue, lipids and pituitary hormones.

    PubMed

    Seidlová-Wuttke, Dana; Christoffel, Julie; Rimoldi, Guillermo; Jarry, Hubertus; Wuttke, Wolfgang

    2006-07-01

    Octylmethoxycinnamate (OMC) and 4-methylbenzylidene camphor (4MBC) are commercially used absorbers of ultraviolet (UV) light. In rats, they were shown to exert endocrine disrupting including uterotrophic, i.e. estrogenic effects. Estrogens have also metabolic effects, therefore the impact of oral application of the two UV absorbers at 2 doses for 3 months on lipids and hormones were compared with those of estradiol-17beta (E2). E2, OMC and 4MBC reduced weight gain, the size of fat depots and serum leptin, a lipocyte-derived hormone, when compared to the ovariectomized control animals. Serum triglycerides were also reduced by the UV screens but not by E2. On the other hand, E2 and OMC reduced serum cholesterol, low density lipoproteins and high density lipoproteins; this effect was not shared by 4MBC. While E2 inhibited, OMC and 4MBC stimulated serum LH levels. In the uterus, both UV filters had mild stimulatory effects. 4MBC inhibited serum T4 resulting in increased serum TSH levels. It is concluded that OMC and 4MBC have effects on several metabolic parameters such as fat and lipid homeostasis as well as on thyroid hormone production. Many of these effects are not shared by E2. Hence, other than estrogen-receptive mechanisms may be responsible for these effects. PMID:16368123

  20. Complexation of the sunscreen agent, 4-methylbenzylidene camphor with cyclodextrins: effect on photostability and human stratum corneum penetration.

    PubMed

    Scalia, Santo; Tursilli, Rosanna; Iannuccelli, Valentina

    2007-05-01

    The interaction between the sunscreen agent, 4-methylbenzylidene camphor (4-MBC) and hydrophilic alpha-, beta- and gamma-cyclodextrin derivatives was investigated in water by phase-solubility analysis. Among the studied cyclodextrins, random methyl-beta-cyclodextrin (RM-beta-CD) had the greatest solubilizing activity. The complexation of the sunscreen agent with RM-beta-CD was confirmed by nuclear magnetic resonance spectroscopy and powder X-ray diffractometry. The light-induced decomposition of 4-MBC in emulsion vehicles was markedly decreased by complexation with RM-beta-CD (the extent of degradation, determined by HPLC, was 7.1% for the complex compared to 21.1% for free 4-MBC). The influence of RM-beta-CD on the human skin penetration of the sunscreen was investigated in vivo using the tape stripping method, a useful procedure for selectively removing the outermost cutaneous layers. Considerable quantities (21.2-25.1% of the applied dose) of 4-MBC permeated in the stratum corneum. However, no significant differences in the amounts of UV filter in the 10 first strips of the horny layer were observed between the formulations containing 4-MBC free or complexed with RM-beta-CD. Therefore, RM-beta-CD complexation did not alter the retention of 4-MBC in the superficial layers of the stratum corneum, where its action is more desirable. PMID:17291707

  1. Comparison of effects of estradiol with those of octylmethoxycinnamate and 4-methylbenzylidene camphor on fat tissue, lipids and pituitary hormones

    SciTech Connect

    Seidlova-Wuttke, Dana; Christoffel, Julie; Rimoldi, Guillermo; Jarry, Hubertus; Wuttke, Wolfgang . E-mail: ufkendo@med.uni-goettingen.de

    2006-07-01

    Octylmethoxycinnamate (OMC) and 4-methylbenzylidene camphor (4MBC) are commercially used absorbers of ultraviolet (UV) light. In rats, they were shown to exert endocrine disrupting including uterotrophic, i.e. estrogenic effects. Estrogens have also metabolic effects, therefore the impact of oral application of the two UV absorbers at 2 doses for 3 months on lipids and hormones were compared with those of estradiol-17{beta} (E2). E2, OMC and 4MBC reduced weight gain, the size of fat depots and serum leptin, a lipocyte-derived hormone, when compared to the ovariectomized control animals. Serum triglycerides were also reduced by the UV screens but not by E2. On the other hand, E2 and OMC reduced serum cholesterol, low density lipoproteins and high density lipoproteins; this effect was not shared by 4MBC. While E2 inhibited, OMC and 4MBC stimulated serum LH levels. In the uterus, both UV filters had mild stimulatory effects. 4MBC inhibited serum T4 resulting in increased serum TSH levels. It is concluded that OMC and 4MBC have effects on several metabolic parameters such as fat and lipid homeostasis as well as on thyroid hormone production. Many of these effects are not shared by E2. Hence, other than estrogen-receptive mechanisms may be responsible for these effects.

  2. [Levels and possible sources of organochlorine pesticides (OCPs) in camphor (Cinnamomum camphora) tree bark from Southern Jiangsu, China].

    PubMed

    Zhou, Li; Zhang, Xiu-Lan; Yang, Wen-Long; Li, Ling-Ling; Shi, Shuang-Xin; Zhang, Li-Fei; Dong, Liang; Huang, Ye-Ru

    2014-03-01

    Thirty-three camphor tree bark samples were collected from Southern Jiangsu in August 2012. They were analyzed for organochlorine pesticides (OCPs), including hexachlorobenzene (HCB), DDTs (o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT and p,p'-DDT), trans-chlordane and cis-chlordane. The concentrations of HCB, sigma6 DDTs and sigma Chlordanes ranged (dw) from 0.31 ng x g(-1) to 1.81 ng x g(-1), 0.40 ng x g(-1) to 17.3 ng x g(-1) and n. d. to 1.03 ng x g(-1), respectively. Due to the high volatility, the spatial distribution of HCB in Southern Jiangsu was uniform. Compared to the other results, the HCB concentration in Southern Jiangsu was lower. The historical usage of technical DDT mixture and the dicofol-type DDT were the major sources of DDTs in southern Jiangsu. The TC/CC ratio is usually used to distinguish between aged and fresh chlordane. According to the ratio of TC/CC, the chlordane in the urban area was derived from the fresh application of technical chlordane, and that in the rural area was attributed to the historical usage. PMID:24881411

  3. Indicating atmospheric sulfur by means of S-isotope in leaves of the plane, osmanthus and camphor trees.

    PubMed

    Xiao, Hua-Yun; Wang, Yan-Li; Tang, Cong-Guo; Liu, Cong-Qiang

    2012-03-01

    Foliar δ(34)S values of three soil-growing plant species (Platanus Orientalis L., Osmanthus fragrans L. and Cinnamomum camphora) have been analyzed to indicate atmospheric sulfur. The foliar δ(34)S values of the three plant species averaged -3.11±1.94‰, similar to those of both soil sulfur (-3.73±1.04‰) and rainwater sulfate (-3.07±2.74‰). This may indicate that little isotopic fractionation had taken place in the process of sulfur uptake by root or leaves. The δ(34)S values changed little in the transition from mature leaves to old/senescing leaves for both the plane tree and the osmanthus tree, suggestive of little isotope effect during sulfur redistribution in plant tissues. Significantly linear correlation between δ(34)S values of leaves and rainwater sulfate for the plane and osmanthus trees allowed the tracing of temporal variations of atmospheric sulfur by means of foliar sulfur isotope, while foliage δ(34)S values of the camphor is not an effective indicator of atmospheric sulfur. PMID:22243850

  4. Comparative Analysis of IR and Vibrational Circular Dichroism Spectra for a Series of Camphor-Related Molecules

    NASA Astrophysics Data System (ADS)

    Abbate, Sergio; Burgi, Luigi Filippo; Gangemi, Fabrizio; Gangemi, Roberto; Lebon, France; Longhi, Giovanna; Pultz, Vaughan M.; Lightner, David A.

    2009-09-01

    The absorption spectra and vibrational circular dichroism (VCD) spectra in the mid-IR range 1600-950 cm-1 of 10 camphor-related compounds have been recorded and compared to DFT calculated spectra at the B3PW91/TZ2P level and have been examined together with the corresponding data of the parent molecules. The rigidity of the bridged structure common to all compounds investigated permits (a) identification of three spectroscopic regions in the mid-IR range that can be "used" separately by the interested stereochemist for structural diagnosis and assignment of some major characteristics of the VCD spectra in these regions to what we call "skeletal chiral sense" and (b) recognition of possible conformers for flexible substituent groups, when present. VCD spectra of the 10 molecules have been recorded and analyzed also in the CH-stretching region, 3100-2800 cm-1. Here, we have been able to identify and characterize features of vibrational excitons by comparison of data within the 10-molecule class. To find a theoretical justification of result (a), we have examined the potential energy distribution of the normal modes in the mid-IR range, the partitioning of the calculated rotational strengths in terms of contributions from all couples of internal coordinates, the angle formed by the two vectors, the electric dipole transition moment and the magnetic dipole transition moment, and finally the overlap of normal modes of different molecules. A discussion is provided as to the usability of the introduced algorithms.

  5. Nudix hydrolases degrade protein-conjugated ADP-ribose.

    PubMed

    Daniels, Casey M; Thirawatananond, Puchong; Ong, Shao-En; Gabelli, Sandra B; Leung, Anthony K L

    2015-01-01

    ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD(+) to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP-the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR. PMID:26669448

  6. Discovery of enantioselectivity of urea inhibitors of soluble epoxide hydrolase.

    PubMed

    Manickam, Manoj; Pillaiyar, Thanigaimalai; Boggu, PullaReddy; Venkateswararao, Eeda; Jalani, Hitesh B; Kim, Nam-Doo; Lee, Seul Ki; Jeon, Jang Su; Kim, Sang Kyum; Jung, Sang-Hun

    2016-07-19

    Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) in the metabolic pathway of arachidonic acid and has been considered as an important therapeutic target for chronic diseases such as hypertension, diabetes and inflammation. Although many urea derivatives are known as sEH inhibitors, the enantioselectivity of the inhibitors is not highlighted in spite of the stereoselective hydrolysis of EETs by sEH. In an effort to explore the importance of enantioselectivity in the urea scaffold, a series of enantiomers with the stereocenter adjacent to the urea nitrogen atom were prepared. The selectivity of enantiomers of 1-(α-alkyl-α-phenylmethyl)-3-(3-phenylpropyl)ureas showed wide range differences up to 125 fold with the low IC50 value up to 13 nM. The S-configuration with planar phenyl and small alkyl groups at α-position is crucial for the activity and selectivity. However, restriction of the free rotation of two α-groups with indan-1-yl or 1,2,3,4-tetrahydronaphthalen-1-yl moiety abolishes the selectivity between the enantiomers, despite the increase in activity up to 13 nM. The hydrophilic group like sulfonamido group at para position of 3-phenylpropyl motif of 1-(α-alkyl-α-phenylmethyl-3-(3-phenylpropyl)urea improves the activity as well as enantiomeric selectivity. All these ureas are proved to be specific inhibitor of sEH without inhibition against mEH. PMID:27092411

  7. Cyanuric acid hydrolase: evolutionary innovation by structural concatenation

    PubMed Central

    Peat, Thomas S; Balotra, Sahil; Wilding, Matthew; French, Nigel G; Briggs, Lyndall J; Panjikar, Santosh; Cowieson, Nathan; Newman, Janet; Scott, Colin

    2013-01-01

    The cyanuric acid hydrolase, AtzD, is the founding member of a newly identified family of ring-opening amidases. We report the first X-ray structure for this family, which is a novel fold (termed the ‘Toblerone’ fold) that likely evolved via the concatenation of monomers of the trimeric YjgF superfamily and the acquisition of a metal binding site. Structures of AtzD with bound substrate (cyanuric acid) and inhibitors (phosphate, barbituric acid and melamine), along with mutagenesis studies, allowed the identification of the active site. The AtzD monomer, active site and substrate all possess threefold rotational symmetry, to the extent that the active site possesses three potential Ser–Lys catalytic dyads. A single catalytic dyad (Ser85–Lys42) is hypothesized, based on biochemical evidence and crystallographic data. A plausible catalytic mechanism based on these observations is also presented. A comparison with a homology model of the related barbiturase, Bar, was used to infer the active-site residues responsible for substrate specificity, and the phylogeny of the 68 AtzD-like enzymes in the database were analysed in light of this structure–function relationship. PMID:23651355

  8. Soluble epoxide hydrolase: A potential target for metabolic diseases.

    PubMed

    He, Jinlong; Wang, Chunjiong; Zhu, Yi; Ai, Ding

    2016-05-01

    Epoxyeicosatrienoic acids (EETs), important lipid mediators derived from arachidonic acid, have many beneficial effects in metabolic diseases, including atherosclerosis, hypertension, cardiac hypertrophy, diabetes, non-alcoholic fatty liver disease, and kidney disease. Epoxyeicosatrienoic acids can be further hydrolyzed to less active diols by the enzyme soluble epoxide hydrolase (sEH). Increasing evidence suggests that inhibition of sEH increases levels of EETs, which have anti-inflammatory effects and can prevent the development of hypertension, atherosclerosis, heart failure, fatty liver, and multiple organ fibrosis. Arachidonic acid is the most abundant omega-6 polyunsaturated fatty acid (PUFA) and shares the same set of enzymes with omega-3 PUFAs, such as docosahexaenoic acid and eicosapentaenoic acid. The omega-3 PUFAs and metabolites, such as regioisomeric epoxyeicosatetraenoic acids and epoxydocosapentaenoic acids, have been reported to have strong vasodilatory and anti-inflammatory effects. Therefore, sEH may be a potential therapeutic target for metabolic disorders. In this review, we focus on our and other recent studies of the functions of sEH, including the effects of its eicosanoid products from both omega-3 and omega-6 PUFAs, in various metabolic diseases. We also discuss the possible cellular and molecular mechanisms underlying the regulation of sEH. PMID:26621325

  9. Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-08-01

    Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have biotechnological potential in chiral chemistry. We report the cloning, purification, enzymatic activity, and conformational analysis of the TrEH gene from Trichoderma reesei strain QM9414 using circular dichroism spectroscopy. The EH gene has an open reading frame encoding a protein of 343 amino acid residues, resulting in a molecular mass of 38.2kDa. The enzyme presents an optimum pH of 7.2, and it is highly active at temperatures ranging from 23 to 50°C and thermally inactivated at 70°C (t1/2=7.4min). The Michaelis constants (Km) were 4.6mM for racemic substrate, 21.7mM for (R)-(+)-styrene oxide and 3.0mM for (S)-(-)-styrene oxide. The kcat/Km analysis indicated that TrEH is enantioselective and preferentially hydrolyzes (S)-(-)-styrene oxide. The conformational stability studies suggested that, despite the extreme conditions (high temperatures and extremely acid and basic pHs), TrEH is able to maintain a considerable part of its regular structures, including the preservation of the native cores in some cases. The recombinant protein showed enantioselectivity that was distinct from other fungus EHs, making this protein a potential biotechnological tool. PMID:27177457

  10. Soluble epoxide hydrolase deficiency ameliorates acute pancreatitis in mice.

    PubMed

    Bettaieb, Ahmed; Morisseau, Christophe; Hammock, Bruce; Haj, Fawaz

    2014-10-01

    Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored. To investigate whether sEH may have a causal role in AP we utilized sEH knockout (KO) mice to determine the effects of sEH deficiency on ceruelin- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as sEH activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated sEH KO mice compared with non-treated controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1ß and IL-6 were lower in sEH KO mice compared with controls. Further, sEH KO mice exhibited decreased cerulein- and arginine-induced NF-?B inflammatory response, MAPKs activation and decreased cell death. These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP. PMID:26461340

  11. Extracellular Glycoside Hydrolase Activities in the Human Oral Cavity.

    PubMed

    Inui, Taichi; Walker, Lauren C; Dodds, Michael W J; Hanley, A Bryan

    2015-08-15

    Carbohydrate availability shifts when bacteria attach to a surface and form biofilm. When salivary planktonic bacteria form an oral biofilm, a variety of polysaccharides and glycoproteins are the primary carbon sources; however, simple sugar availabilities are limited due to low diffusion from saliva to biofilm. We hypothesized that bacterial glycoside hydrolase (GH) activities would be higher in a biofilm than in saliva in order to maintain metabolism in a low-sugar, high-glycoprotein environment. Salivary bacteria from 13 healthy individuals were used to grow in vitro biofilm using two separate media, one with sucrose and the other limiting carbon sources to a complex carbohydrate. All six GHs measured were higher in vitro when grown in the medium with complex carbohydrate as the sole carbon source. We then collected saliva and overnight dental plaque samples from the same individuals and measured ex vivo activities for the same six enzymes to determine how oral microbial utilization of glycoconjugates shifts between the planktonic phase in saliva and the biofilm phase in overnight dental plaque. Overall higher GH activities were observed in plaque samples, in agreement with in vitro observation. A similar pattern was observed in GH activity profiles between in vitro and ex vivo data. 16S rRNA gene analysis showed that plaque samples had a higher abundance of microorganisms with larger number of GH gene sequences. These results suggest differences in sugar catabolism between the oral bacteria located in the biofilm and those in saliva. PMID:26048943

  12. Nudix hydrolases degrade protein-conjugated ADP-ribose

    PubMed Central

    Daniels, Casey M.; Thirawatananond, Puchong; Ong, Shao-En; Gabelli, Sandra B.; Leung, Anthony K. L.

    2015-01-01

    ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD+ to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP—the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR. PMID:26669448

  13. Disrupting Dimerization Translocates Soluble Epoxide Hydrolase to Peroxisomes

    PubMed Central

    Nelson, Jonathan W.; Das, Anjali J.; Barnes, Anthony P.; Alkayed, Nabil J.

    2016-01-01

    The epoxyeicosatrienoic acid (EET) neutralizing enzyme soluble epoxide hydrolase (sEH) is a neuronal enzyme, which has been localized in both the cytosol and peroxisomes. The molecular basis for its dual localization remains unclear as sEH contains a functional peroxisomal targeting sequence (PTS). Recently, a missense polymorphism was identified in human sEH (R287Q) that enhances its peroxisomal localization. This same polymorphism has also been shown to generate weaker sEH homo-dimers. Taken together, these observations suggest that dimerization may mask the sEH PTS and prevent peroxisome translocation. In the current study, we test the hypothesis that dimerization is a key regulator of sEH subcellular localization. Specifically, we altered the dimerization state of sEH by introducing substitutions in amino acids responsible for the dimer-stabilizing salt-bridge. Green Fluorescent Protein (GFP) fusions of each of mutants were co-transfected into mouse primary cultured cortical neurons together with a PTS-linked red fluorescent protein to constitutively label peroxisomes. Labeled neurons were analyzed using confocal microscopy and co-localization of sEH with peroxisomes was quantified using Pearson’s correlation coefficient. We find that dimer-competent sEH constructs preferentially localize to the cytosol, whereas constructs with weakened or disrupted dimerization were preferentially targeted to peroxisomes. We conclude that the sEH dimerization status is a key regulator of its peroxisomal localization. PMID:27203283

  14. Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme

    PubMed Central

    Palomo, Marta; Pijning, Tjaard; Booiman, Thijs; Dobruchowska, Justyna M.; van der Vlist, Jeroen; Kralj, Slavko; Planas, Antoni; Loos, Katja; Kamerling, Johannis P.; Dijkstra, Bauke W.; van der Maarel, Marc J. E. C.; Dijkhuizen, Lubbert; Leemhuis, Hans

    2011-01-01

    Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date. PMID:21097495

  15. Bacterial 2,4-Dioxygenases: New Members of the α/β Hydrolase-Fold Superfamily of Enzymes Functionally Related to Serine Hydrolases

    PubMed Central

    Fischer, Frank; Künne, Stefan; Fetzner, Susanne

    1999-01-01

    1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) from Pseudomonas putida 33/1 and 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) from Arthrobacter ilicis Rü61a catalyze an N-heterocyclic-ring cleavage reaction, generating N-formylanthranilate and N-acetylanthranilate, respectively, and carbon monoxide. Amino acid sequence comparisons between Qdo, Hod, and a number of proteins belonging to the α/β hydrolase-fold superfamily of enzymes and analysis of the similarity between the predicted secondary structures of the 2,4-dioxygenases and the known secondary structure of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 strongly suggested that Qdo and Hod are structurally related to the α/β hydrolase-fold enzymes. The residues S95 and H244 of Qdo were found to be arranged like the catalytic nucleophilic residue and the catalytic histidine, respectively, of the α/β hydrolase-fold enzymes. Investigation of the potential functional significance of these and other residues of Qdo through site-directed mutagenesis supported the hypothesis that Qdo is structurally as well as functionally related to serine hydrolases, with S95 being a possible catalytic nucleophile and H244 being a possible catalytic base. A hypothetical reaction mechanism for Qdo-catalyzed 2,4-dioxygenolysis, involving formation of an ester bond between the catalytic serine residue and the carbonyl carbon of the substrate and subsequent dioxygenolysis of the covalently bound anionic intermediate, is discussed. PMID:10482514

  16. Discovery of Triterpenoids as Reversible Inhibitors of α/β-hydrolase Domain Containing 12 (ABHD12)

    PubMed Central

    Parkkari, Teija; Haavikko, Raisa; Laitinen, Tuomo; Navia-Paldanius, Dina; Rytilahti, Roosa; Vaara, Miia; Lehtonen, Marko; Alakurtti, Sami; Yli-Kauhaluoma, Jari; Nevalainen, Tapio; Savinainen, Juha R.; Laitinen, Jarmo T.

    2014-01-01

    Background α/β-hydrolase domain containing (ABHD)12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract). In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG). Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. Methodology/Principal Findings Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR) data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. Conclusions/Significance We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first pharmacophore

  17. Identification of N-acylethanolamines in Dictyostelium discoideum and confirmation of their hydrolysis by fatty acid amide hydrolase[S

    PubMed Central

    Hayes, Alexander C.; Stupak, Jacek; Li, Jianjun; Cox, Andrew D.

    2013-01-01

    N-acylethanolamines (NAEs) are endogenous lipid-based signaling molecules best known for their role in the endocannabinoid system in mammals, but they are also known to play roles in signaling pathways in plants. The regulation of NAEs in vivo is partly accomplished by the enzyme fatty acid amide hydrolase (FAAH), which hydrolyses NAEs to ethanolamine and their corresponding fatty acid. Inhibition of FAAH has been shown to increase the levels of NAEs in vivo and to produce desirable phenotypes. This has led to the development of pharmaceutical-based therapies for a variety of conditions targeting FAAH. Recently, our group identified a functional FAAH homolog in Dictyostelium discoideum, leading to our hypothesis that D. discoideum also possesses NAEs. In this study, we provide a further characterization of FAAH and identify NAEs in D. discoideum for the first time. We also demonstrate the ability to modulate their levels in vivo through the use of a semispecific FAAH inhibitor and confirm that these NAEs are FAAH substrates through in vitro studies. We believe the demonstration of the in vivo modulation of NAE levels suggests that D. discoideum could be a good simple model organism in which to study NAE-mediated signaling. PMID:23187822

  18. John Montgomery's legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity.

    PubMed

    De Clercq, Erik

    2005-01-01

    Ever since the S-adenosylhomocysteine (AdoHcy, SAH) hydrolase was recognized as a pharmacological target for antiviral agents (J. A. Montgomery et al., J. Med. Chem. 25:626-629, 1982), an increasing number of adenosine, acyclic adenosine, and carbocyclic adenosine analogues have been described as potent SAH hydrolase inhibitors endowed with broad-spectrum antiviral activity. The antiviral activity spectrum of the SAH hydrolase inhibitors include pox-, rhabdo-, filo-, arena-, paramyxo-, reo-, and retroviruses. Among the most potent SAH hydrolase inhibitors and antiviral agents rank carbocyclic 3-deazaadenosine (C-c3 Ado), neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of carbocyclic adenosine (C-Ado, aristeromycin), and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A. These compounds are particularly active against poxviruses (i.e., vaccinia virus), and rhabdoviruses (i.e., vesicular stomatitis virus). The in vivo efficacy of C-c3 Ado and 3-deazaneplanocin A has been established in mouse models for vaccinia virus, vesicular stomatitis virus, and Ebola virus. SAH hydrolase inhibitors such as C-c3Ado and 3-deazaneplanocin A should in thefirst place be considered for therapeutic (or prophylactic) use against poxvirus infections, including smallpox, and hemorrhagic fever virus infections such as Ebola. PMID:16438025

  19. A Bifunctional Enzyme That Has Both Monoacylglycerol Acyltransferase and Acyl Hydrolase Activities1[W][OA

    PubMed Central

    Vijayaraj, Panneerselvam; Jashal, Charnitkaur B.; Vijayakumar, Anitha; Rani, Sapa Hima; Venkata Rao, D.K.; Rajasekharan, Ram

    2012-01-01

    Monoacylglycerol acyltransferase (MGAT) catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol biosynthesis and an important signaling molecule. Here, we describe the isolation and characterization of the peanut (Arachis hypogaea) MGAT gene. The soluble enzyme utilizes invariant histidine-62 and aspartate-67 residues of the acyltransferase motif for its MGAT activity. A sequence analysis revealed the presence of a hydrolase (GXSXG) motif, and enzyme assays revealed the presence of monoacylglycerol (MAG) and lysophosphatidylcholine (LPC) hydrolytic activities, indicating the bifunctional nature of the enzyme. The overexpression of the MGAT gene in yeast (Saccharomyces cerevisiae) caused an increase in triacylglycerol accumulation. Similar to the peanut MGAT, the Arabidopsis (Arabidopsis thaliana) homolog (At1g52760) also exhibited both acyltransferase and hydrolase activities. Interestingly, the yeast homolog lacks the conserved HX4D motif, and it is deficient in the acyltransferase function but exhibits MAG and LPC hydrolase activities. This study demonstrates the presence of a soluble MGAT/hydrolase in plants. The predicted three-dimensional homology modeling and substrate docking suggested the presence of two separate substrate (MAG and LPC)-binding sites in a single polypeptide. Our study describes a soluble bifunctional enzyme that has both MGAT and hydrolase functions. PMID:22915575

  20. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp.

    PubMed Central

    Dashkevicz, M P; Feighner, S D

    1989-01-01

    An agar plate assay was developed to detect bile salt hydrolase activity in lactobacilli. On Lactobacillus-selective MRS or Rogosa SL medium supplemented with taurodeoxycholic, taurocholic, or taurochenodeoxycholic acids, bile salt hydrolysis was manifested at two intensities: (i) the formation of precipitate halos around colonies or (ii) the formation of opaque granular white colonies. Sixty-six lactobacilli were tested for bile salt hydrolase activity by both the plate assay and a sensitive radiochemical assay. No false-positive or false-negative results were detected by the plate assay. Based on results of experiments with Eubacterium lentum and Bacteroides species, the plate assay was dependent on two factors: (i) the presence of bile salt hydrolytic activity and (ii) the ability of the organism to sufficiently acidify the medium to protonate free bile acids. The availability of a differential medium for determination of bile salt hydrolase activity will provide a rapid method for determining shifts in a specific functional activity of intestinal Lactobacillus species and provide a rapid screening capability for identifying bile salt hydrolase-deficient mutants. The latter application should allow bile salt hydrolase activity to be used as a marker enzyme in genetic experiments. Images PMID:2705765

  1. Enantioselective separation of the sunscreen agent 3-(4-methylbenzylidene)-camphor by electrokinetic chromatography: Quantitative analysis in cosmetic formulations.

    PubMed

    Gómara, Belén; García-Ruiz, Carmen; Marina, María Luisa

    2005-10-01

    3-(4-Methylbenzylidene)-camphor (MBC) is a chiral sunscreen agent used in cosmetic products. In this work, the enantioseparation of MBC has been performed by EKC and applied to the analysis of the MBC enantiomers in cosmetic creams. Different experimental conditions (type and concentration of the chiral selector, temperature, and sample solvent) have been optimized. Due to the neutral nature of this compound, anionic CD derivatives were investigated as chiral selectors. Carboxymethylated-beta-CD (CM-beta-CD) showed the highest chiral separation power, observing that a 15 mM concentration of this CD at a working temperature of 15 degrees C enabled to obtain the highest enantioresolution. However, under these conditions, tailing of peaks obtained for the enantiomers was observed. The addition of increasing concentrations of the neutral alpha-CD to CM-beta-CD at a 15 mM concentration in a 100 mM borate buffer at pH 9.0 improved the enantiomeric separation and decreased peak tailing. The use of DMF for the total dissolution of the cosmetic creams, and methanol:water (1:1 v/v) for appropriate dilution enabled to observe good shape and size for the peaks of the MBC enantiomers. After optimizing a method for the preconditioning of the capillary, the analytical characteristics of the chiral separation method for the analysis of MBC were investigated. Linearity, LODs and LOQs, precision (instrumental repeatability, method repeatability, intermediate precision), accuracy, and selectivity were evaluated. The method was applied to analyze MBC enantiomers contained in two commercial cosmetic creams containing racemic MBC and to study the skin absorption of this compound with time. PMID:16217832

  2. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: developmental exposure of rats to 4-methylbenzylidene camphor.

    PubMed

    Maerkel, Kirsten; Durrer, Stefan; Henseler, Manuel; Schlumpf, Margret; Lichtensteiger, Walter

    2007-01-15

    The developing neuroendocrine brain represents a potential target for endocrine active chemicals. The UV filter 4-methylbenzylidene camphor (4-MBC) exhibits estrogenic activity, but also interferes with the thyroid axis. We investigated effects of pre- and postnatal exposure to 4-MBC in the same rat offspring at brain and reproductive organ levels. 4-MBC (7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to the offspring until adulthood. mRNA of estrogen target genes involved in control of sexual behavior and gonadal functions was measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area (MPO) of adult offspring. 4-MBC exposure affected mRNA levels of ER alpha, progesterone receptor (PR), preproenkephalin (PPE) and insulin-like growth factor-I (IGF-I) in a sex- and region-specific manner. In order to assess possible changes in sensitivity of target genes to estrogens, offspring were gonadectomized on day 70, injected with estradiol (E2, 10 or 50 microg/kg s.c.) or vehicle on day 84, and sacrificed 6 h later. The acute induction of PR mRNA, and repression (at 6 h) of PPE mRNA by E2 was enhanced by 4-MBC in male and female VMH and female MPO, whereas male MPO exhibited reduced responsiveness of both genes. Steroid receptor coactivator SRC-1 mRNA levels were increased in female VMH and MPO. The data indicate profound sex- and region-specific alterations in the regulation of estrogen target genes at brain level. Effect patterns in baseline and E2-induced gene expression differ from those in uterus and prostate. PMID:17188730

  3. Effect of daidzein, 4-methylbenzylidene camphor or estrogen on gastrocnemius muscle of osteoporotic rats undergoing tibia healing period.

    PubMed

    Komrakova, Marina; Werner, Carsten; Wicke, Michael; Nguyen, Ba Tiep; Sehmisch, Stephan; Tezval, Mohammad; Stuermer, Klaus Michael; Stuermer, Ewa Klara

    2009-05-01

    The effect of daidzein (D), 4-methylbenzylidene camphor (4-MBC) or estradiol-17beta-benzoate (E(2)) on muscle of osteoporotic rats during fracture healing was studied. After performing a metaphyseal tibia osteotomy in 96 osteoporotic 5-month-old female Sprague-Dawley rats, they received daily 50 mg D, 200 mg 4-MBC or 0.4 mg E(2) per kg body weight, or soy free (SF) diet up to 36 and 72 days. Mitochondrial activity, fiber area, and capillary density were analyzed in M. gastrocnemius. Osseous callus bridging of fracture was observed in half of the rats after 36 days. By day 72, fracture was healed in most of the animals. State 3 mitochondrial respiration significantly enhanced in E(2), 4-MBC and D groups versus SF after 36 days (30, 32 and 32 vs 23 pmol O(2)/s per mg). It declined after 72 days, however, in E(2) group it was still at a higher level versus SF (25, 23 and 21 vs 20 pmol O(2)/s per mg). Size of fast oxidative glycolytic (FOG) and fast glycolytic (FG) fibers, capillary density did not differ significantly between the groups, however, at day 36 an increase in D and 4-MBC groups was detectable. FOG diameter was 64, 66, 68, and 58 microm and FG diameter was 88, 98, 95, and 89 microm in SF, D, 4-MBC, and E(2) groups. The ratio of capillaries to muscle fiber was 1.1, 1.4, 1.3, and 1.1 in SF, D, 4-MBC and E(2) groups by day 36. D and 4-MBC react similar to estrogen thereby improving oxidative cell metabolism in severe osteoporotic rats. The level of mitochondrial activity was higher, though no significant morphological differences could be shown. PMID:19273502

  4. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: Developmental exposure of rats to 4-methylbenzylidene camphor

    SciTech Connect

    Maerkel, Kirsten; Durrer, Stefan; Henseler, Manuel; Schlumpf, Margret; Lichtensteiger, Walter . E-mail: Walter.Lichtensteiger@access.unizh.ch

    2007-01-15

    The developing neuroendocrine brain represents a potential target for endocrine active chemicals. The UV filter 4-methylbenzylidene camphor (4-MBC) exhibits estrogenic activity, but also interferes with the thyroid axis. We investigated effects of pre- and postnatal exposure to 4-MBC in the same rat offspring at brain and reproductive organ levels. 4-MBC (7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to the offspring until adulthood. mRNA of estrogen target genes involved in control of sexual behavior and gonadal functions was measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area (MPO) of adult offspring. 4-MBC exposure affected mRNA levels of ER alpha, progesterone receptor (PR), preproenkephalin (PPE) and insulin-like growth factor-I (IGF-I) in a sex- and region-specific manner. In order to assess possible changes in sensitivity of target genes to estrogens, offspring were gonadectomized on day 70, injected with estradiol (E2, 10 or 50 {mu}g/kg s.c.) or vehicle on day 84, and sacrificed 6 h later. The acute induction of PR mRNA, and repression (at 6 h) of PPE mRNA by E2 was enhanced by 4-MBC in male and female VMH and female MPO, whereas male MPO exhibited reduced responsiveness of both genes. Steroid receptor coactivator SRC-1 mRNA levels were increased in female VMH and MPO. The data indicate profound sex- and region-specific alterations in the regulation of estrogen target genes at brain level. Effect patterns in baseline and E2-induced gene expression differ from those in uterus and prostate.

  5. Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos.

    PubMed

    Li, Vincent Wai Tsun; Tsui, Mei Po Mirabelle; Chen, Xueping; Hui, Michelle Nga Yu; Jin, Ling; Lam, Raymond H W; Yu, Richard Man Kit; Murphy, Margaret B; Cheng, Jinping; Lam, Paul Kwan Sing; Cheng, Shuk Han

    2016-05-01

    The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects. PMID:26888529

  6. Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation

    PubMed Central

    2011-01-01

    Background Cytochrome-P450 (CYP450) epoxygenases metabolise arachidonic acid (AA) into four different biologically active epoxyeicosatrienoic acid (EET) regioisomers. Three of the EETs (i.e., 8,9-, 11,12- and 14,15-EET) are rapidly hydrolysed by the enzyme soluble epoxide hydrolase (sEH). Here, we investigated the role of sEH in nociceptive processing during peripheral inflammation. Results In dorsal root ganglia (DRG), we found that sEH is expressed in medium and large diameter neurofilament 200-positive neurons. Isolated DRG-neurons from sEH-/- mice showed higher EET and lower DHET levels. Upon AA stimulation, the largest changes in EET levels occurred in culture media, indicating both that cell associated EET concentrations quickly reach saturation and EET-hydrolyzing activity mostly effects extracellular EET signaling. In vivo, DRGs from sEH-deficient mice exhibited elevated 8,9-, 11,12- and 14,15-EET-levels. Interestingly, EET levels did not increase at the site of zymosan-induced inflammation. Cellular imaging experiments revealed direct calcium flux responses to 8,9-EET in a subpopulation of nociceptors. In addition, 8,9-EET sensitized AITC-induced calcium increases in DRG neurons and AITC-induced calcitonin gene related peptide (CGRP) release from sciatic nerve axons, indicating that 8,9-EET sensitizes TRPA1-expressing neurons, which are known to contribute to mechanical hyperalgesia. Supporting this, sEH-/- mice showed increased nociceptive responses to mechanical stimulation during zymosan-induced inflammation and 8,9-EET injection reduced mechanical thresholds in naive mice. Conclusion Our results show that the sEH can regulate mechanical hyperalgesia during inflammation by inactivating 8,9-EET, which sensitizes TRPA1-expressing nociceptors. Therefore we suggest that influencing the CYP450 pathway, which is actually highly considered to treat cardiovascular diseases, may cause pain side effects. PMID:21970373

  7. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    PubMed Central

    2011-01-01

    Background To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. Results From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-α-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-β-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-β-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Conclusions Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass. PMID:21816041

  8. A Novel Saponin Hydrolase from Neocosmospora vasinfecta var. vasinfecta

    PubMed Central

    Watanabe, Manabu; Sumida, Naomi; Yanai, Koji; Murakami, Takeshi

    2004-01-01

    We isolated a soybean saponin hydrolase from Neocosmospora vasinfecta var. vasinfecta PF1225, a filamentous fungus that can degrade soybean saponin and generate soyasapogenol B. This enzyme was found to be a monomer with a molecular mass of about 77 kDa and a glycoprotein. Nucleotide sequence analysis of the corresponding gene (sdn1) indicated that this enzyme consisted of 612 amino acids and had a molecular mass of 65,724 Da, in close agreement with that of the apoenzyme after the removal of carbohydrates. The sdn1 gene was successfully expressed in Trichoderma viride under the control of the cellobiohydrolase I gene promoter. The molecular mass of the recombinant enzyme, about 69 kDa, was smaller than that of the native enzyme due to fewer carbohydrate modifications. Examination of the degradation products obtained by treatment of soyasaponin I with the recombinant enzyme showed that the enzyme hydrolyzed soyasaponin I to soyasapogenol B and triose [α-l-rhamnopyranosyl (1→2)-β-d-galactopyranosyl (1→2)-d-glucuronopyranoside]. Also, when soyasaponin II and soyasaponin V, which are different from soyasaponin I only in constituent saccharides, were treated with the enzyme, the ratio of the reaction velocities for soyasaponin I, soyasaponin II, and soyasaponin V was 2,680:886:1. These results indicate that this enzyme recognizes the fine structure of the carbohydrate moiety of soyasaponin in its catalytic reaction. The amino acid sequence of this enzyme predicted from the DNA sequence shows no clear homology with those of any of the enzymes involved in the hydrolysis of carbohydrates. PMID:14766566

  9. Conformational diversity and enantioconvergence in potato epoxide hydrolase 1.

    PubMed

    Bauer, P; Carlsson, Å Janfalk; Amrein, B A; Dobritzsch, D; Widersten, M; Kamerlin, S C L

    2016-06-28

    Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis. PMID:27049844

  10. Optical solid-state detection of organophosphates using organophosphorus hydrolase.

    PubMed

    White, Brandy J; Harmon, H James

    2005-04-15

    We have developed a sensor surface for optical detection of organophosphates based on reversible inhibition of organophosphorus hydrolase (OPH) by copper complexed meso-tri(4-sulfonato phenyl) mono(4-carboxy phenyl) porphyrin (CuC1TPP). OPH immobilized onto glass microscope slides retains catalytic activity for more than 232 days. CuC1TPP is a reversible, competitive inhibitor of OPH, binding at the active site of the immobilized enzyme. The absorbance spectrum of the porphyrin-enzyme complex is measured via planar waveguide evanescent wave absorbance spectroscopy using a blue LED as a light source and an Ocean Optics USB2000 as the spectrophotometer. The characteristics of the absorbance spectrum of CuC1TPP are specific and different when the porphyrin is bound to the enzyme or is bound non-specifically to the surface of the slide. Addition of a substrate of OPH such as one of the organophosphates paraoxon, coumaphos, diazinon, or malathion displaces the porphyrin from the enzyme resulting in reduced absorbance intensity at 412 nm. Absorbance changes at 412 nm show log-linear dependence on substrate concentration. Paraoxon concentrations between 7 parts per trillion (ppt) and 14 parts per million (ppm) were investigated and a 3:1 S/N detection limit of 7 ppt was determined. Concentrations of 700 ppt to 40 ppm were investigated for diazinon, malathion, and coumaphos with detection limits of 800 ppt, 1 part per billion, and 250 ppt, respectively. This optical technique does not require the addition of reagents or solutions other than the sample and absorbance spectra can be collected in less than 6 s. PMID:15741066

  11. Prunasin hydrolases during fruit development in sweet and bitter almonds.

    PubMed

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-04-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet. PMID:22353576

  12. Long-acting cocaine hydrolase for addiction therapy.

    PubMed

    Chen, Xiabin; Xue, Liu; Hou, Shurong; Jin, Zhenyu; Zhang, Ting; Zheng, Fang; Zhan, Chang-Guo

    2016-01-12

    Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Administration-approved medication. An ideal anticocaine medication would accelerate cocaine metabolism, producing biologically inactive metabolites by administration of an efficient cocaine-specific exogenous enzyme. Our recent studies have led to the discovery of the desirable, highly efficient cocaine hydrolases (CocHs) that can efficiently detoxify and inactivate cocaine without affecting normal functions of the CNS. Preclinical and clinical data have demonstrated that these CocHs are safe for use in humans and are effective for accelerating cocaine metabolism. However, the actual therapeutic use of a CocH in cocaine addiction treatment is limited by its short biological half-life (e.g., 8 h or shorter in rats). Here we demonstrate a novel CocH form, a catalytic antibody analog, which is a fragment crystallizable (Fc)-fused CocH dimer (CocH-Fc) constructed by using CocH to replace the Fab region of human IgG1. The CocH-Fc not only has a high catalytic efficiency against cocaine but also, like an antibody, has a considerably longer biological half-life (e.g., ∼107 h in rats). A single dose of CocH-Fc was able to accelerate cocaine metabolism in rats even after 20 d and thus block cocaine-induced hyperactivity and toxicity for a long period. Given the general observation that the biological half-life of a protein drug is significantly longer in humans than in rodents, the CocH-Fc reported in this study could allow dosing once every 2-4 wk, or longer, for treatment of cocaine addiction in humans. PMID:26712009

  13. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    SciTech Connect

    Li L. L.; van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Zhang, Y.-B.; Blewitt, M. G.; Brunecky, R.; Adney, W. S.; Himmel, M. E.; Brumm, P.; Drinkwater, C.; Mead, D. A.; Tringe, S. G.

    2011-08-01

    To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-{alpha}-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-{beta}-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-{beta}-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  14. Evaluation of fish models of soluble epoxide hydrolase inhibition.

    PubMed Central

    Newman, J W; Denton, D L; Morisseau, C; Koger, C S; Wheelock, C E; Hinton, D E; Hammock, B D

    2001-01-01

    Substituted ureas and carbamates are mechanistic inhibitors of the soluble epoxide hydrolase (sEH). We screened a set of chemicals containing these functionalities in larval fathead minnow (Pimphales promelas) and embryo/larval golden medaka (Oryzias latipes) models to evaluate the utility of these systems for investigating sEH inhibition in vivo. Both fathead minnow and medaka sEHs were functionally similar to the tested mammalian orthologs (murine and human) with respect to substrate hydrolysis and inhibitor susceptibility. Low lethality was observed in either larval or embryonic fish exposed to diuron [N-(3,4-dichlorophenyl), N'-dimethyl urea], desmethyl diuron [N-(3,4-dichlorophenyl), N'-methyl urea], or siduron [N-(1-methylcyclohexyl), N'-phenyl urea]. Dose-dependent inhibition of sEH was a sublethal effect of substituted urea exposure with the potency of siduron < desmethyl diuron = diuron, differing from the observed in vitro sEH inhibition potency of siduron > desmethyl diuron > diuron. Further, siduron exposure synergized the toxicity of trans-stilbene oxide in fathead minnows. Medaka embryos exposed to diuron, desmethyl diuron, or siduron displayed dose-dependent delays in hatch, and elevated concentrations of diuron and desmethyl diuron produced developmental toxicity. The dose-dependent toxicity and in vivo sEH inhibition correlated, suggesting a potential, albeit undefined, relationship between these factors. Additionally, the observed inversion of in vitro to in vivo potency suggests that these fish models may provide tools for investigating the in vivo stability of in vitro inhibitors while screening for untoward effects. PMID:11171526

  15. Reward and Toxicity of Cocaine Metabolites Generated by Cocaine Hydrolase.

    PubMed

    Murthy, Vishakantha; Geng, Liyi; Gao, Yang; Zhang, Bin; Miller, Jordan D; Reyes, Santiago; Brimijoin, Stephen

    2015-08-01

    Butyrylcholinesterase (BChE) gene therapy is emerging as a promising concept for treatment of cocaine addiction. BChE levels after gene transfer can rise 1000-fold above those in untreated mice, making this enzyme the second most abundant plasma protein. For months or years, gene transfer of a BChE mutated into a cocaine hydrolase (CocH) can maintain enzyme levels that destroy cocaine within seconds after appearance in the blood stream, allowing little to reach the brain. Rapid enzyme action causes a sharp rise in plasma levels of two cocaine metabolites, benzoic acid (BA) and ecgonine methyl ester (EME), a smooth muscle relaxant that is mildly hypotensive and, at best, only weakly rewarding. The present study, utilizing Balb/c mice, tested reward effects and cardiovascular effects of administering EME and BA together at molar levels equivalent to those generated by a given dose of cocaine. Reward was evaluated by conditioned place preference. In this paradigm, cocaine (20 mg/kg) induced a robust positive response but the equivalent combined dose of EME + BA failed to induce either place preference or aversion. Likewise, mice that had undergone gene transfer with mouse CocH (mCocH) showed no place preference or aversion after repeated treatments with a near-lethal 80 mg/kg cocaine dose. Furthermore, a single administration of that same high cocaine dose failed to affect blood pressure as measured using the noninvasive tail-cuff method. These observations confirm that the drug metabolites generated after CocH gene transfer therapy are safe even after a dose of cocaine that would ordinarily be lethal. PMID:25814464

  16. Alterations of intestinal glycoprotein hydrolases in congenital diabetes

    SciTech Connect

    Najjar, S.M.

    1989-01-01

    The diabetic BioBreed (BB{sub d}) rat was used for the study of the molecular structure of intestinal brush border sucrase-{alpha}-dextrinase (SD) and aminooligopeptidase (AOP) in diabetes mellitus. The specific catalytic activity of S-D and AOP in the BB{sub d} rat is normal. However, solid-phase radioimmunoassay revealed loss of some antigenic determinants in the BB{sub d} rat. S-D and AOP migrated abnormally on 6% SDS-gel electrophoresis in the BB{sub d} rat. S was larger (+5 kDa), D was either smaller (-5 kDa) or unaltered, and AOP was smaller (-5 kDa) in the BB{sub d} than in the normal Wistar. The structural abnormalities were independent of hyperglycemia or ketoacidosis and restored to normal by daily insulin treatment (NPH, 3-4 units/rat) for two to three weeks. Newly-synthesized brush border hydrolases were examined after 6 hours of intraperitoneal injection of ({sup 35}S) methionine (2 mCi) and found to be altered, suggesting that structural abnormality appeared acutely during intracellular synthesis rather than being due to slow extracellular modifications such as non-enzymatic glycosylation. Deglycosylation of brush border proteins by trifluoromethanesulfonic acid resulted in an apoprotein with normal electrophoretic migration in BB{sub d}, indicating that the alteration was due to the carbohydrates component of the glycoprotein. Pulse-chase studies with ({sup 35}S) methionine were consistent with normal protein an co-translational and initial N-linked carbohydrate assembly in association with the endoplasmic reticulum in BB{sub d}. However, the post-translational maturation of N-linked and addition of 0-linked carbohydrate chains in Golgi were prolonged, and produced a larger single-chain precursor of S-D in BB{sub d} than normal.

  17. Analyzing S-adenosylhomocysteine hydrolase gene sequences in deuterostome genomes.

    PubMed

    Zhao, Jing-Nan; Wang, Yuan; Zhao, Bo-Sheng; Chen, Ling-Ling

    2009-12-01

    S-adenosylhomocysteine hydrolase (SAHH) gene sequences of sea-urchin, two amphioxus, sea-squirt and eight vertebrates are comparatively analyzed in the current analysis. Although SAHH protein sequences are highly conserved in these species, their nucleotide sequences are much different, ranging from 5,446 bp in amphioxus to 40,174 bp in zebra fish. The length divergence is mainly caused by distinct introns in some species. SAHH genes in amphioxus (or sea-urchin), sea-squirt and vertebrates are composed of eight, nine and ten exons, respectively. Sequence alignment shows that exon 3 in amphioxus and sea-urchin is similar to exons 3 + 4 in vertebrates, exon 5 in amphioxus and sea-urchin is similar to exons 5 + 6 in sea-squirt, and the two exons are fused into exon 6 in vertebrates. Furthermore, exon 7 in sea-squirt is similar to exons 7 + 8 in vertebrates, indicating that exon-fission and exon-fusion events have been taken place during the evolution of deuterostome SAHH genes. Active sites and NAD+-binding sites are located in exons 2 7 in amphioxus, which are dispersed into much more exons along with the evolution of vertebrates. It is speculated that ten-exon organization of SAHH gene occurred after the separation of invertebrates and vertebrates. Synonymous and non-synonymous substitution analysis shows that negative selection plays a dominant role in the evolution of SAHH genes. Phylogenetic analysis shows that SAHH genes in amphioxus, sea-urchin and sea-squirt form a cluster and locate at the base of neighbor-joining tree, suggesting that they are the archetype of vertebrate SAHH genes. PMID:19795919

  18. Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree.

    PubMed

    Osawa, Hiroki; Endo, Izuki; Hara, Yukari; Matsushima, Yuki; Tange, Takeshi

    2011-01-01

    Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree. PMID:21045123

  19. GENETIC VARIATION IN SOLUBLE EPOXIDE HYDROLASE (EPHX2) AND RISK OF CORONARY HEART DISEASE: THE ATHEROSCLEROSIS RISK IN COMMUNITIES (ARIC) STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endothelial dysfunction contributes to the development of coronary heart disease (CHD). Soluble epoxide hydrolase metabolizes epoxyeicosatrienoic acids in the vasculature and regulates endothelial function. We sought to determine whether genetic variation in soluble epoxide hydrolase (EPHX2) was ass...

  20. Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endothelial dysfunction contributes to the development of coronary heart disease (CHD). Soluble epoxide hydrolase metabolizes epoxyeicosatrienoic acids in the vasculature and regulates endothelial function. We sought to determine whether genetic variation in soluble epoxide hydrolase (EPHX2) was ass...

  1. Evaluation of NHS Carbamates as a Potent and Selective Class of Endocannabinoid Hydrolase Inhibitors

    PubMed Central

    2013-01-01

    Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzyme’s function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors. PMID:23731016

  2. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    PubMed

    Leite, José P; Duarte, Márcia; Paiva, Ana M; Ferreira-da-Silva, Frederico; Matias, Pedro M; Nunes, Olga C; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system. PMID:25905461

  3. Structure-Guided Engineering of Molinate Hydrolase for the Degradation of Thiocarbamate Pesticides

    PubMed Central

    Paiva, Ana M.; Ferreira-da-Silva, Frederico; Matias, Pedro M.; Nunes, Olga C.; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system. PMID:25905461

  4. Competitive Activity-Based Protein Profiling Identifies Aza-β-Lactams as a Versatile Chemotype for Serine Hydrolase Inhibition

    PubMed Central

    Zuhl, Andrea M.; Mohr, Justin T.; Bachovchin, Daniel A.; Niessen, Sherry; Hsu, Ku-Lung; Berlin, Jacob M.; Dochnahl, Maximilian; López-Alberca, María P.; Fu, Gregory C.; Cravatt, Benjamin F.

    2012-01-01

    Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Most serine hydrolases lack selective inhibitors, which are needed for assigning functions to these enzymes. We recently discovered a set of aza-β-lactams (ABLs) that act as potent and selective inhibitors of the mammalian serine hydrolase protein-phosphatase methylesterase-1 (PME-1). The ABLs inactivate PME-1 by covalent acylation of the enzyme’s serine nucleophile, suggesting that they could offer a general scaffold for serine hydrolase inhibitor discovery. Here, we have tested this hypothesis by screening ABLs more broadly against cell and tissue proteomes by competitive activity-based protein profiling (ABPP), leading to the discovery of lead inhibitors for several serine hydrolases, including the uncharacterized enzyme alpha, beta-hydrolase-10 (ABHD10). ABPP-guided medicinal chemistry yielded a compound ABL303 that potently (IC50 value ~ 30 nM) and selectively inactivated ABHD10 in vitro and in living cells. A comparison of optimized inhibitors for PME-1 and ABHD10 indicates that modest structural changes that alter steric bulk can tailor the ABL to selectively react with distinct, sequence-unrelated serine hydrolases. Our findings, taken together, designate the ABL as a versatile reactive group for creating first-in-class serine hydrolase inhibitors. PMID:22400490

  5. Competitive activity-based protein profiling identifies aza-β-lactams as a versatile chemotype for serine hydrolase inhibition.

    PubMed

    Zuhl, Andrea M; Mohr, Justin T; Bachovchin, Daniel A; Niessen, Sherry; Hsu, Ku-Lung; Berlin, Jacob M; Dochnahl, Maximilian; López-Alberca, María P; Fu, Gregory C; Cravatt, Benjamin F

    2012-03-21

    Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Most serine hydrolases lack selective inhibitors, which are valuable probes for assigning functions to these enzymes. We recently discovered a set of aza-β-lactams (ABLs) that act as potent and selective inhibitors of the mammalian serine hydrolase protein-phosphatase methylesterase-1 (PME-1). The ABLs inactivate PME-1 by covalent acylation of the enzyme's serine nucleophile, suggesting that they could offer a general scaffold for serine hydrolase inhibitor discovery. Here, we have tested this hypothesis by screening ABLs more broadly against cell and tissue proteomes by competitive activity-based protein profiling (ABPP), leading to the discovery of lead inhibitors for several serine hydrolases, including the uncharacterized enzyme α,β-hydrolase domain-containing 10 (ABHD10). ABPP-guided medicinal chemistry yielded a compound ABL303 that potently (IC(50) ≈ 30 nM) and selectively inactivated ABHD10 in vitro and in living cells. A comparison of optimized inhibitors for PME-1 and ABHD10 indicates that modest structural changes that alter steric bulk can tailor the ABL to selectively react with distinct, distantly related serine hydrolases. Our findings, taken together, designate the ABL as a versatile reactive group for creating first-in-class serine hydrolase inhibitors. PMID:22400490

  6. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  7. Structural Determinants Allowing Transferase Activity in SENSITIVE TO FREEZING 2, Classified as a Family I Glycosyl Hydrolase*

    PubMed Central

    Roston, Rebecca L.; Wang, Kun; Kuhn, Leslie A.; Benning, Christoph

    2014-01-01

    SENSITIVE TO FREEZING 2 (SFR2) is classified as a family I glycosyl hydrolase but has recently been shown to have galactosyltransferase activity in Arabidopsis thaliana. Natural occurrences of apparent glycosyl hydrolases acting as transferases are interesting from a biocatalysis standpoint, and knowledge about the interconversion can assist in engineering SFR2 in crop plants to resist freezing. To understand how SFR2 evolved into a transferase, the relationship between its structure and function are investigated by activity assay, molecular modeling, and site-directed mutagenesis. SFR2 has no detectable hydrolase activity, although its catalytic site is highly conserved with that of family 1 glycosyl hydrolases. Three regions disparate from glycosyl hydrolases are identified as required for transferase activity as follows: a loop insertion, the C-terminal peptide, and a hydrophobic patch adjacent to the catalytic site. Rationales for the effects of these regions on the SFR2 mechanism are discussed. PMID:25100720

  8. Immunocytochemical Localization of Prunasin Hydrolase and Mandelonitrile Lyase in Stems and Leaves of Prunus serotina.

    PubMed Central

    Swain, E.; Poulton, J. E.

    1994-01-01

    In macerates of black cherry (Prunus serotina Ehrh.) leaves and stems, (R)-prunasin is catabolized to HCN, benzaldehyde, and D-glucose by the sequential action of prunasin hydrolase (EC 3.2.1.21) and (R)-(+)-mandelonitrile lyase (EC 4.1.2.10). Immuno-cytochemical techniques have shown that within these organs prunasin hydrolase occurs within the vacuoles of phloem parenchyma cells. In arborescent leaves, mandelonitrile lyase was also located in phloem parenchyma vacuoles, but comparison of serial sections revealed that these two degradative enzymes are usually localized within different cells. PMID:12232409

  9. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  10. Molecular Models to Emulate Confinement Effects on the Internal Dynamics of Organophosphorous Hydrolase

    SciTech Connect

    Gomes, Diego Enry B.; Lins, Roberto D.; Pascutti, Pedro G.; Straatsma, TP; Soares, Thereza A.

    2008-09-28

    The confinement of the metalloenzyme organophosphorous hydrolase in functionalized mesoporous silica (FMS) enhances the stability and increases catalytic specific activity by 200% compared to the enzyme in solution. The mechanism by which these processes take place is not well understood. We have developed two coarse-grain models of confinement to provide insights into how the nanocage environment steers enzyme conformational dynamics towards enhanced stability and enzymatic activity. The structural dynamics of organophosphorous hydrolase under the two confinement models are very distinct from each other. Comparisons of the present simulations show that only one model leads to an accurate depiction of the internal dynamics of the enzyme.

  11. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    PubMed

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed. PMID:25311940

  12. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    SciTech Connect

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  13. Conformational Variability of Organophosphorous Hydrolase upon Soman and Paraoxon Binding

    PubMed Central

    Gomes, Diego E.B.; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2012-01-01

    The bacterial enzyme organophosphorous hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pKa calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pKa calculations for the substrate-bound and unbound enzyme showed a significant pKa shift from standard values (ΔpKa=±3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the open to the closed substate

  14. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei.

    PubMed

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2016-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  15. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    PubMed Central

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2015-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  16. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    SciTech Connect

    Lun, Huijie; Yang, Jinghe; Jin, Linyu; Cui, Sasa; Bai, Yanlong; Zhang, Xudong; Li, Yamin

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagnetic behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.

  17. Porphyrogenic properties of the terpenes camphor, pinene, and thujone (with a note on historic implications for absinthe and the illness of Vincent van Gogh).

    PubMed

    Bonkovsky, H L; Cable, E E; Cable, J W; Donohue, S E; White, E C; Greene, Y J; Lambrecht, R W; Srivastava, K K; Arnold, W N

    1992-06-01

    Camphor, alpha-pinene (the major component of turpentine), and thujone (a constituent in the liqueur called absinthe) produced an increase in porphyrin production in primary cultures of chick embryo liver cells. In the presence of desferrioxamine (an iron chelator which inhibits heme synthesis and thereby mimics the effect of the block associated with acute porphyria), the terpenes enhanced porphyrin accumulation 5- to 20-fold. They also induced synthesis of the rate-controlling enzyme for the pathway, 5-aminolevulinic acid synthase, which was monitored both spectrophotometrically and immunochemically. These effects are shared by well-known porphyrogenic chemicals such as phenobarbital and glutethimide. Camphor and glutethimide alone led to the accumulation of mostly uro- and heptacarboxylporphyrins, whereas alpha-pinene and thujone resulted in lesser accumulations of porphyrins which were predominantly copro- and protoporphyrins. In the presence of desferrioxamine, plus any of the three terpenes, the major product that accumulated was protoporphyrin. The present results indicate that the terpenes tested are porphyrogenic and hazardous to patients with underlying defects in hepatic heme synthesis. There are also implications for the illness of Vincent van Gogh and the once popular, but now banned liqueur, called absinthe. PMID:1610401

  18. Crystal structure of tetra­methyl­tetra­thia­fulvalenium (1S)-camphor-10-sulfonate dihydrate

    PubMed Central

    Sommer, Mathieu; Allain, Magali; Mézière, Cécile; Pop, Flavia; Giffard, Michel

    2015-01-01

    Electro-oxidation of tetra­methyl­tetra­thia­fulvalene (TMTTF) in the presence of the chiral anion (1S)-camphor-10-sulfonate (S-camphSO3 −) in tetra­hydro­furan/water medium afforded a 1/1 salt formulated as TMTTF·S-camphSO3·2H2O or 2-(4,5-dimethyl-1,3-di­thiol-2-yl­idene)-4,5-dimethyl-1,3-di­thiole radical ion (1+) [(1S)-7,7-dimethyl-2-oxobi­cyclo­[2.2.1]heptan-1-yl]methane­sulfonate dihydrate, C10H12S4 +·C10H15O4S−·2H2O. In this salt, two independent TMTTF units are present but, in both cases, the observed bond lengths and especially the central C=C distance [1.392 (6) and 1.378 (6) Å] are in agreement with a complete oxidation of TMTTF which is thus present as TMTTF. + radical cations. These cations form one-dimensional stacks in which they are associated two by two, forming dimers with short [3.472 (1) to 3.554 (2) Å] S⋯S contacts. The two S-camphSO3 anions present also form stacks and are connected with each other via the water mol­ecules with many O—H⋯O hydrogen bonds ranging from 1.86 (3) to 2.15 (4) Å; the O—H⋯O hydrogen-bonding network can be described as being constituted of C 2 2(6) chains bearing R 3 3(11) lateral rings. On the other hand, the columns of cations and anions are connected through C—H⋯O hydrogen bonds, forming a system expanding in three directions; finally, the result is a three-dimensional network of O—H⋯O and C—H⋯O hydrogen bonds. PMID:26279858

  19. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61.

    PubMed

    Langston, James A; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D

    2011-10-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  20. Inhibitory activity of S-adenosylhomocysteine hydrolase inhibitors against human cytomegalovirus replication.

    PubMed

    Snoeck, R; Andrei, G; Neyts, J; Schols, D; Cools, M; Balzarini, J; De Clercq, E

    1993-07-01

    Various acyclic and carbocyclic adenosine analogues, which are apparently targeted at the S-adenosylhomocysteine (AdoHcy) hydrolase have been reported to inhibit the replication of a number of pox-, rhabdo-, paramyxo-, arena-, and reoviruses. Here we show that this activity spectrum extends to human cytomegalovirus (HCMV). Of the compounds tested, neplanocin A, 3-deazaneplanocin A, 6'-C-methylneplanocin A and 5'-noraristeromycin were found to be the most potent inhibitors of HCMV replication in vitro. Their 50% inhibitory concentration ranged from 0.05 to 1.35 micrograms/ml. In general, the anti-HCMV activity of the adenosine analogues correlated well with their affinity (Ki) for AdoHcy hydrolase, suggesting that AdoHcy hydrolase may be considered as a target enzyme for anti-HCMV agents. For four compounds (3-deazaneplanocin A, 6'-C-methylneplanocin A (isomers I and II) and 3-deazaadenosine), anti-HCMV potency was greater than could be expected solely from their interaction with AdoHcy hydrolase, suggesting that these compounds may be functioning by an additional mechanism. PMID:8215298

  1. In Silico Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase Inhibitors

    PubMed Central

    Ha, Christina Hung Hung; Fatima, Ayesha; Gaurav, Anand

    2015-01-01

    Human African Trypanosomiasis is endemic to 37 countries of sub-Saharan Africa. It is caused by two related species of Trypanosoma brucei. Current therapies suffer from resistance and public accessibility of expensive medicines. Finding safer and effective therapies of natural origin is being extensively explored worldwide. Pentamidine is the only available therapy for inhibiting the P2 adenosine transporter involved in the purine salvage pathway of the trypanosomatids. The objective of the present study is to use computational studies for the investigation of the probable trypanocidal mechanism of flavonoids. Docking experiments were carried out on eight flavonoids of varying level of hydroxylation, namely, flavone, 5-hydroxyflavone, 7-hydroxyflavone, chrysin, apigenin, kaempferol, fisetin, and quercetin. Using AutoDock 4.2, these compounds were tested for their affinity towards inosine-adenosine-guanosine nucleoside hydrolase and the inosine-guanosine nucleoside hydrolase, the major enzymes of the purine salvage pathway. Our results showed that all of the eight tested flavonoids showed high affinities for both hydrolases (lowest free binding energy ranging from −10.23 to −7.14 kcal/mol). These compounds, especially the hydroxylated derivatives, could be further studied as potential inhibitors of the nucleoside hydrolases. PMID:26640486

  2. Click-generated triazole ureas as ultrapotent, in vivo-active serine hydrolase inhibitors

    PubMed Central

    Adibekian, Alexander; Martin, Brent R.; Wang, Chu; Hsu, Ku-Lung; Bachovchin, Daniel A.; Niessen, Sherry; Hoover, Heather; Cravatt, Benjamin F.

    2011-01-01

    Serine hydrolases (SHs) are a diverse enzyme class representing > 1% of all human proteins. The biological functions for most SHs remain poorly characterized due to a lack of selective inhibitors to probe their activity in living systems. Here, we show that a substantial number of SHs can be irreversibly inactivated by 1,2,3-triazole ureas, which exhibit negligible cross-reactivity with other protein classes. Rapid lead optimization by click chemistry-enabled synthesis and competitive activity-based profiling identified 1,2,3-triazole ureas that selectively inhibit enzymes from diverse branches of the SH superfamily, including peptidases (acyl-peptide hydrolase or APEH), lipases (platelet-activating factor acetylhyrolase-2 or PAFAH2), and uncharacterized hydrolases (α, β-hydrolase 11 or ABHD11), with exceptional potency in cells (sub-nM) and mice (< 1 mg/kg). We show that APEH inhibition leads to accumulation of N-acetylated proteins and promotes proliferation in T-cells. These data designate 1,2,3-triazole ureas as a pharmacologically privileged chemotype for SH inhibition that shows broad activity across the SH class coupled with tunable selectivity for individual enzymes. PMID:21572424

  3. A novel meta-cleavage product hydrolase from Flavobacterium sp. ATCC27551

    SciTech Connect

    Khajamohiddin, Syed; Babu, Pakala Suresh; Chakka, Deviprasanna; Merrick, Mike; Bhaduri, Anirban; Sowdhamini, Ramanathan; Siddavattam, Dayananda . E-mail: sdsl@uohyd.ernet.in

    2006-12-22

    The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an {alpha}/{beta} hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.

  4. Extracellular xylanolytic and pectinolytic hydrolase production by A. flavus isolates contributes to crop invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several atoxigenic Aspergillus flavus isolates, including some biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium ut...

  5. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  6. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  7. Rehabilitation of faulty kinetic determinations and misassigned glycoside hydrolase family of retaining mechanism ß-xylosidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We obtained Cx1 from a commercial supplier, whose catalog listed it as a ß-xylosidase of glycoside hydrolase family 43. NMR experiments indicate retention of anomeric configuration in its reaction stereochemistry, opposing the assignment of GH43, which follows an inverting mechanism. Partial protein...

  8. Highly active ß-xylosidases of glycoside hydrolase family 43 operating on natural and artificial substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. ß-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 has been identified as a so...

  9. Expression of recombinant organophosphorus hydrolase in the original producer of the enzyme, Sphingobium fuliginis ATCC 27551.

    PubMed

    Nakayama, Kosuke; Ohmori, Takeshi; Ishikawa, Satoshi; Iwata, Natsumi; Seto, Yasuo; Kawahara, Kazuyoshi

    2016-05-01

    The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli. PMID:26784883

  10. Purification and Characterization of TrzF: Biuret Hydrolysis by Allophanate Hydrolase Supports Growth

    PubMed Central

    Shapir, Nir; Cheng, Gang; Sadowsky, Michael J.; Wackett, Lawrence P.

    2006-01-01

    TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of α2 and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret. PMID:16597948

  11. High-Throughput In Vitro Glycoside Hydrolase (HIGH) Screening for Enzyme Discovery

    SciTech Connect

    Kim, Tae-Wan; Chokhawala, Harshal A.; Hess, Matthias; Dana, Craig M.; Baer, Zachary; Sczyrba, Alexander; Rubin, Edward M.; Blanch, Harvey W.; Clark, Douglas S.

    2011-09-16

    A high-throughput protein-expression and screening method (HIGH method, see picture) provides a rapid approach to the discovery of active glycoside hydrolases in environmental samples. Finally, HIGH screening combines cloning, protein expression, and enzyme hydrolysis in one pot; thus, the entire process from gene expression to activity detection requires only three hours.

  12. Cloning, Expression and Characterization of a Glycoside Hydrolase Family 39 Xylosidase from Bacillus Halodurans C-125

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding a glycoside hydrolase family 39 xylosidase (BH1068) from the alkaliphile Bacillus halodurans strain C-125 was cloned with a C-terminal His-tag and the recombinant gene product termed XylBH1068 was expressed in E. coli. Of the artificial substrates tested, XylBH1068 hydrolyzed nitro...

  13. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    EPA Science Inventory

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface of
    Escherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membrane
    fractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus
    ...

  14. ORGANOPHOSPHORUS HYDROLASE-BASED AMPEROMETRIC SENSOR: MODULATION OF SENSITIVITY AND SUBSTRATE SELECTIVITY

    EPA Science Inventory

    The detection of organophosphate (OP) insecticides with nitrophenyl substituents is reported using an enzyme electrode composed of Organophosphorus Hydrolase (OPH) and albumin co-immobilized to a nylon net and attached to a carbon paste electrode. The mechanism for this biosen...

  15. Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Yang, Jun; Mamatha, Dadala M.

    2015-01-01

    Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes. PMID:25686802

  16. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component.

    PubMed

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  17. Channel Catfish, Ictalurus punctatus, ubiquitin carboxy-terminal hydrolase L5 cDNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome cycle is a complex, non-lysosomal biochemical process for intracellular protein degradation. This process involves many enzymes. One of them is ubiquitin carboxy-terminal hydrolase (UCT). In this report, we cloned, sequenced and characterized the channel catfish UCT L5 cDNA....

  18. Acylpeptide hydrolase: inhibitors and some active site residues of the human enzyme.

    PubMed

    Scaloni, A; Jones, W M; Barra, D; Pospischil, M; Sassa, S; Popowicz, A; Manning, L R; Schneewind, O; Manning, J M

    1992-02-25

    Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions. PMID:1740429

  19. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata

    PubMed Central

    2014-01-01

    Thermomonospora curvata is a thermophilic actinomycete phylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60°C and 55°C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55°C. Tcur0390 showed a higher hydrolytic activity against poly(ε-caprolactone) and polyethylene terephthalate (PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50°C. At 55°C and 60°C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of α/β serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET. PMID:25405080

  20. A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol

    PubMed Central

    Nithipatikom, Kasem; Endsley, Michael P.; Pfeiffer, Adam W.; Falck, John R.; Campbell, William B.

    2014-01-01

    Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/β-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway. PMID:24958911

  1. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes.

    PubMed

    Mamberti, Stefania; Prati, Paola; Cremaschi, Paolo; Seppi, Claudio; Morelli, Carlo F; Galizzi, Alessandro; Fabbi, Massimo; Calvio, Cinzia

    2015-01-01

    Poly-γ-glutamate (γ-PGA) is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection. PMID:26158264

  2. Molecular Identification of β-Citrylglutamate Hydrolase as Glutamate Carboxypeptidase 3*

    PubMed Central

    Collard, François; Vertommen, Didier; Constantinescu, Stefan; Buts, Lieven; Van Schaftingen, Emile

    2011-01-01

    β-Citrylglutamate (BCG), a compound present in adult testis and in the CNS during the pre- and perinatal periods is synthesized by an intracellular enzyme encoded by the RIMKLB gene and hydrolyzed by an as yet unidentified ectoenzyme. To identify β-citrylglutamate hydrolase, this enzyme was partially purified from mouse testis and characterized. Interestingly, in the presence of Ca2+, the purified enzyme specifically hydrolyzed β-citrylglutamate and did not act on N-acetyl-aspartylglutamate (NAAG). However, both compounds were hydrolyzed in the presence of Mn2+. This behavior and the fact that the enzyme was glycosylated and membrane-bound suggested that β-citrylglutamate hydrolase belonged to the same family of protein as glutamate carboxypeptidase 2 (GCP2), the enzyme that catalyzes the hydrolysis of N-acetyl-aspartylglutamate. The mouse tissue distribution of β-citrylglutamate hydrolase was strikingly similar to that of the glutamate carboxypeptidase 3 (GCP3) mRNA, but not that of the GCP2 mRNA. Furthermore, similarly to β-citrylglutamate hydrolase purified from testis, recombinant GCP3 specifically hydrolyzed β-citrylglutamate in the presence of Ca2+, and acted on both N-acetyl-aspartylglutamate and β-citrylglutamate in the presence of Mn2+, whereas recombinant GCP2 only hydrolyzed N-acetyl-aspartylglutamate and this, in a metal-independent manner. A comparison of the structures of the catalytic sites of GCP2 and GCP3, as well as mutagenesis experiments revealed that a single amino acid substitution (Asn-519 in GCP2, Ser-509 in GCP3) is largely responsible for GCP3 being able to hydrolyze β-citrylglutamate. Based on the crystal structure of GCP3 and kinetic analysis, we propose that GCP3 forms a labile catalytic Zn-Ca cluster that is critical for its β-citrylglutamate hydrolase activity. PMID:21908619

  3. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria.

    PubMed Central

    Schlömann, M; Schmidt, E; Knackmuss, H J

    1990-01-01

    Of various benzoate-utilizing bacteria tested, Alcaligenes eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, A. eutrophus JMP134, Alcaligenes strain A7, and Pseudomonas cepacia were able to grow with 4-fluorobenzoate as the sole source of carbon and energy. P. cepacia also utilizes 3-fluorobenzoate. Except for A. eutrophus JMP134, which is known to grow with 2,4-dichlorophenoxyacetate and 3-chlorobenzoate (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981), the strains were unable to grow at the expense of these compounds or 4-chlorobenzoate. Assays of cell extracts revealed that all strains express dienelactone hydrolase and maleylacetate reductase activities in addition to enzymes of the catechol branch of the 3-oxoadipate pathway when growing with 4-fluorobenzoate. Induction of dienelactone hydrolase and maleylacetate reductase apparently is not necessarily connected to synthesis of catechol 1,2-dioxygenase type II and chloromuconate cycloisomerase activities, which are indispensable for the degradation of chlorocatechols. Substrate specificities of the dienelactone hydrolases provisionally differentiate among three types of this activity. (i) Extracts of A. eutrophus 335, A. eutrophus H16, A. eutrophus JMP222, and Alcaligenes strain A7 convert trans-4-carboxymethylenebut-2-en-4-olide (trans-dienelactone) much faster than the cis-isomer (type I). (ii) The enzyme present in P. cepacia shows the opposite preference for the isomeric substrates (type II). (iii) Cell extracts of A. eutrophus JMP134, as well as purified dienelactone hydrolase from Pseudomonas strain B13 (E. Schmidt and H.-J. Knackmuss, Biochem. J. 192:339-347, 1980), hydrolyze both dienelactones at rates that are of the same order of magnitude (type III). This classification implies that A. eutrophus JMP134 possesses at least two different dienelactone hydrolases, one of type III encoded by the plasmid pJP4 and one of type I, which is also present in the cured strain JMP222. PMID

  4. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.

    PubMed

    Nisha, M; Satyanarayana, T

    2016-07-01

    Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce pullulanases and neopullulanases. While pullulan hydrolase type II and type III are produced by fungi and archaea, respectively. These are multi-domain proteins with three conserved catalytic acidic residues of the glycosyl hydrolases. The recent advances in molecular biology and protein engineering via mutagenesis and truncation led to improvement in thermostability, catalytic activity and substrate specificity. Pullulanases are debranching enzymes, which are widely employed in starch saccharification that minimizes the use of glucoamylase (approx. 50 %) and reduces the total reaction time of the industrial starch conversion process. The thermostable amylopullulanases are useful in one-step starch liquefaction and saccharification, which replaces amylolytic enzymes like α-amylase and glucoamylase, thus resulting in the reduction in the cost of sugar production. The enzymes also find application in making resistant starches and as an antistale in bread making. Panose and isopanose containing syrups are useful as prebiotics, while panose has also been reported to display anticarcinogenic activity. This review focuses on the distinguishing features of these enzymes based on the analysis of amino acid sequences and domain structure, besides highlighting recent advances in the molecular biology and protein engineering for enhancing their thermostability, catalytic activity and substrate specificity. This review also briefly summarizes the potential applications of pullulanases and pullulan hydrolases. PMID:27142298

  5. Molecular identification of β-citrylglutamate hydrolase as glutamate carboxypeptidase 3.

    PubMed

    Collard, François; Vertommen, Didier; Constantinescu, Stefan; Buts, Lieven; Van Schaftingen, Emile

    2011-11-01

    β-Citrylglutamate (BCG), a compound present in adult testis and in the CNS during the pre- and perinatal periods is synthesized by an intracellular enzyme encoded by the RIMKLB gene and hydrolyzed by an as yet unidentified ectoenzyme. To identify β-citrylglutamate hydrolase, this enzyme was partially purified from mouse testis and characterized. Interestingly, in the presence of Ca(2+), the purified enzyme specifically hydrolyzed β-citrylglutamate and did not act on N-acetyl-aspartylglutamate (NAAG). However, both compounds were hydrolyzed in the presence of Mn(2+). This behavior and the fact that the enzyme was glycosylated and membrane-bound suggested that β-citrylglutamate hydrolase belonged to the same family of protein as glutamate carboxypeptidase 2 (GCP2), the enzyme that catalyzes the hydrolysis of N-acetyl-aspartylglutamate. The mouse tissue distribution of β-citrylglutamate hydrolase was strikingly similar to that of the glutamate carboxypeptidase 3 (GCP3) mRNA, but not that of the GCP2 mRNA. Furthermore, similarly to β-citrylglutamate hydrolase purified from testis, recombinant GCP3 specifically hydrolyzed β-citrylglutamate in the presence of Ca(2+), and acted on both N-acetyl-aspartylglutamate and β-citrylglutamate in the presence of Mn(2+), whereas recombinant GCP2 only hydrolyzed N-acetyl-aspartylglutamate and this, in a metal-independent manner. A comparison of the structures of the catalytic sites of GCP2 and GCP3, as well as mutagenesis experiments revealed that a single amino acid substitution (Asn-519 in GCP2, Ser-509 in GCP3) is largely responsible for GCP3 being able to hydrolyze β-citrylglutamate. Based on the crystal structure of GCP3 and kinetic analysis, we propose that GCP3 forms a labile catalytic Zn-Ca cluster that is critical for its β-citrylglutamate hydrolase activity. PMID:21908619

  6. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes

    PubMed Central

    Mamberti, Stefania; Prati, Paola; Cremaschi, Paolo; Seppi, Claudio; Morelli, Carlo F.; Galizzi, Alessandro; Fabbi, Massimo; Calvio, Cinzia

    2015-01-01

    Poly-γ-glutamate (γ-PGA) is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection. PMID:26158264

  7. Cell- and ligand-specific dephosphorylation of acid hydrolases: Evidence that the mannose 6-phosphatase is controlled by compartmentalization

    SciTech Connect

    Einstein, R.; Gabel, C.A. )

    1991-01-01

    Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum. To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of individual acid hydrolases was studied in Man 6-P/IGF II receptor-positive and -deficient cell lines. 125I-labeled Man 6-P-containing acid hydrolases were proteolytically processed but remained phosphorylated when endocytosed by receptor-positive L cells maintained in the absence of serum; after the addition of serum, however, the cell-associated hydrolases were dephosphorylated. Individual hydrolases were dephosphorylated at distinct rates and to different extents. In contrast, the same hydrolases were dephosphorylated equally and completely after entry into Man 6-P/IGF II receptor-positive Chinese hamster ovary (CHO) cells. The dephosphorylation competence of Man 6-P/IGF II receptor-deficient mouse J774 cells was more limited. beta-Glucuronidase produced by these cells underwent a limited dephosphorylation in transit to lysosomes such that diphosphorylated oligosaccharides were converted to monophosphorylated species. The overall quantity of phosphorylated oligosaccharides associated with the enzyme, however, did not decrease within the lysosomal compartment. Likewise, beta-glucuronidase was not dephosphorylated when introduced into J774 cells via Fc receptor-mediated endocytosis. The CHO and J774 cell lysosomes, therefore, display opposite extremes with respect to their capacity to dephosphorylate acid hydrolases; within CHO cell lysosomes acid hydrolases are rapidly and efficiently dephosphorylated, but within J774 cell lysosomes the same acid hydrolases remain phosphorylated.

  8. Cinnamomin, a type II ribosome-inactivating protein, is a storage protein in the seed of the camphor tree (Cinnamomum camphora).

    PubMed

    Liu, Ren-shui; Wei, Guo-qing; Yang, Qiang; He, Wen-jun; Liu, Wang-Yi

    2002-03-15

    Cinnamomin is a novel type II ribosome-inactivating protein (RIP) isolated in our laboratory from the seed of the camphor tree (Cinnamomum camphora). In this paper the physiological role it plays in the plant cell was studied. Northern and Western blotting revealed that cinnamomin was expressed specifically in cotyledons. It accumulated in large amounts simultaneously with other proteins at the post-stages of seed development. Cinnamomin degraded rapidly during the early stages of seed germination. Endopeptidase was proved to play an important role in the degradation of cinnamomin. Western blotting of total proteins from the protein body with antibodies against cinnamomin demonstrated that it only existed in this specific cellular organelle as a storage protein. The similar properties of cinnamomin and other seed storage proteins of dicotyledons were compared. We conclude that cinnamomin is a special storage protein in the seed of C. camphora. PMID:11879193

  9. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  10. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity.

    PubMed Central

    Feighner, S D; Dashkevicz, M P

    1987-01-01

    A radiochemical method was developed to estimate cholyltaurine hydrolase potentials and rates of cholyltaurine hydrolysis in chicken intestinal homogenates. This method was used to monitor the effects of antibiotic feed additives on cholyltaurine hydrolase activity. Avoparcin, bacitracin methylenedisalisylic acid, efrotomycin, lincomycin, penicillin G procaine, and virginiamycin improved rate of weight gain and feed conversion of chicks and decreased cholyltaurine hydrolase activity in ileal homogenates relative to those of nonmedicated control birds. The results provided the first evidence that feeding selected antibiotics at subtherapeutic levels can affect bile acid-transforming enzymes in small-intestinal homogenates. The inverse relationship between growth performance and cholyltaurine hydrolase activity raises the possibility that specific inhibitors of this enzyme may promote weight gain and feed conversion in livestock and thereby reduce or eliminate the need for antibiotic feed additives. PMID:3566269

  11. The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors.

    PubMed Central

    Menard, A; Papini, E; Mock, M; Montecucco, C

    1996-01-01

    The lethal factor of Bacillus anthracis is central to the pathogenesis of anthrax. Its mechanism of action is still unknown. Recently, on the basis of sequence similarities, we suggested that lethal factor might act similarly to leukotriene A4 hydrolase (LTA4), a bifunctional enzyme also endowed with a metallopeptidase activity. Here we show that some inhibitors of the LTA4 hydrolase and metallopeptidase activities of LTA4 hydrolase also affect the cytotoxicity of the anthrax lethal factor on macrophage cell lines, without interfering with the ability of the lethal factor to enter cells. These results support the proposal that anthrax lethal factor might display in the cytosol of intoxicated cells a peptidase activity similar to that of LTA4 hydrolase. PMID:8973585

  12. Structure Determination and Characterization of the Vitamin B[superscript 6] Degradative Enzyme (E)-2-(Acetamidomethylene)succinate Hydrolase

    SciTech Connect

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E.

    2010-06-22

    The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B{sub 6} and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 {angstrom} using SAD phasing. E-2AMS hydrolase is a member of the {alpha}/{beta} hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.

  13. Effects of dimerization on the photoelectron angular distribution parameters from chiral camphor enantiomers obtained with circularly polarized vacuum-ultraviolet radiation

    SciTech Connect

    Nahon, Laurent; Garcia, Gustavo A.; Soldi-Lose, Heloiese; Daly, Steven; Powis, Ivan

    2010-09-15

    As an intermediate state of matter between the free monomeric gas phase and the solid state, clusters may exhibit a specific electronic structure and photoionization dynamics that can be unraveled by different types of electron spectroscopies. From mass-selected ion yield scans measured for photoionization of (R)-camphor, the ionization potentials (IPs) of the monomer (8.66{+-}0.01 eV), and of the homochiral dimer ({<=}8.37{+-}0.01 eV) and trimer ({<=}8.30{+-}0.01 eV) were obtained. These spectra, combined with threshold photoelectron spectroscopy and velocity map ion imaging, allow us to show that the camphor monomer and dimer photoionization channels are decoupled, i.e., that the highest occupied molecular orbital (HOMO) of the dimer does not undergo a dissociative ionization process that would lead to a spurious contribution to the monomer ion channel. Therefore mass selection, as achieved in our imaging photoelectron-photoion coincidence experiments, leads to size selection of the nascent monomer or dimer species. Since both the monomer and dimer are chiral, their photoelectron angular distribution (PAD) not only involves the usual {beta} anisotropy parameter but also a chiral asymmetry parameter b{sub 1} that can generate a forward-backward asymmetry in the PAD. This has been investigated using circularly polarized light (CPL) to record the photoelectron circular dichroism (PECD) in the near-threshold vacuum-ultraviolet (VUV) photoionization region. Analysis of size-selected electron images recorded with left- and right-handed CPL shows that over the first 1.5 eV above the HOMO orbital ionization potentials (IPs), the {beta} parameter is not affected by the dimerization process, while the chiral b{sub 1} parameter shows clear differences between the monomer and the dimer, confirming that PECD is a subtle long-range probe of the molecular potential.

  14. Spectroscopic and Kinetic Evidence for the Crucial Role of Compound 0 in the P450cam -Catalyzed Hydroxylation of Camphor by Hydrogen Peroxide.

    PubMed

    Franke, Alicja; van Eldik, Rudi

    2015-10-19

    The hydroperoxo iron(III) intermediate P450cam Fe(III) -OOH, being the true Compound 0 (Cpd 0) involved in the natural catalytic cycle of P450cam , could be transiently observed in the peroxo-shunt oxidation of the substrate-free enzyme by hydrogen peroxide under mild basic conditions and low temperature. The prolonged lifetime of Cpd 0 enabled us to kinetically examine the formation and reactivity of P450cam Fe(III) -OOH species as a function of varying reaction conditions, such as pH, and concentration of H2 O2 , camphor, and potassium ions. The mechanism of hydrogen peroxide binding to the substrate-free form of P450cam differs completely from that observed for other heme proteins possessing the distal histidine as a general acid-base catalyst and is mainly governed by the ability of H2 O2 to undergo deprotonation at the hydroxo ligand coordinated to the iron(III) center under conditions of pH≥p${K{{{\\rm P450}\\hfill \\atop {\\rm a}\\hfill}}}$. Notably, no spectroscopic evidence for the formation of either Cpd I or Cpd II as products of heterolytic or homolytic OO bond cleavage, respectively, in Cpd 0 could be observed under the selected reaction conditions. The kinetic data obtained from the reactivity studies involving (1R)-camphor, provide, for the first time, experimental evidence for the catalytic activity of the P450Fe(III) -OOH intermediate in the oxidation of the natural substrate of P450cam . PMID:26353996

  15. Effects of dimerization on the photoelectron angular distribution parameters from chiral camphor enantiomers obtained with circularly polarized vacuum-ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Nahon, Laurent; Garcia, Gustavo A.; Soldi-Lose, Héloïse; Daly, Steven; Powis, Ivan

    2010-09-01

    As an intermediate state of matter between the free monomeric gas phase and the solid state, clusters may exhibit a specific electronic structure and photoionization dynamics that can be unraveled by different types of electron spectroscopies. From mass-selected ion yield scans measured for photoionization of (R)-camphor, the ionization potentials (IPs) of the monomer (8.66±0.01 eV), and of the homochiral dimer (⩽8.37±0.01 eV) and trimer (⩽8.30±0.01 eV) were obtained. These spectra, combined with threshold photoelectron spectroscopy and velocity map ion imaging, allow us to show that the camphor monomer and dimer photoionization channels are decoupled, i.e., that the highest occupied molecular orbital (HOMO) of the dimer does not undergo a dissociative ionization process that would lead to a spurious contribution to the monomer ion channel. Therefore mass selection, as achieved in our imaging photoelectron-photoion coincidence experiments, leads to size selection of the nascent monomer or dimer species. Since both the monomer and dimer are chiral, their photoelectron angular distribution (PAD) not only involves the usual β anisotropy parameter but also a chiral asymmetry parameter b1 that can generate a forward-backward asymmetry in the PAD. This has been investigated using circularly polarized light (CPL) to record the photoelectron circular dichroism (PECD) in the near-threshold vacuum-ultraviolet (VUV) photoionization region. Analysis of size-selected electron images recorded with left- and right-handed CPL shows that over the first 1.5 eV above the HOMO orbital ionization potentials (IPs), the β parameter is not affected by the dimerization process, while the chiral b1 parameter shows clear differences between the monomer and the dimer, confirming that PECD is a subtle long-range probe of the molecular potential.

  16. Broad range of inhibiting action of novel camphor-based compound with anti-hemagglutinin activity against influenza viruses in vitro and in vivo.

    PubMed

    Zarubaev, V V; Garshinina, A V; Tretiak, T S; Fedorova, V A; Shtro, A A; Sokolova, A S; Yarovaya, O I; Salakhutdinov, N F

    2015-08-01

    Influenza virus continues to remain one of the leading human respiratory pathogens causing significant morbidity and mortality around the globe. Due to short-term life cycle and high rate of mutations influenza virus is able to rapidly develop resistance to clinically available antivirals. This makes necessary the search and development of new drugs with different targets and mechanisms of activity. Here we report anti-influenza activity of camphor derivative 1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol (camphecene). In in vitro experiments it inhibited influenza viruses A(H1, H1pdm09, H3 and H5 subtypes) and B with EC50's lying in micromolar range. Due to low cytotoxicity it resulted in high selectivity indices (74-661 depending on the virus). This effect did not depend on susceptibility or resistance of the viruses to adamantane derivatives amantadine and rimantadine. The compound appeared the most effective when added at the early stages of viral life cycle (0-2h p.i.). In direct hemagglutinin inhibition tests camphecene was shown to decrease the activity of HA's of influenza viruses A and B. The activity of camphecene was further confirmed in experiments with influenza virus-infected mice, in which, being used orally by therapeutic schedule (once a day, days 1-5 p.i.) it decreased specific mortality of animals infected with both influenza A and B viruses (highest indices of protection 66.7% and 88.9%, respectively). Taken together, these results are encouraging for further development of camphecene-based drug(s) and for exploration of camphor derivatives as highly prospective group of potential antivirals. PMID:26072310

  17. Preparation, crystallization and preliminary X-ray crystallographic studies of diadenosine tetraphosphate hydrolase from Shigella flexneri 2a

    SciTech Connect

    Hu, Wenxin; Wang, Qihai; Bi, Ruchang

    2005-12-01

    The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Diadenosine tetraphosphate (Ap{sub 4}A) hydrolase (EC 3.6.1.41) hydrolyzes Ap{sub 4}A symmetrically in prokaryotes. It plays a potential role in organisms by regulating the concentration of Ap{sub 4}A in vivo. To date, no three-dimensional structures of proteins with significant sequence homology to this protein have been determined. The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Ap{sub 4}A hydrolase crystals diffract X-rays to 3.26 Å and belong to space group P2{sub 1}, with unit-cell parameters a = 118.9, b = 54.6, c = 128.5 Å, β = 95.7°.

  18. A New Insight into the Physiological Role of Bile Salt Hydrolase among Intestinal Bacteria from the Genus Bifidobacterium

    PubMed Central

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche. PMID:25470405

  19. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  20. Carbocyclic adenosine analogues as S-adenosylhomocysteine hydrolase inhibitors and antiviral agents: recent advances.

    PubMed

    De Clercq, E

    1998-01-01

    Various carbocyclic analogues of adenosine, including aristeromycin (carbocyclic adenosine), carbocyclic 3-deazaadenosine, neplanocin A, 3-deazaneplanocin A, the 5'-nor derivatives of aristeromycin, carbocylic 3-deazaadenosine, neplanocin A and 3-deazaneplanocin A, and the 2-halo (i.e., 2-fluoro) and 6'-R-alkyl (i.e., 6'-R-methyl) derivatives of neplanocin A have been recognized as potent inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. This enzyme plays a key role in methylation reactions depending on S-adenosylmethionine (AdoMet) as methyl donor. AdoHcy hydrolase inhibitors have been shown to exert broad-spectrum antiviral activity against pox-, paramyxo-, rhabdo-, filo-, bunya-, arena-, and reoviruses. They also interfere with the replication of human immunodeficiency virus through inhibition of the Tat transactivation process. PMID:9708366

  1. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    PubMed

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. PMID:26476165

  2. [Effect of chitosan on the cell ultrastructure and activity of hydrolases in tobacco leaves].

    PubMed

    Nagorskaia, V P; Reunov, A V; Lapshina, L A; Davydova, V N; Ermak, I M

    2012-01-01

    Effect of chitosan on the mesophyll cell ultrastucture and activity of hydrolases in leaves of tobacco cv. Samsun was studied. It was shown that, in many cells, chitosan treatment stimulated the protein-synthesizing apparatus (nucleolus dimension and amount of both mitochondria and rough endoplasmic reticulum membranes increased) and, at the same time, caused some activation of lytic compartment expressed in the stimulation of the formation of dictyosomes, smooth ER elements and cytoplasmic vacuoles, which are all prominent constituents of this compartment. In biochemical experiments, it was established that chitosan substantially enhanced activity of hydrolases (acid phosphatase, RNase, proteases) in the leaves as compared to untreated leaves. In some cells chitosan treatment caused considerable destructive changes (condensation of nuclear chromatin, collapse of cytoplasm and so on) that can be classified as a result of programmed cell death development. PMID:23461036

  3. Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from Saccharophagus degradans 2-40

    PubMed Central

    Lee, Saeyoung; Lee, Jonas Yun; Ha, Sung Chul; Jung, Jina; Shin, Dong Hae; Kim, Kyoung Heon; Choi, In-Geol

    2009-01-01

    Many agarolytic bacteria degrade agar polysaccharide into the disaccharide unit neoagarobiose [O-3,6-anhydro-α-l-galactopyranosyl-(1→3)-d-galactose] using various β-agarases. Neoagarobiose hydrolase is an enzyme that acts on the α-­1,3 linkage in neoagarobiose to yield d-galactose and 3,6-anhydro-l-galactose. This activity is essential in both the metabolism of agar by agarolytic bacteria and the production of fermentable sugars from agar biomass for bioenergy production. Neoagarobiose hydrolase from the marine bacterium Saccharophagus degradans 2-40 was overexpressed in Escherichia coli and crystallized in the monoclinic space group C2, with unit-cell parameters a = 129.83, b = 76.81, c = 90.11 Å, β = 101.86°. The crystals diffracted to 1.98 Å resolution and possibly contains two molecules in the asymmetric unit. PMID:20054134

  4. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities.

    PubMed Central

    Henrissat, B; Bairoch, A

    1993-01-01

    301 glycosyl hydrolases and related enzymes corresponding to 39 EC entries of the I.U.B. classification system have been classified into 35 families on the basis of amino-acid-sequence similarities [Henrissat (1991) Biochem. J. 280, 309-316]. Approximately half of the families were found to be monospecific (containing only one EC number), whereas the other half were found to be polyspecific (containing at least two EC numbers). A > 60% increase in sequence data for glycosyl hydrolases (181 additional enzymes or enzyme domains sequences have since become available) allowed us to update the classification not only by the addition of more members to already identified families, but also by the finding of ten new families. On the basis of a comparison of 482 sequences corresponding to 52 EC entries, 45 families, out of which 22 are polyspecific, can now be defined. This classification has been implemented in the SWISS-PROT protein sequence data bank. PMID:8352747

  5. Involvement of the Saccharomyces cerevisiae hydrolase Ldh1p in lipid homeostasis.

    PubMed

    Debelyy, Mykhaylo O; Thoms, Sven; Connerth, Melanie; Daum, Günther; Erdmann, Ralf

    2011-06-01

    Here, we report the functional characterization of the newly identified lipid droplet hydrolase Ldh1p. Recombinant Ldh1p exhibits esterase and triacylglycerol lipase activities. Mutation of the serine in the hydrolase/lipase motif GXSXG completely abolished esterase activity. Ldh1p is required for the maintenance of a steady-state level of the nonpolar and polar lipids of lipid droplets. A characteristic feature of the Saccharomyces cerevisiae Δldh1 strain is the appearance of giant lipid droplets and an excessive accumulation of nonpolar lipids and phospholipids upon growth on medium containing oleic acid as a sole carbon source. Ldh1p is thought to play a role in maintaining the lipid homeostasis in yeast by regulating both phospholipid and nonpolar lipid levels. PMID:21478434

  6. [Monograph for 3-(4-methylbenzylidene)camphor (4-MBC)--HBM values for the sum of metabolites 3-(4-carboxybenzylidene)camphor (3-4CBC) and 3-(4-carboxybenzylidene)-6-hydroxycamphor (3-4 CBHC) in the urine of adults and children. Statement of the HBM Commission of the German Federal Environment Agency].

    PubMed

    2016-01-01

    The substance 3-(4-methylbenzylidene)camphor (4-MBC, CAS-No. 36861-47-9 as well as 38102-62-4) is used as UV-filter in cosmetics, mainly in sunscreen lotions. National as well as European evaluations are available for the substance, especially from the Scientific Committee on Consumer Products (SCCP). The SCCP did not derive a TDI-value, but used for a MoS assessment a NOAEL of 25 mg/(kg bw · d) based on effects on the thyroid gland of rats in a subchronic study with oral administration. Newer studies, however, indicate lower NOAEL values, leading to tolerable daily intakes of 0,01 mg/kg bw. The HBM Commission established for the metabolite 3-(4-carboxybenzylidene)camphor (3-4CBC) HBM-I values of 0,09 mg/l urine for adults and 0,06 mg/l urine for children. HBM-I values for the metabolite 3-(4-carboxybenzylidene)-6-hydroxycamphor (3-4CBHC) were set at 0,38 mg/l urine for adults and 0,25 mg/l urine for children. The rounded HBM-I value for the sum of metabolites 3-4CBC und 3-4CBHC is accordingly 0,5 mg/l urine for adults and 0,3 mg/l urine for children. PMID:26721474

  7. Investigation of the Microheterogeneity and Aglycone Specificity-Conferring Residues of Black Cherry Prunasin Hydrolases1

    PubMed Central

    Zhou, Jiming; Hartmann, Stefanie; Shepherd, Brianne K.; Poulton, Jonathan E.

    2002-01-01

    In black cherry (Prunus serotina Ehrh.) seed homogenates, (R)-amygdalin is degraded to HCN, benzaldehyde, and glucose by the sequential action of amygdalin hydrolase (AH), prunasin hydrolase (PH), and mandelonitrile lyase. Leaves are also highly cyanogenic because they possess (R)-prunasin, PH, and mandelonitrile lyase. Taking both enzymological and molecular approaches, we demonstrate here that black cherry PH is encoded by a putative multigene family of at least five members. Their respective cDNAs (designated Ph1, Ph2, Ph3, Ph4, and Ph5) predict isoforms that share 49% to 92% amino acid identity with members of glycoside hydrolase family 1, including their catalytic asparagine-glutamate-proline and isoleucine-threonine-glutamate-asparagine-glycine motifs. Furthermore, consistent with the vacuolar/protein body location and glycoprotein character of these hydrolases, their open reading frames predict N-terminal signal sequences and multiple potential N-glycosylation sites. Genomic sequences corresponding to the open reading frames of these PHs and of the previously isolated AH1 isoform are interrupted at identical positions by 12 introns. Earlier studies established that native AH and PH display strict specificities toward their respective glucosidic substrates. Such behavior was also shown by recombinant AH1, PH2, and PH4 proteins after expression in Pichia pastoris. Three amino acid moieties that may play a role in conferring such aglycone specificities were predicted by structural modeling and comparative sequence analysis and tested by introducing single and multiple mutations into isoform AH1 by site-directed mutagenesis. The double mutant AH ID (Y200I and G394D) hydrolyzed prunasin at approximately 150% of the rate of amygdalin hydrolysis, whereas the other mutations failed to engender PH activity. PMID:12114579

  8. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105.

    PubMed

    Germane, Katherine L; Servinsky, Matthew D; Gerlach, Elliot S; Sund, Christian J; Hurley, Margaret M

    2015-08-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  9. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    PubMed

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. PMID:27256986

  10. Biosynthesis, glycosylation, and intracellular transport of intestinal lactase-phlorizin hydrolase in rat.

    PubMed

    Büller, H A; Montgomery, R K; Sasak, W V; Grand, R J

    1987-12-15

    The biosynthesis of rat intestinal lactase-phlorizin hydrolase was studied by pulse-labeling of jejunal explants from 5-day-old suckling rats in organ culture. Explants were either continuously labeled with [35S] methionine for 15, 30, and 60 min or pulse-labeled for 30 min and chased for various periods of time up to 6 h in the presence or absence of protease inhibitors (PI), leupeptin, phenylmethylsulfonyl fluoride, and soybean trypsin inhibitor. Lactase-phlorizin hydrolase was immunoprecipitated from microvillus membrane (MVM) and ER-Golgi fractions with monoclonal antibodies. After pulse-labeling, lactase-phlorizin hydrolase from the ER-Golgi fraction appeared on SDS-PAGE as one band of approximately 220 kDa, regardless of the presence or absence of PI in the culture media. The 220-kDa protein band could also be labeled after incubation with [2-3H]mannose. In the absence of PI, the 220-kDa band appeared in the MVM by 30 min chase, simultaneously with a 180-kDa band, and by 60 min of chase an additional band of 130 kDa was seen. With increasing time of chase, the relative intensity of the 130-kDa band increased, whereas that of the 220-kDa band decreased, suggesting a precursor-product relationship. When PI were added to the medium, the formation of the 180-kDa band was not affected, but the conversion of the 180-kDa protein to the 130-kDa protein was virtually blocked. These findings suggest that lactase-phlorizin hydrolase is initially synthesized as a glycosylated precursor of 220 kDa, which is transported to the MVM. There it undergoes the following two cleavages: first, to the 180-kDa form, which is not prevented by PI used in these experiments, and second, to the 130-kDa form inhibited by PI. PMID:3119597

  11. Dual roles of brain serine hydrolase KIAA1363 in ether lipid metabolism and organophosphate detoxification

    SciTech Connect

    Nomura, Daniel K.; Fujioka, Kazutoshi; Issa, Roger S.; Ward, Anna M.; Cravatt, Benjamin F.; Casida, John E.

    2008-04-01

    Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC{sub 50} 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although there was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.

  12. Hydrolysis of VX and related compounds by organophosphorus hydrolase. Final report, Februray-December 1993

    SciTech Connect

    Kolakowski, J.E.; DeFrank, J.J.; Lai, K.; Wild, J.R.

    1995-11-01

    Organophosphorus Hydrolase (OPH) is a fully characterized and cloned enzyme, derived from Pseudomonas diminuta, consisting of 365 amino acids with a total molecular weight of 38,0(X). The enzyme has a leader sequence of 29 amino acids which has been removed in the construction used in this study. OPH was evaluated for its effectiveness in catalyzing the S-(2-diisopwpylaminoethyl) methylphosphonothioate (VX) and its analogs.

  13. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    PubMed Central

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  14. Phosphonoacetate hydrolase from Penicillium oxalicum: purification and properties, phosphate starvation-independent expression, and partial sequencing.

    PubMed

    Klimek-Ochab, Magdalena; Raucci, Giuseppe; Lejczak, Barbara; Forlani, Giuseppe

    2006-03-01

    The enzyme responsible for the hydrolysis of phosphonoacetic acid, a non-biogenic C-P compound, was purified to electrophoretic homogeneity from a wild-type strain of Penicillium oxalicum. A 50-fold enrichment was obtained by a combination of anion exchange, hydrophobic interaction and MonoQ-fast protein liquid chromatography, with a yield of one-third of the initial activity. A characterization of the protein showed both similarities and differences with respect to the well-characterized bacterial counterpart. The fungal phosphonoacetate hydrolase is a 43-kDa monomeric protein showing low affinity toward its substrate and high sensitivity to even mildly acidic pH values. Enzyme activity neither required nor was stimulated by the presence of divalent cations. Polyclonal antibodies were raised in mouse against the purified protein, allowing the study of enzyme induction as a function of the phosphate status of the cell. Peptide mass mapping led to the determination of about 20% of the primary structure. Despite the biochemical differences, amino acid alignment showed a high degree of similarity of the fungal hydrolase with the few sequences available to date for the bacterial enzyme. The possible physiological role of a phosphonoacetate hydrolase is discussed. PMID:16129582

  15. Characterization of tunable piperidine and piperazine carbamates as inhibitors of endocannabinoid hydrolases

    PubMed Central

    Long, Jonathan Z.; Jin, Xin; Adibekian, Alexander; Li, Weiwei; Cravatt, Benjamin F.

    2010-01-01

    Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) are two enzymes from the serine hydrolase superfamily that degrade the endocannabinoids 2-arachidonoylglycerol and anandamide, respectively. We have recently discovered that MAGL and FAAH are both inhibited by carbamates bearing an N-piperidine/piperazine group. Piperidine/piperazine carbamates show excellent in vivo activity, raising brain endocannabinoid levels and producing CB1-dependent behavioral effects in mice, suggesting that they represent a promising class of inhibitors for studying the endogenous functions of MAGL and FAAH. Herein, we disclose a full account of the syntheses, structure-activity relationships, and inhibitory activities of piperidine/piperazine carbamates against members of the serine hydrolase family. These scaffolds can be tuned for MAGL-selective or dual MAGL-FAAH inhibition by the attachment of an appropriately substituted bisarylcarbinol or aryloxybenzyl moiety, respectively, on the piperidine/piperazine ring. Modifications to the piperidine/piperazine ring ablated inhibitory activity, suggesting a strict requirement for a six-member ring to maintain potency. PMID:20099888

  16. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases

    DOE PAGESBeta

    Chen, Mo; Bu, Lintao; Alahuhta, Markus; Brunecky, Roman; Xu, Qi; Lunin, Vladimir V.; Brady, John W.; Crowley, Michael F.; Himmel, Michael E.; Bomble, Yannick J.

    2016-02-01

    Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the productmore » inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. As a result, the theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.« less

  17. Identification of Neutral Cholesterol Ester Hydrolase, a Key Enzyme Removing Cholesterol from Macrophages*S⃞

    PubMed Central

    Okazaki, Hiroaki; Igarashi, Masaki; Nishi, Makiko; Sekiya, Motohiro; Tajima, Makiko; Takase, Satoru; Takanashi, Mikio; Ohta, Keisuke; Tamura, Yoshiaki; Okazaki, Sachiko; Yahagi, Naoya; Ohashi, Ken; Amemiya-Kudo, Michiyo; Nakagawa, Yoshimi; Nagai, Ryozo; Kadowaki, Takashi; Osuga, Jun-ichi; Ishibashi, Shun

    2008-01-01

    Unstable lipid-rich plaques in atherosclerosis are characterized by the accumulation of macrophage foam cells loaded with cholesterol ester (CE). Although hormone-sensitive lipase and cholesteryl ester hydrolase (CEH) have been proposed to mediate the hydrolysis of CE in macrophages, circumstantial evidence suggests the presence of other enzymes with neutral cholesterol ester hydrolase (nCEH) activity. Here we show that the murine orthologue of KIAA1363, designated as neutral cholesterol ester hydrolase (NCEH), is a microsomal nCEH with high expression in murine and human macrophages. The effect of various concentrations of NaCl on its nCEH activity resembles that on endogenous nCEH activity of macrophages. RNA silencing of NCEH decreases nCEH activity at least by 50%; conversely, its overexpression inhibits the CE formation in macrophages. Immunohistochemistry reveals that NCEH is expressed in macrophage foam cells in atherosclerotic lesions. These data indicate that NCEH is responsible for a major part of nCEH activity in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis. PMID:18782767

  18. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  19. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases.

    PubMed Central

    Henrissat, B; Callebaut, I; Fabrega, S; Lehn, P; Mornon, J P; Davies, G

    1995-01-01

    The regions surrounding the catalytic amino acids previously identified in a few "retaining" O-glycosyl hydrolases (EC 3.2.1) have been analyzed by hydrophobic cluster analysis and have been used to define sequence motifs. These motifs have been found in more than 150 glycosyl hydrolase sequences representing at least eight established protein families that act on a large variety of substrates. This allows the localization and the precise role of the catalytic residues (nucleophile and acid catalyst) to be predicted for each of these enzymes, including several lysosomal glycosidases. An identical arrangement of the catalytic nucleophile was also found for S-glycosyl hydrolases (myrosinases; EC 3.2.3.1) for which the acid catalyst is lacking. A (beta/alpha)8 barrel structure has been reported for two of the eight families of proteins that have been grouped. It is suggested that the six other families also share this fold at their catalytic domain. These enzymes illustrate how evolutionary events led to a wide diversification of substrate specificity with a similar disposition of identical catalytic residues onto the same ancestral (beta/alpha)8 barrel structure. Images Fig. 1 PMID:7624375

  20. Properties of a β-(1→4)-glucan hydrolase from Aspergillus niger

    PubMed Central

    Clarke, A. E.; Stone, B. A.

    1965-01-01

    1. A β-(1→4)-glucan hydrolase prepared from Aspergillus niger, as described by Clarke & Stone (1965a), showed a pH optimum in the range 4·5–6 and Km 0·25% when acting on a cellulose dextrin sulphate substrate. 2. The hydrolase rapidly decreased the specific viscosity of carboxymethylcellulose with a small increase in the production of reducing sugars. The identity of the products of hydrolysis of cellotetraose, cellopentaose and their reduced analogues indicate a preferential cleavage of non-terminal glucosidic linkages. The enzyme may be described as β-(1→4)-glucan 4-glucanohydrolase (EC 3.2.1.4). 3. In addition to carboxymethylcellulose, cellulose dextrins, cellopentaose and cellotetraose the enzyme fraction hydrolysed lichenin, oat and barley glucans, ivory-nut mannan and a glucomannan from Konjak flour. No hydrolysis of wheat-straw β-(1→4)-xylan, Lupinus albus β-(1→4)-galactan, pneumococcal type III polysaccharide, chitin, hyaluronic acid, laminarin, pachydextrins, carboxymethylpachyman or β-(1→3)-oligoglucosides was detected. 4. The hydrolase showed no transglycosylase activity from cellodextrin or cellopentaose substrates to glucose or methanol acceptors. 5. The hydrolysis of cellodextrins was inhibited completely by 1·0mm-Hg2+, 0·7mm-phenylmercuric nitrate and 1·0mm-iodine. PMID:5862418

  1. Properties of a beta-(1-4)-glucan hydrolase from Aspergillus niger.

    PubMed

    Clarke, A E; Stone, B A

    1965-09-01

    1. A beta-(1-->4)-glucan hydrolase prepared from Aspergillus niger, as described by Clarke & Stone (1965a), showed a pH optimum in the range 4.5-6 and K(m) 0.25% when acting on a cellulose dextrin sulphate substrate. 2. The hydrolase rapidly decreased the specific viscosity of carboxymethylcellulose with a small increase in the production of reducing sugars. The identity of the products of hydrolysis of cellotetraose, cellopentaose and their reduced analogues indicate a preferential cleavage of non-terminal glucosidic linkages. The enzyme may be described as beta-(1-->4)-glucan 4-glucanohydrolase (EC 3.2.1.4). 3. In addition to carboxymethylcellulose, cellulose dextrins, cellopentaose and cellotetraose the enzyme fraction hydrolysed lichenin, oat and barley glucans, ivory-nut mannan and a glucomannan from Konjak flour. No hydrolysis of wheat-straw beta-(1-->4)-xylan, Lupinus albus beta-(1-->4)-galactan, pneumococcal type III polysaccharide, chitin, hyaluronic acid, laminarin, pachydextrins, carboxymethylpachyman or beta-(1-->3)-oligoglucosides was detected. 4. The hydrolase showed no transglycosylase activity from cellodextrin or cellopentaose substrates to glucose or methanol acceptors. 5. The hydrolysis of cellodextrins was inhibited completely by 1.0mm-Hg(2+), 0.7mm-phenylmercuric nitrate and 1.0mm-iodine. PMID:5862418

  2. Inhibition of Diabrotica Larval Growth by Patatin, the Lipid Acyl Hydrolase from Potato Tubers.

    PubMed Central

    Strickland, J. A.; Orr, G. L.; Walsh, T. A.

    1995-01-01

    Patatin, the nonspecific lipid acyl hydrolase from potato (Solanum tuberosum L.) tubers, dose-dependently inhibits the growth of southern corn rootworm (SCR) and western corn rootworm when fed to them on artificial diet. The 50% growth reduction levels are somewhat cultivar dependent, ranging from 60 to 150 [mu]g/g diet for neonate SCR larvae. A single patatin isoform also inhibits larval growth. Neonate SCR continuously exposed to patatin are halted in larval development. Treatment with di-isopropylfluorophosphate essentially eliminates patatin's phospholipase, galactolipase, and acyl hydrolase activities. SCR growth inhibition is eliminated also, indicating that patatin's serine hydrolase activity is responsible for the observed activities. Patatin-mediated phospholipolysis is highly pH and cultivar dependent, with specific activities up to 300-fold less at pH 5.5 than at pH 8.5. Esterase or phospholipase activities do not correlate with insect growth inhibition. Galactolipase activity, being cultivar and pH independent, correlates significantly with SCR growth inhibition. Insect-growth inhibition of patatin is significantly reduced with increased dietary cholesterol levels. In conclusion, patatin represents a new class of insect-control proteins with a novel mode of action possibly involving lipid metabolism. PMID:12228621

  3. Inhibition of Diabrotica Larval Growth by Patatin, the Lipid Acyl Hydrolase from Potato Tubers.

    PubMed

    Strickland, J. A.; Orr, G. L.; Walsh, T. A.

    1995-10-01

    Patatin, the nonspecific lipid acyl hydrolase from potato (Solanum tuberosum L.) tubers, dose-dependently inhibits the growth of southern corn rootworm (SCR) and western corn rootworm when fed to them on artificial diet. The 50% growth reduction levels are somewhat cultivar dependent, ranging from 60 to 150 [mu]g/g diet for neonate SCR larvae. A single patatin isoform also inhibits larval growth. Neonate SCR continuously exposed to patatin are halted in larval development. Treatment with di-isopropylfluorophosphate essentially eliminates patatin's phospholipase, galactolipase, and acyl hydrolase activities. SCR growth inhibition is eliminated also, indicating that patatin's serine hydrolase activity is responsible for the observed activities. Patatin-mediated phospholipolysis is highly pH and cultivar dependent, with specific activities up to 300-fold less at pH 5.5 than at pH 8.5. Esterase or phospholipase activities do not correlate with insect growth inhibition. Galactolipase activity, being cultivar and pH independent, correlates significantly with SCR growth inhibition. Insect-growth inhibition of patatin is significantly reduced with increased dietary cholesterol levels. In conclusion, patatin represents a new class of insect-control proteins with a novel mode of action possibly involving lipid metabolism. PMID:12228621

  4. Probiotic characterization of potential hydrolases producing Lactococcus lactis subsp. lactis isolated from pickled yam.

    PubMed

    Bhanwar, Seema; Singh, Arashdeep; Ganguli, Abhijit

    2014-02-01

    The aim of this study was to characterize potential probiotic strain co-producing α-amylase and β-galactosidase. Sixty-three strains, isolated from pickle samples were screened for their hydrolase producing capacity by utilizing different starches as carbon source. One out of 63 strains, isolated from traditionally fermented pickled yam showing maximum hydrolase activity (α-amylase (36.9 U/ml) and β-galactosidase (42.6 U/ml)) within a period of 48 hours was identified as Lactococcus lactis subsp. lactis. Further, it was assessed for the probiotic characteristics under gastrointestinal conditions like acidic, alkaline, proteolytic enzymes, bile stress and found to exhibit tolerance to these stresses. The therapeutic potential of the isolate is implicated because of its antagonistic effect against enteric foodborne pathogens (Salmonella typhimurium, Escherichia coli 0157:H7, Staphylococcus aureus, Yersinia enterocolitica and Aeromonas hydrophila). The results of this study entail a potential applicability of the isolate in developing future probiotic foods besides the production of industrially significant hydrolases. PMID:24020495

  5. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis

    SciTech Connect

    Lack, Nathan; Lowe, Edward D.; Liu, Jie; Eltis, Lindsay D.; Noble, Martin E. M.; Sim, Edith; Westwood, Isaac M.

    2008-01-01

    The structure of HsaD, a carbon–carbon bond serine hydrolase involved in steroid catabolism that is critical for the survival of M. tuberculosis inside human macrophages, has been solved by X-ray crystallography. Data were collected at the Diamond Light Source in Oxfordshire, England: this paper describes one of the first structures determined at the new synchrotron. Tuberculosis is a major cause of death worldwide. Understanding of the pathogenicity of Mycobacterium tuberculosis has been advanced by gene analysis and has led to the identification of genes that are important for intracellular survival in macrophages. One of these genes encodes HsaD, a meta-cleavage product (MCP) hydrolase that catalyzes the hydrolytic cleavage of a carbon–carbon bond in cholesterol metabolism. This paper describes the production of HsaD as a recombinant protein and, following crystallization, the determination of its three-dimensional structure to 2.35 Å resolution by X-ray crystallography at the Diamond Light Source in Oxfordshire, England. To the authors’ knowledge, this study constitutes the first report of a structure determined at the new synchrotron facility. The volume of the active-site cleft of the HsaD enzyme is more than double the corresponding active-site volumes of related MCP hydrolases involved in the catabolism of aromatic compounds, consistent with the specificity of HsaD for steroids such as cholesterol. Knowledge of the structure of the enzyme facilitates the design of inhibitors.

  6. Functions, structures, and applications of cellobiose 2-epimerase and glycoside hydrolase family 130 mannoside phosphorylases.

    PubMed

    Saburi, Wataru

    2016-07-01

    Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide. PMID:27031293

  7. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    SciTech Connect

    Brzezinski, Krzysztof; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  8. Synergistic action modes of arabinan degradation by exo- and endo-arabinosyl hydrolases.

    PubMed

    Park, Jung-Mi; Jang, Myoung-Uoon; Oh, Gyo Won; Lee, Eun-Hee; Kang, Jung-Hyun; Song, Yeong-Bok; Han, Nam Soo; Kim, Tae-Jip

    2015-02-01

    Two recombinant arabinosyl hydrolases, α-L-arabinofuranosidase from Geobacillus sp. KCTC 3012 (GAFase) and endo-(1,5)-α-L-arabinanase from Bacillus licheniformis DSM13 (BlABNase), were overexpressed in Escherichia coli, and their synergistic modes of action against sugar beet (branched) arabinan were investigated. Whereas GAFase hydrolyzed 35.9% of L-arabinose residues from sugar beet (branched) arabinan, endo-action of BlABNase released only 0.5% of L-arabinose owing to its extremely low accessibility towards branched arabinan. Interestingly, the simultaneous treatment of GAFase and BlABNase could liberate approximately 91.2% of L-arabinose from arabinan, which was significantly higher than any single exo-enzyme treatment (35.9%) or even stepwise exo- after endo-enzyme treatment (75.5%). Based on their unique modes of action, both exo- and endo-arabinosyl hydrolases can work in concert to catalyze the hydrolysis of arabinan to L-arabinose. At the early stage in arabinan degradation, exo-acting GAFase could remove the terminal arabinose branches to generate debranched arabinan, which could be successively hydrolyzed into arabinooligosaccharides via the endoaction of BlABNase. At the final stage, the simultaneous actions of exo- and endo-hydrolases could synergistically accelerate the L-arabinose production with high conversion yield. PMID:25433551

  9. A novel nucleoside hydrolase from Lactobacillus buchneri LBK78 catalyzing hydrolysis of 2'-O-methylribonucleosides.

    PubMed

    Mitsukawa, Yuuki; Hibi, Makoto; Matsutani, Narihiro; Horinouchi, Nobuyuki; Takahashi, Satomi; Ogawa, Jun

    2016-08-01

    2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2'-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2'-O-methyluridine (2'-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2'-OMe-UR to 2'-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s(-1), and kcat/Km of 12 mM(-1) s(-1). In a substrate specificity analysis, LbNH preferred ribonucleosides and 2'-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2'-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes. PMID:27180876

  10. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.

    PubMed

    Sun, Pengfei; Leeson, Cristian; Zhi, Xiaoduo; Leng, Fenfei; Pierce, Richard H; Henry, Michael S; Rein, Kathleen S

    2016-02-01

    Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis. PMID:26626160

  11. Esterase SeE of Streptococcus equi ssp. equi is a Novel Non-specific Carboxylic Ester Hydrolase

    PubMed Central

    Xie, Gang; Liu, Mengyao; Zhu, Hui; Lei, Benfang

    2009-01-01

    Extracellular carboxylic ester hydrolases are produced by many bacterial pathogens and have been shown recently to be important for virulence of some pathogens. However, these hydrolases are poorly characterized in enzymatic activity. This study prepared and characterized the secreted ester hydrolase of Streptococcus equi ssp. equi (designated SeE for S. equi esterase). SeE hydrolyzes ethyl acetate, acetylsalicylic acid, and tributyrin but not ethyl butyrate. This substrate specificity pattern does not match those of the three conventional types of non-specific carboxylic ester hydrolases (carboxylesterases, arylesterases, and acetylesterases). To determine whether SeE has lipase activity, a number of triglycerides and vinyl esters were tested in SeE-catalyzed hydrolysis. SeE does not hydrolyze triglycerides and vinyl esters of long chain carboxylic acids nor display interfacial activation, indicating that SeE is not a lipase. Like the conventional carboxylesterases, SeE is inhibited by diisopropylfluorophosphate. These findings indicate that SeE is a novel non-specific carboxylic ester hydrolase that has broader substrate specificity than the conventional carboxylesterases. PMID:19054107

  12. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    NASA Astrophysics Data System (ADS)

    Legler, Patricia; Boisvert, Susanne; Compton, Jaimee; Millard, Charles

    2014-07-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine O?. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. pNBE was tested as a surrogate scaffold for mammalian esterases. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1. We discuss the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases.

  13. Haloalkylphosphorus Hydrolases Purified from Sphingomonas sp. Strain TDK1 and Sphingobium sp. Strain TCM1

    PubMed Central

    Yoshida, Satoshi; Suzuki, Yuto; Mori, Junichi; Doi, Yuka; Takahashi, Shouji; Kera, Yoshio

    2014-01-01

    Phosphotriesterases catalyze the first step of organophosphorus triester degradation. The bacterial phosphotriesterases purified and characterized to date hydrolyze mainly aryl dialkyl phosphates, such as parathion, paraoxon, and chlorpyrifos. In this study, we purified and cloned two novel phosphotriesterases from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1 that hydrolyze tri(haloalkyl)phosphates, and we named these enzymes haloalkylphosphorus hydrolases (TDK-HAD and TCM-HAD, respectively). Both HADs are monomeric proteins with molecular masses of 59.6 (TDK-HAD) and 58.4 kDa (TCM-HAD). The enzyme activities were affected by the addition of divalent cations, and inductively coupled plasma mass spectrometry analysis suggested that zinc is a native cofactor for HADs. These enzymes hydrolyzed not only chlorinated organophosphates but also a brominated organophosphate [tris(2,3-dibromopropyl) phosphate], as well as triaryl phosphates (tricresyl and triphenyl phosphates). Paraoxon-methyl and paraoxon were efficiently degraded by TCM-HAD, whereas TDK-HAD showed weak activity toward these substrates. Dichlorvos was degraded only by TCM-HAD. The enzymes displayed weak or no activity against trialkyl phosphates and organophosphorothioates. The TCM-HAD and TDK-HAD genes were cloned and found to encode proteins of 583 and 574 amino acid residues, respectively. The primary structures of TCM-HAD and TDK-HAD were very similar, and the enzymes also shared sequence similarity with fenitrothion hydrolase (FedA) of Burkholderia sp. strain NF100 and organophosphorus hydrolase (OphB) of Burkholderia sp. strain JBA3. However, the substrate specificities and quaternary structures of the HADs were largely different from those of FedA and OphB. These results show that HADs from sphingomonads are novel members of the bacterial phosphotriesterase family. PMID:25038092

  14. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms

    PubMed Central

    Baker, Perrin; Hill, Preston J.; Snarr, Brendan D.; Alnabelseya, Noor; Pestrak, Matthew J.; Lee, Mark J.; Jennings, Laura K.; Tam, John; Melnyk, Roman A.; Parsek, Matthew R.; Sheppard, Donald C.; Wozniak, Daniel J.; Howell, P. Lynne

    2016-01-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics. PMID:27386527

  15. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE PAGESBeta

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; Taylor, II, Larry E.; Hobdey, Sarah E.; Sammond, Deanne W.; Bomble, Yannick J.; Crowley, Michael F.; Decker, Stephen R.; Himmel, Michael E.; et al

    2015-12-18

    In this study, non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall.

  16. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH).

    PubMed

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Romagnoli, Romeo; Martinelli, Adriano; Tuccinardi, Tiziano

    2015-06-01

    Fatty acid amide hydrolase (FAAH) inhibitors have gained attention as potential therapeutic targets in the management of neuropathic pain. Here, we report a series of pyrazole phenylcyclohexylcarbamate derivatives standing on the known carbamoyl FAAH inhibitor URB597. Structural modifications led to the recognition of compound 22 that inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM). The most active compounds of this series showed significant selectivity toward monoacylglycerol lipase (MAGL) enzyme. In addition, molecular modeling and reversibility behavior of the new class of FAAH inhibitors are presented in this article. PMID:26002335

  17. Novel glycoside hydrolases identified by screening a Chinese Holstein dairy cow rumen-derived metagenome library.

    PubMed

    Zhao, Shengguo; Wang, Jiaqi; Bu, Dengpan; Liu, Kailang; Zhu, Yaxin; Dong, Zhiyang; Yu, Zhongtang

    2010-10-01

    One clone encoding glycoside hydrolases was identified through functional screening of a rumen bacterial artificial chromosome (BAC) library. Of the 68 open reading frames (ORFs) predicted, one ORF encodes a novel endo-β-1,4-xylanase with two catalytic domains of family GH43 and two cellulose-binding modules (CBMs) of family IV. Partial characterization showed that this endo-xylanase has a greater specific activity than a number of other xylanases over a wide temperature range at neutral pH and could be useful in some industrial applications. PMID:20709844

  18. Cloning and analysis of bile salt hydrolase genes from Lactobacillus plantarum CGMCC No. 8198.

    PubMed

    Gu, Xiang-Chao; Luo, Xue-Gang; Wang, Chong-Xi; Ma, De-Yun; Wang, Yan; He, Ying-Ying; Li, Wen; Zhou, Hao; Zhang, Tong-Cun

    2014-05-01

    Genes coding for bile salt hydrolase of Lactobacillus plantarum CGMCC 8198, a novel probiotic strain isolated from silage, were identified, analyzed and cloned. L. plantarum strongly resisted the inhibitory effects of bile salts and also decreased serum cholesterol levels by 20% in mice with hypercholesterolemia. Using RT-PCR analysis, bsh2, bsh3 and bsh4 were upregulated by bile salts in a dose-dependent manner. All three bsh genes had high similarity with those of other Lactobacillus strains. All three recombinant BSHs had high activities for the hydrolysis of glycodeoxycholic acids and taurodeoxycholic acids. PMID:24375235

  19. Detection and determination of lipase (acylglycerol hydrolase) activity from various sources.

    PubMed

    Jensen, R G

    1983-09-01

    Methods for the detection and determination of lipases (acylglycerol hydrolases) and preparation of assays are reviewed including substrates, conditions and screening. Some newer methods for the determination of lipase activity are discussed. Several of these are: (a) titrimetry, (b) colorimetry of Cu soaps of free fatty acids (FFA), (c) colorimetry of chromophores in the acyl chain of FFA or in glycerol, (d) radioassay, (e) gas liquid chromatography, (f) enzymatic treatment of FFA and measurement of the resulting products, and (g) direct immunological determination of the lipase. Examples and sensitivities are given and advantages and disadvantages are described. PMID:6633171

  20. Radiometric assay of ghrelin hydrolase activity and 3H-ghrelin distribution into mouse tissues.

    PubMed

    Chen, Vicky Ping; Gao, Yang; Geng, Liyi; Brimijoin, Stephen

    2015-12-15

    A high-throughput radiometric assay was developed to characterize enzymatic hydrolysis of ghrelin and to track the peptide's fate in vivo. The assay is based on solvent partitioning of [(3)H]-octanoic acid liberated from [(3)H]-octanoyl ghrelin during enzymatic hydrolysis. This simple and cost-effective method facilitates kinetic analysis of ghrelin hydrolase activity of native and mutated butyrylcholinesterases or carboxylesterases from multiple species. In addition, the assay's high sensitivity facilitates ready evaluation of ghrelin's pharmacokinetics and tissue distribution in mice after i.v. bolus administration of radiolabeled peptide. PMID:26514871

  1. Characterization of organophosphorus hydrolases and the genetic manipulation of the phosphotriesterase from pseudomonas diminuta

    SciTech Connect

    Dave, K.I.; Miller, C.E.; Wild, J.R.

    1993-12-31

    There are a variety of enzymes which are specifically capable of hydrolyzing organophosphorus esters with different phosphoryl bonds from the typical phosphotriester bonds of common insecticidal neurotoxins (e.g. paraoxon or coumaphos) to the phosphonate-fluoride bonds of chemical warfare agents (e.g. soman or sarin). These enzymes comprise a diverse set of enzymes whose basic architecture and substrate specificities vary dramatically, yet they appear to be ubiquitous throughout nature. The most thoroughly studied of these enzymes is the organophosphate hydrolase (opd gene product) of Pseudomonas diminuta and Ftavobacterium sp. ATCC 27551, and the heterologous expression, post-translational modification, and genetic engineering studies undertaken with this enzyme are described.

  2. Expression and purification of an engineered, yeast-expressed Leishmania donovani nucleoside hydrolase with immunogenic properties.

    PubMed

    Hudspeth, Elissa M; Wang, Qian; Seid, Christopher A; Hammond, Molly; Wei, Junfei; Liu, Zhuyun; Zhan, Bin; Pollet, Jeroen; Heffernan, Michael J; McAtee, C Patrick; Engler, David A; Matsunami, Risë K; Strych, Ulrich; Asojo, Oluwatoyin A; Hotez, Peter J; Bottazzi, Maria Elena

    2016-07-01

    Leishmania donovani is the major cause of visceral leishmaniasis (kala-azar), now recognized as the parasitic disease with the highest level of mortality second only to malaria. No human vaccine is currently available. A 36 kDa L. donovani nucleoside hydrolase (LdNH36) surface protein has been previously identified as a potential vaccine candidate antigen. Here we present data on the expression of LdNH36 in Pichia pastoris and its purification at the 20 L scale to establish suitability for future pilot scale manufacturing. To improve efficiency of process development and ensure reproducibility, 4 N-linked glycosylation sites shown to contribute to heterogeneous high-mannose glycosylation were mutated to glutamine residues. The mutant LdNH36 (LdNH36-dg2) was expressed and purified to homogeneity. Size exclusion chromatography and light scattering demonstrated that LdNH36-dg2 existed as a tetramer in solution, similar to the wild-type recombinant L. major nucleoside hydrolase. The amino acid mutations do not affect the tetrameric interface as confirmed by theoretical modeling, and the mutated amino acids are located outside the major immunogenic domain. Immunogenic properties of the LdNH36-dg2 recombinant protein were evaluated in BALB/c mice using formulations that included a synthetic CpG oligodeoxynucleotide, together with a microparticle delivery platform (poly(lactic-co-glycolic acid)). Mice exhibited high levels of IgG1, IgG2a, and IgG2b antibodies that were reactive to both LdNH36-dg2 and LdNH36 wild-type. While the point mutations did affect the hydrolase activity of the enzyme, the IgG antibodies elicited by LdNH36-dg2 were shown to inhibit the hydrolase activity of the wild-type LdNH36. The results indicate that LdNH36-dg2 as expressed in and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing in support of future first-in-humans phase 1 clinical trials. PMID:26839079

  3. Discovery of MK-3168: A PET Tracer for Imaging Brain Fatty Acid Amide Hydrolase.

    PubMed

    Liu, Ping; Hamill, Terence G; Chioda, Marc; Chobanian, Harry; Fung, Selena; Guo, Yan; Chang, Linda; Bakshi, Raman; Hong, Qingmei; Dellureficio, James; Lin, Linus S; Abbadie, Catherine; Alexander, Jessica; Jin, Hong; Mandala, Suzanne; Shiao, Lin-Lin; Li, Wenping; Sanabria, Sandra; Williams, David; Zeng, Zhizhen; Hajdu, Richard; Jochnowitz, Nina; Rosenbach, Mark; Karanam, Bindhu; Madeira, Maria; Salituro, Gino; Powell, Joyce; Xu, Ling; Terebetski, Jenna L; Leone, Joseph F; Miller, Patricia; Cook, Jacquelynn; Holahan, Marie; Joshi, Aniket; O'Malley, Stacey; Purcell, Mona; Posavec, Diane; Chen, Tsing-Bau; Riffel, Kerry; Williams, Mangay; Hargreaves, Richard; Sullivan, Kathleen A; Nargund, Ravi P; DeVita, Robert J

    2013-06-13

    We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain. PMID:24900701

  4. Biosensing Paraoxon in Simulated Environmental Samples by Immobilized Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Lei, Chenghong; Valenta, Michelle M.; Saripalli, Prasad; Ackerman, Eric J.

    2007-01-01

    There is a critical need for highly sensitive, cost-effective sensors to conduct ecological analyses for environmental and homeland security related applications. We report here on a method which significantly overcomes this difficulty, and demonstrate its application in a biosensor for aquatic environmental applications. A fast-responding and stable biosensor was developed via immobilization of organophosphorus hydrolase (OPH) in functionalized mesoporous silica (FMS) with pore sizes in tens of nanometers. The sensor was tested for detection of paraoxon in simulated environmental samples, under wide ranging physico-chemical conditions.

  5. The effects of repeated administration of camphor-crataegus berry extract combination on blood pressure and on attentional performance - a randomized, placebo-controlled, double-blind study.

    PubMed

    Erfurt, L; Schandry, R; Rubenbauer, S; Braun, U

    2014-09-25

    The present study investigated the effects of repeated administration of Korodin(®), a combination of camphor and crataegus berry extract, on blood pressure and attentional functioning. This study was conducted based on a randomized, placebo-controlled, double-blind design. 54 persons participated (33 female, 21 male) with a mean age of 24.3 years. Blood pressure and body mass index were in the normal range. Participants received 20 drops of either Korodin(®) or a placebo for four times with interjacent time intervals of about 10 min. Blood pressure was measured sphygmomanometrically before and after each administration. Attentional performance was quantified by using two paper-and-pencil tests, the d2 Test of Attention and Digit Symbol Test. Greater increases in blood pressure occurred after the four Korodin(®) administrations in comparison to the four placebo administrations. The performance in two parameters of d2 Test of Attention was consistently superior after the intake of Korodin(®). The excellent tolerability and safety of Korodin(®), even after a total consumption of 80 drops, was confirmed. PMID:25172798

  6. Optical and time-resolved electron paramagnetic resonance studies of the excited states of a UV-B absorber (4-methylbenzylidene)camphor.

    PubMed

    Kikuchi, Azusa; Shibata, Kenji; Kumasaka, Ryo; Yagi, Mikio

    2013-02-21

    The excited states of UV-B absorber (4-methylbenzylidene)camphor (MBC) have been studied through measurements of UV absorption, phosphorescence, triplet-triplet (T-T) absorption, and steady-state and time-resolved electron paramagnetic resonance spectra in ethanol. The energy level and lifetime of the lowest excited triplet (T(1)) state of MBC were determined. The energy level of the T(1) state of MBC is much lower than that of photolabile 4-tert-butyl-4'-methoxydibenzoylmethane. The weak phosphorescence and strong time-resolved EPR signals, and T-T absorption band of MBC were observed. These facts suggest that the significant proportion of the lowest excited singlet (S(1)) molecules undergoes intersystem crossing to the T(1) state and the deactivation process from the T(1) state is predominantly radiationless. The quantum yields of singlet oxygen production by MBC determined by time-resolved near-IR luminescence measurements are 0.05 ± 0.01 and 0.06 ± 0.01 in ethanol and in acetonitrile, respectively. The photostability of MBC arises from the (3)ππ* character in the T(1) state. The zero-field splitting parameters in the T(1) state are D = 0.0901 cm(-1) and E = -0.0498 cm(-1). The sublevel preferentially populated by intersystem crossing is T(y) (y close to in-plane short axis and to the C═O direction). PMID:23320917

  7. Impact of 4-methylbenzylidene-camphor (4-MBC) during embryonic and fetal development in the neuroendocrine regulation of testicular axis in prepubertal and peripubertal male rats.

    PubMed

    Carou, M E; Szwarcfarb, B; Deguiz, M L; Reynoso, R; Carbone, S; Moguilevsky, J A; Scacchi, P; Ponzo, O J

    2009-10-01

    4-Methylbenzylidene-camphor (4-MBC), an UV-B ray filter, belongs to the endocrine disrupters involved with alterations in the reproductive axis. Our target was to study the effect of 4-MBC on the neuroendocrine parameters that regulate reproduction in prepubertal and peripubertal male rats, which received this disrupter during embryonic and fetal development. 4-MBC was administered (sc) to female rats since pregnancy onset in doses of 20, 100 and 500 mg/kg/day. The litters were sacrificed at 15 or 30 days old to determine testicular weight, gonadotropin and prolactin serum levels and also GnRH and amino acids release from the hypothalamus. The exposure to 20 mg/kg/day only increased the LH serum levels in 30-day-old males. Doses of 100 and 500 mg/kg/day caused a decrease in testicular weight and in LH, GnRH and glutamate levels, in prepubertal rats (15-day-old specimens), and an increase in, gonadotropin (LH and FSH) con-centration and aspartate levels in peripubertal rats (30-day-old specimens), without changes in testicular weight. Prolactinaemia remained unaltered in all groups. Results obtained show that the administration of high doses of 4-MBC during embryonic and fetal stage inhibits the testicular axis in male rats during the prepubertal stage and stimulates it during peripubertad stage. On the other hand in the case of low doses no significant effects were observed. PMID:19885997

  8. Photoallergic contact dermatitis due to combined UVB (4-methylbenzylidene camphor/octyl methoxycinnamate) and UVA (benzophenone-3/butyl methoxydibenzoylmethane) absorber sensitization.

    PubMed

    Schmidt, T; Ring, J; Abeck, D

    1998-01-01

    In a 71-year-old male Caucasian patient with persistent eczema on light-exposed skin, photocontact allergy was demonstrated to the UV filter substances 4-methylbenzylidene camphor (UVB), octyl methoxycinnamate (UVB), benzophenone-3 (UVA) and butyl methoxydibenzoylmethane (UVA) present in sunscreen products used by the patient over several years. A significantly reduced UVB sensitivity of 25 mJ/cm2 in this patient (normal minimal erythema dose in our laboratory = 70-130 mJ/cm2) was considered an early indication of a persistent light reaction. Topical anti-inflammatory treatment over 2 weeks together with consequent application of a sunscreen containing Mexoryl SX/titanium dioxide led to complete remission. Taking into account the widespread use of the above UV filter substances not only in sun protection products, but also in cosmetics such as antiaging lotions and day care products, the possible risk of allergy to these chemicals has to be taken seriously. The substitution of known photocontact sensitizers in UV filters by photostable compounds and detailed product information are the basis of preventive strategies. PMID:9621150

  9. Simultaneous existence of cinnamomin (a type II RIP) and small amount of its free A- and B-chain in mature seeds of camphor tree.

    PubMed

    Hou, Fa-Jian; Xu, Hong; Liu, Wang-Yi

    2003-04-01

    Cinnamomin, a type II ribosome-inactivating protein (RIP), was isolated from the mature seeds of camphor tree (Cinnamomum camphora). In this paper, small amount of free A- and B-chain of cinnamomin were found to be present in the mature seed cell of C. camphora besides the intact cinnamomin. Our results demonstrated that camphorin, a type I RIP previously reported to coexist with cinnamomin in the seeds of C. camphora, actually was the A-chain of cinnamomin. The percentage of free A- and B-chain in the total cinnamomin was 2.6-2.8% in the seed extract. Of these free A- and B-chain approximate 80% already existed in the seed cell, only about 20% were produced during the purification operation. As the enzymatic activity to reduce disulfide bond of cinnamomin in the seed extract of C. camphora was detected, we proposed that the free A- and B-chain were derived from the enzymatic reduction of the interchain disulfide bond of cinnamomin. It was demonstrated that the endogenous type II RIPs of several plant species, such as Cinnamomum porrectum, Cinnamomum bodinieri and Ricinus communis, could be enzymatically reduced into the free A- and B-chain in their respective seed cells. The function of the free A-chain in the seed cell and the possibility that metabolic enzymes might be involved in the reduction of the interchain disulfide bond of type II RIPs in vivo are discussed. PMID:12565707

  10. Studies of three genes encoding Cinnamomin (a type II RIP) isolated from the seeds of camphor tree and their expression patterns.

    PubMed

    Yang, Qiang; Liu, Ren-shui; Gong, Zhen-zhen; Liu, Wang-Yi

    2002-02-01

    Cinnamomin, which has three isoforms, is a type II ribosome-inactivating protein (RIP) purified from the mature seeds of camphor tree (Cinnamomum camphora). In a previous study, an incomplete cDNA that encoded the A- and B-chain of Cinnamomin but lacked signal peptide sequence was cloned. In the present paper, its full-length cDNA was obtained by 5' rapid amplification of cDNA ends (5'RACE). Subsequently, polymerase chain reaction (PCR) amplification of its genomic DNA was performed. Unexpectedly, sequence analysis of the PCR products revealed three cinnamomin genes with >98.0% sequence identity. One of them corresponded to the published cDNA and was designated as cinnamomin I, whereas the other two genes were named as cinnamomin II and cinnamomin III, respectively. RT-PCR amplification of the cDNAs of cinnamomin II and III manifested that these two genes were functional. The three genes have no intron. Three Cinnamomin precursors that were inferred from the cDNA sequence of three cinnamomin genes exhibited relatively high sequence homology with other type II RIPs. Northern blot analysis demonstrated that the cinnamomin genes only expressed in cotyledons of C. camphora seeds and the acmes of expression emerged at 75-90 DAF when seeds were close to maturity. It is proposed that the three cinnamomin genes may encode three isoforms of Cinnamomin. The physiological function of Cinnamomin in C. camphora seeds is briefly discussed. PMID:11891062

  11. In-situ and real-time investigation of the columnar-equiaxed transition in the transparent alloy system neopentylglycol-camphor onboard the sounding rocket TEXUS-47

    NASA Astrophysics Data System (ADS)

    Sturz, L.; Zimmermann, G.

    2011-12-01

    The low-gravity experiment TRACE (TRansparent Alloys in Columnar Equiaxed solidification) has been performed onboard the sounding rocket TEXUS-47 to enable the investigation of dendritic growth and the dendrites' columnar to equiaxed transition during solidification. Low-gravity conditions provide solidification under diffusive heat and mass transfer conditions and without sedimentation or buoyancy of equiaxed dendrites or nucleation seeds to simplify the boundary conditions for dendritic microstructure simulation. In addition the transparent organic alloy system Neopentylglycol (NPG) - (D)Camphor (DC) was used to allow for a real-time and in-situ observation of the microstructure evolution with standard optics. For the flight experiment all relevant experimental parameters like thermal gradient, solidification velocity and undercooling within the bulk liquid and at the columnar dendritic tips have been determined by image analysis or from thermocouple recordings within the solidifying alloy. This allows a very detailed comparison with results of existing models for dendritic growth and for columnar-to-equiaxed transition. Here we present a summary of the experimental findings in comparison with results of some of the theoretical models.

  12. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase

    PubMed Central

    2014-01-01

    Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively. PMID:24742328

  13. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    SciTech Connect

    Chou, Jyh-Ching |; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusively high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.

  14. Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Hammock, Bruce D.

    2014-01-01

    In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects. PMID:25173592

  15. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9).

    PubMed

    Bachovchin, Daniel A; Wolfe, Monique R; Masuda, Kim; Brown, Steven J; Spicer, Timothy P; Fernandez-Vega, Virneliz; Chase, Peter; Hodder, Peter S; Rosen, Hugh; Cravatt, Benjamin F

    2010-04-01

    We recently described a fluorescence polarization platform for competitive activity-based protein profiling (fluopol-ABPP) that enables high-throughput inhibitor screening for enzymes with poorly characterized biochemical activity. Here, we report the discovery of a class of oxime ester inhibitors for the unannotated serine hydrolase RBBP9 from a full-deck (200,000+ compound) fluopol-ABPP screen conducted in collaboration with the Molecular Libraries Screening Center Network (MLSCN). We show that these compounds covalently inhibit RBBP9 by modifying enzyme's active site serine nucleophile and, based on competitive ABPP in cell and tissue proteomes, are selective for RBBP9 relative to other mammalian serine hydrolases. PMID:20207142

  16. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    SciTech Connect

    Balotra, Sahil; Newman, Janet; French, Nigel G.; Briggs, Lyndall J.; Peat, Thomas S.; Scott, Colin

    2014-02-19

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P2{sub 1}, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°.

  17. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    SciTech Connect

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  18. Structural insights into the reaction mechanism of S-adenosyl-L-homocysteine hydrolase

    PubMed Central

    Kusakabe, Yoshio; Ishihara, Masaaki; Umeda, Tomonobu; Kuroda, Daisuke; Nakanishi, Masayuki; Kitade, Yukio; Gouda, Hiroaki; Nakamura, Kazuo T.; Tanaka, Nobutada

    2015-01-01

    S-adenosyl-L-homocysteine hydrolase (SAH hydrolase or SAHH) is a highly conserved enzyme that catalyses the reversible hydrolysis of SAH to L-homocysteine (HCY) and adenosine (ADO). High-resolution crystal structures have been reported for bacterial and plant SAHHs, but not mammalian SAHHs. Here, we report the first high-resolution crystal structure of mammalian SAHH (mouse SAHH) in complex with a reaction product (ADO) and with two reaction intermediate analogues—3’-keto-aristeromycin (3KA) and noraristeromycin (NRN)—at resolutions of 1.55, 1.55, and 1.65 Å. Each of the three structures constitutes a structural snapshot of one of the last three steps of the five-step process of SAH hydrolysis by SAHH. In the NRN complex, a water molecule, which is an essential substrate for ADO formation, is structurally identified for the first time as the candidate donor in a Michael addition by SAHH to the 3’-keto-4’,5’-didehydroadenosine reaction intermediate. The presence of the water molecule is consistent with the reaction mechanism proposed by Palmer & Abeles in 1979. These results provide insights into the reaction mechanism of the SAHH enzyme. PMID:26573329

  19. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion.

    PubMed

    Mellon, Jay E

    2015-08-01

    Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents) and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase) P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates. PMID:26295409

  20. Identification of the Major Prostaglandin Glycerol Ester Hydrolase in Human Cancer Cells*

    PubMed Central

    Manna, Joseph D.; Wepy, James A.; Hsu, Ku-Lung; Chang, Jae Won; Cravatt, Benjamin F.; Marnett, Lawrence J.

    2014-01-01

    Prostaglandin glycerol esters (PG-Gs) are produced as a result of the oxygenation of the endocannabinoid, 2-arachidonoylglycerol, by cyclooxygenase 2. Understanding the role that PG-Gs play in a biological setting has been difficult because of their sensitivity to enzymatic hydrolysis. By comparing PG-G hydrolysis across human cancer cell lines to serine hydrolase activities determined by activity-based protein profiling, we identified lysophospholipase A2 (LYPLA2) as a major enzyme responsible for PG-G hydrolysis. The principal role played by LYPLA2 in PGE2-G hydrolysis was confirmed by siRNA knockdown. Purified recombinant LYPLA2 hydrolyzed PG-Gs in the following order of activity: PGE2-G > PGF2α-G > PGD2-G; LYPLA2 hydrolyzed 1- but not 2-arachidonoylglycerol or arachidonoylethanolamide. Chemical inhibition of LYPLA2 in the mouse macrophage-like cell line, RAW264.7, elicited an increase in PG-G production. Our data indicate that LYPLA2 serves as a major PG-G hydrolase in human cells. Perturbation of this enzyme should enable selective modulation of PG-Gs without alterations in endocannabinoids, thereby providing a means to decipher the unique functions of PG-Gs in biology and disease. PMID:25301951

  1. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    PubMed

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects. PMID:26778207

  2. Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ

    SciTech Connect

    Hashimoto, Wataru; Ochiai, Akihito; Momma, Keiko; Itoh, Takafumi; Mikami, Bunzo; Maruyama, Yukie; Murata, Kousaku

    2009-03-27

    Glycoside hydrolase (GH) categorized into family 73 plays an important role in degrading bacterial cell wall peptidoglycan. The flagellar protein FlgJ contains N- and C-terminal domains responsible for flagellar rod assembly and peptidoglycan hydrolysis, respectively. A member of family GH-73, the C-terminal domain (SPH1045-C) of FlgJ from Sphingomonas sp. strain A1 was expressed in Escherichia coli, purified, and characterized. SPH1045-C exhibited bacterial cell lytic activity most efficiently at pH 6.0 and 37 deg. C. The X-ray crystallographic structure of SPH1045-C was determined at 1.74 A resolution by single-wavelength anomalous diffraction. The enzyme consists of two lobes, {alpha} and {beta}. A deep cleft located between the two lobes can accommodate polymer molecules, suggesting that the active site is located in the cleft. Although SPH1045-C shows a structural homology with family GH-22 and GH-23 lysozymes, the arrangement of the nucleophile/base residue in the active site is specific to each peptidoglycan hydrolase.

  3. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

    PubMed Central

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-01

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719

  4. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    SciTech Connect

    Danielsen, E.M. )

    1990-01-09

    The pig intestinal brush border enzymes aminopeptidase and lactase-phlorizin hydrolase are present in the microvilla membrane as homodimers. Dimethyl adipimidate was used to cross-link the two ({sup 35}S)methionine-labeled brush border enzymes from cultured mucosal explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a proteolytic cleavage of its high molecular weight precursor. Since only the mature form and not the precursor of this enzyme could be cross-linked, formation of tightly associated dimers only takes place after transport out of the endoplasmic reticulum. Dimerization of the two brush border enzymes therefore seems to occur in different organelles of the enterocyte.

  5. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants

    PubMed Central

    Hassett, Christopher; Aicher, Lauri; Sidhu, Jaspreet S.

    2016-01-01

    Human microsomal epoxide hydrolase (mEH) is a biotransformation enzyme that metabolizes reactive epoxide intermediates to more water-soluble trans-dihydrodiol derivatives. We compared protein-coding sequences from six full-length human mEH DNA clones and assessed potential amino acid variation at seven positions. The prevalence of these variants was assessed in at least 37 unrelated individuals using polymerase chain reaction experiments. Only Tyr/His 113 (exon 3) and His/Arg 139 (exon 4) variants were observed. The genotype frequencies determined for residue 113 alleles indicate that this locus may not be in Hardy – Weinberg equilibrium, whereas frequencies observed for residue 139 alleles were similar to expected values. Nucleotide sequences coding for the variant amino acids were constructed in an mEH cDNA using site-directed mutagenesis, and each was expressed in vitro by transient transfection of COS-1 cells. Epoxide hydrolase mRNA level, catalytic activity, and immunoreactive protein were evaluated for each construct. The results of these analyses demonstrated relatively uniform levels of mEH RNA expression between the constructs. mEH enzymatic activity and immunoreactive protein were strongly correlated, indicating that mEH specific activity was similar for each variant. However, marked differences were noted in the relative amounts of immunoreactive protein and enzymatic activity resulting from the amino acid substitutions. These data suggest that common human mEH amino acid polymorphisms may alter enzymatic function, possibly by modifying protein stability. PMID:7516776

  6. Heavy chain single-domain antibodies to detect native human soluble epoxide hydrolase.

    PubMed

    Cui, Yongliang; Li, Dongyang; Morisseau, Christophe; Dong, Jie-Xian; Yang, Jun; Wan, Debin; Rossotti, Martín A; Gee, Shirley J; González-Sapienza, Gualberto G; Hammock, Bruce D

    2015-09-01

    The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer, and other diseases. However, there is not a simple, inexpensive, and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage-displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the enzyme-linked immunosorbent assay (ELISA) and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney, and lung). The VHH-based ELISA appears to be a new reliable method for monitoring the sEH and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research. PMID:26229025

  7. Soluble epoxide hydrolase as an anti-inflammatory target of the thrombolytic stroke drug SMTP-7.

    PubMed

    Matsumoto, Naoki; Suzuki, Eriko; Ishikawa, Makoto; Shirafuji, Takumi; Hasumi, Keiji

    2014-12-26

    Although ischemic stroke is a major cause of death and disability worldwide, only a small fraction of patients benefit from the current thrombolytic therapy due to a risk of cerebral hemorrhage caused by inflammation. Thus, the development of a new strategy to combat inflammation during thrombolysis is an urgent demand. The small molecule thrombolytic SMTP-7 effectively treats ischemic stroke in several animal models with reducing cerebral hemorrhage. Here we revealed that SMTP-7 targeted soluble epoxide hydrolase (sEH) to suppress inflammation. SMTP-7 inhibited both of the two sEH enzyme activities: epoxide hydrolase (which inactivates anti-inflammatory epoxy-fatty acids) and lipid phosphate phosphatase. SMTP-7 suppressed epoxy-fatty acid hydrolysis in HepG2 cells in culture, implicating the sEH inhibition in the anti-inflammatory mechanism. The sEH inhibition by SMTP-7 was independent of its thrombolytic activity. The simultaneous targeting of thrombolysis and sEH by a single molecule is a promising strategy to revolutionize the current stroke therapy. PMID:25361765

  8. Extracellular Xylanolytic and Pectinolytic Hydrolase Production by Aspergillus flavus Isolates Contributes to Crop Invasion

    PubMed Central

    Mellon, Jay E.

    2015-01-01

    Several atoxigenic Aspergillus flavus isolates, including some being used as biocontrol agents, and one toxigenic isolate were surveyed for the ability to produce extracellular xylanolytic and pectinolytic hydrolases. All of the tested isolates displayed good production of endoxylanases when grown on a medium utilizing larch xylan as a sole carbon substrate. Four of the tested isolates produced reasonably high levels of esterase activity, while the atoxigenic biocontrol agent NRRL 21882 isolate esterase level was significantly lower than the others. Atoxigenic A. flavus isolates 19, 22, K49, AF36 (the latter two are biocontrol agents) and toxigenic AF13 produced copious levels of pectinolytic activity when grown on a pectin medium. The pectinolytic activity levels of the atoxigenic A. flavus 17 and NRRL 21882 isolates were significantly lower than the other tested isolates. In addition, A. flavus isolates that displayed high levels of pectinolytic activity in the plate assay produced high levels of endopolygalacturonase (pectinase) P2c, as ascertained by isoelectric focusing electrophoresis. Isolate NRRL 21882 displayed low levels of both pectinase P2c and pectin methyl esterase. A. flavus appears capable of producing these hydrolytic enzymes irrespective of aflatoxin production. This ability of atoxigenic isolates to produce xylanolytic and pectinolytic hydrolases mimics that of toxigenic isolates and, therefore, contributes to the ability of atoxigenic isolates to occupy the same niche as A. flavus toxigenic isolates. PMID:26295409

  9. [Inhibition of adherence of Corynebacterium diphtheriae to human buccal epithelium by glycoside hydrolases from marine hydrobiontes].

    PubMed

    Zaporozhets, T S; Makarenkova, I D; Bakunina, I Iu; Burtseva, Iu V; Kusaĭkin, M I; Balabanova, L A; Zviagintseva, T N; Besednova, N N; Rasskazov, V A

    2010-01-01

    A possibility of adhesion inhibition of Corynebacterium diphtheriae to human buccal epithelium by glycoside hydrolases of marine hydrobiontes was investigated using alpha-galactosidase from marine bacterium Pseudoalteromonas sp. KMM 701, total enzyme preparation and beta-1,3-glucanase from marine fungi Chaetomium, total enzyme preparation and beta-1,3-glucanase from marine mollusk Littorina kurila, and total enzyme preparation from crystalline style of marine mollusk Spisula sachalinensis were used. The enzymes were added to test-tubes containing buccal epithelial cells and/or the toxigenic bacterial strain C. diphtheriae No 1129, v. gravis. All the investigated enzymes were able to abort C. diphtheriae adherence, to human buccal epithelocytes. Inhibition of adhesion was more pronounced in the case of treatment of epithelocytes with highly purified enzymes of marine hydrobiontes in comparison with total enzyme preparations. The significant inhibition of C. diphtheriae adhesion was observed when the enzymes were added to the epithelocytes with the attached microorganisms. The results obtained show that glycoside hydrolases of marine hydrobiontes degrade any carbohydrates expressed on cell surface of bacterium or human buccal epithelocytes, impair unique lectin-carbohydrate interaction and prevent the adhesion. PMID:20695214

  10. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut.

    PubMed

    Palackal, Nisha; Lyon, Christopher S; Zaidi, Seema; Luginbühl, Peter; Dupree, Paul; Goubet, Florence; Macomber, John L; Short, Jay M; Hazlewood, Geoffrey P; Robertson, Dan E; Steer, Brian A

    2007-02-01

    A unique multifunctional glycosyl hydrolase was discovered by screening an environmental DNA library prepared from a microbial consortium collected from cow rumen. The protein consists of two adjacent catalytic domains. Sequence analysis predicted that one domain conforms to glycosyl hydrolase family 5 and the other to family 26. The enzyme is active on several different beta-linked substrates and possesses mannanase, xylanase, and glucanase activities. Site-directed mutagenesis studies on the catalytic residues confirmed the presence of two functionally independent catalytic domains. Using site-specific mutations, it was shown that one catalytic site hydrolyzes beta-1,4-linked mannan substrates, while the second catalytic site hydrolyzes beta-1,4-linked xylan and beta-1,4-linked glucan substrates. Polysaccharide Analysis using Carbohydrate gel Electrophoresis (PACE) also confirmed that the enzyme has discrete domains for binding and hydrolysis of glucan- and mannan-linked polysaccharides. Such multifunctional enzymes have many potential industrial applications in plant processing, including biomass saccharification, animal feed nutritional enhancement, textile, and pulp and paper processing. PMID:17103163

  11. Cloning, expression and mutation of a triazophos hydrolase gene from Burkholderia sp. SZL-1.

    PubMed

    Zhang, Hao; Li, Qiang; Guo, Su-Hui; Cheng, Ming-Gen; Zhao, Meng-Jun; Hong, Qing; Huang, Xing

    2016-06-01

    Triazophos is a broad-spectrum and highly effective insecticide, and the residues of triazophos have been frequently detected in the environment. A triazophos-degrading bacterium, Burkholderia sp. SZL-1, was isolated from a long-term triazophos-polluted soil. Strain SZL-1 could hydrolyze triazophos to 1-phenyl-3-hydroxy-1,2,4-triazole, which was further utilized as the carbon sources for growth. The triazophos hydrolase gene trhA, cloned from strain SZL-1, was expressed and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. TrhA is 55 kDa and displays maximum activity at 25°C, pH 8.0. This enzyme still has nearly 60% activity at the range of 15°C-50°C for 30 min. TrhA was mutated by sequential error prone PCR and screened for improved activity for triazophos degradation. One purified variant protein (Val89-Gly89) named TrhA-M1 showed up to 3-fold improvement in specific activity against triazophos, and the specificity constants of Kcat and Kcat/Km for TrhA-M1 were improved up to 2.3- and 8.28-fold, respectively, compared to the wild-type enzyme. The results in this paper provided potential material for the contaminated soil remediation and hydrolase genetic structure research. PMID:27190294

  12. Soluble Epoxide Hydrolase as an Anti-inflammatory Target of the Thrombolytic Stroke Drug SMTP-7*

    PubMed Central

    Matsumoto, Naoki; Suzuki, Eriko; Ishikawa, Makoto; Shirafuji, Takumi; Hasumi, Keiji

    2014-01-01

    Although ischemic stroke is a major cause of death and disability worldwide, only a small fraction of patients benefit from the current thrombolytic therapy due to a risk of cerebral hemorrhage caused by inflammation. Thus, the development of a new strategy to combat inflammation during thrombolysis is an urgent demand. The small molecule thrombolytic SMTP-7 effectively treats ischemic stroke in several animal models with reducing cerebral hemorrhage. Here we revealed that SMTP-7 targeted soluble epoxide hydrolase (sEH) to suppress inflammation. SMTP-7 inhibited both of the two sEH enzyme activities: epoxide hydrolase (which inactivates anti-inflammatory epoxy-fatty acids) and lipid phosphate phosphatase. SMTP-7 suppressed epoxy-fatty acid hydrolysis in HepG2 cells in culture, implicating the sEH inhibition in the anti-inflammatory mechanism. The sEH inhibition by SMTP-7 was independent of its thrombolytic activity. The simultaneous targeting of thrombolysis and sEH by a single molecule is a promising strategy to revolutionize the current stroke therapy. PMID:25361765

  13. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    SciTech Connect

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L.

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  14. Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase.

    PubMed

    M, Naresh Kumar; V B S C, Thunuguntla; G K, Veeramachaneni; B, Chandra Sekhar; Guntupalli, Swapna; J S, Bondili

    2016-08-01

    Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G(205)XS(207)XG(209) and H(120)XXXXD(125) Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser(207) of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser(207) and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase. PMID:27247428

  15. Exploration of the chlorpyrifos escape pathway from acylpeptide hydrolases using steered molecular dynamics simulations.

    PubMed

    Wang, Dongmei; Jin, Hanyong; Wang, Junling; Guan, Shanshan; Zhang, Zuoming; Han, Weiwei

    2016-04-01

    Acylpeptide hydrolases (APH) catalyze the removal of an N-acylated amino acid from blocked peptides. APH is significantly more sensitive than acetylcholinesterase, a target of Alzheimer's disease, to inhibition by organophosphorus (OP) compounds. Thus, OP compounds can be used as a tool to probe the physiological functions of APH. Here, we report the results of a computational study of molecular dynamics simulations of APH bound to the OP compounds and an exploration of the chlorpyrifos escape pathway using steered molecular dynamics (SMD) simulations. In addition, we apply SMD simulations to identify potential escape routes of chlorpyrifos from hydrolase hydrophobic cavities in the APH-inhibitor complex. Two previously proposed APH pathways were reliably identified by CAVER 3.0, with the estimated relative importance of P1 > P2 for its size. We identify the major pathway, P2, using SMD simulations, and Arg526, Glu88, Gly86, and Asn65 are identified as important residues for the ligand leaving via P2. These results may help in the design of APH-targeting drugs with improved efficacy, as well as in understanding APH selectivity of the inhibitor binding in the prolyl oligopeptidase family. PMID:26155973

  16. A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids.

    PubMed

    Byzia, Anna; Haeggström, Jesper Z; Salvesen, Guy S; Drag, Marcin

    2014-05-01

    Leukotriene A4 hydrolase (LTA4H--EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 10(5) M(-1) s(-1)) as compared to L-Arg (1.5 × 10(3) M(-1) s(-1)). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H. PMID:24573245

  17. Computational insights into function and inhibition of fatty acid amide hydrolase.

    PubMed

    Palermo, Giulia; Rothlisberger, Ursula; Cavalli, Andrea; De Vivo, Marco

    2015-02-16

    The Fatty Acid Amide Hydrolase (FAAH) enzyme is a membrane-bound serine hydrolase responsible for the deactivating hydrolysis of a family of naturally occurring fatty acid amides. FAAH is a critical enzyme of the endocannabinoid system, being mainly responsible for regulating the level of its main cannabinoid substrate anandamide. For this reason, pharmacological inhibition of FAAH, which increases the level of endogenous anandamide, is a promising strategy to cure a variety of diseases including pain, inflammation, and cancer. Much structural, mutagenesis, and kinetic data on FAAH has been generated over the last couple of decades. This has prompted several informative computational investigations to elucidate, at the atomic-level, mechanistic details on catalysis and inhibition of this pharmaceutically relevant enzyme. Here, we review how these computational studies - based on classical molecular dynamics, full quantum mechanics, and hybrid QM/MM methods - have clarified the binding and reactivity of some relevant substrates and inhibitors of FAAH. We also discuss the experimental implications of these computational insights, which have provided a thoughtful elucidation of the complex physical and chemical steps of the enzymatic mechanism of FAAH. Finally, we discuss how computations have been helpful for building structure-activity relationships of potent FAAH inhibitors. PMID:25240419

  18. Differential Recognition and Hydrolysis of Host Carbohydrate Antigens by Streptococcus pneumoniae Family 98 Glycoside Hydrolases

    SciTech Connect

    Higgins, M.; Whitworth, G; El Warry, N; Randriantsoa, M; Samain, E; Burke, R; Vocadlo, D; Boraston, A

    2009-01-01

    The presence of a fucose utilization operon in the Streptococcus pneumoniae genome and its established importance in virulence indicates a reliance of this bacterium on the harvesting of host fucose-containing glycans. The identities of these glycans, however, and how they are harvested is presently unknown. The biochemical and high resolution x-ray crystallographic analysis of two family 98 glycoside hydrolases (GH98s) from distinctive forms of the fucose utilization operon that originate from different S. pneumoniae strains reveal that one enzyme, the predominant type among pneumococcal isolates, has a unique endo-{beta}-galactosidase activity on the LewisY antigen. Altered active site topography in the other species of GH98 enzyme tune its endo-{beta}-galactosidase activity to the blood group A and B antigens. Despite their different specificities, these enzymes, and by extension all family 98 glycoside hydrolases, use an inverting catalytic mechanism. Many bacterial and viral pathogens exploit host carbohydrate antigens for adherence as a precursor to colonization or infection. However, this is the first evidence of bacterial endoglycosidase enzymes that are known to play a role in virulence and are specific for distinct host carbohydrate antigens. The strain-specific distribution of two distinct types of GH98 enzymes further suggests that S. pneumoniae strains may specialize to exploit host-specific antigens that vary from host to host, a factor that may feature in whether a strain is capable of colonizing a host or establishing an invasive infection.

  19. Molecular Dynamics Simulations of Acylpeptide Hydrolase Bound to Chlorpyrifosmethyl Oxon and Dichlorvos

    PubMed Central

    Jin, Hanyong; Zhou, Zhenhuan; Wang, Dongmei; Guan, Shanshan; Han, Weiwei

    2015-01-01

    Acylpeptide hydrolases (APHs) catalyze the removal of N-acylated amino acids from blocked peptides. Like other prolyloligopeptidase (POP) family members, APHs are believed to be important targets for drug design. To date, the binding pose of organophosphorus (OP) compounds of APH, as well as the different OP compounds binding and inducing conformational changes in two domains, namely, α/β hydrolase and β-propeller, remain poorly understood. We report a computational study of APH bound to chlorpyrifosmethyl oxon and dichlorvos. In our docking study, Val471 and Gly368 are important residues for chlorpyrifosmethyl oxon and dichlorvos binding. Molecular dynamics simulations were also performed to explore the conformational changes between the chlorpyrifosmethyl oxon and dichlorvos bound to APH, which indicated that the structural feature of chlorpyrifosmethyl oxon binding in APH permitted partial opening of the β-propeller fold and allowed the chlorpyrifosmethyl oxon to easily enter the catalytic site. These results may facilitate the design of APH-targeting drugs with improved efficacy. PMID:25794283

  20. The Cloning and Characterization of a Soluble Epoxide Hydrolase in Chicken

    PubMed Central

    Harris, T. R.; Morisseau, C.; Walzem, R. L.; Ma, S. J.; Hammock, B. D.

    2006-01-01

    The mammalian soluble epoxide hydrolase (sEH) plays a role in the regulation of blood pressure and vascular homeostasis through its hydrolysis of the endothelial-derived messenger molecules, the epoxyeicosatrienoic acids. This study reports the cloning and expression of a sEH homolog from chicken liver. The resulting 63-kDa protein has an isoelectric point of 6.1. The recombinant enzyme displayed epoxide hydrolase activity when assayed with [3H]-trans-1,3-diphenylpropene oxide (t-DPPO), as well as trans-9,10-epoxystearate and the cis-8,9-, 11,12-, and 14,15- epoxyeicosatrienoic acids. The chicken enzyme displayed a lower kcat:Km for t-DPPO than the mammalian enzymes. The enzyme was sensitive to urea-based inhibitors developed for mammalian sEH. Such compounds could be used to study the role of chicken sEH in conditions in which endothelial-derived vasodilation is believed to be impaired, such as pulmonary hypertension syndrome. PMID:16523628

  1. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence

    PubMed Central

    Rico-Lastres, Palma; Díez-Martínez, Roberto; Iglesias-Bexiga, Manuel; Bustamante, Noemí; Aldridge, Christine; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Gray, Joe; Vollmer, Waldemar; García, Pedro; Menéndez, Margarita

    2015-01-01

    Streptococcus pneumoniae is a major cause of life-threatening diseases worldwide. Here we provide an in-depth functional characterization of LytB, the peptidoglycan hydrolase responsible for physical separation of daughter cells. Identified herein as an N-acetylglucosaminidase, LytB is involved also in colonization and invasion of the nasopharynx, biofilm formation and evasion of host immunity as previously demonstrated. We have shown that LytB cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic bond of peptidoglycan building units. The hydrolysis occurs at sites with fully acetylated GlcNAc moieties, with preference for uncross-linked muropeptides. The necessity of GlcN acetylation and the presence of a single acidic moiety (Glu585) essential for catalysis strongly suggest a substrate-assisted mechanism with anchimeric assistance of the acetamido group of GlcNAc moieties. Additionally, modelling of the catalytic region bound to a hexasaccharide tripentapeptide provided insights into substrate-binding subsites and peptidoglycan recognition. Besides, cell-wall digestion products and solubilisation rates might indicate a tight control of LytB activity to prevent unrestrained breakdown of the cell wall. Choline-independent localization at the poles of the cell, mediated by the choline-binding domain, peptidoglycan modification, and choline-mediated (lipo)teichoic-acid attachment contribute to the high selectivity of LytB. Moreover, so far unknown chitin hydrolase and glycosyltransferase activities were detected using GlcNAc oligomers as substrate. PMID:26537571

  2. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates

    PubMed Central

    Kong, Xu-Dong; Yuan, Shuguang; Li, Lin; Chen, She; Xu, Jian-He; Zhou, Jiahai

    2014-01-01

    Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates. PMID:25331869

  3. Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function

    PubMed Central

    Merritt, Ethan A.; Holmes, Margaret; Buckner, Frederick S.; Van Voorhis, Wesley C.; Quartly, Erin; Phizicky, Eric M.; Lauricella, Angela; Luft, Joseph; DeTitta, George; Neely, Helen; Zucker, Frank; Hol, Wim G. J.

    2008-01-01

    The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family. PMID:18540054

  4. Soluble Epoxide Hydrolase Homologs in Strongylocentrotus purpuratus Suggest a Gene Duplication Event and Subsequent Divergence

    PubMed Central

    Harris, Todd R.; Aronov, Pavel A.

    2008-01-01

    The mammalian soluble epoxide hydrolase (sEH) is a multidomain enzyme composed of C- and N-terminal regions that contain active sites for epoxide hydrolase (EH) and phosphatase activities, respectively. We report the cloning of two 60 kDa multidomain enzymes from the purple sea urchin Strongylocentrotus purpuratus displaying significant sequence similarity to both the N- and C-terminal domains of the mammalian sEH. While one urchin enzyme did not exhibit EH activity, the second enzyme hydrolyzed several lipid messenger molecules metabolized by the mammalian sEH, including the epoxyeicosatrienoic acids. Neither of the urchin enzymes displayed phosphatase activity. The urchin EH was inhibited by small molecule inhibitors of the mammalian sEH and is the likely ancestor of the enzyme. Sequence comparisons suggest that the urchin sEH homologs are the result of a gene fusion event between a gene encoding for an EH and a gene for an enzyme of undetermined function. This fusion event was followed by a duplication event to produce the urchin enzymes. PMID:18554159

  5. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    PubMed Central

    Allgaier, Martin; Reddy, Amitha; Park, Joshua I.; Ivanova, Natalia; D'haeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2010-01-01

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ∼10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50°C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme. PMID:20098679

  6. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    SciTech Connect

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D'haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  7. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    SciTech Connect

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  8. Novel Strategies for Upstream and Downstream Processing of Tannin Acyl Hydrolase

    PubMed Central

    Rodríguez-Durán, Luis V.; Valdivia-Urdiales, Blanca; Contreras-Esquivel, Juan C.; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    Tannin acyl hydrolase also referred as tannase is an enzyme with important applications in several science and technology fields. Due to its hydrolytic and synthetic properties, tannase could be used to reduce the negative effects of tannins in beverages, food, feed, and tannery effluents, for the production of gallic acid from tannin-rich materials, the elucidation of tannin structure, and the synthesis of gallic acid esters in nonaqueous media. However, industrial applications of tannase are still very limited due to its high production cost. Thus, there is a growing interest in the production, recovery, and purification of this enzyme. Recently, there have been published a number of papers on the improvement of upstream and downstream processing of the enzyme. These papers dealt with the search for new tannase producing microorganisms, the application of novel fermentation systems, optimization of culture conditions, the production of the enzyme by recombinant microorganism, and the design of efficient protocols for tannase recovery and purification. The present work reviews the state of the art of basic and biotechnological aspects of tannin acyl hydrolase, focusing on the recent advances in the upstream and downstream processing of the enzyme. PMID:21941633

  9. Direct detection, cloning and characterization of a glucoside hydrolase from forest soil.

    PubMed

    Hua, Mei; Zhao, Shubo; Zhang, Lili; Liu, Dongbo; Xia, Hongmei; Li, Fan; Chen, Shan

    2015-06-01

    A glucoside hydrolase gene, egl01, was cloned from the soil DNA of Changbai Mountain forest by homologous PCR amplification. The deduced sequence of 517 amino acids included a catalytic domain of glycoside hydrolase family 5 and was homologous to a putative cellulase from Bacillus licheniformis. The recombinant enzyme, Egl01, was maximally active at pH 5 and 50 °C and it was stable at pH 3-9, 4-50 °C, and also stable in the presence of metal ions, organic solvents, surfactants and salt. Its activity was above 120 % in 2-3 M NaCl/KCl and over 70 % was retained in 1-4 M NaCl/KCl for 6d. Egl01 hydrolyzed carboxymethyl cellulose, beechwood xylan, crop stalk, laminarin, filter paper, and avicel but not pNPG, indicating its broad substrate specificity. These properties make this recombinant enzyme a promising candidate for industrial applications. PMID:25700816

  10. Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase

    PubMed Central

    M., Naresh Kumar; V.B.S.C., Thunuguntla; G.K., Veeramachaneni; B., Chandra Sekhar; Guntupalli, Swapna; J.S., Bondili

    2016-01-01

    Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G205XS207XG209 and H120XXXXD125. Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser207 of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser207 and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase. PMID:27247428

  11. Determinants of Murein Hydrolase Targeting to Cross-wall of Staphylococcus aureus Peptidoglycan*

    PubMed Central

    Frankel, Matthew B.; Schneewind, Olaf

    2012-01-01

    Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells. PMID:22303016

  12. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2011-08-01

    The crystal structure of 5-hydroxyisourate hydrolase from K. pneumoniae and the steady-state kinetic parameters of the native enzyme as well as several mutants provide insights into the catalytic mechanism of this enzyme and the possible roles of the active-site residues. The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  13. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae.

    PubMed

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko; Yaoi, Katsuro

    2016-03-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-D-xylopyranose-(1 → 6)-D-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  14. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K-AREA

    SciTech Connect

    CHRONISTER, G.B.

    2005-06-14

    This paper discusses selecting and Implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water, sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal. The U. S. Department of Energy's (DOE) Hanford Site is considered the world's largest environmental cleanup project. The site covers 1,517 Km{sup 2} (586 square miles) along the Columbia River in an arid region of the northwest United States (U.S.). Hanford is the largest of the US former nuclear defense production sites. From the World War II era of the mid-1940s until the late-1980s when production stopped, Hanford produced 60 percent of the plutonium for nuclear defense and, as a consequence, produced a significant amount of environmental pollution now being addressed. Spent nuclear fuel was among the major challenges for DOE's environmental cleanup mission at Hanford. The end of production left Hanford with about 105,000 irradiated, solid uranium metal fuel assemblies--representing approximately 2,100 metric tons (80 percent of DOE's spent nuclear fuel). The fuel was ultimately stored in the K Basins water-filled, concrete basins attached to Hanford's K East (KE) and K West (KW) reactors. K Basin's fuel accounted for 95 percent of the total radioactivity in Hanford's former reactor production areas. Located about 457 meters (500 yards) from the Columbia River, the K Basins are two indoor, rectangular structures of reinforced concrete; each filled with more than 3.8 million liters (one million gallons) of water that has become highly contaminated with long-lived radionuclides. At the KW Basin, fuel was packaged and

  15. THE SOLUBLE EPOXIDE HYDROLASE GENE HARBORS SEQUENCE VARIATIONS ASSOCIATED WITH SUSCEPTIBILITY TO AND PROTECTION FROM INCIDENT ISCHEMIC STROKE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stroke is the leading cause of severe disability and the third leading cause of death, accounting for one of every 15 deaths in the USA. We investigated the association of polymorphisms in the soluble epoxide hydrolase gene (EPHX2) with incident ischemic stroke in African-Americans and Whites. Twelv...

  16. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage lytic enzymes have recently attracted considerable interest as novel antimicrobials against Gram-positive bacteria. In this work, antimicrobial activity in milk of HydH5 [(a virion-associated peptidoglycan hydrolase (VAPGH) encoded by the Staphylococcus aureus bacteriophage vB_SauS-ph...

  17. Hydrolysis of filter-paper cellulose to glucose by two recombinant endogenous glycosyl hydrolases of Coptotermes formosanus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes encoding for glycosyl hydrolases in multiple families were recovered from an EST library of Coptotermes formosanus, a wood-eating insect. Functional analyses of these genes not only shed light on the mechanisms the insect employs to successfully use cellulosic materials as energy sources, whic...

  18. Cloning, crystallization and preliminary X-ray study of XC1258, a CN-hydrolase superfamily protein from Xanthomonas campestris

    SciTech Connect

    Tsai, Ying-Der; Chin, Ko-Hsin; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2006-10-01

    A CN-hydrolase superfamily protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. CN-hydrolase superfamily proteins are involved in a wide variety of non-peptide carbon–nitrogen hydrolysis reactions, producing some important natural products such as auxin, biotin, precursors of antibiotics etc. These reactions all involve attack on a cyano or carbonyl carbon by a conserved novel catalytic triad Glu-Lys-Cys through a thiol acylenzyme intermediate. However, classification into the CN-hydrolase superfamily based on sequence similarity alone is not straightforward and further structural data are necessary to improve this categorization. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC1258, a CN-hydrolase superfamily protein from the plant pathogen Xanthomonas campestris (Xcc), are reported. The SeMet-substituted XC1258 crystals diffracted to a resolution of 1.73 Å. They are orthorhombic and belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 143.8, b = 154.63, c = 51.3 Å, respectively.

  19. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.

    PubMed

    Barth, Markus; Honak, Annett; Oeser, Thorsten; Wei, Ren; Belisário-Ferrari, Matheus R; Then, Johannes; Schmidt, Juliane; Zimmermann, Wolfgang

    2016-08-01

    TfCut2 from Thermobifida fusca KW3 and the metagenome-derived LC-cutinase are bacterial polyester hydrolases capable of efficiently degrading polyethylene terephthalate (PET) films. Since the enzymatic PET hydrolysis is inhibited by the degradation intermediate mono-(2-hydroxyethyl) terephthalate (MHET), a dual enzyme system consisting of a polyester hydrolase and the immobilized carboxylesterase TfCa from Thermobifida fusca KW3 was employed for the hydrolysis of PET films at 60°C. HPLC analysis of the reaction products obtained after 24 h of hydrolysis showed an increased amount of soluble products with a lower proportion of MHET in the presence of the immobilized TfCa. The results indicated a continuous hydrolysis of the inhibitory MHET by the immobilized TfCa and demonstrated its advantage as a second biocatalyst in combination with a polyester hydrolase for an efficient degradation oft PET films. The dual enzyme system with LC-cutinase produced a 2.4-fold higher amount of degradation products compared to TfCut2 after a reaction time of 24 h confirming the superior activity of his polyester hydrolase against PET films. PMID:27214855

  20. Crystal structure analysis of a glycosides hydrolase family 42 cold-adapted ß-galactosidase from Rahnella sp. R3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ß-galactosidase isolated from a psychrotrophic bacterium, Rahnella sp. R3 (R-ß-Gal), exhibits high activity at low temperature. R-ß-Gal is a member of the glycoside hydrolases family 42 (GH42), and forms a 225 kDa trimeric structure in solution. The X-ray crystal structure of R-ß-Gal was determi...

  1. Purification and characterization of a glycoside hydrolase family 43 Beta-xylosidase from Geobacillus thermoleovorans IT-08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding a glycoside hydrolase family 43 enzyme termed deAX was isolated and subcloned from a culture seeded with a compost starter mixed bacterium population, expressed with a C-terminal His6-tag, and purified to apparent homogeneity. deAX was monomeric in solution, and had a broad pH maxi...

  2. New mode for divalent metal activation of glycoside hydrolases: X-ray structure of ß-xyloisdase-Ca2+

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the first X-ray structure of a glycoside hydrolase family 43 ß-xylosidase, RS223BX, which is strongly activated by the addition of divalent metal cations. The 2.69 Å structure reveals that the Ca2+ cation is located at the back of the active site pocket. The Ca2+ coordinates to H274 to sta...

  3. Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli.

    PubMed

    Wang, Ziqiang; Wang, Yunshan; Su, Zhiguo

    2013-03-01

    A highly enantioselective cis-epoxysuccinic acid hydrolase from Nocardia tartaricans was purified to electrophoretic homogeneity. The enzyme was purified 184-fold with a yield of 18.8 %. The purified cis-epoxysuccinic acid hydrolase had a monomeric molecular weight of 28 kDa, and its optimum conditions were 37 °C and pH 7-9. With sodium cis-epoxysuccinate as the substrate, Michaelis-Menten enzyme kinetics analysis gave a Km value of 35.71 mM and a Vmax of 2.65 mM min(-1). The enzyme was activated by Ni(2+) and Al(3+), while strongly inhibited by Fe(3+), Fe(2+), Cu(2+), and Ag(+). The cis-epoxysuccinic acid hydrolase gene was cloned, and its open reading frame sequence predicted a protein composed of 253 amino acids. A pET11a expression plasmid carrying the gene under the control of the T7 promoter was introduced into Escherichia coli, and the cis-epoxysuccinic acid hydrolase gene was successfully expressed in the recombinant strains. PMID:22552902

  4. 3-D QSAR ANALYSIS OF INHIBITION OF MURINE SOLUBLE EPOXIDE HYDROLASE (MSEH) BY BENZOYLUREAS, ARYLUREAS, AND THEIR ANALOGUES. (R825433)

    EPA Science Inventory

    Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylu...

  5. Emergent decarboxylase activity and attenuation of α/β-hydrolase activity during the evolution of methylketone biosynthesis in tomato.

    PubMed

    Auldridge, Michele E; Guo, Yongxia; Austin, Michael B; Ramsey, Justin; Fridman, Eyal; Pichersky, Eran; Noel, Joseph P

    2012-04-01

    Specialized methylketone-containing metabolites accumulate in certain plants, in particular wild tomatoes in which they serve as toxic compounds against chewing insects. In Solanum habrochaites f. glabratum, methylketone biosynthesis occurs in the plastids of glandular trichomes and begins with intermediates of de novo fatty acid synthesis. These fatty-acyl intermediates are converted via sequential reactions catalyzed by Methylketone Synthase2 (MKS2) and MKS1 to produce the n-1 methylketone. We report crystal structures of S. habrochaites MKS1, an atypical member of the α/β-hydrolase superfamily. Sequence comparisons revealed the MKS1 catalytic triad, Ala-His-Asn, as divergent to the traditional α/β-hydrolase triad, Ser-His-Asp. Determination of the MKS1 structure points to a novel enzymatic mechanism dependent upon residues Thr-18 and His-243, confirmed by biochemical assays. Structural analysis further reveals a tunnel leading from the active site consisting mostly of hydrophobic residues, an environment well suited for fatty-acyl chain binding. We confirmed the importance of this substrate binding mode by substituting several amino acids leading to an alteration in the acyl-chain length preference of MKS1. Furthermore, we employ structure-guided mutagenesis and functional assays to demonstrate that MKS1, unlike enzymes from this hydrolase superfamily, is not an efficient hydrolase but instead catalyzes the decarboxylation of 3-keto acids. PMID:22523203

  6. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  7. AMPEROMETRIC THICK-FILM STRIP ELECTRODES FOR MONITORING ORGANOPHOSPHATE NERVE AGENTS BASED ON IMMOBILIZED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    EPA Science Inventory

    An amperometric biosensor based on the immobilization of organophosphorus hydrolase
    (OPH) onto screen-printed carbon electrodes is shown useful for the rapid, sensitive, and low-cost
    detection of organophosphate (OP) nerve agents. The sensor relies upon the sensitive and ra...

  8. [The effect of antioxidants on the activity of acid hydrolases in blood leukocytes from patients with leukoplakia of mouth mucosa].

    PubMed

    Petrovich, Iu A; Mashkilleĭson, A L; Suleĭmanova, G G; Lagunov, A I

    1989-01-01

    Activity of acid hydrolases, alkaline phosphatase and leucine aminopeptidase was studied in leukocytes of patients with leukoplakia of mouth mucosa before and after the treatment involving antioxidant drugs. The enzymatic activity studied was increased in leukoplakia. Cryotherapy combined with antioxidants and the treatment with antioxidants only contributed to a decrease in these enzymes activity. PMID:2617939

  9. Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367

    PubMed Central

    Tolonen, Andrew C; Chilaka, Amanda C; Church, George M

    2009-01-01

    Microbial cellulose degradation is a central part of the global carbon cycle and has great potential for the development of inexpensive, carbon-neutral biofuels from non-food crops. Clostridium phytofermentans has a repertoire of 108 putative glycoside hydrolases to break down cellulose and hemicellulose into sugars, which this organism then ferments primarily to ethanol. An understanding of cellulose degradation at the molecular level requires learning the different roles of these hydrolases. In this study, we show that interspecific conjugation with Escherichia coli can be used to transfer a plasmid into C. phytofermentans that has a resistance marker, an origin of replication that can be selectively lost, and a designed group II intron for efficient, targeted chromosomal insertions without selection. We applied these methods to disrupt the cphy3367 gene, which encodes the sole family 9 glycoside hydrolase (GH9) in the C. phytofermentans genome. The GH9-deficient strain grew normally on some carbon sources such as glucose, but had lost the ability to degrade cellulose. Although C. phytofermentans upregulates the expression of numerous enzymes to break down cellulose, this process thus relies upon a single, key hydrolase, Cphy3367. PMID:19775243

  10. Xyloglucan Endotransglucosylase-Hydrolase17 Interacts with Xyloglucan Endotransglucosylase-Hydrolase31 to Confer Xyloglucan Endotransglucosylase Action and Affect Aluminum Sensitivity in Arabidopsis.

    PubMed

    Zhu, Xiao Fang; Wan, Jiang Xue; Sun, Ying; Shi, Yuan Zhi; Braam, Janet; Li, Gui Xin; Zheng, Shao Jian

    2014-06-19

    Previously, we reported that although the Arabidopsis (Arabidopsis thaliana) Xyloglucan Endotransglucosylase-Hydrolase31 (XTH31) has predominately xyloglucan endohydrolase activity in vitro, loss of XTH31 results in remarkably reduced in vivo xyloglucan endotransglucosylase (XET) action and enhanced Al resistance. Here, we report that XTH17, predicted to have XET activity, binds XTH31 in yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitations assays and that this interaction may be required for XTH17 XET activity in planta. XTH17 and XTH31 may be colocalized in plant cells because tagged XTH17 fusion proteins, like XTH31 fusion proteins, appear to target to the plasma membrane. XTH17 expression, like that of XTH31, was substantially reduced in the presence of aluminum (Al), even at concentrations as low as 10 µm for 24 h or 25 µm for just 30 min. Agrobacterium tumefaciens-mediated transfer DNA insertion mutant of XTH17, xth17, showed low XET action and had moderately shorter roots than the wild type but was more Al resistant than the wild type. Similar to xth31, xth17 had low hemicellulose content and retained less Al in the cell wall. These data suggest a model whereby XTH17 and XTH31 may exist as a dimer at the plasma membrane to confer in vivo XET action, which modulates cell wall Al-binding capacity and thereby affects Al sensitivity in Arabidopsis. PMID:24948835

  11. Estrogen Sensitivity of Target Genes and Expression of Nuclear Receptor Co-Regulators in Rat Prostate after Pre- and Postnatal Exposure to the Ultraviolet Filter 4-Methylbenzylidene Camphor

    PubMed Central

    Durrer, Stefan; Ehnes, Colin; Fuetsch, Michaela; Maerkel, Kirsten; Schlumpf, Margret; Lichtensteiger, Walter

    2007-01-01

    Background and objectives In previous studies, we found that the ultraviolet filter 4-methyl-benzylidene camphor (4-MBC) exhibits estrogenic activity, is a preferential estrogen receptor (ER)-β ligand, and interferes with development of female reproductive organs and brain of both sexes in rats. Here, we report effects on male development. Methods 4-MBC (0.7, 7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to offspring until adulthood. mRNA was determined in prostate lobes by real-time reverse transcription–polymerase chain reaction and protein was determined by Western blot analysis. Results 4-MBC delayed male puberty, decreased adult prostate weight, and slightly increased testis weight. Androgen receptor (AR), insulin-like growth factor-1 (IGF-1), ER-α, and ER-β expression in prostate were altered at mRNA and protein levels, with stronger effects in dorsolateral than ventral prostate. To assess sensitivity of target genes to estrogens, offspring were castrated on postnatal day 70, injected with 17β-estradiol (E2; 10 or 50 μg/kg, sc) or vehicle on postnatal day 84, and sacrificed 6 hr later. Acute repression of AR and IGF-1 mRNAs by E2, studied in ventral prostate, was reduced by 4-MBC exposure. This was accompanied by reduced co-repressor N-CoR (nuclear receptor co-repressor) protein in ventral and dorsolateral prostate, whereas steroid receptor coactivator-1 (SRC-1) protein levels were unaffected. Conclusions Our data indicate that 4-MBC affects development of male reproductive functions and organs, with a lowest observed adverse effect level of 0.7 mg/kg. Nuclear receptor coregulators were revealed as targets for endocrine disruptors, as shown for N-CoR in prostate and SRC-1 in uterus. This may have widespread effects on gene regulation. PMID:18174949

  12. Occurrence of UV filters 4-methylbenzylidene camphor and octocrylene in fish from various Swiss rivers with inputs from wastewater treatment plants.

    PubMed

    Buser, Hans-Rudolf; Balmer, Marianne E; Schmid, Peter; Kohler, Martin

    2006-03-01

    UV filters are widely used compounds in many personal care products and cosmetics, such as sunscreens. After use, UV filters are washed off from skin and clothes and enter the aquatic environment. Recent studies indicate that some lipophilic UV filters do accumulate in biota and act as endocrine disruptors. In this study, concentrations of 4-MBC (4-methylbenzylidene camphor) and OC (octocrylene), two widely used UV filters, were determined in the muscle tissue of fish (brown trout, Salmo trutta fario) from seven small Swiss rivers, all receiving inputs from wastewater treatment plants (WWTPs). Lipid-weight based concentrations of up to 1800 (4-MBC) and 2400 ng g(-1) (OC) were found. These levels were distinctly higher than those previously observed in white fish (Coregonus sp.) and roach (Rutilus rutilus) from Swiss lakes with inputs from WWTPs. This suggests a higher availability of these contaminants for fish in rivers than in lakes and identifies WWTPs as a major source for UV filters in the aquatic environment. As compared to lake fish, individual fish from a river showed much greater variation in 4-MBC and OC concentrations, likely as a result of a wider range of exposure in rivers than in lakes. 4-MBC concentrations correlated reasonably well with concentrations of methyl triclosan, a chemical marker for lipophilic WWTP-derived contaminants. The ratio P/Q of population (P) in a watershed to water throughflow (Q) is considered to be a measure of the domestic burden from WWTPs. A correlation of methyl triclosan with P/Q was previously observed with lake fish. However, such a correlation could not be confirmed with river fish. The higher average concentrations of OC as compared to 4-MBC in river fish, and the fact that OC was mostly absent in lake fish, suggests differences in bioaccumulation and availability of these two UV filters. PMID:16568752

  13. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase.

    PubMed

    Legler, Patricia M; Boisvert, Susanne M; Compton, Jaimee R; Millard, Charles B

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its k cat/K m for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases. PMID:25077141

  14. Three-dimensional Structure of Nylon Hydrolase and Mechanism of Nylon-6 Hydrolysis*

    PubMed Central

    Negoro, Seiji; Shibata, Naoki; Tanaka, Yusuke; Yasuhira, Kengo; Shibata, Hiroshi; Hashimoto, Haruka; Lee, Young-Ho; Oshima, Shohei; Santa, Ryuji; Oshima, Shohei; Mochiji, Kozo; Goto, Yuji; Ikegami, Takahisa; Nagai, Keisuke; Kato, Dai-ichiro; Takeo, Masahiro; Higuchi, Yoshiki

    2012-01-01

    We performed x-ray crystallographic analyses of the 6-aminohexanoate oligomer hydrolase (NylC) from Agromyces sp. at 2.0 Å-resolution. This enzyme is a member of the N-terminal nucleophile hydrolase superfamily that is responsible for the degradation of the nylon-6 industry byproduct. We observed four identical heterodimers (27 kDa + 9 kDa), which resulted from the autoprocessing of the precursor protein (36 kDa) and which constitute the doughnut-shaped quaternary structure. The catalytic residue of NylC was identified as the N-terminal Thr-267 of the 9-kDa subunit. Furthermore, each heterodimer is folded into a single domain, generating a stacked αββα core structure. Amino acid mutations at subunit interfaces of the tetramer were observed to drastically alter the thermostability of the protein. In particular, four mutations (D122G/H130Y/D36A/E263Q) of wild-type NylC from Arthrobacter sp. (plasmid pOAD2-encoding enzyme), with a heat denaturation temperature of Tm = 52 °C, enhanced the protein thermostability by 36 °C (Tm = 88 °C), whereas a single mutation (G111S or L137A) decreased the stability by ∼10 °C. We examined the enzymatic hydrolysis of nylon-6 by the thermostable NylC mutant. Argon cluster secondary ion mass spectrometry analyses of the reaction products revealed that the major peak of nylon-6 (m/z 10,000–25,000) shifted to a smaller range, producing a new peak corresponding to m/z 1500–3000 after the enzyme treatment at 60 °C. In addition, smaller fragments in the soluble fraction were successively hydrolyzed to dimers and monomers. Based on these data, we propose that NylC should be designated as nylon hydrolase (or nylonase). Three potential uses of NylC for industrial and environmental applications are also discussed. PMID:22187439

  15. Development of organophosphate hydrolase activity in a bacterial homolog of human cholinesterase

    PubMed Central

    Legler, Patricia M.; Boisvert, Susanne M.; Compton, Jaimee R.; Millard, Charles B.

    2014-01-01

    We applied a combination of rational design and directed evolution (DE) to Bacillus subtilis p-nitrobenzyl esterase (pNBE) with the goal of enhancing organophosphorus acid anhydride hydrolase (OPAAH) activity. DE started with a designed variant, pNBE A107H, carrying a histidine homologous with human butyrylcholinesterase G117H to find complementary mutations that further enhance its OPAAH activity. Five sites were selected (G105, G106, A107, A190, and A400) within a 6.7 Å radius of the nucleophilic serine Oγ. All 95 variants were screened for esterase activity with a set of five substrates: pNP-acetate, pNP-butyrate, acetylthiocholine, butyrylthiocholine, or benzoylthiocholine. A microscale assay for OPAAH activity was developed for screening DE libraries. Reductions in esterase activity were generally concomitant with enhancements in OPAAH activity. One variant, A107K, showed an unexpected 7-fold increase in its kcat/Km for benzoylthiocholine, demonstrating that it is also possible to enhance the cholinesterase activity of pNBE. Moreover, DE resulted in at least three variants with modestly enhanced OPAAH activity compared to wild type pNBE. A107H/A190C showed a 50-fold increase in paraoxonase activity and underwent a slow time- and temperature-dependent change affecting the hydrolysis of OPAA and ester substrates. Structural analysis suggests that pNBE may represent a precursor leading to human cholinesterase and carboxylesterase 1 through extension of two vestigial specificity loops; a preliminary attempt to transfer the Ω-loop of BChE into pNBE is described. Unlike butyrylcholinesterase and pNBE, introducing a G143H mutation (equivalent to G117H) did not confer detectable OP hydrolase activity on human carboxylesterase 1 (hCE1). We discuss the use of pNBE as a surrogate scaffold for the mammalian esterases, and the importance of the oxyanion-hole residues for enhancing the OPAAH activity of selected serine hydrolases. PMID:25077141

  16. Isolation and characterization of an extracellular glycosylated protein complex from Clostridium thermosaccharolyticum with pectin methylesterase and polygalacturonate hydrolase activity.

    PubMed

    Van Rijssel, M; Gerwig, G J; Hansen, T A

    1993-03-01

    An extracellular protein complex was isolated from the supernatant of a pectin-limited continuous culture of Clostridium thermosaccharolyticum Haren. The complex possessed both pectin methylesterase (EC 3.1.1.11) and exo-poly-alpha-galacturonate hydrolase (EC 3.2.1.82) activity and produced digalacturonate from the nonreducing end of the pectin chain. The protein consisted of 230- and 25-kDa subunits. The large subunit contained 10% (wt/wt) sugars (N-acetylgalactosamine and galactose). Under physiological conditions both activities acted in a coordinated manner: the ratio between methanol and digalacturonate released during degradation was constant and equal to the degree of esterification of the pectin used. Prolonged incubation of the enzyme with pectin led to a nondialyzable fraction that was enriched in neutral sugars, such as arabinose, rhamnose, and galactose; the high rhamnose/galacturonic acid ratio was indicative of hairy region-like structures. The smallest substrate utilized by the hydrolase was a tetragalacturonate. Vmax with oligogalacturonates increased with increasing chain length. The Km and Vmax for the polygalacturonate hydrolase with citrus pectate as a substrate were 0.8 g liter-1 and 180 mumol min-1 mg of protein-1, respectively. The Km and Vmax for the esterase with citrus pectin as a substrate were 1.2 g liter-1 and 440 mumol min-1 mg of protein-1, respectively. The temperature optima for the hydrolase and esterase were 70 and 60 degrees C, respectively. Both enzyme activities were stable for more than 1 h at 70 degrees C. The exo-polygalacturonate hydrolase of Clostridium thermosulfurogenes was partially purified while the methylesterase was also copurified. PMID:8481009

  17. Efficient Calculation of Enzyme Reaction Free Energy Profiles Using a Hybrid Differential Relaxation Algorithm: Application to Mycobacterial Zinc Hydrolases.

    PubMed

    Romero, Juan Manuel; Martin, Mariano; Ramirez, Claudia Lilián; Dumas, Victoria Gisel; Marti, Marcelo Adrián

    2015-01-01

    Determination of the free energy profile for an enzyme reaction mechanism is of primordial relevance, paving the way for our understanding of the enzyme's catalytic power at the molecular level. Although hybrid, mostly DFT-based, QM/MM methods have been extensively applied to this type of studies, achieving accurate and statistically converged results at a moderate computational cost is still an open challenge. Recently, we have shown that accurate results can be achieved in less computational time, combining Jarzynski's relationship with a hybrid differential relaxation algorithm (HyDRA), which allows partial relaxation of the solvent during the nonequilibrium steering of the reaction. In this work, we have applied this strategy to study two mycobacterial zinc hydrolases. Mycobacterium tuberculosis infections are still a worldwide problem and thus characterization and validation of new drug targets is an intense field of research. Among possible drug targets, recently two essential zinc hydrolases, MshB (Rv1170) and MA-amidase (Rv3717), have been proposed and structurally characterized. Although possible mechanisms have been proposed by analogy to the widely studied human Zn hydrolases, several key issues, particularly those related to Zn coordination sphere and its role in catalysis, remained unanswered. Our results show that mycobacterial Zn hydrolases share a basic two-step mechanism. First, the attacking water becomes deprotonated by the conserved base and establishes the new C-O bond leading to a tetrahedral intermediate. The intermediate requires moderate reorganization to allow for proton transfer to the amide N and C-N bond breaking to occur in the second step. Zn ion plays a key role in stabilizing the tetrahedral intermediate and balancing the negative charge of the substrate during hydroxide ion attack. Finally, comparative analysis of other Zn hydrolases points to a convergent mechanistic evolution. PMID:26415840

  18. Development of a versatile organophosphorous-hydrolase-based assay for organophosphate pesticides

    NASA Astrophysics Data System (ADS)

    Rogers, Kim R.; Wang, Yi; Mulchandani, Ashok; Mulchandani, P.; Chen, Wilfred

    1999-02-01

    We report a rapid and versatile organophosphorus hydrolase (OPH)-based method for measurement of organophosphate pesticides. This assay is based on a substrate-dependant change in pH near the active site of the enzyme. The pH change is monitored using fluorescein isothiocyanate (FITC) which is covalently immobilized to the enzyme. This method employs FITC-labeled enzyme adsorbed to polymethylmethacrylate beads. Analytes were measured using a microbead fluorescence analyzer. The dynamic concentration range for the assay extends from 25 (mu) M to 400 (mu) M for paraoxon with a detection limit of 8 (mu) M. This assay compared favorably to an HPLC method for monitoring the concentration of coumaphos in bioremediation filtrate samples.

  19. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers.

    PubMed

    Lin, Jun

    2014-01-01

    The growth-promoting effect of antibiotic growth promoters (AGPs) was correlated with the decreased activity of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals. PMID:24575079

  20. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography†

    PubMed Central

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein−protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors. PMID:19618939

  1. Development and Properties of a Wax Ester Hydrolase in the Cotyledons of Jojoba Seedlings 1

    PubMed Central

    Huang, Anthony H. C.; Moreau, Robert A.; Liu, Kitty D. F.

    1978-01-01

    The activity of a wax ester hydrolase in the cotyledons of jojoba (Simmondsia chinensis) seedlings increased drastically during germination, parallel to the development of the gluconeogenic process. The enzyme at its peak of development was obtained in association with the wax body membrane, and its properties were studied. It had an optimal activity at alkaline pH (8.5-9). The apparent Km value for N-methylindoxylmyristate was 93 μM. It was stable at 40 C for 30 min but was inactivated at higher temperature. Various divalent cations and ethylenediaminetetraacetate had little effect on the activity. p-Chloromercuribenzoate was a strong inhibitor of the enzyme activity, and its effect was reversed by subsequent addition of dithiothreitol. It had a broad substrate specificity with highest activities on monoglycerides, wax esters, and the native substrate (jojoba wax). PMID:16660288

  2. Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor

    SciTech Connect

    Deo, R P.; Wang, Joseph; Block, I; Mulchandani, Ashok; Joshi, K; Trojanowicz, M; Scholz, F; Chen, Wilfred; Lin, Yuehe

    2005-02-08

    An amperometric biosensor for organophosphorus (OP) pesticides based on a carbon-nanotube (CNT) modified transducer and an organophosphorus hydrolase (OPH) biocatalyst is described. A bilayer approach with the OPH layer atop of the CNT film was used for preparing the CNT/OPH biosensor. The CNT layer leads to a greatly improved anodic detection of the enzymatically-generated p-nitrophenol product, including higher sensitivity and stability. The sensor performance was optimized with respect to the surface modification and operating conditions. Under the optimal conditions the biosensor was used to measure as low as 0.15 {micro}M paraoxon and 0.8 {micro}M methyl parathion with sensitivities of 25 and 6 nA/{micro}M, respectively.

  3. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases

    PubMed Central

    Deng, Kai; Takasuka, Taichi E.; Bianchetti, Christopher M.; Bergeman, Lai F.; Adams, Paul D.; Northen, Trent R.; Fox, Brian G.

    2015-01-01

    Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements. PMID:26579511

  4. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis

    PubMed Central

    Zhang, Guodong; Panigrahy, Dipak; Hwang, Sung Hee; Yang, Jun; Mahakian, Lisa M.; Wettersten, Hiromi I.; Liu, Jun-Yan; Wang, Yanru; Ingham, Elizabeth S.; Tam, Sarah; Kieran, Mark W.; Weiss, Robert H.; Ferrara, Katherine W.; Hammock, Bruce D.

    2014-01-01

    Prostaglandins derived from the cyclooxygenase (COX) pathway and epoxyeicosatrienoic acids (EETs) from the cytochrome P450/soluble epoxide hydrolase (sEH) pathway are important eicosanoids that regulate angiogenesis and tumorigenesis. COX-2 inhibitors, which block the formation of prostaglandins, suppress tumor growth, whereas sEH inhibitors, which increase endogenous EETs, stimulate primary tumor growth and metastasis. However, the functional interactions of these two pathways in cancer are unknown. Using pharmacological inhibitors as probes, we show here that dual inhibition of COX-2 and sEH synergistically inhibits primary tumor growth and metastasis by suppressing tumor angiogenesis. COX-2/sEH dual pharmacological inhibitors also potently suppress primary tumor growth and metastasis by inhibiting tumor angiogenesis via selective inhibition of endothelial cell proliferation. These results demonstrate a critical interaction of these two lipid metabolism pathways on tumorigenesis and suggest dual inhibition of COX-2 and sEH as a potential therapeutic strategy for cancer therapy. PMID:25024195

  5. A glycoside hydrolase family 31 dextranase with high transglucosylation activity from Flavobacterium johnsoniae.

    PubMed

    Gozu, Yoshifumi; Ishizaki, Yuichi; Hosoyama, Yuhei; Miyazaki, Takatsugu; Nishikawa, Atsushi; Tonozuka, Takashi

    2016-08-01

    Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity. PMID:27170214

  6. Cytochemical localization of some hydrolases in the pollen and pollen tubes of Amaryllis vittata Ait.

    PubMed

    Sharma, D

    1982-01-01

    Some hydrolases are localized cytochemically in the pollen and pollen tubes of Amaryllis vittata Ait. The function of different enzymes is discussed in relation to pollen tubes morphogenesis. Activity of most of the enzymes was confined to colpus region, pollen wall and general cytoplasm of pollen and pollen tube. The activity of hydrolytic enzymes like acid monophosphoesterase and lipase and was nil in the exine of both germinated and ungerminated pollen, whereas intense reaction for esterase was observed in exine. Enzyme activity increased after germination which suggest the hydrolysis of stored metabolites and synthesis of proteins and other metabolites for the active growth of pollen tube. Intense reaction for enzymes like alkaline phosphomonoesterase, ATP-ase, 5-nucleotidase etc. at the tip region of pollen tube suggest their role in physiological processes associated with exchange of materials through intercellular transport during tube wall polysaccharide biogenesis. PMID:6298081

  7. Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase

    SciTech Connect

    Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.; van der Donk, Wilfred A.; Nair, Satish K.

    2011-12-22

    Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.

  8. Effect of Bleomycin Hydrolase Gene Polymorphism on Late Pulmonary Complications of Treatment for Hodgkin Lymphoma

    PubMed Central

    Miltényi, Zsófia; Póliska, Szilárd; Bálint, Bálint László; Illés, Árpád

    2016-01-01

    Background Bleomycin hydrolase (BLMH), an enzyme that inactivates bleomycin, may be a potential candidate that could influence pulmonary function in ABVD (doxorubicin, bleomycin, vinblastin, dacarbasine)–treated Hodgkin lymphoma (HL) patients. Patients and Methods We hypothesized that the BLMH gene SNP A1450G (rs1050565) influences BLMH activity and late pulmonary toxicity. St. George Respiratory Questionnaire, lung scintigraphy and spirometry were used to determine lung function. TaqMan genotyping assay was used to determine genotype distribution of 131 previously treated HL patients. Results Significantly more favorable results were seen in the wild-type A/A genotype group than those in the group containing the mutated allele: A/G+G/G in retrospective pulmonary tests of ABVD treated patients. Conclusion Besides limitations of the current study, bleomycin pharmacokinetics should be further evaluated in patients with BLMH variations, hence identify those cases even in the frontline setting, where bleomycin should be omitted and replaced with targeted therapy. PMID:27327270

  9. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  10. AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs.

    PubMed

    Parsons, William H; Kolar, Matthew J; Kamat, Siddhesh S; Iii, Armand B Cognetta; Hulce, Jonathan J; Saez, Enrique; Kahn, Barbara B; Saghatelian, Alan; Cravatt, Benjamin F

    2016-05-01

    Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural, relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on conserved threonine and histidine residues for catalysis. Both AIG1 and ADTRP hydrolyze bioactive fatty acid esters of hydroxy fatty acids (FAHFAs) but not other major classes of lipids. We identify multiple cell-active, covalent inhibitors of AIG1 and show that these agents block FAHFA hydrolysis in mammalian cells. These results indicate that AIG1 and ADTRP are founding members of an evolutionarily conserved class of transmembrane threonine hydrolases involved in bioactive lipid metabolism. More generally, our findings demonstrate how chemical proteomics can excavate potential cases of convergent or parallel protein evolution that defy conventional sequence- and structure-based predictions. PMID:27018888

  11. Peroxisomal translocation of soluble epoxide hydrolase protects against ischemic stroke injury

    PubMed Central

    Nelson, Jonathan W; Zhang, Wenri; Alkayed, Nabil J; Koerner, Ines P

    2015-01-01

    Soluble epoxide hydrolase (sEH) contributes to cardiovascular disease, including stroke, although the exact mechanism remains unclear. While primarily a cytosolic enzyme, sEH can translocate into peroxisomes. The relevance of this for stroke injury is not understood. We tested the hypothesis that sEH-mediated injury is tied to the cytoplasmic localization. We found that a human sEH variant possessing increased affinity to peroxisomes reduced stroke injury in sEH-null mice, whereas infarcts were significantly larger when peroxisomal translocation of sEH was disrupted. We conclude that sEH contributes to stroke injury only when localized in the cytoplasm, while peroxisomal sEH may be protective. PMID:26126869

  12. [Molecular engineering of cellulase catalytic domain based on glycoside hydrolase family].

    PubMed

    Zhang, Xiaomei; Li, Dandan; Wang, Lushan; Zhao, Yue; Chen, Guanjun

    2013-04-01

    Molecular engineering of cellulases can improve enzymatic activity and efficiency. Recently, the Carbohydrate-Active enZYmes Database (CAZy), including glycoside hydrolase (GH) families, has been established with the development of Omics and structural measurement technologies. Molecular engineering based on GH families can obviously decrease the probing space of target sequences and structures, and increase the odds of experimental success. Besides, the study of cellulase active-site architecture paves the way toward the explanation of catalytic mechanism. This review focuses on the main GH families and the latest progresses in molecular engineering of catalytic domain. Based on the combination of analysis of a large amount of data in the same GH family and their conservative active-site architecture information, rational design will be an important direction for molecular engineering and promote the rapid development of the conversion of biomass. PMID:23894816

  13. Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes

    PubMed Central

    Viens, Pascal; Lacombe-Harvey, Marie-Ève; Brzezinski, Ryszard

    2015-01-01

    Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms. PMID:26516868

  14. Design and Synthesis of Activity-Based Probes and Inhibitors for Bleomycin Hydrolase.

    PubMed

    van der Linden, Wouter A; Segal, Ehud; Child, Matthew A; Byzia, Anna; Drąg, Marcin; Bogyo, Matthew

    2015-08-20

    Bleomycin hydrolase (BLMH) is a neutral cysteine aminopeptidase that has been ascribed roles in many physiological and pathological processes, yet its primary biological function remains enigmatic. In this work, we describe the results of screening of a library of fluorogenic substrates to identify non-natural amino acids that are optimally recognized by BLMH. This screen identified several substrates with kcat/KM values that are substantially improved over the previously reported fluorogenic substrates for this enzyme. The substrate sequences were used to design activity-based probes that showed potent labeling of recombinant BLMH as well as endogenously expressed BLMH in cell extracts, and in intact cells. Importantly, we identify potent BLMH inhibitors that are able to fully inhibit endogenous BLMH activity in intact cells. These probes and inhibitors will be valuable new reagents to study BLMH function in cellular and animal models of human diseases where BLMH is likely to be involved. PMID:26256478

  15. Chemical constituents from the root of Polygonum multiflorum and their soluble epoxide hydrolase inhibitory activity.

    PubMed

    Sun, Ya Nan; Li, Wei; Kim, Jang Hoon; Yan, Xi Tao; Kim, Ji Eun; Yang, Seo Young; Kim, Young Ho

    2015-06-01

    Fourteen compounds were isolated from a methanol extract of Polygonum multiflorum roots, and their structures were elucidated by comparing spectroscopic data to published spectra. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were then evaluated. Compounds 1-7 inhibited sEH activity potently, with IC50 values ranging from 6.2 ± 0.5 to 48.6 ± 3.1 μM. Moreover, a kinetic analysis of compounds 1-7 revealed that the inhibitory actions of compounds 1, 3 and 4 were non-competitive, whereas those of compounds 2 and 5-7 were mixed-type. PMID:25413971

  16. Inhibiting an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa Protects CFTR.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; Morisseau, Christophe; Madden, Dean R

    2015-08-17

    Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, the mechanism of action of Cif has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. It was demonstrated that the hydrolase activity of Cif is strictly required for its effects on CFTR. A small-molecule inhibitor that protects this key component of the mucociliary defense system was also uncovered. These results provide a basis for targeting the distinctive virulence chemistry of Cif and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking. PMID:26136396

  17. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases.

    PubMed

    Deng, Kai; Takasuka, Taichi E; Bianchetti, Christopher M; Bergeman, Lai F; Adams, Paul D; Northen, Trent R; Fox, Brian G

    2015-01-01

    Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements. PMID:26579511

  18. A classification of glycosyl hydrolases based on amino acid sequence similarities.

    PubMed Central

    Henrissat, B

    1991-01-01

    The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised. PMID:1747104

  19. Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases.

    PubMed

    Beckham, Gregg T; Ståhlberg, Jerry; Knott, Brandon C; Himmel, Michael E; Crowley, Michael F; Sandgren, Mats; Sørlie, Morten; Payne, Christina M

    2014-06-01

    Polysaccharide depolymerization in nature is primarily accomplished by processive glycoside hydrolases (GHs), which abstract single carbohydrate chains from polymer crystals and cleave glycosidic linkages without dissociating after each catalytic event. Understanding the molecular-level features and structural aspects of processivity is of importance due to the prevalence of processive GHs in biomass-degrading enzyme cocktails. Here, we describe recent advances towards the development of a molecular-level theory of processivity for cellulolytic and chitinolytic enzymes, including the development of novel methods for measuring rates of key steps in processive action and insights gained from structural and computational studies. Overall, we present a framework for developing structure-function relationships in processive GHs and outline additional progress towards developing a fundamental understanding of these industrially important enzymes. PMID:24863902

  20. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    PubMed Central

    Lin, Jun

    2014-01-01

    The growth-promoting effect of antibiotic growth promoters (AGPs) was correlated with the decreased activity of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals. PMID:24575079

  1. Discovery of Leukotriene A4 Hydrolase Inhibitors Using Metabolomics Biased Fragment Crystallography

    SciTech Connect

    Davies, D.; Mamat, B; Magnusson, O; Christensen, J; Haraldsson, M; Mishra, R; Pease, B; Hansen, E; Singh, J; et. al.

    2009-01-01

    We describe a novel fragment library termed fragments of life (FOL) for structure-based drug discovery. The FOL library includes natural small molecules of life, derivatives thereof, and biaryl protein architecture mimetics. The choice of fragments facilitates the interrogation of protein active sites, allosteric binding sites, and protein-protein interaction surfaces for fragment binding. We screened the FOL library against leukotriene A4 hydrolase (LTA4H) by X-ray crystallography. A diverse set of fragments including derivatives of resveratrol, nicotinamide, and indole were identified as efficient ligands for LTA4H. These fragments were elaborated in a small number of synthetic cycles into potent inhibitors of LTA4H representing multiple novel chemotypes for modulating leukotriene biosynthesis. Analysis of the fragment-bound structures also showed that the fragments comprehensively recapitulated key chemical features and binding modes of several reported LTA4H inhibitors.

  2. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases.

    PubMed

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav; Abou Hachem, Maher

    2016-08-01

    Starch-binding modules of family 20 (CBM20) are present in 60% of lytic polysaccharide monooxygenases (LPMOs) catalyzing the oxidative breakdown of starch, which highlights functional importance in LPMO activity. The substrate-binding properties of starch-active LMPOs, however, are currently unexplored. Affinities and binding-thermodynamics of two recombinant fungal LPMOs toward starch and β-cyclodextrin were shown to be similar to fungal CBM20s. Amplex Red assays showed ascorbate and Cu-dependent activity, which was inhibited in the presence of β-cylodextrin and amylose. Phylogenetically, the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities. PMID:27397613

  3. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases

    PubMed Central

    Díez-Municio, Marina; Herrero, Miguel; Olano, Agustín; Moreno, F Javier

    2014-01-01

    Prebiotic oligosaccharides are increasingly demanded within the Food Science domain because of the interesting healthy properties that these compounds may induce to the organism, thanks to their beneficial intestinal microbiota growth promotion ability. In this regard, the development of new efficient, convenient and affordable methods to obtain this class of compounds might expand even further their use as functional ingredients. This review presents an overview on the most recent interesting approaches to synthesize lactose-derived oligosaccharides with potential prebiotic activity paying special focus on the microbial glycoside hydrolases that can be effectively employed to obtain these prebiotic compounds. The most notable advantages of using lactose-derived carbohydrates such as lactosucrose, galactooligosaccharides from lactulose, lactulosucrose and 2-α-glucosyl-lactose are also described and commented. PMID:24690139

  4. Cellular viability effects of fatty acid amide hydrolase inhibition on cerebellar neurons

    PubMed Central

    2011-01-01

    The endocannabinoid anandamide (ANA) participates in the control of cell death inducing the formation of apoptotic bodies and DNA fragmentation. The aim of this study was to evaluate whether the ANA degrading enzyme, the fatty acid amide hydrolase (FAAH), would induce cellular death. Experiments were performed in cerebellar granule neurons cultured with the FAAH inhibitor, URB597 (25, 50 or 100 nM) as well as endogenous lipids such as oleoylethanolamide (OEA) or palmitoylethanolamide (PEA) and cellular viability was determined by MTT test. Neurons cultured with URB597 (25, 50 or 100 nM) displayed a decrease in cellular viability. In addition, if cultured with OEA (25 nM) or PEA (100 nM), cellular death was found. These results further suggest that URB597, OEA or PEA promote cellular death. PMID:21854612

  5. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase.

    PubMed

    Lyagin, Ilya V; Andrianova, Mariia S; Efremenko, Elena N

    2016-07-01

    The catalytic activity of hexahistidine-tagged organophosphorus hydrolase (His6-OPH) in hydrolytic reactions of methylphosphonic acid (MPA) and its monoesters and diesters being decomposition products of R-VX was demonstrated for the first time. The catalytic constants of enzyme in such reactions were determined. The mechanism of C-P bond cleavage in the MPA by His6-OPH was proposed. Such reaction was estimated to be carried out with the soluble and nanocapsulated forms of His6-OPH. His6-OPH was demonstrated to be capable of degrading the key organophosphorus components of reaction masses (RMs) that are produced by the chemical detoxification of R-VX and RMs are multi-substrate mixtures for this enzyme. The kinetic model describing the behaviour of His6-OPH in RMs was proposed and was shown to adequately fit experimental points during degradation of the real samples of RMs. PMID:26932546

  6. Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes.

    PubMed

    Viens, Pascal; Lacombe-Harvey, Marie-Ève; Brzezinski, Ryszard

    2015-11-01

    Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms. PMID:26516868

  7. Structural and kinetic insights into the mechanism of 5-hydroxyisourate hydrolase from Klebsiella pneumoniae

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2011-07-19

    The stereospecific oxidative degradation of uric acid to (S)-allantoin has recently been demonstrated to proceed via two unstable intermediates and requires three separate enzymatic reactions. The second step of this reaction, the conversion of 5-hydroxyisourate (HIU) to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, is catalyzed by HIU hydrolase (HIUH). The high-resolution crystal structure of HIUH from the opportunistic pathogen Klebsiella pneumoniae (KpHIUH) has been determined. KpHIUH is a homotetrameric protein that, based on sequence and structural similarity, belongs to the transthyretin-related protein family. In addition, the steady-state kinetic parameters for this enzyme and four active-site mutants have been measured. These data provide valuable insight into the functional roles of the active-site residues. Based upon the structural and kinetic data, a mechanism is proposed for the KpHIUH-catalyzed reaction.

  8. Structure of Acidothermus cellulolyticus family 74 glycoside hydrolase at 1.82 Å resolution

    PubMed Central

    Alahuhta, Markus; Adney, William S.; Himmel, Michael E.; Lunin, Vladimir V.

    2013-01-01

    Here, a 1.82 Å resolution X-ray structure of a glycoside hydrolase family 74 (GH74) enzyme from Acidothermus cellulolyticus is reported. The resulting structure was refined to an R factor of 0.150 and an R free of 0.196. Structural analysis shows that five related structures have been reported with a secondary-structure similarity of between 75 and 89%. The five similar structures were all either Clostridium thermocellum or Geotrichum sp. M128 GH74 xyloglucanases. Structural analysis indicates that the A. cellulolyticus GH74 enzyme is an endoxyloglucanase, as it lacks a characteristic loop that blocks one end of the active site in exoxyloglucanases. Superimposition with the C. thermocellum GH74 shows that Asp451 and Asp38 are the catalytic residues. PMID:24316824

  9. First Structural Insights into α-l-Arabinofuranosidases from the Two GH62 Glycoside Hydrolase Subfamilies*

    PubMed Central

    Siguier, Béatrice; Haon, Mireille; Nahoum, Virginie; Marcellin, Marlène; Burlet-Schiltz, Odile; Coutinho, Pedro M.; Henrissat, Bernard; Mourey, Lionel; O'Donohue, Michael J.; Berrin, Jean-Guy; Tranier, Samuel; Dumon, Claire

    2014-01-01

    α-l-Arabinofuranosidases are glycoside hydrolases that specifically hydrolyze non-reducing residues from arabinose-containing polysaccharides. In the case of arabinoxylans, which are the main components of hemicellulose, they are part of microbial xylanolytic systems and are necessary for complete breakdown of arabinoxylans. Glycoside hydrolase family 62 (GH62) is currently a small family of α-l-arabinofuranosidases that contains only bacterial and fungal members. Little is known about the GH62 mechanism of action, because only a few members have been biochemically characterized and no three-dimensional structure is available. Here, we present the first crystal structures of two fungal GH62 α-l-arabinofuranosidases from the basidiomycete Ustilago maydis (UmAbf62A) and ascomycete Podospora anserina (PaAbf62A). Both enzymes are able to efficiently remove the α-l-arabinosyl substituents from arabinoxylan. The overall three-dimensional structure of UmAbf62A and PaAbf62A reveals a five-bladed β-propeller fold that confirms their predicted classification into clan GH-F together with GH43 α-l-arabinofuranosidases. Crystallographic structures of the complexes with arabinose and cellotriose reveal the important role of subsites +1 and +2 for sugar binding. Intriguingly, we observed that PaAbf62A was inhibited by cello-oligosaccharides and displayed binding affinity to cellulose although no activity was observed on a range of cellulosic substrates. Bioinformatic analyses showed that UmAbf62A and PaAbf62A belong to two distinct subfamilies within the GH62 family. The results presented here provide a framework to better investigate the structure-function relationships within the GH62 family. PMID:24394409

  10. Cloning and characterization of an epoxide hydrolase from Cupriavidus metallidurans-CH34.

    PubMed

    Kumar, Ranjai; Wani, Shadil Ibrahim; Chauhan, Nar Singh; Sharma, Rakesh; Sareen, Dipti

    2011-09-01

    A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ∼2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process. PMID:21515382

  11. The Molecular Structure of Epoxide Hydrolase B From And Its Complex With Urea-Based Inhibitor

    SciTech Connect

    Biswal, B.K.; Morisseau, C.; Garen, G.; Cherney, M.M.; Garen, C.; Niu, C.; Hammock, B.D.; James, M.N.G.

    2009-05-11

    Mycobacterium tuberculosis (Mtb), the intracellular pathogen that infects macrophages primarily, is the causative agent of the infectious disease tuberculosis in humans. The Mtb genome encodes at least six epoxide hydrolases (EHs A to F). EHs convert epoxides to trans-dihydrodiols and have roles in drug metabolism as well as in the processing of signaling molecules. Herein, we report the crystal structures of unbound Mtb EHB and Mtb EHB bound to a potent, low-nanomolar (IC(50) approximately 19 nM) urea-based inhibitor at 2.1 and 2.4 A resolution, respectively. The enzyme is a homodimer; each monomer adopts the classical alpha/beta hydrolase fold that composes the catalytic domain; there is a cap domain that regulates access to the active site. The catalytic triad, comprising Asp104, His333 and Asp302, protrudes from the catalytic domain into the substrate binding cavity between the two domains. The urea portion of the inhibitor is bound in the catalytic cavity, mimicking, in part, the substrate binding; the two urea nitrogen atoms donate hydrogen bonds to the nucleophilic carboxylate of Asp104, and the carbonyl oxygen of the urea moiety receives hydrogen bonds from the phenolic oxygen atoms of Tyr164 and Tyr272. The phenolic oxygen groups of these two residues provide electrophilic assistance during the epoxide hydrolytic cleavage. Upon inhibitor binding, the binding-site residues undergo subtle structural rearrangement. In particular, the side chain of Ile137 exhibits a rotation of around 120 degrees about its C(alpha)-C(beta) bond in order to accommodate the inhibitor. These findings have not only shed light on the enzyme mechanism but also have opened a path for the development of potent inhibitors with good pharmacokinetic profiles against all Mtb EHs of the alpha/beta type.

  12. Novel β-1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans*

    PubMed Central

    Shimizu, Motoyuki; Kaneko, Yuhei; Ishihara, Saaya; Mochizuki, Mai; Sakai, Kiyota; Yamada, Miyuki; Murata, Shunsuke; Itoh, Eriko; Yamamoto, Tatsuya; Sugimura, Yu; Hirano, Tatsuya; Takaya, Naoki; Kobayashi, Tetsuo; Kato, Masashi

    2015-01-01

    Many filamentous fungi produce β-mannan-degrading β-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel β-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free β-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with β-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-β-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward β-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when β-mannans were the sole carbon source, indicating that Man134A is involved in β-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of β-mannan degradation that is enhanced by the novel β-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-β-1,4-mannanases. PMID:26385921

  13. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition.

    PubMed

    Wei, Ren; Oeser, Thorsten; Schmidt, Juliane; Meier, René; Barth, Markus; Then, Johannes; Zimmermann, Wolfgang

    2016-08-01

    Recent studies on the enzymatic degradation of synthetic polyesters have shown the potential of polyester hydrolases from thermophilic actinomycetes for modifying or degrading polyethylene terephthalate (PET). TfCut2 from Thermobifida fusca KW3 and LC-cutinase (LCC) isolated from a compost metagenome are remarkably active polyester hydrolases with high sequence and structural similarity. Both enzymes exhibit an exposed active site in a substrate binding groove located at the protein surface. By exchanging selected amino acid residues of TfCut2 involved in substrate binding with those present in LCC, enzyme variants with increased PET hydrolytic activity at 65°C were obtained. The highest activity in hydrolyzing PET films and fibers were detected with the single variant G62A and the double variant G62A/I213S. Both variants caused a weight loss of PET films of more than 42% after 50 h of hydrolysis, corresponding to a 2.7-fold increase compared to the wild type enzyme. Kinetic analysis based on the released PET hydrolysis products confirmed the superior hydrolytic activity of G62A with a fourfold higher hydrolysis rate constant and a 1.5-fold lower substrate binding constant than those of the wild type enzyme. Mono-(2-hydroxyethyl) terephthalate is a strong inhibitor of TfCut2. A determination of the Rosetta binding energy suggested a reduced interaction of G62A with 2PET, a dimer of the PET monomer ethylene terephthalate. Indeed, G62A revealed a 5.5-fold lower binding constant to the inhibitor than the wild type enzyme indicating that its increased PET hydrolysis activity is the result of a relieved product inhibition by mono-(2-hydroxyethyl) terephthalate. Biotechnol. Bioeng. 2016;113: 1658-1665. © 2016 Wiley Periodicals, Inc. PMID:26804057

  14. Dysregulation of Soluble Epoxide Hydrolase and Lipidomic Profiles in Anorexia Nervosa

    PubMed Central

    Shih, Pei-an Betty; Yang, Jun; Morisseau, Christophe; German, J. Bruce; Van Zeeland, Ashley; Armando, Aaron M.; Quehenberger, Oswald; Bergen, Andrew W.; Magistretti, Pierre; Berrettini, Wade; Halmi, Katherine Ann; Schork, Nicholas; Hammock, Bruce D.; Kaye, Walter

    2015-01-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. AN tend to have an aversion to foods rich in fat. Because Epoxide Hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN, and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid, and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared to controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment. PMID:25824304

  15. Determinants of Reactivity and Selectivity in Soluble Epoxide Hydrolase from Quantum Mechanics/Molecular Mechanics Modeling

    PubMed Central

    2012-01-01

    Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations (at the AM1/CHARMM22 level) and high-level ab initio (SCS-MP2) QM/MM calculations to analyze the reactions, and determinants of selectivity, for two substrates: trans-stilbene oxide (t-SO) and trans-diphenylpropene oxide (t-DPPO). The calculated free energy barriers from the QM/MM (AM1/CHARMM22) umbrella sampling MD simulations show a lower barrier for phenyl attack in t-DPPO, compared with that for benzylic attack, in agreement with experiment. Activation barriers in agreement with experimental rate constants are obtained only with the highest level of QM theory (SCS-MP2) used. Our results show that the selectivity of the ring-opening reaction is influenced by several factors, including proximity to the nucleophile, electronic stabilization of the transition state, and hydrogen bonding to two active site tyrosine residues. The protonation state of His523 during nucleophilic attack has also been investigated, and our results show that the protonated form is most consistent with experimental findings. The work presented here illustrates how determinants of selectivity can be identified from QM/MM simulations. These insights may also provide useful information for the design of novel catalysts for use in the synthesis of enantiopure compounds. PMID:22280021

  16. Role of leukotriene A4 hydrolase aminopeptidase in the pathogenesis of emphysema1

    PubMed Central

    Paige, Mikell; Wang, Kan; Burdick, Marie; Park, Sunhye; Cha, Josiah; Jeffrey, Erin; Sherman, Nicholas; Shim, Y. Michael

    2014-01-01

    The leukotriene A4 hydrolase (LTA4H) is a bi-functional enzyme with an epoxy hydrolase and aminopeptidase activities. We hypothesize that the LTA4H aminopeptidase activity alleviates neutrophilic inflammation, which contributes to cigarette smoke (CS)-induced emphysema by clearing Proline-Glycine-Proline (PGP), a tri-amino acid chemokine known to induce chemotaxis of neutrophils. To investigate the biological contributions made by the LTA4H aminopeptidase activity in CS-induced emphysema, we exposed wild type mice to CS over five months while treating them with a vehicle or a pharmaceutical agent (4MDM) that selectively augments the LTA4H aminopeptidase without affecting the bio-production of leukotriene B4 (LTB4). Emphysematous phenotypes were assessed by pre mortem lung physiology with a small animal ventilator and by postmortem histologic morphometry. CS exposure acidified the airspaces and induced localization of the LTA4H protein into the nuclei of the epithelial cells. This resulted in accumulation of PGP in the airspaces by suppressing the LTA4H aminopeptidase activity. When the LTA4H aminopeptidase activity was selectively augmented by 4MDM, the levels of PGP in the BALF and infiltration of neutrophils into the lungs were significant reduced without affecting the levels of LTB4. This protected murine lungs from CS-induced emphysematous alveolar remodeling. In conclusion, CS exposure promotes the development of CS-induced emphysema by suppressing the enzymatic activities of the LTA4H aminopeptidase in lung tissues and accumulating PGP and neutrophils in the airspaces. However, restoring the LTA4 aminopeptidase activity with a pharmaceutical agent protected murine lungs from developing CS-induced emphysema. PMID:24771855

  17. Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice.

    PubMed

    Hoyer, Friedrich Felix; Khoury, Mona; Slomka, Heike; Kebschull, Moritz; Lerner, Raissa; Lutz, Beat; Schott, Hans; Lütjohann, Dieter; Wojtalla, Alexandra; Becker, Astrid; Zimmer, Andreas; Nickenig, Georg

    2014-01-01

    The role of endocannabinoids such as anandamide during atherogenesis remains largely unknown. Fatty acid amide hydrolase (FAAH) represents the key enzyme in anandamide degradation, and its inhibition is associated with subsequent higher levels of anandamide. Here, we tested whether selective inhibition of FAAH influences the progression of atherosclerosis in mice. Selective inhibition of FAAH using URB597 resulted in significantly increased plasma levels of anandamide compared to control, as assessed by mass spectrometry experiments in mice. Apolipoprotein E-deficient (ApoE(-/-)) mice were fed a high-fat, cholesterol-rich diet to induce atherosclerotic conditions. Simultaneously, mice received either the pharmacological FAAH inhibitor URB597 1mg/kg body weight (n=28) or vehicle (n=25) via intraperitoneal injection three times a week. After eight weeks, mice were sacrificed, and experiments were performed. Vascular superoxide generation did not differ between both groups, as measured by L012 assay. To determine whether selective inhibition of FAAH affects atherosclerotic plaque inflammation, immunohistochemical staining of the aortic root was performed. Atherosclerotic plaque formation, vascular macrophage accumulation, as well as vascular T cell infiltration did not differ between both groups. Interestingly, neutrophil cell accumulation was significantly increased in mice receiving URB597 compared to control. Vascular collagen structures in atherosclerotic plaques were significantly diminished in mice treated with URB597 compared to control, as assessed by picro-sirius-red staining. This was accompanied by an increased aortic expression of matrix metalloproteinase-9, as determined by quantitative RT-PCR and western blot analysis. Inhibition of fatty acid amide hydrolase does not influence plaque size but increases plaque vulnerability in mice. PMID:24286707

  18. Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii

    PubMed Central

    Kemp, Louise E.; Rusch, Marion; Adibekian, Alexander; Bullen, Hayley E.; Graindorge, Arnault; Freymond, Céline; Rottmann, Matthias; Braun-Breton, Catherine; Baumeister, Stefan; Porfetye, Arthur T.; Vetter, Ingrid R.; Hedberg, Christian; Soldati-Favre, Dominique

    2013-01-01

    In eukaryotic organisms, cysteine palmitoylation is an important reversible modification that impacts protein targeting, folding, stability, and interactions with partners. Evidence suggests that protein palmitoylation contributes to key biological processes in Apicomplexa with the recent palmitome of the malaria parasite Plasmodium falciparum reporting over 400 substrates that are modified with palmitate by a broad range of protein S-acyl transferases. Dynamic palmitoylation cycles require the action of an acyl-protein thioesterase (APT) that cleaves palmitate from substrates and conveys reversibility to this posttranslational modification. In this work, we identified candidates for APT activity in Toxoplasma gondii. Treatment of parasites with low micromolar concentrations of β-lactone- or triazole urea-based inhibitors that target human APT1 showed varied detrimental effects at multiple steps of the parasite lytic cycle. The use of an activity-based probe in combination with these inhibitors revealed the existence of several serine hydrolases that are targeted by APT1 inhibitors. The active serine hydrolase, TgASH1, identified as the homologue closest to human APT1 and APT2, was characterized further. Biochemical analysis of TgASH1 indicated that this enzyme cleaves substrates with a specificity similar to APTs, and homology modeling points toward an APT-like enzyme. TgASH1 is dispensable for parasite survival, which indicates that the severe effects observed with the β-lactone inhibitors are caused by the inhibition of non-TgASH1 targets. Other ASH candidates for APT activity were functionally characterized, and one of them was found to be resistant to gene disruption due to the potential essential nature of the protein. PMID:23913689

  19. Phylogenetic analyses suggest multiple changes of substrate specificity within the Glycosyl hydrolase 20 family

    PubMed Central

    2008-01-01

    Background Beta-N-acetylhexosaminidases belonging to the glycosyl hydrolase 20 (GH20) family are involved in the removal of terminal β-glycosidacally linked N-acetylhexosamine residues. These enzymes, widely distributed in microorganisms, animals and plants, are involved in many important physiological and pathological processes, such as cell structural integrity, energy storage, pathogen defence, viral penetration, cellular signalling, fertilization, development of carcinomas, inflammatory events and lysosomal storage diseases. Nevertheless, only limited analyses of phylogenetic relationships between GH20 genes have been performed until now. Results Careful phylogenetic analyses of 233 inferred protein sequences from eukaryotes and prokaryotes reveal a complex history for the GH20 family. In bacteria, multiple gene duplications and lineage specific gene loss (and/or horizontal gene transfer) are required to explain the observed taxonomic distribution. The last common ancestor of extant eukaryotes is likely to have possessed at least one GH20 family member. At least one gene duplication before the divergence of animals, plants and fungi as well as other lineage specific duplication events have given rise to multiple paralogous subfamilies in eukaryotes. Phylogenetic analyses also suggest that a second, divergent subfamily of GH20 family genes present in animals derive from an independent prokaryotic source. Our data suggest multiple convergent changes of functional roles of GH20 family members in eukaryotes. Conclusion This study represents the first detailed evolutionary analysis of the glycosyl hydrolase GH20 family. Mapping of data concerning physiological function of GH20 family members onto the phylogenetic tree reveals that apparently convergent and highly lineage specific changes in substrate specificity have occurred in multiple GH20 subfamilies. PMID:18647384

  20. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants.

    PubMed

    Quistad, Gary B; Klintenberg, Rebecka; Casida, John E

    2005-08-01

    Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents. PMID:15888665

  1. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa.

    PubMed

    Shih, P B; Yang, J; Morisseau, C; German, J B; Zeeland, A A Scott-Van; Armando, A M; Quehenberger, O; Bergen, A W; Magistretti, P; Berrettini, W; Halmi, K A; Schork, N; Hammock, B D; Kaye, W

    2016-04-01

    Individuals with anorexia nervosa (AN) restrict eating and become emaciated. They tend to have an aversion to foods rich in fat. Because epoxide hydrolase 2 (EPHX2) was identified as a novel AN susceptibility gene, and because its protein product, soluble epoxide hydrolase (sEH), converts bioactive epoxides of polyunsaturated fatty acid (PUFA) to the corresponding diols, lipidomic and metabolomic targets of EPHX2 were assessed to evaluate the biological functions of EPHX2 and their role in AN. Epoxide substrates of sEH and associated oxylipins were measured in ill AN, recovered AN and gender- and race-matched controls. PUFA and oxylipin markers were tested as potential biomarkers for AN. Oxylipin ratios were calculated as proxy markers of in vivo sEH activity. Several free- and total PUFAs were associated with AN diagnosis and with AN recovery. AN displayed elevated n-3 PUFAs and may differ from controls in PUFA elongation and desaturation processes. Cytochrome P450 pathway oxylipins from arachidonic acid, linoleic acid, alpha-linolenic acid and docosahexaenoic acid PUFAs are associated with AN diagnosis. The diol:epoxide ratios suggest the sEH activity is higher in AN compared with controls. Multivariate analysis illustrates normalization of lipidomic profiles in recovered ANs. EPHX2 influences AN risk through in vivo interaction with dietary PUFAs. PUFA composition and concentrations as well as sEH activity may contribute to the pathogenesis and prognosis of AN. Our data support the involvement of EPHX2-associated lipidomic and oxylipin dysregulations in AN, and reveal their potential as biomarkers to assess responsiveness to future intervention or treatment. PMID:25824304

  2. Molecular Dynamics of Organophosphorous Hydrolases Bound to the Nerve Agent Soman

    SciTech Connect

    Soares, Thereza A.; Osman, Mohamed A.; Straatsma, TP

    2007-07-01

    The organophosphorous hydrolase (OPH) from Pseudomonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. The potential use of this enzyme for the detection and detoxification of warfare nerve agents has spurred efforts to engineer mutants of enhanced catalytic activity and modified stereospecificity towards the most toxic forms of organophosphate nerve agents. Molecular dynamics simulations of the wild-type OPH and the complexes between the wild-type and the triple-mutant H254G/H257W/L303R forms and the substrate SpSc-soman have been carried out to enhance our molecular level understanding of its reaction mechanism. Comparison of the three simulations indicate that substrate binding induces conformational changes of the loops near the active site, suggesting an induced-fit mechanism. Likewise, the coordination of the zinc cations in the active site of the enzyme differs between the free enzyme and the complexes. In the absence of the substrate, the more exposed b-zinc is hexa-coordinated and the less exposed a-zinc is penta-coordinated. In the presence of the substrate, the b- zinc atom can be both penta- or hexa-coordinated while the a-zinc atom is tetra-coordinated. In addition, binding energies were calculated from electrostatic properties obtained by solution of the Poisson-Boltzmann equation combined with a surface area-dependent apolar contribution. The calculations indicate that the binding of SpSc-soman to OPH is driven by nonpolar interactions while electrostatic interactions determine binding specificity. These results provide a qualitative, molecular-level explanation for 2 the three-fold increase in catalytic efficiency of the triple-mutant towards SpSc-soman. Keywords: organophosphorous hydrolase, phosphotriesterase, nerve agents, soman, molecular dynamics, Poisson-Boltzmann equation, continuum electrostatics, metalloprotein.

  3. Product formation controlled by substrate dynamics in leukotriene A4 hydrolase.

    PubMed

    Stsiapanava, Alena; Tholander, Fredrik; Kumar, Ramakrishnan B; Qureshi, Abdul Aziz; Niegowski, Damian; Hasan, Mahmudul; Thunnissen, Marjolein; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2014-02-01

    Leukotriene A4 hydrolase/aminopeptidase (LTA4H) (EC 3.3.2.6) is a bifunctional zinc metalloenzyme with both an epoxide hydrolase and an aminopeptidase activity. LTA4H from the African claw toad, Xenopus laevis (xlLTA4H) has been shown to, unlike the human enzyme, convert LTA4 to two enzymatic metabolites, LTB4 and another biologically active product Δ(6)-trans-Δ(8)-cis-LTB4 (5(S),12R-dihydroxy-6,10-trans-8,14-cis-eicosatetraenoic acid). In order to study the molecular aspect of the formation of this product we have characterized the structure and function of xlLTA4H. We solved the structure of xlLTA4H to a resolution of 2.3Å. It is a dimeric structure where each monomer has three domains with the active site in between the domains, similar as to the human structure. An important difference between the human and amphibian enzyme is the phenylalanine to tyrosine exchange at position 375. Our studies show that mutating F375 in xlLTA4H to tyrosine abolishes the formation of the LTB4 isomeric product Δ(6)-trans-Δ(8)-cis-LTB4. In an attempt to understand how one amino acid exchange leads to a new product profile as seen in the xlLTA4H, we performed a conformer analysis of the triene part of the substrate LTA4. Our results show that the Boltzmann distribution of substrate conformers correlates with the observed distribution of products. We suggest that the observed difference in product profile between the human and the xlLTA4H arises from different level of discrimination between substrate LTA4 conformers. PMID:24333438

  4. Long-term consequences of perinatal fatty acid amino hydrolase inhibition

    PubMed Central

    Wu, Chia-Shan; Morgan, Daniel; Jew, Chris P; Haskins, Chris; Andrews, Mary-Jeanette; Leishman, Emma; Spencer, Corinne M; Czyzyk, Traci; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2014-01-01

    Background and PurposeFatty acid amide hydrolase inhibitors show promise as a treatment for anxiety, depression and pain. Here we investigated whether perinatal exposure to URB597, a fatty acid amide hydrolase inhibitor, alters brain development and affects behaviour in adult mice. Experimental ApproachMouse dams were treated daily from gestational day 10.5 to 16.5 with 1, 3 or 10 mg kg−1 URB597. MS was used to measure a panel of endocannabinoids and related lipid compounds and brain development was assessed at embryonic day 16.5. Separate cohorts of mouse dams were treated with 10 mg kg−1 URB597, from gestational day 10.5 to postnatal day 7, and the adult offspring were assessed with a battery of behavioural tests. Key ResultsPerinatal URB597 exposure elevated anandamide and related N-acyl amides. URB597 did not induce signs of toxicity or affect dam weight gain, neurogenesis or axonal development at embryonic day 16.5. It did lead to subtle behavioural deficits in adult offspring, manifested by reduced cocaine-conditioned preference, increased depressive behaviours and impaired working memory. Anxiety levels, motor function and sensory-motor gating were not significantly altered. Conclusions and ImplicationsTaken together, the present results highlight how exposure to elevated levels of anandamide and related N-acyl amides during brain development can lead to subtle alterations in behaviour in adulthood. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24730060

  5. Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum

    SciTech Connect

    Ito, Tasuku; Saikawa, Kyo; Kim, Seonah; Fujita, Kiyotaka; Ishiwata, Akihiro; Kaeothip, Sophon; Arakawa, Takatoshi; Wakagi, Takayoshi; Beckham, Gregg T.; Ito, Yukishige; Fushinobu, Shinya

    2014-04-25

    Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.

  6. Soluble epoxide hydrolase expression in a porcine model of arteriovenous graft stenosis and anti-inflammatory effects of a soluble epoxide hydrolase inhibitor

    PubMed Central

    Sanders, William G.; Morisseau, Christophe; Hammock, Bruce D.; Cheung, Alfred K.

    2012-01-01

    Synthetic arteriovenous (AV) grafts, placed between an artery and vein, are used for hemodialysis but often fail due to stenosis, typically at the vein-graft anastomosis. This study recorded T lymphocyte and macrophage accumulation at the vein-graft anastomosis, suggesting a role for inflammation in stenosis development. Epoxyeicosatrienoic acids (EETs), products of cytochrome P-450 epoxidation of arachidonic acid, have vasculoprotective and anti-inflammatory effects including inhibition of platelet activation, cell migration, and adhesion. EETs are hydrolyzed by soluble epoxide hydrolase (sEH) to less active diols. The effects of a specific inhibitor of sEH (sEHI) on cytokine release from human monocytes and mouse bone marrow–derived macrophages (BMMΦ) from wild-type (WT) and sEH knockout (KO) animals were investigated. Expression of sEH protein increased over time at the anastomosis as evaluated by immunohistochemistry. Pre-exposure of adherent human monocytes to sEHI (5 μM) significantly inhibited lipopolysaccharide-induced release of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α and enhanced the EET-to-diol ratio. Release of MCP-1 from WT BMMΦ was significantly inhibited but release from sEH KO BMMΦ was not attenuated indicating the specificity of the sEHI. In contrast, sEHI did not inhibit the release of macrophage inflammatory protein-1 or interleukin-6. Nuclear translocation of NF-κB, as assessed by immunocytochemical staining, was not decreased with sEHI in monocytes, but the phosphorylation of JNK was completely abrogated, suggesting this pathway is the target of sEHI effects in monocytes. These results suggest that sEHI may be useful for inhibition of inflammation and subsequently stenosis in AV grafts. PMID:22621785

  7. sup 15 N NMR study on cyanide (C sup 15 N sup minus ) complex of cytochrome P-450 sub cam. Effects of d-camphor and putidaredoxin on the iron-ligand structure

    SciTech Connect

    Shiro, Yoshitsugu; Iizuka, Tetsutaro ); Makino, Ryu; Ishimura, Yuzuru ); Morishima, Isao )

    1989-11-27

    The cyanide (C{sup 15}N{sup {minus}}) complex of Pseudomonas putida cytochrome P-450 (P-450{sub cam}) exhibited well-resolved and hyperfine-shifted {sup 15}N NMR resonances arising from the iron-bound C{sup 15}N{sup {minus}} at 423 and 500 ppm in the absence and presence of the substrate, d-camphor, respectively. The values were smaller than those for cyanide complexes of myoglobin and hemoglobin ({approx} 1000 ppm) but fell into the same range as those for the cyanide complexes of peroxidases ({approx} 500 ppm). The {sup 15}N shift values of P-450{sub cam} were not incompatible with the existence of anionic ligand, such as cysteinyl thiolate anion, at the fifth coordination site of heme iron. The difference in the {sup 15}N chemical shift values between camphor-free and bound enzymes was inferred by the increase in the steric constraint to the Fe-C-N bond upon substrate binding.

  8. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei.

    PubMed

    Yeh, Ruo-Yun; Shiu, Ya-Li; Shei, Shu-Chiu; Cheng, Sheng-Chi; Huang, Sung-Yan; Lin, Jiunn-Cheng; Liu, Chun-Hung

    2009-07-01

    Effects of essential oils and hot-water extracts isolated from leaf and twig of stout camphor tree, Cinnamomum kanehirae on antibacterial activity to pathogen of fish, abalone, marine fish and freshwater prawn, and the white shrimp, Litopenaeus vannamei immunity and disease resistance to Vibrio alginolyticus were carried out in this study. A better antibacterial activity against nine selected pathogen bacteria was recorded in twig essential oil, and the selected pathogens of both Gram-positive bacteria and Gram-negative bacteria were sensitive to the leaf and twig essential oils in the present study. No antibacterial activity was recorded in the hot-water extracts of leaf and twig. In challenge trial, a significant decrease of sensitivity to V. alginolyticus (1 x 10(6) cfu shrimp(-1)) was found in that of shrimp received hot-water extract from twig at the levels of 2 microg g shrimp(-1) compared to control. In addition, the how-water extract of twig in vitro showed greater enhanced effects on phenoloxidase activity, respiratory burst and phagocytosis of white shrimp compared to the hot-water extract of leaf. It is considered that the extracts of stout camphor tree could be a candidate to replace the chemo-therapeutants through the inhibitory effects against the growth of pathogens, and enhanced effects on shrimp immunity and disease resistance. PMID:19063975

  9. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9)

    PubMed Central

    Bachovchin, Daniel A.; Wolfe, Monique R.; Masuda, Kim; Brown, Steven J.; Spicer, Timothy P.; Fernandez-Vega, Virneliz; Chase, Peter; Hodder, Peter S.; Rosen, Hugh

    2010-01-01

    We recently described a fluorescence polarization platform for competitive activity-based protein profiling (fluopol-ABPP) that enables high-throughput inhibitor screening for enzymes with poorly characterized biochemical activity. Here, we report the discovery of a class of oxime ester inhibitors for the unannotated serine hydrolase RBBP9 from a full-deck (200,000+ compound) fluopol-ABPP screen conducted in collaboration with the Molecular Libraries Screening Center Network (MLSCN). We show that these compounds covalently inhibit RBBP9 by modifying the enzyme’s active site serine nucleophile and, based on competitive ABPP in cell and tissue proteomes, are selective for RBBP9 relative to other mammalian serine hydrolases. PMID:20207142

  10. Activity-Based Protein Profiling of Organophosphorus and Thiocarbamate Pesticides Reveals Multiple Serine Hydrolase Targets in Mouse Brain

    PubMed Central

    NOMURA, DANIEL K.; CASIDA, JOHN E.

    2010-01-01

    Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672

  11. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    SciTech Connect

    Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

  12. Expression, purification, and buffer solubility optimization of the putative human peptidyl-tRNA hydrolase PTRHD1.

    PubMed

    Burks, Geordan L; McFeeters, Hana; McFeeters, Robert L

    2016-10-01

    Performing the essential function of recycling peptidyl-tRNAs, peptidyl-tRNA hydrolases are ubiquitous in all domains of life. The multicomponent eukaryotic Pth system differs greatly from the bacterial system composed predominantly of a single Pth1 enzyme. While bacterial Pth1s are structurally well characterized and promising new targets for antibiotic development, eukaryotic Pths are largely understudied. From amino acid sequence alignment and secondary structure predictions, the human gene product PTRHD1 was classified as a eukaryotic Pth. Herein, we report cloning, recombinant bacterial expression, and weak binding to peptidyl-tRNA for PTRHD1. Additionally, we report binding to tRNA but absence of peptidyl-tRNA hydrolase activity. Thus, PTRHD1 is not a Pth and the functional consequence of nucleotide binding remains undefined. PMID:27235175

  13. The Peptidoglycan Hydrolase of Staphylococcus aureus Bacteriophage ϕ11 Plays a Structural Role in the Viral Particle

    PubMed Central

    Rodríguez-Rubio, Lorena; Quiles-Puchalt, Nuria; Martínez, Beatriz; Rodríguez, Ana; Penadés, José R.

    2013-01-01

    The role of virion-associated peptidoglycan hydrolases (VAPGHs) in the phage infection cycle is not clear. gp49, the VAPGH from Staphylococcus aureus phage ϕ11, is not essential for phage growth but stabilizes the viral particles. ϕ11Δ49 phages showed a reduced burst size and delayed host lysis. Complementation of gp49 with HydH5 from bacteriophage vB_SauS-phiIPLA88 restored the wild-type phenotype. PMID:23892745

  14. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    PubMed Central

    Balotra, Sahil; Newman, Janet; French, Nigel G.; Briggs, Lyndall J.; Peat, Thomas S.; Scott, Colin

    2014-01-01

    The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P21, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°. PMID:24598916

  15. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    SciTech Connect

    Vose, Sarah C.; Holland, Nina T.; Eskenazi, Brenda; Casida, John E.

    2007-10-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC{sub 50} values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.

  16. Structural Insights into an Oxalate-producing Serine Hydrolase with an Unusual Oxyanion Hole and Additional Lyase Activity.

    PubMed

    Oh, Juntaek; Hwang, Ingyu; Rhee, Sangkee

    2016-07-15

    In Burkholderia species, the production of oxalate, an acidic molecule, is a key event for bacterial growth in the stationary phase. Oxalate plays a central role in maintaining environmental pH, which counteracts inevitable population-collapsing alkaline toxicity in amino acid-based culture medium. In the phytopathogen Burkholderia glumae, two enzymes are responsible for oxalate production. First, the enzyme oxalate biosynthetic component A (ObcA) catalyzes the formation of a tetrahedral C6-CoA adduct from the substrates acetyl-CoA and oxaloacetate. Then the ObcB enzyme liberates three products from the C6-CoA adduct: oxalate, acetoacetate, and CoA. Interestingly, these two stepwise reactions are catalyzed by a single bifunctional enzyme, Obc1, from Burkholderia thailandensis and Burkholderia pseudomallei Obc1 has an ObcA-like N-terminal domain and shows ObcB activity in its C-terminal domain despite no sequence homology with ObcB. We report the crystal structure of Obc1 in its apo and glycerol-bound form at 2.5 Å and 2.8 Å resolution, respectively. The Obc1 N-terminal domain is essentially identical both in structure and function to that of ObcA. Its C-terminal domain has an α/β hydrolase fold that has a catalytic triad for oxalate production and a novel oxyanion hole distinct from the canonical HGGG motif in other α/β hydrolases. Functional analyses through mutagenesis studies suggested that His-934 is an additional catalytic acid/base for its lyase activity and liberates two additional products, acetoacetate and CoA. These results provide structural and functional insights into bacterial oxalogenesis and an example of divergent evolution of the α/β hydrolase fold, which has both hydrolase and lyase activity. PMID:27226606

  17. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    PubMed

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  18. Surface display of heterologous proteins in Bacillus thuringiensis using a peptidoglycan hydrolase anchor

    PubMed Central

    Shao, Xiaohu; Jiang, Mengtian; Yu, Ziniu; Cai, Hao; Li, Lin

    2009-01-01

    Background Previous studies have revealed that the lysin motif (LysM) domains of bacterial cell wall-degrading enzymes are able to bind to peptidoglycan moieties of the cell wall. This suggests an approach for a cell surface display system in Gram-positive bacteria using a LysM-containing protein as the anchoring motif. In this study, we developed a new surface display system in B. thuringiensis using a LysM-containing peptidoglycan hydrolase, endo-β-N-acetylglucosaminidase (Mbg), as the anchor protein. Results Homology searching in the B. thuringiensis YBT-1520 genome revealed a putative peptidoglycan hydrolase gene. The encoded protein, Mbg, exhibited substantial cell-wall binding capacity. The deduced amino acid sequence of Mbg was structurally distinguished as an N-terminal domain with two tandemly aligned LysMs and a C-terminal catalytic domain. A GFP-fusion protein was expressed and used to verify the surface localization by Western blot, flow cytometry, protease accessibility, SDS sensitivity, immunofluorescence, and electron microscopy assays. Low-level constitutive expression of Mbg was elevated by introducing a sporulation-independent promoter of cry3Aa. Truncated Mbg domains with separate N-terminus (Mbgn), C-terminus (Mbgc), LysM1, or LysM2 were further compared for their cell-wall displaying efficiencies. The Mbgn moiety contributed to cell-wall anchoring, while LysM1 was the active domain. Two tandemly repeated Mbgns exhibited the highest display activity, while the activity of three repeated Mbgns was decreased. A heterologous bacterial multicopper oxidase (WlacD) was successfully displayed onto the surface of B. thuringiensis target cells using the optimum (Mbgn)2 anchor, without radically altering its catalytic activity. Conclusion Mbg can be a functional anchor protein to target different heterologous proteins onto the surface of B. thuringiensis cells. Since the LysM domain appears to be universal in Gram-positive bacteria, the strategy

  19. Leishmania donovani Nucleoside Hydrolase Terminal Domains in Cross-Protective Immunotherapy Against Leishmania amazonensis Murine Infection

    PubMed Central

    Nico, Dirlei; Gomes, Daniele Crespo; Palatnik-de-Sousa, Iam; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa Beatriz

    2014-01-01

    Nucleoside hydrolases of the Leishmania genus are vital enzymes for the replication of the DNA and conserved phylogenetic markers of the parasites. Leishmania donovani nucleoside hydrolase (NH36) induced a main CD4+ T cell driven protective response against L. chagasi infection in mice which is directed against its C-terminal domain. In this study, we used the three recombinant domains of NH36: N-terminal domain (F1, amino acids 1–103), central domain (F2 aminoacids 104–198), and C-terminal domain (F3 amino acids 199–314) in combination with saponin and assayed their immunotherapeutic effect on Balb/c mice previously infected with L. amazonensis. We identified that the F1 and F3 peptides determined strong cross-immunotherapeutic effects, reducing the size of footpad lesions to 48 and 64%, and the parasite load in footpads to 82.6 and 81%, respectively. The F3 peptide induced the strongest anti-NH36 antibody response and intradermal response (IDR) against L. amazonenis and a high secretion of IFN-γ and TNF-α with reduced levels of IL-10. The F1 vaccine, induced similar increases of IgG2b antibodies and IFN-γ and TNF-α levels, but no IDR and no reduction of IL-10. The multiparameter flow cytometry analysis was used to assess the immune response after immunotherapy and disclosed that the degree of the immunotherapeutic effect is predicted by the frequencies of the CD4+ and CD8+ T cells producing IL-2 or TNF-α or both. Total frequencies and frequencies of double-cytokine CD4 T cell producers were enhanced by F1 and F3 vaccines. Collectively, our multifunctional analysis disclosed that immunotherapeutic protection improved as the CD4 responses progressed from 1+ to 2+, in the case of the F1 and F3 vaccines, and as the CD8 responses changed qualitatively from 1+ to 3+, mainly in the case of the F1 vaccine, providing new correlates of immunotherapeutic protection against cutaneous leishmaniasis in mice based on T-helper TH1 and CD8+ mediated immune responses

  20. Evaluation of epichlorohydrin (ECH) genotoxicity. Microsomal epoxide hydrolase-dependent deactivation of ECH mutagenicity in Schizosaccharomyces pombe in vitro.

    PubMed

    Rossi, A M; Migliore, L; Loprieno, N; Romano, M; Salmona, M

    1983-04-01

    The mutagenic effect of epichlorohydrin (ECH) on the yeast Schizosaccharomyces pombe was studied in vitro in the presence of mouse-liver S9 mix and microsomal and cytosolic fractions. The incubations were always performed in the absence of NADPH-generating systems. S9 mix and microsomes from phenobarbital-pretreated mice significantly reduced ECH mutagenicity, whereas the cytosol did not result in any deactivating effect. The various protein contents of the subcellular fractions were not involved in any scavenger effect as regards ECH mutagenic activity. Moreover, the addition of reduced glutathione to the incubation mixtures indicated that it did not play an important role, either per se or through the enzyme(s) glutathione-S-epoxide transferase(s), in preventing ECH genotoxicity. Our results suggest that microsomal epoxide hydrolase(s) represents the major step in the detoxifying pathway of ECH. These observations were supported by measurements of the specific epoxide hydrolase activity in the various fractions on the same substrate. PMID:6835236